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ABSTRACT

This dissertation centers on the development of Bayesian methods for learning differ-

ent types of variation in switching nonlinear gene regulatory networks (GRNs). A new 

nonlinear and dynamic multivariate GRN model is introduced to account for different 

sources of variability in GRNs. The new model is aimed at more precisely capturing 

the complexity of GRN interactions through the introduction of time-varying kinetic 

order parameters, while allowing for variability in multiple model parameters. This 

model is used as the drift function in the development of several stochastic GRN mod-

els based on Langevin dynamics. Six models are introduced which capture intrinsic 

and extrinsic noise in GRNs, thereby providing a full characterization of a stochastic 

regulatory system. A Bayesian hierarchical approach is developed for learning the 

Langevin model which best describes the noise dynamics at each time step. The 

trajectory of the state, which are the gene expression values, as well as the indicator 

corresponding to the correct noise model are estimated via sequential Monte Carlo 

(SMC) with a high degree of accuracy. To address the problem of time-varying regu-

latory interactions, a Bayesian hierarchical model is introduced for learning variation 

in switching GRN architectures with unknown measurement noise covariance. The 

trajectory of the state and the indicator corresponding to the network configuration 

at each time point are estimated using SMC. This work is extended to a fully Bayesian 

hierarchical model to account for uncertainty in the process noise covariance associ-

ated with each network architecture. An SMC algorithm with local Gibbs sampling 

is developed to estimate the trajectory of the state and the indicator correspond-

ing to the network configuration at each time point with a high degree of accuracy. 

The results demonstrate the efficacy of Bayesian methods for learning information in 

switching nonlinear GRNs.
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Chapter 1

INTRODUCTION

1.1 Motivation: Development, Evolution, and Disease in Gene Regulatory

Networks

The process of organismal development is mediated by the action of gene regula-

tory networks (GRNs) de Leon and Davidson (2007). These networks are complex

systems consisting of genes, transcription factors (TFs) and a toolkit of regulatory

elements responsible for the spatiotemporal allocation of gene expression in every

cell of the organism during embryogenesis Peter and Davidson (2011). The spe-

cific topology and dynamics of GRNs determine the organization of the anatomical

plan and its functional properties by creating hundreds of different cell types and

integrating them into a functional whole: the organism, which is the output of the

developmental process. GRNs therefore provide a mechanistic explanation for how a

one-dimensional deoxyribonucleic acid (DNA) sequence is transformed into a dynamic

three-dimensional structure. Their topology and dynamics serve as the mapping func-

tion between genotype, the DNA sequence, and phenotype, which broadly refers to

the characters, traits, and three-dimensional morphologies of the organism.

Over evolutionary time, changes in the topology and dynamics of GRNs are con-

sequential to the final output of the developmental process. This can occur via novel

gene-transcription factor associations, gene duplication and co-option, novel interac-

tions between non-TF and regulatory elements such as long non-coding RNAs (lncR-

NAs) and additional transcriptional co-factors. Changes can also be induced by the

environment Sebe-Pedros et al. (2017). These changes in the developmental process
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generate alternate developmental trajectories and may produce morphological nov-

elties as a direct result of changes in gene expression patterns. Thus, studying how

GRNs change across evolutionary timescales can provide a mechanistic explanation of

phenotypic evolution. This also answers one of Darwin’s fundamental questions from

The Origin of Species Darwin (1909): what are the causes of phenotypic novelty?

Or, in other words, how does evolution produce something new? GRNs are essen-

tial for gaining insight into the mechanisms underlying major phenotypic innovations

(changes in the body plan).

On shorter timescales, changes in the topology of GRNs correspond to different

stages of biological processes. These can include stages in development, the progres-

sion of diseases, such as cancer, and stages in the life cycle of an organism. Thus,

understanding the structure and dynamics of such regulatory networks, as well as

how they vary over time, can yield insights into diseases and developmental disor-

ders resulting from regulatory mechanisms gone amok. Therefore, the importance of

understanding GRNs spans every biological discipline.

1.2 Gene Regulatory Network Modeling and Reverse Engineering

1.2.1 GRN Modeling

The specific dynamics of gene regulation can be described by Boolean or differen-

tial equations models. Boolean models were introduced in 1969 by Stuart Kauffman

to describe the discrete-time dynamics of regulatory systems Kauffman (1969). In

these models, the state of a gene, Xi takes on a binary value Xi ∈ {0, 1}, which

corresponds to an on or off state. A significant advantage of Boolean networks is

that they are able to account for gene expression due to the combinatorial action of

transcription factors on a target gene Akers and Murali (2021). Differential equations
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models describe the rate of change of gene expression levels. The rate of change is a

function of the genes themselves as well as additional parameters which encode the

interactions between genes and the regulatory dynamics of other genes in the net-

work. The primary advantage of differential equations models is that they provide a

mechanistic system representation of biochemical processes by capturing the nonlin-

ear dynamics of gene regulation. Both of these approaches can be incorporated into

a state space model representation, which facilitates inference of the network using

noisy microrarray data. GRN inference using a state space approach has been ex-

tensively studied Amor et al. (2019); Ancherbak et al. (2016a); Bugallo et al. (2015);

de Luis Balaguer and Sozzani (2017); Elahi and Hasan (2018); Noor et al. (2012);

Mercatelli et al. (2020); Pirgazi and Khanteymoori (2018); Sanguinetti and Huynh-

Thu (2019); Santillán (2008); Shen and Vikalo (2010); Wai et al. (2019); Wang et al.

(2009, 2007); Wang and Aberra (2015); Xiong and Zhou (2013); Youseph et al. (2015,

2019); Zhang et al. (2014); Zhou and Ji (2017). Specifically, the authors in Pirgazi

and Khanteymoori (2018); Xiong and Zhou (2013) use Kalman filtering for inference

by assuming a linear state-space model. In Bugallo et al. (2015); Noor et al. (2012);

Wai et al. (2019); Wang et al. (2009); Zhou and Ji (2017); Zhang et al. (2014), the

nonlinear sigmoid squash function is used since it can capture the switch-like behavior

of regulatory systems. Alternatively, nonlinear system models based on Hill kinet-

ics, Michaelis-Menten kinetics, or the S-system are able to more accurately capture

the molecular mechanisms of gene regulation Elahi and Hasan (2018); Wang et al.

(2007); Youseph et al. (2015, 2019). Nonlinear Bayesian filtering inference methods,

such as extended Kalman filtering and particle filtering, were used with these nonlin-

ear models Bugallo et al. (2015); Wang et al. (2009); Zhou and Ji (2017); Zhang et al.

(2014). A key challenge in reverse engineering time-varying GRNs is the development

of models that can capture both the direction and type of regulation (activation or
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inhibition) in order to infer the gene expression trajectories. To this extent well as

ODE and SDE-based methods, are able to capture both the direction and regulation

type Nguyen et al. (2021); Lim et al. (2016); Moignard et al. (2015). An additional

challenge in reverse engineering time-varying GRNs is the development of models that

can capture the various types of noise that are present in GRNs. Not only are the

microarray data noisy, but GRN dynamics are inherently stochastic processes. Such

stochasticity is a result of varying cellular environments, varying timings of molecu-

lar events, and low copy numbers of genes inside the cell Wang and Aberra (2015).

These factors give rise to stochastic fluctuations in the process of gene expression,

from transcription to translation, and contribute to phenotypic variation. In general,

this stochasticity can be partitioned into intrinsic and extrinsic noise and can affect

production and degradation rates. Most state-space approaches for inferring GRNs

exclusively assume additive Gaussian noise in both the process and measurement

noise. However, it is usually unknown a priori which noise dynamics best describe

the system dynamics in the process model. Furthermore, the type of noise that is

present may change over time.

1.2.2 Reverse Engineering GRNs

Over the past few decades, developments in high-throughput sequencing and mi-

croarray technologies have facilitated the acquisition of tremendous amounts of -omics

data, of which there are four main types: genomics, proteomics, transcriptomics, and

metabolomics Kaur et al. (2021). Such data are used for inferring and reconstructing

GRNs Delgado and Gómez-Vela (2019), a task referred to as reverse engineering.

Reverse engineering GRNs consists of three main steps. First, gene expression in

terms of mRNA or protein concentrations is measured under different experimental

conditions following perturbation of the target genes. The resulting datasets encode
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topological information of the underlying GRN, which is called the target network.

Second, computational algorithms which usually make use of a model for the network

are applied to the data to infer the structure of the network as well as any addi-

tional model parameters. The output of this step is the predicted network. Third, the

predicted network is compared to the target network according to some validation

criterion.

Approaches to reverse engineering GRNs can be broadly categorized into two

types: static and dynamic. Static approaches use steady-state data to construct a

GRN as a temporal aggregate represented by a static network. This class of ap-

proaches is largely comprised of co-expression networks, information theoretic ap-

proaches, and probabilistic graphical models. Co-expression networks use correlation

metrics, such as Pearson correlation to establish regulatory relationships, whereas

information[theoretic approaches use mutual information to establish nonlinear reg-

ulatory relationships Nguyen et al. (2021). Probabilistic graphical models, such as

Bayesian networks and Gaussian graphical models (GGMs), encode conditional de-

pendencies between genes to form the network. Static approaches do not represent

information related to time and thus cannot capture time-varying regulatory rela-

tionships Lopes and Bontempi (2013). Dynamic approaches overcome this drawback

by accounting for the dynamic aspects of gene regulation through the use of time

series data. They are useful for inferring time-varying GRNs or GRNs under different

physiological or environmental conditions Stumpf (2021). Many of these approaches

are model-based and employ ordinary differential equations (ODEs), stochastic differ-

ential equations (SDEs), or Boolean models. Other such approaches include dynamic

Bayesian networks and vector autoregressive models.
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1.3 Contributions

As highlighted in Section 1.2.1, the main three challenges in reverse engineering

GRN are as follows: (a) the design of dynamic stochastic models to capture sources

of variability in GRNs while simultaneously accounting for both the direction and

type of gene regulation; (b) inference methods to account for dynamic variability in

the type and direction of gene regulation, which yields different GRN architectures;

and (c) inference methods to account for different types of noise dynamics that best

describe the behavior of the regulatory system. Our contributions in this dissertation

address each of these three challenges.

1.3.1 Contribution 1: New Nonlinear Dynamic and Stochastic GRN Models

We propose a new nonlinear and dynamic multivariate GRN model that integrates

both Michaelis-Menten and Hill kinetics and allows us to incorporate stochasticity to

account for different sources of variability in GRNs. The model is based on Youseph

et al. (2019) which contains parameters encoding the type and direction of regulation.

The new model is multivariate extension aimed at more precisely capturing the com-

plexity of GRN interactions through the introduction of time-varying kinetic order

parameters, while allowing for variability in multiple model parameters Vélez-Cruz

et al. (2021). This model is used as the drift function in our development of several

stochastic GRN models based on Langevin dynamics. We introduce six models which

capture intrinsic and extrinsic noise in GRNs, thereby providing a full characteriza-

tion of a stochastic regulatory system.
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1.3.2 Contribution 2: Learning Variation in Switching Langevin Dynamics

Gene regulation is an inherently stochastic process, and this stochasticity can be

partitioned into various types depending on their source. To the authors knowledge,

there is no work that focuses on Bayesian model selection of stochastic models of

gene regulatory networks. We assume that the noise dynamics can change at un-

known times in the GRN to account for the various sources of stochasticity. We

introduce hierarchical Bayesian approach which can learn the Langevin model which

best describes the noise dynamics at each time step. The unknown noise model is

learned by drawing parameters from a categorical distribution with probabilities dis-

tributed according to a Dirichlet conjugate prior. The unknown measurement noise

covariance is learned using an Inverse-Wishart prior with known hyerparameters. We

estimate the gene expression values as well as the indicator corresponding to the noise

type at each time point. Our results demonstrate the efficacy of Bayesian hierarchical

modeling under varying noise types.

1.3.3 Contribution 3: Learning Variation in Gene Regulatory Network Architecture

In order to account for variability in the regulatory interactions, we assume that

the kinetic order parameters can change at unknown times in the GRN. We introduce

a hierarchical Bayesian approach that can learn the network configuration which best

describes the gene expression dynamics. The unknown transition probabilities are

learned by drawing parameters from a categorical distribution. The parameters of

the categorical distribution are then learned using a Dirichlet distribution conjugate

prior. The unknown measurement noise is learned using an Inverse-Wishart prior

with known hyperparameters. We estimate the trajectory of the state, which are

the gene expression values, as well as the indicator corresponding to the network
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configuration at each time point. We demonstrate through simulations the efficacy

of our Bayesian hierarchical modeling approach.

1.3.4 Contribution 4: Learning Variation in Gene Regulatory Network

Architecture with Local Gibbs Sampling

In order to account for variability in the regulatory interactions, we assume that

the kinetic order parameters can change at unknown times in the GRN. We introduce

a fully hierarchical Bayesian approach that can learn the network configuration which

best describes the gene expression dynamics. The unknown transition probabilities

over multiple sets of kinetic order parameters are learned by drawing parameters from

a categorical distribution. The parameters of the categorical distribution are then

learned using a Dirichlet distribution conjugate prior. The unknown measurement

and process noise covariances are learned using Inverse-Wishart priors with known

hyperparameters. We develop a sequential Monte Carlo (SMC) algorithm with local

Gibbs sampling to estimate the trajectory of the state and the indicator corresponding

to the network configuration at each time point. We demonstrate through simulations

the efficacy of our Bayesian hierarchical modeling approach.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, we provide an introduction

to gene regulatory networks, specifically focusing on their role in development, disease,

and evolution. In Chapter 3, we review Bayesian inference methods for state-space

models. In Chapter 4, we review a broad range of current approaches to processing

gene regulatory networks. In Chapter 5, we introduce the new Michaelis-Menten ki-

netics model, which can be used to infer time-varying GRNs. We also develop several

stochastic models of gene regulation aimed at more precisely capturing the complexity
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of GRNs. In Chapter 6, we focus on the problem of estimating GRNs under switching

noise dynamics. In Chapter 7, we introduce a Bayesian model for estimating time-

varying GRNs with switching architectures. In Chapter 8, we extend the Bayesian

model in Chapter 7 to a fully Bayesian hierarchical model, which incorporates un-

certainty in both the process and measurement noise covariance matrices. Since the

unknown state depends on the unknown process noise covariance, we implement a

local Gibbs step in our SMC algorithm. In Chapter 9, we conclude our work through

a discussion of next steps and future directions.
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Chapter 2

CONCEPTUAL BACKGROUND

How do you build an organism? How do you go from a single cell, the egg, to an

integrated collection of hundreds of different cell types? How do you build arms,

legs, a head, let alone ensure that they are in the correct spots? How do complex

diseases, such as cancer, arise? What is the best way to develop drug therapies

that take into account the inter-individual differences in how cancers form? How did

the transition from unicellular to multicellular organisms occur, and subsequently the

origin of animals? Each of these questions can be answered in large by gene regulatory

networks (GRNs), which are comprised of regulatory genes and their interactions with

molecular entities. Such entities include transcription factors and their co-factors,

long non-coding RNAs (ribonucleic acid), histones, etc. The list has grown since the

dawn of molecular biology, and we are still unveiling the complexity of the genome

and its regulatory elements to this day.

Regulatory genes, as their name suggests, encode proteins that regulate the ex-

pression of structural genes; these are genes that encode proteins needed for physical

structures inside the cells or functional proteins Peter and Davidson (2015). The

interactions between regulatory genes and the genes they regulate form vast networks

inside each cell that are also able to regulate gene expression in neighboring cells.

What was, for many decades, viewed as a static sequence of letters is in reality a

dynamic, highly complex four-dimensional structure that exhibits a spatiotemporal

hierarchical organization. It is these regulatory networks that provide a causal link,

or mapping function, between genotype (DNA sequence) and phenotype (trait). The

theoretical advent of gene regulatory networks, and their subsequent experimental
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validation by Eric Davidson and Roy J. Britten in the 1960s, contributed to challeng-

ing the view of a direct mapping between sequence and trait, or in other words, a

direct genotype-phenotype map, by providing a mechanistic explanation of the causal

relationship between genome and trait 1 . Interestingly, Davidson drew inspiration

from electrical engineering, specifically circuit diagrams to infer, visualize, and model

the dynamics of gene regulatory networks.

2.1 GRN Structure

GRNs, and the entire process of organismal development, are encoded in the

genome and specifically in cis-regulatory modules (the interactions between regulatory

genes and the toolkit of molecular entities) Peter (2019). Cis-regulatory modules are

sequences of non-coding DNA, where transcription factors bind to that are required

for the activity of most or all genes. They are control modules responsible for the

activation or repression of regulatory genes. Types of cis-regulatory elements include

promoters, enhancers, and silencers which combinatorially bind transcription factors

to form modules Peter and Davidson (2015). Promoters are sequences of DNA to

which RNA polymerase initiates the transcription of a gene at the transcription start

site (TSS). They are typically located directly upstream of the TSS ?. Enhancers are

sequences of DNA which bind clusters of transcription factors that cause increased

expression of their target gene. They can be located upstream, downstream, as well

as within the gene they regulate. They can regulate gene expression over very large

distances by looping the transcription factors bound to them to contact the promoter;

enhancers can also be found close to their target promoter Hardison and Taylor (2012).

1It is important to note that the idea of a direct genotype-phenotype (G-P) map was challenged
early on in the history of genetics, but Davidson and Britten’s work further demonstrated why the
idea of a direct G-P map was not much more than a conceptual fantasy.
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Silencers, on the other hand, as their name suggests, are DNA sequences that cause

reduced expression of their target gene.

Each cell in the body has the same DNA. One key feature of GRNs is that using

the same set of genes, GRNs are able to produce hundreds of distinct cell types. This

is done by turning on and turning off different combinations of genes within each

cell, which is accomplished through the combinatorial action of transcription factors

and the cis-regulatory modules they form with promoters, enhancer, and silencers.

Different combinations of transcription factors will regulate the genome of each cell

in different ways. This is because the specific combination of those transcription

factors will cause either the activation or repression of cis-regulatory modules found

on certain genes in a specific cell, thereby producing different specification states.

Specification states are cell type-specific regulatory states that define the cell identity

and the differentiation genes that it expresses de Leon and Davidson (2007). The

regulatory state is the total set of activate transcription factors in a cell nucleus at a

given time and domain of the embryo de Leon and Davidson (2007).

However, in order for RNA polymerase and for transcription factors to bind to a

gene to begin transcription, the DNA must be accessible. DNA is wrapped around

proteins called histones to form chromatin, which can either be loosely condensed

(euchromatin), or tightly condensed (heterochromatin). Typically, genes within het-

erochromatin are not expressed because they are not accessible. Modifications to

the histones and to the DNA can be made to alter chromatin structure. One such

modification is histone acetylation, in which acetyl groups added to the histones

cause heterochromatin to unwind, transforming it into euchromatin and activating

gene expression. When the acetyl groups are removed by certain enzymes called his-

tone deacetylases, the DNA condenses once again to form heterochromatin, blocking

transcription and gene expression. The other type of chromatin modification is DNA
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methylation, which adds methyl groups directly to the DNA, not the histone proteins,

and causes chromatin to condense into heterochromatin, turning off gene expression.

Thus, the organization of DNA into heterochromatin or euchromatin also contributes

to differential gene expression.

There are many more subtleties to the organization of the genome and the dy-

namics of gene regulation that are beyond the scope of this work, such as nucleosome-

nucleosome interactions, chromatin looping, and the organization of the genome into

topologically associating domains (TADs) and subTADs, to list a few Bonev and

Cavalli (2016). For the sake of coarse graining and for developing a useful modeling

framework that can aid in the reconstruction of regulatory networks using time series

data, we focus on the interactions between transcription factors and regulatory genes.

2.1.1 The Role of GRN Subcircuits

A second key feature of GRNs is that they are hierarchical both spatially and tem-

porally. In this section, we focus on the spatial hierarchy of GRNs. GRNs consist of

subcircuits, which are assemblages of two to eight genes that form specific regulatory

linkages among specific genes to perform biologically meaningful functions Peter and

Davidson (2011). Subcircuits, not the individual regulatory genes, are the structural

and functional subunits of GRNs Hinman and Cheatle Jarvela (2014). The advan-

tage of this hierarchical organization into subcircuits is that it provides GRNs with

modularity, a characteristic of both engineered systems and natural systems which

have undergone evolutionary change.

From a network science perspective, modularity is an efficient feature of many

complex networks. To understand why, it is important to note that there are two

types of modularity: structural and functional modularity. Structural modularity

refers to spatially bounded groups of highly-connected nodes that are sparsely con-
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nected to other nodes Hartwell et al. (1999). These modules can be separated into

physically independent components. The obvious advantage of structural modularity

is that it reduces the cost of communication between nodes of a network through

physical integration of various components Clune et al. (2013). Structural modular-

ity also makes complex networks robust to attacks, since damage can be localized

to specific modules without affecting the rest of the network. Functional modules,

on the other hand, typically consist of different components that interact with one

another to accomplish a specific function, and this function is separable from other

modules Hartwell et al. (1999); Lacquaniti et al. (2013). Unlike structural modules,

the components of a functional module do not have to be spatially bounded. Func-

tional modularity also contributes to the efficiency of complex networks in that it

allows for a division of labor so that not all parts of the network are required to

perform every task.

In the developmental process, GRN subcircuits can exhibit both of these types of

modularity. GRN subcircuits are always functionally modular since each subcircuit

type is responsible for performing a particular developmental task. They are also

structurally modular through the direct physical interactions between the transcrip-

tion factors (TFs) and genes that comprise individual subcircuits regardless of the

actual distance between a TF and the gene that it binds to since the action of distal

enhancers can bring these spatially separated elements into direct physical contact

(chromatin looping being one mechanism). The defining characteristic of GRN sub-

circuits is that their spatial organization (physical interactions between components

of the subcircuits) completely determines their developmental function. As a result,

their structural and functional modularities are inseparable much in the same way as

electrical circuits. So far, eight canonical subcircuits have been identified in GRNs

across the diversity of Metazoa Peter and Davidson (2015). We will briefly describe
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each one as they are listed in Peter and Davidson’s Genomic Control Processes: De-

velopment and Evolution Peter and Davidson (2015):

1. Positive feedback subcircuits consist of two to three genes which activate their

own or another regulatory gene’s transcription at the cis-regulatory level. Al-

though GRNs do have positive autoregulatory feedback loops, in which a gene

product activates its own transcription, multigenic positive feedback loops are

much more common in GRNs than are positive autoregulatory feedback loops.

One of the most interesting features of positive feedback subcircuits is that

they act as filters to reduce the noise caused by the duration or intensity of

upstream transient inputs, such as brief exposure to signals or brief exposure to

transcription factors, converting these signals into stable regulatory states. A

signal can lock a two-gene positive feedback subcircuit into two possible stable

steady states. If the signal causes the protein from gene X or Y to be produced,

the subcircuit locks in the ON state. This is demonstrated in Figure 2.1. The

other alternative is that no activation of X or Y occur, so genes X and Y are

both OFF.

Figure 2.1: Positive feedback subcircuit. Gene X activates the expression of gene

Y, and vise versa.

2. Community effect subcircuits are positive feedback subcircuits that occur be-

15



tween cells, rather than within a single cell as in the standard positive feedback

subcircuit. The community effect subcircuit also function to reduce variability,

but again, between cells. As demonstrated in Figure 2.2, the gene that encodes

the ligand is activated by reception of the ligand Figure 2.2. This type of inter-

cellular communication is necessary for the maintenance of regulatory states and

for ensuring that each cell expresses the same downstream genes. Interestingly,

analogous dynamics are found in non-molecular systems, for example, in the

formation of opinions in social systems. The state (opinion) of one individual

can cause an adjacent agent (friend) to adopt the same opinion.

Figure 2.2: Community effect subcircuit. A positive feedback loop is created

between Cell 1 and Cell 2. Cell 1 produces a ligand which binds to the receptor in

Cell 2, resulting in signal transduction which activates the gene encoding the ligand

in Cell 2. The Cell 2 ligand binds to the receptor of Cell 1, activating the signal

transduction pathway responsible for activating the ligand gene in Cell 1 as well as

downstream regulatory genes.
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3. Coherent feedforward subcircuits consist of at least three genes and form a

cascade. There are four possible types of coherent feedforward subcircuits.

Type one is shown in Figure 2.3. This is the most basic type where X activates

Y and Z, and Y activates Z, creating two parallel gene regulation paths (one

from X to Z and an indirect one from X to Y to Z). Coherent feedforward

subcircuits are characterized through the agreement of signs of the direct path

(X to Z) and the indirect path (X to Z through Y). For example, in coherent type

two, X directly represses Z, and because X represses Y, which activates Z, the

indirect path from X to Z through Y also results in the repression of Z. Similarly,

in coherent type three, X directly represses Z, and because Y represses Z, the

indirect path from X to Z through Y also leads to the repression of Z. The sign

agreement of the direct and indirect paths provide a mechanism for high levels

of expression of the target genes. Furthermore, the structure of this subcircuit

can also cause temporal delays in target gene expression. We demonstrate a

delay using a coherent type one, under the premise that activation of Z requires

inputs from X and Y. After X receives an input signal and exceeds the threshold

for its activation, it binds to the promoter for Y to initiate transcription. At

the same time, it binds directly to the promoter of Z. Sufficient amounts of X

must be produced in order for X to activate both Y and Z. Since Z cannot be

activated only by X, sufficient amounts of Y must accumulate in order to cross

the activation threshold so that it can bind to the promoter of Z. Thus, Z is

only activated after a delay Alon (2007).

4. Incoherent feedforward subcircuits are similar to coherent feedforward subcir-

cuits, except that the sign of the direct path is opposite to that of the indirect

path Alon (2007). For example, looking at incoherent type 1 as shown in Fig-
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Figure 2.3: Coherent feedforward subcircuit (type 1). Gene X activates the

expression of gene Y and gene Z, and gene Y activates the expression of gene Z.

ure 2.4, the direct path from X to Z is positive since X activates Z, whereas

the indirect path from X to Z is negative since if X activates Y, then Y re-

presses Z. Of what biological use is this type of subcircuit? Although there are

four types of incoherent feedforward subcircuits, type 1 in particular is used for

subdividing spatial domains during development. This will be discussed in the

next section. In summary though, gene Z can only be expressed in cells where

X, not Y, is expressed; thus gene X is expressed in a domain that encompasses

two subregions: one expressing gene Y and the other expressing gene Z Peter

and Davidson (2015).

Figure 2.4: Incoherent feedforward subcircuit (type 1). Gene X activates the

expression of gene Y and gene Z, and gene Y inhibits the expression of gene Z.
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5. Signal mediated toggle switch subcircuits are characterized by their ability to

modify the activity of a transcription factor, in this case called an immediate

response factor. Depending on the signal received, the immediate response

factor can change its state to either positive or negative acting, as shown in

Figure 2.5 which alters downstream target gene expression. Similarly to the

community effect subcircuit, signal mediated toggle switch subcircuits can link

the regulatory activities of GRNs in two different cells so that the GRN in one

cell produces the signal (ligand) and the GRN in the second cell is activated

through reception of the signal.

Figure 2.5: Toggle switch subcircuit. A gene encoding a ligand binds to a receptor.

Depending on the type of ligand (the signal), the transcription factor either inhibits

or activates expression of its target gene.
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6. Reciprocal repression subcircuits consist of two genes encoding transcription

factors that mutually repress each other. This type of subcircuit is used in

cell fate determination. As depicted in Figure 2.6, if an input activates gene

X, the transcription factor encoded by gene X represses transcription of gene

Y, resulting in cell fate A and the repression of cell fate B. Conversely, if an

input activates gene Y, the transcription factor encoded by gene Y represses

the transcription of gene X, resulting in cell fate B and the repression of cell

fate A.

Figure 2.6: Reciprocal repression subcircuit. If an input favoring gene X is

received, then gene X represses gene Y, resulting in cell fate A. If an input favoring

gene Y is received, then gene Y represses gene X, resulting in cell fate B.
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7. Spatial exclusion subcircuits functional similarly to reciprocal repression subcir-

cuits in that they are used in cell fate determination, specifically in repressing

alternative cell fates. This is accomplished by ensuring that regulatory genes

encoding a particular cell fate are silenced. As shown in Figure 2.7, to achieve

the specification state encoded by GRN 1, GRN 2 must be silenced; this occurs

through the binding of a repressor to the regulatory gene of GRN 2. Similarly, to

achieve the specification state encoded by GRN 2, binding of a repressor to the

regulatory gene of GRN 1 silences GRN 1, thereby producing the specification

state encoded by GRN 2.

Figure 2.7: Spatial exclusion subcircuit. In Domain 1, a gene encoding a repressor

binds to the regulatory gene responsible for the specification state encoded by GRN

2. In Domain 2, a gene encoding a repressor binds to the regulatory gene responsible

for the specification state encoded by GRN 1.

8. Double negative gate subcircuits consist of multiple genes encoding repressors

that are wired in tandem. They function in the spatial control of development

by ensuring that target genes are expressed exclusively in certain subregions

and repressed elsewhere regardless of the presence of their activators in those

”elsewhere” subregions. In this case, the action of the repression must be dom-

inant to the action of the activators. In Figure 2.8, there are two domains, A

and D, where D ⊃ A (D includes A). Gene X and gene Z are only expressed in
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Domain A, since if gene X is activated, then it represses gene Y so that gene Y

cannot repress gene Z. However, if gene X is not active, then gene Y produces

the repressor binding to gene Z, so that gene Z is repressed in Domain D minus

A. Therefore, this subcircuit ensures that gene Z is only expressed in domain A

and repressed in domain D minus A.

Figure 2.8: Double negative gate subcircuit. Given a domain A-specific input,

gene X will repress gene Y, thereby allowing the domain D>A-specific inputs to

activate the activity of genes Z. If gene X is not active, then gene Y will repress genes

Z in domain D minus A.

As just described, one of the ways in which GRNs exhibit a hierarchical struc-

ture is through their organization into different subcircuits, where GRN subcircuit

design produces specific dynamic functions due to the kinetics of transcription and

translation Hinman and Cheatle Jarvela (2014). This type of hierarchy also makes

GRNs modular, an efficient feature of evolved complex systems. There is a second

way in which GRNs are hierarchical, and that is temporally. This is because the

developmental process itself is sequential and unidirectional, in that the output of

each step serves as the input to the following one. An overview of the various steps

of organismal development as well as the roles of the subcircuits just discussed in the
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various steps of development are discussed next.

2.2 How to Build an Organism

Referring back to the questions posed in the beginning of this section, how does one

go from a single cell, the fertilized egg, to an organism with arms, legs, internal organs,

and a central nervous system? And, how is it that all those parts are right where they

should be (assuming that the developmental process proceeds as it should)? Now that

we have an understanding of the basic biology of gene regulatory networks, we will

now provide answers to these questions through an overview on how GRNs mediate

the process of organismal development.

Organismal development is initiated by the localization of maternal anisotropies

in the egg, which are asymmetric distributions of mRNA and other proteins needed

for the activation of regulatory activity in the embryo de Leon and Davidson (2007).

These initial regulatory activities set the broad coordinates and section the overall

body plan which at the end of the process is organized into distinct regions with

over hundreds of different cell types. The process of organismal development is one

of progressive subdivisions. Step one is axis formation and specification initiation,

and the GRNs active in this step will set the position for the future body parts.

The subcircuits involved in this step act in pattern formation processes, which are

processes that require coordinating the number of cells, their placement in particular

regions, and placement near the correct set of neighbors, as well as their genomically

encoded instructions on which cell fate the cells become, ultimately leading to the

formation of a three-dimensional structure Niswander (2019). In considering the

dynamics of the eight subcircuits discussed in Section 2.1.2, the double negative

gate and incoherent feedforward subcircuits are most likely to be active in step one.

This is because their functions involve spatial domain subdivision rather than the
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stabilization of regulatory states that is accomplished by positive feedback loops. The

broad domains of the endoderm, mesoderm, and ectoderm are established during this

stage and constrain the position of future body parts Peter and Davidson (2011).

Within these broad domains, the GRNs in step two of organismal development

establish the progenitor fields for future body parts. Progenitor fields consist of sets

of progenitor cells, which are descendants of stem cells. Unlike stem cells, which have

the potential to differentiate into essentially any cell type, progenitor cells correspond

to specific cell types. The GRNs in the cells of these progenitor fields, as well as

other GRNs that function in the formation of specific body parts, require their active

regulatory genes to remain on even when the initial input signal is no longer present.

As such, the subcircuits that are most likely to be found in this step are those involved

in the stabilization of regulatory states, such as, for example, community effect or

positive feedback subcircuits.

Once the progenitor fields are established, step three is another round of domain

subdivision, in which the progenitor fields are subdivided into regions corresponding

to the different sub-body parts, such as the limb zeugopod. This step requires the

activity of pattern formation GRNs once again, which sets the coordinates within

the progenitor fields to establish the boundaries of these sub-body parts. Therefore,

the double negative gate, incoherent feedforward, and signal mediated toggle switch

subcircuits are most likely to be active during this step.

Depending on the complexity of the body part, steps two and three may be re-

iterated in a loop so that progenitor fields are established in more specific spatial

domains. The progenitor fields are further subdivided until the cell fate specifica-

tion GRNs are activated in step four. These GRNs act to specify the individual cell

types that each sub-body part is composed of. Some of the GRN subcircuits that

are most likely to be active during cell fate specification are the reciprocal repression,
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positive feedback, and community effect subcircuits. This is because they are needed

for the maintenance and stabilization of regulatory states. The output of step four

serves as the input to differentiation gene batteries. These are functionally related

sets of structural genes that encode the physical structures and functional properties

of a specific cell type and are under the control of the same set of transcription fac-

tors Peter and Davidson (2011). This is the final output of the genomically encoded

process of development. Hundreds of different cell types have been created, each in

their particular spatial positions, correct quantities, and near neighbors of the correct

cell types to form the body parts that together constitute an integrated whole: the

organism.

2.2.1 GRNs and Mechanisms of Complex Diseases

The majority of diseases are complex, meaning that they are a result of the interac-

tion between various genetic, environmental, and life style factors and not necessarily

a result of a single genetic variant. Examples of complex diseases include most can-

cers, autism, and diabetes. Since gene regulatory networks integrate information from

the environment to perform specific cellular functions, understanding diseases at the

level of GRNs can yield insights on the mechanistic underpinnings of various diseases

as well as aid in the development of targeted drug therapies by creating personalized

GRNs Van Der Wijst et al. (2018).

Disease phenotypes are a result of the rewiring of gene regulatory networks. In

turn, these rewirings disrupt signaling pathways that are vital for maintaining normal

cellular functions. Several studies have identified specific gene regulatory network

transformations involved in the manifestation of disease phenotypes ranging from

breast cancer to schizophrenia Potkin et al. (2010). A study by Madhamshettiwar

et al. (2012) identified a gene regulatory network involved in ovarian cancer progres-

25



sion. In normal cells, this network consists of 15 target genes which are regulated by

the SP3 and NFκB1 transcription factors. This network is responsible for blood vessel

growth in the ovaries, or angiogenesis. In cancerous cells, these 15 genes are regulated

instead by the E2F1 transcription factor, causing a disruption in the angiogenesis pro-

gram. From this, the resulting protein products from this gene regulatory network

were identified as potential anti-cancer drug targets. In Sadeghi et al. (2016), the

authors identified the regulatory interactions underlying the transition from primary

to the metastitic state in prostate cancer. Many of the genes in the network are key

components of the TGF-β signaling pathway, which is necessary for cell proliferation

and differentiation. In metastitic prostate turmors, these genes were downregulated,

causing a disruption in this vital signaling pathway. A particularly interesting study

in Assi et al. (2019) found that acute myeloid leukemia (AML) is a result not of a

network rewiring, but rather the formation of an entire transcriptional and signaling

network. In addition, they found that specific types of AML correspond to specific

regulatory networks.

These are but a few examples of how complex diseases can result from the rewiring

of entire GRNs, and even the formation of novel GRNs. The conclusions of these

studies also demonstrate that the topology of GRNs is intimately connected to their

function, and that rewiring ultimately disrupts essential biological functions. It is

the disruption of these functions that are the cause of complex disease phenotypes.

Therefore, understanding the topology of regulation at the cellular level will con-

tinue to yield insights on our understanding of disease mechanisms and aid in the

development of targeted drug therapies.
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2.2.2 Mechanisms of GRN Evolution

Classical evolutionary theory posits that phenotypic novelties arise through small

gradual changes. These changes are mutations in a DNA sequence which are random

with respect to evolutionary utility. Over extremely long periods of time, such small

changes produce variation in populations Erwin (2019). Adaptation is then a result of

natural selection acting on this population variation, causing changes in gene frequen-

cies. At low population sizes, neutral or slightly maladaptive traits can be fixed in

a population, a phenomenon called genetic drift. This traditional view assumes that

changes in gene frequencies are sufficient to explain all evolutionary patterns Erwin

and Davidson (2009). Although some patterns of adaptive evolution can certainly

follow this trajectory, classical evolutionary theory is insufficient in explaining how

evolutionary novelties make their way into a population in the first place. It is also

limited in its explanatory power as a mechanistic explanation of phenotypic evolution

?. We will now describe the numerous types of modifications that can be made to

developmental gene regulatory networks to produce evolutionary change. Such mod-

ifications will have specific consequences to the overall body plan depending on the

type of change and where in the spatiotemporal hierarchy of the network underlying

the developmental process they occur Erwin and Davidson (2009).

Modifications to GRNs can either be made through numerous types of alterations

to cis-regulatory modules or through changes to the protein coding sequences of struc-

tural genes. We will primarily focus on alterations to cis-regulatory modules (CRMs)

as well as entire subcircuits since these types of changes are more common. This is

because if we consider the effects of a mutation to a structural gene, assuming it is

pleiotropic, such a mutation can eliminate function in all stages of development. On

the other hand, the effects of a change to a CRM or a subcircuit can be limited to a
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single stage of development since CRMs and subcircuits modulate distinct stages in

the developmental process Erwin and Davidson (2009). This is a consequence of the

modularity and spatiotemporal hierarchical structure of GRNs and the developmental

process itself, as previously discussed.

Alterations to cis-regulatory modules can result in quantitative effects, such as a

change in the amount of mRNA produced or a change in the rate of transcription,

or qualitative effects, which cause changes in which parts of the network are used

at specific developmental stages, or changes in the overall topology of the network

through rewiring of the functional linkages. Following Peter and Davidson (2011),

direct alterations to cis-regulatory sequences will be referred to as internal changes,

and alterations that affect where the CRM is physically located within the network

will be referred to as external changes. The range of internal changes includes the

appearance of a new target site(s), the loss of an old target site(s), changes in site

spacing, and changes in site arrangement. These tend to produce quantitative effects,

which may include a strengthening or weakening interaction of transcription factors

and additional co-factors with the target site, or an overall change in the quantitative

output so long as the linkages between the nodes are unchanged Erwin and David-

son (2009). Quantitative effects can be responsible for producing fine scale changes

over evolutionary time, largely through changes in enhancer and promoter specificity

Erwin (2019). However, many of such quantitative effects can have no impact on the

overall output. A notable example is the lack of conservation of eve stripe 2 sites in

Drosophila melanogaster Peter and Davidson (2011); Hare et al. (2008). Over 70 %

of the specific sites are not conserved in other Drosophilidae but they produce the

same output pattern Peter and Davidson (2011); Hare et al. (2008). Logically, this

makes sense because quantitative changes occur at a higher frequency in comparison

to qualitative changes.
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The higher frequency of quantitative changes can also be a result of intrinsic

and extrinsic noise. Intrinsic noise is the stochasticity inherent in the biochemical

reactions that take place during the process of gene expression Wang and Aberra

(2015). This includes noise from promoter activation and inactivation, mRNA and

protein production, mRNA degradation, and delays in the overall timing of processes

of gene expression Raser et al. (2005). Extrinsic noise refers to the differences between

cells in the local environment or in the activity of any cellular component that affects

gene expression Raser et al. (2005). These differences, to list a few examples, may

be attributed to fluctuations in the amounts of RNA polymerases, the number of

ribosomes in a cell and their individual growth dynamics, or the stage in the cell cycle

Wang and Aberra (2015). This illustrates a point about the robustness of GRNs and

the developmental process. If the system were so sensitive that any quantitative effect

would have an impact on whether or not a gene would produce a certain output, then

it would arguably be very rare for the developmental process to reach completion, let

alone be evolutionarily conserved across a range of organisms for millions of years 2 .

That is why quantitative effects tend to result in fine scale changes instead of major

morphological novelties over evolutionary time.

On the other hand, qualitative changes, which are largely in the class of external

changes, result in the evolutionary repatterning of entire GRNs Erwin (2019). For

one, although this qualifies as an internal change, the appearance of a new target

site or loss of an old target site can also result in the rewiring of GRNs if there

is a complete disruption of a TF-promoter interaction or the appearance of a new

functional linkage. This can result in a gain of function, as seems to be the case in

the fin to limb transition in vertebrates. The emergence of a distal limb enhancer

2This is regardless of whether the quantitative effect were caused by either direct modifications
to the CRMs or intrinsic and extrinsic noise.
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in the Hoxa11 intron during the evolution of pentadactyl limbs caused the mutually

exclusive expression of Hoxa11 and Hoxa13 Kherdjemil et al. (2016). Following

activation at this site by HOXA11 and HOXD13, the enhancer drives the antisense

transcription of the Hoxa11 gene and prevents its expression Kherdjemil et al. (2016).

Thus, target site additions or losses can result in quantitative and qualitative changes

to GRNs.

The range of external changes alter where the CRM is physically located within

the GRN and redeploy them to new developmental domains. The insertion of trans-

posable elements, which is one of the major causes of rapid genomic sequence change,

can carry with them entire cis-regulatory modules to new genes Peter and Davidson

(2011). This could result in either a gain or loss of function due to the gain of inputs

to the area of the GRN where the transposable element is inserted. This may simul-

taneously prevent previously-existing linkages from persisting. Similarly, duplication

and subfunctionalization of regulatory genes, as well as the de novo origination of

sequences via recombination can also result in gain or loss of function due to the

rewiring of pre-existing linkages.

Another important mechanism of evolutionary change is subcircuit co-option,

which is the insertion of entire subcircuits to new regions of the GRN. As described

in Section 2.1.1, subcircuits exhibit specific functional roles that are intimately tied

to their structure. Therefore, the insertion of these subcircuits (in which the sub-

circuit linkages remain the same) into different regions of the network not only is

largely responsible for generating the hierarchical structure of GRNs, but will re-

sult in a gain of function change so long as either the same inputs responsible for

activating the subcircuit are present, or so long as alternative factors that can still

activate the subcircuit are present Hinman and Cheatle Jarvela (2014). Numerous

studies have demonstrated that subcircuit co-option is a mechanism for generating
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phenotypic novelty. Subcircuit co-option has been a driver in the evolution of the

sea urchin larval skeleton, the head Martik and Bronner (2017); Martik and McClay

(2015), butterfly eyespots Monteiro and Podlaha (2009), the scaly foot snail Sun et al.

(2020), the formation of the secondary jaw in teleost fish Fraser et al. (2009); Erwin

and Davidson (2009), and more than likely other instances of phenotypic novelty that

have yet to be identified. As well, changes in regulatory genes that are responsible for

controlling entire subcircuits, called input/output (I/O) switches, can result in the

activation or repression of subcircuits, as well as the intercellular signaling systems

connecting regulatory subcircuits Erwin and Davidson (2009). Although much more

experimental work needs to be done on exploring the role of subcircuit co-option as a

driver of major phenotypic novelty, subcircuit co-option presents an interesting evolu-

tionary phenomenon that is suitable for modeling using a state space approach. This

facilitates the exploration of questions including how subcircuit topology influences

the potential for evolutionary change, or how subcircuits are combined in different

stages of development to generate novelty Erwin (2019).

The evolutionary consequences of the alterations to GRNs depend on the region

of the network and the developmental stage in which the alteration occurr. GRNs in

certain stages in development are more flexible to change than others. Reconsidering

the process of development described in Section 2.2, changes that occur early on dur-

ing development are more likely to alter the entire course of development. Although

most of these changes are deleterious since they have downstream pleiotropic effects,

those that have become fixed in a population are likely the root cause of phylum level

morphological differences. For example, the GRNs acting in axis formation and spec-

ification initiation set the initial coordinates of the body plan. If these coordinates

are altered through changes in the major subcircuits involved in this early step of

organismal development (e.g. double negative gate or incoherent feedforward), the
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overall body plan can be altered as a result. This is also the case with GRNs acting

in the establishment of progenitor fields for future body parts. It is therefore hypoth-

esized that GRNs involved in these early stages of development are more likely to

be evolutionarily conserved. Davidson and Erwin Erwin and Davidson (2009) have

identified the existence of kernels, which are evolutionarily conserved sets of few genes

linked by recursively wired positive interactions and are involved in the establishment

of progenitor fields. These kernels have been canalized over evolutionary time and

constrain the range of accessible variation that can be produced by the developmen-

tal process. Furthermore, if one considers rewiring the signaling systems connecting

GRNs involved in axis formation/specification initiation and those involved in the

establishment of progenitor fields, the result is an alteration in the positions of the

future body parts relative to one another, which also contributes to phylum level

morphological differences.

Class level morphological differences in the body parts themselves are due to evolu-

tionary changes in the cis-regulatory systems responsible for controlling the inductive

signaling mechanisms involved in the formation of body parts Peter and Davidson

(2011). This involves changes to the structure and deployment of subcircuits active

in the pattern formation processes that subdivide the already established progeni-

tor fields into sub-body parts (e.g. signal mediated toggle switch, double negative

gate, and incoherent feedforward). Interestingly, we do see higher rates of evolution

in inductive signaling relationships Peter and Davidson (2011). The highest rates

of evolutionary change occur at the most downstream levels of the GRN hierarchy,

mainly in differentiation gene batteries. These regions of GRNs are most flexible to

change because they exhibit relatively minimal feedback into upstream regions of the

network. As a result, changes that occur at the periphery of these networks affect

less stages of the developmental process.
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Chapter 3

BAYESIAN INFERENCE USING STATE SPACE MODELS

In this section, we provide the mathematical background for Bayesian state esti-

mation. This section is based on Simon (2006); McNames (2016).

3.0.1 System Modeling

State space models are used for representing the dynamics of continuous or discrete

time systems. Given a set of noisy measurements yk ∈ RP at time step k, we are

interested in estimating the unknown system parameters or state xk ∈ RN at time

step k. The state space representation is given by:

xk = gk−1(xk−1,wk−1) (3.1)

yk = hk(xk,vk) (3.2)

The transition equation in Equation (3.1) relates the current state at time step k and

the state at the previous time step k−1. This is often based on a physical model of a

system described by the (possibly time-varying) function gk(·). The random process

wk is used to model possible deviations from the physical model. The measurement

equation in Equation (3.2) provides the relationship between the measurement and

state at time step k using the (possibly time-varying) function hk(·); the measurement

noise is given by the random process vk. The generality of this model allows for the

representation of linear or nonlinear dynamics as well as varying types of random

processes. It is thus suitable for representing the dynamics of dGRNs since dGRNs

are characterized by highly nonlinear interactions.
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3.0.2 Recursive Bayesian Estimation

Assuming the known transition and measurement functions in Equation (3.1) and

Equation (3.2), and known characterization of the random processes, the goal of

Bayesian estimation is to estimate the state of the system xk at some time step k

given a sequence of measurements y1:k = {y1, y2, ..., yk} by estimating the conditional

probability density function (pdf) 1 ,

p(xk|y1:k) (3.3)

The conditional pdf in Equation (3.3) is used to compute the a posteriori, or filtered,

estimate x̂k. Given an initial pdf p(x0), we can obtain the unknown pdf in Equa-

tion (3.3) in two stages: prediction and update. The stages are computed iteratively,

starting at k = 0. During the predicted stage at time k, the system model is used to

compute the predicted marginal pdf,

p(xk|y1:k−1) (3.4)

which is the pdf of xk given all measurements up to and including time k − 1. The

predicted marginal pdf can be obtained using the Chapman-Kolmogorov equation as

follows Arulampalam et al. (2002a):

p(xk|y1:k−1) =

∫
p(xk,xk−1|y1:k−1)dxk−1 (3.5)

=

∫
p(xk|xk−1,y1:k−1)p(xk−1|y1:k−1)dxk−1 (3.6)

=

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (3.7)

(3.8)

1For the filtering problem, there are two posterior pdfs that one might estimate, the joint posterior
pdf p(x0:k|y0:k), or the marginal posterior pdf p(xk|y0:k).
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where p(xk|xk−1) is the prior and p(xk−1|y1:k−1) is the marginal posterior pdf at the

previous time step. The steps of the joint posterior are given in Appendix A. Here,

the common assumption of first order Markov property is used. The joint posterior

pdf considers the entire state trajectory and the computational requirement grows

with time. The marginal posterior pdf is therefore more efficient to calculate. Given

the measurement yk at time step k, it is used to update the estimate using Bayes’

rule:

p(xk|y0:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(3.9)

Thus, Equation (3.9) yields the marginal posterior pdf, where p(yk|xk) is the like-

lihood, p(xk|y1:k−1) is the predicted marginal pdf, and p(yk|y1:k−1) is a normalization

term that is obtained by,

p(yk|y1:k−1) =

∫
p(yk,xk|y1:k−1)dxk

=

∫
p(yk|xk,y1:k−1)p(xk|y1:k−1)dxk

=

∫
p(yk|xk)p(xk|y1:k−1)dxk

As, in general, ?? and ?? cannot be computed analytically, they can be obtained using

stochastic approximations. However, the process becomes computationally intensive

and is often not feasible.

The Kalman Filter and Its Variants

When the functions gk(·) and hk(·) correspond to linear models and the random

processes wk and vk are Gaussian in Equation (3.1) and Equation (3.2), then the

posterior pdf in Equation (3.3) can be obtained in closed form. The closed form

solution is called the Kalman filter and it results in the optimal minimum mean

square error estimator of the unknown state Simon (2006). For the Kalman filter
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solution, the transition equation in Equation (3.1) simplifies to

xk = Fkxk−1 +wk−1 (3.10)

and the measurement equation in Equation (3.2) is given by,

yk = Hkxk + vk (3.11)

where Fk and Hk are matrices and

wk ∼ N (0,Qk) (3.12)

and

vk ∼ N (0,Rk) (3.13)

are both Gaussian and have known covariance matrices Qk and Rk, respectively.

The mean of the state is the Kalman filter estimate of the state and the covariance

of the state is the covariance of the Kalman filter state estimate Simon (2006). The

a posteriori state estimate can be computed as the expected value of xk conditioned

on all the measurements including time k:

x̂+
k = E[xk|y1,y2, ...,yk] (3.14)

The a priori state estimate can be computed as the expected value of xk conditioned

on all the measurements up to but not including time k:

x̂−k = E[xk|y1,y2, ...,yk−1] (3.15)

The covariances of the estimation error of x̂+
k and x̂−k are given by,

P+
k = E[(xk − x̂+

k )(xk − x̂+
k )

T ] (3.16)

P−k = E[(xk − x̂−k )(xk − x̂−k )
T ] (3.17)
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The initial estimate of the state x0 is given by x̂+
0 = E[(x0)] and the initial covariance

of the estimate of x0 is given by P0 = E[(x0 − x̄0)(x0 − x̄0)
T ]. The Kalman filter

consists of two steps, 1) the time update (prediction) and 2) the measurement update

(filter), which are iterated. To obtain the predicted estimate for the state, we begin

by substituting xk into the a priori state estimate equation. To simplify the notation,

we will use Ek−1[xk] to denote the expectation of xk given all measurements up to

and including yk−1.

x̂−k = Ek−1[xk] (3.18)

= Ek−1[Fk−1xk−1 +Gk−1uk−1 +wk−1] (3.19)

= Fk−1E[xk−1] + E[Gk−1uk−1] + E[wk−1] (3.20)

= Fk−1E[xk−1] +Gk−1uk−1 + E[wk−1] (3.21)

x̂−k = Fk−1x̂
+
k−1 +Gk−1uk−1 (3.22)

Next, we will derive the time update for the state error covariance P−k . Now that

we know x̂−k and x̂−k−1, we can define,

x̃−k ≜ xk − x̂−k

= (Fk−1xk−1 +Gk−1uk−1 +wk−1)− (Fk−1x̂
+
k−1 +Gk−1uk−1)

= Fk−1(xk−1 − x̂+
k−1) +wk−1

= Fk−1x̃
+
k +wk−1
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The time update for the state error covariance P−k is given by,

P−k = E[(Fk−1x̃+
k−1 +wk−1)(Fk−1x̃

+
k−1 +wk−1)

T ]

= E[Fk−1x̃+
k−1x̃

+
k−1]

T ] + E[Fk−1x̃+
k−1w

T
k−1]

+ E[wk−1x̃
+T
k−1Fk−1] + E[wk−1w

T
k−1]

= Fk−1E[x̃+
k−1x̃

+T
k−1]F

T
k−1 + E[wk−1w

T
k−1]

= Fk−1P
+
k−1F

T
k−1 +Qk−1

where P+
k−1 is the filtered state error covariance and Qk−1 is the measurement noise

covariance. The next step is to calculate the measurement update for the state, which

uses the current measurement yk to obtain the a posteriori (filtered) estimate x̂+
k .

The filtered estimate is given by,

x̂+
k = x̂−k +Kkek (3.23)

where Kk is the Kalman gain and ek is called the innovation and is given as the

difference between the measurement and the predicted estimate of the measurement:

ek ≜ yk − ŷ−k (3.24)

and

ŷ−k = Ek−1[Hkxk + vk]

= Hkx̂
−
k
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We can then compute the measurement update for the state error covariance P+
k as,

P+
k = E[(x̃+

k )
2]

= E[(xk − x̂+
k )

2]

= E[(xk − x̂−k −Kkek)
2]

= E[(xk − x̂−k −Kk(yk −Hkx̂
−
k ))

2]

= E[(x̃−k −Kk(Hkxk + vk −Hkx̂
−
k ))

2]

= E[(x̃−k −KkHk(xk − x̂−k )−Kkvk)
2]

= E[(x̃−k −KkHkx̃
−
k −Kkvk)

2]

= E[((I −KkHk)x̃
−
k −Kkvk)

2]

= E[(I −KkHk)x̃
−
k x̃
−T
k (I −KkHk)

T )]− E[(I −KkHk)x̃
−
k v

T
kK

T
k ]

− E[Kkvkx̃
−T
k (I −KkHk)

T ] + E[Kkvkv
T
kK

T
k ]

= (I −KkHk)E[(x̃−k )
2](I −KkHk)

T +KkE[(vk)2)]KT
k

= (I −KkHk)P
−
k (I −KkHk)

T +KkRkK
T
k

To solve for the Kalman gain Kk, the total mean squared error (MSE) is defined as

ξ(Kk) = traceP+
k . We take the partial derivative of ξ(Kk) with respect to Kk and set

it equal to zero to find the minimum:

∂ξ(Kk)

∂Kk

= 2(I −KkHk)P
−
k (−Hk)

T + 2KkRk = 0

KkRk = (I −KkHk)P
−
k H

T
k

Kk(Rk +HkP
−
k H

T
k ) = P−k H

T
k

Kk = P−k H
T
k (Rk +HkP

−
k H

T
k )
−1
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In summary, for k = 1, ...N , the Kalman filter recursions are given as follows,

P−k = Fk−1P
−
k−1F

T
k−1 +Qk−1

Kk = P−k H
T
k (Rk +HkP

−
k H

T
k )
−1

x̂−k = Fk−1x̂
+
k−1

x̂+
k = x̂−k +Kk(yk −Hkx̂

−
k )

P+
k = (I −KkHk)P

−
k (I −KkHk)

T +KkRkK
T
k

When Equation (3.1) and Equation (3.2) are nonlinear, then variants of the Kalman

filter, the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) have

been implemented to infer GRNs based on nonlinear state space models. The EKF

assumes that the random processes in the state space representation are Gaussian.

The nonlinear system dynamics in the transition and measurement equations are

linearized around an operating point so that the Kalman filter can be applied. In

Wang et al. (2009), the authors apply the EKF to three different datasets, a Malaria

model consisting of 530 genes at 48 time points, a worm model consisting of 98

genes at 123 time points, and a yeast model consisting of 237 genes at 17 time

points. The EKF was used for both state and parameter estimation. However, the

EKF has some disadvantages as a result of the linearization step. In particular, the

estimation accuracy is decreased due to the highly nonlinear dynamics and large

errors are introduced in the true posterior mean that may lead to divergence Zhou

and Ji (2017); Wan et al. (2001). Furthermore, computing the Jacobian may be

computationally intensive and difficult to calculate Amor et al. (2019). As well,

the EKF is restricted to dynamics with Gaussian noise distributions. An extended

fractional Kalman filter was introduced in Zhang et al. (2014), which outperformed

the EKF.

An alternative to the EKF that addresses some of these problems is the UKF
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Wan et al. (2001). The UKF uses an unscented transform to pick a set of sigma

sample points around the mean, assign weights to each of the points, propagates

them through a nonlinear transformation function, and then calculates a weighted

mean and covariance Wan et al. (2001). The UKF does not rely on linearization to

compute the mean and covariance, and thus is more accurate than the EKF. As well,

variants of the UKF, the cubature Kalman filter (CKF) Arasaratnam and Haykin

(2009) and the transformed unscented Kalman filter (TUKF) Chang et al. (2012)

have been developed to deal with high dimensional data, but these variants have yet

to be applied to gene expression data. In Zhou and Ji (2017), the authors applied

the UKF to a yeast model consisting of 309 genes and 24 time points. The UKF

outperformed the EKF in estimating the state variables and the parameters.

Monte Carlo Integration

Monte Carlo integration uses random sampling of a function to numerically estimate

the values of its integral. By choosing random points at which to evaluate the inte-

grand, Monte Carlo methods can approximate integrals on irregular domains and in

high-dimensional spaces. According to the law of the unconscious statistician (LO-

TUS), the expectation of a function g(X) of a random variable X is given by,

E[f(X)] =

∫
X
f(x)p(x)dx (3.25)

where f(x) is the function we wish to integrate and p(x) is some probability distribu-

tion. The Monte Carlo estimate is obtained by drawing samples from p(x) and then

calculating

µ̂f =
1

N

N∑
i=1

f(xi) (3.26)
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where x(i)
iid∼ p(x). A quick example of Monte Carlo integration with a uniform

distribution p(x) is given below.

p(x) =


1
δ
, xmin ≤ x ≤ xmax

0 otherwise

(3.27)

where δ = xmax − xmin.

µf =

∫ xmax

xmin

f(x)p(x)dx

=

∫ xmax

xmin

f(x)
1

δ
dx

= E[f(x)]

≈ µ̂f =
1

N

N∑
i=1

f(xi)

Reconsidering the filtering and prediction steps, we need to draw random samples

from the posterior distribution, but this is difficult to do in high dimensions. Im-

portance sampling is a Monte Carlo method which provides a way to approximate

quantities of interest for a given distribution even if we are unable to directly sample

from that distribution. Instead of sampling from the target distribution we instead

sample from a proposal distribution q(x), called the importance density :

µf =

∫
f(x)p(x)dx =

∫
[
p(x)

q(x)
]q(x)dx (3.28)

The estimate is then given as

µ̂f =
1

N

N∑
i=1

f(xi)
p(xi)

q(xi)

=
1

N

N∑
i=1

f(xi)w̃(xi)

where w̃(xi) is the unnormalized importance weight and is the ratio of the target

distribution to the proposal distribution. It is important to note that q(x) and p(x)
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must have the same support. The normalized importance weight is given as

w(xi) =
w̃(xi)∑N
i=1 w̃(x

i)
(3.29)

With these ideas in mind, we can also estimate the mean in a different way by

modeling the posterior pdf as a sum of impulses. Recall that the multivariate impulse

function is given as:

δ(x) =
∏
i

δ(x(i)) (3.30)

Some important properties are listed below:

1. Unit area:
∫
δ(x)dx = 1

2. δ(x− a) = 0∀x ̸= a; f(a) =
∫
f(x)δ(x− a)dx

3. The function is infinitely tall at x = a

The estimate of the mean is thus given by:

p̂(x) =
1

N

N∑
i=1

δ(x− xi) (3.31)

where x(i)
iid∼ p(x). Substituting p̂(x) into the Monte Carlo integration equation we

obtain

µf = f(x)p(x)dx

µ̂f =

∫
f(x)p̂(x)dx

=

∫
f(x)

1

N

N∑
i=1

δ(x− xi)dx

=
1

N

N∑
i=1

∫
f(x)δ(x− xi)dx

=
1

N

N∑
i=1

f(xi)
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Combining this with the importance weight, we obtain an estimate of the posterior

as a weighted sum of impulses where the weights are given by the ratio of the target

distribution to the proposal distribution:

p̂(x) =
N∑
i

wiδ(x− xi) (3.32)

This is the premise behind particle filtering.

3.0.3 Particle Filter

A Bayesian filtering method that typically out-performs the standard Kalman

filter and EKF is the particle filter. In Ancherbak et al. (2016a), the authors use

particle filtering to estimate the state and time-varying parameters for a ten-gene

network with 201 time points. They also applied it to the DREAM4 dataset using a

multivariate linear regression model and a Laplace prior rather than a Gaussian prior.

In their model, the relationships between the genes change at each time instant, so

the network describes how gene expression levels at one time are influenced by the

expression levels of genes at the previous time. Each relationship between genes is

between two different time steps instead of one. They found that the use of the

Laplace prior leads to smoother changes in network structure and less fluctuations

in regulatory coefficients Ancherbak et al. (2016a). In Shen and Vikalo (2010), the

authors use a modified particle filter to estimate stochastic reaction rate constants

in GRNs governed by chemical Langevin equations. They applied this method to a

viral infection network to estimate six rate constants and evaluated the corresponding

Cramér-Rao lower bound (CRLB) Shen and Vikalo (2010). For some parameters,

the estimator performed well, close to the CRLB, and for the rest it significantly

underperformed.

A particularly notable use of particle filtering is found in Bugallo et al. (2015),
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where a bank of particle filters is used to jointly estimate gene expression values and

GRN interaction coefficients. Each particle filter tracks one gene and its interaction

coefficients, and the filters communicate estimates of the unknowns with each other.

This approach increases the efficiency of estimation and also lends itself to application

to higher-dimensional problems by splitting up the state space into subspaces Bugallo

et al. (2015). The authors apply this method to an eight-gene network that used eight

filters with 75 particles per filter and compared it to the standard particle filter which

used 2000 particles. Their approach out-performed the standard particle filter in

estimation accuracy despite the low number of particles.

Other work makes use of both Kalman filter and particle filtering, in which one is

used to estimate the state and the other is used for parameter estimation. In Noor

et al. (2012), the authors use the particle filter for estimation of gene expression val-

ues, and the Kalman filter to estimate the constant system parameters describing the

nonlinear relationships between genes in a few data sets. The first is an eight-gene

network with 40 time points, and the second is a drosophila dataset consisting of

530 genes and 36 time points, of which only ten genes are chosen. For both simu-

lations, the nonlinear function is the sigmoid and the noise is Gaussian. Using 100

particles, the authors found that the particle filter out-performed the EKF and UKF.

In Wang and Aberra (2016), the authors use a particle filter to study the effect of

noise on synthetic GRNs. The ensemble Kalman filter samples particles generated

by the particle filter Wang and Aberra (2016). Interestingly, they apply this method

to a three-gene network and a five-gene network consisting of 17 time points without

the use of a model. The Kalman filter is combined with Taken’s method of attrac-

tor reconstruction Rand and Young (2006), in which the dynamics are propagated

nonparametrically using delay-coordinate vectors vectors Wang and Aberra (2016).

Their approach out-performed the particle filter in terms of the root mean-squared
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error (RMSE) since the ensemble Kalman filter based particle filter takes into ac-

count the current measurement and thereby better approach the stationary posterior

distribution Wang and Aberra (2016).

Recall that the goal of recursive Bayesian estimation is to estimate either the joint

pdf p(x0:k|y0:k) or the marginal pdf p(xk|y0:k). The key idea behind particle filtering

is to assume that the posterior pdf can be expressed as a weighted sum of impulses:

p̂(x0:k|y0:k) ≜
np∑
i=1

wikδ(x0:k − xi0:k) (3.33)

where the importance weights wik are normalized such that

np∑
i=1

wik = 1 (3.34)

and np denotes the number of particles, which are state vectors xi0:k for i = 1, ..., np

that are generated based on the initial pdf p(x0). This results in a parameterized

posterior pdf estimate that is defined by the set of parameters {xi0:k, wik}. At each

time step the particles are propagated using the system equation.

Importance Weight Calculation

The importance weights are given by the ratio of the posterior to the recursive im-

portance density. The importance density is typically chosen such that it factors

as

q(x0:k|y0:k) = q(xk|x0:k−1,y0:k)q(x0:k−1|y0:k)

= q(xk|x0:k−1,y0:k)q(x0:k−1|y0:k−1)

= q(xk|xk−1,yk)q(x0:k−1|y0:k−1)

This particular factorization allows samples of the trajectory x0:k to be created se-

quentially by ensuring that when the particles are advanced from k−1 to k, xik is not
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created based on the entire past, which would be inefficient since computation would

then scale with time. Instead, xik is created using only the current measurement yk

and xik−1.

The importance weights are then given by:

wik =
p(xi0:k|y0:k)

q(xi0:k|y0:k)
(3.35)

To calculate the importance weights, the following equations for the posterior and

the importance density are used:

p(xi0:k|y0:k) =
p(yk|xik)p(xik|xik−1)

p(yk|y0:k−1)
p(xi0:k−1|y0:k−1)

∝ p(yk|xik)p(xik|xik−1)p(xi0:k−1|y0:k−1)

The importance density is given by:

q(xi0:k|y0:k) = q(xik|xik−1,yk)q(xi0:k−1|y0:k−1) (3.36)

The importance weight is thus obtained by:

wik ∝
p(yk|xik)p(xik|xik−1)p(xi0:k−1|y0:k−1)

q(xik|xik−1,yk)q(xi0:k−1|y0:k−1)

=
p(yk|xik)p(xik|xik−1)
q(xik|xik−1,yk)

·
p(xi0:k−1|y0:k−1)

q(xi0:k−1|y0:k−1)

=
p(yk|xik)p(xik|xi0:k−1)

q(xik|xik−1,yk)
wik−1

Therefore, the weight of the i-th particle at time k is calculated recursively by:

wik ∝
p(yk|xik)p(xik|xik−1)
q(xik|xik−1,yk)

wik−1 (3.37)

Note that the importance density q(xik|xik−1,yk) is chosen by the user, the likelihood

p(yk|xik) is obtained via the measurement model, and the prior p(xik|xik−1) is obtained

via the process model. The joint posterior can thus be estimated as:

p̂(x0:k|y0:k) ≜
np∑
i=1

wikδ(x0:k − xi0:k) (3.38)
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The marginal joint posterior p(xk|y0:k) is obtained by integrating the joint posterior

pdf:

p̂(xk|y0:k) =

∫
p̂(xi0:k|y0:k)dx0:k−1

=

∫ np∑
i=1

wikδ(x0:k − xi0:k)dx0:k−1

=

np∑
i=1

wik

∫
δ(x0:k − xi0:k)dx0:k−1

=

np∑
i=1

wikδ(xk − xik)

This is the procedure for Sequential Importance Sampling (SIS). The steps are sum-

marized below.

Sequential Importance Sampling (SIS) Algorithm

1. For i = 1 : np

(a) Draw np particles from the prior: xi0 ∼ p(x0) and set wi0 =
1
np

(b) Predict: Draw np new particles xik from the importance density:

xik ∼ q(xk|xik−1,yk) (3.39)

(c) Update: Calculate unnormalized weights:

w̃ik =
p(yk|xik)p(xik|xik−1)
q(xik|xi0:k−1,y0:k)

wik−1 (3.40)

(d) Calculate normalized weights:

wik =
w̃ik∑np

i=1 w̃
i
k

(3.41)
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The Degeneracy Problem and Resampling

The SIS particle filter suffers from the degeneracy problem in which after a few

iterations, all but one particle will have a negligible weight and the variance of the

importance weights increase over time, thereby reducing prediction accuracy Tulsyan

et al. (2016). As well, the weights will be unevenly distributed when there is an

outlier Pitt and Shephard (1999). The effective sample size Neff provides a measure

of degeneracy and is given as

N̂eff =
np∑np

i=1(w
i
k)

2
(3.42)

If the weights are all equal such that wik =
1
np
, then the effective sample size is given

as

N̂eff =
1∑np

i=1(
1
np
)2

= np (3.43)

Severe degeneracy occurs when Neff ≤ np. There are two ways to mitigate the

effects of the degeneracy problem Tulsyan et al. (2016). The first is by implementing

resampling and the second is by good choice of importance density.

Resampling the distribution eliminates the particles with low importance weights

and replicates the particles with high importance weights. Whenever Neff drops

below some threshold. The new particles {xi∗k } are drawn with a probability given

by the importance weights:

p(xi∗k = xjk) = wjk (3.44)

and uniform weights are assigned to each of the resampled particles wjk = 1
M

where

{wjk}mj=1 are the importance weights for the resampled particles Tulsyan et al. (2016).

There are many efficient implementations of the resampling scheme, the most popular

one being systematic resampling, as described in Tulsyan et al. (2016).

49



Choice of Importance Density

Another topic of consideration with particle filtering is the choice of the importance

density. A good choice of importance density will also mitigate the effects of the de-

generacy problem. The most straightforward and common choice for the importance

density is the prior Arulampalam et al. (2002a):

q(xk|xi0:k−1,y0:k) = p(xk|xik−1) (3.45)

Inserting equation (4.44) into the weight update equation yields:

wik = wik−1
p(yk|xik)p(xik|xik−1)

p(xik|xik−1)

= wik−1p(yk|xik)

The optimal choice for the importance density is the one that minimizes the variance

of the weights across q(xk|xi0:k−1,y0:k). The importance weight mean is given by:

µw = E[wik]

=

∫
wikq(xk|xi0:k−1,y0:k)dxk

= wik−1

∫
p(yk|xik)p(xk|xik−1)
q(xik|xi0:k−1,y0:k)

q(xk|xi0:k−1)dxk

= wik−1

∫
p(yk|xik)p(xk|xik−1dxk

= wik−1

∫
p(yk|xk,xik−1)p(xk|xik−1)dxk

= wik−1

∫
p(yk,xk|xik−1)dxk

= wik−1

∫
p(yk|xik−1)
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The importance weight variance is given by:

σ2
w = E[(wik − µ2

w)]

= E[(wik)2]− µ2
w

=

∫
(wik)

2q(xk|xi0:k−1,y0:k)dxk − µ2
w

= (wik)
2

∫
[p(yk|xk)p(xk|xik−1)]2

[q(xk|xi0:k−1,y0:k)]
2
q(xk|xi0:k−1,y0:k)dxk − µ2

w

= (wk−1)
2

∫
[p(yk|xk)p(xk|xik−1)]2

q(xk|xi0:k−1,y0:k)
dxk − µ2

w

and given that µ2
w = (wik−1)

2p2(yk|xik−1),

σ2
w = (wik−1)

2[

∫
[p(yk|xk)p(xk|xik−1)]2

q(xk|xi0:k−1,y0:k)
dxk − p2(yk|xik−1)] (3.46)

The importance density that minimizes the variance of the weights is q(xk|xi0:k−1,y0:k) =

p(xk|xik−1,yk). Inserting this into (??) yields:

σ2
w = (wik−1)

2[

∫
[p(yk|xk)p(xk|xik−1)]2

q(xk|xi0:k−1,yk)
dxk − p2(yk|xik−1)]

= (wik−1)
2[

∫
[p(yk|xk,xik−1), p(xk|xik−1)]2

p(xk|xik−1,yk)
dxk − p2(yk,xik−1)]

= (wik−1)
2[

∫
[p(yk,xk|xik−1)]2

p(xk|xik−1,yk)
dxk − p2(yk,xik−1)]

= (wik−1)
2[

∫
[p(xk|xik−1,yk)p(yk|xk−1)]2

p(xk|xik−1,yk)
dxk − p2(yk,xik−1)]

= (wik−1)
2[

∫
p(xk|xik−1,yk)p2(yk|xk−1)dxk − p2(yk|xik−1)]

= (wik−1)
2[p2(yk|xk−1)

∫
p(xk|xik−1,yk)dxk − p2(yk|xik−1)]

= (wik−1)
2[p2(yk|xk−1)− p2(yk|xik−1)]

= 0
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Therefore, q(xk|xi0:k−1,y0:k) = p(xk|xik−1,yk) is the optimal importance density. The

optimal importance weight is thus given by:

wik =
p(yk|xik)p(xik|xik−1)
q(xik|xi0:k−1,yk)

wik−1

=
p(yk|xik,xik−1)p(xik|xik−1)

p(xik|xik−1,yk−1)
wik−1

=
(p(yk,x

i
k|xik−1)

p(xik|xik,yk)
wik−1

=
p(xik|xik−1,yk)p(yk|xik−1)

p(xik|xik−1,yk)
wik−1

= p(yk|xik−1)wik−1

This optimality criterion minimizes the conditional variance so that the i-th weight is

not affected by the variation in xk. However, there are two problems with this choice of

importance density. The first concerns how to draw samples from p(xk|xik−1,yk). The

second is evaluating the integral p(yk|xik−1) =
∫
p(yk|xk)p(xk|xik−1)dxk Arulampalam

et al. (2002a); McNames (2016). Thus, the use of the optimal importance density is

typically not possible, except for a few cases, so for now, we will use the prior as the

importance density of choice.
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Chapter 4

CURRENT APPROACHES TO MODELING AND PROCESSING GENE

REGULATORY NETWORKS

A gene regulatory network (GRN) can be represented as a graph G = (V,E). {V } is

the set of nodes, or genes, and {E} is the set of edges, or interactions between genes. In

a graph consisting of N nodes, the expression levels of each of the genes (X1, ..., XN)

are random variables. An edge Xi → Xj denotes a regulatory relationship. The

primary goal of gene regulatory network inference is to learn the structure of the

graph that is encoded in the microarray dataset, called the target network Delgado

and Gómez-Vela (2019). The resulting graph can is called the predicted network.

The predicted network can consist of undirected, as shown in Figure 4.1, or directed

edges. The edges also describe the different types of regulation, which are activating or

inhibiting Saint-Antoine and Singh (2020). Simple examples showing these regulation

types in a directed network are shown in Figure 4.2 and Figure 4.3. As it can be seen

in Figure 4.2, the arrow indicates that the expression level of gene X1 activates the

expression of gene X2. Conversely, in Figure 4.3, the vertical bar indicates that the

expression level of gene X1 inhibits the expression level of gene X2.

Figure 4.1: An undirected two-gene network. The line indicates a regulatory relation-

ship between gene X1 and gene X2, but there is no information regarding the type

nor direction of regulation.
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Figure 4.2: A directed two-gene network demonstrating an activating regulatory re-

lationship. The arrow indicates that gene X1 activates the expression of gene X2.

Figure 4.3: A directed two-gene network demonstrating an inhibiting regulatory rela-

tionship. The vertical bar indicates that gene X1 inhibits the expression of gene X2.

Undirected networks are the simplest to construct, but may not be suitable for

purposes such as targeted drug design in which mechanistic or causal information is

necessary. Directed networks are more difficult to construct, and reconstructing di-

rected networks with the regulation type remains a challenge Saint-Antoine and Singh

(2020). An even greater challenge is reconstructing time-varying gene regulatory net-

works, in which the regulatory interactions change over time. The output of this task

is a temporally-indexed collection of networks, which can describe the various stages

of biological processes. Such a task can of course be made more difficult by including

both the direction and type of regulation.

In this chapter we present a literature survey of the various approaches for mod-

eling and processing gene regulatory networks. We describe approaches suited for

the reconstruction of undirected and directed networks, networks denoting the regu-

lation type, as well as time-varying GRNs. We use the terms time-varying and static

to describe predicted networks in which the regulatory interactions do and do not
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change over time, respectively. The output of a time-varying GRN is a time series of

graphs G1, G2, ..., GT for t = 1, ..., T . This is to not be confused with static methods

for inferring GRNs, which employ steady-state data in GRN reconstruction, versus

dynamic methods, which use time series data to reconstruct a GRN.

4.1 Modeling Gene Regulatory Networks

One of the main focuses of modern biology is reconstructing the molecular net-

works that encode biological processes. With the increasing availability of -omics data

over the past decade, research efforts have aimed at extracting meaningful information

from these data with the goal of inferring regulatory interactions from gene expression

patterns. Models for reconstructing GRNs can broadly be categorized into four main

types: 1) co-expression networks, 2) probabilistic models, 3) dynamical models, and

4) Bayesian nonparametric models, the latter of which integrates elements of several

modeling approaches.

4.1.1 Co-expression Networks

Co-expression methods are based on the assumption that if the expression profiles

of genes are fluctuating at the same time points, then there may be a regulatory

relationship between those genes and those genes may be involved in performing

the same biological function Pyne (2020); Bellot Pujalte (2017). In general, these

methods use a linear similarity measure, such as the Pearson correlation measure sij =

|cor(i, j)| or one of its variants to construct a matrix of pairwise gene correlations.

The resulting similarity matrix is denoted by S = [sij]. Next, a threshold is applied

to select genes with a high correlation from which an adjacency matrix is constructed.

This method produces a weighted, undirected static network Sanguinetti and Huynh-

Thu (2019); Serin et al. (2016).
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Co-expression methods have several advantages. First, they are simple to im-

plement and scalable to large datasets Pyne (2020); Saint-Antoine and Singh (2020).

Next, these methods enable accurate reconstruction even when the number of samples

is to the order of tens of thousands less than the number of variables Pyne (2020).

Third, they are accurate in reconstructing several common network motifs, such as

feedforward loops, fan-ins, and fan-outs Saint-Antoine and Singh (2020). Finally,

co-expression methods can provide a general overview of the network structure under

investigation from which further analyses can be conducted Saint-Antoine and Singh

(2020).

Despite these advantages, co-expression methods have several limitations. The

main drawback is that correlation does not imply causation. As is summarized in

Sanguinetti and Huynh-Thu (2019) and Saint-Antoine and Singh (2020) correlation

networks cannot distinguish between direct and indirect interactions, and they are

prone to false positives. They are also unable to capture the nonlinearities that are

highly characteristic of GRNs due to the linearity imposed by the Pearson correlation

Mercatelli et al. (2020); Sanguinetti and Huynh-Thu (2019). As well, these methods

cannot construct directed networks due to the symmetry of the correlation measure.

However, methods which address the issue of causality are reviewed in Serin et al.

(2016), which leverage the use of time series data to construct causal co-expression

networks.

4.1.2 Information Theoretic Methods

Information theoretic methods address the issues posed by the Pearson correlation

through the use of the mutual information measure Margolin et al. (2006). The mutual

56



information of two random variables Xi and Xj is given by

I(Xi, Xj) =
∑
xi∈Xi

∑
xj∈Xj

p(xi, xj)log
p(xi, xj)

p(xi)p(xj)
(4.1)

Similar to correlation-based methods, the mutual information is calculated for each

pair of genes. If I(Xi, Xj) is above a user-specified threshold, then an edge is con-

structed between genes i and j Bellot Pujalte (2017).

Information theoretic methods share the same advantages of correlation-based

methods, including detection of common network motifs, their easy implementa-

tion, and scalability to whole-genome networks. The primary advantage of these

approaches over correlation-based methods is that they can capture the non-linear

relationships which are characteristic of GRNs. As such, this method tends to outper-

form linear correlation-based methods Pyne (2020); Saint-Antoine and Singh (2020).

However, because mutual information is also a symmetric measure, these methods

result in undirected networks. As well, they tend to produce a high number of false

positives Saint-Antoine and Singh (2020).

4.1.3 Probabilistic Models

Probabilistic models address the issue of distinguishing between direct and indirect

regulatory interactions posed by co-expression networks. Models of the data and

parameters are formulated as probabilities Sanguinetti and Huynh-Thu (2019). An

edge between two genes establishes conditional dependence between the genes Zhao

and Duan (2019). We review three of the most widely-used probabilistic modeling

approaches, which are Gaussian Graphical Models (GGMs), Bayesian Networks, and

Bayesian hierarchical models.
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Gaussian Graphical Models

In a Gaussian Graphical Model (GGM), the probability density for the nodes X =

(X1, ..., Xn)
T is a multivariate normal distribution given by

p(X|m,Σ) =
1√
2π|Σ|

exp
[
− 1

2
(X−m)TΣ−1(X−m)

]
(4.2)

where m is the mean vector, Σ is the covariance matrix, and Σ−1 = Θ is the precision

matrix. The precision matrix encodes the conditional dependence structure of the

network and contains the partial correlations between pairs of genes Sanguinetti and

Huynh-Thu (2019); Tian et al. (2016). Two genes are conditionally independent if

the corresponding entry in the precision matrix is zero Xu et al. (2018). The goal

is to estimate the precision matrix, which usually done through maximum likelihood

methods.

To ensure sparsity, which is a property that is realistic to biological networks,

penalized regularization techniques, such as Lasso, are often employed. Lasso is a

sparse L1 regularization technique that has been used to estimate gene regulatory

networks Sanguinetti and Huynh-Thu (2019). In Zhao and Duan (2019) GGMs are

used in conjunction with graphical Lasso are used to infer regulatory networks in 15

different human cancers.

In Hallac et al. (2017), the authors introduce a time-varying graphical Lasso to

infer time-varying networks from time series data, which involves estimating the pre-

cision matrix Θi = Σ(ti)
−1 at each time step ti. An advantage of this approach is that

it captures different types of network dynamics, including the rewiring of a small set

of edges or an entire network rewiring of its edges during a single time step Hallac

et al. (2017). This is done by considering different types of penalty functions ψ(·)
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when solving the convex optimization problem given by

minimize
Θ∈Sp

++

T∑
i=1

−li(Θi) + λ||Θi||od,1 + β

T∑
i=2

ψ(Θi −Θi−1) (4.3)

where Θ ∈ Sp++ denotes the condition that the precision matrix Θ must be positive

semi-definite. As well, li(Θi) = ni(logdetΘi−Tr(SiΘi)), where Tr is the trace, and Si

is the empirical covariance matrix at time ti. To solve the convex optimization prob-

lem, a message-passing algorithm is used that is based on the Alternating Direction

Method of Multipliers (ADMM). The algorithm is used to infer time-varying financial

networks and automobile sensor data, and capture structural changes in the networks

corresponding to both datasets. A similar approach, the LOcal Group Graphical

Lasso Estimation, is based on the assumption that the graph changes smoothly over

time Yang and Peng (2020). The smoothness is imposed through a local group-

lasso penalty. The goal is to estimate the precision matrix Θ(t) := Σ−1(t) based

on the observed data {xk}k∈I , where I = {1, ..., N} and xk is a realization of X(tk).

X(t) = (X1(t), ..., Xp(t))T is a p-dimensional Gaussian random vector with mean µ(t)

and covariance matrix Σ(t). The precision matrix at each k-th time point Ω(tk) is

estimated by minimizing a locally weighted negative log-likelihood function with a

local group-Lasso penalty given by:

L(⩽̸k) :=
1√
|Nk,d|

∑
i∈Nk,d

[tr(Ω(ti)Σ̂(ti))− log|Ω(ti)|] + λ
∑
u̸=v

√ ∑
i∈Nk,d

Ωuv(ti)
2 (4.4)

where Nk,d are the indices of the time points centered around tk with neighborhood

width d, ⩽̸k is the set of precision matrices within this neighborhood, Ωuv(ti) is the

(u, v)-th element of Ω(ti), and Σ̂(t) is the kernel estimate of the covariance matrix at

time t. As in Hallac et al. (2017), the convex optimization problem is solved using

an ADMM algorithm.

Despite the advantages of Gaussian graphical models in estimating time-varying

networks with sparse measurements, the assumption of Gaussian distributed data
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implies linear relationships between the genes Sanguinetti and Huynh-Thu (2019).

As well, Gaussian graphical models are limited to reconstructing undirected graphs.

Bayesian Networks

Bayesian networks are also within the class of probabilistic models and are advan-

tageous in their ability to construct directed networks. Steady-state gene expression

patterns are modeled as random variables and the distribution of expression patterns

is represented by their joint probability density Ho and Charleston (2011). The graph

G is a directed acyclic graph (DAG) whose nodes (genes) correspond to the random

variables X1, ..., Xn Ahmed et al. (2018). A static directed graph (from parent to

child nodes) is constructed by factoring the joint probability density into a set of

local conditional probability densities Sanguinetti and Huynh-Thu (2019) as

p(X1, X2, ..., Xn) =
n∏
i=1

p(Xi|parents(Xi)) (4.5)

The conditional distributions are assumed to be Gaussian for the continuous case

or multinomial for the discrete case Sanguinetti and Huynh-Thu (2019). Bayesian

networks follow the Markov assumption so that each variable is independent of its

non-descendants given its parents Banf and Rhee (2017). The main steps in learning

Bayesian networks are 1) model selection, 2) parameter learning, and 3) model scoring

Delgado and Gómez-Vela (2019) Model selection is the process of reconstructing the

network topology which best suits the data Banf and Rhee (2017). Parameter learning

requires estimating the best probability values for each node. Model scoring is usually

done through Bayesian information criterion (BIC) or Akaike’s information criterion.

The higher the score, the better the model fits the data Delgado and Gómez-Vela

(2019); Banf and Rhee (2017)

Some advantages of Bayesian networks is that they are particularly useful when
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combining different types of data and are also less sensitive to noise Mercatelli et al.

(2020). As well, their ability to encode prior information is suitable for correct net-

work identification. They can also encode prior knowledge over possible network

structures Werhli and Husmeier (2007). However, Bayesian networks do suffer a few

drawbacks. For one, they are designed for directed acyclic graphs (DAGs), though

more recent work has focused on extending Bayesian networks to graphs with cy-

cles de Luis Balaguer and Sozzani (2017). Furthermore due to the non-uniqueness

of the factorization of the joint probability distribution, multiple network configu-

rations can encode the same probability distributions. In addition, there is a high

computational cost associated with Bayesian networks, especially if one relaxes the

DAG constraint Mercatelli et al. (2020); Sanguinetti and Huynh-Thu (2019), making

them unsuitable for large datasets Saint-Antoine and Singh (2020). Local Bayesian

Networks are introduced in Liu et al. (2016) to overcome this issue. This method

first uses conditional mutual information (CMI) to construct an initial GRN which is

then decomposed into several local GRNs Liu et al. (2016). Then the initial GRN is

decomposed into a number of local networks. This method reduces the search space

of possible network structures while also reducing the number of false positives Liu

et al. (2016). However, the main disadvantage of Bayesian networks is that a directed

edge only represents a probabilistic dependency, not a causal interaction de Campos

et al. (2019).

Dynamic Bayesian Networks

Standard Bayesian networks rely on the use of steady state data, which for accurate

inference, requires a large number of replicates which may not be available Michailidis

and d’Alché Buc (2013). As such, it is more difficult to extract structural informa-

tion from this type of data in comparison to time series data. Time series data,
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though more difficult to obtain, encodes dynamical information that can aid in the

reconstruction of GRNs. Dynamic Bayesian networks (DBNs) are an extension of

Bayesian networks that are designed for GRN inference using time series data. The

main difference between DBNs and standard Bayesian networks is that a node is a

gene at a specific time slice Saint-Antoine and Singh (2020). The likelihood of the

observations (gene expression levels) is given as:

p(X1, ...,XT ) = p(X0)
T∏
t=1

p(Xt|Xt−1) = p(X0)
T∏
t=1

N∏
i=1

p(Xi,t|Xπi,t−1) (4.6)

where Xπi,t−1 := {Xj,t−1 : Xj,t−1 regulates Xi,t} Song et al. (2009). DBNs recon-

struct static directed networks. The edges in a DBN denote regulatory relationships

between two consecutive time slices, but also allows for intra-time slice connections

Chai et al. (2014). This allows one to capture cyclic dependencies, thereby alleviating

the DAG restriction. They have been used to infer GRNs underlying cancer cell phe-

notypes Adabor and Acquaah-Mensah (2019); Suter et al. (2022). Another advantage

of DBNs is that a time delay can be incorporated into the model through the use

of high order DBN models, facilitating more realistic regulatory network dynamics

Ahmed et al. (2018); Li et al. (2015, 2014). However, DBNs suffer from increased

computational complexity because all genes are considered to be potential regulators

for a given target gene making them unsuitable for large networks Li et al. (2014).

The problem of causality posed by Bayesian networks has been addressed in Pearl

(2000) by introducing the concept of a causal Bayesian network, but this requires

accessibility to gene knock-out, loss/gain-of-function experimental data.

A particular notable application of DBNs is for inference of time-varying GRNs. In

Song et al. (2009), the authors employ a kernel reweighted L1-regularized autoregres-

sive approach, which allows for the network reconstruction problem to be decomposed

into a series of simpler sub problems. Their work is based on the assumption of a
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sparse network structure which smoothly varies across time. This means that each

temporal snapshot of the network is not a completely different network, but rather

shares common features of the network snapshot at adjacent time points. Time homo-

geneity is also assumed, which is unable to capture transient regulatory interactions

which are present for a short duration Song et al. (2009); Pyne (2020), though this

issue is addressed in Robinson and Hartemink (2008); Grzegorczyk and Husmeier

(2009). The transition model p(Xt|Xt−1) becomes time dependent as pt(Xt|Xt−1).

The authors applied their kernel reweighted L1-regularized autoregressive procedure

to inference of time-varying yeast GRNs and neural networks. The output of this

method is a directed network for each time slice under consideration. An extension

of this method called TESLA was introduced in Ahmed and Xing (2009). Another

method is ARTIVA Lebre et al. (2010), which uses a DBN in conjunction with a

dynamical systems model for gene regulation to infer time-varying GRNs. ARTIVA

infers the change points of the regulatory inputs which describe where transcriptional

changes occur in the network. Reversible jump MCMC is used for sampling from the

posterior. Their approach was able to reconstruct GRNs describing the life cycle of

D. melanogaster. Although this approach captures the time-varying nature of GRNs

along with the direction of regulation, it does not capture the regulation type. The

ability to reconstruct time-varying GRNs is an important contribution as it can aid

our understanding of disease progression and which regulatory events underly the

transition from healthy to diseased states.

Bayesian Hierarchical Models

A Bayesian hierarchical model is a statistical model that allows for the sharing of

information across groups of data. This is achieved through the specification of a prior

distribution from which the parameters corresponding to each group can be sampled.
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This is referred to as the population distribution Gelman et al. (1995a). The hierarchy

is formed by specifying hyperparameters for the prior distributions on the parameters,

which themselves can be sampled from distributions with their own hyperparameters.

This results in a multi-level structure that can capture the structure of the data

in sufficient complexity. For example, we may be interested in grouping hospitals

according to the health outcomes of their patients while simultaneously grouping the

patients within each hospital. Or we may want to group schools according to the

distribution of SAT scores while simultaneously grouping students according to their

SAT scores. Bayesian hierarchical modeling therefore provides a flexible framework

for a range of problems.

Several approaches for inferring GRNs using Bayesian hierarchical models have

been introduced in the literature. In Panchal and Linder (2020), the authors propose

a Bayesian hierarchical model with global-local shrinkage priors for reconstructing

GRNs. The advantage of their approach is their use of the student’s-t distribution

for the likelihood, which enables the representation of heavy-tailed data. A linear

model is used to represent the GRN dynamics and the additive noise term is mod-

eled as a multivariate Gaussian mixture. Their approach was able to reconstruct

several GRNs involved in T-cell activation. The network edges capture both the

direction and type of regulation. In Cortez et al. (2022), the authors introduce a

non-Markovian Bayesian hierarchical model for inferring the parameters of biochem-

ical processes described by stochastic delayed birth-death processes. Gamma priors

are placed over the rate parameters. They applied their framework to E. coli fluores-

cent protein synthesis data to estimate the rate parameters. In Jensen et al. (2007),

the authors introduce a Bayesian variable selection framework which integrates three

different types of biological data to reconstruct GRNs. The data include gene ex-

pression data, chromatin-immuno precipitation data (ChIP), and promoter sequence
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data. They introduce a linear model for the gene regulatory network dynamics which

captures the combinatorial action of transcription factors. Gaussian priors are placed

on the baseline gene expression parameter, the transcription factor linear effects, and

interaction effects parameters. Gibbs sampling is used for inference. They applied

their framework to infer gene-transcription factor networks in yeast, resulting in a

directed network which captures the regulation type. In Thompson et al. (2020), the

authors develop a Bayesian hierarchical mixture model to infer gene expression states

from replicate transcriptomic libraries. One of the advantages of their approach is

that it captures complexity in both the biological process of gene regulation and the

technical processes used to collect the data. Their approach was able to infer the

correct expression states in both simulated and real-world datasets. Lastly, in Liang

and Kelemen (2016), the authors introduce a fully Bayesian state-space approach to

infer time-varying gene regulatory networks in different tissues. They use a linear

state space model with time-varying state transition matrices which encode the gene-

gene interactions. The hidden state distribution, which is the distribution for the

gene expression states, and the measurement likelihood are Gaussian. Multivariate

Gaussian priors are placed over the time-varying transition matrices with an inverse

G-Wishart prior on the time-varying covariance matrix. Gibbs sampling is used for

inference. Their approach was applied to both simulated and real-world data. Their

results demonstrate the efficacy of Bayesian hierarchical modeling in inferring hid-

den variables which affect the process of gene expression. However, a disadvantage

of this approach is that the model does not directly encode the direction or type of

regulation. Other Bayesian approaches include Bayesian model selection, which are

discussed in Chapter 6.
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4.1.4 Bayesian Nonparametric Methods

More recent state-of-the-art methods leverage the statistical power of Bayesian

nonparametric priors. These methods allow for the complexity of the model to grow

and adapt to the data. This is achieved by placing a prior π on an infinite dimensional

probability space (Ω,F , P ) Moraffah (2019). They often employ Dirichlet processes

or Gaussian processes as priors in mixture models. The approaches discussed in this

section combine elements from other methods introduced in this chapter. We review

the main concepts of Bayesian nonparametric methods and their applications to GRN

inference in this section. Most of the background information from this section can

be found in Jordan and Teh (2015).

Dirichlet Processes

Let (Θ,A) be a measurable space and α be a positive real number. The Dirichlet

Process is a random probability measure over the space Θ Ferguson (1973). A draw

from a Dirichlet process G(·) ∼ DP (H,α) with base distributionH and concentration

parameter α is a distribution over probability measures. For any partition A1, .., Ak

of Θ

(G(A1), ..., G(Ak)) ∼ Dir(αH(A1), ..., αH(Ak)) (4.7)

where Dir is the Dirichlet distribution. For every A ∈ Θ, the following properties

hold

E[G(A)] = H(A) (4.8)

and

var[G(A)] =
H(A)(1−H(A)

1 + α
(4.9)

As well, each realization of a Dirichlet process is discrete with probability one. In

Bayesian nonparametric density estimation, the Dirichlet process is used as a prior
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over the parameter space Θ. Given G ∼ DP (H,α) and θk|G
i.i.d∼ G for k = 1, ..., n, it

can be shown that the posterior distribution of G|θ1:n is also a Dirichlet process:

G|θ1:n ∼ DP (
α

α + n
H +

1

α + n

n∑
k=1

δθk , α+ n) (4.10)

Blackwell and Macqueen Blackwell and MacQueen (1973) showed that by integrating

out the random measure G, the predictive distribution has the following Polyá urn

form

θn+1|θ1:n ∼
n

α + n

n∑
k=1

δθk +
α

α + n
H (4.11)

This states that with probability n
α+n

, the new sample θn+1 is equal to one of the

previous samples, and with probability α
α+n

, draw a new sample i.i.d from H.

Stick-Breaking Construction

Sethuraman Sethuraman (1994) showed that a draw from a Dirichlet Process can be

represented as

βk
i.i.d∼ Beta(1, α)

πk = βk

k−1∏
l=1

(1− βk)

θk
i.i.d∼ H

G =
∞∑
k=1

πkδθk

where {πk}∞k=1 are the weights and {θk}∞k=1 are the atom locations. This is referred to

as the stick-breaking construction because the weights πk are constructed in a manner

analogous to breaking off a unit length stick.

Dirichlet Process Mixture Models (DPMM)

A Dirichlet Process mixture model (DPMM) is a generalization of a finite mixture

model to an infinite mixture model where a Dirichlet process is used as a prior prob-

ability over the infinite-dimensional parameter space. Let x1, .., xn be i.i.d. random
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variables drawn from a distribution F (·) with density f(·|θ). The goal is to estimate

the density f(·|θ). The DPMM is represented by the following hierarchy:

G ∼ DP (H,α) (4.12)

θk|G ∼ G (4.13)

xk|θk ∼ f(·|θk) (4.14)

(4.15)

An equivalent representation is obtained by marginalizing G. The hierarchy is

given by:

π|α (4.16)

θk|H
i.i.d∼ H (4.17)

zk|π ∼ Categorical(π) (4.18)

xk|θk, zk ∼ f(·|θzk) (4.19)

(4.20)

where zk is an indicator variable denoting the cluster assignments.

Chinese Restaurant Process

The Chinese Restaurant Process (CRP) is an alternate characterization of the Dirich-

let Process. It is a probability distribution over partitions. Consider a partition of

N points π[N ]. Each subset in the partition corresponds to a cluster. The main

premise behind the CRP is as follows. Consider a Chinese restaurant with an infinite

number of tables. The first customer sits at the first table with probability one. The

subsequent customers can either join the first table with probability proportional to

the number of customers sitting at the table or start a new table with probability
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proportional to α, as:

P(customer n+ 1 joins table c) =
|c|

α +N
(4.21)

P(customer n+ 1 starts a new table c) =
α

α +N
(4.22)

Note that α is the concentration parameter of the Dirichlet process. A draw from a

CRP π[N ] ∼ CRP(α,N) defines an exchangeable partition over [N ]. The probability

of a partition is given as:

P (π[N ]) =
αK

α(N)

∏
c∈π[N ]

(|c| − 1)! (4.23)

where K is the total number of clusters c1, c2, ..., ck. The CRP also defines a mixture

model as follows:

π[N ] ∼ CRP(α,N) (4.24)

θc|π[N ]
i.i.d∼ H (4.25)

xk|θ,π[N ]
ind∼ F (θc) (4.26)

(4.27)

where θc are the parameters associated with each table and F (θc) is the distribution

with density f(·|θc).

Hierarchical Dirichlet Processes

The hierarchical Dirichlet process (HDP) is an extension of the Dirichlet process for

clustering grouped data. Each group is associated with a mixture model and the

HDP links these mixture models through statistical dependencies. Let xji denote the

i-th observation in group j and assume that observations are exchangeable within

and across groups. θji is a parameter for the mixture component associated with

observation xji. F (θji is the distribution of xji given θji. G0 is a global random
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probability measure distributed as a Dirichlet process with concentration parameter

γ and base measure H. The group-specific random measures are denoted as Gj and

are Dirichlet Process-distributed with base measure G0 and concentration parameter

α0 Teh et al. (2004). The hierarchical model is given as:

G0|γ,H ∼ DP(γ,H) (4.28)

Gj|α0, G0 ∼ DP(α0, G0) for each j (4.29)

θji|Gj ∼ Gj (4.30)

xji|θji ∼ F (θji) (4.31)

(4.32)

The set of atoms at the top level is shared by the bottom level Dirichlet processes.

It is this property which enables clustering between groups through sharing of the

cluster parameters.

Stick-Breaking Construction for Hierarchical Dirichlet Processes

Like the standard Dirichlet Process, hierarchical Dirichlet processes can be equiva-

lently represented through a stick-breaking construction. The global random proba-

bility measure G0 can be expressed as:

G0 =
∞∑
k=1

βkδϕk (4.33)

where ϕk ∼ H independently and β = (βk)
∞
k=1 ∼ GEM(γ). For each j-th DP:

Gj =
∞∑
k=1

πjkδϕk (4.34)

where each πj = (πjk)
∞
k=1 is independently distributed according to DP(α0,β). The

ϕk denote that atom locations and each Gj is conditionally independent given G0.

Each factor θji takes on value ϕk with probability πjk. We can represent this using
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an indicator variable zji such that θji = ϕzji . The stick-breaking construction of the

HDP is given as:

β|γ ∼ GEM(γ) (4.35)

ϕk|H ∼ H (4.36)

πj|α0,β ∼ DP (α0,β) (4.37)

zji|πj ∼ πj (4.38)

xji|zji, (ϕk)∞k=1 ∼ F (ϕzji) (4.39)

(4.40)

The Chinese Restaurant Franchise

Another representation of the Hierarchical Dirichlet Process (HDP) is the Chinese

Restaurant Franchise (CRF). The CRF is an extension of the standard CRP. The

premise is as follows: consider a franchise of Chinese restaurants where each restau-

rant has an infinite number of tables with a shared menu across restaurants. Each

restaurant corresponds to one DP Gj. Customers at each j-th restaurant sit at the

tables in the same way as the CRP Jordan and Teh (2015). At each table of each

restaurant, one dish is ordered by the first customer that sits there. Each customer

who sits at that table shares the dish. Multiple tables in multiple restaurants can

serve the same dish due to the shared menu across restaurants, which correspond to

the atom locations of the G0. Customers at each j-th restaurant are denoted by θji.

The global menu is (ϕk) where each ϕk is independently and identically distributed

according to H. The dish served at table t in restaurant j is denoted by ψjt. Each

parameter is associated with one ψjt, and each ψjt is associated with one atom ϕk.

Let tji be the index of ψjt associated with parameter θji and let kjt be the index of ϕk

associated with ψjt. njtk denotes the number of customers in restaurant j at table t
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eating dish k, where there are K unique dishes served in the entire franchise Jordan

and Teh (2015). The number of tables in restaurant j serving dish k is mjk. Dots

denote marginals (e.g. mj· is the number of tables in restaurant j).

To compute the predictive distribution of θji|θj1, ..., θj,i−1, G0, Gj is integrated out:

θji|θj1, ..., θj,i−1, α0, G0 ∼
mj·∑
t=1

njt·
i− 1 + α0

δψjt
+

α0

i− 1 + α0

G0 (4.41)

The above equation assigns customers to tables. The first term on the RHS means

that customer sits at a table that is already occupied and second term means that

customer sits at a new table with probabilities given by the mixing proportions Teh

et al. (2004). If first term is chosen, increment njt (number of customers at table t

in restaurant j), set θji = ψjt, and let tji = t for whichever table is picked. If second

term is chosen, increment mj· (the number of tables in restaurant j) by one, draw a

new dish for that table ψjmj
∼ G0, and set tji = mj·.

To compute the predictive distribution of ψjt|ψ11, ψ12, ..., ψ21, ..., ψjt−1, H, G0 is

integrated out as:

ψjt|ψ11, ψ12, ..., ψ21, ..., ψjt−1, γ,H ∼
K∑
k=1

m·k
m·· + γ

δϕk +
γ

m·· + γ
H (4.42)

The above equation assigns dishes to new tables. Similar to the procedure for the

θji’s, if drawing from first term, set ψjt = ϕk (dish served at restaurant j at table t is

menu item ϕk and set kjt = k. If drawing from second term, increment k by one and

draw ϕK ∼ H, then set ψjt = ϕk (set the dish in restaurant j at table t to the new

dish that was just drawn from H) and kjt = K (set atom index associated with dish

ψjt to the atom index that was just drawn from H).

Dependent Dirichlet Processes

The Dependent Dirichlet Process (DDP) is an extension of the standard Dirichlet

process which models collections of random distributions as related, but not identical.
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The main idea underlying its construction is to replace both the stick breaking weights

πk = βk
∏k−1

l=1 (1 − βk) and the atom locations θ with sample paths of a stochastic

process as πkx = βkx
∏

l<k[1−βlx] and θX , respectively. This approach is employed in

nonparametric regression and dependency is introduced across values of the covariates

x ∈ X :

yi = fθ(xi) + ϵi (4.43)

The DDP model is defined as

Gx =
∞∑
k=1

πkxδθkx
(4.44)

DDPs can also be constructed using three fundamental operations on Poisson pro-

cesses: superpositioning, subsampling (thinning), and transitioning. This construc-

tion makes a more clear connection to time series modeling as the covariates x ∈ X are

replaced with time indexed by t: Gt =
∑∞

k=1 πkδθkt
. This facilitates the development

of DDP mixtures for modeling dynamic phenomena. There are multiple versions of

the dynamic DDP which vary depending on whether the Gt have the same weights

and/or atoms, or whether the Gt each have different weights and/or atoms Zhong

et al. (2021). We present here the dynamic DDP mixture where each Gt has different

weights and atoms: Gt =
∑∞

k=1 πktδθkt
. Let xit denote the i-th observation at time t

for t = 1, ..., T Quintana et al. (2022). The dynamic DDP mixture model is given by:

θit|Gt ∼ Gt (4.45)

xit|θit ∼ F (cot |θit). (4.46)

For more details we refer the reader to Zhong et al. (2021).

Gaussian Processes

Another Bayesian nonparametric approach that has been used for GRN inference is

Gaussian process modeling. A Gaussian process defines a stochastic process such that
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any finite subset of the random variables has a multivariate Gaussian distribution. It

is used as a nonparametric prior distribution over continuous functions as

f(x) ∼ GP(m(x), k(x,x′)) (4.47)

where m(x) = E[f(x)] is a mean function and k(x,x′) is a covariance function that

is used to construct the covariance matrix Ki,j. The covariance function is called the

kernel of the Gaussian process Schulz et al. (2018). Examples of kernels include the

Matérn covariance function and radial basis functions.

Applications of Bayesian Nonparametric Methods to Gene Regulatory

Network Inference

Bayesian nonparametric models have been used for GRN inference. In Asif and San-

guinetti (2013) the authors use a factorial hidden Markov model (FHMM) to model

the activity of transcription factors, which take on binary values. Gene expression in

terms of mRNA concentration is formulated as a linear combination of these tran-

scription factor dynamics as

gti = eiTt θi + ϵ (4.48)

where gti is the (log) mRNA expression level of gene i at time t, eit is a vector whose

entires are the binary states of the transcription factors {T tj}j=1,...,M that bind to

gene i, θi are the interaction strength parameters corresponding to gene i, and ϵ is

zero-mean Gaussian noise. The authors infer the transcription factor dynamics and

the gene-TF interaction strength parameter using gene expression data, and cluster

them using a Dirichlet process mixture model. Collapsed Gibbs sampling is used

for inference. The authors apply their model to the dataset describing micro-aerobic

shift in E. coli, the yeast cell cycle dataset, and simulated data. The datasets vary

from 15 to 104 transcription factors.They found that their approach performs best
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on networks of intermediate size, and on data where the size of the dataset and the

noise level increases.

DPMMs also facilitate integration of multiple types of data to improve inference.

In Burdziak et al. (2019) the authors introduce Symphony, which combines epige-

netic data with single-cell expression data to cluster cells by their cell type and their

underlying GRN. They introduce a model for the epigenetic data that is later used

in their model for gene expression. Their assumption is that the epigenetic data

encode a network structure for each cluster of cells. The matrix encoding the net-

work is asymmetric and is given as Rd×d
k , where k ∈ {1, ..., K} is the cluster index.

Genome accessibility is represented by latent variables pk = [p1k, ..., p
l
k] for l, where

pk ∼ truncN (η,Λ,0,+∞). The model for the epigenetic data is given by

{c}(1,...,l)t |pk, πk ∼ N (
∑
k

πkpk, ζI) (4.49)

where a symmetric Dirichlet prior is placed over pik. The prior for the network

structure is

Ri,i′

k ∼ N (Si,i
′
M i,i′ ,p

g(i,i′)
k , λ) (4.50)

where the entry Ri,i′

k ̸= 0 if i′ directly regulates i, Si,i
′
= sign(Σ′′i,i

′
) is a sign indicator

variable denoting activation or repression and is set to the sign of the empirical covari-

ance. M i,i′ denotes the genomic region, and the function g(·) maps gene pairs to ge-

nomic regions. The model for gene expression for each cell is formulated as a Gaussian

mixture model. Their approach produces a static directed network. Indirect effects

up to a path length of two are taken into account when constructing directed edges,

so a directed edge does not necessarily imply a direct causal interaction. The authors

applied Symphony to simulated and real data. Variational expectation-maximization

was used to sample from the posterior. They found that incorporating the epigenetic

component improves clustering performance.
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Other notable works use Hierarchical Dirichlet Processes to infer gene regulatory

networks. In Wang and Wang (2013), a hierarchical Dirichlet process (HDP) mixture

is used for both regulatory network segmentation and gene expression clustering. The

authors use the Chinese restaurant franchise representation of the HDP along with

Gibbs sampling for inference. Their approach produces a static directed network

They apply the HDP mixture to several synthetic and real datasets, including the

yeast cell cycle and human fibroblast serum data. The HDP was shown to outperform

comparable methods, such as support vector machine (SVM) and Mclust.

In Thorne and Stumpf (2012), the authors use a ”sticky” HDP-Hidden Markov

Model (HDP-HMM), which incorporates state durations, to infer time-varying GRNs.

The hierarchical model is given as follows:

β|γ ∼ GEM(γ) (4.51)

πk|α, β, κ ∼ DP

(
α + κ,

αβ + κδk
α + κ

)
(4.52)

sj|sj−1,π ∼ πsj−1
(4.53)

θ ∼ H (4.54)

xj|sj ∼ F (θsj) (4.55)

where the sj denote the hidden states. Each hidden state encodes a unique Bayesian

network describing regulatory interactions indexed by time. Gibbs sampling is used to

sample from the posterior. Their method is applied to several datasets, both synthetic

and real, to infer the time-varying network structure. They found that although the

sticky HDP-HMM performs well on synthetic data, more experimental work is needed

for accurate inference of real-world regulatory networks.

When the gene regulation function is unknown, Gaussian processes can be used to

infer f(·). Since Gaussian process models learn the regulatory function directly from

the data, known models of gene regulation can be captured within this approach Äijö
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and Lähdesmäki (2009). In Äijö and Lähdesmäki (2009) the authors use Gaussian

processes to infer the unknown regulatory function as well as the network structure.

The Matérn covariance function as their choice for the kernel, which is given as

k(x,x′) = σ(1 +
√
3
√
uTP−1u)exp(−

√
3
√
uTP−1) (4.56)

where u = x− x′ and P = diag(l2). The model for gene regulation is given as

g(x) = f(x) + h(x)Tβ (4.57)

where f(x) ∼ GP(0, k(x,x′)) and β is the linear regression coefficient vector. A

uniform prior is assigned over possible network structures Mj. For inference, the

authors first fit each gene to the model and then compute the posterior probabilities

of the network structure given the gene expression values and explanatory variables.

The method is applied on the popular IRMA dataset and was found to outperform

dynamic and static Bayesian networks as well as other comparable methods.

Work by Aalto et al. (2018) also uses Gaussian processes to infer the unknown

regulatory dynamics function. In their approach, called BINGO, they use the squared

exponential covariance function as the kernel of choice. It is given by

k(x,x′) = γiexp

(
−

n∑
j=1

βi,j(xj − x′j)2
)

(4.58)

where βi,j > 0 indicates that gene j regulates gene i. The advantage of BINGO is

its scalability to large datasets via parallelized Markov chain Monte Carlo. BINGO

was applied to data consisting of 2000 variables and five time series of 21 points each.

The incorporation of multiple time series as well as knockout/knockdown experi-

mental data enhanced accurate GRN inference and BINGO performed similarly to

dynGENIE3. As well, BINGO performs well under high process noise and decreased

sampling frequency.
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Other uses of Gaussian processes for GRN inference are found in Dony et al.

(2018); Hossain et al. (2021). In the former, the authors compare constrained para-

metric ODEs, in which the basal transcription and degradation rates are known,

with unconstrained parametric ODEs, and fully non-parametric Gaussian process

models. They found that constrained parametric approaches outperform the fully

non-parametric Gaussian process method. However, since the constrained paramet-

ric approach requires a priori knowledge of the molecular kinetics, they suggest that

a combination of parametric and non-parametric methods would perform best, which

is the approach of choice for this dissertation project.

4.1.5 Dynamical Models

The specific dynamics of gene regulation can be described by ordinary differential

equations or Boolean models. We review both in this section.

ODE Models

Differential equation models of gene regulation describe the rate of change of gene

expression levels in terms of mRNA production. The rate of change is a function of

the genes themselves as well as additional parameters which encode the regulatory

dynamics between genes and the other genes in the network. Differential equation

models can be linear, nonlinear, deterministic, or stochastic. The primary advan-

tage of differential equation models is that they provide a mechanistic representation

of biochemical processes and can capture the nonlinear dynamics of gene regula-

tion. Furthermore, when formulated as a state space problem, they can be used

to model GRNs as nonlinear stochastic processes, lending themselves to inference

via well-developed statistical signal processing techniques, such as recursive Bayesian

estimation Bugallo et al. (2015); Pirgazi and Khanteymoori (2018).
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A popular model for gene regulation uses the sigmoid squash function to capture

the switch-like behavior of GRNs (cite). The model for the state of the i-th gene at

discrete time step k, xi,k, is given by equation (Equation (4.59)).

xi,k =
N∑
j=1

aijf(xj,k−1) + wi,k (4.59)

f(xi,k) is the sigmoid squash function given by equation (Equation (4.60)).

f(xi,k) =
1

1 + e−xj,k−1
(4.60)

In this model, N denotes the total number of genes in the system, aij models the

nonlinear regulatory interactions between genes, and wi,k is an additive noise term

typically assumed to be Gaussian. This model is used for inferring the structure of

gene regulatory networks from noisy microarray data, as it has desirable properties

such as continuity and monotonicity (ref 23 in quals).

A more complex model is the continuous-time S-system model Wang et al. (2007).

The model is deterministic and is given by,

d

dt
xi = αi

N∏
j=1

x
gij
j − βi

N∏
j=1

x
hij
j (4.61)

The model shows that the rate of change in the system is described by a set of influxes

minus a set of effluxes. Here, Xi is the expression level of the i-th gene, αi and βi are

its corresponding non-negative rate constants, N is the total number of genes, hij and

gij are the kinetic order parameters such that the j-th gene activates the i-th gene if

gij > 0 and the j-th gene inhibits the expression of the i-th gene if gij < 0, and hij

has the opposite effects of gij.

More recently, a series of stochastic S-system models have been introduced in the

literature Chowdhury et al. (2015). These models take the same form as in equation

(Equation (4.61)), but with additional noise terms. These noise terms include additive
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Gaussian noise, as well as multiplicative noise and Langevin noise in either production,

degradation, or both (see Chowdhury et al. (2015) for details). The generalized

stochastic model is given by

d

dt
Xi =

[
αi

N∏
j=1

X
gij
j − βi

N∏
j=1

X
hij
j

]
+ µg(Xi)ζi(t) (4.62)

where µ is the noise strength, g(Xi) is the contribution of signal fluctuation, and ζi(t)

is Gaussian white noise Chowdhury et al. (2015). Although these S-system models are

able to capture more complex mechanisms of gene regulation, the product of power

laws prevents these models from capturing any hyperbolic or sigmoidal behaviors,

which are characteristic of many biological processes Youseph et al. (2019).

4.2 Michaelis-Menten Kinetics Model

Michaelis-Menten kinetic models can more precisely capture the nonlinear dy-

namics of gene regulation and have been used to generate realistic synthetic gene

expression data Van den Bulcke et al. (2006). Michaelis-Menten and Hill kinetics

have been used to reverse engineer gene regulatory networks in order to infer regula-

tory interactions from noisy microarray data Youseph et al. (2015); Elahi and Hasan

(2018); Krishnan et al. (2020a). The Michaelis-Menten model Equation (4.63) was

developed in the early 20th-century by scientists Leonor Michaelis and Maud Menten

to describe the rate of enzyme reactions. In particular, the model describes how the

rate of an enzyme-catalyzed reaction changes as the amount of substrate changes.

Considering an enzyme that binds to a substrate S and converts it into a product P ,

the model provides the rate of change of the concentration of the product P as

d[P ]

dt
= vmax

[S]

KM + [S]
(4.63)

where [P ] is the concentration of the product P , vmax is the maximum reaction rate,

[S] is the concentration of the substrate which can either activate or inhibit enzyme
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activity, and KM is the Michaelis-Menten constant Youseph et al. (2015). At high

concentrations of [S], the reaction velocity asymptotes until it reaches a steady state

at vmax, so adding more substrate does not increase the rate of activity since all

simple enzymes which follow Michaelis-Menten kinetics exhibit hyperbolic reaction

velocities. The constant KM represents the binding affinity between the enzyme and

substrate. This is equal to the amount of substrate at which 1
2
vmax is reached, or half

of the maximum reaction rate. Large values of KM indicate a low binding affinity

since it takes more substrate to reach the maximum reaction rate. On the other hand,

low levels of KM indicate a high binding affinity, which means that it takes a lower

concentration of substrate to reach the maximum reaction rate and that the substrate

more effectively binds to the enzyme active site. Considering an activator A, which

as the name suggests, activates the production of a product P , the Michaelis-Menten

equation is given by

d[P ]

dt
= vmax

[A]

KM + [A]
(4.64)

and for an inhibitor I, which inhibits the formation of a product, the equation is

given by

d[P ]

dt
= vmax

KI

KI + [I]
(4.65)

Thus, if both an activation and inhibitory interaction occurs, then the rate of product

formation is given by multiplying equations 3.5 and 3.6

d[P ]

dt
= vmax(

[A]

KM + [A]
)(

KI

KI + [I]
) (4.66)

By introducing the coefficient q to Equation (4.66), we extend the above model

to include Hill kinetics.

d[P ]

dt
= vmax(

[A]q

Kq
M + [A]q

)(
Kq
I

Kq
I + [I]q

) (4.67)

The Hill coefficient q is a measure of cooperativity of the substrate binding to the en-

zyme and reflects a behavior that is prevalent in biological networks Elahi and Hasan
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(2018). In such cases, the reaction rate exhibits sigmoidal behavior where q controls

the steepness of the reaction curve. A value of q > 1 indicates positive cooperativity,

which means that the binding of a substrate to an enzyme is enhanced by the binding

of another substrate to the same enzyme. A larger value of q makes the reaction curve

steeper. A value of q < 1 indicates negative cooperativity so that once a substrate is

bound to the enzyme, it decreases the affinity for subsequent binding, and thus the

reaction curve is flatter. In the case of no cooperativity, where q = 1, Equation (4.67)

simplifies to Michaelis-Menten kinetics. The Hill coefficient is somewhat reflective

of the number of binding sites on an enzyme needed to produce a functional effect

Santillán (2008). For example, a positive Hill coefficient would suggest that two or

more binding sites are present on the enzyme. However, considering a Hill coefficient

of q = 1, this could either suggest that there is only one binding site on the enzyme or

there could be multiple binding sites whose dynamics are independent of each other.

Thus, instead of serving as an estimate of the number of binding sites on an enzyme,

a more accurate interpretation of the Hill coefficient is as an interaction coefficient

reflecting cooperativity Santillán (2008).

A notable state-of-the-art model-based approach is dynGENIE3 Huynh-Thu and

Geurts (2018), which uses non-parametric random forest models to learn the ODEs

which describe the gene expression dynamics. The resulting network is a temporal

aggregate of the gene expression dynamics. The efficacy of this approach is dataset-

dependent, but overall outperforms its static counterpart, GENIE3. Although dif-

ferential equation models can describe the biochemical processes involved in gene

regulation in significant detail, one may argue that the large number of parameters

needed to accurately describe a system poses a significant challenge.
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Boolean Models

Boolean network models were introduced in 1969 by Stuart Kauffman to describe the

discrete-time dynamics of regulatory systems Kauffman (1969). In these models, each

vertex xi, i = 1, ..., n represents the state of gene i that can take on a binary value

xi ∈ {0, 1} corresponding to an on or off state. An edge from gene j to i denotes a

directional regulatory interaction so that gene j regulates gene i. The state of each

gene at the next discrete time point (t + 1) is determined by the states of the other

nodes in the network at the previous time point t through the set of Boolean functions

f = (f1, ..., fn) assigned to each of the nodes so that:

x(t+ 1) = f(x(t)) (4.68)

where x(t) = (x1(t), ..., xn(t)). The original formulation of this class of models as-

sumes a deterministic and closed system Xiao (2009). However, from both a the-

oretical and practical standpoint, the assumption of a deterministic system with a

single known Boolean function per gene is unrealistic. As regulatory systems are

influenced by stochasticity, deterministic Boolean models are unable to capture any

type of uncertainty, either due to environmental influences, interactions with other

genetic networks, or intercellular variability. Probabilistic Boolean networks (PBNs)

specifically address these issues.

In a PBN, rather than a single Boolean function per node, each node xi corre-

sponds to a set of l possible Boolean functions Fi = {f (i)
j }j=1,...,l. One realization

of a PBN is determined by a vector of Boolean functions. Following the set up in

Lähdesmäki et al. (2006); Shmulevich et al. (2002), for N possible realizations, there

are N vector functions f1, ..., fN where each fj = (f
(1)
j1
, ..., f

(n)
jn

) for j = 1, 2, ..., N ,

1 ≤ ji ≤ l(i) and f
(i)
ji
∈ Fi. Given its current state at time (t − 1) and a realization
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fj, each node in the network transitions to the next discrete time point t via

x(t) = fj(x(t− 1)). (4.69)

Let f = (f (1), ..., f (n)) be a random vector which can take values in F1 × FN . The

probability that a predictor function f
(i)
j is used to update the state of gene i is

c
(i)
j = Pr{f (i) = f

(i)
j } =

∑
f:fi=f

(i)
j

Pr{f = fj} (4.70)

Both probabilistic and deterministic Boolean models have been used to infer reg-

ulatory networks from expression data in a variety of systems Barman and Kwon

(2017); Maki et al. (2002). More recent approaches combine Boolean models with

Bayesian methods, such as Kalman filtering or particle filtering, which have shown to

improve estimation accuracy Imani and Braga-Neto (2018); McClenny et al. (2017).

In addition to their use for GRN inference, the primary advantage of Boolean mod-

els is in their ability to incorporate the logic operations (e.g. FOR, AND, NOT)

and use them to combinatorially process inputs according to these rules, which are

fundamental features of cis-regulatory function in GRNs Peter and Davidson (2015).

Furthermore, these models are well suited to capture the discrete spatiotemporally

bounded patterns of gene expression, which is characteristic of the developmental

process. The success of the Boolean modeling approach is most notable in the recon-

struction of the regulatory network describing the first 30 hours of development in

the purple sea urchin Peter and Davidson (2015).
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Chapter 5

STOCHASTIC MODELS OF GENE REGULATORY NETWORKS

5.1 State Space Model for GRN Estimation

An important challenge in processing gene regulatory networks (GRNs) is the

development of mathematical models to aid in capturing the molecular mechanisms

of gene regulation. In Youseph et al. (2015, 2019), the Michaelis-Menten kinetic

equations are used to formulate a GRN model for estimating the Michaelis-Menten

constant parameters. We propose a modified version of this model that incorporates

two new important components. The new model includes the Hill kinetics to aid

in more precisely capturing the complexity of GRN interactions. It also includes an

additive error modeling random process to account for the inherent noise present in

biological processes Wang and Aberra (2015). Our model for the expression level of

the ith gene is given by

d

dt
xi(t) = vmaxi

(
giix

qii
i (t) + hiiK

qii
ii

Kqii
ii + xqiii (t)

) N∏
j=1
j ̸=i

(
gijx

qij
j (t) + hijK

qij
ij

K
qij
ij + x

qij
j (t)

)
− vdi xi(t) + wi(t)

(5.1)

where vmaxi is the maximum expression rate of gene i, and hij and gij are the kinetic

order parameters that indicate the type of regulation. In particular, when hij = 1 and

gij = 1, i ̸= j, then there is no regulation from gene j to gene i. hij = 0andgij = 1

implies that gene j activates gene i, whereas hij = 1, gij = 0 implies that gene j

inhibits gene i. Furthermore, the parameter Kij is the Michaelis-Menten constant

associated with the regulation of gene i by gene j, vdi is the self decay rate of mRNA

expressed by gene i, qij is the Hill coefficient, and ii are subscripts associated with
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autoregulation. In the context of gene regulation, the Michaelis-Menten constant Kij

accounts for the binding affinity between the product of a gene j and the binding

site of a target gene i. Just like with enzyme kinetics, large values of Kij indicate a

low binding affinity and low values of Kij indicate a high binding affinity. The added

noise term is denoted by wi(t).

For ease of implementation, we discretize Equation (5.1) and introduce noise wk

into the system to obtain the following:

xi,k = vmaxi,k (
giix

qii
i,k−1 + hiiK

qii
ii

Kqii
ii + xqiii,k−1

)
N∏
j=1
j ̸=i

(
gijx

qij
j,k−1 + hijK

qij
ij

K
qij
ij + x

qij
j,k−1

)
− vdi xi,k−1 + wk−1 (5.2)

where xi,k = xi(k∆t) and ∆t = tk − tk−1 and k is the discrete time value.

5.1.1 Multivariate Michaelis-Menten Kinetics Model

Extension of the model in Equation (5.2) to the multivariate case facilitates faster

implementation and scalability to a larger number of genes by not having to specify

each individual dynamical system equation. In state-space form, the model for gene

expressions of N genes xi,k, n=1, . . . , N

xk = ϕ(xk−1) +wk−1

yk = xk + vk

where wk is the process noise vector, yk is the vector of noisy measurements, vk is

the measurement noise vector, and

[ϕ(xk−1)]i = [ψ(xk−1)]i(
N∏
j=1
j ̸=i

aij bij(xk−1))− vdi xi,k−1

[ψ(xk−1)]i =
1

vmax
i

(Kqii
ii + xqiii,k−1)

N∏
j=1
j ̸=i

(K
qij
ij + x

qij
j,k−1)
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where

aij = [giigij, giihij, hiigij, hii, hij]

bij(xk−1) = [xqiii,k−1x
qij
j,k−1, x

qii
i,k−1K

qij
ij , x

qij
j,k−1K

qii
ii , K

qii
ii K

qij
ij ]

T

5.1.2 Extension to the Time-Varying Case

The extension of the model in Equation to the time-varying case is done in a

straightforward manner through the addition of a time index to the kinetic order

parameters gij,k and hij,k, which encode both the direction and type of regulation.

We denote the m-th set of kinetic order parameters for the i− th gene by the variable

smij,k = (gmij,k, h
m
ij,k), where s

m
ij,k is referred to the m-th mode for m = 1, ...,M . The

time-varying GRN state transition (TV-GRN) model for estimating the expression

level xi,k of the ith gene at time step k due to the production and degradation of

protein or messenger ribonucleic acid (mRNA) is given by

xi,k = vmax
i

(
gii,k x

qii
i,k−1 + hii,kK

qii
ii

Kqii
ii + xqiii,k−1

)
N∏
j=1
j ̸=i

(
gij,k x

qij
j,k−1 + hij,kK

qij
ij

K
qij
ij + x

qij
j,k−1

)
− vid xi,k−1 + uk−1, 
i = 1, . . . , N

The effect of of dynamic changes in the kinetic order parameters in the state

transition function ϕ(xk−1) is given as follows:

aij,k = [gii,kgij,k, gii,khij,k, hii,kgij,k, hii,khij,k]

The expression value of each gene xi can be affected by three different types of

regulatory interactions: activating, inhibiting, or no regulation. Therefore, there are

a total of three possible modes for each pair of genes j → i ≠ i→ j. The mode smij,k

corresponding to each individual gene is indicative of the effects that the expression

level of gene xj has on the expression level of gene xi. For a gene to transition from

87



mode m to mode n mode means that a new type of regulatory interaction occurs

from gene j to gene i. For a system of N genes, each gene can have 3N possible types

of regulatory interactions including autoregulatory loops. These are summarized in

the table below. As the number of genes in the network grows, so does the number

of possible regulatory interactions.

m Type of Regulatory Interactions (Modes) Kinetic Order Parameters (gmij,k, h
m
ij,k)

1 xj,k activates xi,k (1, 0)

2 xj,k inhibits xi,k (0, 1)

3 no regulation from xj,k to xi,k (1, 1)

5.2 Stochastic Models of Gene Regulation

As the biochemical processes underlying gene regulation involve a small num-

ber of molecules, varying cellular environments, and varying timings of molecular

events, gene regulation is an inherently stochastic process. Several stochastic non-

linear models have been introduced based on either S-System, the sigmoid squash

function, Michaelis-Menten, or Langevin dynamics Chowdhury et al. (2015); Zhou

and Ji (2017); Meister et al. (2014); Dari et al. (2011). Langevin dynamics are a class

of stochastic differential equations (SDEs) used to model the time evolution of molec-

ular systems as a combination of deterministic drift and random diffusion Callaham

et al. (2021). The ubiquity of Langevin dynamics are due to their flexibility for mod-

eling large networks Meister et al. (2014), and their ability to directly incorporate

noise into the reaction rates and constants Shmulevich and Aitchison (2009). The Itô

SDE

dx(t) = f(x(t), t)dt+ µ
√
D(x(t), t)dw(t) (5.3)
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follows Langevin dynamics where f and D are the drift and diffusion functions, re-

spectively. Note that µ is a constant, and w(t) is a Wiener process with Gaussian

increments such that ∆w(ti) = w(ti+1)−w(ti) ∼ N (0,∆t). Langevin dynamics have

been used to model stochastic gene regulatory networks Shmulevich and Aitchison

(2009). We use Langevin dynamics to develop stochastic GRN models with intrinsic

and extrinsic noise. In particular, intrinsic noise is produced due to the inherent

stochasticity of biochemical reactions during the process of gene expression and is

typically modeled as multiplicative noise in either production or degradation Wang

and Aberra (2015); Chowdhury et al. (2015); Raser et al. (2005). On the other hand,

extrinsic noise is produced as the result of differences between cells in their local en-

vironments, such as the amount of mRNA polymerase or the cytoskeletal structure

of a cell and is typically modeled as additive noise Wang and Aberra (2015); Hasty

et al. (2000). In this chapter, each of these types of noise is modeled using discretized

Langevin dynamics.

Given a partition of the time interval of [0, T ] into K equal subintervals of width

∆t, the time evolution of a discrete-time stochastic process xi can be given by the

following discretized Langevin equation

xi,k+1 = xi,k + f(xi,k, k)∆t+
√
D(xi,k, k)∆wk (5.4)

where for our purpose of GRN inference, f(xi,k, k) is the Michaelis-Menten model

given in Equation (4.6). This model perturbs the deterministic model (??) to ac-

count for the stochastic fluctuations in molecular systems. The Langevin equation

pertaining to the case of multiplicative noise in production is given by:

xi,k+1 = xi,k + f(xi,k, k)∆t+
√
ρ(xi,k, k)∆wk (5.5)
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where

f(xi,k, k) = vmaxi,k (
giix

qii
i,k + hiiK

qii
ii

Kqii
ii + xqiii,k

)
N∏
j=1
j ̸=i

(
gijx

qij
j,k + hijK

qij
ij

K
qij
ij + x

qij
j,k

)
− vdi xi,k (5.6)

ρ(xi,k, k) = vmaxi,k (
giix

qii
i,k−1 + hiiK

qii
ii

Kqii
ii + xqiii,k−1

)
N∏
j=1
j ̸=i

(
gijx

qij
j,k−1 + hijK

qij
ij

K
qij
ij + x

qij
j,k−1

)
(5.7)

where xi,k = xi(k∆t) and ∆t = tk − tk−1 and k is the discrete time value and ∆wk =

wk+1 − wk. Similarly, the discrete-time Langevin equation pertaining to the case of

multiplicative noise in degradation is given by the following Langevin equation:

xi,k+1 = xi,k + f(xi,k, k)∆t+
√
γ(xi,k, k)∆wk (5.8)

where

γ(xi,k, k) = −vdi xi,k (5.9)

To model extrinsic noise, we use additive noise as

xi,k+1 = xi,k + f(xi,k, k)∆t+
√
µ∆wk (5.10)

where µ is a constant. Finally, combined models containing multiplicative and addi-

tive noise terms can be shown to follow Langevin dynamics Anteneodo and Tsallis

(2003). The Langevin equation corresponding to multiplicative noise in production

and additive noise is:

xi,k+1 = xi,k + f(xi,k, k)∆t+
√
ρ(xi,k, k)∆wk +

√
µ∆wk (5.11)

Similarly, the Langevin equation corresponding to multiplicative noise in degradation

and additive noise is:

xi,k+1 = xi,k + f(xi,k, k)∆t+
√
γ(xi,k, k)∆wk +

√
µ∆wk (5.12)

Thus, we have five models accounting for each type of noise that can be present during

the process of gene expression.
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5.3 Conclusion

In subsequent chapters, we employ these models in the development of hierarchical

Bayesian methods to tackle two main challenges. The first is inferring trajectories in

time-varying GRNs by learning the network configuration which best describes the

gene expression dynamics (Chapter 6). This is accomplished by learning the unknown

transition probabilities describing the probability of changing to a different network

configuration. The unknown process and measurement noise covariance matrices

are learned using Inverse-Wishart priors with known hyperparameters. The second

challenge is inferring trajectories in GRNs with unknown noise dynamics, which can

change over time (Chapter 7). The unknown noise model is learned by drawing

parameters from a categorical distribution with probabilities distributed according

to a Dirichlet conjugate prior. We also learn the process and measurement noise

covariance matrices by using Inverse-Wishart priors with known hyperparameters.
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Chapter 6

SWITCHING LANGEVIN DYNAMICS IN GENE REGULATORY NETWORKS

6.1 Summary and Motivation

The process of gene regulation, from transcription to translation, is a result of the

complex interactions between genes and an entire regulatory toolkit consisting of tran-

scription factors, cis-regulatory elements, and an array of molecular constituents Pe-

ter and Davidson (2011). These complex interactions form gene regulatory networks

(GRNs), which are responsible for the spatiotemporal allocation of gene expression

in every cell Peter and Davidson (2011). As the biochemical processes underlying

gene regulation involve a small number of molecules, varying cellular environments,

and varying timings of molecular events, gene regulation is an inherently stochastic

process. The stochasticity presents a challenge when reconstructing GRNs from noisy

microarray data. As such, developing models that can account for the various sources

of stochasticity, typically partitioned into intrinsic and extrinsic noise, can aid in the

accurate reconstruction of GRNs. Furthermore, identifying these noise sources is im-

portant for the optimal design of control systems aimed at reducing noise in synthetic

circuits Mundt et al. (2018).

Several stochastic nonlinear models have been introduced including the S-System,

the sigmoid squash function, Michaelis-Menten, and Langevin dynamics Chowdhury

et al. (2015); Zhou and Ji (2017); Meister et al. (2014). However, these approaches

rely on two limiting assumptions: (a) the noise type is known a priori; (b) the noise

type does not vary across time. Since microarray data only consists of a time series

of expression values, it is not possible to know which noise type is present and it
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is restricting to assume that the noise type remains the same across the whole time

series. This facilitates the development of an approach that can select which noise

model best fits the time series at each time step. This is ultimately a model selection

problem. To this extent, multiple works have focused on Bayesian model selection

in gene regulatory networks Ni et al. (2015); Novikov and Barillot (2009); Pan et al.

(2016); Thorne (2016).

Despite the range of existing work on model selection for GRN inference, to the

author’s knowledge, there is no work that focuses on Bayesian model selection of

stochastic models of GRNs. In this work, we propose a hierarchical Bayesian ap-

proach to account for switching between different types of unknown intrinsic and ex-

trinsic noise models in the gene regulation process. We assume discretized Langevin

dynamics to model the time evolution of each state, which are the gene expression

values. The unknown noise model is learned by drawing parameters from a cate-

gorical distribution with probabilities distributed according to a Dirichlet conjugate

prior. We also learn the unknown meausrement noise covariance matrix using an

Inverse-Wishart prior, which is conjugate to the Gaussian likelihood. We employ the

sequential Monte Carlo technique to do inference. In particular, we utilize particle

filters to estimate the trajectory of each gene over time as well as the unknown noise

model indicator,

The rest of the paper is organized as follows. In Section 6.2, we introduce several

stochastic models of gene regulation using discretized Langevin dynamics. The hier-

archical model and the inference algorithm are discussed in Section 6.3. We present

our simulation results for a five-gene network in Section 6.4.
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6.2 Stochastic Models of Gene Regulation

6.2.1 Gene Expression State

In our previous work, Vélez-Cruz et al. (2021), the authors developed several

stochastic models of gene regulatory networks that were based on Michaelis-Menten

kinetics Youseph et al. (2019). Our improvements to the model included an extension

to the case of time-varying GRNs through the introduction of time-varying kinetic

order parameters, which allows the regulatory interactions to change across time.

Using this model, the expression level of the i-th gene due to mRNA production and

degradation at time step k is given by

xi,k = xi,k−1 + f(xk−1)∆t+ wk (6.1)

where xk−1 = [xi,k, ..., xN,k], ∆t is the interval between time steps, and wi,k is a

Gaussian random process used to model uncertainty, and

xi,k = xi,k−1 +∆t

(
vmaxi

(
giix

qii
i,k−1 + hiiK

qii
ii

Kqii
ii + xqiii,k−1

)
(6.2)

N∏
j=1
j ̸=i

(
gijx

qij
j,k−1 + hijK

qij
ij

K
qij
ij + x

qij
j,k−1

)
− vdi xi,k−1

)
+ wk

= xi,k−1 + f(xk−1)∆t+ wk

In Equation (6.2), vmaxi is the maximum expression rate of gene i, and hij and gij are

the kinetic order parameters that indicate the type of regulation. In particular, when

hij =1 and gij =1, i ̸= j, then there is no regulation from gene j to gene i. When

hij =0 and gij =1, then gene j activates gene i, whereas hij =1, gij =0 implies that

gene j inhibits gene i. The parameter Kij is the Michaelis-Menten constant associ-

ated with the regulation of gene i by gene j. In the context of gene regulation, the

Michaelis-Menten constant Kij accounts for the binding affinity between the product
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of a gene j and the binding site of a target gene i. Large values of Kij indicate a

low binding affinity and low values of Kij indicate a high binding affinity. In Equa-

tion (6.2), vdi is the self decay rate of mRNA expressed by gene i, and qij is the Hill

coefficient. The parameters Kii, qii, hii and gii specify autoregulatory interactions.

6.2.2 Langevin Dynamics

Langevin dynamics are a class of stochastic differential equations (SDEs) used to

model the time evolution of molecular systems as a combination of deterministic drift

and random diffusion Callaham et al. (2021). The ubiquity of Langevin dynamics are

due to their flexibility for modeling large networks Meister et al. (2014), and their

ability to directly incorporate noise into the reaction rates and constants Shmulevich

and Aitchison (2009). The Itô SDE

dx(t) = f(x(t)) dt+ µ
√
D(x(t))dw(t) (6.3)

follows Langevin dynamics where f(x(t)) and D(x(t)) are the drift and diffusion

functions, respectively ?. Note that µ is a constant, and w(t) is a Wiener process

with Gaussian increments such that ∆w(tk) = w(tk+1)−w(tk) ∼ N (0,∆t). Langevin

dynamics have been used to model stochastic gene regulatory networks Shmulevich

and Aitchison (2009). We use Langevin dynamics to develop stochastic GRN models

with intrinsic and extrinsic noise. In particular, intrinsic noise is produced due to the

inherent stochasticity of biochemical reactions during the process of gene expression

and is typically modeled as multiplicative noise in either production or degradation

Wang and Aberra (2015); Chowdhury et al. (2015); Raser et al. (2005). On the other

hand, extrinsic noise is produced as the result of differences between cells in their local

environments, such as the amount of mRNA polymerase or the cytoskeletal structure

of a cell and is typically modeled as additive noise Wang and Aberra (2015); Hasty

95



et al. (2000). In this paper, each of these types of noise is modeled using discretized

Langevin dynamics.

Given a partition of the time interval of [0, T ] into K equal subintervals of width

∆t, the time evolution of a discrete-time stochastic process xi can be given by the

following discretized Langevin equation

xi,k = xi,k−1 + f(xk−1) ∆t+
√
D(xk−1)∆wk (6.4)

where for our purpose of GRN inference, f(xk−1) is the Michaelis-Menten model

given in Equation (6.2) and wk is additive white Gaussian with zero mean and known

covariance Σw. Whereas the stochastic component in Equation (6.2) is used to rep-

resent model uncertainty, in Equation (6.4), it is used to account for the stochastic

fluctuations in molecular systems. The Langevin equation pertaining to the case of

multiplicative noise in production is given by:

xi,k = xi,k−1 + f(xk−1)∆t+
√
ρ(xk−1)∆wk (6.5)

where

ρ(xi,k−1) = vmaxi

(
giix

qii
i,k−1 + hii,kK

qii
ii

Kqii
ii + xqiii,k−1

)
N∏
j=1
j ̸=i

(
gijx

qij
j,k−1 + hijK

qij
ij

K
qij
ij + x

qij
j,k−1

)
.

Similarly, the discrete-time Langevin equation pertaining to the case of multiplicative

noise in degradation is given by the following Langevin equation:

xi,k = xi,k−1 + f(xk−1) ∆t+
√
γ(xi,k−1)∆wk (6.6)

where

γ(xi,k−1) = −vdi xi,k−1
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A combined model of multiplicative noise in production and multiplicative noies in

degradaton is given as

xi,k = xi,k−1 + f(xk−1)∆t+
√
ρ(xk−1)∆wk +

√
γ(xi,k−1)∆wk (6.7)

To model extrinsic noise, we use additive noise as

xi,k = xi,k−1 + f(xk−1) ∆t+
√
µ∆wk (6.8)

where µ is a constant. Finally, combined models containing multiplicative and addi-

tive noise terms can be shown to follow Langevin dynamics Anteneodo and Tsallis

(2003). The Langevin equation corresponding to multiplicative noise in production

and additive noise is:

xi,k = xi,k−1 + f(xk−1) ∆t+
√
ρ(xk−1)∆wk +

√
µ∆wk (6.9)

Similarly, the Langevin equation corresponding to multiplicative noise in degradation

and additive noise is:

xi,k = xi,k−1 + f(xk−1) ∆t+
√
γ(xi,k−1)∆wk +

√
µ∆wk (6.10)

The six models in Equation (6.5), Equation (6.6), Equation (6.8), Equation (6.9),

and Equation (6.10) account for each type of noise that can be present during the

process of gene expression.

6.3 Inference

Using the aforementioned noise models, our goal is to infer the trajectory of the

states xi,k, i = 1, ..., N and k = 1, ..., K, where N is the number of genes in the

network and K is the number of time steps. It is worth mentioning that even though

the number of models is known, it is not known which model is used a priori. The
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state space formulation of the GRN dynamical system is given by

xi,k = gm(xk−1,∆wk), i = 1, . . . , N, m = 1, . . . ,M

yk = xk + vk

where yk is the noisy microarray measurement at time k and vk is the measure-

ment noise that is assumed additive white Gaussian with zero mean and unknown

covariance Σv. The function gm(xk−1,∆wk) represents the state function with the

mth noise model, m=1, . . . ,M . The modeling noise ∆wk is assumed Gaussian

with known covariance Σw. For our case, the M =5 models include the multiplica-

tive noise in production in (Equation (6.5)), multiplicative noise in degradation in

(Equation (6.6)), extrinsic noise in (Equation (6.8)), multiplicative in production and

additive noise in (Equation (6.9)) and multiplicative in degradation and additive noise

in (Equation (6.10)).

Note that, even though the number of noise models is assumed known, the noise

model at each time step k is unknown. As a result, we need to learn the noise model

at each time step in order to form the state prior probability density function (PDF).

In our proposed approach, we represent the M noise model types using the indicator

variables zi,k ∈ {1, . . . ,M} and model the indicator variables using a categorical dis-

tribution. The parameters of the categorical distribution are given by π1,k, . . . , πM,k,

where πm,k is the probability of occurrence of the mth noise model. We learn these

parameters using a Dirichlet distribution prior with hyperparameter α. We also as-

sume that the measurement noise covariance Σv is unknown with an Inverse-Wishart

(IW) prior with scale matrix Ψv and degrees of freedom νv. The resulting hierarchical
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Bayesian model is given by

xk|xk−1, zk,Σw ∼ Gzk(xk|xk−1, zk), i = 1, ..., N (6.11)

yk|xk,Σv ∼ H(yk|xk,Σv) (6.12)

zk|zk−1, πm,k ∼ Cat(πm,k), m = 1, ...M (6.13)

πm,k|α ∼ Dir(α) (6.14)

Σv|Ψv, νv ∼ IW(Ψv, νv) (6.15)

where zk is the indicator corresponding to model m at time k, Cat(·) denotes the

categorical distribution, and Dir(·) denotes the Dirichlet distribution. Note that the

distribution G(·) is Gaussian since the state evolution follows a Langevin dynamic.

The emission distribution H(·) is also assumed to be Gaussian. The posterior density

needed to estimate the gene expression values xk and the indicators which select the

network configuration are {zmk }Mm=1.

p({xk}Kk=1, {zk}Kk=1,Σv, {πm,k}M,K
m=1,k=1|{yk}

K
k=1,Ψv, νv, α) (6.16)

∝ p({yk}Kk=1, {xk}Kk=1, {zmk }
K,M
k=1,m=1,Σv|α,Ψv, νv) (6.17)

p(Σv|Ψv, νv)p({πm,k}Mm=1|α) (6.18)

=
K∏
k=1

p(yk|xk,Σv)
M∏
m=1

[
p(xk|xk−1, zk, {Σm

w }Mm=1)
1(zk=m)p(zk|zk−1, πm,k)1(zk=m)

]
(6.19)

p(Σv|Ψv, νv)p({πm,k}Mm |α). (6.20)

where zk is the indicator corresponding to model m at time k, Σv is the unknown

measurement noise covariance, Ψv is the N×N prior scale matrix chosen to be 0.1IN ,

and νv is the prior degrees of freedom which is chosen to be N +2. Note mathbbIN is

the N ×N identity matrix, that πm,k is the probability of selecting noise model m at

time k, and α is the concentration parameter for the Dirichlet distribution. We set
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α = 1. The distribution G(·) and the likelihood H(·) are assumed to be Gaussian.

Sequential Monte Carlo

We develop a sequential Monte Carlo algorithm. At each time step, the joint posterior

PDF from which we aim to draw samples is

p(xk, zk, πm,k,Σv|yk,Ψv, νv, α) (6.21)

∝ p(yk|xk,Σv)p(xk|xk−1, zk)p(zk|zk−1, πm,k)p(Σv|Ψv, νv)p(πm,k|α) (6.22)

p(xk−1, zk−1, πm,k−1,Σv|yk−1,Ψv, νv, α) (6.23)

where p(xk|xk−1, zk) is given in Section 8.2.1 and p(xk−1, zk−1, πm,k−1,Σv|yk−1,Ψv, νv, α)

is the posterior from the previous time step. The algorithm proceeds by sampling a

model indicator from Q1 in Equation (7.19)

Q1(zk = m|z−k,xk,yk,Σvα) =
ck,m∑

m ck−1,m + α
G(xk|xk−1, zk)H(yk|xk,Σv) (6.24)

where ck−1,m is the number of times modelm has been chosen for times k = 1 . . . K−1.

Then the measurement yk is computed using Section 8.2.1. The measurement

noise covariance hyperparameters at time step k, which are Ψ
′

v and ν
′
v, are updated

using Equations Equation (6.26) and Equation (6.27) and a new measurement noise

covariance Σv is sampled from an inverse-Wishart with the updated hyperparameters.

Q2(Σv|yk,Ψv, νv) = IW(Ψ
′

v, ν
′

v) (6.25)

where the new hyperparameters Ψ
′

v and ν
′
v are incrementally updated at each time

step as

Ψ
′

v = Ψv,prev + (xk − µv)(xk − µv)T (6.26)

ν
′

v = νv,prev + 1 (6.27)
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and we have one observation at each time step and µv is assumed to be 0. Next, we

can compute the weights. We select the joint prior PDF as the proposal distribution

since the underlying noise in our model follows Gaussian distribution. Moreover, this

approach is more computationally efficient. The joint prior PDF is given as

q(x
(i)
k , z

(i)
k , π

(i)
m,k,Σ

(i)
v |x

(i)
k−1, z

(i
k−1,Σ

(i)
v ,Ψ

(i)
v , ν

(i)
v , α) (6.28)

= p(x
(i)
k |x

(i)
k−1, z

(i)
k )p(z

(i)
k |z

(i)
k−1, π

(i)
m,k)p(Σ

(i)
v |Ψ(i)

v , ν
(i)
v )p(π

(i)
m,k|α) (6.29)

The weights can then be computed as

w
(i)
k ∝ w

(i)
k−1p(yk|x

(i)
k ,Σ

(i)
v ) (6.30)

where the Gaussian likelihood is given as

p(yk|x
(i)
k ,Σ

(i)
v ) =

1

(2π)N/2
√
|Σ(i)

v |
exp

(
− 1

2
(yk − x

(i)
k )T (Σ(i)

v )−1(yk − x
(i)
k )

)
(6.31)

See Appendix A for the full derivation.

The algorithm steps are summarized below. where c = [c1, ..., cM ] and cM is the

number of occurrences of model M .

6.4 Simulation Results

In this section, we demonstrate through simulations the efficacy of our approach

in estimating the trajectories of N = 5 genes and the unknown noise model indicator.

The GRN model parameter values used in each simulation are listed in Table 6.4. A

diagram of the network is shown in Figure 6.6. For each discrete time step k, one

of the m = 1, ...,M network configurations, which is indicated by zk, is chosen prob-

abilistically from a Categorical distribution with Dirichlet-distributed probabilities.

We also learn the unknown measurement noise covariance matrix using Bayesian up-

dating of the Inverse-Wishart. Our learning approach aims to concurrently estimate
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Algorithm 1 Bayesian Learning of Variation in Noise Type Under Switching

Langevin Dynamics

1: Initialization at t = 1

2: for i = 1, ..., N particles do

3: Sample x
(i)
1 ∼ p(x1)

4: Sample z
(i)
1 ∼ Cat(π1)

5: Sample Σ
(i)
v ∼ IW(Ψ(i)

v , ν
(i)
v )

6: end for

7: Sequential Updates for t ≥ 2

8: Draw model probabilities from posterior of the Dirichlet distribution πm,k | α+c ∼

Dir(πm,k | α + c)

9: Sample a new cluster assignment z
(i)
k ∼ Q1

10: Sample x
(i)
k ∼ p(xk | x(i)

k−1, z
(i)
k )

11: Update measurement y
(i)
k ∼ p(yk | x

(i)
k ,Σ

(i)
v )

12: Update hyperparameters using Equation (6.26) and Equation (6.27) and sample

Σ
(i)
v ∼ IW(Ψ(i)

v , ν
(i)
v ) from Q2

13: Compute particle weights w
(i)
k using Equation Section 8.2.4

14: Normalize weights w
(i)
k =

w
(i)
k∑Ns

i=1 w
(i)
k

15: Resample particles x
(i)
k , z

(i)
k ,Σ

(i)
v
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the unknown state xk and the model indicator variable zk. We use 2,000 Monte Carlo

runs for each simulation.

We consider switching between three noise models for K = 250 time points under

the following scenario. Cells undergo oxidative stress when there is an imbalance of

free radicals and antioxidants Lobo et al. (2010). When this occurs, a class of genes

which encodes antioxidant enzymes, Superoxide dismutase (SOD), is activated. Un-

der low oxidative stress conditions, cells can be subject to various stochastic processes

such as fluctuating nutrient conditions or variable protein turnover rates. For this

scenario, we assume that these baseline stochastic conditions manifest in multiplica-

tive noise in degradation for k = 1 : 100. When oxidative stress occurs as a result

of the introduction of sources of free radicals, such as cigarette smoke, radiation, or

environmental pollutants, the cells increase their production of antioxidant enzymes.

Signaling pathways responsible for producing the antioxidant enzymes are activated.

The activation of the SOD class is not a deterministic process and can be subject

to epigenetic variability or variability in transcription factor concentrations. This

manifests in multiplicative noise in production for k = 101 : 170. After this period

of oxidative stress has passed, the cell goes into a recovery mode characterized by in-

stability in the regulatory circuits. This means that the production and degradation

of enzymes can both be subjected to noise. This manifests in multiplicative noise in

production and degradation for k = 171 : 250.

First, we demonstrate the performance of our algorithm under different num-

bers of particles. Table 6.1 shows the average root mean square error (RMSE) for

Ns = 50, 200, and 1,000 particles for process noise covariance Σw = 2e−3IN and mea-

surement noise covariance Σv = 2e−3IN . We found that the root mean square error

(RMSE) decreases with an increase of the number of particles. Next, we evaluate

the performance of the algorithm under different measurement noise conditions. We
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Table 6.1: Root mean-square error (RMSE) averaged across all time steps for

Ns = 50, 200, and 1,000 particles for process noise covariance Σw = 2e−3IN and

measurement noise covariance Σv = 2e−3IN . 2,000 Monte Carlo runs were used. The

dynamics are described by multiplicative noise in degradation for k = 1 : 100, multi-

plicative noise in production for k = 101 : 170, and multiplicative noise in production

and degradation k = 171 : 250.

Gene Ns = 50 Ns = 200 Ns = 1, 000

X1 0.075 0.069 0.058

X2 0.083 0.075 0.065

X3 0.091 0.083 0.072

X4 0.080 0.074 0.064

X5 0.038 0.036 0.032

assume Σw = 2e−5IN and evaluate the performance under Σv = 2e−2IN , 2e−3IN and

2e−5IN . We compute the average RMSE across all time steps shown in Table 6.2. Our

Bayesian learning algorithm is compared to the standard PF, which assumes multi-

plicative noise in production in Figure 6.1. As is shown, the standard particle filter

fails to estimate the trajectory during the segments whose dynamics are not given by

multiplicative noise in production. The true versus estimated noise model is shown in

Figure 6.2. The figures in Figure 6.2, Figure 6.4, and Figure 6.3 demonstrate that an

increase in the measurement noise results in a decrease in estimation accuracy. We

also consider variation in the process noise covariance under Σw = 2e−2IN , 2e−3IN and

2e−5IN where Σv = 2e−3IN . The RMSE values averaged across all time points are

shown in Table 6.3. We show the RMSE over time for each variation in the process

noise in Figure 6.5.
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Figure 6.1: A comparison of our learning algorithm (blue) to the standard particle

(green) for Σw = 2e−5IN and Σv = 2e−3IN . The true trajectory is given by the red.

2,000 Monte Carlo runs and 1,000 particles were used. The dynamics are described by

multiplicative noise in degradation for k = 1 : 100, multiplicative noise in production

for k = 101 : 170, and multiplicative noise in production and degradation k = 171 :

250. Multiplicative noise in degradation is assumed.
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Table 6.2: Root mean-square error (RMSE) averaged across all time steps for mea-

surement noise covariance Σv = 2e−2IN , 2e−3IN , and 2e−5IN . We assume Σw =

2e−5IN . 1,000 particles and 2,000 Monte Carlo runs were used. The dynamics are de-

scribed by multiplicative noise in degradation for k = 1 : 100, multiplicative noise in

production for k = 101 : 170, and multiplicative noise in production and degradation

k = 171 : 250.

Gene Σv = 2e−2IN Σv = 2e−3IN Σv = 2e−5IN

X1 0.073 0.069 0.047

X2 0.074 0.073 0.051

X3 0.081 0.079 0.056

X4 0.070 0.068 0.049

X5 0.034 0.030 0.022

Table 6.3: Root mean-square error (RMSE) averaged across all time steps for process

noise covariance Σw = 2e−2IN , 2e−3IN , and 2e−5IN . We set Σv = 2e−3IN . 1,000

particles and 2,000 Monte Carlo runs were used.

Gene Σw = 2e−2IN Σw = 2e−3IN Σw = 2e−5IN

X1 0.063 0.054 0.052

X2 0.068 0.061 0.059

X3 0.077 0.068 0.066

X4 0.070 0.058 0.056

X5 0.043 0.026 0.023
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Figure 6.2: The true (red) versus estimated (blue) model or Σw = 2e−5IN and

Σv = 2e−5IN . 2,000 Monte Carlo runs and 1,000 particles were used. The dynamics

are described by multiplicative noise in degradation for k = 1 : 100, multiplicative

noise in production for k = 101 : 170, and multiplicative noise in production and

degradation k = 171 : 250.

To evaluate the robustness of our model, we allow the dynamics to be defined by

multiplicative noise in production for k = 1 : 100, multiplicative noise in degradation

for k = 101 : 170, and multiplicative noise in production and degradation for k =
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Figure 6.3: The true (red) versus estimated (blue) model or Σw = 2e−5IN and

Σv = 2e−3IN . 2,000 Monte Carlo runs and 1,000 particles were used. The dynamics

are described by multiplicative noise in degradation for k = 1 : 100, multiplicative

noise in production for k = 101 : 170, and multiplicative noise in production and

degradation k = 171 : 250.

171 : 250. We evaluate the performance of the algorithm under different measurement

noise conditions. We assume Σw = 2e−3IN and evaluate the performance under Σv =

2e−2IN , 2e−3IN and 2e−5IN . We compute the average RMSE across all time steps

shown in Table 6.5. Our Bayesian learning algorithm is compared to the standard

PF, which assumes multiplicative noise in degradation in Figure 6.7. As is shown, the

standard particle filter fails to estimate the trajectory once the model switches to a
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Figure 6.4: The true (red) versus estimated (blue) model or Σw = 2e−5IN and

Σv = 2e−2IN . 2,000 Monte Carlo runs and 1,000 particles were used. The dynamics

are described by multiplicative noise in degradation for k = 1 : 100, multiplicative

noise in production for k = 101 : 170, and multiplicative noise in production and

degradation k = 171 : 250.

different noise type. For this specific scenario, our algorithm was one time point late

in detecting the change in noise type that occurred at k = 100. This is also shown

in Figure 6.8. As well, Figure 6.10 shows a peak the time change at k = 100 where

the model was misidentified. As before, we also consider variation in the process

noise covariance under Σw = 2e−2IN , 2e−3IN and 2e−5IN where Σv = 2e−3IN . We

show the RMSE over time for each variation in the process noise in Figure 6.10.
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Figure 6.5: A comparison of the RMSE for different values of the process noise

covariance. The dynamics are described by multiplicative noise in degradation for

k = 1 : 100, multiplicative noise in production for k = 101 : 170, and multiplicative

noise in production and degradation k = 171 : 250.

Compared to the previous scenario, we found that the RMSE was significantly lower

for this sequence of models when the measurement noise covariance decreases from

Σw = 2e−2IN to Σw = 2e−3IN . This is also supported by Figure 6.8 and Figure 6.9.

6.5 Conclusion

In this chapter, we introduced a Bayesian hierarchical model for learning different

types of stochasticity in GRNs with unknown measurement noise covariance. We
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Figure 6.6: Five-gene network used for simulations. Arrows denote activating regula-

tory interactions and the horizontal bar denotes an inhibiting regulatory interaction.

developed an SMC algorithm for inference. Through simulations we demonstrated

that our model can identify changes in the noise type with a high degree of accuracy.
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Figure 6.7: A comparison of our learning algorithm (blue) to the standard particle

(green) for Σw = 2e−3IN and Σv = 2e−3IN . The true trajectory is given by the red.

2,000 Monte Carlo runs and 1,000 particles were used. The dynamics are described by

multiplicative noise in production for k = 1 : 100, multiplicative noise in degradation

for k = 101 : 170, and multiplicative noise in production and degradation for k =

171 : 250. Multiplicative noise in production is assumed.
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Figure 6.8: The true (red) versus estimated (blue) model or Σw = 2e−3IN and

Σv = 2e−3IN . We used 1,000 particles, 2,000 Monte Carlo runs and 1,000 particles

were used. The dynamics are described by multiplicative noise in production for

k = 1 : 100, multiplicative noise in degradation for k = 101 : 170, and multiplicative

noise in production and degradation for k = 171 : 250.
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xi gij, hij Kij qij vmax
i vdi

x1

g11=1, h11=1

g12=1, h12=1

g13=1, h13=1

g14=1, h14=0

g15=1, h15=0

K11 = 1.0

K12 = 2.0

K13 = 4.0

K14 = 1.0

K15 = 1.0

1.0 14.0 0.5

x2

g21=1, h21=1

g22=1, h22=1

g23=1, h23=1

g24=1, h24=1

g25=1, h25=0

K21 = 1.0

K22 = 2.0

K23 = 4.0

K24 = 3.0

K25 = 1.0

1.0 3.0 0.4

x3

g31=1, h31=0

g32=1, h32=0

g33=1, h33=0

g34=1, h34=0

g35=1, h35=1

K31 = 1.0

K32 = 2.0

K33 = 4.0

K34 = 3.0

K35 = 1.0

1.0 4.0 0.9

x4

g41=0, h41=1

g42=1, h42=0

g43=1, h43=0

g44=1, h44=1

g45=1, h45=0

K41 = 1.0

K42 = 2.0

K43 = 4.0

K44 = 3.0

K45 = 1.0

1.0 6.0 0.5

x5

g51=1, h51=0

g52=0, h52=1

g53=1, h53=1

g54=1, h54=0

g55=1, h55=0

K51=1.65

K52=2.65

K53=35.3

K54=3.47

K55=15.0

1.0 11.0 0.8

Table 6.4: Parameters of model in Equation (6.2) for the GRN in Figure 1.
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Figure 6.9: The true (red) versus estimated (blue) model or Σw = 2e−3IN and

Σv = 2e−2IN . We used 1,000 particles, 2,000 Monte Carlo runs and 1,000 particles

were used. The dynamics are described by multiplicative noise in production for

k = 1 : 100, multiplicative noise in degradation for k = 101 : 170, and multiplicative

noise in production and degradation for k = 171 : 250.
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Figure 6.10: A comparison of the RMSE for different values of the process noise

covariance. The dynamics are described by multiplicative noise in production for

k = 1 : 100, multiplicative noise in degradation for k = 101 : 170, and multiplicative

noise in production and degradation for k = 171 : 250.

116



Table 6.5: Root mean-square error (RMSE) averaged across all time steps for mea-

surement noise covariance Σv = 2e−2IN , 2e3IN , and 2e−3IN . The process noise co-

variance is Σw = 2e−3IN 1,000 particles and 2,000 Monte Carlo runs were used. The

dynamics are described by multiplicative noise in production for k = 1 : 100, multi-

plicative noise in degradation for k = 101 : 170, and multiplicative noise in production

and degradation for k = 171 : 250.

Gene Σv = 2e−2IN Σv = 2e−3IN Σv = 2e−5IN

X1 0.073 0.017 0.015

X2 0.074 0.019 0.018

X3 0.081 0.015 0.013

X4 0.019 0.016 0.014

X5 0.024 0.017 0.017
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6.6 Particle Filter Derivation

Here, we derive the steps for the particle filter. At each time step, the joint

posterior PDF from which we aim to draw samples is

p(x
(i)
1:k, s

(i)
1:k,Σ

(i)
v ,π

(i)
m,1:k|y1:k,Ψ

(i)
v , ν

(i)
v , α) (6.32)

The importance weights are given by

w
(i)
k =

p(x
(i)
1:k, z

(i)
1:k,Σ

(i)
v ,π

(i)
m,1:k|y1:k,Ψ

(i)
v , ν

(i)
v , α)

q(x
(i)
1:k, z

(i)
1:k,Σ

(i)
v ,π

(i)
m,1:k|y1:k,Ψ

(i)
v , ν

(i)
v , α)

(6.33)

The numerator can be factored as

p(x
(i)
1:k, z

(i)
1:k,Σ

(i)
v ,π

(i)
m,1:k|y1:k,Ψ

(i)
v , ν

(i)
v , α) (6.34)

=
(x

(i)
1:k,y1:k, z

(i)
1:k,Σ

(i)
v ,π

(i)
m,1:k,Ψ

(i)
v , ν

(i)
v , α)

p(y1:k,Ψ
(i)
v , ν

(i)
v , α)

(6.35)

= p(yk|y1:k−1,x
(i)
1:k,Σ

(i)
v ,Ψv, ν

(i)
v )

p(x
(i)
1:k, z

(i)
1:k,π

(i)
m,1:k|y1:k−1, α)

p(y1:k,Ψ
(i)
v , ν
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· p(x(i)
1:k−1, z

(i)
1:k−1,π

(i)
m,1:k−1,Σ

(i)
v , |y1:k−1,Ψ

(i)
v , ν

(i)
v , α) (6.45)

(6.46)
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where due to the Markov property and because π
(i)
m,k does not depend on its previous

values

p(x
(i)
k , z

(i)
k , π

(i)
m,k|y1:k−1,x

(i)
1:k−1, z

(i)
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k |z
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Next, we want to select the importance density so that if factorizes as

q(x
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1:k, z
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For the weights, we have the following
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(i)
v , ν

(i)
v , α)

]
[
q(x

(i)
k , z

(i)
k , π
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Choosing the importance density to be the prior PDF of the unknown parameters
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we obtain
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Chapter 7

ESTIMATING TIME-VARYING GENE REGULATORY NETWORKS

7.1 Introduction

Gene regulatory networks (GRNs) are complex systems consisting of genes and a

toolkit of molecular elements responsible for coordinating the spatiotemporal alloca-

tion of gene expression in every cell of the body. They are involved in the execution

of essential biological processes, such as development, metabolism, and responses to

environmental signals. One of their key characteristics is dynamicity. The regulatory

interactions constituting these networks are not static; rather, they evolve, giving

rise to time-dependent GRN architectures. These temporal alterations in regulatory

structures have consequences for the biological processes which are encoded by GRNs

across both short and long time scales and can affect all major biological processes,

including development, disease, and phenotypic evolution. GRNs also exhibit a com-

plex hierarchical architecture comprised of interlinked subunits called ”subcircuits.”

Ranging from two to eight genes, these subcircuits consist of specific regulatory inter-

actions that execute specific biological functions Peter and Davidson (2011). Subcir-

cuits thus intimately link structure and function GRNs Hinman and Cheatle Jarvela

(2014). Research shows that these subcircuits are evolutionarily conserved across

Metazoa, reinforcing their critical role Peter and Davidson (2015). Various subcir-

cuit types, such as positive-feedback loops, feed-forward connections, and reciprocal

repression mechanisms, have been identified Alon (2019). During development, differ-

ent subcircuits are involved in different temporal stages of the developmental process,

such as pattern formation, state stabilization, and cellular differentiation Peter and
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Davidson (2015). As development proceeds, the sets of active genes and their associ-

ated regulatory interactions change. In regard to disease, the rewiring of regulatory

networks can cause disruptions in essential biological functions, giving rise to dis-

eases such as cancer or disorders such as schizophrenia Potkin et al. (2010). These

rewirings can manifest at the level of subcircuits, which emphasizes their importance

in understanding disease mechanisms Saunders and McClay (2014). Such alterations

may involve transitions from one subcircuit type to another—for example, a shift

from a positive-feedback loop to a feed forward cascade Saunders and McClay (2014).

Similarly, evolutionary changes in GRN configurations contribute to the emergence of

novel phenotypes within populations Ha et al. (2022). Identifying these shifts in GRN

interactions, especially within subcircuits, is thus an imperative task for understand-

ing essential biological processes. This is fundamentally a change point detection

problem.

To this extent, state-space models provide a mathematical framework that cap-

tures the dynamical behavior of GRNs, including their subcircuits, over time. GRN

estimation using a state-space approach has been extensively studied Amor et al.

(2019); Ancherbak et al. (2016a); Bugallo et al. (2015); Noor et al. (2012); Pirgazi and

Khanteymoori (2018). However, these approaches assume that the network structure

is static across all time. To this extent, several works have considered the problem

of estimating GRNs with time-varying structures using linear models. Specifically,

the authors in Pirgazi and Khanteymoori (2018); Xiong and Zhou (2013) use Kalman

filtering for inference by assuming a linear state-space model. In Dondelinger et al.

(2013), the network structure assumed to change slowly across time. However, envi-

ronmental stressors, disease, or mutations may substantially alter the network struc-

ture in a more abrupt manner. Furthermore, gene regulation is a nonlinear process

due to the feedback loops present in the architectures, threshold effects, and combina-
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torial binding of transcription factors on DNA. Linear models may therefore obscure

these phenomena. Alternatively, nonlinear system models based on Hill kinetics,

Michaelis-Menten kinetics, or the S-system are able to more accurately capture the

molecular mechanisms of gene regulation Elahi and Hasan (2018); Wang et al. (2007);

Youseph et al. (2015, 2019). Nonlinear Bayesian filtering inference methods, such as

extended Kalman filtering and particle filtering, were used with these nonlinear mod-

els Bugallo et al. (2015); Wang et al. (2009); Zhang et al. (2014). In Lee et al. (2013),

a nonlinear chemical kinetics model is considered, but the transition probabilities for

switching between various network structures (or modes) are assumed to be known,

which is usually not the case in practice.

Given the limitations of these works, we introduce a Bayesian hierarchical model

to account for sudden changes in the network architecture as well as unknown mea-

surement noise covariance. In our model, the regulatory network interactions are

encoded by kinetic order parameters, which we assume change at unknown times.

The parameters of the categorical distribution are learned using a Dirichlet distribu-

tion conjugate prior. The unknown measurement noise covariance is learned using an

Inverse-Wishart prior whose hyperparameters are sequentially updated. We employ

sequential Monte Carlo (SMC) to choose among the network configurations and infer

the model and trajectories of the states, which are the gene expression values. This

chapter is organized as follows. In Section 7.2, we introduce our nonlinear state space

model for time-varying GRNs and the hierarchical Bayesian model and algorithm that

we use for inference. We present simulations demonstrating the efficacy of Bayesian

hierarchical modeling in Section 7.3.
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7.2 Materials and Methods

7.2.1 Modeling Gene Regulatory Networks

Our model for the expression n = 1, . . . , N genes, xk, at discrete time k is

xk = ϕ(xk−1) +wk−1 ⇒ p(xk|xk−1) (7.1)

yk = xk + vk ⇒ p(yk|xk) (7.2)

where wk is the Gaussian process noise vector, vk is the Gaussian measurement noise

vector, yk is the vector of noisy measurements, and the state transition function ϕ(·)

has the following form

[ϕ(xk−1)]i = [ψ(xk−1)]i

( N∏
j=1
j ̸=i

aij bij(xk−1)

)
− vdi xi,k−1

[ψ(xk−1)]i =
1

vmax
i

(Kqii
ii + xqiii,k−1)

N∏
j=1
j ̸=i

(K
qij
ij + x

qij
j,k−1)

where

aij = [giigij, giihij, hiigij, hii, hij] (7.3)

bij(xk−1) = [xqiii,k−1x
qij
j,k−1, x

qii
i,k−1K

qij
ij , x

qij
j,k−1K

qii
ii , K

qii
ii K

qij
ij ]

T

The term vmaxi is the maximum expression rate of gene i, and hij and gij are the

kinetic order parameters that indicate the type of regulation. In particular, when

hij =1 and gij =1, i ̸= j, then there is no regulation from gene j to gene i. When

hij =0 and gij =1, then gene j activates gene i, whereas hij =1, gij =0 implies that

gene j inhibits gene i. The parameter Kij is the Michaelis-Menten constant associ-

ated with the regulation of gene i by gene j. In the context of gene regulation, the

Michaelis-Menten constant Kij accounts for the binding affinity between the product

of a gene j and the binding site of a target gene i. Large values of Kij indicate a low
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Parameters Description

xi,k

Kij

qij

vmax
i

vdi

hij, gij

wk

yi,k

vk

Expression level of Gene i at time step k

xk = [x1,k x2,k . . . xN,k]T

Michaelis-Menten constant associated with the regulation of 

Gene i by Gene j 

Hill coefficient

Maximum expression rate of the ith gene

Self-decay rate of protein or mRNA expressed by Gene i

Kinetic order parameters indicating regulation type

Modeling error random variable

Microarray measurement relating to the ith gene at time step k

yt = [y1,k x2,k . . . yN,k]T

Measurement noise

Table 7.1: GRN state-space model parameters

binding affinity and low values of Kij indicate a high binding affinity. The term vdi is

the self decay rate of mRNA expressed by gene i, and qij is the Hill coefficient. The

parameters Kii, qii, hii and gii specify autoregulatory interactions. These are summa-

rized in Table 8.1. The extension of the model in Equation (7.3) to the time-varying

case is done in a straightforward manner through the addition of a time index to the

kinetic order parameters gij,k and hij,k, which encode both the direction and type of

regulation. The effect of of dynamic changes in the kinetic order parameters in the

state transition function ϕ(xk−1) is given as follows:

aij,k = [gii,kgij,k, gii,khij,k, hii,kgij,k, hii,khij,k] (7.4)
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7.2.2 Bayesian Hierarchical Modeling

One of the primary advantages of hierarchical Bayesian modeling lies in its ability

to integrate prior domain knowledge about specific phenomena, including the dynamic

transitions between different subcircuit types within GRNs, aiming to capture their

dynamic behaviors and transitions between different types. Although we note that

this model can be generalized to any switching nonlinear system. As well, sequential

Monte Carlo (SMC) methods can be integrated into this framework, offering the

ability to handle non-linear and non-Gaussian processes, which are often the case in

biological systems. For these reasons, we employ Bayesian hierarchical modeling as a

robust framework for estimating the dynamics and transitions of subcircuits within

gene regulatory networks. This approach not only allows us to build upon existing

domain knowledge but also to develop models with the complexity necessary for

identifying temporal changes in the GRN interactions. In light of these capabilities,

we employ Bayesian hierarchical modeling specifically for estimating the types of

subcircuits and the gene expression trajectories {xk}Kk=1 in GRNs. The hierarchy

specific to our problem is given as follows:

xk|xk−1, sk ∼ Gsk(xk|xk−1), i = 1, ..., N (7.5)

yk|xk,Σv ∼ H(yk|xk,Σv) (7.6)

sk|sk−1, πm,k ∼ Cat(πm,k), m = 1, ...M (7.7)

πm,k|α ∼ Dir(α) (7.8)

Σv|Ψv, νv ∼ IW(Ψv, νv) (7.9)

where Σv is the measurement noise covariance, Ψv is the N × N prior scale matrix,

and νv is the prior degrees of freedom which is chosen to be N +2. Note that πm,k is

the probability of selecting model m at time k, and α is the concentration parameter
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for the Dirichlet distribution. We set α = 1. The distribution G(·) and the likelihood

H(·) are assumed to be Gaussian. The posterior density needed to estimate the

gene expression values xk and the indicators which select the network configuration,

{smk }Mm=1, is

p({xk}Kk=1, {sk}Kk=1,Σv, {πm,k}M,K
m=1,k=1|{yk}

K
k=1,Ψv, νv, α) (7.10)

∝ p({yk}Kk=1, {xk}Kk=1, {smk }
K,M
k=1,m=1,Σv|α,Ψv, νv) (7.11)

p(Σv|Ψv, νv)p({πm,k}Mm=1|α) (7.12)

=
K∏
k=1

p(yk|xk,Σv)
M∏
m=1

[
p(xk|xk−1, sk, {Σm

w }Mm=1)
1(sk=m)p(sk|sk−1, πm,k)1(sk=m)

]
(7.13)

p(Σv|Ψv, νv)p({πm,k}Mm |α). (7.14)

Available Parameters at Time (k − 1)

• Let ck−1 be the vector of size M containing the counts for all models s1:k−1 at

time (k − 1).

• Let sk−1 = m be the indicator for model m at time k − 1.

• Let Σv be the measurement noise covariance.

Available parameters at time k

• Let ck be the counts for all models at time k.

• Let sk = m be the indicator for model m at time k.

• Let Σv be the measurement noise covariance.

• Let πk be the vector of transition probabilities associated with each model at

time k.
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At time k, we draw a new model indicator sk from a Categorial distribution with

Dirichlet-distributed probabilities. The prior probability that model m is selected is

p(sk = k|sk−1) =
cm,k−1∑

m cm,k−1 + α
(7.15)

Sequential Monte Carlo

We develop a sequential Monte Carlo algorithm. At each time step, the joint posterior

PDF from which we aim to draw samples is

p(xk, sk, πm,k,Σv|yk,Ψv, νv, α) (7.16)

∝ p(yk|xk,Σv)p(xk|xk−1, sk)p(sk|sk−1, πm,k)p(Σv|Ψv, νv)p(πm,k|α) (7.17)

p(xk−1, sk−1, πm,k−1,Σv|yk−1,Ψv, νv, α) (7.18)

where p(xk|xk−1, sk) is given in Section 8.2.1 and p(xk−1, sk−1, πm,k−1,Σv|yk−1,Ψv, νv, α)

is the posterior from the previous time step. The algorithm proceeds by sampling a

model indicator from Q1 in Equation (7.19)

Q1(sk = m|s−k,xk,yk,Σvα) =
cm,k−1∑
m cm,k−1

G(xk|xk−1, sk)H(yk|xk,Σv) (7.19)

where πk is the vector of transition probabilities at time k for models m = 1, ...,M .

Then the measurement yk is computed using Equation (7.2). The measurement

noise covariance hyperparameters at time step k, which are Ψ
′

v and ν
′
v are computed

using Equation (7.21) and Equation (7.22) and a new measurement noise covariance

Σv is sampled from an inverse-Wishart with the updated hyperparameters.

Q2(Σv|yk,Ψv, νv) = IW(Ψ
′

v, ν
′

v) (7.20)

where the new hyperparameters Ψ
′

v and ν
′
v are incrementally updated at each time
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step as

Ψ
′

v = Ψv,prev + (xk − µv)(xk − µv)T (7.21)

ν
′

v = νv,prev + 1 (7.22)

where we have one observation at each time step and µv is assumed to be 0.

Next, we can compute the weights. We select the joint prior PDF as the proposal

distribution since the underlying noise in our model follows a Gaussian distribution.

Moreover, this approach is more computationally efficient. The joint prior PDF is

given as

q(x
(i)
k , s

(i)
k , π

(i)
m,k,Σ

(i)
v |x

(i)
k−1, s

(i
k−1,Σ

(i)
v ,Ψ

(i)
v , ν

(i)
v , α) (7.23)

= p(x
(i)
k |x

(i)
k−1, s

(i)
k )p(s

(i)
k |s

(i)
k−1, π

(i)
m,k)p(Σ

(i)
v |Ψ(i)

v , ν
(i)
v )p(π

(i)
m,k|α) (7.24)

The weights can then be computed as

w
(i)
k ∝ w

(i)
k−1p(yk|x

(i)
k ,Σ

(i)
v ) (7.25)

where the Gaussian likelihood is given as

p(yk|x
(i)
k ,Σ

(i)
v ) =

1

(2π)N/2
√
|Σ(i)

v |
exp

(
− 1

2
(yk − x

(i)
k )T (Σ(i)

v )−1(yk − x
(i)
k )

)
(7.26)

See Appendix A for the full derivation.

7.3 Results and Discussion

7.3.1 Simulation Settings

In this section, we apply our Bayesian learning approach to a gene regulatory

network (GRN) consisting of N = 5 genes. For each discrete time step k, one of the

m = 1, ...,M network configurations, which is indicated by sk, is chosen probabilisti-

cally from a Categorical distribution with Dirichlet-distributed probabilities. We also
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Algorithm 2 Sequential Monte Carlo for Subcircuit Detection

1: Initialization at t = 1

2: for i = 1, ..., N particles do

3: Sample x
(i)
1 ∼ p(x1)

4: Sample s
(i)
1 ∼ Cat(π1)

5: Sample Σ
(i)
v ∼ IW(Ψ(i)

v , ν
(i)
v )

6: end for

7: Sequential Updates for t ≥ 2

8: Sample a new cluster assignment s
(i)
k ∼ Q1

9: Sample x
(i)
k ∼ p(xk | x(i)

k−1, s
(i)
k )

10: Update measurement y
(i)
k ∼ p(yk | x

(i)
k ,Σ

(i)
v )

11: Update hyperparameters using Equation (6.26) and Equation (6.27) and sample

Σ
(i)
v ∼ IW(Ψ(i)

v , ν
(i)
v ) from Q2

12: Compute particle weights w
(i)
k using Section 8.2.4

13: Normalize weights w
(i)
k =

w
(i)
k∑Ns

i=1 w
(i)
k

14: Resample particles x
(i)
k , s

(i)
k ,Σ

(i)
v

learn the measurement noise covariance. Note that we do not explicitly estimate Σv,

but rather learn this information associated with each particle in order to estimate

the unknown state xk and the unknown network configuration indicator sk. The pa-

rameters for the state-space model in Equation (7.1) are given in Table . The kinetic

order parameters corresponding to each of the network configurations is given in Ta-

ble Table 7.5. We evaluate the efficacy of our algorithm across two different scenarios

which involve transitions between three network architectures. Each of the networks

is depicted in Figure 1. The networks consist of architectures of varying degrees of

complexity, the simplest one being a single-input module (SIM) and the more com-
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plex ones being a composition of various types of canonical subcircuits. SIMs consist

of a master regulator which regulates several genes and are present across a range

of systems. For example, Gcn4 is a transcriptional activator of several amino acid

biosynthesis genes in Saccharomyces cerevisiae, or yeast Mittal et al. (2017). In bac-

teria, LexA is a transcription factor responsible for repressing several genes involved

in DNA repair McKenzie et al. (2000). Under stressful conditions such as nutrient de-

privation, the network may switch to a state which requires the coordination between

several genes such as in the feed forward loop depicted in Figure 7.1b. For example,

when yeast are subject to osmotic stress, the high-osmolarity glycerol (HOG) path-

way is activated which involves the subsequent activation of several genes involved in

metabolism regulation, temporary arrest of cell cycle progression, and a milieu of pro-

cesses required for cellular adaptation in a feed forward architecture Nadal and Posas

(2022). Gene regulatory networks can often contain several different types of sub-

circuits/motifs. An example of such a complex subcircuit is depicted in Figure 7.1c.

It consists of several different architectures, including autoinhibitory interactions, in

which a gene product negatively regulates its own expression (genes X1 and X2), mu-

tual repression loops (genes X1 and X3), and feed forward architectures. These types

of complex architectures are found for example the hypothalamic-pituitary-adrenal

(HPA) axis, which is responsible for regulating the stress response in humans Tsi-

gos and Chrousos (2002). We have selected these specific network structures as they

showcase the adaptive capacities of our Bayesian learning approach in identifying

architectural changes between networks with varying degrees of complexity, ranging

from simple networks like the SIM or feed forward loops, to more intricate architec-

tures consisting of a composition between different subcircuit types. This highlights

the versatility of our model.

In the first scenario, we consider transitions between M = 3 models: a single-
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(a) A single-input module

(SIM) subcircuit. Gene X1

inhibits the expression of

genes X2, X3, X4, and X5.

(b) A feed forward loop

with an inhibitory interac-

tion. Gene X1 activates a

cascade of activating regu-

latory interactions prolifer-

ating throughout the net-

work. Gene X5 activates

gene X4, which in turn

inhibits the expression of

gene X5.

(c) A complex subcircuit

architecture consisting of

negative autoinhibitory in-

teractions on genes X1 and

X2. A feed forward loop

structure is also incorpo-

rated as X2 activates the

expression of X4, which ac-

tivates the expression of X3

and X2. Gene X5 activates

the expression of gene X1,

which inhibits the expres-

sion of X3. Gene X3 in-

hibits the expression of X1,

forming a mutually repres-

sive loop.

Figure 7.1: Visual depiction of each of the subcircuit models used in this work with

varying degrees of complexity.

input module in Figure 7.1a, a feedforward loop with an inhibitory interaction in

Figure 7.1b and the complex subcircuit in Figure 7.1c. We consider a time series
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consisting of K = 250 time steps. For each simulation, we assume that the process

and measurement noise are Gaussian as wk ∼ N (0,Σw) and vk ∼ N (0,Σv). We use

5,000 Monte Carlo runs and 1,000 particles. We set Σw = 3e−2IN where IN is the

N × N identity matrix. For time steps k = 1 : 65, the dynamics are described by

Figure 7.1a; for time steps k = 66 : 165, the dynamics are described by the model

in Figure 7.1b; and for time steps k = 166 : 250, the dynamics are described by

model Figure 7.1c. The prior scale matrix for the Inverse-Wishart is Ψv = 0.1IN and

the prior degrees of freedom is νv = N + 2. A comparison of our learning algorithm

to the standard particle filter (no learning) is shown in Figure 7.2. The true versus

estimated model is shown in Figure 7.3. Although our algorithm outperforms the

standard PF, there is still a delay in identifying the correct model as is shown in

the Figure 7.3. The averaged root mean square error (RMSE) values across all time

points for different measurement noise intensities are shown in Table 7.2. Overall,

the RMSE decreases as the measurement noise decreases.

In the second scenario, for time steps k = 1 : 65, the dynamics are described by

Figure 7.1b; for time steps k = 66 : 165, the dynamics are described by the model in

Figure 7.1a; and for time steps k = 166 : 250, the dynamics are described by model

Figure 7.1c. A comparison of our learning algorithm to the standard particle filter

(no learning) is shown in Figure 7.5. The standard particle filter assumes that the

dynamics are given by Figure 7.1c. As the figure shows, the standard PF can only

estimate the trajectory during the time segment where the true dynamics are given by

Figure 7.1c. The true versus estimated model is shown in Figure 7.7. Again, the algo-

rithm exhibits a delay in detecting the time changes. The averaged root mean square

error (RMSE) values across all time points for different measurement noise intensities

are shown in Table 7.3. As before, the RMSE decreased as the measurement noise

intensity decreased. This is also supported by the figures in Figure 7.6, Figure 7.7
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Figure 7.2: A comparison of our learning algorithm (blue) to the standard particle

(green) for Σw = 3e−2IN and Σv = 3e−3IN . The true trajectory is given by the red.

We used 1,000 particles, 5,000 Monte Carlo runs. For time steps k = 1 : 65, the

dynamics are described by Figure 7.1a; for time steps k = 66 : 165, the dynamics are

described by the model in Figure 7.1b; and for time steps k = 166 : 250, the dynamics

are described by model Figure 7.1c. The dynamics given by Figure 7.1a are assumed.

and Figure 7.8. As is shown, detection performance improves as the measurement

noise decreases.
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Table 7.2: Root mean-square error (RMSE) averaged across all time steps for mea-

surement noise covariance Σv = 3e−2IN , 3e−3IN , and 3e−5IN . The process noise co-

variance is Σw = 3e−2IN 1,000 particles and 5,000 Monte Carlo runs were used. For

time steps k = 1 : 65, the dynamics are described by Figure 7.1a; for time steps

k = 66 : 165, the dynamics are described by the model in Figure 7.1b; and for time

steps k = 166 : 250, the dynamics are described by model Figure 7.1c.

Gene Σv = 3e−2IN Σv = 3e−3IN Σv = 3e−5IN

X1 0.040 0.034 0.033

X2 0.017 0.016 0.013

X3 0.045 0.041 0.036

X4 0.021 0.019 0.010

X5 0.035 0.028 0.027

Table 7.3: Root mean-square error (RMSE) averaged across all time steps for mea-

surement noise covariance Σv = 3e−2IN , 3e−3IN , and 3e−5IN . The process noise co-

variance is Σw = 3e−2IN 1,000 particles and 5,000 Monte Carlo runs were used. For

time steps k = 1 : 65, the dynamics are described by Figure 7.1b; for time steps

k = 66 : 165, the dynamics are described by the model in Figure 7.1a; and for time

steps k = 166 : 250, the dynamics are described by model Figure 7.1c.

Gene Σv = 3e−2IN Σv = 3e−3IN Σv = 3e−5IN

X1 0.048 0.044 0.040

X2 0.042 0.041 0.038

X3 0.043 0.040 0.036

X4 0.045 0.042 0.041

X5 0.046 0.042 0.039
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Figure 7.3: The true (red) versus estimated (blue) model for Σw = 3e−2IN and

Σv = 3e−3IN . We used 1,000 particles and 5,000 Monte Carlo runs. For time steps

k = 1 : 65, the dynamics are described by Figure 7.1a; for time steps k = 66 : 165, the

dynamics are described by the model in Figure 7.1b; and for time steps k = 166 : 250,

the dynamics are described by model Figure 7.1c.

7.3.2 Tables
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Figure 7.4: The true (red) versus estimated (blue) model for Σw = 3e−2IN and

Σv = 3e−3IN using the standard particle filter (no learning). We used 1,000 particles

and 5,000 Monte Carlo runs. For time steps k = 1 : 65, the dynamics are described

by Figure 7.1a; for time steps k = 66 : 165, the dynamics are described by the model

in Figure 7.1b; and for time steps k = 166 : 250, the dynamics are described by model

Figure 7.1c.
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Figure 7.5: A comparison of our learning algorithm (blue) to the standard particle

(green) for Σw = 3e−2IN and Σv = 3e−3IN . The true trajectory is given by the red.

We used 1,000 particles and 5,000 Monte Carlo runs. For time steps k = 1 : 65, the

dynamics are described by Figure 7.1b; for time steps k = 66 : 165, the dynamics are

described by the model in Figure 7.1a; and for time steps k = 166 : 250, the dynamics

are described by model Figure 7.1c. The dynamics given by Figure 7.1c are assumed.
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Figure 7.6: The true (red) versus estimated (blue) model for Σw = 3e−2IN and

Σv = 3e−2IN . We used 1,000 particles and 5,000 Monte Carlo runs. For time steps

k = 1 : 65, the dynamics are described by Figure 7.1b; for time steps k = 66 : 165, the

dynamics are described by the model in Figure 7.1a; and for time steps k = 166 : 250,

the dynamics are described by model Figure 7.1c.

139



Figure 7.7: The true (red) versus estimated (blue) model for Σw = 3e−2IN and

Σv = 3e−3IN .We used 1,000 particles and 5,000 Monte Carlo runs. For time steps

k = 1 : 65, the dynamics are described by Figure 7.1b; for time steps k = 66 : 165, the

dynamics are described by the model in Figure 7.1a; and for time steps k = 166 : 250,

the dynamics are described by model Figure 7.1c.
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Figure 7.8: The true (red) versus estimated (blue) model for Σw = 3e−2IN and

Σv = 3e−5IN .We used 1,000 particles and 5,000 Monte Carlo runs. For time steps

k = 1 : 65, the dynamics are described by Figure 7.1b; for time steps k = 66 : 165, the

dynamics are described by the model in Figure 7.1a; and for time steps k = 166 : 250,

the dynamics are described by model Figure 7.1c.
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Table 7.4: Parameter Values for the Five-Gene Network in Figure 1.

GeneMM ConstantHill CoefficientMax Expression RateDeg. Rate
ID Kij qij Vmax Vd

X1

K11 = 1.0

K12 = 2.0

K13 = 4.0

K14 = 1.0

K15 = 1.0

1.0 14.0 0.50

X2

K21 = 1.0

K22 = 2.0

K23 = 4.0

K24 = 3.0

K25 = 1.0

1.0 3.0 0.40

X3

K31 = 1.0

K32 = 2.0

K33 = 4.0

K34 = 3.0

K35 = 1.0

1.0 4.0 0.10

X4

K41 = 1.0

K42 = 2.0

K43 = 4.0

K44 = 3.0

K45 = 1.0

1.0 6.0 0.50

X5

K51 = 1.0

K52 = 2.0

K53 = 1.0

K54 = 1.0

K55 = 3.0

1.0 11.0 0.80
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Table 7.5: Kinetic order parameters for each of the five models in Figure 1.

Gene Kinetic Order Parameters

ID m = 1 m = 2 m = 3

X1

g11 = 1, h11 = 1

g12 = 1, h12 = 1

g13 = 1, h13 = 1

g14 = 1, h14 = 1

g15 = 1, h15 = 1

g11 = 1, h11 = 1

g12 = 1, h12 = 0

g13 = 1, h13 = 1

g14 = 1, h14 = 1

g15 = 1, h15 = 1

g11 = 0, h11 = 1

g12 = 1, h12 = 0

g13 = 0, h13 = 1

g14 = 1, h14 = 0

g15 = 0, h15 = 1

X2

g21 = 0, h21 = 1

g22 = 1, h22 = 1

g23 = 1, h23 = 1

g24 = 1, h24 = 1

g25 = 1, h25 = 1

g21 = 1, h21 = 1

g22 = 1, h22 = 1

g23 = 1, h23 = 0

g24 = 1, h24 = 1

g25 = 1, h25 = 1

g21 = 1, h21 = 0

g22 = 0, h22 = 1

g23 = 1, h23 = 0

g24 = 0, h24 = 1

g25 = 1, h25 = 0

X3

g31 = 0, h31 = 1

g32 = 1, h32 = 1

g33 = 1, h33 = 1

g34 = 1, h34 = 1

g35 = 1, h35 = 1

g31 = 1, h31 = 1

g32 = 1, h32 = 1

g33 = 1, h33 = 1

g34 = 1, h34 = 0

g35 = 1, h35 = 1

g31 = 0, h31 = 1

g32 = 1, h32 = 0

g33 = 1, h33 = 0

g34 = 1, h34 = 0

g35 = 1, h35 = 1

X4

g41 = 0, h41 = 1

g42 = 1, h42 = 1

g43 = 1, h43 = 1

g44 = 1, h44 = 1

g45 = 1, h45 = 1

g41 = 1, h41 = 1

g42 = 1, h42 = 1

g43 = 1, h43 = 1

g44 = 1, h44 = 1

g45 = 1, h45 = 0

g41 = 1, h41 = 1

g42 = 0, h42 = 1

g43 = 1, h43 = 1

g44 = 1, h44 = 1

g45 = 1, h45 = 1
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Table 7.5 – continued from previous page

Gene Kinetic Order Parameters

ID m = 1 m = 2 m = 3

X5

g51 = 0, h51 = 1

g52 = 1, h52 = 1

g53 = 1, h53 = 1

g54 = 1, h54 = 1

g55 = 1, h55 = 1

g51 = 1, h51 = 0

g52 = 1, h52 = 1

g53 = 1, h53 = 1

g54 = 0, h54 = 1

g55 = 1, h55 = 1

g51 = 1, h51 = 1

g52 = 1, h52 = 1

g53 = 1, h53 = 1

g54 = 1, h54 = 1

g55 = 1, h55 = 1
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7.4 Particle Filter Derivation

Here, we derive the steps for the particle filter. At each time step, the joint

posterior PDF from which we aim to draw samples is

p(x
(i)
1:k, s

(i)
1:k,Σ

(i)
v ,π

(i)
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(i)
v , ν
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The importance weights are given by
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The numerator can be factored as
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where due to the Markov property and because π
(i)
m,k does not depend on its previous

values
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Next, we want to select the importance density so that if factorizes as
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For the weights, we have the following
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Choosing the importance density to be the prior PDF of the unknown parameters
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we obtain
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7.5 Conclusion

Overall, our algorithm can identify the correct model with a high degree of accu-

racy under varying measurement noise conditions. In general, the RMSE increases as

the measurement noise increases.
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Chapter 8

BAYESIAN LEARNING OF NONLINEAR GRNS WITH SWITCHING

ARCHITECTURES

8.1 Introduction

The previous chapter introduced a Bayesian hierarchical model for identifying

structural changes in gene regulatory networks (GRNs). However, the process noise

is assumed to be known and the measurement noise is assumed to be known and

constant as in Bugallo et al. (2015); Noor et al. (2012); Ancherbak et al. (2016b),

where particle filtering is used to infer the dynamic network. This may not capture

changes in the noise statistics that can arise when a change in the regulatory network

structure occurs. Given this limitation, we extend the work of the previous chapter

to account for changing noise statistics that arise when an architectural shift occurs.

We introduce a fully Bayesian hierarchical model to account for the following: 1)

sudden changes in the network architecture, 2) unknown process noise covariance

which may change along with the network structure, and 3) unknown measurement

noise covariance. Fully Bayesian hierarchical models have several advantages includ-

ing their ability to account for uncertainty at all levels, flexibility, incorporation of

prior information, and are less prone to overfitting. Furthermore, the use of conjugate

priors enables more tractable and efficient inference. In our model, the regulatory net-

work interactions are encoded by kinetic order parameters, which we assume change

at unknown times. The parameters of the categorical distribution are learned us-

ing a Dirichlet distribution conjugate prior. The unknown measurement and process

noise covariances are learned using Inverse-Wishart priors whose hyperparameters are
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sequentially updated. We employ sequential Monte Carlo (SMC) with local Gibbs

sampling to choose among the network configurations and infer the model and trajec-

tories of the states, which are the gene expression values. This paper is organized as

follows. In Section 2, we introduce our nonlinear state space model for time-varying

GRNs and the fully hierarchical Bayesian model and algorithm that we use for in-

ference. We present simulations demonstrating the efficacy of Bayesian hierarchical

modeling in Section 3.

8.2 Materials and Methods

8.2.1 Modeling Gene Regulatory Networks

In Vélez-Cruz et al. (2021), we developed a stochastic nonlinear GRN model to

capture the molecular mechanisms of gene regulation and account for inherent vari-

ability in biological processes. The model includes information on binding affinity,

expression and self-decay rates. It is based on Michaelis-Menten kinetics that de-

scribe different types of regulation processes between a gene and multiple other genes

(Youseph et al., 2015, 2019; Krishnan et al., 2020b). It also incorporates the Hill

coefficient that represents the effect of binding affinity between genes (Alon, 2019).

We represent the GRN model by a dynamics state space formulation for N genes Xi,

i=1, . . . , N as

xk = ϕ(xk−1) +wk−1 (8.1)

yk = xk + vk (8.2)

where xk= [x1,k . . . xN,k]
T , xi,k, i=1, . . . , N , is the expression level of Gene i at time

step k, yk= [y1,k . . . yN,k]
T , yi,k is the microarray measurement for Gene Xi, wk

is measurement noise, and vk is a random process used to represent modeling error

uncertainty. In Equation 8.1, the ith element of the N×1 transition vector ϕ(xk−1)
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is given by

[ϕ(xk−1)]i = [ρ(xk−1)]i − σ(xi,k−1) = [ψ(xk−1)]i

N∏
j=1
j ̸=i

aij bij(xk−1)− vdi xi,k−1 (8.3)

where the terms [ρ(xk−1)]i and σ(xi,k−1) denote production and degradation, respec-

tively, vdi is the self-decay rate of protein or mRNA expressed by Gene Xi,

[ψ(xk−1)]i =
vmax
i

(Kqii
ii + xqiii,k−1)

N∏
j=1
j ̸=i

(K
qij
ij + x

qij
j,k−1)

(8.4)

aij =

[
gii gij gii hij hii gij hii hij

]
(8.5)

bij(xk−1) =

[
xqiii,k−1 x

qij
j,k−1 xqiii,k−1K

qij
ij xq12j,k−1K

qii
ii Kqii

ii K
qij
ij

]T
, (8.6)

and vmax
i is the maximum expression rate of Gene Xi.

The terms hij and gij are the kinetic order parameters that indicate the type of

regulation. In particular, when hij =1 and gij =1, i ̸= j, then there is no regulation

from gene j to gene i. When hij =0 and gij =1, then gene j activates gene i, whereas

hij =1, gij =0 implies that gene j inhibits gene i. The parameter Kij is the Michaelis-

Menten constant associated with the regulation of gene i by gene j. In the context of

gene regulation, the Michaelis-Menten constant Kij accounts for the binding affinity

between the product of a gene j and the binding site of a target gene i. Large values

of Kij indicate a low binding affinity and low values of Kij indicate a high binding

affinity. The term vdi is the self decay rate of mRNA expressed by gene i, and qij

is the Hill coefficient. The parameters Kii, qii, hii and gii specify autoregulatory

interactions. These are summarized in Table 8.1.
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Parameters Description

xi,k

Kij

qij

vmax
i

vdi

hij, gij

wk

yi,k

vk

Expression level of Gene i at time step k

xk = [x1,k x2,k . . . xN,k]T

Michaelis-Menten constant associated with the regulation of 

Gene i by Gene j 

Hill coefficient

Maximum expression rate of the ith gene

Self-decay rate of protein or mRNA expressed by Gene i

Kinetic order parameters indicating regulation type

Modeling error random variable

Microarray measurement relating to the ith gene at time step k

yt = [y1,k x2,k . . . yN,k]T

Measurement noise

Table 8.1: GRN state-space model parameters

8.2.2 Formulation of Time-Varying GRN Model

We consider a TV GRN model where both the direction and type of regulation

vary with time. This time variation is reflected in the kinetic order parameters in

Equation 8.5.

aij,k = [gii,k gij,k gii,k hij,k hii,k gij,k hii,k hij,k] , (8.7)

and thus in the transition function ϕk(·) in Equations 8.1 and 8.2. With this TV

model, we can describe interactions between any number of genes and capture any

changes in the GRN configuration with varying degrees of complexity.

As a simple illustration, we consider the transition from time step k−1 to k of the
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simple GRN in Figure 8.1 to the one in Figure 8.2. In Figure 8.1, Genes X1 and X2

activate each other’s expression in a positive feedback loop at k−1. From Table 8.2,

activation of Gene X1 by Gene X2 is indicated by h12=0 and g12=1 and activation

of Gene X2 by Gene X1 is indicated by h21=0 and g21=1. Thus, the kinetic order

parameter vector at time step k−1 is given by

a12,k−1 = aX1←X2,k−1 = [g11,k−1 g12,k−1 g11,k−1 h12,k−1 h11,k−1 g12,k−1 h11,k−1 h12,k−1]

= [0 1 0 0 0 1 0 0] = aX2←X1,k−1 = a21,k−1 .

where notation X1←X2 denotes the interaction from Gene X2 to Gene X1. In Fig-

ure 8.2(b), the interaction from Gene X2 to Gene X1 switches from activation to

inhibitory at time k. Whereas a21,k=a21,k−1, since inhibition of Gene X1 by Gene X2

is indicated by h12=1 and g12=0, then

aX1←X2,k = [g11,k g12,k g11,k h12,k h11,k g12,k h11,k h12,k] = [0 0 0 1 0 0 0 1]

The effect of of dynamic changes in the kinetic order parameters in the state transition

function ϕ(xk−1) is given as follows:

aij,k = [gii,kgij,k, gii,khij,k, hii,kgij,k, hii,khij,k] (8.8)

Figure 8.1: Gene X1 and gene X2 mutually activate each other’s expression.
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Figure 8.2: Gene X1 activates the expression of gene X2 whereas gene X2 inhibits the

expression of gene X1

Parameter Parameter Regulation type

gij hij from Xj to Xi

1 1 no regulation

1 0 activation

0 1 inhibition

Table 8.2: GRN kinetic order parameters indicating type of regulation from Gene Xj

to Gene Xi, i= j; autoregulation is indicated by gii=hii=1.

8.2.3 Bayesian Learning for Tracking

In this paper, we propose a new method for estimating the TV gene expressions

under the realistic conditions of sudden changes in the GRN architecture and unknown

statistics in the state space formulation. In particular, we assume that the GRN

circuit features on developmental function can be selected fromM subcircuit models.

The mth model at time step k, denoted by the indicator sk=m, m=1, . . . ,M , is

associated with themth TV kinematic order parameter vector a
(m)
ij,k =aij,k in Equation

8.8. The state space formulation for estimating xk is now given by

xk = ϕ(xk−1, sk = m) +w
(m)
k−1 (8.9)

yk = xk + vk , (8.10)
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where the modeling error process w
(m)
k−1∼N (0,Σ

(m)
w ) for the mth model and the mea-

surement noise vk∼N (0,Σv) are both assumed zero-mean Gaussian with constant

but unknown covariance matrices Σ
(m)
w and Σv, respectively.

The new method, Bayesian Learning for Tracking or BLT, sequentially estimates

the gene expressions while learning the probability of selecting one of the M models

at each time step k as well as the unknown covariance matrices. From Equation 8.9,

the model indicator is drawn from a categorical distribution with parameter vector

πk= [π
(1)
k . . . π

(M)
k ]; specifically, sk | πk,M∼Cat(sk | πk,M), where π

(m)
k =Pr(sk =

m) is the probability of selecting the mth model at time k and π | α ∼ Dir(α)

is obtained from a Dirichlet distribution prior with concentration hyperparameter

α= [α1, . . . , αM ] (Sudderth, 2016). The prior probability that the existing model m

is selected at time step k is

p(sk = m |Sk−1, π(m)
k , αm) =

c
(m)
1:k−1

m∑
l=1

c
(l)
1:k−1 + αm

(8.11)

where Sk−1= {s1, . . . , sk−1} and c(m)
1:k−1 is the number of times the mth model was se-

lected up to the previous time step k−1. The covariance matrix Σ
(m)
w |Ψ(m)

w ∼IWD(Ψ(m)
w )

is modeled using an inverse Wishart distribution (IWD) prior with hyperparameter

Ψ(m)
w = {Λ(m)

w , ν
(m)
w }. Here, Λ(m)

w is the scale matrix and ν
(m)
w is the number of degrees

of freedom (Gelman et al., 1995b).
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The overall learning model is summarized by the following hierarchy

xk |xk−1, sk=m,Σ(m)
w ∼ N (· |xk−1, sk=m,Σ(m)

w )

yk |xk,Σv ∼ N (· |xk,Σv)

sk |Sk−1, π(m)
k , αm ∼ Cat(πk,M)

π
(m)
k |αm ∼ Dir(α)

Σ(m)
w |Ψ(m)

w ∼ IWD(Ψ(m)
w )

Σv |Ψv ∼ IWD(Ψv) .

Following a sequential Bayesian Monte Carlo approach, the model first predicts xk

using

p
(
xk |xk−1, sk=m,Sk−1, π(m)

k , αm,Σ
(m)
w ,Ψ(m)

w

)
∝

p(xk |xk−1, sk=m,Σ(m)
w ) p(sk=m |Sk−1, π(m)

k , αm) p(π
(m)
k |αm)(8.12)

p(Σ
(m)
w |Ψ(m)

w )

where p(xk |xk−1, sk=m,Σ
(m)
w ) is obtained from Equation 8.9, p(sk=m |Sk−1, π(m)

k , αm)

is the categorical distribution in Equation 8.11, p(π
(m)
k |αm) is the Dirichlet prior, and

p(Σ
(m)
w |Ψ(m)

w ) is the IWD prior. Before using measurement yk to update the state xk

at time step k, the noise covariance matrix Σv∼IWD(Ψv) is learned using an IWD

prior with hyperparameter Ψv = {Λv, νv}. This results in

p(yk |xk,Σv,Ψv) ∝ p(yk |xk,Σv) p(Σv |Ψv) (8.13)

where p(yk |xk,Σv) is given in Equation 8.10. and p(Σv |Ψv) is the IWD prior. Using

Equations 8.12 and 8.13, the joint posterior distribution at each time step k is given

155



by

p
(
xk, sk=m,π

(m)
k ,Σ(m)

w ,Σv |yk,Sk−1, αm,Ψ(m)
w ,Ψv

)
∝

p
(
xk |xk−1, sk=m,Sk−1, π(m)

k , αm,Σ
(m)
w ,Ψ(m)

w

)
p(yk |xk,Σv,Ψv)

p
(
xk−1, sk−1, π

sk−1

k−1 ,Σ
(sk−1)
w ,Σv |yk−1, αsk−1

,Ψ(sk−1)
w,prev,Ψv,prev

)
. (8.14)

The last distribution in Equation 8.14 is the posterior from the previous time step,

obtained using model sk−1, where Ψ(sk−1)
w,prev and Ψv,prev are the IWD hyperparameters

used at time step k−1.

Note that the derivation of the BLT is provided in Appendix A.

8.2.4 BLT Implementation using Particle Filtering and Local Gibbs Sampling

The dynamic state space model in Equations 8.9 and 8.4 is highly nonlinear, so we

implement the BLT using particle filtering (Arulampalam et al., 2002b). As Equa-

tion 8.12 is not explicitly known, the PF also estimates both the unknown TV model

indicator sk and unknown constant covariance matrix Σ
(sk)
w . However, the PF per-

forms poorly when used to estimate parameters that do not change with time (Chopin,

2002). One approach to improve the PF performance for constant parameters, MCMC

can be used together with a rejuvenation test based on the Kullback–Leibler diver-

gence measure (Lee and Chia, 2002; Li and Papandreou-Suppappola, 2006). For the

BLT, we instead use local Gibbs sampling (Gelfand et al., 1990; Gelman et al., 1995b)

at each time step k in order to sample from available multivariate conditional distri-

butions and sequentially update the constant IWD hyperparameters of the covariance

matrix.

The BLT implementation steps are summarized in Algorithm 3. The algorithm

uses the joint prior in Equation 8.12 as the PF proposal distribution and assumes

Ns state particles. At each time step and particle, we perform L Gibbs sampling

156



iterations. In what follows, x
(ℓ)
i,k denotes the ith particle, i=1, . . . , Ns, at the ℓth

iteration, ℓ=0, . . . L, at time step k; similarly, s
(ℓ)
i,k denotes the model indicator, π

(m,ℓ)
i,k

denotes the probability of the mth model, m=1, . . . ,M , c
(m, ℓ)
i,1:k−1 denotes the number

of times the mth model is selected up to time step k−1, and Σ
(m, ℓ)
w,i denotes the mth

modeling error covariance matrix. At ℓ=0, the iterations are initialized using the esti-

mates obtained from the previous time step, x
(0)
i,k =xi,k−1 and Σ

(m, 0)
w,i =Σ

(si,k−1)
w,i . At the

ℓth iteration, ℓ=1, . . . , L, the algorithm (i) samples probability π
(m,ℓ)
i,k , m=1, . . . ,M ,

from

π
(m,ℓ)
i,k |αm ∼ Dir

(
α1 + c

(1,ℓ−1)
i,1:k−1, . . . , αM + c

(M,ℓ−1)
i,1:k−1

)
(8.15)

(ii) uses π
(m,ℓ)
i,k and samples model indicator s

(ℓ)
i,k from

p
(
s
(ℓ)
i,k = m |S(ℓ−1)

i,k−1 , π
(m,ℓ)
i,k , x

(ℓ−1)
i,k , yk−1, Σ

(m, ℓ−1)
w,i ,Σv,prev

)
= p
(
s
(ℓ)
i,k =m |S(ℓ−1)

i,k−1 , π
(m,ℓ)
i,k ,

)
p
(
x
(ℓ−1)
i,k |xi,k−1, s(ℓ)i,k =m,Σ

(m, ℓ−1)
w,i ) p(yk−1 |x(ℓ−1)

i,k ,Σv,prev

)
(8.16)

where Σv,prev is the modeling error covariance from the previous time step.

(iii) samples state x
(ℓ)
i,k from p

(
x
(ℓ)
k,i |xi,k−1, s

(ℓ)
i,k =m,Σ

(m, ℓ−1)
w,i

)
in Equation 8.9.

(iv) samples Σ
(m, ℓ)
w,i from p

(
Σ

(m, ℓ)
w,i |x

(ℓ)
i,k, s

(ℓ)
i,k = m,Ψ

(m, ℓ)
w,i

)
=IWD(Ψ

(m, ℓ)
w,i ) using incre-

mentally

updated IWD parameter set Ψ
(m, ℓ)
w,i = {Λ(m, ℓ)

w,i , ν
(m, ℓ)
w,i }, where

Λ
(m, ℓ)
w,i = Λ

(m, ℓ−1)
w,i + (x

(ℓ)
i,k)(x

(ℓ)
i,k)

T , ν
(m, ℓ)
w,i = ν

(m, ℓ−1)
w,i + 1 . (8.17)

At the end of the L iterations, the predicted state particle is given by xi,k=x
(L)
i,k .

The corresponding weight is computed using

ωi,k ∝ ωi,k−1 p(yk |xi,k,Σi,v) (8.18)

where the Gaussian likelihood, using N measurements, is given as

p(yk |xi,k,Σv,i) =
1

(2π)N/2 |Σv,i|1/2
exp
(
− 1

2
(yk − xi,k)

T Σ−1v,i (yk − xi,k)
)
.

157



The covariance matrix Σv,i is estimated using the IWD hyperparameters that are

updated from Ψv,prev= {Λv,prev, νv,prev} using

Σv,i |yk,xi,k ∼ IWD(Λv,prev + (yk − xi,k)(yk − xi,k)
T , νv,prev + 1) . (8.19)

Algorithm 3 Sequential Monte Carlo with Local Gibbs Sampling for Subcircuit

Detection

1: Initialization at t = 1

2: for i = 1, ..., N particles do

3: Sample x
(i)
1 ∼ p(x1)

4: Sample s
(i)
1 ∼ Cat(π1)

5: Sample {Σm,(i)
w }Mm=1 ∼ IW({Ψm,(i)

w , ν
m,(i)
w }Mm=1)

6: Sample Σ
(i)
v ∼ IW(Ψ(i)

v , ν
(i)
v )

7: end for

8: Sequential Updates for t ≥ 2

9: for l = 1, ..., L Gibbs iterations do

10: Sample a new model indicator s
(i)
k ∼ Q1

11: Sample x
(i)
k ∼ p(xk | x(i)

k−1, s
(i)
k ,Σ

sk,(i)
w )

12: Sample Σ
sk,(i)
w ∼ Q2

13: end for

14: Update measurement y
(i)
k ∼ p(yk | x

(i)
k ,Σ

(i)
v )

15: Update hyperparameters and sample Σ
(i)
v ∼ IW(Ψ(i)

v , ν
(i)
v )

16: Compute particle weights w
(i)
k

17: Normalize weights w
(i)
k =

w
(i)
k∑Ns

i=1 w
(i)
k

18: Resample particles x
(i)
k , s

(i)
k ,Σ

sk,(i)
w ,Σ

(i)
v
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8.3 Results and Discussion

8.3.1 Simulation Settings

We demonstrate the efficacy of our proposed Bayesian learning approach using

N =5 genes that transition between multiple GRN configurations over time. We

consider M =5 subcircuits, of varying degrees of complexity, as shown in Figure 8.1.

Their configurations vary from a simple single-input module (SIM) configuration,

which regulates several genes and is present across a range of systems, to more complex

ones; these include compositions of different canonical subcircuits, such as feedforward

and mutual repression loops. Switching between these specific network structures

highlights the versatility of our model as it demonstrates the adaptive capacities of our

Bayesian learning approach in identifying architectural changes. The configurations

are described as follows.

M1 SIM subcircuit (Figure 8.1(a)): Gene X1 inhibits the expression of genes X2,

X3, X4, and X5.

M2 Subcircuit with feed forward loop and an inhibitory interaction ( Figure 8.1(b)):

Gene X1 activates a cascade of activating regulatory interactions proliferating

throughout the network; Gene X5 activates Gene X4, which in turn inhibits the

expression of Gene X5.

M3 Complex subcircuit with negative autoinhibitory interactions on genes X1 and

X2 and a feed forward loop (Figure 8.1(c)): X2 activates the expression of

X4, which then activates the expression of X3 and X2; Gene X5 activates the

expression of GeneX1, which inhibits the expression ofX3; and GeneX3 inhibits

the expression of X1, forming a mutually repressive loop.
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M4 Complex subcircuit (Figure 8.1(d)): Gene X1 is activated by genes X2 and X5;

when X3 is activated via an autoregulatory interaction, it inhibits Gene X1 and

activates genes X4 and X2; in turn, Gene X2 activates X1 and inhibits X5,

which activates the expression of X1.

M5 Complex subcircuit characterized by positive feedback loops (Figure 8.1(e)):

each gene activates its own expression; Genes X2 and X5 form a positive feed-

back loop; Genes X2 and X3 inhibit X4; Genes X1 and X3 activate X5.

All configurations use the same constant model parameters provided in Table 8.3.

The TV kinetic order parameters for each configuration are given in Table 8.4.

The BLT implementation using the PF and Gibbs sampling follows Algorithm 3.

In the simulations, the modeling error process and measurement noise process are

both assumed Gaussian with zero-mean and uncorrelated samples; their correspond-

ing unknown covariance matrices are Σ
(m)
w =varw,mIN and Σv =varvIN . Here, varw,m

and varv denote their respective variance values and IN is the N×N identity ma-

trix. At each time step k, k=1, . . . , K, our learning approach concurrently estimates

the unknown expression levels and the configuration model. We use the categorical

distribution over M values whose vector parameter is learned using the Dirichlet dis-

tribution conjugate prior with hyperparameter α; in the simulations, we use αm=1,

m=1, . . . ,M . We place IWD conjugate priors over the unknown covariance matrices

with initial hyperparamers {Ψ0, ν0}= {0.1IN , N+2}. We demonstrate the robustness

of our approach across different sequences of gene regulation configurations. Unless

otherwise specified, the simulations use 1,000 particles, 50,000 Monte Carlo runs and

10,000 Gibbs iterations.
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(a) A single-input module

(SIM) subcircuit. Gene X1

inhibits the expression of

genes X2, X3, X4, and X5.

(b) A feed forward loop

with an inhibitory interac-

tion.

(c) A complex subcircuit

architecture consisting of

negative autoinhibitory in-

teractions.

(d) A complex subcircuit

architecture.

(e) A complex subcircuit

architecture characterized

by positive feedback loops.

Each gene activates its own

expression. Genes X2 and

X5 form a positive feedback

loop. Genes X2 and X3 in-

hibit X4. Genes X1 and X3

activate X5.

Figure 8.1: Visual depiction of each of the subcircuit models used in this work with

varying degrees of complexity.
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Simulation Results

We consider three different simulation scenarios with a varying number of configura-

tion models during different time step segments, as summarized in Table ??. In the

table, Tl,m denotes the lth time segment during which the mth model is used. The

description of each model is provided in Section ??. We selected similar modeling

error and measurement noise variances as in (Noor et al., 2012). We compare the per-

formance of our proposed BLT approach with the PF that performs tracking without

any learning. The PF assumes that the GRN dynamics are only described by one

of the M models in each scenario and uses 0.00003 for both the modeling error and

measurement noise variances. These low variance values ensure improved estimation

performance for the PF if the model is known, even though the actual variances are

not learned.

Scenario 1: Three-model transition

The BLT considers an unknown number of TV transitions betweenM =3 models: M1

in Figure 8.1(a) during T1,1=1:65, M2 in Figure 8.1(b) during T2,2=66:165, and M3

in Figure 8.1(c) during T3,3=66 : 165. The PF assumes the M1 GRN configuration

over all time steps. We simulate five different measurement noise variance values,

varv = {2, 0.2, 0.03, 0.003, 0.00003}, and we use varw,1=0.00002, varw,2=0.0005 and

varw,3=0.00004 for the actual values of the modeling error variances. The resulting

root mean-square error (RMSE), averaged over all time steps, for estimating the gene

expression levels using the BLT is provided in Table 8.5. As expected, the RMSE

decreases as varv increases. Using varv =0.003, Figure 8.2 and Figure 8.3 further

demonstrate the performance of the proposed BLT approach. Figure 8.2 compares

the true expression levels of each of the 5 genes to those estimated by the BLT and PF

methods. As demonstrated, the PF performed well during the first time segment as
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it assumed the correct model M1. However, the estimation performance deteriorated

when the network architecture changed. In contrast, the BLT accurately estimated

the gene expressions by learning the model transition probabilities and unknown noise

variances. Figure 8.3 compares the actual model labels with those learned by the

BLT. Note that after only two initial incorrect estimates, the BLT learned the correct

model at each change in model transition. For the same modeling error variances,

Figure 8.4 compares the true and estimated model labels when the measurement

noise variance is varv =0.2. As it can be seen from Figure 8.4 and Figure 8.5, as the

noise in the measurements increases, the number of incorrect labels also increases. In

Figure 8.6 and Figure 8.7, we increased the modeling error variances to varw,1=0.02,

varw,2=0.004 and varw,3=0.05, and varw,1=0.2, varw,2=0.05 and varw,3=0.4 and

kept the measurement noise variance to varv =0.003. We observed that the model

estimation accuracy is more sensitive to increased modeling error variances.

Next, for time steps k = 1 : 65, the dynamics are described by model 2; for

time steps k = 66 : 165, the dynamics are described by model 1; and for time steps

k = 166 : 270, the dynamics are described by model 3. The tracking results for

Σv = 3e−2IN are shown in Figure 8.8. The true versus estimated model is shown in

Figure 8.9. Again, after a few initial incorrect estimates, the algorithm estimates the

true model at each of the change points. The RMSE across different measurement

noise intensity values is shown in Table 8.7. The RMSE across different modeling error

intensity values is shown in Table 8.8. Note that changing the time segments of the

different models produced similar RMSE results, thus demonstrating the robustness

of our Bayesian learning algorithm for the three-model case.
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Figure 8.2: Scenario 1: Comparison of true, PF estimated and BLT estimated expres-

sion level xi,k of Gene Xi, i=1, . . . , 5 using modeling error variances varw,1=0.00002,

varw,2=0.0005, varw,3=0.00004 and measurement noise variance varv =0.003.

Scenario 2: Transitions Among Four Models

Scenario 2: Four-model transition

In this scenario, the BLT considers transitions between M =4 models: M3 in

Figure 8.1(c) during T1,3=1 : 65, M2 in Figure 8.1(b) during T2,2=66 : 165, M1 in

Figure 8.1(c) during T3,1=166 : 265, and M4 in Figure 8.1(d) during T4,4=266 : 370.

The PF assumes that model M3 is used for all time steps. We simulate five different
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Figure 8.3: Comparison of true and BLT estimated labels of the configuration models

in Scenario 1.

Figure 8.4: Comparison of true and BLT estimated labels of the configuration models

in Scenario 1. The measurement noise intensity is 0.2.
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Figure 8.5: Comparison of true and BLT estimated labels of the configuration models

in Scenario 1. The measurement noise intensity is 2.0.

measurement noise variance values, varv = {2, 0.2, 0.03, 0.003, 0.00003}, and we use

varw,1=0.00002, varw,2=0.0005, varw,3=0.00004 and varw,4=0.0002 for the actual

values of the modeling error variances. The gene expression averaged RMSE using

the BLT are provided in Table 8.9 and Table 8.10. As expected, the RMSE increases

as varv increases.

A comparison of our learning algorithm to the standard PF (no learning) is shown

in Figure 8.10 for varv =0.003. The standard PF (no learning method) assumes that

the dynamics are only described by M3. As in scenario 1, the standard particle filter

(no learning) can only provide estimates of the gene expressions whose trajectories

are described byM3. until the network architecture switches. then it is no longer able

to estimate the trajectory. In contrast, the BLT is able to estimate the trajectory at

each of the change points. The true versus estimated model is shown in Figure 8.11,
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Figure 8.6: Comparison of true and BLT estimated labels of the configuration models

in Scenario 1. The process noise intensity for segment 1 is 0.02, for segment 2 is 0.004,

and for segment 3 is 0.05. The measurement noise intensity is 0.003.

which shows that the BLT effectively estimates the correct model. The RMSE across

different measurement noise intensity values is shown in Table 8.9. We also vary the

modeling error variance and the RMSE values are shown in Table 8.10. Figure 8.13

further demonstrates the performance of the proposed BLT approach under high

measurement noise conditions. Figure 8.14 demonstrates the BLT performance under

increased modeling error variance.

Scenario 3: Transitions Among Five Models

Scenario 3: Transitions Among Five Models

In this scenario, the BLT considers transitions between M =5 models: M3 in

Figure 8.1(c) during T1,5=1 : 65, M2 in Figure 8.1(b) during T2,3=66 : 165, M1
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Figure 8.7: Comparison of true and BLT estimated labels of the configuration models

in Scenario 1. The process noise intensity for segment 1 is 0.2, for segment 2 is 0.05,

and for segment 3 is 0.4. The measurement noise intensity is 0.003.

in Figure 8.1(c) during T3,1=166 : 265, M4 in Figure 8.1(d) during T4,4=266 :

360. and M5 in Figure 8.1(e) during T5,2=361 : 460. The time series consists of

K = 460 time steps. We simulate five different measurement noise variance val-

ues, varv = {2, 0.2, 0.03, 0.003, 0.00003}, For each simulation where the measurement

noise is varied, the true values of varw,1=0.00002, varw,2=0.0005, varw,3=0.00004 ,

varw,4=0.0002, varw,5=0.003.

Using varv =0.02, Figure 8.18 and Figure 8.19 further demonstrate the perfor-

mance of the proposed BLT approach. Figure 8.18 compares the true expression

levels of each of the 5 genes to those estimated by the BLT and PF methods. As

in the previous scenarios, the standard particle filter (no learning) is only able to

estimate the trajectory during the third segment where model M1 is assumed. Then
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Figure 8.8: A comparison of our learning algorithm (blue) to the standard particle

filter (green) for Σv = 3e−2IN . The true trajectory is given by the red. We used

1,000 particles, 5,000 Monte Carlo runs, and 10,000 Gibbs iterations. For time steps

k = 1 : 65, the dynamics are described by model 2; for time steps k = 66 : 165, the

dynamics are described by model 1; and for time steps k = 166 : 270, the dynamics

are described by model 3.

it is no longer able to estimate the trajectory. In contrast, the BLT method is able to

estimate the trajectory at each of the change points. Figure 8.19 compares the actual

model labels with those learned by the BLT. The RMSE across different measure-
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Figure 8.9: The true (red) versus estimated (blue) model for Σv = 3e−2IN . We used

1,000 particles, 5,000 Monte Carlo runs, and 10,000 Gibbs iterations. For time steps

k = 1 : 65, the dynamics are described by model 2; for time steps k = 66 : 165, the

dynamics are described by model 1; and for time steps k = 166 : 270, the dynamics

are described by model 3.

ment noise intensity values is shown in Table 8.11. The true versus estimated model

for different values of the measurement noise intensity is shown in Figure 8.20 and

Figure 8.21. The RMSE across different process noise intensity values is shown in

Table 8.12. The true versus estimated model for different values of the measurement
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Figure 8.10: Comparison of true, PF estimated and BLT estimated expression level

xi,k of Gene Xi, i=1, . . . , 5 in Scenario 2. The TV model configuration is provided

in Table 8.4.

noise intensity is shown in Figure 8.22 and Figure 8.23. Note that as in the previous

cases, the model estimation accuracy decreases as the measurement noise increases

to 0.2 and above. As well, the estimation accuracy decreases as the process noise

intensity increases.
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Figure 8.11: Comparison of true and BLT estimated labels of the configuration models

in Scenario 2.

8.4 Conclusion

In this work, we introduced a fully Bayesian hierarchical model for learning non-

linear gene regulatory networks with dynamically switching subcircuit architectures.

We showed that our algorithm, which employs sequential Monte Carlo (SMC) with

a local Gibbs step, effectively estimates the correct model corresponding to the sub-

circuit architecture as well as the unknown state under varying measurement and

process noise conditions with a high degree of accuracy, though with greater sensitiv-

ity to variations in the process noise. Through the use of conjugate priors, we have

formulated an analytically tractable inference scheme which effectively addresses the

challenges posed by the inherent complexities of the system. By learning the unknown
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Figure 8.12: Comparison of true and BLT estimated labels of the configuration models

in Scenario 2. The measurement noise intensity is 0.2.

transition probabilities, which describe changes between different network configura-

tions and by learning the unknown measurement and process noise covariances using

Bayesian updating of the Inverse-Wishart distribution, we were able to account for

uncertainty at all levels of the hierarchy. Our approach has demonstrated robustness

and versatility in identifying changes in subcircuit architectures of varying degrees of

complexity, ranging from a simple single-input-module (SIM) to subcircuits consist-

ing of a composition of different types. To showcase this robustness, we applied our

algorithm to different scenarios where the architecture switches between three, four,

and five types.

It is worth noting that the methodology developed in this work is not confined to

the analysis of gene regulatory networks but can also be generalized to other domains
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Figure 8.13: Comparison of true and BLT estimated labels of the configuration models

in Scenario 2. The measurement noise intensity is 2.0.

which involve switching dynamics in nonlinear systems. For example, our methodol-

ogy can be applied to change point detection problems in financial markets, where a

sudden shift in the market dynamics could be caused by changes in nonlinear interac-

tions between different economic factors. Future research will focus on extending our

methodology to larger systems as well as applying it to a broader range of problems

in nonlinear system analysis.

8.4.1 Tables
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Figure 8.14: Comparison of true and BLT estimated labels of the configuration models

in Scenario 1. The process noise intensity for segment 1 is 0.02, for segment 2 is 0.004,

for segment 3 is 0.05, and for segment 4 is 0.002. The measurement noise intensity is

0.003.
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Figure 8.15: Comparison of true and BLT estimated labels of the configuration models

in Scenario 1. The process noise intensity for segment 1 is 0.2, for segment 2 is 0.05,

for segment 3 is 0.4, and for segment 4 is 0.02. The measurement noise intensity is

0.003.
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Figure 8.16: A comparison of our learning algorithm (blue) to the standard particle

(green) for Σv = 3e−5IN . The true trajectory is given by the red. We used 1,000

particles, 5,000 Monte Carlo runs, and 10,000 Gibbs iterations. For time steps k = 1 :

65, the dynamics are described by model 4; for time steps k = 66 : 165, the dynamics

are described by model 1; for time steps k = 166 : 265, the dynamics are described

by model 3; and for k = 265 : 370, the dynamics are described by model 2.
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Figure 8.17: The true (red) versus estimated (blue) model for Σv = 3e−5IN . We used

1,000 particles, 5,000 Monte Carlo runs, and 10,000 Gibbs iterations. For time steps

k = 1 : 65, the dynamics are described by model 4; for time steps k = 66 : 165, the

dynamics are described by model 1; for time steps k = 166 : 265, the dynamics are

described by model 3; and for k = 265 : 370, the dynamics are described by model 2.
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Figure 8.18: Comparison of true, PF estimated and BLT estimated expression level

xi,k of Gene Xi, i=1, . . . , 5 in Scenario 3. The TV model configuration is provided

in Table ??.
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Figure 8.19: Comparison of true and BLT estimated labels of the configuration models

in Scenario 3.

Figure 8.20: Comparison of true and BLT estimated labels of the configuration models

in Scenario 3. The measurement noise intensity is 0.2
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Figure 8.21: Comparison of true and BLT estimated labels of the configuration models

in Scenario 3. The measurement noise intensity is 2.0
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Figure 8.22: Comparison of true and BLT estimated labels of the configuration models

in Scenario 1. The process noise intensity for segment 1 is 0.02, for segment 2 is

0.004, for segment 3 is 0.05, for segment 4 is 0.002, and for segment 5 is 0.03. The

measurement noise intensity is 0.03.
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Figure 8.23: Comparison of true and BLT estimated labels of the configuration models

in Scenario 1. The process noise intensity for segment 1 is 0.2, for segment 2 is 0.05,

for segment 3 is 0.4, for segment 4 is 0.02, and for segment 5 is 0.3. The measurement

noise intensity is 0.03.
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Table 8.3: Parameter Values for the Five-Gene Network in Figure 1.

Gene MM Constant Hill Coefficient Max. Expression Rate Deg. Rate
ID Kij qij Vmax Vd

X1

K11 = 1.0

K12 = 2.0

K13 = 4.0

K14 = 1.0

K15 = 1.0

1.0 14.0 0.50

X2

K21 = 1.0

K22 = 2.0

K23 = 4.0

K24 = 3.0

K25 = 1.0

1.0 3.0 0.40

X3

K31 = 1.0

K32 = 2.0

K33 = 4.0

K34 = 3.0

K35 = 1.0

1.0 4.0 0.10

X4

K41 = 1.0

K42 = 2.0

K43 = 4.0

K44 = 3.0

K45 = 1.0

1.0 6.0 0.50

X5

K51 = 1.0

K52 = 2.0

K53 = 1.0

K54 = 1.0

K55 = 3.0

1.0 11.0 0.80
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Table 8.4: Kinetic order parameters for each of the five models in Figure 1.

Gene Kinetic Order Parameters

ID m = 1 m = 2 m = 3 m = 4 m = 5

X1

g11 = 1, h11 = 1

g12 = 1, h12 = 1

g13 = 1, h13 = 1

g14 = 1, h14 = 1

g15 = 1, h15 = 1

g11 = 1, h11 = 1

g12 = 1, h12 = 0

g13 = 1, h13 = 1

g14 = 1, h14 = 1

g15 = 1, h15 = 1

g11 = 0, h11 = 1

g12 = 1, h12 = 0

g13 = 0, h13 = 1

g14 = 1, h14 = 0

g15 = 0, h15 = 1

g11 = 1, h11 = 1

g12 = 1, h12 = 0

g13 = 0, h13 = 1

g14 = 1, h14 = 1

g15 = 1, h15 = 0

g11 = 1, h11 = 0

g12 = 1, h12 = 1

g13 = 1, h13 = 1

g14 = 1, h14 = 1

g15 = 1, h15 = 1

X2

g21 = 0, h21 = 1

g22 = 1, h22 = 1

g23 = 1, h23 = 1

g24 = 1, h24 = 1

g25 = 1, h25 = 1

g21 = 1, h21 = 1

g22 = 1, h22 = 1

g23 = 1, h23 = 0

g24 = 1, h24 = 1

g25 = 1, h25 = 1

g21 = 1, h21 = 0

g22 = 0, h22 = 1

g23 = 1, h23 = 0

g24 = 0, h24 = 1

g25 = 1, h25 = 0

g21 = 1, h21 = 1

g22 = 1, h22 = 1

g23 = 1, h23 = 0

g24 = 1, h24 = 1

g25 = 1, h25 = 1

g21 = 1, h21 = 1

g22 = 1, h22 = 0

g23 = 1, h23 = 1

g24 = 1, h24 = 1

g25 = 1, h25 = 1

X3

g31 = 0, h31 = 1

g32 = 1, h32 = 1

g33 = 1, h33 = 1

g34 = 1, h34 = 1

g35 = 1, h35 = 1

g31 = 1, h31 = 1

g32 = 1, h32 = 1

g33 = 1, h33 = 1

g34 = 1, h34 = 0

g35 = 1, h35 = 1

g31 = 0, h31 = 1

g32 = 1, h32 = 0

g33 = 1, h33 = 0

g34 = 1, h34 = 0

g35 = 1, h35 = 1

g31 = 1, h31 = 1

g32 = 1, h32 = 1

g33 = 1, h33 = 0

g34 = 1, h34 = 1

g35 = 1, h35 = 1

g31 = 1, h31 = 1

g32 = 0, h32 = 1

g33 = 1, h33 = 0

g34 = 1, h34 = 0

g35 = 1, h35 = 1

X4

g41 = 0, h41 = 1

g42 = 1, h42 = 1

g43 = 1, h43 = 1

g44 = 1, h44 = 1

g45 = 1, h45 = 1

g41 = 1, h41 = 1

g42 = 1, h42 = 1

g43 = 1, h43 = 1

g44 = 1, h44 = 1

g45 = 1, h45 = 0

g41 = 1, h41 = 1

g42 = 0, h42 = 1

g43 = 1, h43 = 1

g44 = 1, h44 = 1

g45 = 1, h45 = 1

g41 = 1, h41 = 1

g42 = 1, h42 = 1

g43 = 1, h43 = 0

g44 = 1, h44 = 1

g45 = 1, h45 = 1

g41 = 1, h41 = 1

g42 = 0, h42 = 1

g43 = 0, h43 = 1

g44 = 1, h44 = 0

g45 = 1, h45 = 1

X5

g51 = 0, h51 = 1

g52 = 1, h52 = 1

g53 = 1, h53 = 1

g54 = 1, h54 = 1

g55 = 1, h55 = 1

g51 = 1, h51 = 0

g52 = 1, h52 = 1

g53 = 1, h53 = 1

g54 = 0, h54 = 1

g55 = 1, h55 = 1

g51 = 1, h51 = 1

g52 = 1, h52 = 1

g53 = 1, h53 = 1

g54 = 1, h54 = 1

g55 = 1, h55 = 1

g51 = 1, h51 = 1

g52 = 0, h52 = 1

g53 = 1, h53 = 0

g54 = 1, h54 = 1

g55 = 1, h55 = 1

g51 = 1, h51 = 0

g52 = 1, h52 = 0

g53 = 1, h53 = 0

g54 = 1, h54 = 0

g55 = 1, h55 = 0
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Table 8.5: Averaged RMSE for varying measurement noise intensities. For time steps

k = 1 : 65, the dynamics are described by model 1; for time steps k = 66 : 165, the

dynamics are described by model 2; and for time steps k = 166 : 270, the dynamics

are described by model 3. We use 1,000 particles, 5,000 Monte Carlo runs and 10,000

Gibbs iterations were used.

Gene 2.0 0.2 3e−2 3e−3 3e−5

X1 0.065 0.041 0.017 0.017 0.018

X2 0.069 0.042 0.018 0.017 0.019

X3 0.071 0.051 0.019 0.019 0.018

X4 0.070 0.037 0.019 0.018 0.019

X5 0.071 0.043 0.021 0.018 0.018

Table 8.6: Averaged RMSE for varying process noise intensities. For time steps

k = 1 : 65, the dynamics are described by model 1; for time steps k = 66 : 165, the

dynamics are described by model 2; and for time steps k = 166 : 270, the dynamics

are described by model 3. We use 1,000 particles, 5,000 Monte Carlo runs and 10,000

Gibbs iterations were used.

Gene

Segment 1: 2e−1

Segment 2: 5e−2

Segment 3: 4e−1

Segment 1: 2e−2

Segment 2: 4e−3

Segment 3: 5e−2

Segment 1: 2e−5

Segment 2: 5e−4

Segment 3: 4e−5

X1 0.073 0.054 0.017

X2 0.074 0.055 0.017

X3 0.078 0.057 0.019

X4 0.070 0.053 0.018

X5 0.075 0.059 0.018
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Table 8.7: Averaged RMSE for varying measurement noise intensities. For time steps

k = 1 : 65, the dynamics are described by model 2; for time steps k = 66 : 165, the

dynamics are described by model 1; and for time steps k = 166 : 270, the dynamics

are described by model 3. We use 1,000 particles, 5,000 Monte Carlo runs and 10,000

Gibbs iterations were used.

Gene 2.0 0.2 3e−2 3e−3 3e−5

X1 0.061 0.049 0.016 0.015 0.014

X2 0.060 0.048 0.014 0.014 0.015

X3 0.067 0.049 0.015 0.017 0.017

X4 0.054 0.046 0.014 0.016 0.014

X5 0.063 0.051 0.016 0.016 0.017

Table 8.8: Averaged RMSE for varying process noise intensities. For time steps

k = 1 : 65, the dynamics are described by model 2; for time steps k = 66 : 165, the

dynamics are described by model 1; and for time steps k = 166 : 270, the dynamics

are described by model 3. We use 1,000 particles, 5,000 Monte Carlo runs and 10,000

Gibbs iterations were used.

Gene

Segment 1: 2e−1

Segment 2: 5e−2

Segment 3: 4e−1

Segment 1: 2e−2

Segment 2: 4e−3

Segment 3: 5e−2

Segment 1: 2e−5

Segment 2: 5e−4

Segment 3: 4e−5

X1 0.078 0.067 0.015

X2 0.080 0.065 0.014

X3 0.082 0.067 0.017

X4 0.080 0.066 0.016

X5 0.092 0.077 0.016
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Table 8.9: Root mean-square error (RMSE) averaged across all time steps for varying

measurement noise intensities. For time steps k = 1 : 65, the dynamics are described

by model 3; for time steps k = 66 : 165, the dynamics are described by model

2; for time steps k = 166 : 265, the dynamics are described by model 1; and for

k = 265 : 370, the dynamics are described by model 4. We use 1,000 particles, 5,000

Monte Carlo runs and 10,000 Gibbs iterations were used.

Gene 2.0 0.2 3e−2 3e−3 3e−5

X1 0.070 0.054 0.018 0.018 0.016

X2 0.066 0.053 0.019 0.019 0.018

X3 0.078 0.055 0.021 0.019 0.018

X4 0.071 0.055 0.018 0.019 0.018

X5 0.070 0.058 0.020 0.021 0.020
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Table 8.10: Root mean-square error (RMSE) averaged across all time steps for varying

process noise intensities. For time steps k = 1 : 65, the dynamics are described by

model 3; for time steps k = 66 : 165, the dynamics are described by model 2; for time

steps k = 166 : 265, the dynamics are described by model 1; and for k = 265 : 370,

the dynamics are described by model 4. We use 1,000 particles, 5,000 Monte Carlo

runs and 10,000 Gibbs iterations were used.

Gene

Segment 1: 2e−1

Segment 2: 5e−2

Segment 3: 4e−1

Segment 4: 2e−2

Segment 1: 2e−2

Segment 2: 4e−3

Segment 3: 5e−2

Segment 4: 2e−3

Segment 1: 2e−5

Segment 2: 5e−4

Segment 3: 4e−5

Segment 4: 2e−4

X1 0.076 0.070 0.019

X2 0.078 0.062 0.020

X3 0.083 0.080 0.022

X4 0.084 0.070 0.019

X5 0.081 0.072 0.022
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Table 8.11: Root mean-square error (RMSE) averaged across all time steps for varying

measurement noise intensities. For time steps k = 1 : 65, the dynamics are described

by model 5; for time steps k = 66 : 165, the dynamics are described by model 3; for

time steps k = 166 : 265, the dynamics are described by model 1; for k = 265 : 360,

the dynamics are described by model 4; and for k = 360 : 460 the dynamics are

described by model 5. We use 1,000 particles, 5,000 Monte Carlo runs and 10,000

Gibbs iterations were used.

Gene 2.0 0.2 3e−2 3e−3 3e−5

X1 0.078 0.053 0.018 0.019 0.017

X2 0.074 0.046 0.019 0.018 0.018

X3 0.075 0.050 0.020 0.018 0.018

X4 0.078 0.046 0.018 0.017 0.016

X5 0.080 0.049 0.018 0.018 0.018
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Table 8.12: Root mean-square error (RMSE) averaged across all time steps for varying

process noise intensities. For time steps k = 1 : 65, the dynamics are described by

model 5; for time steps k = 66 : 165, the dynamics are described by model 3; for

time steps k = 166 : 265, the dynamics are described by model 1; for k = 265 : 370,

the dynamics are described by model 4; and for k = 371 : 460, the dynamics are

described by model 2. We use 1,000 particles, 5,000 Monte Carlo runs and 10,000

Gibbs iterations were used.

Gene

Segment 1: 2e−1

Segment 2: 5e−2

Segment 3: 4e−1

Segment 4: 2e−2

Segment 5: 3e−1

Segment 1: 2e−2

Segment 2: 4e−3

Segment 3: 5e−2

Segment 4: 2e−3

Segment 5: 3e−2

Segment 1: 2e−5

Segment 2: 5e−4

Segment 3: 4e−5

Segment 4: 2e−4

Segment 5: 3e−3

X1 0.071 0.063 0.019

X2 0.074 0.063 0.018

X3 0.081 0.073 0.018

X4 0.085 0.061 0.017

X5 0.080 0.064 0.018
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8.5 Particle Filter Derivation

Here, we derive the steps for the particle filter. At each time step, the joint

posterior PDF from which we aim to draw samples is

p(x
(i)
1:k, s

(i)
1:k,Σ

m,(i)
w ,Σ(i)

v ,π
(i)
m,1:k|y1:k,Ψ
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The importance weights are given by

w
(i)
k =

p(x
(i)
1:k, s

(i)
1:k,Σ

m,(i)
w ,Σ

(i)
v ,π

(i)
m,1:k|y1:k,Ψ

m,(i)
w ,Ψ(i)

v , ν
m,(i)
w , ν

(i)
v , α)

q(x
(i)
1:k, s

(i)
1:k,Σ

m,(i)
w ,Σ

(i)
v ,π

(i)
m,1:k|y1:k,Ψ

m,(i)
w ,Ψ(i)

v , ν
m,(i)
w , ν

(i)
v , α)

(8.21)

192



The numerator can be factored as
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Next, we want to select the importance density so that if factorizes as
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Choosing the importance density to be the prior PDF of the unknown parameters
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Chapter 9

CONCLUSION AND FUTURE DIRECTIONS

This dissertation has centered on the development of Bayesian learning methods for

identifying different types of variation in gene regulatory networks (GRNs). We in-

troduced a new nonlinear multivariate state-space model for modeling GRNs. We

also develop several stochastic models of gene regulation aimed at more precisely

capturing the complexity of GRNs. We used these models in Chapter 6 to estimate

unknown gene expression trajectories as well as the unknown noise model in GRNs

under switching noise dynamics. Next, we considered the problem of learning vari-

ation in time-varying GRN architectures and developed a sequential Monte Carlo

(SMC) algorithm for estimating the unknown gene expression trajectories as well as

indicator corresponding to each GRN architecture. Finally, we extended this Bayesian

model to a fully Bayesian hierarchical model, which incorporates uncertainty in both

the process and measurement noise covariance matrices. Since the unknown state de-

pends on the unknown process noise covariance, we implemented a local Gibbs step

in our SMC algorithm which showed improved detection accuracy.

It is worth noting that the methodology developed in this work is not confined to

the analysis of gene regulatory networks but can also be generalized to other domains

which involve switching dynamics in nonlinear systems. For example, our methodol-

ogy can be applied to change point detection problems in financial markets, where a

sudden shift in the market dynamics could be caused by changes in nonlinear interac-

tions between different economic factors. Future research will focus on extending our

methodology to larger systems as well as applying it to a broader range of problems

in nonlinear systems analysis.
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Another area for future research centers on the exploration of Bayesian non-

parametric methods. Variation in biological and technical factors can give rise to

multimodal measurement noise in microarray data. For example, differences in the

quality of samples, data processing effects, and different experimental protocols can

all contribute to the presence of multimodality in microarray measurement noise.

This presents two main challenges in estimating gene regulatory networks from mi-

croarray data. The first is that the number of modes in the measurement noise

distribution is unknown a priori. Second, the measurement noise can vary with time,

particularly if the data are collected under different experimental conditions or for

a system exhibiting biological stochasticity, such as a change in the developmental

process. This facilitates the development of flexible statistical methods aimed at es-

timating gene regulatory networks in the presence of multimodal and time-varying

measurement noise. Thus, an avenue for further development is to explore the use

of time-dependent Dirichlet processes to estimate the gene expression state and the

time-varying measurement noise density in gene regulatory networks.
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