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ABSTRACT

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to

reward available from the environment but sometimes learning in a complex domain

requires wisdom which comes from a wide range of experience. In behavior based

robotics, it is observed that a complex behavior can be described by a combination

of simpler behaviors. It is tempting to apply similar idea such that simpler behaviors

can be combined in a meaningful way to tailor the complex combination. Such an

approach would enable faster learning and modular design of behaviors. Complex

behaviors can be combined with other behaviors to create even more advanced be-

haviors resulting in a rich set of possibilities. Similar to RL, combined behavior can

keep evolving by interacting with the environment. The requirement of this method

is to specify a reasonable set of simple behaviors.

In this research, I present an algorithm that aims at combining behavior such that

the resulting behavior has characteristics of each individual behavior. This approach

has been inspired by behavior based robotics, such as the subsumption architecture

and motor schema-based design. The combination algorithm outputs n weights to

combine behaviors linearly. The weights are state dependent and change dynamically

at every step in an episode. This idea is tested on discrete and continuous environ-

ments like OpenAI’s “Lunar Lander” and “Biped Walker”. Results are compared

with related domains like Multi-objective RL, Hierarchical RL, Transfer learning and

basic RL. It is observed that combination of behaviors is novel way of learning which

helps the agent achieve required characteristics. A combination is learned for a given

state and so agent is able to learn faster in an efficient manner compared to other sim-

ilar approaches. Agent beautifully demonstrates characteristics of multiple behaviors

which helps the agent to learn and adapt to the environment. Future directions are

also suggested as possible extensions to this research.
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Chapter 1

INTRODUCTION AND RELATED WORK

1.1 Introduction

Intelligent agents operating in the real-world are subject to various uncertain-

ties that are difficult to fully specify at the design time. As a result, we often need

these agents to learn from interacting with the environment. Significant contribu-

tions to Reinforcement Learning literature(RL) includes Q learning (Watkins (1989)),

SARSA, etc. These have contributed much to the research in the domain of learning

theory in Artificial Intelligence(AI) (Sutton and Barto (2018)).

Most of the RL algorithms are sample inefficient and fail to learn the complex task.

In real-world tasks, a physical robot must learn to adapt to a complex model of its

dynamics coupled with the environment. For example, for a biped humanoid robot

to learn, it must not only learn to control various joints but also model complex

interactions with the environment. As a result, even the best RL algorithms fail

to efficiently address this problem (Yu (2018)). However, a behavior in complex

domain may be considered as combination of multiple simple behaviors. A desired

behavior can be defined as the way in which an agent acts in response to a particular

situation or stimulus. For example, if the task is to travel from point A to point

B, the agent would have to walk towards the goal and avoid obstacles based on

the current environment setting. Even though it may be easy to specify individual

rewards for each of these behaviors separately, one of the challenges is that it is

difficult to combine these rewards in a meaningful way since RL takes a single reward.

Furthermore, even when such a combination is provided, using a single reward may
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be less informative and even misleading for learning (Watanabe and Sawa (2010)).

For example, if an agent walks close by an obstacle and is unable to balance and

falls down; it is unclear whether the negative reward should be attributed to walk or

obstacle avoidance behavior. In addition, using a single reward doesn’t facilitate the

interpretability for the agent’s behavior which is often needed for agents operating

with humans in the loop (Graves and Czarnecki (2000), Zhang et al. (2017)). An

architecture that learns and combines behaviors is desirable for interpretability since

it naturally supports reward attributability to behaviors.

Our work is inspired by behavior based robot learning. Subsumption Architecture

is a behavior based robotics architecture. It is proposed in contrast to traditional AI.

Subsumption is a bottom-up architecture that takes sensory information as input to

generate potential action in the environment. This is achieved by decomposing behav-

ior into sub-behaviors organized in a hierarchical structure. Each layer implements a

particular level of behavioral proficiency, and higher levels are able to subsume lower

levels in order to create the desired behavior. An example of subsumption architec-

ture is the Roomba vacuum cleaner robot. Here, the agent has 3 behaviors (High

level to low level):

1. Clean

2. Avoid obstacles

3. Wander around

Let’s say that the agent is wandering around. When the agent detects an obstacle,

it activates the avoiding obstacle behavior which then inhibits the wandering around

behavior. Similarly, when the agent detects dirt, the clean behavior is activated,

which then inhibits both the lower level behaviors.
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While subsumption architecture is interesting and inspirational, it is often acti-

vating a simple behavior at any point of time and it is difficult to achieve situations

where desired behavior must share characteristics of multiple simple behaviors at the

same time. We propose to adopt a schema based approach that combines behaviors.

This is called the schema based robotics approach as described by Balch and Arkin

(1998), Zhang and Parker (2013), Zhang and Parker (2010), Weitzenfeld et al. (1998)

and Graves and Czarnecki (2000). The problem of combining behavior is difficult

because at every step agent requires different characteristics borrowed from different

behaviors. When an obstacle is only partially blocking the path, we would like the

agent to figure out a way to dodge the obstacle while moving forward. In such cases,

we would like the agent to demonstrate characteristics from multiple behaviors to be

more efficient. Since the world around the agent is complex that requires interactions

between individual behaviors, a learning strategy is required which can efficiently

combine behaviors given the state of the agent. During training, agent needs to ex-

periment with different combinations in different states and learn to generalize which

combination is best suited in any state. We consider this as a RL problem where

the agent’s goal is to learn to combine in order to accomplish the task when simple

trained behaviors are available.

We find that combination of behaviors is a modular and efficient approach. Com-

pared to several baseline methods, our agent performs better. We have assigned

weight parameters to all the behaviors the agent has to learn. Eventually, the agent

learns to assign the appropriate values to the weights and acts such that desired be-

havior is achieved. We also observe the ratio of weights which changes depending

on the situation and that helps us interpret how the agent thinks. In addition to

this, behavior learned in one environment is modular since weights are frozen for in-

dividual behavior (Lu et al. (2021)) and can be easily transferred to another similar

3



environment. Moreover, We observe that combining behaviors learned in different

environments demonstrate efficient learning of characteristics of multiple behaviors.

One of the limitations of our approach is the assumption of prior knowledge about

which simple behavior may benefit the new task. When conflicting behaviors are in-

cluded, the learning system performed less desired. For example, if the agent is able

to learn walking forward behavior which is supposed to be combined with walking

backward, the combination fails to achieve characteristics of both in a resultant be-

havior.

As we proceed further, Related work puts together closely related areas which

is followed by a methodology section that describes the central idea of the thesis.

Implementation details, results, and analysis are elaborated in the next chapter (Ex-

periments, Results and Analysis) which is followed by Future work and Conclusion.

1.2 Related Work

Approaches that take advantage of prior knowledge for RL agents have been ex-

perimented in various AI settings. There has been a lot of contribution in the domain

of Hierarchical Reinforcement Learning, Multi-objective Reinforcement learning, en-

semble methods, multi-task learning, etc. Existing literature looks a lot like the core

idea we present but there are significant areas where we differ. We borrow ideas

from a wide range of literature but the end goal is to create a meaningful learning

algorithm that combines multiple behaviors using Deep Reinforcement Learning.

1.2.1 Hierarchical Reinforcement Learning

It is necessary to look at modular approaches like Hierarchical RL (HRL) which in-

clude Barto and Mahadevan (2003), Xiaoqin et al. (2009), Cai et al. (2013), Doroodgar

and Nejat (2010) and many others. HRL is a process of learning in a hierarchy such

4



that parents can invoke children as its action and the lowest level in the hierarchy is

responsible for taking actions for the agent in the environment. Hierarchical structure

makes it possible to divide the learning problem into smaller problems. These smaller

problems traverse down the hierarchy such that the lowest level is responsible for tak-

ing actions that lead to successfully solving the child problem. Learning to call child

problem and solving simpler problems one by one enables the agent to maximize its

rewards and reach the goal. For example, the bug algorithm in path planning whose

goal is to travel from point A to point B and avoid obstacles. This problem can be

divided into reach the goal and follow the boundary of obstacles subtasks. Initially,

the agent starts moving towards the goal and as soon as it encounters an obstacle,

it revolves around it once and when it figures out the closest point to the goal, it

again follows the boundary till it reaches the closest point identified and then starts

moving towards the goal again. So the root can call moving towards the goal subtask

and switch to boundary following subtask when an obstacle is encountered. In order

to achieve each subtask, a different subtask is called which takes care of necessary

actuation. As a result, using multiple subtasks agent is able to avoid obstacles and

reach the goal. Using such an approach has the following advantages:

• Sample Efficiency: As the complexity of the task increases, it takes more and

more time and data to learn. With HRL we can achieve better sample efficiency

by using prior knowledge of behavior hierarchy.

• Exploration: HRL presents an optimized way of exploration since the larger

subspace has been reduced to a few sub-tasks in the hierarchy.

• Reusability: As lower-level policies can be reused in different situations.

Next, we discuss the most relevant HRL work to ours:
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The MAXQ decomposition (Dietterich (1998)) is a combination of procedural

semantics (subroutine hierarchy) and declarative semantics (a representation of the

value function of a hierarchical policy). Authors motivate their Hierarchical Q learn-

ing algorithm by using a gridworld “Taxi” domain to showcase the results. As we

see in the figure 1.1, the root node calls a simpler task at a time. Now, the goal of

the subtree is to achieve the subtask and return the control back to the root note

to select another subtask. In order to achieve the subtask, at the lowest level agent

takes an action. As the agent acts, step by step subtasks are completed which help

the agent to achieve the end goal.

Figure 1.1: MaxQ Hierarchy (Dietterich (1998))
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For example, if the task is to pick up a passenger from location A and drop off at

location B, the learning strategy would call QGet which makes the call to QNavigate

in order to pick up and then control returns back to the root node where Qput is

called in order to drop off the passenger after necessary navigation steps. As a result

navigation sub-problem can be reused and Qget and Qput use it to formulate their

policies which helps the agent in the successful completion of the goal. This technique

improves exploration and it quickly learns from fewer trials.

In contrast to this method, we combine behaviors instead of just creating disjoint

behaviors in a hierarchy. One behavior can overlap with another and at a given

time step, we expect desired combination by learning weighted hierarchies. Further-

more, generalizing to continuous domain tasks is also difficult with this approach. In

addition to this, FeUdal Networks is also an well known HRL technique.

FeUdal Networks (Vezhnevets et al. (2017)) design a manager-worker architecture,

where the Manager operates at a lower temporal resolution and sets abstract goals

which are assigned to and enacted by the Worker. In this way, the manager is at a

higher level of hierarchy and the worker is at the lower level. This framework has the

following 2 modules:

• Manager: For a given input state representation, the manager computes a latent

state representation st and uses st to produce gt (goal vector).

• Worker: Worker produces an output action based on state, goal vector, and

external observation.

Whereas we know behaviors we generate and we have the ability to learn necessary

combinations to earn rewards from the environment. The FeUdal network generates

subgoals using a manager but doesn’t exactly know what subgoals it may generate.

Also, at a time worker aims to achieve a particular goal instead of a combination
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of goals; for example, achieving rewards for multiple behavioral goals (walking and

avoiding obstacles).

Fast reinforcement learning with generalized policy updates is another related

technique that deals with combining policies based on preferences.

Figure 1.2: Fast Reinforcement Learning With Generalized Policy Updates (Barreto
et al. (2020))

Fast reinforcement learning with generalized policy updates by Barreto et al.

(2020) aims at reusing already learned policies. The authors describe 2 processes:

Generalised Policy Evaluation (GPE) and Generalised policy improvement (GPI) in

this paper. As shown in the figure 1.2, the blue, orange, and yellow arrows denote

different policies learned by GPE. Once the agent has a number of policies, GPI

stitches together a new policy using existing policies such that at every state agent’s

preference is taken into account in order to select which policy best works for the

agent. For example, the agent is initially at home and it gives higher priority to the

commute time to the office than coffee or food. Therefore, it leaves for cafe A first,

and the policy in blue is selected. While having coffee at cafe A, the agent’s meeting
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is canceled and it can spend some time on getting good food before going to the office.

As these preference changes, the agent follows policy in orange instead of blue. In this

way policies are weighted by preferences and number of policies are reused such that

it can benefit the agent. This work looks like a special case of HRL option framework

(Randlov (1999)) as it uses preferences to tailor a new policy from existing policies.

On the other hand, we deal with combining behaviors. At a time instead of

just following one policy, multiple behaviors are combined to achieve the required

characteristics. During the process of combination, weights are learned to achieve the

desired behavior.

In addition to techniques described earlier, there many different strategies to

achieve HRL which includes option framework Randlov (1999), Option-Critic Ar-

chitecture Bacon et al. (2017), etc. Since most HRL approaches deal with dividing a

bigger problem into smaller problems arranged in a hierarchy and using it to achieve

the task, the notion of combination is not observed. As a result, we also look at

Multi-Objective Reinforcement Learning which has a combination component for in-

corporating multiple objectives.

1.2.2 Multi-Objective Reinforcement Learning

Multi-Objective Reinforcement Learning (MORL) is an interesting area of research

as described in Liu et al. (2014), Sprague and Ballard (2003), Vamplew et al. (2011)

and many others. MORL is a branch of RL which deals with learning trade-off

between multiple objectives in order to achieve the goal. For example, if an agent has

an objective to balance between speed and energy consumption, we have conflicting

situations since higher speed needs more fuel. MORL is able to learn a Pareto frontier

such that it optimizes the trade-off based on experience.

A Survey of Multi-Objective Sequential Decision-Making (Roijers et al. (2013))
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summarizes approaches to multiobjective reinforcement learning (MORL). Since there

can be conflicting objectives for an agent in decision-theoretic planning and learning,

MORL seems to be a challenging problem. Some problems can be converted into

a single objective and solved while others require specific methods in MORL. The

paper presents a comparative study of different MORL algorithms and approaches.

Traditional ways to combine results from multiple objectives in RL revolves around

the idea of Linear Scalarization (Van Moffaert et al. (2013)). In the simplest version of

this technique, the domain expert decides the weight for each objective, and weights

and objectives are formulated as a linear combination. There are some limitations

(Vamplew et al. (2008)) of this technique and researchers try to overcome them using

the Chebyshev function and a few other techniques. The key difference between this

approach and our combination learning lies in the state information which enables

us to change the weight with respect to the current state and adapt to the situation-

oriented behavior. In addition to this, our work also relates to meta-learning.

1.2.3 Meta-Learning

Meta-Learning research as described in Hospedales et al. (2020), Vilalta and Drissi

(2002), Vanschoren (2019), Schweighofer and Doya (2003), and many others are also

a closely related domain which deals with the process of learning to learn an algo-

rithm. Meta-learning can be used in single-task and multi-task learning (discussed

later in this section). In multi-task scenarios, task agnostic knowledge is used for

improving the learning of new task which belongs to the same family of tasks. While

in single-task scenarios, only one task is solved repeatedly in order to improve per-

formance over multiple episodes. Meta-learning can also be used to learn a set of

hyperparameters like learning rate, regularization factor, etc which can contribute to

making the network using these parameters stronger, leading to better performance.
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While meta-learning is somewhat related to the combination strategy, what we

propose also deals with learning about a combination of learning RL behaviors but

this is done using deep RL, and behaviors are known beforehand so that it would

combine into expected behavior. This can also be recognized as a special case of

meta-learning.

Moreover, we would also like the combination to adapt to new environments even

if the behaviors are trained under different environments. This relates to the domain

of transfer learning.

1.2.4 Transfer Learning

Transfer Learning is the process of learning a target task by using external expe-

rience from other tasks. For example, a coffee maker agent can learn to make coffee

and then reuse its skill to make a cappuccino. Transfer learning enables reusability.

Still, it doesn’t overcome the traditional way of learning. Usually, transfer learning

deals with learning about a source domain and apply learned knowledge to a target

domain which helps the algorithm reuse the knowledge and perform well in the target

domain with some fine-tuning. Domain adaptation is a similar approach to transfer

learning with a difference in the source distribution and target distribution. The

goal of domain adaptation is to overcome this variation such that source knowledge

becomes useful in the target domain.

Using Transfer learning in RL can be useful for training Game Playing agent.

AlphaGo (Silver et al. (2016)) uses this technique to learn the chessboard game.

This method is also applied in the Natural Language Processing domain. Expert

demonstrations can be applied to model RL solutions for Spoken Dialogue Systems

(Andreas et al. (2016)), building shaped rewards for Sequence Generation (Bahdanau

et al. (2016)),transferring policies for Structured Prediction (Chang et al. (2015)).
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The behaviors can be combined in such a way that they can become useful in

a different domain as well. The key difference between transfer learning and com-

bination approach is that transfer learning tries to gain experience and adapts to

the requirement of the environment, while the combination is formulated to work

for a new environment by learning to combine behaviors as required which can be

achieved because learning is designed with prior knowledge of target domain. Most

importantly, behaviors are known and combined in such a way that it helps to achieve

adaptation. So combination based approach is a subset of transfer learning approach

where we have prior knowledge about the target domain and so we know required be-

haviors and combine them in a way such that characteristics from multiple behaviors

helps the agent in the target domain.

After transfer learning, it becomes necessary to explore technique which aims at

solving related tasks simultaneously, like multi-task deep RL.

1.2.5 Multi-task Deep Reinforcement Learning

Multi-Task Deep Reinforcement Learning (Vithayathil Varghese and Mahmoud

(2020)) deals with learning related tasks simultaneously with the help of deep RL.

At regular intervals, individual agents learning a particular “related task” share

(D’Eramo et al. (2019)) their weights with the global network and the global net-

work makes it possible to share the learned parameters with other individual agents.

The main goal of multi-task learning is to learn generalized tasks so that the knowl-

edge can be used to perform closely related tasks. The set of related tasks is learned

simultaneously by the agent during the training process. In the end, the overall per-

formance of the agent is improved and the knowledge gained during the process can

be used to perform other tasks as well. Authors claim that transfer learning can only

succeed when the task is similar while different related tasks need multitask learning.
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Multitask learning can also be achieved by learning shared representation of value

function, Progressive Neural Networks (overcomes catastrophic forgetting), etc.

So, multitask learning deals with a combination of parameters to share knowledge

and learn related tasks while we apply RL to achieve a combination of behaviors. For

our combination approach, each behavior is trained from a unique reward and then

combined to achieve the goal such that the agent learns the characteristics of each

behavior. In our approach behaviors are frozen and the trained models are used for

combination, so behaviors are always known while in multitask RL, related tasks are

somewhat lost after learning.

Lastly, we consider ensemble methods in RL which deal with a different ideology

of combination.

1.2.6 Ensemble methods in Reinforcement Learning

Ensemble Algorithms in Reinforcement Learning (Wiering and Van Hasselt (2008))

is an area inspired by supervised learning in machine learning where it is believed

that instead of one model deciding the label if multiple models can give their input

to decide the label it would be more informative. Ensemble methods in RL describe

ensemble methods like majority voting (MV), rank voting, Boltzmann multiplication

(BM), and Boltzmann addition. The goal of ensemble methods in RL is to learn value

function or policy which are of different nature and ensemble of such techniques can

help the agent learn experience from a wide variety of algorithms. The way ensemble

methods learn includes the probability of selecting an action and rewarding every

algorithm for the selected action since that’s the only possible way for updating and

learning.

These methods bring us a lot closer to our approach since there are multiple

learning strategies and agent learns to collect better rewards. But the key difference
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is that agent is not trying to learn a modified behavior. All learning algorithms

in ensemble work towards the same reward and by means of ensemble they come

together to still achieve that reward. Ensemble learning doesn’t promote modular

learning whereas we propose a technique to learn different behaviors and combine

them so when the agent uses the combination in the environment it can leverage

characteristics of multiple behaviors in an environment with unseen rewards.
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Chapter 2

METHODOLOGY

2.1 Motivation

Combining the power of HRL and MORL, we propose a framework that has

different behaviors in the hierarchy and a parent learning to merge these different

behaviors into a meaningful combination. The combination can act as an update that

adds features to the existing learning strategy. For example, if we have an obstacle

avoiding agent, we would like to have additional features like cleaning (identify dirt

and clean it) added to obstacle avoidance so that we get a vacuum cleaner agent.

Most interesting idea is that there are many related behaviors but we do not find

a good way of combining and reusing these learned experiences efficiently. A good

example involves a self-driving car where we need a combination of simple learning

experiences like driving in a lane, avoiding obstacles, following signs and signals,

adapting to traffic, etc. It would be a lot easier to have an agent learn this individual

behavior and have a combination of these for our driver agent than learning a complex

end-to-end network where we do not reuse experience and the agent is not aware of

which sub-behavior led to the error.

Our goal is to develop a combination learning algorithm that learns simpler be-

haviors using RL and combines them in a meaningful way to maximize the rewards

from the environment. We demonstrate that this is an efficient approach where the

agent learns to combine behaviors and converge faster than individually learning an

end-to-end framework or transferring learned knowledge for learning additional fea-

tures. We can also detect points of error from the combination function which would
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enable us to re-train or correct the faulty behavior. We demonstrated successfully

combined behaviors and efficiency in OpenAI gym’s “Biped Walker” and “Lunar

Lander” environments.

Prior work in HRL, multitask learning, transfer learning, etc have a goal which

is not to combine behaviors but to maximize rewards in end-to-end learning by di-

viding into a smaller task or reusing previous experience. Multi-objective RL doesn’t

distinctly weigh an objective based on a state, it proves to be a good area to extend

the technique in order to achieve combination. So in order to achieve characteristics

of multiple behaviors and efficiently use behaviors as modules, C-DDPG architecture

is designed.

2.2 Background

“Subsumption architecture” (Brooks (1986)) and “Motor Schema Based Naviga-

tion for a Mobile Robot” (Arkin (1987)) have been overshadowed by modern day RL,

and deep learning techniques. These play a major role in behavior based learning

strategies. So, we take inspiration from these techniques and look forward to learning

behaviors by means of combination using deep learning frameworks that enable us to

generalize well during the process of learning combinations.

Schema based navigation for mobile robot divide the behaviors for navigation like

stay on path, avoid obstacles, find intersection and landmarks, etc. This methodology

also presents a communication mechanism for interaction between schemas to carry

out the necessary behavior. For example, if the robot detects an obstacle, it needs

to showcase how certain the detection is and whether it is a moving obstacle or

a static obstacle. Depending on this, lower level actions adapt to the situation to

overcome the obstacle by controlling the velocity. Formulation of divide and conquer

strategy and implementing mobile navigation with schema based approach has been
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an inspirational approach. Extending such an idea with modern day RL and deep

learning framework builds the foundation of our approach to combine behaviors.

Subsumption architecture is a milestone in behavior based architecture for robotics.

It is a reactive robotic architecture which has been widely influential in Real-time AI

which is guided by symbolic representations of the environment to take actions by

learning a bottom up strategy. In this approach end to end task tasks are divided

into sub-behaviors arranged in hierarchical structure. For example, a vacuum cleaner

robot’s end to end task of cleaning is divided into wander, avoid obstacles and clean.

Each behavior is learnt in a hierarchical fashion, such that upper level behavior uti-

lizes the lower level simpler behavior to accomplish the task. This strategy takes raw

sensory information and computes output for each behavior such that higher level

subsumes lower level behaviors. In terms of RL, subsumption architecture is model

free as it only relies on sensory input to take the action and gradually builds its ex-

perience of the world. One of the advantages of this approach is that behaviors can

function independently making this approach modular. Since only one behavior is

executed at a time we think of an idea to combine behaviors independently using the

Deep RL framework.

With these existing techniques for behavior learning and modern Deep RL we

aim to develop a combination-DDPG framework that can combine related behaviors

which share the same action space. We learn how schemas can be useful and how

subsumption aims to combine behaviors. As a result, we aim at learning the desired

behavior combination by linear combination such that it generates resultant actions

from multiple behaviors which helps the agent achieve the required behavior. This

architecture to combine behaviors is able to leverage the power of deep RL and

behavior based RL.

As we go further, the environment, algorithms and deep learning framework is
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covered. These are put together as architecture to combine behaviors is introduced.

2.2.1 Environment

• Lunar Lander:

This environment is available from OpenAI gym environment which is an open

source library for experimentation in Artificial Intelligence. As Shown in the

figure 2.1, the space ship is our agent with 3 engines that enable the agent to

take 4 actions (left, right, main, no action) and channel its direction towards

the landing position. States of an agent include horizontal and vertical position

from center, horizontal and vertical speed, head angle, angular speed and 2

boolean indicating if left and right leg have touched the surface.

Figure 2.1: Lunar Lander Environment (Google images (2021b))

• Biped Walker:

This environment is also available from the OpenAI gym. As shown in the figure

2.2, our agent is a Biped walker with upper and lower joint angles enabling the

hull of the agent to walk. There are 2 variants of this environment: one with
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obstacles on terrain as shown in the figure and another is a simple grass terrain

with minor bumps. It is easier to learn in the later while very difficult to

learn with obstacles. The action space consists of 4 values corresponding to

joint angles and the state space consists of hull angle speed, angular velocity,

horizontal speed, vertical speed, the position of joints and joints angular speed,

legs contact with the ground, and lidar.

Figure 2.2: Biped Walker Environment (Google images (2021a))

2.2.2 Q learning

In Reinforcement learning, Q learning is a common algorithm that enables the

agent to learn from experience. The basic structure of the simple RL scenario is

shown in the figure 2.3. An agent exists in an environment like “Lunar Lander” or

“Biped walker” where it observes and takes actions. For every action the agent takes

in a state, it receives a penalty or a reward.
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Figure 2.3: Q Learning

In Q learning agent learns a Q-function to improve it’s actions and maximize

rewards over timesteps. Preliminaries of Q learning (Q< s, a,R, s′ >):

• Let s be the current state and s′ be the next state.

• R is the reward for action a in state S

• α is the learning rate and γ is the discount factor

Q function is given by:

NewQ(s, a)︸ ︷︷ ︸
New Q-Value

= Q(s, a) +α∣∣∣
Learning rate

[R(s, a)︸ ︷︷ ︸
Reward

+γ∣∣∣∣∣
Discount rate

Maximum predicted reward, given
new state and all possible actions︷ ︸︸ ︷

maxQ′(s′, a′)−Q(s, a)]

Agent explores and exploits the environment and keeps updating the Q function

to develop it’s experience and take better actions to maximize the reward. In order to

make sure Q-learning is able to generalize well, the ε-greedy action selection strategy

has been followed in this work. The value of ε starts high and decreases over time.

As a result, the agent follows a strategy that helps to explore more initially and

gain experience by experimenting with the environment. As the agent gains sufficient

exposure to the environment, it it necessary to exploit right areas and take right

actions to maximize the rewards. During exploration, agent takes a bunch of random
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actions which lead to new experiences. On the other hand, the exploitation agent

takes the best action from the q-values.

2.2.3 Deep learning framework

• Deep Q-Network (DQN) [Mnih et al. (2013)]:

Traditional Q learning keeps a track of its experience for every state-action pair

in a table and uses its experience to take better action which can maximize the

rewards. When these state and action pairs grow exponentially, it becomes in-

feasible to keep track in a table. As a result, there is a need for a technique that

can generalize a variety of state-action pairs and predict q values such that tak-

ing action corresponding to maximum q-value would result in the maximization

of the agent’s rewards.

With Deep learning, we need data to train a neural network. In order to use

the agent’s experience during training, we keep a track of state, action, next

state, and reward within a tuple. A list of such tuples constitutes an experience

replay. Usually, in traditional Q-learning, past experience is not used and the

agent learns at every timestep. Experience replay enables the use of batches

of state transition for learning. As a result, training is more stable. Also,

the model is not instantly adjusted to correct values but learns little by little

depending on the learning rate.

Double Q learning (van Hasselt et al. (2015)): It has been found that a deep

Q learning model can overestimate expected rewards when target values for

updating the same model is used for taking best action and calculating Q(s,a).

In order to deal with this, we use 2 different models. Model θ is used for

action selection where as θ′ is used for calculating target values. Target model
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is updated by weights of main model every 4 time steps.

Double q learning target: Rt+1 + γQ (St+1, argmaxaQ (St+1, a; θ) ; θ′) (2.1)

• Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al. (2019)):

Unlike DQN, DDPG is specifically designed to tackle continuous reinforcement

learning problems. In order to deal with continuous action space DDPG uses

Q-network, target Q-network, deterministic policy network, and target policy

network. This is similar to an actor-critic architecture where the actor is re-

sponsible for taking actions and the critic evaluates the action. In order to

update actor and critic, we use values from the target network which are time-

delayed copies of original actor and critic that undergo soft updates over time.

DDPG outputs a continuous action value in contrast to probabilities for possi-

ble actions and choosing max out of those. DDPG works with the help of the

following components:

– Experience Replay: Similar to DQN, DDPG also uses a replay buffer which

helps in training randomly sampled batch which is used to train the net-

work.

– Actor (Policy) and Critic (Value) Network Updates: The actor takes the

state as the input and gives action as the output. The critic takes state and

action as the input and outputs a q-value for the state-action pair. Actor

and Critic are updated similarly to the Q-value update in DQN using the

Bellman equation. Target networks are used to predict the information of

the next state.

– Target networks: At definite intervals, weights from the main network are

copied to the target network which enables the use of time-delayed values
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– Exploration: In order to promote exploration DDPG introduce random-

ness. Action values are subjected to adding Ornstein–Uhlenbeck noise

which enables the agent to explore well.

2.3 C-DDPG Architecture

• Training Behaviors:

– Hovering (Lunar Lander): In this behavior the agent keeps pumping the

engine to fly around in any direction, making sure the agent doesn’t crash

or land on the ground. In order to achieve this behavior, the agent is

positively rewarded for the timesteps its leg doesn’t touch the ground and

the agent doesn’t crash. It get minor penalty for fuel usage. Agent is

trained for 250 episodes and it gradually learns to fly around. It comes

close to the ground but makes sure it doesn’t crash or touch the ground.

In order to train this behavior a DQN was implemented that would use

double q learning and generalize it’s experience to successfully learn the

behavior.

– Reach center (Lunar Lander): In this behavior the agent is supposed to

learn how to get closer and closer to the landing area, irrespective of safe

landing or crashing. In order to achieve this behavior, distance from the

landing area is measured and as the distance decreases agent is awarded

positively and as the distance increases agent is awarded negatively. DQN

has been implemented with double Q learning to achieve this behavior.

– Walk with big steps (Biped Walker): Our agent, the biped walker, needs

to learn walking with bigger steps on grass terrain. In order to train this

behavior we use DDPG algorithm. Depending on the action the agent
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takes, it is negatively rewarded for falling down, going in the opposite

direction and there’s a minor penalty for torque as well. At the same time,

agent is positively rewarded for taking steps forward with a condition that

if the step is bigger it is rewarded more. As a result agent learn to take

big and small jumps/steps and keep walking forward.

– Balance (Biped Walker): In this behavior Biped Walker is supposed to

learn to balance it’s hull/head between absolute 0-30 degrees. It is allowed

to jump and walk around without being rewarded. In this process it is

given absolute negative reward if it goes beyond the specified range of

angles. It scores a positive reward if angle is maintained between the given

range. We use DDPG as the learning algorithm to train this behavior.

• Combining Behaviors:

– Lunar Lander: Once we have trained behaviors for hovering around and

reaching the center, our goal is to combine these into landing safely in the

center. In order to achieve this we formulate a reinforcement learning algo-

rithm using DDPG where the combination agent can take 2 actions which

correspond to weights which are used to combine behaviors. Behavior 1

and behavior 2 predict a 4x1 probability vector from DQN which has been

previously trained. Each behavior would try to assign maximum probabil-

ity to the action that yields maximum individual reward. The combination

agent predicts weight vector which is used for linear combination of behav-

iors. Taking argmax over the result of this linear combination, the Lunar

Lander agent executes the action and collects the reward by interacting

with the environment. For every state this learning strategy is able to

generalize which combination would best maximize the overall reward for
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the Lunar Lander environment.

– Biped Walker: Models from Biped Walker in grass terrain are trained and

combined using the combination agent in Hardcore environment which con-

sists of steps, pits and obstacles. In order to train the combination agent,

each behavior outputs a command vector. Each command vector from a

behavior is targeted at maximizing it’s individual reward which is either

walking with larger steps or balancing in our case. Combination agent uses

DDPG to predict weight values which are used for linear combination of

command vectors. This linear combination results into a resultant com-

mand vector that enables the agent to take advantage of balancing and

walking on the difficult terrain.

Algorithm 1: C-DDPG Algorithm To Combine Behaviors

Train Behaviors 1, 2, 3...n ;

Save models for Behaviors 1, 2, 3...n;

load models for Behaviors 1, 2, 3...n;

foreach episode do

Initialize S;

foreach step of episode do

B1, B2...Bn ← predictions of models for Behaviors 1, 2, 3...n in S;

Predict [W1,W2, ...Wn] in S using policy derived from θDDPG ;

Take action A← W1 ×B1 +W2 ×B2 + ...Wn ×Bn, observe R, S ′;

Update experience replay and learn θDDPG;

S ← S ′;

end

end
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Putting it all together in a reinforcement learning loop, as we can observe in algo-

rithm 1, the process starts with learning and saving models for individual behaviors.

Behaviors are frozen which is analogous to the frozen architecture described by Lu

et al. (2021). For every episode, at every step agent needs to learn to predict a set of

weights such that linear combination helps the agent achieve required characteristics

from different behaviors. For the linear combination, predicted values from saved

models are multiplied by the set of weight vector given by the combination agent. As

this process goes on, combination agent learns to predict relevant weight values for

every state to achieve required combination and enables the agent to accomplish the

goal.
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Chapter 3

EXPERIMENTS, RESULTS AND ANALYSIS

3.1 Experiments

As we see in the methodology section, the implementation consists of 2 algorithms:

DQN and DDPG for discrete and continuous scenarios respectively. As we see in the

figure 3.1, each behavior outputs a q vector in discrete environment and action values

in a continuous environment. The goal of the combination function is to combine these

vectors in such a way that the agent learns the characteristics of both behaviors.

We broadly divide the experiments into 2 categories, Discrete Action Domain and

Continuous Action Domain.

3.1.1 Discrete Action Domain

In a discrete reinforcement learning environment, the agent is allowed to choose

an action from a fixed number of actions. In this section, we describe how each

experiment is divided and inner working during the training process.

• Training behaviors and a combination:

– Lunar Lander Behavior 1: As described in the methodology section, the

goal of this behavior is to fly around the environment. The reward function

for this behavior is formulated using horizontal and vertical speeds and a

boolean variable indicating if the leg of the agent has touched the ground.

Using the resultant speed calculation, the agent is penalized for unstable

speed and crashing. Using the boolean variable, we need to track whether
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Figure 3.1: Combination Framework Using DDPG

the agent has touched the ground or not. If the agent flies again after

the leg touches the ground it is rewarded negatively. Fuel consumption

also constitutes a minor negative reward available from the openAI gym

environment. DQN with input layer dimension = input state space =

8, 3 dense layers with 64 neurons each and relu activation, output layer

dimension = action space = 4 and softmax activation is used to train using

double q-learning update strategy. A learning rate of 0.001 and masked

Huber loss is used in DQN. The simulation agent builds its experience over

250 episodes with 1000 steps. For exploration vs exploitation trade-off, ε-

greedy policy is appointed. We are able to achieve the end goal which is to

get a behavior where the agent can fly around without crashing or landing

on the ground which can be reused in combination.
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– Lunar Lander Behavior 2: As described in the methodology section, the

goal of this behavior is to get closer to the center where the landing area

is located. Reward function for this behavior is formulated using horizon-

tal and vertical coordinates which helps in calculating Euclidean distance

from the center which is located at (0,0). At every timestep, if the agent

makes a move that enables it to minimize the distance, the agent is re-

warded positively. In this behavior, the agent is not penalized for unstable

speed and crashing. Fuel consumption also constitutes a minor negative

reward available from the openAI gym environment. DQN with input layer

dimension = input state space = 8, 3 dense layers with 64 neurons each

and relu activation, output layer dimension = action space = 4 and soft-

max activation is used to train using double q-learning update strategy.

A learning rate of 0.001 and masked Huber loss is used in this DQN. The

simulation agent builds its experience over 350 episodes with 1000 steps.

For exploration vs exploitation trade-off, ε-greedy policy is appointed. We

are able to achieve the end goal which is to get a behavior where the agent

can get closer to the center which can be reused in the combination.

– Lunar Lander Combination (C-DDPG): The goal of combining behaviors is

to achieve a combination of flying safely and landing in the center without

crashing. The combination is assumed to be an agent having 2 continuous

actions. In order to train this agent, DDPG is used. These 2 actions cor-

respond to 2 weights needed for a linear combination of the 2 behaviors.

Precisely, behavior 1 and behavior 2 output q vectors such that the highest

probability is given to the action that best suits the respective behavior.

At the same time DDPG with actor configuration as input layer dimen-

sion = input state space = 8, 2 dense layers with 256 neurons each and
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relu activation, output layer dimension = behavior space = 2 and softmax

activation and critic configuration as input layer dimension = input state

space = 8, 2 dense layers with 16 and 32 neurons respectively and relu

activation, output layer dimension = 1, is appointed to weight each behav-

ior. Linear combination of behavior 1 and behavior 2 results in a q vector

out of which action corresponding to maximum q value is picked and ex-

ecuted. As the training process goes on, the combination agent outputs

a q vector such that the maximum q value enables the agent to learn the

combination. The agent is rewarded based on the original rewards from

the gym environment. Training is done for about 1000 episodes.

• Basic RL:

This is the baseline experiment where the agent is trained on the original Lunar

Lander OpenAI gym environment. DQN with input layer (dimension = input

state space = 8), 3 dense layers with 64 neurons each and relu activation, output

layer (dimension = action space = 4) and softmax activation is trained for 800

episodes.

• Multi-objective RL with linear scalarization:

In order to combine multiple q-vectors, MORL uses the traditional idea called

linear scalarization. Weight values are fixed by the domain expert and linear

combination is possible which enables the agent to pick an action with maximum

q value. Here, w1=0.6 and w2=0.4 because flying is comparatively more im-

portant than getting to the center as crashing leads to a high negative reward.

C-DDPG architecture on the other hand evaluates weight at every timestep

and learns to map state to weight vector for the desired combination. As a re-

sult, weights change in C-DDPG architecture but remain constant in the linear
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scalarization approach.

• Hierarchical machines inspired learning:

In this technique, C-DDPG architecture for combination is used to predict

weights but instead of linear combination, the behavior whose’s weight value is

higher is selected. As a result, only one of the trained behavior is executed at

a time to take an action in the Lunar Lander environment where the reward is

the original function from the OpenAI gym environment.

3.1.2 Continuous Action Domain

Command vectors are essentially the continuous actions the agent can take in the

environment. Each model starts training from a known set of good weights for the

Biped walker enabling the use of the bootstrap approach. Experimentation details

on the Biped Walker environment can be given by the following:

• Training behaviors and a combination:

Architecture for training behavior can be given by:

– Actor: Input layer dimension = input state space = 8, 2 dense layers with

600 neurons in the first layer and 300 neurons in the second layer along

with each activated by relu activation, output layer dimension = action

space = 4 and tanh activation.

– Critic: Input layer dimension = input state space = 8, 3 dense layers with

600 neurons in first layer and 300 neurons in second layer and third layer

along with each activated by relu activation, output layer dimension = 1

and tanh activation.

The following describes the training of each behavior and combination in detail:
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– Biped Walker Behavior 1: As described in the methodology section, the

goal of this behavior is to walk using long and short steps on a grass

terrain without obstacles. Agent’s position with respect to the previous

step is measured and if the agent moves forward with a bigger step it gets

a higher reward. If the agent moves backward or falls down, it scores a

negative reward. After training the end goal is to use this behavior in

association with another behavior to walk on terrain with obstacles.

– Biped Walker Behavior 2: The goal of the agent is to balance hull/head

angle. In order to train such a behavior, DDPG is trained where the

agent scores negative angle as the reward when the hull angle is beyond

absolute(30) degrees and e−angle as a positive reward when the angle is

between -30 to 30 degrees. The agent is not restricted in moving direction

and is free to walk and jump around as long as it manages to learn to

maintain head angle. This behavior can be combined to balance in uneven

terrain scenarios.

– Biped Walker Combination: The agent is placed in a grass terrain with

obstacles like stairs, pits and stones. The goal of the combination algorithm

is to combine walking with large and short steps and balancing behavior

to walk a larger distance in “hardcore” terrain using the original rewards

from the Biped walker hardcore gym environment. Biped walker hardcore

v3 is a difficult environment that cannot be solved by DDPG but we intend

to demonstrate behavior combination and agent’s efforts to maximize the

rewards. Behavior 1 outputs a command vector that is responsible for

controlling the agent to walk and behavior 2 outputs a command vector

that is responsible for maintaining a balance of the agent. At the same

time DDPG with actor configuration as input layer dimension = input

32



state space = 8, 2 dense layers with 256 neurons each and relu activation,

output layer dimension = behavior space = 2 and softmax activation and

critic configuration as input layer dimension = input state space = 8,

2 dense layers with 16 and 32 neurons respectively and relu activation,

output layer dimension = 1 is appointed to weight each behavior. As a

result, the output is a linear combination of command vectors which we

call the resultant command vector or the combination command vector.

With the training process, the agent learns to weigh behaviors in order to

get desired combined behaviors. In addition to this, we also experiment

on combining 3 behaviors. The agent learns to combine balance, walking

with short steps and walking with large steps in order to better overcome

the obstacles in the difficult domain.

• Basic RL:

The goal of the agent is to walk in a hardcore biped walker domain where it

faces obstacles, stairs and pits. The agent uses the DDPG bootstrap model to

train for 2000 episodes with 2000 steps in each episode. The agent follows the

original reward from Biped walker hardcore OpenAI gym environment where

it is given a high negative reward for falling down and positive rewards for

overcoming obstacles. The architecture of the DDPG model can be given by

the following:

– Actor: Input layer dimension = input state space = 8, 2 dense layers with

600 neurons in first layer and 300 neurons in second layer along with each

activated by relu activation, output layer dimension = action space = 4

and tanh activation.

– Critic: Input layer dimension = input state space = 8, 3 dense layers with
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600 neurons in the first layer and 300 neurons in the second layer and third

layer along with each activated by relu activation, output layer dimension

= 1 and tanh activation.

• Transfer learning:

Using this approach, the agent has to reuse or adapt to the new domain of

Biped hardcore version by using it’s experience from walking on grass terrain.

Initially, a bootstrap model is trained on grass terrain using original rewards

from OpenAI gym environment. Later, this model is reused such that the

model’s dense layers(do not undergo training) are used for feature extraction

but a new last layer is added which is responsible for adapting to new a envi-

ronment by training and updating the weights. The skill of walking mutates to

adapt to the obstacles in the target environment, such that the agent learns to

overcome few obstacles. Since DDPG is unable to converge in this environment,

we experiment to see how well does the transfer learning agent adapts to the

target domain of a Biped Walker hardcore environment.

• Multi-objective RL with linear scalarization:

Linear scalarization approach can also be used in scenarios where command

vectors need a weighting mechanism to get the resultant vector. Deciding the

trade-off can be difficult but it is necessary for the agent to walk a greater

distance overcoming the obstacles in Biped Walker hardcore environment to

walking behavior is multiplied with its weight of 0.7 and balancing behavior is

multiplied with its weight of 0.3. Since the agent doesn’t adapt the combina-

tion based on the current state information, it yields different results than the

combination agent.

• Hierarchical machines inspired learning:
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At a given time, HRL inspired technique chooses the command vector from the

behavior whose weight is higher. So this strategy doesn’t deal with a linear com-

bination of command vectors but intends to apply particular behavior given the

current situation. It uses the same DDPG network to learn and update weights

as the combination but since only one behavior is active in the environment the

experiment yields different results.

3.2 Results and Analysis

In order to evaluate the C-DDPG architecture, we evaluate how individual behav-

iors learn and compare the combination with basic RL, Multi-objective RL (Linear

scalarization), Hierarchical machines inspired learning, and Transfer learning. Since

C-DDPG works with continuous action space and discrete action space, we have

divided this section based on discrete environment (Lunar Lander) and continuous

environment (Biped Walker).

3.2.1 Lunar Lander

• Behavior 1 and 2:

Training simpler behavior is easier than training an end-to-end agent on a lunar

lander because the reward function is simpler and the agent begins to demon-

strate learned behavior soon. These behaviors may not convey meaningful ac-

tions with respect to the environment’s main goal but they contribute to be a

part of the expected strategy. For example, when we divide the behaviors into

hovering and reaching the center, we expect the agent to balance around (not

crash) and also get closer and closer to the center. This makes it possible for

the behaviors to be combined such that it can land safely in the center and

achieve its goal.
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Figure 3.2: Lunar Lander Comparison [Combination Vs Basic RL Vs Multi-
objective RL With Linear Scalarization Vs Hierarchical Machines Inspired Learning]

• Combination DDPG architecture outperforms basic RL, MORL (linear scalar-

ization), and Hierarchical machines inspired learning. As we can see in the

graph (figure 3.2), combination architecture is able to generalize weight mech-

anism depending on the state and gradually after about 170 episodes, we see

that the agent successfully hovers around the center and lands safely. There are

minor oscillations in the reward which can possibly be due to random initializa-

tion of the environment that make it difficult for the agent. The agent doesn’t

fail because of these difficulties but might take more time which impacts the

rewards. Overall it rarely crashes and learns to land safely which maximizes

the rewards.

We can see in the Steps vs W1 plot (figure 3.3) that combination plays an

important role. Initially, lander is free to give lower preference to hovering and

more preference to navigate towards the center. Gradually, as it reaches closer

to land, hovering is weighted higher to prevent crashing. After stabilizing or

partly landing, if the agent is still not in goal position, center behavior spikes
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Figure 3.3: Lunar Lander Steps Vs W1. (W1=Center, W2=Hovering)

and helps the agent achieve the goal by reaching the center and stabilizing in

the end.

• Basic RL learns to accomplish the goal of the Lunar Lander environment (Land-

ing safely in the center) after about 275 episodes as we can see in the figure 3.2.

This approach also suffers from minor oscillations due to random initialization

as mentioned earlier. Over a period of time, combination architecture and basic

RL perform equally well such that the agent maximizes its rewards by achieving

the end goal.

• MORL (linear scalarization) fails to achieve the right combination (As shown

in figure 3.2) for the lunar lander environment. It is necessary to evaluate

the position of the agent before determining which strategy can be helpful.

For example,initially, the should fly stable and gradually proceed towards the

center. Also, as it reaches the goal, hovering behavior should help the agent

slow down for a safe landing. As going towards the center is not much important

when the agent is about to crash, hover behavior needs to dominate such that

after stabilizing the agent can fly towards the center and land safely. Since a
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constant value is unable to realize the difference in the state of the agent, Linear

scalarization approach needs to be modified by C-DDPG architecture to achieve

good performance.

• Hierarchical machines inspired learning approach fails (As shown in figure 3.2)

because of obvious reasons. Behaviors learned earlier are meant to be used in

a combination and one behavior at a time is not sufficient. For example, when

the agent prefers going towards the center behavior, it may lose balance or turn

upside down. Even if the control goes to hovering behavior in the very next step,

it fails to stabilize the heading angle and crashes. As a result, the agent collects

negative rewards. This also demonstrates the need of combination rather than

smaller modules individually trying to accomplish the bigger goal.

3.2.2 Biped Walker

Figure 3.4: Biped Walker Comparison [Combination Vs Basic RL Vs Multi-
Objective RL With Linear Scalarization Vs Hierarchical Machines Inspired Learning]
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• Behavior 1 and 2:

Learning to walk with big and small steps and balancing are simpler versions of

biped walker environment since the agent channels its energy towards a simpler

goal which is similar to the lunar lander environment. We are also able to

inculcate a skill to take larger steps by hopping around and balancing while

taking any action. Individually one behavior is not sufficient to make the agent

demonstrate its skills in the hardcore version of biped walker environment.

• Combination DDPG architecture enables the agent to overcome different types

of obstacles using trained behaviors (As shown in figure 3.4). For example, if

there are stairs followed by a pit then the agent is able to hop walking forward

and balance its head angle helping it to overcome stairs and maintain the bal-

ance at the same time which helps the agent to be in a stable position while it

encounters the next obstacle. The hardcore version 3 of biped walker cannot

be solved by the DDPG algorithm but we successfully demonstrate combined

behavior which enables the agent to overcome a variety of obstacles like stairs

(going up or down), pits, or small/big stones.

Figure 3.5: Biped Walker Steps Vs W1. (W1=Balance, W2=Walk)
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We can see in the Steps vs W1 plot (figure 3.5) that the agent prefers walking

behavior initially but as soon as it encounters obstacles, the balance behavior

spikes which help the agent stabilize and continue walking along with balancing.

Later the agent runs into another obstacle and balances spikes up again but this

time, unfortunately, the agent falls down and the episode ends.

Figure 3.6: 3 Behavior Vs 2 Behavior Combination

• Combination DDPG architecture is also able to achieve 3 Behavior combination.

The agent is also able to tackle various obstacles with the resulting combination

of 3 behavior combination. When 3 behavior combination is compared with 2

behavior combination, it is observed that learning curve is similar. In some

situations, the 3 behavior combination approach tends to collect better rewards

than the 2 behavior approach as seen in figure 3.6.

We can see in figure 3.7, Steps vs W1 and W1+W2 that the agent prefers

walking behavior (with small steps or big steps) initially but as soon as it

encounters obstacles the balance behavior (W1) spikes which helps the agent
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Figure 3.7: 3 Behavior Steps Vs W1 And W1+W2

stabilize and continue walking along with balancing. We also observe that

W1+W2 valley around step 170, representing more weightage to W3 which

belongs to the behavior corresponding to walking with larger steps (helps the

agent jump off an obstacle). The rest of the time agent combines balance and

2 walking behaviors to keep moving forward in a steady manner.

• Basic RL has very little prior knowledge from the bootstrap model and so

most of the time the agent spends is learning to walk and at the same time

dealing with obstacles. Since the agent keeps falling down due to imbalance and

obstacles, it ends up collecting more negative rewards (As shown in figure 3.4).

Since DDPG cannot solve this environment, we compare every technique for a

fixed number of episodes and basic RL doesn’t demonstrate much improvement

over 2000 episodes.

• Transfer Learning is an interesting strategy where the agent already knows

walking on the grass terrain and it needs to adapt to obstacles in the hardcore

domain of biped walker. We observe that the agent is able to cover some

distance where there are no obstacles which enable the agent to collect rewards
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better than basic RL (As shown in figure 3.4), MORL, and hierarchical machines

inspired learning. After a lot of training, the agent is still unable to overcome

obstacles like stones and pits. This approach is the next best alternative to a

combination DDPG architecture.

• MORL (linear scalarization) doesn’t demonstrate a good working on the static

combination for hardcore biped walker environment (As shown in figure 3.4).

Similar to the lunar lander environment, there is a need to change combinations

based on the state of the agent. For example, if the agent is climbing and if

the agent is passing a pit, different walk and balance components are required.

For climbing, walking is more important compared to the pit where balancing

and walking are almost equally important. As a result, we do not see the agent

adapting to obstacles in the domain and improving the performance over time.

From the experimentation and results, our analysis shows that the following makes

C-DDPG architecture an interesting way of learning:

• We use a deep learning framework to learn behaviors and use those behaviors

in a weighted combination to achieve a combination of behaviors. Learning

weights also uses deep learning.

• This makes it difficult to compare with simpler domains like grid worlds but

makes it easy to generalize to complex state space representations.

• C-DDPG framework doesn’t work on image as a state input (This can be a

possible extension). We rely on raw sensor input to learn policies.

• C-DDPG framework can be generalized for both continuous and discrete do-

mains since learning weights is modeled as a deep RL task in addition to learning

behaviors using deep RL.
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• Multi-objective RL focuses on combination learning but to the best of our

knowledge, it need not account for the state being a parameter for learning

weight. On the other hand, HRL doesn’t focus on combinations (Focuses on

one subtask instead of a combination of subtasks). As a result, we combine

HRL and MORL to learn combinations by building RL framework that learns

how to combine behaviors.

• If a learned behavior needs additional skills, a new skill can be added by learning

weights for combination and subtask to achieve that skill. This can enable

learning safety and then learning complex moves in an agent.
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Chapter 4

FUTURE WORK AND CONCLUSION

4.1 Future work

This work motivates us to think in the direction of modular learning strategies

and combining behaviors. In the future, this method can be extended to real-world

applications on the hardware. It would be a unique experiment if this method from

simulation can make it to real-world learning like self driving cars, robots, etc. Mod-

ules for each individual behavior can also be used for more accurate performance

depending on the shortcoming of a behavior and modified to incorporate safety. If

each simpler module can address safety individually then then we only need to ensure

that the combination does not violate any safety constraints.

This approach can also be extended towards making AI more interpretable. A

key property of our combination approach is attributability. In particular, the com-

bination allows us to easily attribute rewards to different behaviors. Consequently,

methods can be developed for explainable AI ~Gunning and Aha (2019); Chakraborti

et al. (2017a), for example, by generating explanations ~Chakraborti et al. (2017b);

Zakershahrak et al. (2020a,b) to achieve explainable RL~Wells and Bednarz (2021).

In addition to this combination algorithm can be modified in a way such that

instead of linear combination, complex non-linear combination can be experimented

depending on the complexity of the task. Meta-learning can also be used in order

to learn a better combination. As every deep-learning framework may suffer from

problems like catastrophic forgetting, overfitting, local optima, etc, this approach

may suffer from such drawbacks as well and so we leave it open for future researchers
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to experiment more with this C-DDPG architecture and overcome the challenges.

4.2 Conclusion

In this thesis, the idea of combining behavior is simplified and a unique strategy

to achieve modular and efficient combination is experimented. The process begins

by simplifying the rewards to learn behaviors. Learned behaviors are saved and

used in C-DDPG architecture where the strategy to combine involves reinforcement

learning to assign weights for appropriate linear combination. This linear combination

helps the agent take resultant action in the environment such that it demonstrates

characteristics of both behaviors and enables the agent to achieve the goal faster.

It has been demonstrated that this approach can be useful in both continuous and

discrete environments but since deep learning is a field that keeps evolving, a different

method or architecture can be used with the same concept of combination in mind

which would enable the growth of this area of research as well.
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