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ABSTRACT

Physical and structural tree measurements are applied in forestry, precision

agriculture and conservation for various reasons. Since measuring tree properties

manually is tedious, measurements from only a small subset of trees present in a forest,

agricultural land or survey site are often used. Utilizing robotics to autonomously

estimate physical tree dimensions would speed up the measurement or data collection

process and allow for a much larger set of trees to be used in studies. In turn, this

would allow studies to make more generalizable inferences about areas with trees.

To this end, this thesis focuses on developing a system that generates a semantic

representation of the topology of a tree in real-time. The first part describes a

simulation environment and a real-world sensor suite to develop and test the tree

mapping pipeline proposed in this thesis. The second part presents details of the

proposed tree mapping pipeline. Stage one of the mapping pipeline utilizes a deep

learning network to detect woody and cylindrical portions of a tree like trunks and

branches based on popular semantic segmentation networks. Stage two of the pipeline

proposes an algorithm to separate the detected portions of a tree into individual

trunk and branch segments. The third stage implements an optimization algorithm to

represent each segment parametrically as a cylinder. The fourth stage formulates a

multi-sensor factor graph to incrementally integrate and optimize the semantic tree

map while also fusing two forms of odometry. Finally, results from all the stages of the

tree mapping pipeline using simulation and real-world data are presented. With these

implementations, this thesis provides an end-to-end system to estimate tree topology

through semantic representations for forestry and precision agriculture applications.
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Chapter 1

INTRODUCTION

1.1 Thesis Statement

Real-time semantic mapping of tree topology enables fast and precise estimation

of tree characteristics for use in forestry and precision agriculture.

1.2 Contribution

This thesis describes a mapping pipeline to extract semantic information from

a tree by estimating its physical dimensions and building a parametric model of its

topology by using state-of-the-art sensors and real-time capable computation tools.

The six main contributions of this thesis are:

� A simulation environment containing a leaf-less tree and a lidar mounted drone

to develop and test the proposed tree mapping pipeline in a simplified scenario

� A hardware sensor rig equipped with state-of-the-art sensors to collect pose

estimates and 3D point cloud data for semantic tree mapping in the real world

� A deep learning network to identify woody portions of a tree like trunk and

branches while ignoring surrounding objects
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� An algorithm to split the identified woody portions of the tree into individual

trunk and branch segments

� An optimization framework to parameterize each trunk and branch segment

into uniquely identifiable cylinders that collectively represent a portion of the

semantic tree map

� A multi-sensor factor graph that incorporates two forms of odometry and

incrementally assembles the semantic tree map and optimizes its parameters

1.3 Document Overview

This thesis is arranged into seven chapters. This chapter, Chapter 1, provides the

thesis statement and contributions of this work. Chapter 2 overviews recent efforts

and related work in the area of mapping forests and trees. Chapter 3 describes the

simulation environment and hardware sensor rig that were put together. Chapter

4 presents the semantic tree mapping pipeline developed in this thesis. Chapter 5

explains the results obtained on simulation and real-world data. Chapter 6 is the

conclusion and Chapter 7 enlists limitations and future work for this thesis.
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Chapter 2

RELATED WORK

A brief description of recent work related to obtaining physical dimensions of trees

and the generation of their 3D map is provided in this section. Drawbacks for each of

the works mentioned is detailed, and advancements that were made to address those

drawbacks is then explained. The concluding paragraph of this chapter describes the

significance and novelty of this thesis.

Studies that focus on surveying large forest areas at the scale of countries or

continents commonly employ satellite-based or airborne remote sensing techniques

[Franklin (2001)],[Wulder et al. (2008)]. On the other hand, use cases requiring very

fine tree measurements (at the scale of flowers or leaves) usually involve manual

measurements made by tree or plant surveyors. A scenario in between the two use

cases such as mapping a countable number (hundreds to thousands) of trees often use

terrestrial LiDAR scanners (TLS) [Dassot et al. (2011)],[Trochta et al. (2017)]. More

recently, drones mounted with light detection and ranging (LiDAR, lidar) sensors are

being considered to gather data from many trees in a single measurement effort, as it

significantly reduces the manpower and time required to collect and process spatial

data of trees.

Lidars use time-of-flight of a laser pulse to estimate distance precisely. A single

laser with reflective micro-mirrors or a rotating array of lasers is usually employed to

sweep through an area and assemble a 3D point cloud. Terrestrial lidar scanners are

high density 3D laser scanners typically used to map forests and geological features.

Two good examples of algorithms that use TLS tree data are TreeQSM (Raumonen

et al. (2013)) and rTLS (Q et al. (2021)). Both these methods take a sequence of TLS
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scans as the input, merge them into a single point cloud offline and then extract various

physical tree properties and measurements from the integrated point cloud. Properties

like diameter at breast height (DBH), thickness of branches, branching points, branch

orientation, variation of branch properties along tree height, canopy volume, etc. are

available through TreeQSM and rTLS. However, the main drawback of using TLS

methods is the data collection step. It requires the movement and positioning of heavy

TLS equipment at multiple locations and the placement of artificial scan-alignment

targets in the area being mapped. Additionally, algorithms that operate on TLS data

lack real-time computation and decision-making capabilities because individual TLS

scans recorded during data collection need to be combined together by an offline data

processing algorithm.

To address the issue of immobility of TLS sensors, the robotics community has been

working on mapping trees using Unmanned Aerial Vehicles (UAVs). UAVs mounted

with image and laser based sensors have the capability to collect a number of metrics

quickly while moving around different locations and altitudes in a forest. The system

by Fritz et al. (2013) used a UAV flying over a leaf-less tree plantation to obtain

Structure from Motion (SfM) tree point clouds to then calculate DBH. Other works

by Wallace et al. (2012) and Wallace et al. (2016) used a downward facing camera

and a lidar on a UAV to estimate canopy shape while flying above trees. All these

systems were operated in broad daylight, in clear surroundings above tree canopies,

used ground control points and could therefore rely on GPS and photogrammetric

Visual Inertial Odometry (VIO) for their localization and mapping algorithm. Also,

they were only able to estimate basic tree traits like DBH or an approximate 2D

canopy shape. Although these were great initial studies to show the versatility of

UAVs and on-board sensors for operation in an environment with many trees, they

were unable to navigate complex or challenging spaces underneath and around the
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crown of a tree to extract detailed trunk and branch measurements.

Around 2012, an algorithm to use a 3D lidar scanner and an inertial measurement

unit (IMU) for real-time robot odometry and mapping was first proposed called Lidar

Odometry and Mapping (LOAM) [Zhang and Singh (2017)]. This algorithm allowed

for the processing of 3D lidar scans on-board the data collection sensor rig so that

maps and additional on-board decisions could be made in real-time. However, it took

years of development and only in 2016 was a reliable open source implementation of

the LOAM algorithm called Advanced implementation of LOAM (A-LOAM) released.

Variants of LOAM by Shan and Englot (2018) and Shan et al. (2020) using scan

context work by Kim and Kim (2018) for more time efficient implementations and

better loop closure techniques have been released more recently, and are still being

actively improved. All of these algorithms were designed keeping in mind urban

scenarios and autonomous cars, but did not hold up in unstructured environments

like a forest or agricultural plantation due to the lack of a flat planar and sharp edge

features.

In 2020, Semantic-LOAM (SLOAM) was developed to address odometry and

mapping within unstructured forest-like environments [Chen et al. (2020)]. The main

novelty of SLOAM was the use of semantic segmentation and cylinder fitting to

detect and model tree trunks as point cloud features, such that they could be used

as landmarks while mapping a tree plantation. SLOAM provided GPS-denied robot

odometry while also estimating the DBH of tall trees in real-time. This thesis is

inspired by SLOAM but extends its ideas to enable single tree mapping and incremental

map refinement.

Compared to existing techniques like SLOAM, the pipeline proposed in this thesis

aims to map an individual tree without relying on the presence or visibility of adjacent

trees. This capability becomes especially useful in cases where trees are very far
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apart such as in savannas or the emergent layer of rainforests, or where undergrowth

and drooping canopies obstruct the visibility of adjacent trees. Mapping of an

individual tree can easily be extended to accommodate the mapping of multiple trees

as well, since this thesis represents trees using semantics that are unique in 3D space.

Another novelty that this thesis provides is the ability to improve the map of a tree

incrementally during the course of a mapping sequence or across mapping sequences.

Both of these capabilities have been brought about by the use of a range image based

branch separation algorithm and a novel method to represent cylindrical features as

landmarks in a factor graph. Keeping with the advancements made by LOAM and

SLOAM over TLS based mapping, the mapping pipeline proposed in this thesis is also

able to process live data and create maps in real-time. This thesis hence enables the

estimation of semantic information about trees that is useful for forestry and precision

agriculture applications with minimal manual effort.
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Chapter 3

SETUP AND DATA

The goal of this thesis is to obtain semantic information of a single tree to encode

its topology. In this document, all mapping and algorithm discussions pertain to

mapping an individual tree although the same pipeline can be extended to store

a map for multiple trees taken one at a time within a single continuous mapping

effort. Semantic mapping of a tree is done by estimating the location, orientation and

dimension of its trunk and branches using two types of sensors. One sensor collects

3D spatial data from a particular location in space and another sensor estimates the

pose (position and orientation) at which that spatial data was recorded. Examples

of sensors that possess such properties are a 3D lidar and a visual inertial odometry

capable camera respectively. The tree mapping pipeline proposed in this thesis uses

inputs from two such sensors to build a semantic tree map.

To develop different stages of the tree mapping pipeline, a simulation environment

meeting spatial and pose estimate sensory requirements was created. To test the

developed tree mapping pipeline in real-world conditions, a hardware sensor rig also

having spatial and pose estimate sensors was assembled. Section 3.1 describes the

simulation setup and Section 3.2 describes the data that was recorded in it, while

Section 3.3 describes the hardware setup and Section 3.4 describes the real-world data

that was recorded using it.

3.1 Simulation Setup

The simulation environment represented a simplified scenario of mapping trees

in the real world. This environment was used to develop all the stages of the tree
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mapping pipeline and each stage was first tested in simulation before being used on

noisier and more complex real-world data. Gazebo was the simulation environment

of choice because it supported Robot Operating System (ROS) and the Software in

the Loop (SITL) PX4 Flight Controller. The simulation environment consisted of a

leafless tree and a drone mounted with a lidar. The need for a drone was to provide a

movable sensor suite that could continuously collect data for real-time mapping as

opposed to manually placing sensors like a TLS and its associated scan alignment

targets at multiple discrete locations.

The trunk of the tree was created as a tapering stack of cylinders with three

branches at different heights, orientations and thicknesses. Figure 3.1 shows the

simulation tree along with the radius measurements for each cylinder. The pre-defined

Iris 3DR drone from the SITL PX4 flight controller package was used in this simulation.

Global pose estimates of the drone were taken from PX4’s MAVROS odometry topic,

and a simulated version of the Velodyne VLP-16 Puck was attached to the drone to

collect 3D spatial data of the tree.

3.2 Simulation Data

Data of the tree in simulation was recorded using the Iris drone. The Iris drone

was programmed to fly around the tree in quadrangle patterns at increasing heights

until the lidar scans lost full visibility of the tree. During this flight, all data from the

Velodyne lidar and PX4 were recorded into a ROS Bag. Figure 3.2 shows data that

was recorded by the lidar at two differnt locations of the drone’s flight path.

3.3 Real-World Setup

A hardware sensor rig was developed to collect real-world data. This data was

then used to test the developed mapping pipeline in a more realistic environment than

8



Figure 3.1: Leafless Tree With Radius Dimensions in Simulation.

Figure 3.2: Lidar Scans of the Simulation Tree From Two Different Locations.

simulation. Components on the sensor rig were chosen such that the same components

could be attached to a drone to perform large scale data recording and mapping.

Thus, aspects of size, weight and power consumption were especially important when

picking out sensors. This also allowed the hardware sensor rig to be light enough for

use as a hand-held mapping device. The main components present on the rig were:

9



� Velodyne VLP-16 Puck 3D LiDAR

� Intel Realsense T-265 Tracking Stereo Camera

� Intel NUC i7

� PX4 Cube Orange

� Here2 RTK GPS

� Bullet M2 HP antenna

� Lilliput Field Monitor

It was possible to obtain 3D spatial data of trees from various sensors. The Zed2

stereo camera, Intel D435 depth camera, Livox lidar, Intel L515 solid state lidar

and the Velodyne VLP-16 Puck were available options. Stereo and depth cameras

were ruled out since lidars had a higher measurement precision. They were also

robust against changing light conditions and sun glare which was a significant factor

to consider under trees with gaps in their canopy. Lidars also had the property of

measuring the intensity of their returned rays, which varied depending on the material

from which they were reflected. This was an especially useful property for the neural

network to contrast between leaves and non-leaves (woody trunk or branch) points.

Among the lidar sensors, the Velodyne VLP-16 Puck was the only one which organized

its scan into a structure of rings while having centimeter level accuracy beyond 10

meters. Thus, the Velodyne VLP-16 Puck was mounted on the sensor rig.

Pose and odometry estimates for real-world data were obtained by mounting an

Intel Realsense T-265 Tracking Camera on the sensor rig. The main processing board

to which all the sensor data was fed via ROS was the Intel NUC i7. It was chosen due

to its computation ability despite its light weight. 16GB RAM and 256GB disk space

10



Figure 3.3: The Hardware Sensor Rig With UAV Compatible Sensors.
(a) Velodyne VLP-16 Puck 3D lidar (b) Here2 rover-side GPS antenna (c) Intel NUC
i7 (d) Intel Realsense T-265 tracking stereo camera (e) Bullet M2 HP antenna. The
PX4 Cube Orange and Lilliput field monitor are attached to the Intel NUC at the
back of the sensor rig.

was added to the Intel NUC. For this thesis, the Intel NUC was used only to collect

sensor data in the form of ROS Bags. All the core algorithmic processing described in

Chapter 4 were performed by replaying recorded ROS Bags on an Alienware 15 R3

laptop with an Intel i7 processor and 16GB RAM like those on the Intel NUC of the

sensor rig.

To replicate the setup of a UAV, the sensor rig was also equipped with a PX4
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Cube Orange flight controller. A Here2 RTK rover-side GPS antenna was attached to

the sensor rig while keeping its local base-station antenna out in the open, unblocked

by tree cover to allow geo-referencing of data that was collected. A Bullet M2 omni-

directional antenna was mounted on the sensor rig to perform administrative tasks like

initiation and termination of data recording, accessing files and rebooting the system

via remote login. A Lilliput field monitor was also connected to the Intel NUC to

provide visual access to the processes running on the Ubuntu 18.04 operating system

before, during and after data collection.

The Velodyne VLP-16 Puck lidar and interface box together weighed 830 g, the

Intel NUC weighed 490 g, the PX4 Cube Orange weighed 60 g, the Intel Realsense

T-265 Tracking camera weighed 55 g, the Here2 rover-side GPS antenna weighed

50 g and the Blue Ocean Lithium-ion Polymer (LiPo) battery weighed 1150 g. Thus,

2.6 kg was the total weight of the sensor and power supply payload that a drone

would need to carry, easily allowing flights of 10–15 minute durations with modern day

motors, propellers and electronic speed controllers (ESCs). In this thesis, real-world

data was collected by mounting all the sensors on a handheld rig and not by flying a

drone, even though weight and power requirements allowed for their use in a drone.

3.4 Real-World Data

Data for a Carnegiea gigantea (common name: saguaro) and Parkinsonia hybrid

(cultivated individual) (common name: palo verde) located near Biodesign C at Arizona

State University was collected by switching on the sensor rig and walking around

them in independent data collection efforts. Table 3.1 summarizes their common name

and corresponding GPS coordinate. In the remainder of this thesis the two plants

have been referred to using their common name. Data from the saguaro served as

a simpler, leafless and minimal branching test case, while the palo verde tree had
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more complexity in branching and many more obstructing leaves. Figure 3.4 provides

images of the two trees taken from a mobile phone and lidar scans from sensor data

recorded on the handheld rig.

Circumference tape measurements for the saguaro and palo verde were also taken at

various locations and the corresponding radius was noted as ground truth measurements

as shown in Figures 3.5. For the left, right and central branches of the saguaro however,

“diameter” measurements were taken from a point cloud using CloudCompare because

the branches were above a height of 4 m and unreachable to measure manually using a

tape measure. The radius values calculated from these measurements in CloudCompare

were underestimates of the true radii since they were “diameter” measurements from

a single-view and single scan point cloud, resulting in only partially visible branches

and making the measurements obtained chords of a circle and not the true diameter.

Table 3.1: Real-World Trees Near Biodesign Building C, Arizona State University

Plant GPS Coordinate

Carnegiea gigantea 33.4193, -111.9278

[Common name: saguaro]

Parkinsonia hybrid (cultivated individual) 33.4195, -111.9273

[Common name: palo verde]
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Figure 3.4: Real-World Trees and Their Lidar Scan.
(a, c) Mobile phone image of the saguaro and palo verde respectively. (b, d) Lidar
scan from the handheld sensor rig of the saguaro and palo verde respectively.
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Figure 3.5: Ground Truth Tape Measurement Locations for the Real-World Trees.
(a) Saguaro tape measurements (b) Palo verde tape measurements.
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Chapter 4

MAPPING PIPELINE

This section describes the four main stages of the tree mapping pipeline developed

in this thesis. Stages 1, 2 and 3 of the pipeline operate on 3D point cloud data or its

2D projection called a range image, while stage 4 uses the output of stage 3, 3D point

cloud data and 3D pose estimates.

The first stage consists of detecting points in the lidar scan that correspond to

woody and cylindrical portions of a tree like its trunk and branches using a deep

learning network. The network operates on a 2D range images of corresponding

3D lidar scans. The second stage uses detected tree points from the first stage and

identifies individual trunk and branch segments. Like the first stage, the second

stage also functions on 2D range images. The third stage parameterizes each of the

identified trunk and branch segments from the second stage into a unique 3D cylinder.

The collection of the cylinders obtained in this stage constitute a portion of the final

semantic tree map that is developed. The fourth stage implements a multi-sensor

factor graph. The factor graph is used to integrate all the partial semantic tree

maps into a completed map. It also fuses two sources of odometry and incrementally

improves the semantic tree map over time. Sections 4.1 - 4.4 provide details for each

of the four stages.

4.1 Stage 1: Tree Detection

A deep learning network was used to detect points in the lidar point cloud of

a tree that corresponded to woody and cylindrical portions of the tree. The deep

learning network needed to be fast in order to keep the overall algorithm operational
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in real-time. Thus, large networks like the Pointnet [Qi et al. (2016)] and Pointnet++

[Qi et al. (2017)] which operate directly on 3D lidar scans were not suitable. Instead, a

network like the RangeNet++ [Milioto et al. (2019)] which operates on 2D projections

of lidar scans called range images was preferred.

RangeNet++ is a semantic segmentation network that contains encoder and

decoder blocks and uses a five channel ⟨X, Y, Z, intensity, range⟩ range image as

its input. A similar but faster semantic segmentation network called the ERFNet

[Romera et al. (2018)] was also an attractive option to consider as mentioned in the

SLOAM paper [Chen et al. (2020)]. However, the ERFNet was designed to operate

on only RGB image data. Thus, a combination of the two networks using the overall

architecture of ERFNet but substituting the input layer with that of RangeNet++

was used.

The output of this modified network was made to match the dimensions of the

range image that was fed in at the input. So, by choosing a range image of high

enough resolution, a classification for every point in the point cloud as being a woody

cylindrical tree point or otherwise could be made. Also, working on range image

projections of a lidar scan rather than RBG images ensured that the network was

robust against varying light conditions when operating in the sub-canopy region of

the tree.

4.2 Stage 2: Branch Separation

This section describes the algorithm used to separate the portions of the tree

detected from the output of tree detection of Stage 1 into individual trunk and branch

instances. It operates on the range image representation of a lidar scan. Figure 4.1

illustrates a range image of a tree on which this branch separation algorithm is being

performed.
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Figure 4.1: Branch Separation Algorithm on a Range Image.
r1, ...rh and c1, c2...cw represent the rows and columns of the h × w range image.
The black dots represent the two pointers ptr1 and ptr2 while the euclidean distance
between their corresponding 3D points in the point cloud are shown as dthresh. The
red arrows indicate the directions in which the two pointers move during the course of
the algorithm. It begins at the left-most column of the lowest row and proceeds to
the right of each row after which it moves to the left-most column of the row above
it. Maroon indices on the range image indicate locations of the range image that
have been assigned an instance number from the queue while black indices indicate
numbers that will be assigned from the queue on the second pass of the pointers along
that row. All the points in the range image and 3D point cloud corresponding to the
same index get clubbed as a single trunk or branch instance. The green background
represents NaN values in the range image that have no corresponding point in the
3D point cloud.

Trees are usually structured such that the order of branching increases as we move

up from the ground causing a larger number of branches and branching points to

exist at higher portions of the tree. This algorithm makes use of such branching

characteristics of a tree and starts at the first column of the lowest row of the range

image and moves up one row at a time. A queue is maintained with branch indices

that can be assigned to trunk and branch instances in a given row. The queue is

empty at the beginning of the algorithm. The algorithm then counts the number of

trunk and branch instances present in the first (lower most) row. Assuming row r had

n trunk and branch instances, the queue is populated with a sequence of numbers

from 0 to n− 1. In a second pass along the same row, each trunk or branch instance

is assigned the value present at the front of the queue and elements are popped out of

the queue each time labelling of an instance is completed or a new instance needs to

be labelled in that row.

Having completed the first (lowest) row, the algorithm moves onto the row above
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it where it counts the number of trunk and branch instances in that row. If the same

number of instances exist as the previous row, the original fully populated queue used

for indexing in the first row is used for the second row as well. If there is an increase

or decrease in the number of instances for a given row, then the queue is populated

with a new set of indices starting from index n and going up to the number of trunk

and branch instances identified in that row. Once the appropriate indices are pushed

into the queue, the trunk and branch instances in that row are labelled with those

indices. This process repeats till the top most row of the range image is labelled.

To identify the start and end locations of a new trunk or branch instance in a given

row, the algorithm makes use of two pointers, ptr1 and ptr2, and a threshold distance

dthresh. If the 3D distance between the two pointers is greater than dthresh, a new

branch instance is assumed. It should be noted that not all points in the range image

have a corresponding point in the 3D point cloud. ptr1 always points to a column

preceding the one pointed to by ptr2. Algorithms 1 and 2 provide the logic described

here in the form of pseudocode. If no 3D point from the point cloud gets transformed

to a particular location of the range image, that location will hold an NaN value.
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Algorithm 1: Index (Count) Separated Branch Segments.

Input: Pointcloud of detected trunk and branch points, distance threshold

Output: Vector of pcl::PointIndices for each identified branch instance

1 Function Main :

2 Convert pointcloud to rangeimage of h× w dims

3 queue ← {∅} // queue holds available branch indices for a given row

4 for r ϵ {h-1, h-2...0} do

5 countInstances(r)

6 if number of instances is zero then

7 continue // no corresponding 3D lidar points in this row

8 queue ← indices based on number of instances in row r and row r-1

9 pt1 ← NaN

10 for c ϵ {0, 1, 2,...w} do

11 pt2 ← rangeimage[r][c]

12 if isNewInstance(pt1, pt2, distanceThreshold) then

13 queue.pop()

14 outputVector[queue.front()] ← queue.front()

15 pt1 ← pt2
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Algorithm 2: Identify Individual and Separable Branch Segments.

Input: Pointcloud of detected trunk and branch points, distance threshold

Output: Vector of pcl::PointIndices for each identified branch instance

1 Function isNewInstance(pt1, pt2, distanceThreshold):

2 d ← distance between pt1 and pt2

3 if pt1 is NaN && pt2 is NaN then

4 return false

5 else if pt1 is not NaN && pt2 is NaN then

6 return false

7 else if pt1 is NaN && pt2 is not NaN then

8 return true

9 else if pt1 is not NaN && pt2 is not NaN then

10 if d ≥ distanceThreshold then

11 return true

12 return false

13 Function countInstances(r):

14 ctr ← 0

15 pt1 ← NaN

16 for c ϵ {0, 1, 2,...w} do

17 pt2 ← rangeimage[r][c]

18 if isNewInstance(pt1, pt2, distanceThreshold) then

19 ctr ← ctr + 1

20 pt1 ← pt2

21 return ctr
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4.3 Stage 3: Branch Parameterization

In order to use trunk and branch segments as landmarks, they need to be uniquely

identifiable at any location or orientation in space. This is achieved by representing

each segment as a 3D cylinder using two vector quantities and a scalar number. One

vector represents the axis of the cylinder. The axis vector only encodes the orientation

of the cylinder but does not represent its position in space. Thus, the second vector, a

normal vector from the origin to the axis vector is utilized. To denote the thickness

of the cylinder a scalar quantity of the cylinder’s curvature is used. Inverse of the

curvature of a cylinder provides the radius of the cross section of the cylinder. All

three entities taken together form an R7 vector [aT , nT , κ] for a uniquely identifiable

cylinder in 3D space, with a = [a1, a2, a3]
T being the axis vector, n = [n1, n2, n3]

T

being the normal vector and κ being the curvature of its surface. Figure 4.2 illustrates

these vectors and scalar for a sample cylinder.

Figure 4.2: Vectors and Scalar Used to Represent a Cylinder.
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Now, given a set of 3D lidar points belonging to a trunk or branch segment, the

task is to parameterize those points as an R7 vector representing a cylinder that best

fits those points onto its surface. Formulation of a non-linear optimization function to

fit a cylinder to 3D points was first formalized by Marshall et al. (2001) and later also

used in SLOAM [Chen et al. (2020)]. The same algorithm has been used in this thesis.

As no open source implementation of it was available, the algorithm was implemented

from scratch for this thesis.

Assume that the branch separation algorithm from Section 4.2 identified a total

number of b trunk of branch segments. Let Pi, i ϵ {1, 2, ...b} represent the point cloud

of size n for segment i. For each point p(i,j), j ϵ {1, 2...n} in the point cloud Pi, an

error value is calculated using:

d(i,j) =
∣∣∣(p− (

ρ+
1

κ

)
n)× a

∣∣∣− 1

κ

=

√
|p−

(
ρ+

1

κ

)
n|2 − ⟨p−

(
ρ+

1

κ

)
n, a2⟩ − 1

κ

(4.1)

where p is the point p(i,j) in point cloud Pi, ρ is the distance from the origin to the

surface of the cylinder, κ is the curvature of the cylinder, a is the normalized axis

vector and n is the normalized normal vector.

Figure 4.3 shows the geometric error from Equation (4.1) as a diagram. It is

obtained by first finding the difference between point p(i,j) and the vector (ρ+ 1
κ
)n

which extends the normal vector n to the center of the cylinder. Then a cross product

of the difference vector with the axis vector a is calculated. The resulting vector is

one that exists in the radial plane of the cylinder and is proportional in length to the

distance of point p(i,j) from the center of the cylinder. By subtracting the radius 1/κ

from the magnitude of the cross product vector, a measure of point p(i,j)’s distance

from the surface of the cylinder is obtained. Minimizing such an error when summed

across all the points in the point cloud Pi would ensure that the cylinder being fit
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Figure 4.3: Visualization of the Geometric Error Metric That the Cylinder
Parameterization Algorithm Optimizes.

contains all the points of instance i as close to the cylinder’s surface as possible.

The error metric in Equation 4.1 can behave poorly for optimization problems since

small κ values take the error function to infinity. Since Equation (4.1) is continuous

and differentiable, based on Marshall et al. (2001), it can be rewritten as:

d̃(i,j) =
κ

2
(|p|2 − 2ρ⟨p, n⟩ − ⟨p, a⟩2 + ρ2)− ⟨p, n⟩ (4.2)

Thus, the cumulative error over all the points in segment i becomes:

di =
n∑

j=1

d̃(i,j) (4.3)

Equation 4.3 is the final error function that is optimized using the Levenberg–Marquardt

[Moré (1978)] non-linear optimizer provided by the Ceres [Agarwal et al. (2012)] C++

library. This optimization is performed independently for each of the b trunk and

branch instances. A collection of cylinders obtained in this stage from a given lidar

scan represent a portion of the final semantic tree map that is constructed in the next

stage (Section 4.4).

Note that the axis vector can be oriented in either direction along the cylinder

but to maintain uniformity, this work represents the axis of a cylinder in the positive
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Z direction when possible. If the cylinder axis lies in the XY plane, the convention

used is to consider the axis vector to be oriented toward the positive Y direction.

And, if the cylinder is collinear with the X axis, the cylinder axis is considered to be

oriented towards the positive X direction. Additionally, the cylinder described above

represents one that is infinitely long. There are no parameters used in this formula to

encode the length or end points of the cylinder. These parameters of length and end

points of the cylinder are extracted manually from the points in the point cloud to

which this cylinder is being fit. They are not a part of the cylinder fitting non-linear

optimization described here.

4.4 Stage 4: Map Integration

This section describes how partial semantic maps obtained in the previous stage

are assembled into a full semantic tree map.

4.4.1 Multi-Sensor Factor Graph

To obtain the full semantic tree map the Simultaneous Localization and Mapping

(SLAM) problem needs to be solved. One method by which this can be done is

by using the Graph SLAM algorithm [Thrun and Montemerlo (2006)]. A software

implementation of Graph SLAM in C++ is the library called GTSAM [Dellaert (2012)],

[Dellaert and Kaess (2006)], [Kaess et al. (2008)], [Kaess et al. (2012)]. GTSAM

formalizes the SLAM problem using a factor graphs.

A factor graph is a bipartite graph, meaning that it is a connected graph which has

two disjointed sets of nodes. In the case of GTSAM, one set of nodes hold the initial

estimates or optimized values of random variables, and the other set of nodes called

the factors represent error metrics that need to be minimized. Factors are attached

to all the random variable nodes which directly contribute to the error metric that
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Figure 4.4: GTSAM Graph for Tree Mapping.
Circular nodes represent random variable nodes and square nodes represent factors.
The nodes starting with the letter X represent the pose of the robot while nodes
starting with the letter L represent landmarks that the robot encountered. The robot
starts at X0 which is considered as the origin of the generated map. It then moves
to X1 and subsequently to X2 during the first and second time steps respectively.
With each movement, two odometry estimates are obtained. One from the Iterative
Closest Point (ICP) algorithm applied to successive point clouds and another from
either MAVROS in simulation or Visual Inertial Odometry (VIO) from the stereo
camera of the hardware sensor rig. These motion estimates are added as odometry
factors (pink and black respectively) between successive pose locations. As explained
in Section 4.4.4, each R7 cylinder landmark is separable into three nodes and factors.
Each landmark node is implemented internally as three separate nodes: the axis node,
normal node and curvature node, while their corresponding factors have been displayed
explicitly as the axis factor (red), the normal factor (green) and the curvature factor
(blue). From X1 the robot can view landmark L1 and L2, and from X2 the robot only
sees landmark L2. Thus, three landmark factors are drawn from L1 and L2 to X1,
and L2 to X2. Note that the curvature of a landmark is independent of the pose of
the robot and is implemented as a unary factor with no connection to a pose node.

they represent. Optimization of the graph to minimize the error metrics encoded by

factors is equivalent to obtaining the marginal probability for the random variable

nodes. The optimization step itself is formulated as non-linear least squares problem

and solved using the Levenberg–Marquardt [Moré (1978)] algorithm.

Factor graphs are built with nodes and factors incrementally over the course of the

entire SLAM process. Figure 4.4 shows how a factor graph as proposed in this thesis

for semantic tree mapping can be created. As described in Figure 4.4, different nodes

and factors depend on inputs from different sensors, however among the sensors used
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in this thesis, each sensor had a different operating frequency. MAVROS odometry

was obtained at 200Hz in simulation and VIO estimates from the Realsense camera

on the hardware sensor rig were output at 50Hz. Lidar scans from the Velodyne was

streamed at 10Hz in simulation and on hardware. In this thesis, the greatest common

divisor (GCD) of the frequency of all the sensors was used to add nodes and factors

to the graph. This meant that nodes and factors were only added when both, a new

odometry value and a new lidar scan were generated. Sections 4.4.2 - 4.4.10 describe

the exact implementation details of each type of node and factor used in this thesis to

create a semantic map of a tree.

4.4.2 Pose Node

3D Poses added to a GTSAM graph are represented using the gtsam::Pose3 C++

class having two main data members: gtsam::Point3 and gtsam::Rot3. Point3

represents 3D translation while Rot3 represents 3D orientation as a 3x3 rotation

matrix.

Whenever a node is added to a graph, an initial estimate for its value needs to

be provided. ICP only provides the relative transformation between two poses. So,

to get a global initial pose estimate from ICP, an external script had to be written

to keep track of the effective transformation upto the latest time step. On the other

hand, VIO output from the Realsense stereo camera would directly provide the initial

global pose estimate. Out of convenience, initial estimates for pose nodes were added

from VIO alone, although a noise variance weighted-average between ICP and VIO

would be a preferable form of node initialization.
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4.4.3 Pose Odometry Factor

An odometry factor between successive pose nodes were also added to the graph

to create a pose error metric and constrain the graph optimization problem. The error

metric was the difference between the current time step’s pose, and the previous time

step’s pose transformed by an amount specified by the odometry factor.

The in-built gtsam::BetweenFactor class was used to implement the factor, its

error metric and corresponding error jacobian. Since there were two modes of odometry

measurement in this system, every time a pose node was added to the graph, two

factors (or edges) corresponding to VIO and ICP measurements were added between

the current and previous pose nodes.

4.4.4 Landmark Node and Factor

As explained in Section 4.3, cylindrical trunk and branch features were denoted

using an R7 vector ci = [aTi , n
T
i , κi] where ai = [a1, a2, a3]

T
i was the axis vector,

ni = [n1, n2, n3]
T
i was the normal vector and κi was the curvature of the ith cylinder

in a given lidar scan. These cylinder features from Stage 3 (Section 4.3) of the

mapping pipeline were used as landmarks while creating a map of the semantic tree.

Every time a lidar scan was received and a set of cylinder landmark measurements

Cb = {c1, c2, ...cb} were parameterized, each cylinder ci ϵ Cb was added as a landmark

node to the GTSAM graph.

For an incoming cylinder landmark measurement from Stage 3 (Section 4.3) of

the mapping pipeline, if no correspondence was found in the graph through data

association, a new landmark node was added. New landmark nodes were initialized

with the value of the incoming measurement. However, if a correspondence was found

within the graph, the value of the corresponding landmark node was updated with the
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average of its own value and the value of the incoming cylinder measurement. Ideally,

a running average (using an external non-GTSAM data structure to keep track of

the total number correspondences made for a landmark through data association)

would need to be maintained for all landmark nodes. However, since the permitted

data-association error was kept low in this thesis, taking a simple average worked well.

To constrain graph optimization with respect to landmark nodes, error metrics

in the form of landmark factors were also added to the graph. The error metric

represented the difference between the expected landmark measurement value and

the actual landmark measurement obtained at a given robot pose. This meant that

the error metric was a function of a particular pose node and one or more landmark

nodes in the graph, which can be represented mathematically as:

e = f(L,X) (4.4)

Landmark nodes in the graph were represented in the global reference frame to ensure

that they were stored as unique entities throughout the mapping sequence, whereas

incoming landmark measurements were obtained in the local reference frame. Thus, a

coordinate transformation as represented in the following equation was necessary to

calculate the error metric for landmark factors:

e = T l
g Lg − Ll

e = R7×7 (Lg − t7×1)− Ll

e =


R3×3 03×3 0

03×3 R3×3 0

01×3 01×3 1


Lg −


01×3 01×3

11×3 01×3

01×3 01×3

X6×1

− Ll

(4.5)

where Lg is the R7 cylinder landmark in global reference frame, Ll is the incoming R7

cylinder measurement in local reference frame, X is the 3D robot pose represented as

[x, y, z, roll, pitch, yaw]6×1, T
l
g represents the global to local coordinate transformation
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of the entire R7 cylinder vector, R7×7 and t7×1 represent the block-wise rotation matrix

and translation vector for the axis, normal and curvature portions of an R7 cylinder

vector.

From the above equation it was seen that the first three components corresponding

to the error in the axis vector were independent of the next three components

corresponding to the normal vector, which in turn were independent of the last

component corresponding to the curvature of the cylinder. This meant that for a

single cylinder landmark, the axis vector, normal vector and curvature scalar could be

implemented as three separate factors. However, a common index was maintained for

each of the three types of factors in order to identify that they collectively represented

the same cylinder landmark.

Implementing R7 landmark factors as three separate R3, R3 and R1 nodes and

factors allowed for the use of simpler and more common GTSAM data types like

gtsam::Pose3, gtsam::Point3 and double floating precision. This in turn simplified

the calculation of the error Jacobian as well. Sub-sections 4.4.5 to 4.4.10 provide more

details about this separated implementation of cylinder landmarks.

4.4.5 Landmark Axis Node

Axis nodes are represented using gtsam::Point3 data types. The use of

gtsam::Pose3 is not required here since the node only needs to denote a collection of

three numbers that represent a vector in space. There is no need to represent both

translation and rotation components as is the case in Pose Nodes.

4.4.6 Landmark Axis Factor

The error metric for axis factors correspond to the first three components of

equation (4.5). The axis factor does depend on the pose node to which it is associated,
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however it only depends on that pose node’s orientation. This is because irrespective of

where in space a given cylinder is located or translated to, its orientation, represented

by the axis vector, will remain the same. Thus, this factor is derived from the

gtsam::BinaryFactor class and connects the Landmark Axis Node and a Pose Node.

The mathematical formula for it is provided below:

ea = T l
g Lga − Lla

(4.6)

ea = R3×3

(
Lga − 03×1

)
− Lla

ea = R3×3 Lga − Lla

(4.7)

where R3×3 is the rotation matrix from global to local frame, Lga is the axis vector

in the global frame in the GTSAM graph, LLa is the incoming axis measurement

in the local frame and ea is the error vector for the axis. The jacobian for the

error vector was calculated using the gtsam::OptionalJacobian parameters of

gtsam::Pose3::transformTo() and using a zero-translation version of the associated

pose node variable.

4.4.7 Landmark Normal Node

Normal vector nodes are also represented using gtsam::Point3 data types. The

use of gtsam::Pose3 is not required here either, since the node only needs to denote

a collection of three numbers that represent a vector in space.

4.4.8 Landmark Normal Factor

The error metric for normal-vector factors correspond to the second three components

of equation (4.5). The normal-vector factor depends on both, the translation and

orientation of the pose to which it is associated. This is because the normal vector is

what anchors the location of a cylinder in 3D space. When the position or orientation
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of the lidar changes, a corresponding transformation needs to be performed to shift and

rotate the cylinder frame of reference to the correct location and orientaiton in space.

Thus, it is derived from the gtsam::BinaryFactor class and connects the Landmark

Normal Node and a Pose Node. The mathematical formula for it is provided below:

en = T l
g Lgn − Lln

(4.8)

en = R3×3

(
Lgn − x3×1

)
− Lln

(4.9)

whereR3×3 is the rotation matrix from global to local frame, Lgn is the normal vector in

the global frame in the GTSAM graph, LLn is the incoming normal vector measurement

in the local frame, x3×1 is the robot pose and en is the error vector for the normal.

The jacobian for the error vector was calculated using the gtsam::OptionalJacobian

parameters of gtsam::Pose3::transformTo() from the associated pose node.

4.4.9 Landmark Curvature Node

The curvature node is the simplest of the landmark nodes. It is represented with a

scalar double floating precision number.

4.4.10 Landmark Curvature Factor

The curvature factor is also very simple to implement. It is not dependent on the

pose, thus, it is just a gtsam::UnaryFactor connected to the Landmark Curvature

Node alone. The error metric for it can be written mathematically as given below:

eκ = T l
g Lgκ − Llκ

(4.10)

eκ = Lgκ − Llκ
(4.11)

32



where Lgk is the curvature landmark factor in the GTSAM graph, LLk
is the incoming

curvature measurement in the local frame and ek is the error in curvature.

Note that the curvature does not change when a coordinate transformation to or

from the global and local frame is performed. So, in this case the curvature in the

“local frame” LLk
simply represents the measurement received at the current time step

from the cylinder parameterization algorithm. The curvature in the “global frame”

Lgk simply represents the curvature node in the GTSAM graph to which the curvature

measurement was data associated. In this case, the jacobian of the error with respect

to landmarks is simply unity.
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Chapter 5

RESULTS

First, results of a preliminary test that was performed to map a tree using an

existing state-of-the-art mapping algorithm called LeGO-LOAM [Shan and Englot

(2018)] has been described in Section 5.1. Then, results from the fours stages of

the tree mapping pipeline on simulation and real-world data have been provided in

Sections 5.2 and 5.3 respectively.

5.1 Inadequacy of Current Techniques

After proposing the semantic tree mapping problem statement for this thesis, the

first step was to check if existing lidar mapping methods like LOAM could already

map trees. A time optimized version of LOAM called LeGO-LOAM was used for these

tests by feeding it Velodyne point cloud and IMU odometry data from the ROS Bag

recorded in simulation.

LeGO-LOAM was unable to construct any meaningful map. The tree map

generated was highly skewed, had many drifted points and did not keep track of

the drone’s pose as shown in Figure 5.1 (a). Another test was run by placing cuboidal

pillars around the tree such that at any given point in time, at least three of the four

cuboidal pillars would be visible to the UAV. The purpose of placing the pillars was

to provide LeGO-LOAM with a set of sharp edge features and flat surfaces to use

for mapping. The pillars were designed to be 3 meters shorter than the tree. In this

test, LeGO-LOAM was able to map the tree only until the pillars were present in the

lidar scan. Once the drone flew above the height of the pillars and lost visibility of

them, tree mapping became distorted. Figures 5.1 (b) and 5.1 (c) show the simulation
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environment with the cuboidal pillars and the inadequacy of LeGO-LOAM to map

the tree above the height of the pillars.

These tests confirmed that LeGO-LOAM could only map an environment that had

sharp edge features and flat planes. Such features are common in urban settings but

rare in forests and agricultural lands. Thus, it was confirmed that there was a need for

different mapping algorithms for trees, and further work on this thesis was continued.

Figure 5.1: Inadequacy of LeGO-LOAM.
(a) Drifted UAV poses and a skewed map of the simulation tree produced by LeGO-
LOAM when mapping without cuboidal pillars. (b) Simulation environment with the
addition of four cuboidal pillars around the tree. (c) Successful pose estimation and
mapping by LeGO-LOAM only up-to the height of the pillars after which drifted UAV
poses and a skewed tree map were generated.
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5.2 Simulation Results

Results from the four stages of the tree mapping pipeline applied on continuous

real-time simulation data have been shown in Figure 5.2 and more details about each

stage have been provided in the following paragraphs. Although no specific execution

time calculations were performed for each stage of the mapping pipeline, its real-time

capability was validated by noting that there was minimal or no packet buffer or

loss when the mapping pipeline was operated at 10 Hz (the GCD of the operating

frequency of all the sensors as mentioned in 4.4.1).

Stage 1 - Tree Detection: The deep learning network described in Section 4.1 was

trained on 396 range images of lidar scans obtained by sampling the simulation ROS

Bag at 1Hz. The input range images and output segmented mask images were given a

height and width of 32 × 360. Intensity and Range channels were not used at the

input layer since the entire tree in simulation was leafless and made up of the same

material, thus yielding the same intensity value. The training process involved two

steps. The first step was to train the encoder portion of the network after which the

encoder weights were frozen and the decoder was trained. For the encoder training

step, the dimensions of the output mask images was 4× 180 (ie. one-eighth the height

of the decoder’s output layer and a proportional adjustment in width). A soft-max

activation function followed by a 2D cross-entropy loss function was used to compute

the error between the network’s output and the expected mask images. The network

yielded an accuracy of 96% when trained for 7 epochs with a batch size of 3 images.

Figure 5.2 (a) shows the segmentation result for the 190th lidar scan.
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Figure 5.2: Results of Mapping Pipeline on Simulation Data.
(a) Stage 1: Semantic segmentation of a lidar range image to detect tree points in
the lidar cloud. White pixels in the binary output image represent the detected tree.
(b) Stage 2: Separation and indexing of different branch segments for a particular
lidar scan of the tree. Different colors represent different branch segments. (c) Stage
3: Cylinder parameterization performed on lidar points of a single branch segment.
Bright red patches represent points from the lidar point cloud, the white cylinder
represents the optimized cylinder parameterized for the point cloud, the yellow spheres
are an initial estimate of the center of each lidar ring for the given branch segment,
the blue and magenta vectors represent the initial and final (optimized) estimates of
the axis of the cylinder respectively and the light yellow (overlapped by green vector)
and green vectors represent the initial and final estimates of the normal vector to the
cylinder respectively. The thin white vectors are a visualizations of the orthogonal basis
vectors created to enable unconstrained parameterization of the non-linear cylinder
optimization problem from Equation 4.3. (d) Stage 3: A collection of cylinders which
constitute the partial un-optimized semantic tree map from a single lidar scan of the
tree. (e) Stage 4: The full optimized semantic tree map and UAV path output by the
factor graph.
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Stage 2 - Branch Separation: The points of the point cloud that were segmented

out in Stage 1 were fed to this stage for trunk and branch separation. For this stage to

perform reliably over the entire simulation ROS Bag, the pairwise distance threshold

dthresh = 0.28 m was used. Figure 5.2 (b) shows a color coded lidar scan representing

different branch segments that were sectioned out by the branch separation algorithm.

Stage 3 - Branch Parameterization: Lidar scans from 10 different points in the

simulation ROS Bag were selected and from those scans, 24 trunk and branch segments

were manually separated using Stage 2 of the mapping pipeline. These segments had

different positions, orientations and thicknesses. It must be noted that tree point

clouds in simulation had much lesser irregularity than the real world since the tree

surface was a smooth cylinder in Gazebo. It was ensured however, that the noise

modeled into the rays of the lidar sensor in simulation was the same as the noise

of ±3cm reported on the Velodyne VLP-16 Puck’s datasheet for typical real world

working conditions. The Branch Parameterization algorithm when applied to the 24

segments resulted in cylinders that had a radius error of less than 2%. Figure 5.2 (c)

shows an example of how a cylinder was fit to a particular branch segment. Figure 5.2

(d) shows an accumulation of cylinders fit to all the branches visible in a particular

lidar scan. This set of cylinders represented a portion of the entire semantic tree map

being built.

Stage 4 - Map Integration: This stage fused odometry from two different sources

and also combined the parameterized trunk and branch cylinders from Stage 3 to

generate a full semantic tree map. iSAM2 [Kaess et al. (2012)] was chosen as the

underlying type of graph due its ability to optimize incrementally. The graph was

updated with odometry nodes and factors from MAVROS and ICP applied on detected

trunk and branch points of successive lidar scans. Landmark nodes and factors

corresponding to the axis, normal and curvature of the parameterized branches were
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also added to the graph. Figure 5.2 (e) shows the UAV’s pose and the full semantic

tree map after graph optimization (ie. marginalization of all the graph nodes).

To obtain a better semantic tree map, additional tuning for various GTSAM

parameters is required. Parameters like the noise variance for the pose and landmark

factors, weighted landmark data association equality thresholds for the three types of

landmarks, iSAM2 graph relinearization threshold and iSAM2 graph relinearization-

skip-steps affect the resulting semantic tree map. Tuning of these parameters is

dictated primarily be the stringency with which data association is implemented on

the trunk and branch landmarks. The stringency of data association itself is dictated

by the noise in robot pose, branch thickness and branch density for a given tree.

Additionally, changing the UAV flight path from quadrangles at discrete altitudes

to a circular or conical path around the tree and having a more gradual continuous

altitude increment would aid in filling out some of the gaps seen in the map.

The results in this section demonstrate that the tree mapping pipeline is able to

extract semantic information from a tree to encode its topology from continuously

streamed real-time data in the simulation environment.

5.3 Real-World Results

Tables 5.1, 5.2 and Figure 5.3 show results that were obtained on real-world data

from branch parameterization. The radius calculated for the base of the saguaro lay

within the minimum and maximum range of the ground truth measurement. The radii

calculated for the left, right and center branches of the saguaro were a few centimeters

higher than their half-chord ground truth measurements, as per the explanation in

Section 3.4. In the case of the palo verde, radius values calculated using branch

parameterization had a mean error of +/− 0.4 cm and a maximum error of +0.84 cm.

These real-world results show that semantic information being obtained from lidar
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scans lie close to the “...current forestry standard of having an error within a quarter

inch (0.65 cm) in DBH” as described by Stevn Chen, CEO and co-founder of a drone-

based autonomous forest inventory company called TreeSwift. Visual confirmation

that position and orientation estimates were correct for cylinders fit on trunk and

branch segments of tree point clouds was also obtained.

The results provided in this section were obtained by manually sectioning out

trunk and branch segments from raw real-world point cloud data. In order for the full

tree mapping pipeline to work in real-time on real-world data and yield more accurate

results (in a similar manner to its functioning on simulation data), the following three

stages need to be addressed in future work: Stage 1 Tree Detection requires additional

training of the neural network using labelled real-world lidar scans and the use of

Intensity and Range channels at the input layer; Stage 2 Branch Separation requires

the implementation of an adaptive dthresh parameter to reliably section out trunk and

branch segments for varying distances of the hardware sensor rig from the tree being

mapped; Stage 4 Multi-Sensor Factor Graph needs to be fully tuned as described in

Section 5.2.

Table 5.1: Estimated Radius (cm) of Different Segments of Saguaro.

Segment Name Tape Measure (cm) Branch Parameterization (cm)

Base 23.8 - 25.8 (radius) 25.99

Left 21.5 (half-chord) 23.73

Center 16.8 (half-chord) 19.25

Right 16.6 (half-chord) 23.91
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Table 5.2: Estimated Radius (cm) of Different Segments of Palo Verde.

Segment Name Tape Measure (cm) Branch Parameterization (cm)

Base 14.95 - 16.17 14.51

Left 7.68 - 8.49 8.79

Right 10.91 - 11.72 12.56

RightLeft 9.5 9.07

RightRight 5.66 - 6.47 5.24

Figure 5.3: Results of Mapping Pipeline on Real-World Data.
(a, c) Cylinders parameterized for the trunk of the saguaro and palo verde overlaid on
the full lidar point cloud respectively. (b, d) Collection of cylinders parameterized
for different trunk and branch segments of the saguaro and palo verde as provided in
Tables 5.1 and 5.2 respectively.
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Chapter 6

CONCLUSION

This thesis presented a semantic tree mapping pipeline that created a topological

representation of a tree. A simulation environment representing a simplified tree

mapping scenario was developed. A hardware sensor rig to collect pose estimates

and lidar tree data in the real world was also assembled and used. A deep learning

network to identify prominent woody portions of a tree was trained and an algorithm to

separate detected portions of a tree point cloud into trunk and branch segments was also

proposed. Each segment was then parameterized into a cylinder such that a collection

of cylinders would represent a portion of the semantic tree map being generated. A

multi-sensor factor graph was then formulated to assemble partial semantic maps into

the full map while incrementally refining the map and also accounting for two forms

of odometry. It was shown that a sequence of these stages could estimate position,

orientation and thickness of trunk and branch segments, making it applicable for both

forestry and precision agriculture applications. The simulation environment, hardware

sensor rig and tree mapping software pipeline together resulted in a real-time capable

end-to-end data recording and mapping framework for trees.
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Chapter 7

LIMITATIONS AND FUTURE WORK

This chapter describes limitations pertaining to this thesis and future work to

extend its capabilities.

7.1 Limitations

Four main limitations were identified. The first is that accurate odometry estimates

can not be obtained when moving in parallel to the axis of a cylinder. This is because

every part of a uniform cylinder produces the same landmark feature measurement

irrespective of where along its length lidar data is collected. Figure 7.1 (a) illustrates

how two different poses X1 and X2 see the same features from the cylinder despite

being at two different heights.

The next limitation is related to the R7 parameterization of cylinders having

infinite length. The mathematical formulation of a cylinder as a vector does not

take into account how long the cylinder is. Therefore, if the axis of two branches are

collinear, then they can throw off the system’s odometry and localization estimate.

Figure 7.1 (b) illustrates how a branch mix-up can lead to odometry offsets. The

tree is shown to have two unique, independent and unconnected branches (in yellow)

having the same radius and aligned collinearly on the left and right side of the tree.

When data is collected from the left side of the tree the yellow branch on the left is

measured. However, when data is collected from the right side of the tree and the

yellow branch on the right side is measured, the same landmark measurements as the

branch from the left side would be obtained leading to an offset in pose estimates and

in-turn an offset in the map being generated.
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A point to note about both limitations mentioned above is that, trees are usually

structured with an upward and outward branching structure. So, by the very nature of

tree shapes, even if a couple of branches fall under the limiting conditions mentioned

above, most of the other branches in high likeliness would still be uniquely representable.

This would allow pose estimates and landmark updates being performed by the graph

slam algorithm to stay on-course but result in a small drop in confidence of its

estimates.

Figure 7.1: Limitations of Tree Mapping Pipeline.
(a) Identical features of a cylinder seen from two different poses X1 and X2. (b)
Two different branch segments having the same cylinder parameterization due to
collinearity. (c) Dispersal of lidar points leading to lack of lidar points from smaller
branches when mapping from too far a distance.

A third limitation arises from the divergent nature of lidar rays. The further away
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the rays of a lidar travel, the more they get separated from each other. This is because

they are emitted at different diverging angles and continue to travel in a straight

line. If mapping is performed on trees from a far of distance, the rays will diverge so

much so, that they may miss entire branches all together as shown in Figure 7.1 (c).

However, if the lidar is too close to a tree, it would only be able to view a single branch

which would reduce the number of landmark associations made per scan and/or lead

to the first limitation of moving along the axis of a single visible cylinder. Both of

these conditions could result in diminished odometry and mapping outputs. Also, the

ideal distance with which mapping should be performed can vary based on the species

of the tree being mapped, the thickness and shape of its branches, the resolution of

lidar being used and precision with which mapping needs to be performed.

The final limitation of this thesis is that it does not account for bulged, flattened

and tapering tree trunk or branches. Instead, it assumes that the entire unit of a

branch or trunk is of uniform thickness. This means that when the same branch is

viewed from different angles or different heights, is can appear to be slightly different

each time (especially in its curvature measurement). Two techniques can be considered

to mitigate this issue. The first, more preferable technique, would be to enhance the

manner in which branches are modeled. Using new shapes like sections of a cone

or other tapered cylindrical shapes would allow for more accurate feature detection

and more robust feature association. The other method would be to weight the

curvature component a little more loosely during data association. This would allow

for measurements of the same branch to still be matched with each other and not

discarded simply because of slightly different curvature values when measured at or

from different locations.
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7.2 Future Work

This thesis has many avenues into which it can be expanded. The branch instance

detection algorithm depends on a distance threshold between a pair of points to

identify different branches from a range image. This distance threshold was kept fixed

in this work, since mapping was performed at approximately a uniform distance for

each tree, leading to a uniformly dispersed lidar scan. Adaptive ways of inferring

this distance threshold need to be implemented, so that if the distance from which a

tree is being mapped changes in the middle of the mapping process, branch instance

identification would still function well.

Another point of improvement would be to have additional modes of odometry

estimates. Here only VIO and ICP were used for odometry. An extra, outer layer of

optimization can be performed as SLOAM proposed, and odometry from that could

be added into the GTSAM graph as well.

This thesis focused on tree features that were woody and cylindrical like the trunk

and branches. Characterization of the crown of a tree would be of great benefit to

the ecology and robotics communities, as it could be used to simulate shade patterns;

estimate leaf, twig and floral litter; predict photosynthesis and transpiration properties

of a tree; and also provide a new set of features for localization and autonomous

navigation at the upper regions of a forest. Alpha shapes and sets of surface normals

could be one way to represent the crown of individual trees and the canopy of forests.

Finally, like most autonomous software, the pipeline proposed here needs to be

tested against many more trees of the same and different species to identify additional

pitfalls, develop fixes and make the system more reliable in the long run.
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of forest structure using two uav techniques: A comparison of airborne laser
scanning and structure from motion (sfm) point clouds”, Forests 7, 3, URL https:
//www.mdpi.com/1999-4907/7/3/62 (2016).

Wallace, L., A. Lucieer, C. Watson and D. Turner, “Development of a uav-lidar
system with application to forest inventory”, Remote Sensing 4, 6, 1519–1543, URL
https://www.mdpi.com/2072-4292/4/6/1519 (2012).

48

https://CRAN.R-project.org/package=rTLS
https://CRAN.R-project.org/package=rTLS
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413
https://www.mdpi.com/2072-4292/5/2/491
https://doi.org/10.1177/0278364906065387
https://doi.org/10.1371/journal.pone.0176871
https://www.mdpi.com/1999-4907/7/3/62
https://www.mdpi.com/1999-4907/7/3/62
https://www.mdpi.com/2072-4292/4/6/1519


Wulder, M. A., C. W. Bater, N. C. Coops, T. Hilker and J. C. White, “The role of
lidar in sustainable forest management”, The Forestry Chronicle 84, 6, 807–826,
URL https://doi.org/10.5558/tfc84807-6 (2008).

Zhang, J. and S. Singh, “Low-drift and real-time lidar odometry and
mapping”, Autonomous Robots 41, 2, 401–416, URL https://doi.org/10.1007/
s10514-016-9548-2 (2017).

49

https://doi.org/10.5558/tfc84807-6
https://doi.org/10.1007/s10514-016-9548-2
https://doi.org/10.1007/s10514-016-9548-2


BIOGRAPHICAL SKETCH

Rakshith Vishwanatha is a Master of Science student at Arizona State University
in the Robotics and Autonomous Systems department. Here he has explored various
sub-domains of robotics like dynamics and control; localization and mapping; and
computer vision while taking up relevant courses and gaining hands-on experience at
the Robotics and Intelligent SystEms (RISE) Laboratory and Distributed Robotic
Exploration and Mapping Systems (DREAMS) Laboratory. Before attending graduate
school he received a bachelor’s degree in Electronics and Communication and worked
professionally as a Computer Network Engineer for two years. Piecing together
science concepts through engineering applications has always been a core interest
of Rakshith’s, however, he also has a genuine appreciation for animal and nature
ecosystems. Connecting with the elements through multi-day hikes, rock climbing,
biking and bird photography are some ways he enjoys spending his free time. All
in all, working on a thesis consisting of a mix of technical concepts in mathematics,
software development and engineering with aspects of ecology and nature has been
extremely satisfying for him, and he looks forward to building upon all the experience
gained in the process.

50


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Thesis Statement
	Contribution
	Document Overview

	RELATED WORK
	SETUP AND DATA
	Simulation Setup 
	Simulation Data 
	Real-World Setup 
	Real-World Data 

	MAPPING PIPELINE
	Stage 1: Tree Detection 
	Stage 2: Branch Separation 
	Stage 3: Branch Parameterization 
	Stage 4: Map Integration 
	Multi-Sensor Factor Graph
	Pose Node 
	Pose Odometry Factor
	Landmark Node and Factor 
	Landmark Axis Node 
	Landmark Axis Factor
	Landmark Normal Node
	Landmark Normal Factor
	Landmark Curvature Node
	Landmark Curvature Factor 


	RESULTS
	Inadequacy of Current Techniques 
	Simulation Results 
	Real-World Results 

	CONCLUSION
	LIMITATIONS AND FUTURE WORK
	Limitations
	Future Work


	REFERENCES
	BIOGRAPHICAL SKETCH


