
Enhancing and Evaluating Neural Network Extraction Through Floating Point

Timing Side Channels

by

Gaurav Vipat

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2023 by the
Graduate Supervisory Committee:

Yan Shoshitaishvili, Chair

Adam Doupé
Siddharth Srivastava

ARIZONA STATE UNIVERSITY

December 2023

 i

ABSTRACT

The rise in popularity of applications and services that charge for access

to proprietary trained models has led to increased interest in the robustness of

these models and the security of the environments in which inference is

conducted. State-of-the-art attacks extract models and generate adversarial

examples by inferring relationships between a model’s input and output. Popular

variants of these attacks have been shown to be deterred by countermeasures

that poison predicted class distributions and mask class boundary gradients.

Neural networks are also vulnerable to timing side-channel attacks. This work

builds on top of Subneural, an attack framework that uses floating point timing

side channels to extract neural structures. Novel applications of addition timing

side channels are introduced, allowing the signs and arrangements of leaked

parameters to be discerned more efficiently. Addition timing is also used to leak

network biases, making the framework applicable to a wider range of targets.

The enhanced framework is shown to be effective against models protected by

prediction poisoning and gradient masking adversarial countermeasures and to

be competitive with adaptive black box adversarial attacks against stateful

defenses. Mitigations necessary to protect against floating-point timing side-

channel attacks are also presented.

 ii

ACKNOWLEDGMENTS

This work builds on top of ASU PhD student Zachary Wimer’s unpublished

dissertation on leaking neural networks in blind black box environments through

floating-point multiplication timing side channels.

 iii

TABLE OF CONTENTS

 Page

LIST OF TABLES .. v

LIST OF FIGURES ... vi

CHAPTER

1 INTRODUCTION ... 1

Motivation ... 1

Potential Contributions ... 3

Organization ... 4

2 RELATED WORK .. 6

Adversarial Attacks .. 6

Floating Point Timing Side Channels .. 10

Side Channel Amplification and Simulation ... 16

Leaking Neural Structures Through Timing Side Channels 17

Competing Frameworks ... 22

3 METHODOLOGY .. 25

Overview .. 25

Linearizing Sign Assignment ... 26

Improving Bias Leakage .. 28

Expediting Arrangement Discernment ... 31

Towards Multi-Bias Leakage ... 32

4 RESULTS .. 34

5 DEFENSES ... 35

 iv

CHAPTER Page

Defeating Prediction Poisoning Defenses ... 35

Defeating Gradient Masking Defenses .. 38

Defeating Stateful Defenses .. 42

6 MITIGATIONS ... 45

Disabling Subnormal Numbers .. 45

Modifying Stateful Defenses .. 45

Neural Network Quantization ... 46

Complex Network Architectures .. 47

7 CONCLUSION ... 48

Summary .. 48

Limitations .. 49

8 FUTURE WORK .. 50

Augmenting Gradient Based Black Box Attacks 50

Side Channel Amplification .. 50

REFERENCES ... 52

APPENDIX

A PERMISSION STATEMENTS .. 55

 v

LIST OF TABLES

Table Page

2.1 Floating Point Multiplication Timing Characteristics 11

2.2 Floating Point Addition Timing Characteristics 12

2.3 Floating Point Addition Timing Thresholds .. 14

3.1 Addition Timing Neuron Evaluations .. 26

3.2 Addition Timing Layer Evaluations ... 30

4.1 Leaked Parameter and Bias Accuraries .. 34

5.1 Adversarial Attack Average Query Distances 43

 vi

LIST OF FIGURES

Figure Page

2.1 Illustration of White and Black Box Adversarial Attack Scenarios 8

2.2 IEEE 754 Encoding Formula ... 10

2.3 Timing of Floating-Point Multiplication with a Hidden Parameter 15

2.4 Timing of Floating-Point Multiplication with a Hidden Layer.................. 19

2.4 Rectified Linear Unit Activation.. 22

2.5 Exponential Linear Unit Activation ... 23

3.1 Single Neuron Computation Visualization ... 25

3.2 Activation Dependent Bias Leakage ... 28

3.3 Activation Independent Bias Leakage ... 28

3.4 Single Layer Computation Visualization .. 30

5.1 Using Timing Side Channels to Defeat Prediction Poisoning 38

5.2 Generated Adversarial Examples .. 41

 1

CHAPTER 1

INTRODUCTION

Motivation

 Neural networks have seen unprecedented adoption across computer

science in recent years. Their ability to learn and solve complex problems in a

time and resource-efficient manner has led to their use in everything from image

classification and object detection to security-critical applications like facial

detection and network intrusion monitoring and detection. Due to the complexity

of the tasks at hand, training models that can perform them well is often

computationally expensive. Additionally, the data used for training may be

privately owned and confidential. This creates a challenge for developers who

want customers to be able to use their models to solve their problems but are

unwilling to provide the exact parameters or internal structure they use. To

address this issue, models are often deployed with only a black box query

interface exposed. The two most common techniques are network deployments

and deployments onto trusted hardware. Network deployments store and perform

inference with proprietary models on secure remote servers [9, 13]. Users query

these models over the network through an application programming interface.

This preserves the secrecy of proprietary models while still allowing for easy

usage. In environments where a network connection is not available, trusted

hardware devices can be leveraged to provide the same guarantees [10]. Models

are encrypted at rest and are securely loaded onto trusted hardware on demand.

This provides the same effect, keeping model parameters and internal structure

 2

private. A similar query interface is exposed for users. These model deployment

paradigms have facilitated the monetization of trained models. Services where

users pay for access to a proprietary model on a per-query basis have become

extremely popular. Paid applications that bundle trained models for classification

and detection tasks have also become prevalent.

The rise in popularity of applications and services that charge for access

to proprietary trained models and the widespread adoption of neural techniques

in security-critical applications has led to increased interest in the robustness of

these models and the security of the environments in which inference is

conducted. Neural network extraction attacks have been shown to be effective in

replicating the functionality and, in some cases, the exact parameters and

arrangements of proprietary models [5, 11, 14]. This poses a threat to pay-per-

query services as network extraction constitutes theft of intellectual property and

can be done cost-effectively. Additionally, query-based attacks have been shown

to be capable of generating adversarial examples by making perturbations to in-

distribution inputs, resulting in both general misclassifications and specific target

classifications [12]. These attacks pose severe threats to security-critical

applications of neural networks and can be applied in settings where no prior

information about the target model is available and only a query interface is

exposed. State-of-the-art black box adversarial attacks rely on extrapolating

gradients between a model’s input and output. Popular implementations of these

attacks have been shown to be deterred by defensive countermeasures that

poison predictions by manipulating the distribution of output classes and

 3

defenses that limit the propagation of gradients by smoothing a model’s

classification boundaries.

A model extraction attack that leaks the exact parameters and internal

structure of a network while being resilient to adversarial countermeasures would

reveal limitations in standard adversarial defenses and expose models that were

previously thought to be robust to adversarial threats. Leaking exact parameters

and structures would have the added benefit of reducing the black box

adversarial example generation problem defined by a query interface to a white

box one. The high-precision leaks and additional structural information could be

leveraged to guide the creation of adversarial examples, even when the target

models have been hardened against iterative black box adversarial attacks.

Additionally, if the attack could be masked to evade detection from stateful

adversarial attack defenses, it would be applicable to an even wider range of

protected targets, further demonstrating the gap in modern adversarial defenses.

Potential Contributions

 This work explains in detail the inner workings of Subneural, a framework

that applies floating-point timing side-channel attacks to leak exact neural

network parameters and the internal structure of their hidden layers. It assumes a

black box assumption where the target model is only accessible through a query

interface and no prior information about its architecture or structure is available.

Critically, the attack is not dependent on the output of individual queries, making

the framework applicable in a blind setting where query responses are not

available or in black box scenarios against models that are protected by

 4

prediction poisoning defenses whose output distributions cannot be trusted.

Novel sign assignment and arrangement leakage algorithms that exploit addition

timing side channels are introduced, expediting the process of leaking the signs

and arrangements of discovered parameters. An addition timing based bias

extraction technique is also presented, making the framework applicable to a

wider range of targets while preserving its independence from model outputs.

The enhanced framework is then evaluated on targets protected by accuracy

preserving and full prediction poisoning model extraction defenses. It is also

shown to be effective in leaking models protected by gradient masking

adversarial countermeasures including defensive distillation. Additionally,

modifications to the framework that allow it to be applied to targets protected by

query similarity score based stateful adversarial defenses are demonstrated.

Finally, countermeasures that mitigate the threat posed by floating-point timing

side-channel attacks are presented.

Organization

 The following chapters are organized as follows. Chapter 2 summarizes

the landscape of adversarial attacks on neural networks, introduces the floating-

point timing side channels utilized by Subneural and similar frameworks, explains

Subneural’s attack stages and limitations, and compares Subneural with an

existing floating-point timing side channel-based network extraction framework.

Chapter 3 details the application of the addition timing side channel to more

versatile and efficient leakage of parameter signs, arrangements, and biases as

applied to a single neuron, a single-layered perceptron, and a support vector

 5

machine. Modifications necessary to apply the attack to Multi-Layer Perceptrons

are also discussed. Chapter 4 provides results on the accuracy of leaked

parameters. Chapter 5 provides an overview of prediction poisoning adversarial

defenses and shows how Subneural is still effective against models protected by

this countermeasure. Neural network distillation is then introduced and its

application to defending neural networks from gradient-based adversarial attacks

is demonstrated. Subneural is again shown to be effective in leaking models

protected by this defense. Implementations of stateful adversarial attack

countermeasures are also evaluated against Subneural. Modifications to

Subneural that have been shown effective in masking gradient-based attacks to

defeat these defenses are also presented. Chapter 6 proposes mitigations for the

threats posed by Subneural and other attacks that utilize floating-point timing

side-channel attack vectors. Finally, Chapters 7 and 8 summarize the

contributions of this thesis and discuss potential avenues for future work.

 6

CHAPTER 2

RELATED WORK

Adversarial Attacks

 The explosion in popularity of pay-per-query applications and services [13]

has created an increased interest in attacks that leak paywalled models in a cost-

effective manner. A number of neural network extraction attacks have been

shown to be effective in achieving this goal. Extraction attacks fall into two broad

categories, functionality approximation and exact model extraction.

Attacks that attempt to approximate the functionality of a protected model

utilize query interfaces to generate a dataset of predictions made by the hidden

model [11]. A new neural network is then created by the adversary with an

architecture and structure that is determined by prior knowledge about the

problem domain or chosen arbitrarily. This replica network is then trained on the

input-output pair dataset generated by the protected model, yielding a model that

has approximately the same classification boundaries as its target. This

technique is feasible because it employs the same principles as knowledge

distillation, a technique used to distill the knowledge learned by over-

parameterized or ensemble models into smaller more efficient ones. Rather than

learning from the one hot encodings provided in training datasets, distilled

models can learn from the output probability distributions of the trained teacher

model. This allows relationships between classes to be learned in concert with

the correct labels, making the training process more sample efficient. Distilled

models can often achieve similar classification accuracies while being trained on

 7

a fraction of the original datasets. Attacks like Kockoffnets exploit this benefit and

have been shown to be effective in replicating the functionality of paywalled

models in a bounded number of queries, making the attack cost-effective and

feasible against models with high per-query costs.

Attacks that extract exact model parameters and attributes have also been

demonstrated. These attacks build on top of functionality approximation attacks

by generating a training dataset of protected model predictions and then training

multiple candidate models that approximate the functionality of the target, each

with different architectures and internal structures [14]. Once the candidate

models are generated, a second meta-network is trained to map approximate

black box models to their attributes. The predicted attributes include model

architecture features, the optimization technique used for training, and

information about the original training dataset. This technique has been shown to

be efficient in leaking the exact architecture and parameters of protected models

in black box environments with limited query budgets.

The widespread adoption of deep learning techniques in security-critical

applications has created an explosion of research in adversarial attacks against

trained models. A lot of research has been done into adversarial machine

learning techniques that generate adversarial examples with the aim of yielding

either a general misclassification or a specific alternate classification. The threat

posed by these attacks is severe as they can be applied against neural network

based facial detection and network intrusion detection and monitoring systems to

 8

perturb malformed or malicious inputs, manipulating their inferred classification

and evading detection.

Figure 2.1

Illustration of White and Black Box Adversarial Attack Scenarios

 Most adversarial attacks fall into one of two categories, white box attacks

and black box attacks. White box attacks have prior knowledge about the

architecture and structure of the networks that they are attacking. They then use

this information to calculate gradients of individual layers with respect to the

model output and to inform their adversarial search algorithm, eliminating the

 9

need to search the space of possible models and allowing for exact classification

boundaries to be calculated and manipulated [15]. However, these attacks have

limited applicability as this information is unavailable in most real-world attack

scenarios. Pay-per-query inference services restrict access to model parameters

and structure, exposing only a black box interface. Applications that are deployed

with trained models encrypt them at rest and load them onto trusted hardware for

inference, creating a similar black box query environment. Due to these

constraints, white box attacks are not applicable in these environments.

Black box attacks have no prior information regarding the architecture of a

target neural network nor the structure of its hidden layers. They instead only

have access to the inputs and outputs of a model through a query interface.

These attacks extract information about the hidden layers of a model by

extrapolating relationships between the inputs to a model and the individual class

confidence values provided in the model’s output probability distributions [16].

Samples from within a target model’s training distribution can be modified by

predetermined filters or perturbed iteratively. Changes in the output probability

distributions are then observed and correlated with the perturbations that caused

them. Further perturbations are made in the direction that results in the desired

output probability distribution. Most attacks aim to add the minimal perturbations

necessary to result in a sample’s misclassification, but they can also be used to

perturb an example into a specific desired output class. Black box attacks are

applicable to a much broader range of real-world targets as most applications

and services that provide access to machine learning models as a service do so

 10

through a query interface. They have been shown to be effective in finding

adversarial examples through query interfaces with limited query budgets.

Figure 2.2

IEEE 754 Floating Point Encoding Format

Floating Point Timing Side Channels

 Modern computers utilize the IEEE 754 standard format to encode floating

point values in binary [17]. The standard breaks up floating point values into

binary encoded signs, fractions, and exponents such that the value n is equal to

the sign times one plus the fraction times two to the sum of the exponent and

bias as shown in Figure 2.2. This allows arbitrary floating-point values to be

stored and represented in binary and facilitates mathematical operations on

these binary-encoded values. Revisions to the IEEE 754 format have added

provisions for different encoding sizes including 16-bit, 32-bit, and 64-bit, each

with a single sign bit and with the remaining bits split between the exponent and

mantissa. One of the features of this encoding format is that it has a provision for

storing numbers that are smaller than the smallest representable floating-point

number. Normal encoded floating-point numbers are required by the standard to

have fractions that have no leading zeros. If a value were to have a fraction with

a leading zero, its correct representation would shift the fraction to the left and

shift the exponent by one. This ensures that the first bit of encoded fractions for

 11

all numbers between the minimum and maximum floating-point values for an

encoding size is a one. However, in the special case of numbers that are smaller

than the minimum representable floating-point value and, as such, would have

exponents that are smaller than the smallest representable exponent, fractions

with leading zeros are allowed. Floating point encoded numbers that have

leading zeros in their fraction and the minimum all zero exponent are called

denormalized or subnormal numbers. They make use of the otherwise wasted

space in the encoding format to gradually underflow small numbers to zero rather

than abruptly truncating values when they pass below the threshold of the

minimum normally encoded number. This enables accurate floating-point

operations on values that are near this threshold and provides a general boost in

the accuracy of operations on larger numbers.

Table 2.1

Floating Point Multiplication Timing Characteristics

Operand Operand Result Speed

Normal Normal Normal Fast

Normal Normal Subnormal Slow

Subnormal Normal Normal Slow

Subnormal Normal Subnormal Slow

Subnormal Subnormal Zero Fast

 12

Several floating-point timing side channels in x86 CPUs have been

discovered over the last decade. They all stem from an unintended side effect of

supporting subnormal IEEE 754 values. It has been observed that floating-point

multiplication experiences performance degradation on the scale of up to two

orders of magnitude when certain operands or results are values that have

subnormal floating-point encodings. Standard floating-point multiplication of two

normal numbers takes 4 clock cycles on a modern CPU [3]. The same

computation takes over 200 clock cycles when one of the operands is subnormal.

Table 2.1 shows a number of sample floating point multiplication configurations

and their performance characteristics. The key observation is that multiplication

operations experience severe performance degradation when either operand is

subnormal and if the result is subnormal.

Table 2.2

Floating Point Addition Timing Characteristics

Operand Operand Result Speed

Normal Normal Normal Fast

Normal Normal Subnormal Fast

Small Normal Small Normal Normal Fast

Small Normal Small Normal Subnormal Slow

Subnormal Normal Normal Fast

Subnormal Normal Subnormal Fast

Subnormal Subnormal Normal Fast

 13

Operand Operand Result Speed

Subnormal Subnormal Subnormal Fast

 Floating point addition also experiences similar performance degradation,

but the conditions under which degradation occurs are much more restrictive. As

shown in Table 2.2, addition operations require both operands to be small normal

floating-point numbers that are strictly less than a fixed threshold for each

floating-point encoding format. The maximum threshold value that operands must

be less than has been empirically determined and corroborated [3]. If the

summation of two small normal numbers is subnormal, floating point addition

experiences the same severe performance degradation as multiplication

operations. For these constraints to be satisfied, one of the operands must be

negative. The limit on the size of the operands is due to the truncation of addition

operations when the result underflows below the smallest representable

subnormal floating-point numbers. The two operands need to be small enough

that the magnitude of the difference between them is subnormal. If the operands

get too large, the magnitude of their differences combined with the error

associated with floating point subtraction operations results in an underflow and

is rounded to zero. The threshold value is dependent on the precision of the

encoding standard as the exact value at which this underflow begins to occur is

dependent on the size of the fraction and exponent. Exact addition timing

threshold values are defined in Table 2.3.

 14

Table 2.3

Floating Point Addition Timing Thresholds

Encoding Precision Maximum Threshold Minimum Threshold

Single 6e-33 1e-28

Double 1e-292 2e-308

These floating-point timing side channels can be applied to leak hidden

values from floating-point multiplication operations in scenarios in which the

secret parameters are multiplied by values input by a user. So long as the inputs

to the multiplication operations can be manipulated freely, changes in the running

times of these multiplication and or addition operations can be used to leak the

values of hidden parameters and make conclusions about the relationships

between multiple user-controlled inputs. Consider an example in which a single

floating-point value is taken as input and is multiplied by a single value and the

output is returned. Assuming the hidden value is a normal floating-point number,

we can use the timing characteristics to split the input space into two. For all

normal floating-point numbers whose product with the hidden value is also a

normal floating-point value, the time it takes for the multiplication operation to

complete will be fast. For all normal values whose product with the hidden value

is subnormal, the time the multiplication operation takes to complete will be up to

two orders of magnitude slower. This partitions the input space into values that

are too big for their product with the hidden value to be subnormal, and values

that are small enough such that their product with the hidden value is subnormal.

 15

The timing characteristics of one such multiplication operation are shown in

Figure 2.3. This property can be exploited to binary search the input space for

the input value at which the time the multiplication operation takes changes from

fast to slow. The threshold value is known to be the largest value whose product

with the hidden value is normal. The smallest normal value can be determined

using the numeric limits library for each floating-point encoding precision and

since it can be concluded that the product of the input and the hidden value is

this largest normal number, the hidden value can be solved for by dividing the

determined largest normal number by the input value found in the binary search.

This yields an exact leak for the hidden value within the margin of error of

floating-point multiplication and division operations for the target encoding format.

Figure 2.3

Timing of Floating-Point Multiplication with a Hidden Parameter

 16

This technique was initially developed and shown to be effective in leaking

hidden parameters in web browsers [1] where filters that perform floating-point

multiplication of web page pixel values with attacker-controlled filter values can

be repeatedly applied to protected web elements by a malicious process to leak

the exact values of the hidden pixels.

Side Channel Amplification and Simulation

The reality of applying timing side-channel attacks to real-world targets is

that the time an operation takes to execute may vary significantly under

seemingly identical circumstances. This is due to the fact that in real-world attack

scenarios, there may be a number of additional processes running on a target

host whose execution is interleaved with the execution of the attack process.

This makes the time it takes for the same operation to be executed vary

uncontrollably between executions. Suppose a fast floating point multiplication

operation is expected to take on average one nanosecond and a slow

multiplication takes on average ten. If the variation in execution time due to

external factors is more than nine nanoseconds, fast multiplications may be

incorrectly registered as slow and vice versa. To address this problem, real word

timing side-channel attacks use a technique called amplification in which the

same operation is executed with the same inputs hundreds or thousands of

times. This, as the name suggests, amplifies the timing side channel, creating a

much larger gap between fast and slow executions and allowing for more

consistent separation samples. Amplifying a single floating point multiplication

operation by a thousand times changes the fast and slow timing scenarios from

 17

one and ten nanoseconds to one thousand and ten thousand nanoseconds,

greatly increasing the resilience of timing side-channel detection to external

factors. The key drawback of amplifying timing side channels is that it makes

attacks take significantly longer. Each input will need to be run thousands of

times before a clear decision can be made about its performance characteristics.

Neural networks can have thousands of parameters per layer, making developing

and testing timing side-channel attacks on real-world targets with amplification

impractical. For this reason, Subneural uses a simulated timing framework in the

form of a floating-point operation library that returns simulated exact computation

times for each operation given its inputs. Model parameters and structure are

stored as structs and inference is conducted using simulated timing operations.

This greatly expedites the search process as each input configuration only needs

to be tried once. A timer class is used to decouple the attack from the underlying

timing implementation so attacks developed using the simulated timing

framework could be easily adapted to use amplified timing side channels on real-

world targets by simply replacing the timer class with one that is appropriate for a

given scenario and target.

Leaking Neural Structures Through Timing Side Channels

Floating-point timing side channels can also be applied to neural network

extraction. Most neural inference techniques can be reduced to the multiplication

and accumulation of floating-point vectors and matrixes. Attack frameworks that

manipulate inputs and make deductions based on changes in the time it takes for

a model to return an output have been shown to be effective in leaking exact

 18

hidden parameter values [3]. Subneural is one such framework developed by

ASU Ph.D. student Zachary Wimer that extracts neural networks without

dependence on the outputs of queries. The attack is split into four stages, leaking

weight magnitudes, leaking neuron biases, assigning weight signs, and

discerning weight arrangements. The first step is to leak the values of network

parameters. In environments in which the input to a model can be freely

manipulated, Subneural applies the binary search property previously defined on

a per-element basis. It isolates inputs by setting all the other elements in the

input vector to zero, then searches for changes in performance characteristics in

the input space of the isolated input. This ensures that any changes detected in

inference times can be attributed to the input element being modified. Applying

this technique to the evaluation of a single neuron yields the weight

corresponding to the isolated input times the provided input plus the product of

the remaining weights and zero, leaving just the product of the target input and

its corresponding weight as the input to the neuron’s activation function. Under

the standard assumption that all model parameters are normal floating-point

values, it can be concluded that the product of our target input and weight will

display a degradation in performance when its result is subnormal. This

knowledge can be used, as previously shown, to binary search for the threshold

value at which the execution time of the multiplication operation changes. Slow

and fast baseline execution times can be determined by using the maximum

subnormal value and one respectively, and inputs between them can be

searched accordingly. The search will terminate at the boundary at which the

 19

computation time spikes which is known to be where the product of the first

weight and the first input are equal to the largest subnormal value. The input

value at this threshold and the minimum normal floating-point value are both

known so the value of the hidden parameter can be solved for. At this point, the

sign of the leaked parameter has yet to be determined as this computation would

display performance degradation for both the discovered input and its negation.

Signs are assigned to leaked weights in a later stage. The technique described

here can then be applied to each of the elements in the input vector, allowing the

magnitudes of all a model’s parameters to be leaked.

Figure 2.4

Timing of Floating-Point Multiplication with a Hidden Layer

 20

 In the case of a single-layer perceptron with multiple neurons, a binary

search of the entire input space can be employed to discern the number and

magnitudes of hidden parameters. Since each input element has a weighted term

in each of the neurons in the layer, slow and fast baselines can be determined

using the same values as before. Because there is now one multiplication

operation for each neuron, the slow baseline will have one potential degradation

for each of the neurons in the layer. This causes the timing characteristics of the

space between the baselines to become a step function with an increase in

execution time each time the value of the input becomes small enough for its

product in another neuron to become subnormal. This necessitates a recursive

binary search between each of the detected performance degradations, resulting

in a vector of leaked parameters in increasing order of magnitude that

corresponds to the isolated input. In the case of support vector machines, a

linear or polynomial kernel can be applied to the summation without affecting

Subneural’s ability to leak parameters. Gaussian and other exponential kernels,

however, make this attack infeasible as they restrict the output space that can be

searched. The hidden parameters of a multi-layer perceptron can also be leaked

via the same technique augmented by a backtracking search.

In models in which a bias node is present, the bias must be determined

before the signs as the bias value will initialize each accumulation and overpower

any small values that follow. There are multiple ways in which the bias can be

leaked. If the type of activation function used by a model can be identified or

assumed to be tanh or another hyperbolic function, Subneural can take

 21

advantage of another timing side channel that affects this family of functions.

Tanh experiences similar performance degradation when applied to subnormal

inputs. This property can be used to leak the bias in a summation by setting the

product of the first input and weight to be our guess for the bias and setting the

product of the second input and weight to be a subnormal number. Should the

bias guess match the actual bias, those two terms will zero out, allowing the third

subnormal term to remain. This will result in a subnormal input to the Tanh

activation function which will exhibit detectable performance degradation. This

allows the bias term to be brute force searched for utilizing a fixed stride length

and to be leaked with the margin of floating-point error.

A backtracking assumption stack is used to test candidate sign

assignments and parameter arrangements. Since there is no way to discern this

information using only the multiplication timing side channel, an exponential brute

force search must be employed. If the performance characteristics of an input are

inconsistent with the current assumptions, individual signs and arrangements are

iteratively rolled back until a satisfying assignment and configuration is found.

This step is also computationally intensive and as such limits the applicability of

the attack against networks with large numbers of neurons and inputs.

Subneural has been shown to be effective in blind black box attack

scenarios against single neuron targets with and without biases, single layer

perceptrons with and without biases, and support vector machines with kernels

that don’t restrict the ability to search the output space with and without biases. It

 22

has also been demonstrated to be applicable in theory to shallow multi-layer

perceptrons.

Figure 2.5

Rectified Linear Unit Activation

Competing Frameworks

 Recent work has shown successful applications of floating-point

multiplication and addition timing side-channel attacks to neural network leakage

[3]. This attack is reliant on a model’s output, making them ineffective against

prediction poisoning defenses in black box attack scenarios and making them

ineffective in blind scenarios. It also assumes that all of the neurons in the

network use rectified linear units (RELU) as their activation functions. RELU is a

function that takes a linear input and returns the same linear output with negative

values truncated to zero as shown in Figure 2.5. This means that if a neuron’s

 23

summation was negative and an additional negative input was added to it, the

output of the model would not change as RELU would rectify it to zero as it had

done before. If the summation was previously positive, adding either a positive or

negative value to it would affect the RELU output and in turn the output of the

model. The attack exploits this property to determine the signs of leaked

parameters and leverages exact output values to determine the signs and

magnitudes of biases.

Figure 2.6

Exponential Linear Unit Activation

The assumption that all network layers utilize RELU activations also limits

the applicability of these attacks. While RELU is one of the most popular

activation functions, it is uncommon for all the layers of a network to use the

same activation, RELU or not. Typically, classification models use a SoftMax

 24

activation for their final output layer to normalize the output probability

distribution. Additionally, RELU alternatives such as the exponential linear unit

(ELU), shown in Figure 2.6, have become increasingly popular. ELU allows

restricted negative values to propagate through neurons, breaking the

assumptions made by this attack and rendering it useless against targets that

utilize ELU activations. The attack also makes the assumption that it is possible

to detect which layer a slow multiplication occurred in. While this is theoretically

possible, it also severely limits the attack’s applicability.

 A number of cache timing and power side-channel based neural network

extraction attacks have also been demonstrated [2] but these attacks require

intrusive access to the hardware being used for inference and or additional attack

processes to be run in concert with the inference process. These limitations

restrict their applicability to trusted hardware implementations of model query

interfaces and render them useless against models deployed using the more

popular paradigm of making queries over the network to remote servers that

conduct inference. Subneural is already more versatile than these types of

attacks and the improvements made in this work further increase its efficiency

and applicability.

 25

CHAPTER 3

METHODOLOGY

Overview

 This section is laid out as follows. Improvements to the sign assignment

component of Subneural that leverage the addition timing side channel

mentioned above are first demonstrated against a single neuron. The addition

timing side channel is also applied to bias extraction, eliminating the framework’s

dependence on activation function specific timing side channels. The side

channel is then applied to matching relative parameter signs and discerning

arrangements of single-layer perceptrons and nonrestrictive support vector

machines without bias nodes. Finally, modifications to the framework are

proposed that would enable its application to single-layer architectures with

biases and shallow neural networks.

Figure 3.1

Single Neuron Computation Visualization

 26

Table 3.1

Addition Timing Neuron Evaluations

Possible Evaluations Speed

Fast

Fast

Fast

Slow

Linearizing Sign Assignments

 In the case of a single layer with one neuron without a bias in its

summation, as shown in Figure 3.1, the addition timing side channel can be

applied to discern the signs of the leaked weights. Relationships between input

elements are evaluated in a pairwise fashion. To determine which pair of inputs

corresponds to the first two elements in a neuron’s summation, each candidate

pair has one value set to a previously defined encoding specific small positive

normal number and the other set to a small negative normal number such that

the sum of these two values is a subnormal number. The remaining input

elements are all set to one as illustrated in Table 3.1. If the elements in the

candidate pair correspond to the first two elements in the neuron’s summation

and the two weights have the same sign, the accumulation of the products of the

weight and input vectors will first result in a subnormal number before the

remaining ones are added on. As previously shown, the summation of two small

normal numbers with a subnormal result will exhibit performance degradation. If

 27

any of the ones corresponding to the remaining input elements precede or split

the elements corresponding to the candidate pair, the small normal numbers will

be summed with a one first which, due to their exceedingly magnitudes, will be

rounded to one. This means the two input elements that correspond to the first

two elements in a neuron’s summation can be determined through the timing

side channel. Additionally, because the summation will only result in a subnormal

value when the products of the inputs and their weights have opposite signs, a

sign assignment relative to the assumed sign of the first weight can be

determined by testing candidate pairs with same and opposite sign variants of

the target values. The order of the first two elements also cannot be determined

so the first input element is assumed to be the first input in the summation. To

determine the third input in a summation, the assumed first input is set to zero

and the assumed second input is used to test candidate pairs for the third input.

The remaining elements are again set to one. Another performance degradation

will be detected when the input corresponding to the third weight in the neuron’s

summation is tested with the addition timing targets because the effective

summation will be zero plus the two target values plus a sequence of ones. Once

the first three inputs and signs are identified, each of the remaining inputs can be

iteratively sign matched by setting all of the previously discovered inputs to zero,

setting the last discovered input and test input pair to the two addition timing

target values, and setting the remaining inputs to one.

 28

Figure 3.2

Activation Dependent Bias Leakage

Figure 3.3

Activation Independent bias Leakage

Improving Bias Leakage

Subneural employs a brute force search parameterized by a stride length

to search over possible bias values to find inputs that have a subnormal

summation when added to the bias. The subnormal results can be detected

through timing side channels in neuron activation function. Hyperbolic activation

functions like tanh experience performance degradation when evaluated on

subnormal inputs. A visualization of this technique is shown in Figure 3.2. While

this approach is effective in leaking biases in blind black box environments, many

popular network activation functions are not susceptible to any timing side

channel. Notably, the standard Rectified Linear Unit (RELU) activation function is

not, rendering Subneural useless against the majority of neural networks. This

technique, however, can be adapted to instead search for a similar degradation

in the performance of floating-point addition operations, making it applicable

 29

regardless of the activation function used. If the product of the first term and its

corresponding weight is set to the bias guess and the products of the remaining

two terms are set to the two small normal targets whose sum is subnormal, the

resulting summation will be slow if the bias term is zeroed out by the first product

and the following two products are allowed to sum to a subnormal value as

shown in Figure 3.3. If the bias guess is incorrect, the first term will dominate,

and the following values will be rounded off. This allows Subneural to be used to

leak the biases of networks that use activation functions that are not susceptible

to a subnormal timing side channel without relying on the influence of activation-

specific properties on the model’s output.

A limitation of this approach is setting target values for the product of an

input and its weight is prone to floating point error accumulation. The summation

of the bias and the product of the first input and weight is the only aspect of the

algorithm in which a multiplied input must sum with another value to be exactly

zero. Due to floating point error, this is extremely unlikely and further effort is

required. The simplest solution is to approximate the error using additional

floating-point operations. The error in the summation of the bias and the first

input’s target can be mitigated by the second input and so on until the error

becomes subnormal at which point, we can apply one of the two aforementioned

techniques. The error introduced by these floating-point multiplication and

addition operations necessitates using the largest possible floating-point values

for which there is an addition timing side channel as the final two targets. This

allows for a larger margin of error in the zeroing out of the bias term while still

 30

allowing for slow additions. A potential alternative solution would be to use higher

precision floating point arithmetic operations that allow the product of an input

and a weight to be accurately set to a target value and then use the

corresponding lower precision values to achieve those targets, but this would be

difficult to implement and is left as future work.

Figure 3.4

Single Layer Computation Visualization

Table 3.2

Floating Point Addition Timing Thresholds

Neuron 0 Neuron 1 Speed

Fast

Fast

Fast

Slow

 31

Expediting Arrangement Discernment

 Addition timing side channels can also be applied to discerning leaked

parameter arrangements. Consider the single-layer perceptron with two neurons,

no biases, and an arbitrary activation function shown in Figure 3.2. By isolating

individual input elements, Subneural’s multiplication timing guided recursive

binary search can be used to leak one weight for each neuron in the network.

The leaked parameters are discovered in an order that is dependent on the way

in which the binary search finds performance degradations. As a result, it is not

known which leaked parameters for a given input correspond to which neurons.

Interactions between the leaked parameters of different inputs can be used to

determine which parameters belong to the same neuron, effectively

reconstructing an identical network. Employing a similar pairwise query strategy,

leaked parameters associated with a given input are sorted in increasing order.

The target values can then be set to where its product with the corresponding

maximum magnitude weight is set to the smallest value for which an addition

timing side channel is present. A second input is then configured such that the

product with its corresponding minimum magnitude weight is set to be the largest

value that when added with the maximum value from the first input exhibits

performance degradation. An example where the maximum value for which an

addition timing side channel exists and the minimum value that triggers it are 6e-

38 and 5.9e-38 is shown in Table 3.2. This configuration ensures that a forward

pass through the model will only exhibit performance degradation if the largest

weight from the first input and the smallest weight from the second input are in

 32

the same neuron’s summation. From here the values for each input can be

iteratively increased until a performance degradation is detected, at which point it

can be inferred that the current largest magnitude weight on the first input

belongs to the same neuron as the current smallest magnitude weight of the

second input. As leaked parameters are matched, the search space and number

of combinations that need to be tested gradually decreases, making this

approach much faster than a brute-force search over all possible arrangements.

 The same technique can be applied to support vector machines with linear

and polynomial kernels. These kernels do not restrict the output space that can

be searched through them and as such are suitable for sign, bias, and

arrangement searches using small normal and subnormal addition timing target

values. Support vector machines with Gaussian or radial bias function kernels

can not be leaked through these attacks. It can also be augmented by

Subneural’s backtracking assumption stack to discern the arrangement of

weights in multi-layer perceptrons. The assumption stack is necessary because

observed performance degradations may be observed due to summations in

neurons from multiple candidate layers. This problem could be addressed by

using layer-accurate timing side channels [2] but dependence on such high-

precision measurements would affect the applicability of the attacks.

Towards Multi-Bias Leakage

 Introducing network biases to single-layer and support vector machine

targets complicates the extraction process significantly. Because biases are the

first components of neuron summations, they must be leaked first as initializing

 33

accumulations with large bias values erases the effects of all succeeding small

normal and subnormal floating-point operations. Because it may take multiple

inputs per bias to zero out its value, having to search for multiple biases

simultaneously without knowing which weights correspond to which neurons is

extremely difficult. A large number of sign combinations must be tried for every

bias guess, and each guess must be formulated for each of the possible weight

arrangements. These additional search dimensions compound with the already

difficult task of brute forcing an arbitrary floating-point value to make attacking

single-layer structures with biases exceedingly difficult. Additionally, a

backtracking assumption stack would be necessary for even the addition timing

based attack as performance degradations caused by accidental slow addition

operations could result in false bias detections.

 34

CHAPTER 4

RESULTS

The modified version of Subneural was applied to leaking the weights,

signs, arrangements, and biases of a single neuron, and to leaking the weights,

signs, and arrangements of a single layer perceptron and a support vector

machine with a non-restrictive kernel. In accordance with the limitations of the

timing side channels, relative sign assignments to an assumed positive first sign

were accurately discovered for each neuron across these experiments. Accurate

arrangements were also discerned in the single layer perceptron and support

vector experiments. Additionally, the modified bias leakage algorithm was

demonstrated against a single neuron target. Table 4.1 shows the average

leaked parameter accuracy across the single layer perceptron experiments and

the leaked bias accuracy from the single neuron experiments. The error in the

leaked parameter values can be attributed to floating-point multiplication error.

This results in leaked parameters being twice as accurate for double-precision

values as they are for single-precision ones. The error in the bias arises from the

error in the sequence of floating-point addition operations used to leak them.

Table 4.1

Leaked Parameter and Bias Accuracies

Encoding Precision Parameter Accuracy Bias Accuracy

Single +/- 1.57e-08 +/- 2.48e-08

Double +/- 1.80e-17 +/- 2.72e-17

 35

CHAPTER 5

DEFENSES

Defeating Prediction Poisoning Defenses

 Model extraction attacks have been shown to be extremely effective

against black box targets. The most prevalent attacks attempt to train a model

that approximates the functionality of a target network through only a model

query interface. Models are evaluated on a curriculum of sample inputs and the

corresponding output probability distributions are used to generate a distilled

training data set. Attackers can then train a student network with an arbitrary or

domain knowledge informed internal structure on the dataset generated by the

target teacher network. Because the teacher outputs are probability distributions

over the class space, the student can learn relations between classes while it is

learning the correct labels for each sample, greatly expediting the learning

process when compared with training a model on a one-hot encoded dataset like

that which the target network would have been trained on. Approximate

functionality extraction attacks have been applied to a wide range of target

architectures in black box attack scenarios and have been shown to be effective

in leaking models in environments where queries are filtered or limited.

Additionally, adversarial examples generated for the functionally similar extracted

models using white box techniques have been shown to be transferrable to target

networks that have been hardened against adversarial attacks, further increasing

the threat posed by this attack. There have also been a number of attacks that

replicate exact model parameters and internal structure through black box query

 36

interfaces. These attacks use prior knowledge about likely neural network

architectures to generate multiple candidate networks from the distilled target

training data set. They then train metamodels on a dataset of publicly available

and generated classifiers [14]. The classifiers learn to predict attributes like the

internal structure of a neural network from a model’s output probability

distributions over an input dataset. Inputs are iteratively refined to better separate

the space of possible models. These techniques have been shown to be effective

in determining approximate internal structures of their target models in a query-

efficient manner, making the leaked white box models much better suited for

generating transferable adversarial examples than models that were arbitrarily

constructed and trained solely for functionality approximation.

 In response to functionality approximating and exact internal structure

extraction attacks, a number of prediction poisoning defenses have been

developed [8]. These countermeasures perturb the output probability distributions

of a protected model with the aim of interfering with an adversary’s ability to train

a student model on its outputs. Since black box model extraction attacks attempt

to train models using the output probability distributions from the outputs of the

trained models, poisoning predicted probability distributions causes them to learn

incorrect or contradictory relationships between output classes, decreasing their

accuracy by up to fifty percent and significantly increasing the number of queries

required to extract a model. Variants that use out-of-distribution detectors to

identify adversarial queries to poison and that poison all queries indiscriminately

have been shown effective against adversarial extraction attacks. Most use

 37

cases for black box neural networks only rely on the top one or most likely class

prediction. This means that the probability distribution over the remaining output

classes can be freely manipulated while still preserving the overall accuracy of

the model. In use cases where the top k class probabilities are required, similar

accuracy-preserving poisoning can be applied. Poisoning strategies like adding

random noise to the output distribution or maximizing the angular deviation of

gradients between the poisoned and original predictions have been used to

substantially reduce the accuracy of leaked models. Adapted black box model

extraction attacks have been shown to be effective against accuracy-preserving

prediction poisoning techniques, albeit with a significantly higher query budget. In

response to these attacks, countermeasures that detect adversarial queries and

either refuse to answer them or provide blatantly incorrect outputs have been

developed. While these techniques are not applicable in security-critical

environments, they further reduce the accuracy and increase the number of

queries required to extract black box models.

 Subneural is immune to all prediction poisoning defenses because it does

not rely on the outputs of its target models at all. As such, it can be applied

against targets with any degree of prediction poisoning. It is also applicable

against targets that use a separate module for out-of-distribution detection. So

long as the input is fed through the target neural network, the time it takes for the

input to be processed can be used to leak its parameters and weights as

depicted in Figure 2.5. It can also be applied against models that are trained on

adversarial examples or have a dedicated output class for out-of-distribution

 38

queries for the same reason. However, the applicability of white or black box

adversarial example generation techniques and the transferability of the

generated examples to targets that are hardened via these methods is limited. In

these scenarios, the attack can only be used to steal proprietary parameters and

intellectual property.

Figure 5.1

Using Timing Side Channels to Defeat Prediction Poisoning

Defeating Gradient Masking Defenses

 The widespread adoption of neural networks for security-critical

applications has created an explosion in the development of adversarial attacks

 39

that discreetly perturb samples to manipulate their classification. The most

prevalent and broadly applicable black box attacks iteratively perturb samples

from within the training distribution of a model and observe the impact of these

perturbations on the output probability distributions. The changes are then

correlated with the perturbations by extrapolating gradients between the inputs

and outputs. Further perturbations are made in the directions that decrease the

overall confidence of a model or perturb a sample into being classified as a

specific target class [12, 16]. Most attacks attempt to minimize the size of the

perturbations necessary to achieve their goals and can find these perturbations

in a sample efficient manner. Iterative gradient-based adversarial example

generation attacks have been shown to be effective in black box attack scenarios

and to pose a severe threat to the robustness of applications of neural networks

to security-critical applications like facial recognition and network intrusion and

detection.

In response to gradient-based black box adversarial attacks, a number of

gradient masking defenses have been proposed to increase model robustness

[4, 6]. The most effective of these is defensive distillation. Neural network

distillation is a technique used in training neural networks to transfer knowledge

from a teacher network to a student network. It was initially proposed to combat

the run time complexity of running inference with parameterized or ensemble

model architectures. These large and complex models require a lot of memory

and compute to make predictions and as such are not applicable in real-time or

resource-constrained environments. Distillation is a technique that, as the name

 40

suggests, distills the knowledge learned by a larger teacher model into a smaller

student model. The teacher model is used to generate a new dataset that maps

inputs from the original training dataset to the output probability distributions of

the teacher network. The student network is then trained on this dataset which

now instead of capturing only one hot encodings of the output class for each

sample, captures the learned probability distribution over the output class space.

This allows the student network to learn the relationships between output classes

in addition to the correct classes for each sample, simplifying and expediting the

learning process over the sample distribution. Student models often have

significantly fewer parameters and much simpler architectures, reducing their

time and space complexities and making them applicable in a wider range of

environments.

Defensive distillation applies distillation to smooth out the classification

boundaries of a trained model, making it harder for iterative perturbation based

adversarial attacks to discern which direction to perturb samples in. This is

achieved by training a teacher model on the original dataset for a problem and

then training a structurally identical model on the generated dataset of output

probability distributions of the teacher model. This provides the same benefits of

standard knowledge distillation by allowing the model to learn extracted

relationships between output classes. Because the knowledge from the teacher

neural network is fed back through a structurally identical network, the student

network also learns smoother classification boundaries. The effect of applying

this technique is that the student model is less sensitive to small changes in the

 41

input [6], resulting in small perturbations of a sample input yielding the same or

similar output probability distributions. It has been shown that iterative black box

adversarial attacks are significantly less effective against networks protected by

defensive distillation, in some cases eliminating the threat entirely.

Figure 5.2

Generated Adversarial Examples

Subneural and other timing side channel attack-based neural network

extraction frameworks are inherently immune to these defenses as they either do

not rely on the output of a model at all or do not attempt to extrapolate gradients

between inputs and their corresponding output probability distributions. At most,

timing side-channel frameworks look for changes in output that are unaffected by

gradient-based defenses. To demonstrate the effectiveness of attacks like

Subneural, we trained several MNIST classifiers ranging from single-layer

perceptrons with no bias nodes to shallow fully connected neural networks.

These classifiers were then used to generate distilled training datasets of output

 42

probability distributions and train identical student networks with a distillation

temperature of 10. We then used off-the-shelf adversarial example generation

techniques [16, 19] to generate examples for both the unprotected teacher

models and the defensively distilled models. Figure 2.6 shows a sample image of

a one from the MNIST dataset and the outputs from running a black box attack

that applies projected gradient descent to gradients estimated by natural

evolution strategies [16] with a target output class of seven on the original and

protected models. The attack is able to find the necessary pixels that need to be

perturbed to result in the target classification as a seven for the original model

but is unable to find an adversarial example for the protected one. The

parameters of the defensively distilled model are then loaded into the simulated

timing framework used by Subneural and the attack is applied to leak exact

parameters and arrangements. White box adversarial attacks can then be used

on the leaked model to generate better adversarial examples that have been

shown to transfer to the defensively distilled ones [18].

Defeating Stateful Defenses

 State-of-the-art techniques in protecting neural networks from query-

based adversarial example generation and extraction attacks have moved

towards stateful defense systems. This shift was motivated by the inability to

curtail these attacks through defenses that poison prediction distributions or

modify model weight distributions and classification boundaries to make it harder

for adversaries to extrapolate gradients. Stateful approaches to securing neural

network query interfaces leverage out-of-distribution detection and query

 43

similarity measurement techniques to detect malicious queries. These techniques

leverage the fact that iterative adversarial example generation attacks make a lot

of similar queries while extrapolating output gradients. If an individual query or

query sequence is determined to be malicious, its execution can be halted and

the IP address from which those queries originated can be banned. Popular

stateful defense implementations [7] maintain a fixed sized buffer of the last k

queries received. Each time a new query is made, its similarity to each of the

queries stored in the buffer is calculated. If the average similarity score over the n

most similar queries drops below a threshold value, the query sequence is

flagged as malicious. Query similarity scores can be calculated in a number of

ways but the most common is the absolute distance between query tensors.

These stateful adversarial defense systems have been shown to be effective in

detecting iterative gradient-based attacks.

Table 5.1

Adversarial Attack Average Query Distances

Attack Type K K Average Distance

Projected Gradient Descent 50 0.04

Subneural 100 0.01

Subneural (Interleaved) 50 1.4

 Floating point timing side channel based adversarial attacks are not

inherently immune to these countermeasures as they also make a lot of very

similar queries. Like iterative black box adversarial attacks, however, they are

 44

able to circumvent stateful defenses by employing a query strategy [20]. Adaptive

black box attacks that learn the stateful detection scheme and use it to generate

queries that avoid triggering have been demonstrated against similarity score

based stateful defenses. A similar adaptive querying technique could be applied

to timing side channel based attacks to mask similar queries with benign ones.

The binary search employed by Subneural provides the added benefit of being

an anytime algorithm that iteratively narrows down the possible range of model

parameter values. The search could be cut off at any point and approximate

parameter values could be used to bootstrap a model learning approach.

Subneural can also be configured to mask its query process by interleaving

searches for different inputs, increasing the average similarity score of the attack

while still converging to exact parameter values as shown in Table 4.1. It also

had the added benefit of yielding a high-resolution model that can be queried and

tested independently of a protected model when compared with iterative attacks

that only generate individual adversarial examples. White box adversarial attacks

can then be used to generate adversarial examples in an unrestricted

environment that transfer to the protected model.

 45

CHAPTER 6

MITIGATIONS

Disabling Subnormal Numbers

 There are multiple ways to approach mitigating the threats posed by

floating-point timing side-channel attacks. The simplest approach is to disable the

use of subnormal floating-point values. X86 CPUs have denormals are zero and

flush to zero flags that can be used to treat all denormal numbers as zeros and to

flush underflows from floating point operations to zero. If these flags are set, the

floating-point operations that would otherwise result in subnormal values will

instead result in zero, eliminating all of the timing side channels surrounding

subnormal numbers. However, disabling the use of subnormal numbers will

result in reduced accuracy of floating-point operations. This would effectively

reduce the classification accuracy of models on samples that are in close

proximity to class boundaries. For most applications of neural networks, the

reduced accuracy would be negligible. This would primarily be a concern in

security-critical applications where samples are frequently on or near class

boundaries and occasional misclassifications can not be masked.

Modifying Stateful Defenses

A practical mitigation for these attacks would be to apply stateful

adversarial attack detection techniques to identify malicious queries. The stateful

defenses examined in this work could be trained on a dataset of sample query

traces from Subneural to learn to detect timing side-channel attack sequences.

Floating-point timing side-channel attacks on neural networks require making

 46

thousands of queries where all but one of the inputs are zeroed out. All of these

queries are well outside of the training distribution for essentially all target

models, regardless of domain. If out-of-distribution detection were to be

performed by a separate component as a preprocessing step, malicious samples

could be detected and handled without ever reaching the protected networks.

Refusing to respond to out-of-distribution queries would not only eliminate the

threat posed by timing side-channel attacks but would also stifle gradient-based

black box adversarial attacks which also make a lot of out-of-distribution queries.

A rule-based detection system that determines whether a sufficient number of

pixels have nonzero values would also be sufficient for detecting attacks like

Subneural.

Neural Network Quantization

 Neural network quantization to eight bit signed integers also eliminates the

timing side channel due to the way large integers interact with subnormal

numbers. Quantization is a technique that decreases the precision of the weights

and activations of a neural network to improve the space and computational

efficiency of trained models with a large number of parameters or to facilitate

real-time inference on embedded devices. The most popular quantized

parameter size is 8-bit integers. Quantizing both the weights and the activations

to 8-bit integers converts all computations to integer operations and as such

eliminates the timing side channel entirely. Weight quantization alone is still

susceptible to the subnormal timing side channel in the general case but falls

apart with 8-bit unsigned integer weights. Once the magnitude of a weight

 47

exceeds 5, multiplication with small normal numbers still experiences the same

performance degradation but the result of the multiplication is always positive or

negative infinity. This renders the containing summation useless as all other

products are dominated by the infinities or result in not a number. Furthermore,

the output of applying activation functions like RELU to positive infinity leaves the

value unchanged, causing all summations in succeeding layers to also result in

infinity, making the output useless. Quantization to 16-bit half-precision floating

point values is also popular but x86 CPUs do not support operations on half-

precision values. They instead convert them to single precision values at run

time, making Subneural equally effective against 16-bit quantized models.

Modern GPUs have seen the addition of hardware support for half-precision

floating-point values, but they are not susceptible to the subnormal floating-point

timing side channels.

Complex Network Architectures

 Lastly, convolutional and recurrent neural networks both make it

impossible to distinguish where exactly in a model a subnormal computation

occurred so adding complex layers or rearchitecting models may be another

suitable mitigation. Models that already employ similar techniques do not require

additional protections to mitigate the threats posed by timing side-channel based

extraction attacks.

 48

CHAPTER 7

CONCLUSION

Summary

This work showed floating-point timing side-channel attacks against neural

networks to be effective in leaking common neural structures through query

interfaces in blind black box settings. Modifications were made to Subneural to

speed up extraction and make it more broadly applicable. Addition timing side

channels were leveraged to expedite leaked parameter sign assignment and

arrangement discernment. They were also applied to bias leakage to make blind

extraction attacks applicable against networks that use a wider range of

activation functions. This work also evaluated Subneural against a suite of

adversarial attack mitigations. The attack was used to circumvent gradient

masking adversarial defenses by facilitating the application of white box

adversarial attacks to models extracted through the side channel. Masking

techniques used by adaptive black box adversarial example generating attacks

against models protected by stateful defenses were shown to be applicable in

masking timing side-channel based attacks. Subneural’s unique ability to leak

models without relying on query outputs was shown to make it resilient to

accuracy preserving and complete prediction poisoning adversarial

countermeasures. Finally, mitigations that protect against the threats posed by

floating-point timing side-channel attacks were proposed and shown to be

effective.

 49

Limitations

While these attacks have been shown to be effective against rudimentary

neural structures protected by adversarial defenses, there are a number of

hurdles in the way of widespread real-world application. As the depth of the

target neural network increases, the floating-point error in the computations

required to search for weights, biases, and arrangements accumulates. This

makes it difficult to set and test target values for leaking biases and

arrangements and with enough layers starts to limit the ability to search the input

space for values that result in performance degradations in deeper layers. The

biggest limitations of blind network leakage attacks are the computational

overhead required to amplify the timing side channels and the time it takes to

brute force the values of biases. Addressing these challenges is left as future

work.

 50

CHAPTER 8

FUTURE WORK

Augmenting Gradient Based Black Box Attacks

 Existing black box adversarial extraction attacks on neural networks [5,

14, 16] have been shown to accurately leak network structures and parameters

with relatively high degrees of accuracy. While these attacks primarily rely on

domain knowledge and brute force search to determine the internal structures of

target networks, their model architecture approximations could be used to guide

Subneural’s search process. Approximate network depth, layer configurations,

and weight arrangements could be used to initialize parameter values or a

knowledgebase of possible models that could be refined and pruned with timing

side-channel based leaks and test cases. Additionally, approximate bias leaks

could be used to greatly decrease the brute force search space and running time

of Subneural’s bias leak stage. At present, bias leakage is the most time-

consuming and computationally expensive component of the attack by multiple

orders of magnitude. Expediting this step would make Subneural effective

against broader and deeper targets, greatly increasing its real-world applicability.

Side Channel Amplification

 Subneural’s current implementation relies on a simulated timing

framework that reports accurate simulated running times on a per-competition

basis. This allows each input configuration to be tested with deterministic results,

greatly expediting the process of searching for parameters and biases. Applying

Subneural in the real world would require significant amplification of the timing

 51

side channels it uses for changes in inference times to be accurately separated.

Each input configuration will need to be run between 1000 and 100,000 times,

depending on the complexity of the target neural structure, to be able to

consistently detect performance degradation steps. Amplification is a common

technique applied in timing side-channel attacks but due to the large input space

Subneural has to search, even small amplifications would significantly increase

the running time of the algorithm and may affect its feasibility against broader

and deeper targets.

 52

REFERENCES

[1] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner and H.
Shacham, "On Subnormal Floating Point and Abnormal Timing," 2015 IEEE
Symposium on Security and Privacy, San Jose, CA, USA, 2015, pp. 623-639,
doi: 10.1109/SP.2015.44.

[2] G. Dong, P. Wang, P. Chen, R. Gu and H. Hu, "Floating-Point Multiplication
Timing Attack on Deep Neural Network," 2019 IEEE International Conference on
Smart Internet of Things (SmartIoT), Tianjin, China, 2019, pp. 155-161, doi:
10.1109/SmartIoT.2019.00032.

[3] C. Gongye, Y. Fei and T. Wahl, "Reverse-Engineering Deep Neural Networks
Using Floating-Point Timing Side-Channels," 2020 57th ACM/IEEE Design
Automation Conference (DAC), San Francisco, CA, USA, 2020, pp. 1-6, doi:
10.1109/DAC18072.2020.9218707.

[4] T. Lee, B. Edwards, I. Molloy and D. Su, "Defending Against Neural Network
Model Stealing Attacks Using Deceptive Perturbations," 2019 IEEE Security and
Privacy Workshops (SPW), San Francisco, CA, USA, 2019, pp. 43-49, doi:
10.1109/SPW.2019.00020.

[5] Duddu, V., Samanta, D., Rao, D. V., & Balas, V. E. (2018). Stealing neural
networks via timing side channels. arXiv preprint arXiv:1812.11720.

[6] Papernot, Nicolas & McDaniel, Patrick & Wu, Xi & Jha, Somesh & Swami,
Ananthram. (2016). Distillation as a Defense to Adversarial Perturbations Against
Deep Neural Networks. 582-597. 10.1109/SP.2016.41.

[7] Chen, S., Carlini, N., & Wagner, D. (2020, October). Stateful detection of
black-box adversarial attacks. In Proceedings of the 1st ACM Workshop on
Security and Privacy on Artificial Intelligence (pp. 30-39).

[8] Orekondy, T., Schiele, B., & Fritz, M. (2019). Prediction poisoning: Towards
defenses against dnn model stealing attacks. arXiv preprint arXiv:1906.10908.

[9] E. Chung et al., "Serving DNNs in Real Time at Datacenter Scale with Project
Brainwave," in IEEE Micro, vol. 38, no. 2, pp. 8-20, Mar./Apr. 2018, doi:
10.1109/MM.2018.022071131.

 53

[10] Tramer, F., & Boneh, D. (2018). Slalom: Fast, verifiable and private
execution of neural networks in trusted hardware. arXiv preprint
arXiv:1806.03287.

[11] Orekondy, T., Schiele, B., & Fritz, M. (2019). Knockoff nets: Stealing
functionality of black-box models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition (pp. 4954-4963).

[12] Bhambri, S., Muku, S., Tulasi, A., & Buduru, A. B. (2019). A survey of black-
box adversarial attacks on computer vision models. arXiv preprint
arXiv:1912.01667.

[13] Tu, Z., Li, M., & Lin, J. (2018, June). Pay-per-request deployment of neural
network models using serverless architectures. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Demonstrations (pp. 6-10).

[14] Oh, S. J., Schiele, B., & Fritz, M. (2019). Towards reverse-engineering black-
box neural networks. Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning, 121-144.

[15] Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572.

[16] Ilyas, A., Engstrom, L., Athalye, A., & Lin, J. (2018, July). Black-box
adversarial attacks with limited queries and information. In International
conference on machine learning (pp. 2137-2146). PMLR.

[17] Kahan, W. (1996). IEEE standard 754 for binary floating-point
arithmetic. Lecture Notes on the Status of IEEE, 754(94720-1776), 11.

[18] Papernot, N., & McDaniel, P. (2017). Extending defensive distillation. arXiv
preprint arXiv:1705.05264.

[19] Liu, Y., Mao, S., Mei, X., Yang, T., & Zhao, X. (2019, December). Sensitivity
of adversarial perturbation in fast gradient sign method. In 2019 IEEE symposium
series on computational intelligence (SSCI) (pp. 433-436). IEEE.

 54

[20] Feng, R., Hooda, A., Mangaokar, N., Fawaz, K., Jha, S., & Prakash, A.
(2023). Investigating Stateful Defenses Against Black-Box Adversarial
Examples. arXiv preprint arXiv:2303.06280.

 55

APPENDIX A

PERMISSION STATEMENTS

 56

Permission has been obtained from Zachary Wimer, the sole author of the

unpublished dissertation that this work builds on top of, for the use of his

research and codebase in this master’s thesis.

