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ABSTRACT  
   

The rise in popularity of applications and services that charge for access 

to proprietary trained models has led to increased interest in the robustness of 

these models and the security of the environments in which inference is 

conducted. State-of-the-art attacks extract models and generate adversarial 

examples by inferring relationships between a model’s input and output. Popular 

variants of these attacks have been shown to be deterred by countermeasures 

that poison predicted class distributions and mask class boundary gradients. 

Neural networks are also vulnerable to timing side-channel attacks. This work 

builds on top of Subneural, an attack framework that uses floating point timing 

side channels to extract neural structures. Novel applications of addition timing 

side channels are introduced, allowing the signs and arrangements of leaked 

parameters to be discerned more efficiently. Addition timing is also used to leak 

network biases, making the framework applicable to a wider range of targets. 

The enhanced framework is shown to be effective against models protected by 

prediction poisoning and gradient masking adversarial countermeasures and to 

be competitive with adaptive black box adversarial attacks against stateful 

defenses. Mitigations necessary to protect against floating-point timing side-

channel attacks are also presented. 
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CHAPTER 1 

INTRODUCTION 

Motivation 

 Neural networks have seen unprecedented adoption across computer 

science in recent years. Their ability to learn and solve complex problems in a 

time and resource-efficient manner has led to their use in everything from image 

classification and object detection to security-critical applications like facial 

detection and network intrusion monitoring and detection. Due to the complexity 

of the tasks at hand, training models that can perform them well is often 

computationally expensive. Additionally, the data used for training may be 

privately owned and confidential. This creates a challenge for developers who 

want customers to be able to use their models to solve their problems but are 

unwilling to provide the exact parameters or internal structure they use. To 

address this issue, models are often deployed with only a black box query 

interface exposed. The two most common techniques are network deployments 

and deployments onto trusted hardware. Network deployments store and perform 

inference with proprietary models on secure remote servers [9, 13]. Users query 

these models over the network through an application programming interface. 

This preserves the secrecy of proprietary models while still allowing for easy 

usage. In environments where a network connection is not available, trusted 

hardware devices can be leveraged to provide the same guarantees [10]. Models 

are encrypted at rest and are securely loaded onto trusted hardware on demand. 

This provides the same effect, keeping model parameters and internal structure 
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private. A similar query interface is exposed for users. These model deployment 

paradigms have facilitated the monetization of trained models. Services where 

users pay for access to a proprietary model on a per-query basis have become 

extremely popular. Paid applications that bundle trained models for classification 

and detection tasks have also become prevalent.  

The rise in popularity of applications and services that charge for access 

to proprietary trained models and the widespread adoption of neural techniques 

in security-critical applications has led to increased interest in the robustness of 

these models and the security of the environments in which inference is 

conducted. Neural network extraction attacks have been shown to be effective in 

replicating the functionality and, in some cases, the exact parameters and 

arrangements of proprietary models [5, 11, 14]. This poses a threat to pay-per-

query services as network extraction constitutes theft of intellectual property and 

can be done cost-effectively. Additionally, query-based attacks have been shown 

to be capable of generating adversarial examples by making perturbations to in-

distribution inputs, resulting in both general misclassifications and specific target 

classifications [12]. These attacks pose severe threats to security-critical 

applications of neural networks and can be applied in settings where no prior 

information about the target model is available and only a query interface is 

exposed. State-of-the-art black box adversarial attacks rely on extrapolating 

gradients between a model’s input and output. Popular implementations of these 

attacks have been shown to be deterred by defensive countermeasures that 

poison predictions by manipulating the distribution of output classes and 
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defenses that limit the propagation of gradients by smoothing a model’s 

classification boundaries.  

A model extraction attack that leaks the exact parameters and internal 

structure of a network while being resilient to adversarial countermeasures would 

reveal limitations in standard adversarial defenses and expose models that were 

previously thought to be robust to adversarial threats. Leaking exact parameters 

and structures would have the added benefit of reducing the black box 

adversarial example generation problem defined by a query interface to a white 

box one. The high-precision leaks and additional structural information could be 

leveraged to guide the creation of adversarial examples, even when the target 

models have been hardened against iterative black box adversarial attacks. 

Additionally, if the attack could be masked to evade detection from stateful 

adversarial attack defenses, it would be applicable to an even wider range of 

protected targets, further demonstrating the gap in modern adversarial defenses. 

Potential Contributions 

 This work explains in detail the inner workings of Subneural, a framework 

that applies floating-point timing side-channel attacks to leak exact neural 

network parameters and the internal structure of their hidden layers. It assumes a 

black box assumption where the target model is only accessible through a query 

interface and no prior information about its architecture or structure is available. 

Critically, the attack is not dependent on the output of individual queries, making 

the framework applicable in a blind setting where query responses are not 

available or in black box scenarios against models that are protected by 
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prediction poisoning defenses whose output distributions cannot be trusted. 

Novel sign assignment and arrangement leakage algorithms that exploit addition 

timing side channels are introduced, expediting the process of leaking the signs 

and arrangements of discovered parameters. An addition timing based bias 

extraction technique is also presented, making the framework applicable to a 

wider range of targets while preserving its independence from model outputs. 

The enhanced framework is then evaluated on targets protected by accuracy 

preserving and full prediction poisoning model extraction defenses. It is also 

shown to be effective in leaking models protected by gradient masking 

adversarial countermeasures including defensive distillation. Additionally, 

modifications to the framework that allow it to be applied to targets protected by 

query similarity score based stateful adversarial defenses are demonstrated. 

Finally, countermeasures that mitigate the threat posed by floating-point timing 

side-channel attacks are presented. 

Organization 

 The following chapters are organized as follows. Chapter 2 summarizes 

the landscape of adversarial attacks on neural networks, introduces the floating-

point timing side channels utilized by Subneural and similar frameworks, explains 

Subneural’s attack stages and limitations, and compares Subneural with an 

existing floating-point timing side channel-based network extraction framework. 

Chapter 3 details the application of the addition timing side channel to more 

versatile and efficient leakage of parameter signs, arrangements, and biases as 

applied to a single neuron, a single-layered perceptron, and a support vector 
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machine. Modifications necessary to apply the attack to Multi-Layer Perceptrons 

are also discussed. Chapter 4 provides results on the accuracy of leaked 

parameters. Chapter 5 provides an overview of prediction poisoning adversarial 

defenses and shows how Subneural is still effective against models protected by 

this countermeasure. Neural network distillation is then introduced and its 

application to defending neural networks from gradient-based adversarial attacks 

is demonstrated. Subneural is again shown to be effective in leaking models 

protected by this defense. Implementations of stateful adversarial attack 

countermeasures are also evaluated against Subneural. Modifications to 

Subneural that have been shown effective in masking gradient-based attacks to 

defeat these defenses are also presented. Chapter 6 proposes mitigations for the 

threats posed by Subneural and other attacks that utilize floating-point timing 

side-channel attack vectors. Finally, Chapters 7 and 8 summarize the 

contributions of this thesis and discuss potential avenues for future work. 
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CHAPTER 2 

RELATED WORK 

Adversarial Attacks 

 The explosion in popularity of pay-per-query applications and services [13] 

has created an increased interest in attacks that leak paywalled models in a cost-

effective manner. A number of neural network extraction attacks have been 

shown to be effective in achieving this goal. Extraction attacks fall into two broad 

categories, functionality approximation and exact model extraction.  

Attacks that attempt to approximate the functionality of a protected model 

utilize query interfaces to generate a dataset of predictions made by the hidden 

model [11]. A new neural network is then created by the adversary with an 

architecture and structure that is determined by prior knowledge about the 

problem domain or chosen arbitrarily. This replica network is then trained on the 

input-output pair dataset generated by the protected model, yielding a model that 

has approximately the same classification boundaries as its target. This 

technique is feasible because it employs the same principles as knowledge 

distillation, a technique used to distill the knowledge learned by over-

parameterized or ensemble models into smaller more efficient ones. Rather than 

learning from the one hot encodings provided in training datasets, distilled 

models can learn from the output probability distributions of the trained teacher 

model. This allows relationships between classes to be learned in concert with 

the correct labels, making the training process more sample efficient. Distilled 

models can often achieve similar classification accuracies while being trained on 
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a fraction of the original datasets. Attacks like Kockoffnets exploit this benefit and 

have been shown to be effective in replicating the functionality of paywalled 

models in a bounded number of queries, making the attack cost-effective and 

feasible against models with high per-query costs. 

Attacks that extract exact model parameters and attributes have also been 

demonstrated. These attacks build on top of functionality approximation attacks 

by generating a training dataset of protected model predictions and then training 

multiple candidate models that approximate the functionality of the target, each 

with different architectures and internal structures [14]. Once the candidate 

models are generated, a second meta-network is trained to map approximate 

black box models to their attributes. The predicted attributes include model 

architecture features, the optimization technique used for training, and 

information about the original training dataset. This technique has been shown to 

be efficient in leaking the exact architecture and parameters of protected models 

in black box environments with limited query budgets. 

The widespread adoption of deep learning techniques in security-critical 

applications has created an explosion of research in adversarial attacks against 

trained models. A lot of research has been done into adversarial machine 

learning techniques that generate adversarial examples with the aim of yielding 

either a general misclassification or a specific alternate classification. The threat 

posed by these attacks is severe as they can be applied against neural network 

based facial detection and network intrusion detection and monitoring systems to 
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perturb malformed or malicious inputs, manipulating their inferred classification 

and evading detection. 

 

Figure 2.1 
  
Illustration of White and Black Box Adversarial Attack Scenarios 

 

 

 

 Most adversarial attacks fall into one of two categories, white box attacks 

and black box attacks. White box attacks have prior knowledge about the 

architecture and structure of the networks that they are attacking. They then use 

this information to calculate gradients of individual layers with respect to the 

model output and to inform their adversarial search algorithm, eliminating the 
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need to search the space of possible models and allowing for exact classification 

boundaries to be calculated and manipulated [15]. However, these attacks have 

limited applicability as this information is unavailable in most real-world attack 

scenarios. Pay-per-query inference services restrict access to model parameters 

and structure, exposing only a black box interface. Applications that are deployed 

with trained models encrypt them at rest and load them onto trusted hardware for 

inference, creating a similar black box query environment. Due to these 

constraints, white box attacks are not applicable in these environments.  

Black box attacks have no prior information regarding the architecture of a 

target neural network nor the structure of its hidden layers. They instead only 

have access to the inputs and outputs of a model through a query interface. 

These attacks extract information about the hidden layers of a model by 

extrapolating relationships between the inputs to a model and the individual class 

confidence values provided in the model’s output probability distributions [16]. 

Samples from within a target model’s training distribution can be modified by 

predetermined filters or perturbed iteratively. Changes in the output probability 

distributions are then observed and correlated with the perturbations that caused 

them. Further perturbations are made in the direction that results in the desired 

output probability distribution. Most attacks aim to add the minimal perturbations 

necessary to result in a sample’s misclassification, but they can also be used to 

perturb an example into a specific desired output class. Black box attacks are 

applicable to a much broader range of real-world targets as most applications 

and services that provide access to machine learning models as a service do so 
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through a query interface. They have been shown to be effective in finding 

adversarial examples through query interfaces with limited query budgets. 

 

Figure 2.2 
  
IEEE 754 Floating Point Encoding Format 

 

 

Floating Point Timing Side Channels 

 Modern computers utilize the IEEE 754 standard format to encode floating 

point values in binary [17]. The standard breaks up floating point values into 

binary encoded signs, fractions, and exponents such that the value n is equal to 

the sign times one plus the fraction times two to the sum of the exponent and 

bias as shown in Figure 2.2. This allows arbitrary floating-point values to be 

stored and represented in binary and facilitates mathematical operations on 

these binary-encoded values. Revisions to the IEEE 754 format have added 

provisions for different encoding sizes including 16-bit, 32-bit, and 64-bit, each 

with a single sign bit and with the remaining bits split between the exponent and 

mantissa. One of the features of this encoding format is that it has a provision for 

storing numbers that are smaller than the smallest representable floating-point 

number. Normal encoded floating-point numbers are required by the standard to 

have fractions that have no leading zeros. If a value were to have a fraction with 

a leading zero, its correct representation would shift the fraction to the left and 

shift the exponent by one. This ensures that the first bit of encoded fractions for 
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all numbers between the minimum and maximum floating-point values for an 

encoding size is a one. However, in the special case of numbers that are smaller 

than the minimum representable floating-point value and, as such, would have 

exponents that are smaller than the smallest representable exponent, fractions 

with leading zeros are allowed. Floating point encoded numbers that have 

leading zeros in their fraction and the minimum all zero exponent are called 

denormalized or subnormal numbers. They make use of the otherwise wasted 

space in the encoding format to gradually underflow small numbers to zero rather 

than abruptly truncating values when they pass below the threshold of the 

minimum normally encoded number. This enables accurate floating-point 

operations on values that are near this threshold and provides a general boost in 

the accuracy of operations on larger numbers. 

 

Table 2.1 
  
Floating Point Multiplication Timing Characteristics 

Operand    Operand       Result    Speed 

Normal    Normal       Normal       Fast    

Normal    Normal       Subnormal       Slow    

Subnormal    Normal       Normal       Slow    

Subnormal    Normal       Subnormal       Slow    

Subnormal    Subnormal       Zero       Fast    
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Several floating-point timing side channels in x86 CPUs have been 

discovered over the last decade. They all stem from an unintended side effect of 

supporting subnormal IEEE 754 values. It has been observed that floating-point 

multiplication experiences performance degradation on the scale of up to two 

orders of magnitude when certain operands or results are values that have 

subnormal floating-point encodings. Standard floating-point multiplication of two 

normal numbers takes 4 clock cycles on a modern CPU [3]. The same 

computation takes over 200 clock cycles when one of the operands is subnormal. 

Table 2.1 shows a number of sample floating point multiplication configurations 

and their performance characteristics. The key observation is that multiplication 

operations experience severe performance degradation when either operand is 

subnormal and if the result is subnormal.  

 

Table 2.2 
  
Floating Point Addition Timing Characteristics 

Operand Operand Result Speed 

Normal Normal Normal Fast 

Normal Normal Subnormal Fast 

Small Normal Small Normal Normal Fast 

Small Normal Small Normal Subnormal Slow 

Subnormal Normal Normal Fast 

Subnormal Normal Subnormal Fast 

Subnormal Subnormal Normal Fast 
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Operand Operand Result Speed 

Subnormal Subnormal Subnormal Fast 

 

 Floating point addition also experiences similar performance degradation, 

but the conditions under which degradation occurs are much more restrictive. As 

shown in Table 2.2, addition operations require both operands to be small normal 

floating-point numbers that are strictly less than a fixed threshold for each 

floating-point encoding format. The maximum threshold value that operands must 

be less than has been empirically determined and corroborated [3]. If the 

summation of two small normal numbers is subnormal, floating point addition 

experiences the same severe performance degradation as multiplication 

operations. For these constraints to be satisfied, one of the operands must be 

negative. The limit on the size of the operands is due to the truncation of addition 

operations when the result underflows below the smallest representable 

subnormal floating-point numbers. The two operands need to be small enough 

that the magnitude of the difference between them is subnormal. If the operands 

get too large, the magnitude of their differences combined with the error 

associated with floating point subtraction operations results in an underflow and 

is rounded to zero. The threshold value is dependent on the precision of the 

encoding standard as the exact value at which this underflow begins to occur is 

dependent on the size of the fraction and exponent. Exact addition timing 

threshold values are defined in Table 2.3. 
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Table 2.3 
  
Floating Point Addition Timing Thresholds 

Encoding Precision Maximum Threshold Minimum Threshold 

Single 6e-33 1e-28 

Double 1e-292 2e-308 

 

These floating-point timing side channels can be applied to leak hidden 

values from floating-point multiplication operations in scenarios in which the 

secret parameters are multiplied by values input by a user. So long as the inputs 

to the multiplication operations can be manipulated freely, changes in the running 

times of these multiplication and or addition operations can be used to leak the 

values of hidden parameters and make conclusions about the relationships 

between multiple user-controlled inputs. Consider an example in which a single 

floating-point value is taken as input and is multiplied by a single value and the 

output is returned. Assuming the hidden value is a normal floating-point number, 

we can use the timing characteristics to split the input space into two. For all 

normal floating-point numbers whose product with the hidden value is also a 

normal floating-point value, the time it takes for the multiplication operation to 

complete will be fast. For all normal values whose product with the hidden value 

is subnormal, the time the multiplication operation takes to complete will be up to 

two orders of magnitude slower. This partitions the input space into values that 

are too big for their product with the hidden value to be subnormal, and values 

that are small enough such that their product with the hidden value is subnormal. 
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The timing characteristics of one such multiplication operation are shown in 

Figure 2.3. This property can be exploited to binary search the input space for 

the input value at which the time the multiplication operation takes changes from 

fast to slow. The threshold value is known to be the largest value whose product 

with the hidden value is normal. The smallest normal value can be determined 

using the numeric limits library for each floating-point encoding precision and 

since it can be concluded that the product of the input and the hidden value is 

this largest normal number, the hidden value can be solved for by dividing the 

determined largest normal number by the input value found in the binary search. 

This yields an exact leak for the hidden value within the margin of error of 

floating-point multiplication and division operations for the target encoding format. 

 

Figure 2.3 
  
Timing of Floating-Point Multiplication with a Hidden Parameter 
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This technique was initially developed and shown to be effective in leaking 

hidden parameters in web browsers [1] where filters that perform floating-point 

multiplication of web page pixel values with attacker-controlled filter values can 

be repeatedly applied to protected web elements by a malicious process to leak 

the exact values of the hidden pixels.  

Side Channel Amplification and Simulation 

The reality of applying timing side-channel attacks to real-world targets is 

that the time an operation takes to execute may vary significantly under 

seemingly identical circumstances. This is due to the fact that in real-world attack 

scenarios, there may be a number of additional processes running on a target 

host whose execution is interleaved with the execution of the attack process. 

This makes the time it takes for the same operation to be executed vary 

uncontrollably between executions. Suppose a fast floating point multiplication 

operation is expected to take on average one nanosecond and a slow 

multiplication takes on average ten. If the variation in execution time due to 

external factors is more than nine nanoseconds, fast multiplications may be 

incorrectly registered as slow and vice versa. To address this problem, real word 

timing side-channel attacks use a technique called amplification in which the 

same operation is executed with the same inputs hundreds or thousands of 

times. This, as the name suggests, amplifies the timing side channel, creating a 

much larger gap between fast and slow executions and allowing for more 

consistent separation samples. Amplifying a single floating point multiplication 

operation by a thousand times changes the fast and slow timing scenarios from 
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one and ten nanoseconds to one thousand and ten thousand nanoseconds, 

greatly increasing the resilience of timing side-channel detection to external 

factors. The key drawback of amplifying timing side channels is that it makes 

attacks take significantly longer. Each input will need to be run thousands of 

times before a clear decision can be made about its performance characteristics. 

Neural networks can have thousands of parameters per layer, making developing 

and testing timing side-channel attacks on real-world targets with amplification 

impractical. For this reason, Subneural uses a simulated timing framework in the 

form of a floating-point operation library that returns simulated exact computation 

times for each operation given its inputs. Model parameters and structure are 

stored as structs and inference is conducted using simulated timing operations. 

This greatly expedites the search process as each input configuration only needs 

to be tried once. A timer class is used to decouple the attack from the underlying 

timing implementation so attacks developed using the simulated timing 

framework could be easily adapted to use amplified timing side channels on real-

world targets by simply replacing the timer class with one that is appropriate for a 

given scenario and target. 

Leaking Neural Structures Through Timing Side Channels 

Floating-point timing side channels can also be applied to neural network 

extraction. Most neural inference techniques can be reduced to the multiplication 

and accumulation of floating-point vectors and matrixes. Attack frameworks that 

manipulate inputs and make deductions based on changes in the time it takes for 

a model to return an output have been shown to be effective in leaking exact 
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hidden parameter values [3]. Subneural is one such framework developed by 

ASU Ph.D. student Zachary Wimer that extracts neural networks without 

dependence on the outputs of queries. The attack is split into four stages, leaking 

weight magnitudes, leaking neuron biases, assigning weight signs, and 

discerning weight arrangements. The first step is to leak the values of network 

parameters. In environments in which the input to a model can be freely 

manipulated, Subneural applies the binary search property previously defined on 

a per-element basis. It isolates inputs by setting all the other elements in the 

input vector to zero, then searches for changes in performance characteristics in 

the input space of the isolated input. This ensures that any changes detected in 

inference times can be attributed to the input element being modified. Applying 

this technique to the evaluation of a single neuron yields the weight 

corresponding to the isolated input times the provided input plus the product of 

the remaining weights and zero, leaving just the product of the target input and 

its corresponding weight as the input to the neuron’s activation function. Under 

the standard assumption that all model parameters are normal floating-point 

values, it can be concluded that the product of our target input and weight will 

display a degradation in performance when its result is subnormal. This 

knowledge can be used, as previously shown, to binary search for the threshold 

value at which the execution time of the multiplication operation changes. Slow 

and fast baseline execution times can be determined by using the maximum 

subnormal value and one respectively, and inputs between them can be 

searched accordingly. The search will terminate at the boundary at which the 
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computation time spikes which is known to be where the product of the first 

weight and the first input are equal to the largest subnormal value. The input 

value at this threshold and the minimum normal floating-point value are both 

known so the value of the hidden parameter can be solved for. At this point, the 

sign of the leaked parameter has yet to be determined as this computation would 

display performance degradation for both the discovered input and its negation. 

Signs are assigned to leaked weights in a later stage. The technique described 

here can then be applied to each of the elements in the input vector, allowing the 

magnitudes of all a model’s parameters to be leaked. 

 

Figure 2.4 
  
Timing of Floating-Point Multiplication with a Hidden Layer 
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 In the case of a single-layer perceptron with multiple neurons, a binary 

search of the entire input space can be employed to discern the number and 

magnitudes of hidden parameters. Since each input element has a weighted term 

in each of the neurons in the layer, slow and fast baselines can be determined 

using the same values as before. Because there is now one multiplication 

operation for each neuron, the slow baseline will have one potential degradation 

for each of the neurons in the layer. This causes the timing characteristics of the 

space between the baselines to become a step function with an increase in 

execution time each time the value of the input becomes small enough for its 

product in another neuron to become subnormal. This necessitates a recursive 

binary search between each of the detected performance degradations, resulting 

in a vector of leaked parameters in increasing order of magnitude that 

corresponds to the isolated input. In the case of support vector machines, a 

linear or polynomial kernel can be applied to the summation without affecting 

Subneural’s ability to leak parameters. Gaussian and other exponential kernels, 

however, make this attack infeasible as they restrict the output space that can be 

searched. The hidden parameters of a multi-layer perceptron can also be leaked 

via the same technique augmented by a backtracking search.  

In models in which a bias node is present, the bias must be determined 

before the signs as the bias value will initialize each accumulation and overpower 

any small values that follow. There are multiple ways in which the bias can be 

leaked. If the type of activation function used by a model can be identified or 

assumed to be tanh or another hyperbolic function, Subneural can take 
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advantage of another timing side channel that affects this family of functions. 

Tanh experiences similar performance degradation when applied to subnormal 

inputs. This property can be used to leak the bias in a summation by setting the 

product of the first input and weight to be our guess for the bias and setting the 

product of the second input and weight to be a subnormal number. Should the 

bias guess match the actual bias, those two terms will zero out, allowing the third 

subnormal term to remain. This will result in a subnormal input to the Tanh 

activation function which will exhibit detectable performance degradation. This 

allows the bias term to be brute force searched for utilizing a fixed stride length 

and to be leaked with the margin of floating-point error.  

A backtracking assumption stack is used to test candidate sign 

assignments and parameter arrangements. Since there is no way to discern this 

information using only the multiplication timing side channel, an exponential brute 

force search must be employed. If the performance characteristics of an input are 

inconsistent with the current assumptions, individual signs and arrangements are 

iteratively rolled back until a satisfying assignment and configuration is found. 

This step is also computationally intensive and as such limits the applicability of 

the attack against networks with large numbers of neurons and inputs. 

Subneural has been shown to be effective in blind black box attack 

scenarios against single neuron targets with and without biases, single layer 

perceptrons with and without biases, and support vector machines with kernels 

that don’t restrict the ability to search the output space with and without biases. It 
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has also been demonstrated to be applicable in theory to shallow multi-layer 

perceptrons. 

 

Figure 2.5 
  
Rectified Linear Unit Activation 

 

 

Competing Frameworks 

 Recent work has shown successful applications of floating-point 

multiplication and addition timing side-channel attacks to neural network leakage 

[3]. This attack is reliant on a model’s output, making them ineffective against 

prediction poisoning defenses in black box attack scenarios and making them 

ineffective in blind scenarios. It also assumes that all of the neurons in the 

network use rectified linear units (RELU) as their activation functions. RELU is a 

function that takes a linear input and returns the same linear output with negative 

values truncated to zero as shown in Figure 2.5. This means that if a neuron’s 
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summation was negative and an additional negative input was added to it, the 

output of the model would not change as RELU would rectify it to zero as it had 

done before. If the summation was previously positive, adding either a positive or 

negative value to it would affect the RELU output and in turn the output of the 

model. The attack exploits this property to determine the signs of leaked 

parameters and leverages exact output values to determine the signs and 

magnitudes of biases.  

 

Figure 2.6 
  
Exponential Linear Unit Activation 

 

 

The assumption that all network layers utilize RELU activations also limits 

the applicability of these attacks. While RELU is one of the most popular 

activation functions, it is uncommon for all the layers of a network to use the 

same activation, RELU or not. Typically, classification models use a SoftMax 
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activation for their final output layer to normalize the output probability 

distribution. Additionally, RELU alternatives such as the exponential linear unit 

(ELU), shown in Figure 2.6, have become increasingly popular. ELU allows 

restricted negative values to propagate through neurons, breaking the 

assumptions made by this attack and rendering it useless against targets that 

utilize ELU activations. The attack also makes the assumption that it is possible 

to detect which layer a slow multiplication occurred in. While this is theoretically 

possible, it also severely limits the attack’s applicability. 

 A number of cache timing and power side-channel based neural network 

extraction attacks have also been demonstrated [2] but these attacks require 

intrusive access to the hardware being used for inference and or additional attack 

processes to be run in concert with the inference process. These limitations 

restrict their applicability to trusted hardware implementations of model query 

interfaces and render them useless against models deployed using the more 

popular paradigm of making queries over the network to remote servers that 

conduct inference. Subneural is already more versatile than these types of 

attacks and the improvements made in this work further increase its efficiency 

and applicability. 
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CHAPTER 3 

METHODOLOGY 

Overview 

 This section is laid out as follows. Improvements to the sign assignment 

component of Subneural that leverage the addition timing side channel 

mentioned above are first demonstrated against a single neuron. The addition 

timing side channel is also applied to bias extraction, eliminating the framework’s 

dependence on activation function specific timing side channels. The side 

channel is then applied to matching relative parameter signs and discerning 

arrangements of single-layer perceptrons and nonrestrictive support vector 

machines without bias nodes. Finally, modifications to the framework are 

proposed that would enable its application to single-layer architectures with 

biases and shallow neural networks. 

 

Figure 3.1 
  
Single Neuron Computation Visualization 
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Table 3.1 
  
Addition Timing Neuron Evaluations 

Possible Evaluations Speed 

 

Fast 

 

Fast 

 

Fast 

 

Slow 

 

Linearizing Sign Assignments 

 In the case of a single layer with one neuron without a bias in its 

summation, as shown in Figure 3.1, the addition timing side channel can be 

applied to discern the signs of the leaked weights. Relationships between input 

elements are evaluated in a pairwise fashion. To determine which pair of inputs 

corresponds to the first two elements in a neuron’s summation, each candidate 

pair has one value set to a previously defined encoding specific small positive 

normal number and the other set to a small negative normal number such that 

the sum of these two values is a subnormal number. The remaining input 

elements are all set to one as illustrated in Table 3.1. If the elements in the 

candidate pair correspond to the first two elements in the neuron’s summation 

and the two weights have the same sign, the accumulation of the products of the 

weight and input vectors will first result in a subnormal number before the 

remaining ones are added on. As previously shown, the summation of two small 

normal numbers with a subnormal result will exhibit performance degradation. If 
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any of the ones corresponding to the remaining input elements precede or split 

the elements corresponding to the candidate pair, the small normal numbers will 

be summed with a one first which, due to their exceedingly magnitudes, will be 

rounded to one. This means the two input elements that correspond to the first 

two elements in a neuron’s summation can be determined through the timing 

side channel. Additionally, because the summation will only result in a subnormal 

value when the products of the inputs and their weights have opposite signs, a 

sign assignment relative to the assumed sign of the first weight can be 

determined by testing candidate pairs with same and opposite sign variants of 

the target values. The order of the first two elements also cannot be determined 

so the first input element is assumed to be the first input in the summation. To 

determine the third input in a summation, the assumed first input is set to zero 

and the assumed second input is used to test candidate pairs for the third input. 

The remaining elements are again set to one. Another performance degradation 

will be detected when the input corresponding to the third weight in the neuron’s 

summation is tested with the addition timing targets because the effective 

summation will be zero plus the two target values plus a sequence of ones. Once 

the first three inputs and signs are identified, each of the remaining inputs can be 

iteratively sign matched by setting all of the previously discovered inputs to zero, 

setting the last discovered input and test input pair to the two addition timing 

target values, and setting the remaining inputs to one.  
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Figure 3.2 
  
Activation Dependent Bias Leakage 

   

 
Figure 3.3 
  
Activation Independent bias Leakage 

  

Improving Bias Leakage 

Subneural employs a brute force search parameterized by a stride length 

to search over possible bias values to find inputs that have a subnormal 

summation when added to the bias. The subnormal results can be detected 

through timing side channels in neuron activation function. Hyperbolic activation 

functions like tanh experience performance degradation when evaluated on 

subnormal inputs. A visualization of this technique is shown in Figure 3.2. While 

this approach is effective in leaking biases in blind black box environments, many 

popular network activation functions are not susceptible to any timing side 

channel. Notably, the standard Rectified Linear Unit (RELU) activation function is 

not, rendering Subneural useless against the majority of neural networks. This 

technique, however, can be adapted to instead search for a similar degradation 

in the performance of floating-point addition operations, making it applicable 
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regardless of the activation function used. If the product of the first term and its 

corresponding weight is set to the bias guess and the products of the remaining 

two terms are set to the two small normal targets whose sum is subnormal, the 

resulting summation will be slow if the bias term is zeroed out by the first product 

and the following two products are allowed to sum to a subnormal value as 

shown in Figure 3.3. If the bias guess is incorrect, the first term will dominate, 

and the following values will be rounded off. This allows Subneural to be used to 

leak the biases of networks that use activation functions that are not susceptible 

to a subnormal timing side channel without relying on the influence of activation-

specific properties on the model’s output. 

A limitation of this approach is setting target values for the product of an 

input and its weight is prone to floating point error accumulation. The summation 

of the bias and the product of the first input and weight is the only aspect of the 

algorithm in which a multiplied input must sum with another value to be exactly 

zero. Due to floating point error, this is extremely unlikely and further effort is 

required. The simplest solution is to approximate the error using additional 

floating-point operations. The error in the summation of the bias and the first 

input’s target can be mitigated by the second input and so on until the error 

becomes subnormal at which point, we can apply one of the two aforementioned 

techniques. The error introduced by these floating-point multiplication and 

addition operations necessitates using the largest possible floating-point values 

for which there is an addition timing side channel as the final two targets. This 

allows for a larger margin of error in the zeroing out of the bias term while still 
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allowing for slow additions. A potential alternative solution would be to use higher 

precision floating point arithmetic operations that allow the product of an input 

and a weight to be accurately set to a target value and then use the 

corresponding lower precision values to achieve those targets, but this would be 

difficult to implement and is left as future work. 

Figure 3.4 
  
Single Layer Computation Visualization 

 

 

Table 3.2 
  
Floating Point Addition Timing Thresholds 

Neuron 0 Neuron 1 Speed 

Fast 

Fast 

Fast 

Slow 
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Expediting Arrangement Discernment 

 Addition timing side channels can also be applied to discerning leaked 

parameter arrangements. Consider the single-layer perceptron with two neurons, 

no biases, and an arbitrary activation function shown in Figure 3.2. By isolating 

individual input elements, Subneural’s multiplication timing guided recursive 

binary search can be used to leak one weight for each neuron in the network. 

The leaked parameters are discovered in an order that is dependent on the way 

in which the binary search finds performance degradations. As a result, it is not 

known which leaked parameters for a given input correspond to which neurons. 

Interactions between the leaked parameters of different inputs can be used to 

determine which parameters belong to the same neuron, effectively 

reconstructing an identical network. Employing a similar pairwise query strategy, 

leaked parameters associated with a given input are sorted in increasing order. 

The target values can then be set to where its product with the corresponding 

maximum magnitude weight is set to the smallest value for which an addition 

timing side channel is present. A second input is then configured such that the 

product with its corresponding minimum magnitude weight is set to be the largest 

value that when added with the maximum value from the first input exhibits 

performance degradation. An example where the maximum value for which an 

addition timing side channel exists and the minimum value that triggers it are 6e-

38 and 5.9e-38 is shown in Table 3.2. This configuration ensures that a forward 

pass through the model will only exhibit performance degradation if the largest 

weight from the first input and the smallest weight from the second input are in 
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the same neuron’s summation. From here the values for each input can be 

iteratively increased until a performance degradation is detected, at which point it 

can be inferred that the current largest magnitude weight on the first input 

belongs to the same neuron as the current smallest magnitude weight of the 

second input. As leaked parameters are matched, the search space and number 

of combinations that need to be tested gradually decreases, making this 

approach much faster than a brute-force search over all possible arrangements. 

 The same technique can be applied to support vector machines with linear 

and polynomial kernels. These kernels do not restrict the output space that can 

be searched through them and as such are suitable for sign, bias, and 

arrangement searches using small normal and subnormal addition timing target 

values. Support vector machines with Gaussian or radial bias function kernels 

can not be leaked through these attacks. It can also be augmented by 

Subneural’s backtracking assumption stack to discern the arrangement of 

weights in multi-layer perceptrons. The assumption stack is necessary because 

observed performance degradations may be observed due to summations in 

neurons from multiple candidate layers. This problem could be addressed by 

using layer-accurate timing side channels [2] but dependence on such high-

precision measurements would affect the applicability of the attacks. 

Towards Multi-Bias Leakage 

 Introducing network biases to single-layer and support vector machine 

targets complicates the extraction process significantly. Because biases are the 

first components of neuron summations, they must be leaked first as initializing 
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accumulations with large bias values erases the effects of all succeeding small 

normal and subnormal floating-point operations. Because it may take multiple 

inputs per bias to zero out its value, having to search for multiple biases 

simultaneously without knowing which weights correspond to which neurons is 

extremely difficult. A large number of sign combinations must be tried for every 

bias guess, and each guess must be formulated for each of the possible weight 

arrangements. These additional search dimensions compound with the already 

difficult task of brute forcing an arbitrary floating-point value to make attacking 

single-layer structures with biases exceedingly difficult. Additionally, a 

backtracking assumption stack would be necessary for even the addition timing 

based attack as performance degradations caused by accidental slow addition 

operations could result in false bias detections. 

 

 

 



  34 

CHAPTER 4 

RESULTS 

The modified version of Subneural was applied to leaking the weights, 

signs, arrangements, and biases of a single neuron, and to leaking the weights, 

signs, and arrangements of a single layer perceptron and a support vector 

machine with a non-restrictive kernel. In accordance with the limitations of the 

timing side channels, relative sign assignments to an assumed positive first sign 

were accurately discovered for each neuron across these experiments. Accurate 

arrangements were also discerned in the single layer perceptron and support 

vector experiments. Additionally, the modified bias leakage algorithm was 

demonstrated against a single neuron target. Table 4.1 shows the average 

leaked parameter accuracy across the single layer perceptron experiments and 

the leaked bias accuracy from the single neuron experiments. The error in the 

leaked parameter values can be attributed to floating-point multiplication error. 

This results in leaked parameters being twice as accurate for double-precision 

values as they are for single-precision ones. The error in the bias arises from the 

error in the sequence of floating-point addition operations used to leak them. 

 

Table 4.1 
  
Leaked Parameter and Bias Accuracies 

Encoding Precision Parameter Accuracy Bias Accuracy 

Single +/- 1.57e-08 +/- 2.48e-08 

Double +/- 1.80e-17 +/- 2.72e-17 
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CHAPTER 5 

DEFENSES 

Defeating Prediction Poisoning Defenses 

 Model extraction attacks have been shown to be extremely effective 

against black box targets. The most prevalent attacks attempt to train a model 

that approximates the functionality of a target network through only a model 

query interface. Models are evaluated on a curriculum of sample inputs and the 

corresponding output probability distributions are used to generate a distilled 

training data set. Attackers can then train a student network with an arbitrary or 

domain knowledge informed internal structure on the dataset generated by the 

target teacher network. Because the teacher outputs are probability distributions 

over the class space, the student can learn relations between classes while it is 

learning the correct labels for each sample, greatly expediting the learning 

process when compared with training a model on a one-hot encoded dataset like 

that which the target network would have been trained on. Approximate 

functionality extraction attacks have been applied to a wide range of target 

architectures in black box attack scenarios and have been shown to be effective 

in leaking models in environments where queries are filtered or limited. 

Additionally, adversarial examples generated for the functionally similar extracted 

models using white box techniques have been shown to be transferrable to target 

networks that have been hardened against adversarial attacks, further increasing 

the threat posed by this attack. There have also been a number of attacks that 

replicate exact model parameters and internal structure through black box query 
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interfaces. These attacks use prior knowledge about likely neural network 

architectures to generate multiple candidate networks from the distilled target 

training data set. They then train metamodels on a dataset of publicly available 

and generated classifiers [14]. The classifiers learn to predict attributes like the 

internal structure of a neural network from a model’s output probability 

distributions over an input dataset. Inputs are iteratively refined to better separate 

the space of possible models. These techniques have been shown to be effective 

in determining approximate internal structures of their target models in a query-

efficient manner, making the leaked white box models much better suited for 

generating transferable adversarial examples than models that were arbitrarily 

constructed and trained solely for functionality approximation. 

 In response to functionality approximating and exact internal structure 

extraction attacks, a number of prediction poisoning defenses have been 

developed [8]. These countermeasures perturb the output probability distributions 

of a protected model with the aim of interfering with an adversary’s ability to train 

a student model on its outputs. Since black box model extraction attacks attempt 

to train models using the output probability distributions from the outputs of the 

trained models, poisoning predicted probability distributions causes them to learn 

incorrect or contradictory relationships between output classes, decreasing their 

accuracy by up to fifty percent and significantly increasing the number of queries 

required to extract a model. Variants that use out-of-distribution detectors to 

identify adversarial queries to poison and that poison all queries indiscriminately 

have been shown effective against adversarial extraction attacks. Most use 
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cases for black box neural networks only rely on the top one or most likely class 

prediction. This means that the probability distribution over the remaining output 

classes can be freely manipulated while still preserving the overall accuracy of 

the model. In use cases where the top k class probabilities are required, similar 

accuracy-preserving poisoning can be applied. Poisoning strategies like adding 

random noise to the output distribution or maximizing the angular deviation of 

gradients between the poisoned and original predictions have been used to 

substantially reduce the accuracy of leaked models. Adapted black box model 

extraction attacks have been shown to be effective against accuracy-preserving 

prediction poisoning techniques, albeit with a significantly higher query budget. In 

response to these attacks, countermeasures that detect adversarial queries and 

either refuse to answer them or provide blatantly incorrect outputs have been 

developed. While these techniques are not applicable in security-critical 

environments, they further reduce the accuracy and increase the number of 

queries required to extract black box models. 

 Subneural is immune to all prediction poisoning defenses because it does 

not rely on the outputs of its target models at all. As such, it can be applied 

against targets with any degree of prediction poisoning. It is also applicable 

against targets that use a separate module for out-of-distribution detection. So 

long as the input is fed through the target neural network, the time it takes for the 

input to be processed can be used to leak its parameters and weights as 

depicted in Figure 2.5. It can also be applied against models that are trained on 

adversarial examples or have a dedicated output class for out-of-distribution 
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queries for the same reason. However, the applicability of white or black box 

adversarial example generation techniques and the transferability of the 

generated examples to targets that are hardened via these methods is limited. In 

these scenarios, the attack can only be used to steal proprietary parameters and 

intellectual property. 

 

Figure 5.1 
  
Using Timing Side Channels to Defeat Prediction Poisoning 

 

 

Defeating Gradient Masking Defenses 

 The widespread adoption of neural networks for security-critical 

applications has created an explosion in the development of adversarial attacks 
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that discreetly perturb samples to manipulate their classification. The most 

prevalent and broadly applicable black box attacks iteratively perturb samples 

from within the training distribution of a model and observe the impact of these 

perturbations on the output probability distributions. The changes are then 

correlated with the perturbations by extrapolating gradients between the inputs 

and outputs. Further perturbations are made in the directions that decrease the 

overall confidence of a model or perturb a sample into being classified as a 

specific target class [12, 16]. Most attacks attempt to minimize the size of the 

perturbations necessary to achieve their goals and can find these perturbations 

in a sample efficient manner. Iterative gradient-based adversarial example 

generation attacks have been shown to be effective in black box attack scenarios 

and to pose a severe threat to the robustness of applications of neural networks 

to security-critical applications like facial recognition and network intrusion and 

detection.  

In response to gradient-based black box adversarial attacks, a number of 

gradient masking defenses have been proposed to increase model robustness 

[4, 6]. The most effective of these is defensive distillation. Neural network 

distillation is a technique used in training neural networks to transfer knowledge 

from a teacher network to a student network. It was initially proposed to combat 

the run time complexity of running inference with parameterized or ensemble 

model architectures. These large and complex models require a lot of memory 

and compute to make predictions and as such are not applicable in real-time or 

resource-constrained environments. Distillation is a technique that, as the name 
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suggests, distills the knowledge learned by a larger teacher model into a smaller 

student model. The teacher model is used to generate a new dataset that maps 

inputs from the original training dataset to the output probability distributions of 

the teacher network. The student network is then trained on this dataset which 

now instead of capturing only one hot encodings of the output class for each 

sample, captures the learned probability distribution over the output class space. 

This allows the student network to learn the relationships between output classes 

in addition to the correct classes for each sample, simplifying and expediting the 

learning process over the sample distribution. Student models often have 

significantly fewer parameters and much simpler architectures, reducing their 

time and space complexities and making them applicable in a wider range of 

environments.  

Defensive distillation applies distillation to smooth out the classification 

boundaries of a trained model, making it harder for iterative perturbation based 

adversarial attacks to discern which direction to perturb samples in. This is 

achieved by training a teacher model on the original dataset for a problem and 

then training a structurally identical model on the generated dataset of output 

probability distributions of the teacher model. This provides the same benefits of 

standard knowledge distillation by allowing the model to learn extracted 

relationships between output classes. Because the knowledge from the teacher 

neural network is fed back through a structurally identical network, the student 

network also learns smoother classification boundaries. The effect of applying 

this technique is that the student model is less sensitive to small changes in the 



  41 

input [6], resulting in small perturbations of a sample input yielding the same or 

similar output probability distributions. It has been shown that iterative black box 

adversarial attacks are significantly less effective against networks protected by 

defensive distillation, in some cases eliminating the threat entirely. 

 

Figure 5.2 
  
Generated Adversarial Examples 

 

 

Subneural and other timing side channel attack-based neural network 

extraction frameworks are inherently immune to these defenses as they either do 

not rely on the output of a model at all or do not attempt to extrapolate gradients 

between inputs and their corresponding output probability distributions. At most, 

timing side-channel frameworks look for changes in output that are unaffected by 

gradient-based defenses. To demonstrate the effectiveness of attacks like 

Subneural, we trained several MNIST classifiers ranging from single-layer 

perceptrons with no bias nodes to shallow fully connected neural networks. 

These classifiers were then used to generate distilled training datasets of output 
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probability distributions and train identical student networks with a distillation 

temperature of 10. We then used off-the-shelf adversarial example generation 

techniques [16, 19] to generate examples for both the unprotected teacher 

models and the defensively distilled models. Figure 2.6 shows a sample image of 

a one from the MNIST dataset and the outputs from running a black box attack 

that applies projected gradient descent to gradients estimated by natural 

evolution strategies [16] with a target output class of seven on the original and 

protected models. The attack is able to find the necessary pixels that need to be 

perturbed to result in the target classification as a seven for the original model 

but is unable to find an adversarial example for the protected one. The 

parameters of the defensively distilled model are then loaded into the simulated 

timing framework used by Subneural and the attack is applied to leak exact 

parameters and arrangements. White box adversarial attacks can then be used 

on the leaked model to generate better adversarial examples that have been 

shown to transfer to the defensively distilled ones [18]. 

Defeating Stateful Defenses 

 State-of-the-art techniques in protecting neural networks from query-

based adversarial example generation and extraction attacks have moved 

towards stateful defense systems. This shift was motivated by the inability to 

curtail these attacks through defenses that poison prediction distributions or 

modify model weight distributions and classification boundaries to make it harder 

for adversaries to extrapolate gradients. Stateful approaches to securing neural 

network query interfaces leverage out-of-distribution detection and query 
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similarity measurement techniques to detect malicious queries. These techniques 

leverage the fact that iterative adversarial example generation attacks make a lot 

of similar queries while extrapolating output gradients. If an individual query or 

query sequence is determined to be malicious, its execution can be halted and 

the IP address from which those queries originated can be banned. Popular 

stateful defense implementations [7] maintain a fixed sized buffer of the last k 

queries received. Each time a new query is made, its similarity to each of the 

queries stored in the buffer is calculated. If the average similarity score over the n 

most similar queries drops below a threshold value, the query sequence is 

flagged as malicious. Query similarity scores can be calculated in a number of 

ways but the most common is the absolute distance between query tensors. 

These stateful adversarial defense systems have been shown to be effective in 

detecting iterative gradient-based attacks. 

Table 5.1 
  
Adversarial Attack Average Query Distances 

Attack Type K K Average Distance 

Projected Gradient Descent 50 0.04 

Subneural 100 0.01 

Subneural (Interleaved) 50 1.4 

 

 Floating point timing side channel based adversarial attacks are not 

inherently immune to these countermeasures as they also make a lot of very 

similar queries. Like iterative black box adversarial attacks, however, they are 
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able to circumvent stateful defenses by employing a query strategy [20]. Adaptive 

black box attacks that learn the stateful detection scheme and use it to generate 

queries that avoid triggering have been demonstrated against similarity score 

based stateful defenses. A similar adaptive querying technique could be applied 

to timing side channel based attacks to mask similar queries with benign ones. 

The binary search employed by Subneural provides the added benefit of being 

an anytime algorithm that iteratively narrows down the possible range of model 

parameter values. The search could be cut off at any point and approximate 

parameter values could be used to bootstrap a model learning approach. 

Subneural can also be configured to mask its query process by interleaving 

searches for different inputs, increasing the average similarity score of the attack 

while still converging to exact parameter values as shown in Table 4.1. It also 

had the added benefit of yielding a high-resolution model that can be queried and 

tested independently of a protected model when compared with iterative attacks 

that only generate individual adversarial examples. White box adversarial attacks 

can then be used to generate adversarial examples in an unrestricted 

environment that transfer to the protected model. 
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CHAPTER 6 

MITIGATIONS 

Disabling Subnormal Numbers 

 There are multiple ways to approach mitigating the threats posed by 

floating-point timing side-channel attacks. The simplest approach is to disable the 

use of subnormal floating-point values. X86 CPUs have denormals are zero and 

flush to zero flags that can be used to treat all denormal numbers as zeros and to 

flush underflows from floating point operations to zero. If these flags are set, the 

floating-point operations that would otherwise result in subnormal values will 

instead result in zero, eliminating all of the timing side channels surrounding 

subnormal numbers. However, disabling the use of subnormal numbers will 

result in reduced accuracy of floating-point operations. This would effectively 

reduce the classification accuracy of models on samples that are in close 

proximity to class boundaries. For most applications of neural networks, the 

reduced accuracy would be negligible. This would primarily be a concern in 

security-critical applications where samples are frequently on or near class 

boundaries and occasional misclassifications can not be masked. 

Modifying Stateful Defenses 

A practical mitigation for these attacks would be to apply stateful 

adversarial attack detection techniques to identify malicious queries. The stateful 

defenses examined in this work could be trained on a dataset of sample query 

traces from Subneural to learn to detect timing side-channel attack sequences. 

Floating-point timing side-channel attacks on neural networks require making 
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thousands of queries where all but one of the inputs are zeroed out. All of these 

queries are well outside of the training distribution for essentially all target 

models, regardless of domain. If out-of-distribution detection were to be 

performed by a separate component as a preprocessing step, malicious samples 

could be detected and handled without ever reaching the protected networks. 

Refusing to respond to out-of-distribution queries would not only eliminate the 

threat posed by timing side-channel attacks but would also stifle gradient-based 

black box adversarial attacks which also make a lot of out-of-distribution queries. 

A rule-based detection system that determines whether a sufficient number of 

pixels have nonzero values would also be sufficient for detecting attacks like 

Subneural.  

Neural Network Quantization 

 Neural network quantization to eight bit signed integers also eliminates the 

timing side channel due to the way large integers interact with subnormal 

numbers. Quantization is a technique that decreases the precision of the weights 

and activations of a neural network to improve the space and computational 

efficiency of trained models with a large number of parameters or to facilitate 

real-time inference on embedded devices. The most popular quantized 

parameter size is 8-bit integers. Quantizing both the weights and the activations 

to 8-bit integers converts all computations to integer operations and as such 

eliminates the timing side channel entirely. Weight quantization alone is still 

susceptible to the subnormal timing side channel in the general case but falls 

apart with 8-bit unsigned integer weights. Once the magnitude of a weight 
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exceeds 5, multiplication with small normal numbers still experiences the same 

performance degradation but the result of the multiplication is always positive or 

negative infinity. This renders the containing summation useless as all other 

products are dominated by the infinities or result in not a number. Furthermore, 

the output of applying activation functions like RELU to positive infinity leaves the 

value unchanged, causing all summations in succeeding layers to also result in 

infinity, making the output useless. Quantization to 16-bit half-precision floating 

point values is also popular but x86 CPUs do not support operations on half-

precision values. They instead convert them to single precision values at run 

time, making Subneural equally effective against 16-bit quantized models. 

Modern GPUs have seen the addition of hardware support for half-precision 

floating-point values, but they are not susceptible to the subnormal floating-point 

timing side channels.   

Complex Network Architectures 

 Lastly, convolutional and recurrent neural networks both make it 

impossible to distinguish where exactly in a model a subnormal computation 

occurred so adding complex layers or rearchitecting models may be another 

suitable mitigation. Models that already employ similar techniques do not require 

additional protections to mitigate the threats posed by timing side-channel based 

extraction attacks. 
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CHAPTER 7 

CONCLUSION 

Summary 

This work showed floating-point timing side-channel attacks against neural 

networks to be effective in leaking common neural structures through query 

interfaces in blind black box settings. Modifications were made to Subneural to 

speed up extraction and make it more broadly applicable. Addition timing side 

channels were leveraged to expedite leaked parameter sign assignment and 

arrangement discernment. They were also applied to bias leakage to make blind 

extraction attacks applicable against networks that use a wider range of 

activation functions. This work also evaluated Subneural against a suite of 

adversarial attack mitigations. The attack was used to circumvent gradient 

masking adversarial defenses by facilitating the application of white box 

adversarial attacks to models extracted through the side channel. Masking 

techniques used by adaptive black box adversarial example generating attacks 

against models protected by stateful defenses were shown to be applicable in 

masking timing side-channel based attacks. Subneural’s unique ability to leak 

models without relying on query outputs was shown to make it resilient to 

accuracy preserving and complete prediction poisoning adversarial 

countermeasures. Finally, mitigations that protect against the threats posed by 

floating-point timing side-channel attacks were proposed and shown to be 

effective. 
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Limitations 

While these attacks have been shown to be effective against rudimentary 

neural structures protected by adversarial defenses, there are a number of 

hurdles in the way of widespread real-world application. As the depth of the 

target neural network increases, the floating-point error in the computations 

required to search for weights, biases, and arrangements accumulates. This 

makes it difficult to set and test target values for leaking biases and 

arrangements and with enough layers starts to limit the ability to search the input 

space for values that result in performance degradations in deeper layers. The 

biggest limitations of blind network leakage attacks are the computational 

overhead required to amplify the timing side channels and the time it takes to 

brute force the values of biases. Addressing these challenges is left as future 

work. 
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CHAPTER 8 

FUTURE WORK 

Augmenting Gradient Based Black Box Attacks 

 Existing black box adversarial extraction attacks on neural networks [5, 

14, 16] have been shown to accurately leak network structures and parameters 

with relatively high degrees of accuracy. While these attacks primarily rely on 

domain knowledge and brute force search to determine the internal structures of 

target networks, their model architecture approximations could be used to guide 

Subneural’s search process. Approximate network depth, layer configurations, 

and weight arrangements could be used to initialize parameter values or a 

knowledgebase of possible models that could be refined and pruned with timing 

side-channel based leaks and test cases. Additionally, approximate bias leaks 

could be used to greatly decrease the brute force search space and running time 

of Subneural’s bias leak stage. At present, bias leakage is the most time-

consuming and computationally expensive component of the attack by multiple 

orders of magnitude. Expediting this step would make Subneural effective 

against broader and deeper targets, greatly increasing its real-world applicability. 

Side Channel Amplification 

 Subneural’s current implementation relies on a simulated timing 

framework that reports accurate simulated running times on a per-competition 

basis. This allows each input configuration to be tested with deterministic results, 

greatly expediting the process of searching for parameters and biases. Applying 

Subneural in the real world would require significant amplification of the timing 
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side channels it uses for changes in inference times to be accurately separated. 

Each input configuration will need to be run between 1000 and 100,000 times, 

depending on the complexity of the target neural structure, to be able to 

consistently detect performance degradation steps. Amplification is a common 

technique applied in timing side-channel attacks but due to the large input space 

Subneural has to search, even small amplifications would significantly increase 

the running time of the algorithm and may affect its feasibility against broader 

and deeper targets. 
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