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ABSTRACT  

   

A skin lesion is a part of the skin which has an uncommon growth or appearance in 

comparison with the skin around it. While most are harmless, some can be warnings of 

skin cancer. Melanoma is the deadliest form of skin cancer and its early detection in 

dermoscopic images is crucial and results in increase in the survival rate. The clinical 

ABCD (asymmetry, border irregularity, color variation and diameter greater than 6mm) 

rule is one of the most widely used method for early melanoma recognition. However, 

accurate classification of melanoma is still extremely difficult due to following reasons(not 

limited to): great visual resemblance between melanoma and non-melanoma skin lesions, 

less contrast difference between skin and the lesions etc. There is an ever-growing need of 

correct and reliable detection of skin cancers. Advances in the field of deep learning deems 

it perfect for the task of automatic detection and is very useful to pathologists as they aid 

them in terms of efficiency and accuracy. In this thesis various state of the art deep learning 

frameworks are used. An analysis of their parameters is done, innovative techniques are 

implemented to address the challenges faced in the tasks, segmentation, and classification 

in skin lesions.  

• Segmentation is task of dividing out regions of interest. This is used to only keep the 

ROI and separate it from its background.  

• Classification is the task of assigning the image a class, i.e., Melanoma(Cancer) and 

Nevus(Not Cancer). A pre-trained model is used and fine-tuned as per the needs of the 

given problem statement/dataset.  

Experimental results show promise as the implemented techniques reduce the false 

negatives rate, i.e., neural network is less likely to misclassify a melanoma. 
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CHAPTER 1 

 

INTRODUCTION 

Melanoma is the most dangerous form of skin cancer and has the ability to spread to 

different parts of the body is left untreated. It results in approximately 75% of deaths related 

to skin cancer[1].  Therefore, it is crucial to correctly detect it at a much earlier stage, this 

results in a higher survival rate of patients. Clinical diagnosis of melanoma with an unaided 

eye is only about 60%[2]. 

Extensive research and advancements have been made in the field of deep learning 

in computer vision and they have been gaining a lot of dominance. Today, it can outperform 

humans in multiple areas such as detection, classification in digital images with less than 

5%[3]. An automatic system that can be relied upon for melanoma detection is valuable 

for the pathologists as it increases their effectiveness and accuracy. These can be readily 

run on easily available hardware, hence increasing their reach.  

Dermoscopy technique is a noninvasive technique in which magnified and clear 

images of cancer suspected skin regions are taken. This helps in enhancing the visual 

features of the skin lesion and aids in detection[4,5].  Nonetheless, the task of detecting 

melanoma using deep learning techniques poses several challenges. Few reasons are(not 

limited to): Subtle visual differences between melanoma and non-melanoma patches, less 

contrast difference between skin and lesions also, variations in the skin conditions, e.g., 

color of the skin, hair present around the patch[6]. This results in the melanoma patch 

having different type of characteristics, color, etc.  
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Segmentation is a fundamental step towards classification in a lot of approaches. A 

comprehensive algorithms study on automated skin lesion segmentation is available in [7]. 

Segmentation can help increase the accuracy of classification. A lot of studies have been 

done to achieve decent segmentation results[8,9,10,11,12,13]. On the basis of results 

obtained from segmentation, features can hence be extracted for melanoma detection. 

Even though a lot of work has been carried out, there is still a lot of place for 

performance improvement in segmentation and classification of skin lesions. The 

International Skin Imaging Collaboration(ISIC): Melanoma Project is a focused towards 

facilitating the application of digital skin imaging to reduce mortality due to melanoma. 

They have developed and are expanding their data-set archive of skin images since 2016. 

It is an open-source public access archive to facilitate the development and testing of 

automated diagnostic systems. They have set new standards in the area of dermoscopic 

feature extraction.  

The contributions of this thesis can be summarized as follows: 

1. Diving into U-Net for segmentation and doing a comprehensive analysis. Also, 

experimenting with small architectures in order to better understand performance 

of complex and simple architectures. 

2. Classification of the patches into Nevus(Non-Cancerous) and 

Melanoma(Cancerous) using a pre-trained model and fine tuning its parameters 

which better suits our problem statement/dataset.  This is also known as transfer 

learning[14] and is an active field of study in deep learning.  

3. Researching a strategy to include segmented data into the classification network 

for better performance. 
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For the task of classification, a pre-trained model was picked and fine-tuned with 

training to better serve us on our problem statement and dataset. This is known as transfer 

learning and is a widely used technique. It is also an active research topic in the field of 

deep learning. 

 

Figure 1.1: Overview of The Process 
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CHAPTER 2 

 

SEGMENTATION 

Image Segmentation is one of the key topics in the field of image processing and 

computer vision and plays a crucial role in applications areas such as medical image 

analysis, perception in robots, augmented reality, image compression and much more.   

Segmentation involves dividing a visual input into segments in order to simplify its 

analysis. From all the different regions/objects that the networks segment we pick only the 

important ones for our analysis. The image is a collection of different pixels, we group 

together pixels which belong to the same category/class. It is generally done using a 

bounding-box method where we place a box around the region of interest or a pixel wise 

labelling resulting in different classes being highlighted with different colors.   

Our goal using a segmentation algorithm is to extract the region of a mole from a given 

image and remove the background which is the skin. We are using the ISIC-2018 data set 

for the task of segmentation and it contains 2594 images and masks.  

Mask is the ground truth of the input image, meaning it contains pixel level 

information of which pixel has a class mole and not a mole. In terms of numerical values, 

the mask is a binary one, which means it contains 0 and 1 as pixel values. 0 corresponds to 

that pixel not being a mole and 1 meaning it is a mole. It is a gray scale image with a black 

and white appearance and contains only a single channel. An example of an image and its 

mask is given in the figure 2.1. 
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Figure 2.1: Image and Mask 

 

2.1 Pre-Processing 

The input images for training the deep learning model were normalized before the 

training process. This helps in getting it within a certain threshold range, it reduces the 

skewness[15] which helps the network learn better and faster. Mean pixel value and 

standard deviation of the three-color channels namely, Red-Green-Blue was estimated. 

Using the below values data was normalized and equation 2.1 was used for normalization. 

• Mean r-g-b value: (0.708, 0.582, 0.536) 

• Standard deviation: (0.0978, 0.113, 0.127) 

𝑂𝑢𝑡𝑝𝑢𝑡[𝐶ℎ𝑎𝑛𝑛𝑒𝑙] =
𝐼𝑛𝑝𝑢𝑡[𝐶ℎ𝑎𝑛𝑛𝑒𝑙]−𝑀𝑒𝑎𝑛[𝐶ℎ𝑎𝑛𝑛𝑒𝑙]

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛[𝐶ℎ𝑎𝑛𝑛𝑒𝑙]
                              (2.1) 

An example of original image and normalized image can be found in Figure 2.2. 

 

Figure 2.2: Original Image and Normalized Image 
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2.2 Data-Augmentation & Dice Index 

Data augmentation is a set of techniques used to increase the amount of data available 

by adding moderately modified duplicate of data or create synthetic data newly from the 

already existing data. This helps to reduce overfitting[16] when training the model by 

acting as a regularizer[17]. There are a plethora of data augmentation techniques and were 

randomized with a probability of 50% of any of them happening. The performed techniques 

and visual examples are discussed in this section. 

• Horizontal flipping: Horizontal flip augmentation is when the columns of the input 

image is reversed.                                      

 

                    Figure 2.3: Original Image and Flipped Image 

 

• Rotation: Rotation augmentation is done by rotating the image between -180º and 180º. 

       

        Figure 2.4: Original Image and Rotated Image 
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• Resized crop: Resized crop augmentation is when a random subset is created from the 

original image and scaled back to a given size. 

        

                    Figure 2.5: Original Image and Resized Cropped Image 

 

All images are all resized to 400x400 for training purpose. All the previous techniques 

combined generate an image the same as in figure 2.6. 

 

                                 Figure 2.6: Original Image and Transformed Image 

 

The same spatial data augmentation is applied to the mask as well. It keeps the image 

and mask both identical in terms of orientation. If both were to be aligned differently for 
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training, the model would not learn anything useful from it and prediction would be near 

random. 

Dice index[18] is a statistical tool to find the similarity between two images and 

was used as the metric for accuracy.  Formula of dice index can be found in equation 2.2. 

2 ×
|𝑋∩𝑌|

|𝑋|+|𝑌|
                                                                  (2.2)                                                                                               

Where X,Y are binary vectors. One signifies ground truth and the other signifies the 

model prediction. This is used to evaluate the similarity between the original mask and the 

predicted mask. 

 

2.3 Deep Learning Architecture & Results 

One Neuron Model:  This architecture is the most basic one aimed at experimenting at how 

a model with as low as mere 8 parameters would perform at such a complex task of 

semantic segmentation. The r-g-b values from the image serves as the input for the two 

nodes. The two nodes or neurons[19] are responsible for giving out scores for the input 

pixel being skin and mole respectively, i.e., the model outputs a two-channel feature map 

of the score given to pixels from the input image. Visual representation of the architecture 

is given in the figure 2.7. 
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                                                 Figure 2.7: One Neuron Model 

 

The train-test split[20] was kept as 90-10% along with a batch size[21] of 2. Learning 

rate of 10-3 was kept and the model was trained for 25 epochs. Since the number of 

parameters were small the model was quick to learn to its maximum limit. We could see 

that 3 epochs were enough for the model to learn, post which negligible changes were seen 

in the training and testing curves. The average dice achieved during testing was 

approximately 0.58. The results are not good and would lead in poor segmentation since it 

would contain a lot of misclassifications. The results show that 8 parameters do not serve 

the purpose of accurate segmentation. One Neuron training plot is given in the figure 2.8. 
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Figure 2.8: One Neuron Training Result 

 

U-Net: The U-Net architecture[22] was specifically designed for biomedical Image 

segmentation[23]. U-Net architecture consists of two paths. The first path is contraction 

path(also called encoder) and is used to capture the features of the input images. Encoder 

contains convolution and max pooling layers. The second path is an expansion path 

symmetric to the encoder(also called decoder). Decoder contains transposed 

convolution[24] layers needed to up sample the image and convolution layers to keep 

extracting features. These layers reverse the standard convolution by dimensions thus 

creating a feature map having dimension greater than the input feature map.  

This architecture also leverages the power of skip connections[25] at 4 different channel 

levels. Essentially, skip connections are connections from layers earlier in the architecture 

to the layers that come later via addition or concatenation. This has been experimentally 

proven that skip connections help the model converge faster. This is an end-to-end fully 
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convolution network and does not contain linear layers, hence it can accept images of any 

size. The output contains of 2 channels with each one representing the score of the that 

pixel being a skin and mole as predicted by the model. A SoftMax layer[26] is used on the 

score to get the class of the pixel. Formula for a SoftMax function can be found in equation 

2.3.  

𝜎(x𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑗=𝑘

𝑗=𝑖

                                                   (2.3) 

ReLu[27] is the choice of activation function[28] in this architecture. Rectified Linear 

Units will output the input directly if its positive but will output 0 if the input is negative. 

ReLu activation can be described by the equation 2.4. 

    𝑅𝑒𝐿𝑢(𝑥) = max (0, 𝑥)                                               (2.4) 

U-Net was divided into 4 different depth levels for studying how the performance 

changes with the number of parameters in the network. Every depth level has different 

number of channels the model is operating at from its original input of 3 channels. The 

hyper parameter's batch size and learning were kept as 1 and 10-4 for all different version 

of U-Nets. 

The U-Net architecture can be found in the figure 2.9. 
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Figure 2.9: U-Net Architecture 

We explore various modifications in the U-Net(see Figure 2.9) where we reduce the 

complexity of the neural network to see its effects and study the increase/decrease in 

performance with the change in number of parameters. For instance, in U-Net 1 we only 

keep one step of the architecture and remove all the others while in U-Net 4 we keep the 

entire architecture. 

• U-Net 4: This network has 31,031,810 number of parameters in it making it quite heavy 

in terms of computation power. For training this network a train-test split was kept as 

90-10%. The test loss follows train loss closely signifying no over fitting and the test 

dice curves show that the model is generalizing well on the test set. There is minor to 

negligible fluctuations throughout the training process.  The model converges therefore 

the chosen hyper parameters combination prove to be good. The highest test dice 

attained during training was 0.834. So, on an average over the entire data set, there is 
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approximately 83.4% overlap between the original mask and the predicted mask. The 

achieved test dice value falls in the "good score" range. The training graph can is given 

in the Figure 2.10. 

 

Figure 2.10: U-Net 4 Training Results 

• U-Net 1: This network has 403,842 number of parameters and is the smallest out of all 

the U-Net variations. The effect of decrease in parameters is most visible in this network 

and it can be seen flattening out earliest in about 5 to 6 epochs, after which small change 

happens in the learning process. For training this network a train-test split of 60-40% 

was chosen. The test loss follows the train loss well which shows that there is no over 

fitting in the model and train and test dice index curves show that the model is 

generalizing well. There was almost no fluctuation during the training process which is 

a good indicator.  The highest testing dice attained during training is approximately 0.72. 

So, on an average over the entire data set, there is approximately 72% overlap between 

the original mask and the predicted mask. There is approximately a 13% decrease in the 
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highest test dice achieved compared to the 4 step U-net. The training graph is given in 

Figure 2.11. 

 

                  Figure 2.11: U-Net 1 Training Results 

 

2.4 Performance vs. Number of Parameters 

Parameters in a neural network architecture are the elements which are learn able. 

These are in general referred to the weights and biases that are learnt during the learning 

process. These contribute to the model's power of prediction and are altered during the 

back-propagation process. Although it seems logical that the more complex the architecture 

the results increase proportionally, the experimental results show a bit of a different story. 

A relationship between the highest test dice achieved during training vs the number of 

parameters in the architecture was conducted to answer this question. According to the 

computational results, as the number of parameters increases there is indeed a rise in the 

test dice index, but the proportion is marginal only up to a certain extent post which the 
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increment starts to flatten out. This shows that indeed a bigger model does produce better 

results, but the effect lasts only till a threshold value after which the increase in dice with 

increase in number of parameters is a lot slower. 

Furthermore, if we look at the first two U-net models, i.e., U-Net 4 (Original) and U-

Net 3. The difference in the highest dice achieved was a 3.4% even though the smaller 

model had almost 75% of the number of parameters removed. As the number of parameters 

increase so does the computational cost, it would be wise to select a model which is optimal 

in terms of both accuracy and cost. The performance comparison of the parameters can be 

found in the figure 2.12. 

 

 

Figure 2.12: Test Dice vs. Number of Parameters(Log Scale)  
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2.5 Computational Time 

Knowing the computational complexity of machine learning models is very 

important, it lets us know how fast or slow will the model perform for an input size. Since 

computation power is costly these days an efficient model is to be picked up to minimize 

the overall cost any given system while not compromising the efficiency of the model. 

All the models were run on the ISIC-2018 data set which contains 2594 images. This 

was done to get an estimate of total time required to process the images and make mask 

predictions. The results are a bit surprising to say the least. Even though there is an increase 

in the total time taken which was expected, the relative time difference between the models 

is less and gives us valuable insight. 

Time taken by 31,031,810 parameters to process the data is 922 seconds while for 8 

parameters, it is 820 seconds. Time taken by the rest of the parameter count falls in between 

these extremities.  

The increase from the lowest to the highest amount of time taken is only about 

12.43% which is inconsequential. So, when it comes to picking a desired model to perform 

computations the number of parameters does not seem to impact the time too much. The 

result graph of computational time vs number of parameter's(log scale) can be found in 

Figure 2.13. 
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Figure 2.13: Computational Time vs Number of Parameters(Log Scale) 

 

2.6 Density Estimation 

After the completion of the training the model weights are saved for future 

computations. These weights can be loaded on to their respective models and once all the 

keys successfully match, the model is usable. All the trained models were run on the test 

set and a dice dictionary was created to keep track of all the dice indexes of the model 

prediction. This information was then used to mathematically calculate density of points 

on a 0 to 1 dice index range for analyzing model performance. Bin sizes of 0.1 were created 

and dice indexes lying in the appropriate range were put into the respective bin. This shows 

that out of any given amount of test images where does the maximum concentration of 
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predictions lie. This is a good indicator of model performance. The formula used for 

computing the density can be found in equation 2.5. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑖𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑖𝑛𝑡𝑠
×

1

𝐵𝑖𝑛 𝑆𝑖𝑧𝑒
                            (2.5) 

From the results it can be seen that the density does not vary a lot for the One Kernel 

Model and is approximately constant over the entire range of dice index values with a small 

increase happening in the later half(Dice>0.5). The results of one kernel shows that is not 

fit for the task of semantic segmentation as the predictions are not accurate at all for the 

most part. For U-nets the concentration of points increases as we go up the scale from 0 

towards 1. There is a heavy concentration of points in the bins 0.8-0.9 and 0.9-1 whereas 

bin sizes corresponding to lower dice index(Dice<0.5) have a smaller number of points. 

The density lines for U-nets increase in sort of an exponential manner which is good 

indicator of their predictive power. 

The graph of the original U-net(4 step) shows that it has approximately the lowest 

density of points in the dice range 0-0.8, whereas has approximately the highest density of 

points in the dice range 0.8-1. The original U-net no doubt therefore performs the best here, 

the only model comparable to it, i.e., 3-step U-net lies very close to it.   

All the models are compared in Figure 2.14. 
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Figure 2.14: Density vs Dice Index 

 

After evaluating the results, we decided to go with U-Net 4 for integrating into the 

classification architecture for classifying images into Nevus and Melanoma.  A table 

comparing different model stats can be found in table 2.1. 
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Parameter One Neuron 

Model 

U-Net 1 U-Net 2 U-Net 3 U-Net 4 

Highest Test 

Dice Index 

0.58 0.72 0.75 0.80 0.83 

Computational 

Time(seconds) 

820 848 856 902 922 

Density(>90%) 1.11 2.44 3.54 4.08 5.29 

 

      Table 2.1: Model Stats 
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CHAPTER 3 

 

CLASSIFICATION 

 Classification involves predicting which class an item belongs to.  Some classifiers 

are binary, which result in a yes or no  decision and Others   multi-class, which are  able  

to  categorize  an  item  into  one out of the several categories. Classification is a very 

common use case of machine learning and various classification algorithms are used to 

solve problems like email spam filtering, document categorization, speech recognition, 

image recognition,  and  handwriting  recognition.  A  neural  network  is a type of  a  

machine  learning algorithms  that  can  help  solve  classification  problems with high 

efficiency.   Its  unique  strength  is  its  ability  to  dynamically create complex prediction 

functions, and emulate human thinking, in a way that no other algorithm can. There are 

many classification problems for which neural networks have yielded the best results. 

Manual  classification  is  subjective  and  greatly  depends  on  the  person  accessing  the  

situation  thus making  it  inconsistent  in  many  conditions.  Therefore,  a  computer  aided  

technology  is  required  to  help the dermatologists perform the diagnosis.  Research has 

indicated that classifiers based on convolutions neural network can classify skin cancer 

images at an accuracy equivalent to dermatologists which enables quick,  accurate  and  

lifesaving  predictions.  There  is  an  ever  growing  need  to  improve  the  classification 

process and the work carried out in this part of the thesis aims to do the same with the help 

of techniques discussed in this chapter.  For this purpose, a combination of ISIC-2019 and 

2020 data set was used.  It contains 57224 images, with melanoma having 52302 and Nevus 

having 4922 number of samples. 
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3.1 Pre-Processing, Data-Augmentation & Unbalanced Dataset 

 This  follows  the  same  procedure  from  the  segmentation  network  in  which  we  

normalize  the  input data before training.  The mean r-g-b and standard deviation values 

for the used dataset was estimated using these values the data was normalized.  

• Mean r-g-b value:  (0.74694,0.58144,0.56228) 

• Standard deviation:  (0.15022,0.13995,0.15327) 

 For training the classification network data-augmentation techniques were used and 

are listed below. Many of them are the same from the segmentation network and were 

already discussed earlier. 

• Horizontal Flipping: Columns of the input image is reversed. 

• Rotation: Image is rotated by an angle between -180º and 180. 

• Resized crop: Resized crop augmentation is when a random subset is created from the 

original image and scaled back to a given size. 

• Color Jitter:  This is the type of augmentation in which rather than the location of pixels 

the brightness, contrast and saturation of an image is changed randomly. 

                

                                            Figure 3.1 : Color Jitter Augmentation 

 Looking at the dataset for classification there are a total of 57224 Images. Out of the 

entire 57224 samples, 52302 are of Nevus while just 4922 are of Melanoma. There is a big 
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class imbalance here. To counter this problem a weighted loss function is used. Weights 

here are referred to as class weights. The ratio of number of samples of the class to the total 

amount of data in the entire dataset is calculated.   

 

           𝐶𝑙𝑎𝑠𝑠 𝑁𝑒𝑣𝑢𝑠:
4922

57224
= 0.08601               𝐶𝑙𝑎𝑠𝑠 𝑀𝑒𝑙𝑎𝑛𝑜𝑚𝑎:

52302

57224
= 0.91399              

 

The weights assigned are flipped, meaning Nevus gets the score of Melanoma while 

Melanoma gets the score of Nevus. This is done so that the model tunes itself slowly with 

respect to Nevus but for Melanoma it tunes faster(since the number of samples is small). 
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3.2 Deep Learning Architecture for Classification 

 Google  in  2019  released  a  neural  network  architecture  called  Efficient net[28] 

thus  making  a  new addition  to  the  family  of  convolutions  neural  networks.  This  

network  proved  to  be  very  valuable  since it  provided  better  accuracy  and  also  

improved  the  efficiency  of  the  model  by  reducing  the  number  of parameters and 

floating-point operations per second by a large margin when compared to state-of-the-art 

models.  Models with high accuracy while being efficient are of importance and hence was 

picked for the carrying out our study.  While there are a range of B0-B7 models in the 

efficient-net family, we decided to go with pre-trained B1 model for conducting study, but 

the weights were un-freezed during training, this ensures the training happening on top of 

already trained model stays relevant to our problem domain. This is also called as transfer-

learning. An illustration can be found in figure 3.2. 

 

Figure 3.2: Transfer Learning Illustration 

 The  main  idea  that  sets  the  Efficient net  apart  from  other  classification  network  

is  the  method  of compound scaling.  Compound scaling takes leverage of Depth(Number 

of Layers), Resolution(Size) and Width(Number of channels) of the network.  It optimizes 

the value of these three parameters in order to gain the maximum accuracy of the network. 
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The  architecture  uses  a  concept  of  MBConv  which  is  similar  to  the  concept  of  

inverted  residual blocks.   This  is  a  type  of  a  residual  block  for  image  classification  

that  uses  an  inverted  structure  for efficiency reasons.  Inverted residual blocks follow 

the narrow-wide-narrow approach and thus inversion happens.  A 1x1 convolution filter 

first widens the input,  then a 3x3 depth wise convolution and then a1x1 convolution to 

reduce the number of channels so that the input and the output can be concatenated. This 

is done because of the hypothesis that spatial and depth-wise information can be decoupled.  

There are numerical results to prove this theory and lately a lot of the architectures seem 

to use this technique, for example- Mobile-Net, Xception. 

 Efficient-Net  B1  is  a  variation  of  the  baseline  efficient  model  B0 and  was  

scaled  in  depth.   There were  in  total  of  23  MBConv  blocks  used  in  it.   The  resolution  

of  input  image  is  fixed  at  224x224  and images are resized to that dimension before 

passing it as input.  Though the efficient nets perform well on Image-Net data,  they seem 

to transfer well to other data sets as well,  which is precisely what has been done in this 

work as well.  This deems this architecture useful as it can be used in a variety of tasks and  

can  possibly  be  the  backbone  of  many  computer  vision  tasks  in  the  future.   It  is  

an  open  sourced and  can  be  accessed  easily,  which  benefits  the  machine  learning  

community.   Architecture of the efficient net baseline can be found in figure 3.3. 
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Figure 3.3: Efficient Net Baseline Model 

 

3.3 Specific Architecture 

 While building machine learning models, there is a type of data called as meta 

data[29] which some-times goes overlooked.  It does carry potential and carries additional 

information such as locations, data, quality,  usage  information,  characteristics  of  the  

data  etc,  and  can  be  leveraged  to  increase  the  overall efficiency of the model.  It can 

also be thought of as data about data.  Metadata enables the understanding  of  the  origin  

of  the  data  which  can  be  crucial  and  help  the  model  learn  better.  The  meta  features 

used for the thesis contains the information:  Age, Gender, Location of the mole.  All the 

information is combined to makes a 11 features vector used for training.  Medical science 

also considers these factors in making informed decisions therefore these were included to 

make the prediction of the model better. The fully connected layer of the original efficient-

net B1 takes input from the convolution layers with 7x7x1280  number  of  input  neurons  

and  outputs  contains  of  1000  neurons  which  predict  score  of  the  1000 classes, 

respectively.  This layer is removed, and a custom linear layer is created.  This layer takes 

the 7x7x1280 activation  output  from  the  CNN  layers  of  efficient-net  and  an  additional  

11  meta  features. Output is  a 2-class score of the image being a Nevus or Melanoma.  But 
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the meta features are not directly used in the linear layer.  These are first passed through 

another trainable linear layers which takes in the 11 meta features and outputs the same 

number of features back. A visual representation of CNN feature and meta-data 

concatenation and classification layer can be found in figure 3.4. 

 

Figure 3.4: Example of CNN-Meta Data Fusion 

 

3.4 Classification Results 

 There are two types of accuracy implemented to calculate how good or bad the model 

is doing.  First one is accuracy and the other balanced accuracy, both of which are 

calculated from the confusion matrix. A confusion matrix, also known as an error matrix, 

is a table layout that helps to visualize the performance of an algorithm. The abbreviations 

in the confusion matrix will be discussed further in the chapter. An example of binary 

confusion matrix can be found in figure 3.5. 
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Figure 3.5: Binary Confusion Matrix 

Formula for accuracy and balanced accuracy can be found in equation 3.1. 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                        (3.1) 

Formula for balanced accuracy can be found in equation 3.2. 

𝑇𝑃

𝑇𝑃+𝐹𝑁
+ 

𝑇𝑁

𝐹𝑃+𝑇𝑁

2
                                                       (3.2) 

Learning for CNN parameters,  meta  linear  layer  parameters  and  the  final  linear  

layer  happens  separately. CNN network  learns  with  a  rate  of 10-4 while  meta  linear  

layer  and  the  final  linear  layer  learn  with  a  rate  of 10-3. Batch size of 32 was used for 

training and weighted Adam was used as an optimizer.   The model was able to achieve a 

test balanced accuracy of about 86%. There is not a lot of difference in the test and train 

accuracy curves meaning there is very less over fitting and the model is able to generalize 

well. The loss value decays steadily without many fluctuations.  The training results of 

Efficient-Net B1 can be found in figure 3.6. 
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                                           Figure 3.6: Efficient Net B1 Training Results 

In  machine  learning  it  is  essential  to  compare  performance  of  models. When  it  

comes  to  multi-class  classification  problems  the  method  of  AUC-ROC  curve  is  used.  

AUC  stands  for  ’Area  Under  the Curve’ and ROC stands for ’Receiver Operating 

Characteristics’. ROC can be thought of as a probability curve  while  AUC  represents  the  

measure  of  separability.  This tells how much capable the model is in distinguishing 

between classes.  So, higher the AUC the better the model is a predicting 0s as 0s and 1s 

as 1s.  Therefore, in our case it will be a measure of how good the model is at distinguishing 

between nevus and melanoma.  Values of AUC range from 0 to 1. 1 is the best where the 

model exactly knows the difference between the classes while 0.5 means the model is 

making random predictions. 

The curve is plotted with the true positive rate(TPR) on the y-axis and false positive 

rate(FPR)on the x-axis, the area under the ROC curve is the area under the curve and we 
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are concerned with that exact value.  Before discussing how TPR and FPR are calculated 

we will first look at 4 terms used in machine learning in a binary test. 

• True Positive:  Is  an  outcome  where  the  model correctly predicted  the  positive  class.   

The  model predicts the mole as being a nevus when it is indeed nevus. 

• False Positive: Is  an  outcome  where  the  model incorrectly predicted  the  positive  

class.  The  model predicts the mole as being a melanoma when it is not a melanoma but 

a nevus. 

• True Negative: Is  an  outcome  where  the  model correctly predicted  the  negative  

class.  The  model predicts the mole as a melanoma when it is indeed melanoma. 

• False Negative:  Is an outcome where the model incorrectly predicted the negative class.  

The model predicts  the  mole  as  nevus  when  it  is  melanoma.   This  is  the  most  

dangerous  type  of  error  when it  comes  to  situations  such  as  cancer  detection.   

Wrong  prediction  can  result  in  life  threatening situations.  

The true positive rate formula can be found in equation 3.3. 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                      (3.3) 

     The false positive rate formula can be found in equation 3.4. 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                      (3.4) 

The  AUC  graph  from  the  Efficient-b1  model  training  and  the  test  set  confusion  

matrix  can be found in figure 3.7.  For the class Melanoma the area under the curve is 

0.94, which means that the model has a 94% chance of distinguishing between the positive 

and negative class.  A confusion matrix is  basically  plotting  True  positives(Top  Left),  
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False  Positive(Top  Right),  True  Negative(Bottom  Right)and False Negative(Bottom 

Left) in the same matrix. 

 

Figure 3.7: Efficient-Net B1 AUC-ROC Curve and Test Confusion Matrix 

 

3.5 Enhance Classification Results  

Increasing  the  accuracy  of  model’s  prediction  is  critical  and  is  always  a  work  

in  process. Below techniques were tried and experimented with to increase the prediction 

accuracy. 

• Black Background: The  2-channel  output  score  from  U-Net  is converted into a binary 

mask using an Argmax function which gives the position of the higher score output,  i.e., 

returns  the  true  class  of  the  label.   This  binary  mask  is  concatenated  three  times  

in tandem  to  form  a  3-channel mask  stack.  Now, a  channel  wise  multiplication  

between  the  image and the mask stack is performed.  This is segmenting the image 

with respect to the mask values, since only the pixels predicted by U-net retain their 

original values and other pixels get zeroed out. 
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    Initially while training this model a good loss function convergence was not observed.  

To tackle this  problem  a  learning  rate  decay  was  used  which  decays  the  learning  

rate  by  a  factor  of 1.25 if  the  current  loss  values  is  more  than  0.99%  of  the  last  

loss  value. An example of the image and the image with blackened background can be 

found in figure 3.8. 

 

   Figure 3.8: Original Image and Blackened Background Image  

     Experimental  results  show that the method is not effective.  The training loss does not 

change much signifying that the model learns very less, and the balanced test accuracy 

is lower as compared to the results of the original architecture. The model could achieve 

an AUC of 0.92 and a balanced test accuracy of about 83%. The training results can be 

found in figure 3.9. 

   

                                        Figure 3.9: Black Background Image Results 
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• Bounding Box Approach: This  method  focuses  on  cropping  out  exactly  the  region  

of  mole from the input image  and use that as classification.  The binary mask generated 

from the U-net score is passed through an algorithm  which  calculates  the  co-ordinates  

of  the  mole. These  coordinates are used to cut the original image and resize it back to 

the given input size. What this essentially does  is  zooms  in  around  the  mole  and  

reduces  any  skin  area  sent  in  classification.  An  important thing to note here is that 

zooming in the image has chances of distorting the original image based on  the  size  of  

the  mole.  Experimental  results  show  that  this  did  not  yield  any  significant  results. 

Learning  rate  decay  was used in this method as well since the loss was not  converging. 

The model could achieve an AUC of 0.91 and a balanced accuracy of about 82%. The 

input image, cropped image and training results can be found in figure 3.10 and 3.11.  

 

Figure 3.10: Original Image and Image Cropped with Bounding Box Coordinates 

  

       Figure 3.11: Bounding Box Results 
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• Integrate mole probability in Image: In this method the 2-channel score output from U-

net is passed through a soft-max layer which gives the probability of the pixels being a  

mole  or  not  a  mole  on the 2-channel output. We pick  the  feature  map  with  the 

pixel  probability  of  it  being  a  class  0  or  mole  and  concatenate  that with the input 

RGB image.  Now, our input consists of a 4 channel(red-green-blue-mole probability 

feature map).  But the  Efficient-net  convolution  filters  only  contain  three  channels  

and  would  not  allow  a  4-channel input.  So, an additional channel is included in the 

first convolution block layer and the weights in the filters are  initialed  with  Xavier  

random  weights[30]. The goal  of  Xavier  initialization  is  to  initialize  the weights in 

such a way that the across every layer the variance of the activation’s remains the same. 

This helps the gradient from exploding/vanishing.  Since other filters in the pre-existing 

CNN are already optimized, we might want to be careful in initializing the 4th channel’s 

weight. The results of this method are interesting. The modified model was able to 

achieve an AUC of 0.95 and balanced accuracy of about 87%. The results can be found 

in figure 3.12.  

  

                                   Figure 3.12: Integrate Mole Probability Results  
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While on the AUC front there does not seem to be many changes when compared to the 

original Efficient-Net,  when we look at the false-negative in the test confusion matrix, 

much improvement can be seen. Both, the original architecture, and the modified 

architecture(4 channel input model) were run for 8 runs and in all the runs the modified 

model has a smaller number of false negatives prediction than the original architecture.  

Comparison results between the modified model(4 channel input) and the original 

architecture depicting the results of all the 8 runs can be found in Table 3.1. 

Trial Original Architecture 
Architecture with 

Mole Probability 

1 0.16 0.12 

2 0.16 0.14 

3 0.15 0.10 

4 0.15 0.13 

5 0.23 0.10 

6 0.17 0.08 

7 0.19 0.13 

8 0.26 0.10 

Average 0.1837 0.1125 

 

Table 3.1: Test Set False Negative Comparison 

After the induction of mole probability as the 4th channel in the image, we see that the 

neural network is on an average(in the 8 runs) making 38.7% less misclassifications of 

melanoma. 
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CHAPTER 4 

 

FUTURE WORK 

Future work of this thesis is:    

• Implementing different architectures: For example: Mask RCNN is a state-of-the-art 

model when it comes to detection and classification. It is very accurate and effective 

when it comes to task of object detection and classification. One of the main advantages 

of this model is that it is an end-to-end model, which means that it has detection and 

classification units built into it by design and it takes on a bounding box approach for 

detection and not a pixel wise approach.  

• Real time implementation: The end goal is to create a complete software application 

which can be used by people for keeping track of any spots they think are suspicious.  

People can create their accounts on the application, click and upload pictures on the 

application which will then be processed by our Deep learning framework and return 

results in a matter of minutes. This would also serve as a repository to keep track of the 

evolution of the mole over time which also helps a lot in assessing to get it checked or 

not, since melanoma changes shape at a fast rate. 
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