
High Fidelity Modeling and Analysis of Nanoengineered Composites  

and Complex Sandwich Structures  

by 

Karthik Rajan Venkatesan 
 
 
 
 
 

A Dissertation Presented in Partial Fulfillment  
of the Requirements for the Degree  

Doctor of Philosophy  
 
 
 
 
 
 
 
 
 
 

Approved June 2021 by the 
Graduate Supervisory Committee:  

 
Aditi Chattopadhyay, Chair 

Yongming Liu 
Yang Jiao 

Masoud Yekani Fard 
Tom Stoumbos 

 
 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY  

August 2021  



  i 

ABSTRACT  

   
Damage and failure of advanced composite materials and structures are often 

manifestations of nonlinear deformation that involve multiple mechanisms and their 

interactions at the constituent length scale. The presence and interactions of inelastic 

microscale constituents strongly influence the macroscopic damage anisotropy and useful 

residual life. The mechano-chemical interactions between constituents at the atomistic length 

scale play a more critical role with nanoengineered composites. Therefore, it is desirable to 

link composite behavior to specific microscopic constituent properties explicitly and lower 

length scale features using high-fidelity multiscale modeling techniques. 

In the research presented in this dissertation, an atomistically-informed multiscale 

modeling framework is developed to investigate damage evolution and failure in composites 

with radially-grown carbon nanotube (CNT) architecture. A continuum damage mechanics 

(CDM) model for the radially-grown CNT interphase region is developed with evolution 

equations derived using atomistic simulations. The developed model is integrated within a 

high-fidelity generalized method of cells (HFGMC) micromechanics theory and is used to 

parametrically investigate the influence of various input micro and nanoscale parameters on the 

mechanical properties, such as elastic stiffness, strength, and toughness. In addition, the inter-

fiber stresses and the onset of damage in the presence of the interphase region are investigated 

to better understand the energy dissipation mechanisms that attribute to the enhancement in the 

macroscopic out-of-plane strength and toughness. Note that the HFGMC theory relies heavily 

on the description of microscale features and requires many internal variables, leading to high 

computational costs. Therefore, a novel reduced-order model (ROM) is also developed to 
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surrogate full-field nonlinear HFGMC simulations and decrease the computational time and 

memory requirements of concurrent multiscale simulations significantly. 

The accurate prediction of composite sandwich materials' thermal stability and durability 

remains a challenge due to the variability of thermal-related material coefficients at different 

temperatures and the extensive use of bonded fittings. Consequently, the dissertation also 

investigates the thermomechanical performance of a complex composite sandwich space 

structure subject to thermal cycling. Computational finite element (FE) simulations are used 

to investigate the intrinsic failure mechanisms and damage precursors in honeycomb core 

composite sandwich structures with adhesively bonded fittings. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

With the substantial need for the use of advanced composite materials with superior 

performance capabilities, there is a growing need to efficiently engineer such material systems, 

tailoring them for specific applications. A primary example is the carbon fiber reinforced 

polymer (CFRP) composites. CFRP composites can be engineered to produce high strength, 

lightweight, fatigue resistance, fire-retardant materials, substantiating their use in a wide range 

of aerospace and naval applications (Gay 2014). Recent advances in nanotechnology have also 

led to the incorporation of carbon nanotubes (CNTs) in traditional CFRP composites that can 

potentially impact a wide range of aerospace and marine applications through improved 

mechanical strength, through-thickness characteristics, fracture toughness, and added multi 

functionalities (Thostenson et al. 2001; Datta et al. 2015; Datta et al. 2018). The long aspect 

ratio and small size of these particles are responsible for several transformative characteristics: 

the large surface area to volume ratio, flexibility in surface functionalities, and superior 

mechanical performance compared with any other known material form. These 

nanoengineered CFRP composites offer vital advantages such as greater tailorability of the 

composite structural and nonstructural properties. 

On the other hand, sandwich composites consisting of thin CFRP laminate face sheets 

covering a thick lightweight core material are also used in aerospace and spacecraft structures 

for their lightweight, high in-plane mechanical properties and high bending stiffness. They are 

often designed to meet close thermal distortion and damage tolerance in space applications, 
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as they are exposed to harsh environments and extreme temperature ranges. However, due to 

the constituent and architectural complexity, scale-dependent load transfer characteristics, and 

damage anisotropy in such complex material systems, investigations of relevant failure 

mechanisms and useful life prediction in service conditions are critical to ensuring improved 

structural durability and safety.  

1.2 Nanoengineered Composites 

In traditional CFRP composites, the interface between the plies is well known to be a ‘weak 

link’ in laminated composites, which requires significant reinforcement along the out-of-plane 

direction. Several methods to locally enhance the interlaminar strength by introducing 

nanomaterials in the matrix region between the plies have been investigated. The enhancement 

of mechanical properties of composites have been reported by incorporating nanoscale fillers 

such as CNT (Jyoti et al. 2015, Aldajah and Haik 2012, Vaganov et al. 2016), fullerenes 

(Ogasawara et al. 2009, Tayfun et al. 2015), and nanoclay (Shokrieh et al. 2012, Xu and Hoa 

2008). These nanofillers can modify the composite interface and improve load transfer 

through several reinforcing mechanisms at the nanoscale, such as chemical bonding (He et al. 

2007), wetting, mechanical interlocking (Moaseri et al. 2014), and local anchoring/stiffening 

of the polymer matrix (Chou et al. 2010). A 60% enhancement in interlaminar fracture 

toughness was observed by incorporating fullerene (0.1-1 wt.%) in the matrix resin (Ogasawara 

et al., 2009). Over the last decade, CNT reinforcements have been used to explore the possibility 

of enhancing both the inter- and intralaminar regions (Rai et al., 2017; Green et al., 2009). A clear 

majority of the investigations use CFRP composites with randomly dispersed CNT architecture 

(Seyhan et al., 2008; Thakre et al. 2011; Godara et al. 2009; Chou et al. 2010). CNTs have 

strengthened both the interlaminar and intralaminar regions in CFRPs (Rai et al. 2017; Green 
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et al. 2009). The random dispersion of CNTs in the polymer matrix show improved strength, 

interlaminar toughness, and energy absorption capabilities (Inam et al., 2010; Cho et al., 2008). 

These studies show a marginal increase in mechanical, electrical, and fire-retardant properties 

with only a small weight fraction of CNTs in the host matrix material. Enhanced delamination 

resistance and fracture toughness have also been demonstrated (Kin-Tak et al., 2003; Kumar 

et al. 2005; Rangari et al. 2008; Seyhan et al. 2008; Thakre et al. 2011). Recent developments 

have also reported the growth of radially-aligned CNTs on the reinforcing fibers within 

composite materials (Pozegic et al. 2016, Krishnamurthy et al. 2017), embedded CNT-

nanoforests (Lettiere et al. 2019), and CNT ropes. Such novel CNT architectures offer key 

advantages, such as a low percolation threshold (0.1~5 vol.%), many particles per unit volume, 

extensive interfacial area per unit volume, and short distances between particles. They can also 

significantly improve a wide range of multifunctional properties, including mechanical, 

electrical, thermal, electro-magnetic interference shielding, piezoelectric/resistive, and fire 

safety.  

1.3 High Fidelity Modeling Motivation 

Despite the enormous benefits offered by nanoengineered composites, a significant 

technology barrier limiting their use in practical application is attributed to the lack of a 

complete understanding of the physical factors and their impact on the composite constituents 

and structural response in service conditions. Although this may be achieved through 

extensive experimental characterization and testing, many physical variables and their complex 

interactions, especially for CNT-enhanced composites, make this approach infeasible. For 

instance, several factors affect the properties of CNT-enhanced composites; these include 

spatial and compositional nature of the CNTs, size, orientation, and spatial distribution within 
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the composite matrix material, fiber and matrix properties, interfacial bonding and adhesion 

between the CNTs and surrounding matrix, and constituent volume fractions. Environmental 

effects, such as temperature, humidity, and pressure, during manufacturing and operation also 

play a crucial role in the overall properties of nanoengineered composites. However, because 

of the complexities associated with these material systems, damage prediction and 

quantification studies are often limited to two-dimensional or idealized geometries, linearly 

elastic constitutive models, and prescribed damage initiation location and progression path 

(Murthy and Chamis, 1986; Swaminathan, Ghosh, and Pagano, 2006; Skoček, Zeman, and 

Šejnoha, 2008). These assumptions can lead to oversimplification of the problem and, 

therefore, often result in poorly predicted critical material behaviors.  

In general, macroscopic damage and failure of composites are manifestations of inelastic 

deformation that involve multiple damage mechanisms at the micro constituent level. The 

presence and interactions of multiple inelastic phases or inclusions in composites at lower 

length scales strongly influence the macroscale damage anisotropy. With CNT-enhanced 

composites, the mechano-chemical interactions between the CNTs and surrounding polymer 

and fiber at the atomistic length scale needs to be considered.  Homogenization techniques 

that utilize only macroscale constitutive models will fail to achieve the required accuracy 

necessary to predict damage and residual life. Therefore, it is desirable to link CNT-enhanced 

composite behavior to specific microscopic constituent properties explicitly, and atomistic 

scale features using multiscale modeling techniques. Besides, the development of a high-

fidelity computational multiscale framework initiating at the atomistic scale to address 

nanoscale interactions and subsequent effects arising from these interactions is critical to 

obtaining a holistic understanding of the behavior of CNT-enhanced nanocomposites. Such a 

framework requires scale-specific constitutive models, critical model parameters, and physics-
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based criteria to link discrete atomistic scale phenomena to continuum scale models. At the 

nanoscale, molecular dynamics (MD) simulations have shown strong potential in modeling 

CNT-enhanced composites due to the comparable sizes of CNTs and polymer chains of the 

host matrix. Significant research has been reported on modeling and predicting the thermo-

mechanical properties of CNT-enhanced nanocomposites using MD simulations (Li et al. 

2017, Jung et al. 2020, Jiang et al. 2020, Suk 2020). 

Consequently, MD simulations can be used to investigate the atomistic phenomena and 

the effects of various nanoscale parameters on mechanical properties such as elastic moduli, 

interfacial strength, and bonding energy at higher length scales. The framework should also 

explicitly incorporate microstructural details into structural analysis and address the complex 

coupled effects of different micro constituent parameters on the overall response at the 

microscale. An illustration of an atomistically-informed concurrent multiscale analysis 

framework is shown in Figure 1.  

 

Figure 1. Atomistically Informed Multiscale Framework  
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1.4 Multiscale Simulations – Challenges 

Developing a computational framework that incorporates the effects of various length 

scales is challenging due to the significant disparity in time and length scales and the complex 

interactions of the various scale-dependent phenomenon that needed to be physically 

modeled. Conventional multiscale analysis approaches have been developed to determine 

macroscopic composite behaviors, primarily through homogenization and localization rules 

associated with a microscale repeating unit cell (RUC) or representative volume element 

(RVE) with periodic boundary conditions (PBCs). Multiscale ‘handshaking’ methodologies 

include hierarchical, concurrent, or synergistic approaches. Hierarchical models have the 

highest computational efficiency and lowest fidelity of the three approaches. They are 

characterized by an uncoupled one-way flow of information across length scales via a top-

down (localization) or bottom-up (homogenization) approach. The lack of two-way 

information transfer precludes the consideration of path-dependent material nonlinearity and 

limits hierarchical models to linear thermoelastic analyses. The concurrent approach represents 

all constituents in a single model and involves simultaneous computation at all length scales. 

These models may be semi-analytical (Pineda et al. 2017), which are computationally efficient 

but often lack fidelity, or fully numerical, which are highly accurate at the cost of computational 

efficiency. Multi-level finite element (FE) methods are fully numerical concurrent approaches, 

which involve equipping a macroscopic integration point in an FE analysis with a sub-grid 

containing the composite RUC or RVE (Feyel 2003, Tikarrouchine et al. 2018). Such 

approaches are highly accurate; however, the mesh size required to resolve all constituents in 

a single structural scale model results in prohibitive computational overhead, limiting the scope 
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of concurrent multiscale analyses. As a result, researchers have been forced to make do with 

idealized RUCs, limiting the capture of micromorphology effects across length scales.  

However, another approach to determine composite behaviors centers on semi-numerical 

methods that provide a compromise between fidelity and efficiency via a two-way flow of 

information between length scales. Examples include the generalized method of cells (GMC) 

(Paley et al. 1992), high-fidelity GMC (HFGMC) (Zhong et al. 2004, Haj-Ali et al. 2009), and 

their respective efficient reformulations (Balasu et al. 2020). GMC is more often used within 

a multiscale framework due to its high computational efficiency; however, GMC uses a linear 

sub-element or subcell displacement field, leading to a lack of normal-shear coupling between 

individual phases. In contrast, the HFGMC theory employs a second-order subcell 

displacement field, accounting for normal-shear coupling and resulting in linearly varying 

stress, strain, and temperature fields at the subcell level. This approach has been verified for 

various composite material systems defined by a periodic RUC or RVE (Haj-Ali et al. 2014, 

Freed and Aboudi 2009, Dodla 2018). Unlike the FE methods, HFGMC imposes 

displacement continuity between adjacent subcells in an average sense. This approximation 

directly applies average traction continuity and enables the explicit definition of additional 

stress variables in the formulation. The subcell displacement components are directly tied to 

both the applied remote average strain and the fluctuating displacement micro variables.  

Furthermore, this approximation allows the advantage of applying PBCs over both the 

global and local micro variables, wherein the PBCs in the FE formulation are imposed only 

through displacement total variables. Haj-Ali and Aboudi 2013 illustrated the specific 

differences by comparing the HFGMC to the FE to analyze a relatively wide range of cases. 

However, the higher fidelity of HFGMC simulations at the microscale comes at a high 

computational cost. It is ‘mesh’ size-dependent and requires fine spatial discretization to 
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ensure convergence to resolve all constituents in a single structural model. This results in 

prohibitive computational overhead that limits the scope of concurrent multiscale structural 

analyses to idealized geometries and small-scale coupons. Therefore, it is highly beneficial to 

develop an efficient multiscale modeling framework that can simulate the multi-physical 

behavior of advanced composites systems with significantly improved computational 

efficiency using surrogate modeling or reduced-order approximation techniques. 

1.5 Composite Sandwich Space Structures 

Composite sandwich structures have excellent in-plane and flexural stiffness and a high 

strength-to-weight ratio, substantiating their suitability for a wide range of space structure 

applications. However, while in orbit, these structures are often exposed to hostile 

environments involving high vacuum, ultraviolet radiations, and extreme temperature ranges. 

The fluctuating temperature conditions pose severe challenges to the composite sandwich 

material's thermal stability and durability and, therefore, significantly impact space structures' 

overall performance.  

The structural behavior of composite sandwich materials under cyclic thermal loading is a 

complex phenomenon, gaining more importance in designing spacecraft structures, satellite 

components, and composite laminates in general. One of the most common types of failure 

due to the thermal cycling of sandwich structures is microcracking in the composite face sheet. 

The primary cause is the non-homogeneity that arises from the mismatch in the coefficient of 

thermal expansion (CTE) between the core and face sheet and the adhesively bonded fittings. 

Hodge et al. (2018) investigated crack formation in carbon fiber epoxy-based matrix composite 

cryogenic tanks and evaluated the microcracking characteristics at both room and cryogenic 

temperatures. Liquid hydrogen tanks made of composite sandwich material failed thermal 
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cyclic validation tests when the outer skin and core separated from the inner skin due to 

microcracks forming in the inner skin. Elevated humidity and thermal cycling also substantially 

affect the critical strain energy release rate associated with delamination due to the face 

sheet/core debonding (Tuttle and Mark 2018). In the long run, the microcrack formation in 

the composite face sheet increases with an increase in thermal cycles, which causes degradation 

in the mechanical properties, including strength (Lee et al. 2002; Shimokawa et al. 2002). 

Besides, the ultimate pull-out and shear strengths of adhesively bonded fittings decrease when 

tested at elevated temperatures and wet conditions (Snead et al. 1983; Park et al. 2011). Local 

stress concentrations in the adhesive layer and the free edge interface between the fitting and 

skin act as potential hot spots for microcrack initiation, likely due to improper bonding during 

the manufacturing process and the wide mismatch in material stiffness and CTE. Depending 

on the type of fitting geometry and loading conditions, the hot spots may trigger damage and 

interact with different modes to create complex failure behavior in sandwich structures 

(Feldusen et al. 2009; Heimbs et al. 2009). Adhesive failure, interlaminar failure, face sheet 

compressive fracture and wrinkling, and core buckling are some of the commonly anticipated 

failure modes (Dattaguru et al. 1984; Petras and Sutcliffe 1999; Ferrari 2015). Figure 2 

illustrates a typical shear buckling pattern in the honeycomb core composite sandwich panel. 

 

Figure 2. Honeycomb Panel Showing Shear Buckling Failure Mode. 
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Although material characterization, mechanical testing, and design verification studies 

such as thermal cycling and vacuum testing are critical for specific mission assurance, 

experimental prediction of the structural integrity of an exhaustive range of space structures 

under the various anticipated thermomechanical loading environments is not feasible. 

Therefore, it is beneficial to develop improved models and analysis tools to better understand 

the thermal stability and damage tolerance of complex sandwich structures and predict useful 

residual life accurately.  

1.6 Objectives of the work 

Following are the primary objectives of this research work: 

 Develop a high-fidelity microscale model for CFRP composites with radially-grown 

CNT architecture that utilize nanoscale derived elastic and inelastic information and variation 

in the architectural parameters to estimate the nanocomposite properties at higher length 

scales efficiently. 

 Develop a thermodynamically admissible bridging technique to efficiently transfer 

inelastic information from discrete atomistic MD simulations of the radially-grown CNT 

interphase to higher length scales using a continuum damage mechanics approach. 

 Investigate the linear and nonlinear effects of the unidirectional CFRP composites 

with radially-grown CNT architecture under mechanical loading, using the developed 

atomistically informed damage model; investigate effects of damage initiation and propagation 

with and without the presence of radially-grown CNTs. 

 Develop a reduced-order approximation of the high-fidelity microscale model to 

reduce the computational cost and memory requirements of repeated micromechanics 
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simulations and efficiently transfer the homogenized microstructural response to higher length 

scales to analyze built-up structural components. 

Following are the secondary objectives of this research work: 

 Investigate failure mechanisms and capture the intrinsic nonlinear material behavior 

of specific aerospace-grade aluminum honeycomb core and CFRP composite face sheets. 

 Investigate the thermomechanical performance of complex honeycomb core 

composite sandwich space structures with adhesively bonded fittings exposed to extreme 

temperature ranges using high-fidelity computational modeling techniques. 

1.7 Outline 

The report is structured as follows: 

Chapter 2 presents an atomistically-informed continuum damage mechanics (CDM) 

model for the radially-grown CNT-fiber-matrix interphase region, with a damage evolution 

equation developed from the results of elastoplastic MD simulations. The approach bridges 

the nonlinear deformation obtained from discrete MD simulations to the sub-micro scale 

efficiently.  

Chapter 3 details a microscale model's development based on the HFGMC theory, which 

integrates nanoscale elastic and inelastic information of the radially-grown CNT interphase 

using the atomistically-informed CDM damage equations, and idealized composite 

microstructure. The predicted homogenized response is verified and benchmarked against 

available experimental data and literature models. The influence of various material and process 

parameters on the homogenized nanocomposite response at the microscale is investigated. 
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Chapter 4 presents the development of a surrogate model for advanced composite 

materials based on a novel adaptation of nonuniform transformation field theory in 

conjunction with the HFGMC micromechanics theory. The developed surrogate model is 

trained to predict the global and local nanocomposite microstructural response with 

significantly decreased computational time and memory requirements.  

Chapter 5 presents an investigation into the thermomechanical performance of complex 

composite sandwich structures with adhesively bonded fittings subject to cyclic thermal loading 

using FE analyses. Additionally, sandwich panels with different configurations were chosen to 

investigate the nonlinear effects such as shear buckling in the honeycomb core and the damage 

progression in CFRP composite face sheets under different loading conditions. 

Last, essential contributions and conclusions derived from this research work and possible 

future investigations that extend upon the present work are discussed in Chapter 6. 
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CHAPTER 2 

DAMAGE FORMULATION FOR NANOENGINEERED FIBER-MATRIX 

INTERPHASE 

2.1 Introduction 

The recent effort on growing or grafting CNTs on the surface of fibers (radially-grown) has 

shown to offer some advantages over other CNT reinforcement techniques (Sharma and Lakkad 

2011; Wicks et al. 2010). The introduction of CNTs in composites through CNT 

deposition/growth on the fiber surface provides a higher control over CNT orientation, length, 

and density (Carpenter et al. 2011). Radially-grown CNT architecture shows increased potential 

for mechanical reinforcement as they offer improved load transfer between the fiber/matrix 

interface and increased interfacial shear strength (IFSS) (Qian et al. 2008; Wang et al. 2014).  

Huang et al. (2013) studied the effect of multi-wall CNTs dispersed in the matrix and radially 

aligned in the fiber/matrix interface. The authors concluded that the reinforcing effect is more 

pronounced when CNTs are added to the fiber instead of the matrix. They reported a 24.42% 

increase in transverse strength and a 15.47% improvement in interlaminar shear strength (ILSS). 

Karapappas et al. (2009) reported that highly condensed deposition of CNTs on fiber surfaces 

increases the fracture energy by 45%-75%. Garcia et al. (2008) used different aspect ratios of 

CNTs vertically aligned in the fiber/matrix interface and reported a 150%-300% improvement 

in toughness. Most recently, it was shown that the surface treatment of carbon fiber fabric and 

incorporation of CNTs significantly improved the dynamic properties such as storage modulus 

and energy absorption capabilities compared to neat polycarbonate/carbon fiber composites 

(Cho et al. 2019). Consequently, using radially-grown CNTs on the fiber surface as a promising 
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means for nanoscale reinforcements has attracted their manufacturability and use. However, a 

significant challenge to optimizing them for a specific application is the lack of comprehensive 

modeling techniques that adequately capture the nanoscale effects of radially-grown CNTs on 

fiber to the bulk properties of the composites at higher length scales.  

Recent studies have shown that the nanoscale information of CNT-enhanced composites 

is integral to understanding their material-structure property and can lead to successful 

strategies for scaling material behavior from the nano- and microscale to the macroscale 

(Subramanian, Rai, and Chattopadhyay 2015; J. Zhang et al. 2016). Computational models 

based on molecular dynamics (MD) simulations can describe the complex bonded and 

nonbonded interactions between atoms of the individual material constituents and provide 

essential insights into the composite’s macroscopic behavior and material properties. They can 

also provide time-dependent information on material evolution.  

In this chapter, modeling the interphase region of CFRP composite with radially-grown 

CNT architecture is discussed first. The creation of radially-grown CNTs in a simulation 

volume containing the epoxy resin, hardener molecules, and fiber surface is explained. The 

effect of varying CNT concentrations on the nanocomposite interphase's elastic-plastic and 

damage response is also evaluated through atomistic virtual deformation tests. The subsequent 

section briefly outlines the procedures to perform the virtual deformation tests using MD 

simulations. In the last section of the chapter, an atomistically-informed continuum damage 

model with internal variables representing polymer mechanics and damage evolution for 

different CNT concentrations in the interphase is developed to accurately simulate the 

response and complicated damage process in the radially-grown CNT-fiber-matrix interphase 

region. 
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2.2 Nanoscale Model 

MD simulations are performed at the nanoscale to inform the continuum level HFGMC 

framework. The radially-grown nanocomposite model at the atomistic scale is comprised 

initially of five constituents: carbon fiber surface, polymeric functional coating (PSMA), 

radially-grown CNTs, the epoxy resin, and the crosslinker (see Figure 3). The carbon fiber 

surface is simulated with void-induced, irregularly-stacked graphene layers to simulate surface 

roughness; radially-grown CNTs are embedded in the PSMA chains; they are physically 

dispersed with no functionalization. The epoxy consists of DGEBF (Di-Glycidyl Ether of 

Bisphenol F) as the resin and DETA (Di-Ethylene Tri-Amine) as the crosslinker, before 

curing, dispersed randomly in the unit cell inside a predefined box. The unit cell dimensions 

are 40 × 45 × 35 nm3. 

 
Figure 3. Atomistic Model of Radially-Grown CNT Architecture Interphase Region.  

A detailed description of the model setup, choice of force fields, and epoxy crosslinking 

simulations can be found in Subramanian et al. (2018). The MD simulations for the radially-

grown nanocomposite are performed with hybrid classical force fields initially. The 
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simulations implement PBCs along the y- and z-directions. However, the assumption of PBCs 

is not appropriate along the x-direction due to a phase discontinuity (at the interphase). In this 

work, the focus was to capture the effect of CNT areal density (the number of CNTs per nm2 

graphene layer) on the elastic, elastic-plastic, and damage initiation characteristics of the 

fiber/matrix interphase with radially-grown CNTs. This is achieved by developing a molecular 

model with a fixed number of graphene sheets, PSMA, and epoxy molecules. Radially-grown 

CNTs of chirality (10,10) are embedded in the PSMA chains that are physically dispersed with 

no functionalization. Due to the high computational costs incurred by large-scale molecular 

systems, the modeling of radially-grown CNTs with heights in the order of microns is not 

feasible via MD simulations. Hence, the length of the CNT is chosen to be only ~ 10 nm. 

However, it is assumed that the relative fraction of the interphase region is of critical relevance 

and is used as an input to model the interphase at the higher length scale. The relative fraction 

is estimated as the ratio between the height of the CNT and the thickness of the interphase 

(defined by the unit cell's height) along the CNT growth direction. In this present atomistic 

model, the relative fraction of the interphase region is calculated to be ~ 0.25. The number of 

radially-grown CNTs is varied to capture a short range of areal densities. It should be noted 

that the intermolecular forces of repulsion between the CNTs dictate the upper limit of CNT 

areal density.  

Equilibration and crosslinking MD simulations are performed first using classical force 

fields. The Optimized Potential for Liquid Simulations – All Atom (OPLS-AA) (Jorgensen et 

al. 1996)  and the Consistent Valence Force Field (CVFF) (Zang et al. 2009) defines the 

crystalline CNT and graphene molecules, respectively. The thermoplastic PSMA chains and 

the thermoset epoxy molecules utilize the Merck Molecular Force Field (MMFF) parameters 

(Halgren 1996). The deformation MD simulations are performed using a reactive force field 
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(ReaxFF) (Singh et al., 2013) to capture bond elongation and bond scission events. A tensile 

load is applied to the molecular model by uniformly deforming the simulation box along the 

y-direction. The applied strain translates to the elongation of bonds, causing the atoms to be 

remapped, and the equivalent stresses are obtained from the spatial and temporal averaging of 

virial stresses (Subramaniyan et al., 2008). Subramanian et al. (2013) developed an ultra-high 

strain rate approach to decouple the thermal relaxation of bonds and capture the effect of 

bond elongation and breakage purely based on mechanical deformation. Therefore, the 

obtained response is a quasi-continuum-equivalent deformation of the molecular system. The 

variation of bond energy between the molecular model's unbound state at the initial step and 

at each time step of the simulation is used to calculate the bond dissociation energy. As 

deformation occurs, the bond energy lost due to dissociation of each covalent bond in the 

system is calculated and defined as BDE. Further details of the boundary conditions and 

accompanying justifications are provided in Subramanian et al. (2018).  

It was concluded from a previous atomistic scale investigation of the radially-grown CNT 

fiber interphase that failure of this region is dominated by the mechanisms arising from loads 

transverse to the CNT growth direction (y-direction in the atomistic model in Figure 3). These 

observations were justified by comparing the obtained maximum value of bond dissociation 

energy and the respective failure strains for different loading directions. A significant 

hypothesis that emerged subsequently was that, while the elastic behavior along y-direction 

was due to loads being transferred through polymer chain stretching, the CNTs reorient 

themselves to fill the voids caused by polymer chain extension. This reorientation of CNTs 

happens along the loading direction; thus, strain-hardening tendencies were observed beyond 

the elastic regime. Further information on the MD model and the nanoscale stress-strain 

response curves can be found in Subramanian et al. (2018). Figure 4 illustrates the smoothed 
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elastoplastic stress-strain response from virtual deformation simulations conducted for 

different CNT areal densities. In the elastic regime, the polymer chains in the interphase region 

are stretched along the direction of applied stress. In the yielding regime, the molecular 

configuration deforms and rearranges irreversibly. After yield, strain-softening occurs due to 

the breakage of polymer chains due to subsequent bond dissociation. When strain softening 

is complete, strain hardening behavior emerges due to the subsequent realignment of CNTs 

along the loading direction in the newly generated voids. In the failure regime, the spacing 

between the CNT and the matrix increases, contributing to a secondary softening regime that 

leads to the complete failure of the interphase material. This phenomenon cannot be 

determined and verified experimentally; however, the simulations provide insights into 

important nanoscale trends while considering the local interactions between the CNT, 

graphene layers, and polymer matrix and the influence of different CNT areal densities. 

In a recent study, a molecular system with randomly distributed CNTs was generated to 

investigate the effect of nano-inclusions by weight fractions on the polymer cross-linking 

formation (Subramanian et al., 2015). It was observed and quantitatively shown that the 

increase in CNT weight fraction reduced the polymer's mean crosslinking degree. However, 

the gradient of reduction in crosslinking degree reduced at a much higher weight fraction due 

to the formation of CNT clusters causing localized highly crosslinked polymer regions. This 

formed the basis that the CNTs interferes with the crosslink formation between the resin and 

the hardener molecules. A similar reduction in the polymer crosslinking degree in the present 

radially-grown CNT architecture is observed with an increase in CNT areal density. Therefore, 

the increase in CNT areal density in the interphase region results in a considerable decrease in 

the transverse elastic modulus. However, the slope of the hardening phase in the stress-strain 

curve increases with an increase in the areal density. Figure 5 shows the associated bond 
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dissociation energy (BDE) variation during the deformation simulations transverse to the 

CNT growth direction for varying CNT areal densities. The slope of the BDE curve with 

respect to strain indicates how much energy is expended for bond breakage from the applied 

deformation. The initial increase in the BDE curve slope up to ~2 % strain indicates that the 

bond energy is lost due to the stretching and scission of low strength sp3 bonds. After the 

polymer phase's failure, the BDE curve saturates beyond ~4% strain, and the slope drastically 

reduces due to load transfer to the radially-grown CNTs. It is important to note that the rate 

of damage saturation (bond dissociation) increases with an increase in the areal density and 

leads to a notable increase in the hardening phase. These nanoscale physical phenomena 

unique to radially-grown CNT architectures could be attributed to increased strength and 

toughness properties at higher length scales. The obtained stress-strain response and bond 

dissociation energy (BDE) variation, which provide vital insights into these damage 

mechanisms, are used to derive constitutive equations in the microscale continuum damage 

model described in the next section. 
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Figure 4. MD Model Response for Different CNT Areal Densities 

 

Figure 5. Instantaneous BDE Response for Different CNT Areal Densities  

2.3 Sub-microscale Model 

Motivated by the previous MD simulation results, it is necessary to accurately model the 

complex damage saturation and prominent strain hardening mechanism in the radially-grown 

CNT architecture. A constitutive material model for the interphase region is developed based 

on the CDM framework, with damage evolution equations developed from elastoplastic MD 

simulation results. Firstly, the interphase region is modeled as an orthotropic material at the 

sub-microscale. Figure 6 (a) shows the local coordinate system defined by the fiber inclusion 

in the x1 direction and the radially oriented CNTs in the orthotropic material frame (x2-x3). 

The six independent elastic parameters in the orthotropic material are obtained from the 

tensile and shear deformation MD simulations of the atomistic interphase model described in 

the previous section. The three independent Poisson’s ratios are carefully estimated to ensure 

a positive-definite symmetric elasticity tensor 𝐶 .  
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In the CDM framework, constitutive equations and evolution laws of state variables are 

derived from the damage-coupled energy potentials. In the present study, based on the 

hypothesis of decoupling between elastic damage and plastic hardening (Zhu and Cescotto 

1995), the Helmholtz free energy density is expressed as  

𝜓 = 𝜓 𝜖 , 𝐷 +  𝜓 (𝜉, 𝑇) (2.1) 

where 𝜓 (𝜖 , 𝐷) is a coupled damage-elastic strain energy and 𝜓 (𝜉, 𝑇) is the free energy 

contribution due to plastic strain hardening, 𝜖  is the elastic strain tensor, 𝜉 is an internal 

variable representing the equivalent plastic strain 𝜖̅ , T is the temperature and the tensor 𝐷  

is the internal variable associated with damage.  

With the additive decomposition of the strain rate 𝜖̇ = 𝜖 ̇ + 𝜖 ̇  and using the Clausius-

Duhem inequality under isothermal conditions, the following relation can be obtained. 

𝛾 = 𝜎: 𝜖̇ −
𝛿𝜓

𝛿𝐷
�̇� −

𝛿𝜓

𝛿𝜖̅
𝜖 ̅ ̇  ≥ 0 (2.2) 

where 𝛾 is the power of dissipation. The thermodynamic conjugate forces corresponding to 

the internal variables are derived from the free energy term and are expressed as 

𝜎 =
𝛿𝜓

𝛿𝜖
=  𝐶 𝜖  ,            (2.3) 

 

𝑌 =  −
𝛿𝜓

𝛿𝐷
=  

1

2
𝜖

𝛿𝐶

𝛿𝐷
𝜖  (2.4) 

 

𝜅 =  
𝛿𝜓

𝛿𝜖̅
 (2.5) 

where 𝜎, 𝑌 and 𝜅 are the thermodynamic affinities associated with the elastic strain 𝜖 , damage 

𝐷 and the plastic strain due to molecular rearrangement in the polymer 𝜖  respectively. 
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Figure 6. (a) Local Coordinate System; (b) Deformation Stages under Transverse Loading 

 
2.3.1 Constitutive Equations 

Using strain equivalence principle and assuming damage components in each direction 

evolve independently, the following relation for the coupled elastic-damage strain energy term 

can be obtained. 

𝜓 =  
1

2
𝜖 1 − 𝐷 𝐶 𝜖  (2.6) 

By substituting the strain energy expression from Eq. (2.6) in Eq. (2.3), the coupled elastic-

damage law can be expressed as follows. 

𝜎 = (1 − 𝐷 )𝐶 𝜖      (2.7) 

It is important to note that in the present work, the primary goal is to capture specific 

nano and sub-microscale features that could be attributed to the enhancement in out-of-plane 

properties of radially-grown nanocomposites. As observed from atomistic simulations, 

interphase failure under transverse loading is more predominant than the deformation 

behavior along the direction longitudinal to the CNTs. The interphase region exhibits complex 

mechanisms such as plasticity, damage-softening, rehardening, and failure along the transverse 
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direction. Figure 6 (b) illustrates the various stages of deformation under transverse loading 

and the damage variable 𝐷 , characterizes the corresponding damage evolution, as shown in 

Figure 7. Along the x3-direction, the absence of a matrix-dominated softening mechanism is 

attributed to the load-carrying role dominated by the graphene layers. Therefore, the 

interphase deformation along this direction is assumed to be linearly elastic. Consequently, a 

thermodynamically consistent model is implemented by defining a yield function to initiate 

failure along the transverse (x2) direction. 

𝜙 =
𝜎∗

1 − 𝐷
−  𝜎 − 𝜅 ≤ 0 (2.8) 

where 𝜎  represents the yield stress in the referent direction, 𝜎  is the equivalent stress, and 

𝜅 is a scalar thermodynamic force associated with the plastic strain hardening, characterizing 

the expansion of the yield surface. A nonlinear plastic strain hardening free energy term is 

assumed and can be written as 

𝜓 =  𝐶 (𝜖̅ )  (2.9) 

where 𝐶  and 𝛾 are the hardening modulus and hardening index representing the internal 

stresses developed by the polymer chain rearrangement and the subsequent realignment of 

CNTs along the loading direction.  Substituting the above free energy term in Eq. (2.5), the 

thermodynamic force associated with hardening is obtained as 

𝜅 = 𝛾𝐶 (𝜖̅ )  (2.10) 

Under the associative flow, Eq. (2.8) defines the stress function as a yield function and 

plastic potential. With negligible plastic deformation along the x1- and x3-direction, the plastic 

strain evolution equation in the x2-direction is obtained using the classical plasticity conditions 

and can be expressed as 
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𝜖̇ = �̇�
𝛿𝜙

𝛿𝜎
=

�̇�

1 − 𝐷

𝛿𝜎

𝛿𝜎
 (2.11) 

where �̇� represents the viscoplasticity multiplier and is described as 

�̇� =
1

𝐾

𝜙 + 𝜎

𝜎
− 1  (2.12) 

where 𝐾  and 𝜇 are viscoplastic constants. 

2.3.2 Damage State Variable 

The nanoscale mechanics of the interphase region derived using MD simulations show 

that the CNT areal density governs the out-of-plane properties of radially-grown 

nanocomposites. At the continuum scale, the CNT areal density is defined as the number of 

CNTs grafted or grown per 𝜇𝑚  of the fiber surface. Along the transverse direction, the post-

yield softening and strain hardening behavior are mainly due to the polymer bond breakage, 

molecular rearrangement, and consequent reorientation of CNTs at the nanoscale. In the 

present formulation, a damage evolution equation based on BDE variation is developed to 

surrogate the nanoscale damage kinetics in the CNT reinforced interphase region.  

To model the proposed multi-stage deformation behavior illustrated in Fig. 6 (b), a damage 

variable 𝐷  is introduced to characterize the corresponding damage evolution along the y-

direction. Two distinct softening variables are introduced to account for the dual softening 

behavior observed in the MD simulations. The BDE variation shown in Fig. 5 is used to model 

the evolution of the primary damage variable 𝐷 . It is important to note that the calculated 

BDE variation from the MD simulations shown in Fig. 5 plots the instantaneous difference 

in bond energy due to the breakage of covalent bonds in the system. The calculated variation 
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accounts only for the bond breakage and does not consider the cumulative variation of bond 

breakage energy converted to non-bonded pair energy interactions. A damage saturation law 

is assumed to characterize 𝐷  and the point of damage saturation is calibrated from the BDE 

curve for the corresponding value of strain. The evolution of the secondary damage variable 

𝐷  is developed to simply surrogate the final drop in the stress-strain curve obtained from the 

MD simulations. The atomistic interphase model shows a considerable decrease in transverse 

modulus with an increase in areal density. This behavior is ascribed to the increase in local 

stress concentrations in the polymer due to the increase in the CNT volume concentration. 

However, the rate of damage saturation and hardening mechanism is more prominent with 

increased areal density. Hence, the damage evolution equation is developed to reflect this 

change of nature of the damage with a change in CNT areal density and is expressed as 

�̇� =
�̇�

2

(1 + 𝛼) − 𝐷 𝜌

𝜌
𝑌  (2.13) 

 

𝜉 = 𝛼𝜌  (2.14) 

where 𝜌 is the CNT areal density, 𝛼 is a phenomenological constant associated with the 

damage saturation when the realignment of CNTs is complete, and 𝜂 is the rate of  damage 

growth. To capture the dual softening behavior, a secondary damage variable, also called the 

failure variable, is obtained as 

�̇� =
�̇�

2

𝑌

𝑌 1 − 𝐷
 (2.15) 

where 𝑌  is a material parameter associated with the slope of the secondary softening curve. 

The variation of damage evolution versus applied strain shown in Figure 5(a) gives the 

combined response of the two-distinct damage variable, contributing to the dual softening 
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stress-strain response. As a validation process, the combined damage response is compared 

with the cumulative BDE variation obtained from the MD simulations of the radially-grown 

CNT interphase region (Subramanian et al., 2018). Figure 8 (a) shows the obtained BDE 

variation as a function of the applied strain for a CNT areal density of ~ 0.003 per nm2. It 

should be noted that this BDE variation is calculated by considering energy due to bond 

breakage and the non-bonded pair energy variations, which gives the cumulative variation of 

the deformation response. Figure 8 (b) shows the normalized BDE variation and the damage 

evolution for a CNT areal density of ~ 0.003 per nm2. The predicted cumulative damage 

evolution shows a good correlation with the normalized cumulative BDE variation. It is 

important to note that the assumed damage evolution equation is based on an exponential 

saturation law, while the obtained BDE curve shows a highly non-linear response. It is also 

worth mentioning that the developed damage evolution model sufficiently captures critical 

characteristics such as a change in gradient and damage saturation. The variation of stress-

strain response with CNT areal density is shown in Figure 7 (b). At high CNT density, the 

model predicts improved damage saturation and a more prominent hardening behavior than 

lower CNT density, where the stiffness improves. The change in gradient and slope of the 

damage curve are the critical features of interests sufficiently captured by the developed 

damage evolution model. 

The developed constitutive model considers the variation of material behavior with CNT 

density in the direction transverse to the radially-grown CNTs. Hence, a relationship between 

transverse yield strength and CNT density, 𝜌, is derived through molecular dynamics 

simulations. The yield point is computed using MD simulations with appropriate force fields 

as described in the previous section. From the simulation results, the yield strength for a range 
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of CNT areal density was calculated using virtual deformation tests along the x2-direction. The 

linear fit model was found to have the following form. 

𝜎 = 135.5 − 0.0076𝜌 (2.16) 

 

 

Figure 7. Interphase Model Prediction of: (a) Cumulative Damage; (b) Stress Vs Strain 

 

(b) 

(a) 
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Figure 8. (a) Cumulative BDE Response; (b) Comparison with Damage Model 

2.4 Summary 

This chapter introduced the development of a constitutive law for radially-grown CNT 

architecture based on the CDM framework and in conjunction with a damage evolution 

(a) 

(b) 
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equation developed from nonlinear MD simulation results using reactive force fields. This 

thermodynamically admissible framework uses various ISVs to define material damage and 

hardening, based on MD simulations of covalent bond breakage under mechanical loading. 

The developed damage formulations were benchmarked by comparing the damage evolution 

trend with the bond dissociation energy variation curve obtained from MD simulations.  

Since these formulations utilize the energy form of the inelastic information obtained from 

MD simulations, successful nonlinear information transfer between the nanoscale and 

continuum scale is possible in a computationally efficient manner. Additionally, the 

atomistically informed damage model was also used to provide insight into the manner of 

damage accumulation in the heterogenous radially-grown CNT-fiber-matrix interphase region. 

The CDM-based atomistically informed damage model is applied to study the inelastic 

behavior in radially-grown CNT nanocomposites in the subsequent chapter. 
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CHAPTER 3 

MICROMECHANICS OF RADIALLY-GROWN CNT ARCHITECTURE 

3.1 Introduction 

The presence of radially-grown CNTs in the fiber-matrix interphase region leads creates an 

additional layer of stiffness around the interface at the microscale (Wood et al. 2012). The stress 

concentrations in the fiber/matrix interface are likely to shift from the fiber surface to the ends 

of the CNTs, thereby changing the damage initiation and progression (Matveeva et al., 2019; 

Romanov et al., 2015). As a result, a significant impediment to capturing the influence of radially-

grown CNTs on the composite response is the intrinsic heterogeneity in the fiber-matrix 

interphase region. Moreover, the prediction of strength and toughness is further exacerbated 

due to the multiscale nature of the damage and failure mechanisms/interactions such as fiber-

matrix interfacial debonding, matrix cracking, and CNT/matrix interfacial debonding 

(Gorbatikh et al. 2016). 

Several studies have reported predicting the mechanical properties of carbon fiber-

reinforced polymer (CFRP) composites with radially-grown CNTs, also known as fuzzy fiber 

reinforced polymer composites (FFRP), using a multiscale modeling approach. Chatzigeorgiou 

et al. (2011) used a two-step homogenization procedure of a three-phase unit cell to estimate 

composites' effective properties with the nano-reinforced interphase region. Chatzigeorgiou 

et al. (2012) also used the asymptotic expansion homogenization method to numerically 

estimate the effective mechanical properties. Lurie et al. (2018) used a generalized self-

consistent (GSC) method to obtain analytical estimates for the effective mechanical 

characteristics of radially-grown CNT composites. Other hierarchical modeling approaches 
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include both deterministic (Kundalwal and Ray 2011,  2012) and stochastic techniques (Raifee 

and Ghorbanhosseini 2017) to estimate the effective properties using material properties of 

the individual constituents. A three-dimensional (3D) hierarchical multiscale model of the 

radially-grown CNT architecture was developed (Malekimoghadam et al., 2019). The CNTs 

were initially modeled using a 3D shell lattice structure and then reconstructed as nanofibers 

using an equivalent continuum modeling technique. The fiber-matrix interphase region of the 

microscale RUC was then modeled using an effective properties approach. However, these 

hierarchical methods are generally limited to predicting elastic properties and do not account 

for the fundamental level damage mechanisms and interactions across multiple length scales. 

FE-based concurrent multiscale models were proposed for a synergistic analysis of the 

nano- and microscale reinforcements using solid continuum elements. Dai et al. (2015) used 

microscale RUCs to predict the fatigue performance of unidirectional CFRP composite with 

radially-grown CNTs using extended FE methods. Microscale RUCs with explicitly modeled 

microfibers, matrix, and individual 3D CNTs were built with accurate dimensions and meshed 

using the embedded element technique (Romanov et al., 2014; Rai et al., 2018). The FE-based 

microscale RUCs were used to investigate the stress heterogeneity in the fiber-matrix 

interphase region due to the presence of CNTs (Romanov et al., 2015). Additionally, the 

interactions between the various nano- and microscale damage mechanisms were incorporated 

using a combination of embedded and cohesive elements (Lu et al. 2019; Liu et al. 2019). Liu 

et al. (2020) used such techniques to demonstrate the influence of radially-grown CNTs on 

composite properties such as strength and toughness. While these techniques can be used to 

scrutinize improvements in the composite behavior, an accurate prediction requires physics-

based constitutive laws and scale bridging mechanisms that account for the complex bonded 

and nonbonded interactions between the individual constituents at the fundamental (nano) 
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length scale. Recently, molecular dynamics (MD) simulations were conducted to investigate 

interactions in the fiber-matrix interphase region with radially-grown CNTs (Subramanian et 

al. 2018). The MD approach adequately captured the complex deformation and various 

competing energy dissipating mechanisms at the nanoscale, such as polymer bond breakage, 

chain entanglement, and CNT/polymer debonding due to van der Waals separation. 

In the previous chapter, the MD methodology was used to investigate the effects of 

varying CNT concentrations on the out-of-plane mechanical response of the radially-grown 

CNT-fiber-matrix interphase region. An atomistically-informed hierarchical constitutive law 

was then developed to capture the transition of nanoscale damage phenomena to the 

continuum length scale. In this chapter, the developed damage model in conjunction with the 

atomistically-informed damage model for thermoset polymers developed by Rai et al. (2016) 

is further applied to a radially-grown CNT nanocomposite RUC within the HFGMC 

micromechanics framework, while fiber failure is disregarded. The framework is then extended 

to study the influence of various material and process parameters on the microscale's 

homogenized composite response. First, the predicted elastic property is compared to existing 

model predictions and experimental data in the literature for verification and benchmarking. 

The multiscale model is then used to quantify the effects of input parameters such as CNT 

areal density and fiber-matrix interphase thickness (CNT height), polymer crosslinking degree, 

and fiber volume fraction on the predicted composite elastic properties, strength, and 

toughness. The validation of these predictions at the microscale can be done once the 

experimental data becomes available. However, the parametric study's results provide essential 

insights into the sensitivity of the design parameters for improving macroscopic response. The 

information is key to understanding and optimizing the architecture of CNT-embedded 

composites for specific applications. Last, the multiscale model is used to predict fiber stresses 
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and the onset of microscale damage in the out-of-plane loading direction to capture the energy 

dissipation mechanisms attributed to the enhancement in composite strength and toughness 

at higher length scales. 

3.2 Micromechanical Model  

The previous chapter observed that the CNT areal density in the interphase region affects 

the out-of-plane properties significantly. Therefore, the local fiber/matrix interphase region is 

modeled at the micro length scale to quantify the influence of the CNT areal density and the 

other constituent properties on the global response of radially-grown nanocomposite. The 

HFGMC micromechanics theory is employed to capture these effects. The HFGMC theory 

is based on the homogenization procedure for heterogeneous composites with periodic 

microstructure. The theory centers on a semi-numerical approach that provides a compromise 

between fidelity and efficiency via a two-way flow of information between length scales. The 

nanocomposite RUC is defined by a continuous long fiber inclusion in a polymer matrix along 

the 𝑦 -direction. The microscale unit cell is periodically distributed in the 𝑦 − 𝑦   plane and 

is discretized into several sub-volumes, known as subcells (see Figure 9). The microscale RUC 

is discretized using 40x40 subcells in the 𝑦 − 𝑦   plane and set to one subcell along the fiber 

direction (𝑦 ). A higher-order multiaxial displacement field is employed, resulting in local shear 

stresses and strains, particularly in the fiber-matrix interface due to applied global strain. As a 

result, the model can adequately capture the interfacial stress transfer characteristics between 

adjacent subcells of different material properties. The volume-averaged and higher-order 

micro variables, which make up the second-order displacement field, must be determined from 

a system of governing equations, the interfacial displacement and traction continuity 
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conditions between all subcells, and the periodic boundary conditions the fluctuating 

displacement field must satisfy. It is important to note that all the necessary conditions are 

imposed in an average sense. The obtained micro variables are utilized to compute local subcell 

strains and stresses. The average stress and strain are estimated by employing the definition of 

volume average in composites.  The effective elastic moduli are readily obtained by establishing 

the relations between the average stresses and strains in the nanocomposite. The local subcell 

strains are used to evaluate the constitutive level inelasticity and damage models. The detailed 

solution procedure for the displacement field can be found in (Aboudi and Pindera 2004). 

 

Figure 9. (a) Sub-Micro Scale Interphase Representation; (b) Microscale Unit Cell  

In radially-grown CNT architecture, the height of the CNTs is primarily controlled by 

varying the duration of the growth or deposition process. Experimental investigation suggests 

that microfibers with relatively short CNTs correspond to an annular (ring-like) growth 

pattern (Wicks et al., 2014). While increasing the duration of the process yields relatively long 

CNTs, the annular CNT growth pattern splits into 'mohawks' along the microfiber length. 

The scope of the developed multiscale framework is limited to capturing the effect of short 

CNTs that attribute to an annular growth pattern. Hence, the nanoengineered interphase 
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region is modeled with interphase subcells of uniform thickness adjacent to the fiber subcells, 

as illustrated in Figure 9 (b). Additionally, the interphase subcells are modeled as cylindrically 

orthotropic, and the stiffness matrix of the subcells (Fig. 9 (a)) is transformed with respect to 

the angle formed by the in-plane axis of the unit cell (𝑥 - direction) to the out-of-plane axis 

along the fiber (𝑦 - direction). The strain transformation matrix describes the relationship 

between the material properties in the interphase coordinate system and the microscale 

coordinate system. The elastic properties determined from the atomistic simulations of the 

interphase region are incorporated into the micromechanical model of interphase subcells 

using the transformation matrix and is expressed as 

𝐶̅ = 𝑇 𝐶 𝑇  (3.1) 

where the subscript ‘int’ denotes interphase.  

Based on the unit cell presented in Figure 9, a geometrical relationship is derived to 

estimate the CNT volume fraction 𝑉  at the microstructure level as a function of the areal 

density and reinforced interphase thickness at the sub-microscale. If the radially-grown CNTs 

are evenly spaced and are of uniform heights, the CNT volume fraction can be estimated as 

𝑉 (%) =
𝜌𝜋𝑑 𝑡

𝐷
𝑉 × 100 

(3.2) 

where 𝐷 and 𝑉  are the diameter and volume fraction of the fiber in the RUC, 𝑑  is the 

diameter of radially-grown CNTs, and 𝜌 is the CNT areal density at the sub-microscale. The 

parameter 𝑡  characterizes the thickness of the CNT-enhanced fiber/matrix interphase 

region. The maximum value of CNT volume fraction in the present modeling framework is 

dictated by the maximum value of CNT areal density and CNT height. In the nanoscale model 

of the radially-grown CNT/fiber/matrix interphase, the number of CNTs was varied to 
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capture a short range of areal densities. The intermolecular forces of repulsion dictated the 

upper limit of this range among the CNTs in the molecular system. Based on the developed 

molecular system of the interphase, the upper limit was determined to be ~6000 CNTs/ 𝜇𝑚2. 

Additionally, the CNT-enhanced interphase region in the microscale RUC is assumed to be of 

uniform thickness around the fiber. As stated before, this attributes to the annular growth-like 

pattern that corresponds to relatively short radially-grown CNTs of height between 3-5 𝜇𝑚. 

Based on these grounds, the predictive capabilities of the developed multiscale model may be 

limited to  ~6000 CNTs/ 𝜇𝑚2 and 5 𝜇𝑚 CNT height. Figure 10 shows the variation of CNT 

volume fraction with respect to the number of CNTs grown per 𝜇𝑚  on a single fiber at 40% 

volume fraction of fiber and for varying thickness of the interphase region.  

 

Figure 10. CNT Volume % vs CNT Areal Density for Varying Interphase Thickness 

It is important to note that modeling nanoscale interphase with CNT heights in microns 

is computationally expensive and is not feasible via molecular dynamics simulations. The 

height of the CNTs in our nanoscale model was chosen to be only ~10 nm. As previously 

stated, the interphase material consists of quasi-unidirectional nanofibers (CNTs) reinforced 

in epoxy and radially aligned around the fiber surface. Experiments suggest that the presence 
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of CNTs leads to the local stiffening of the epoxy, creating a layer of stiffness around the 

fiber/matrix interface region (Boroujeni et al., 2014; Zhang et al., 2009). Numerical simulation 

shows that relatively short and dense CNT forests shift stress concentrations away from the 

fiber surface towards the ends of CNTs (Romanov et al., 2015). This formed the basis of our 

hypothesis that the presence of CNTs has an extended reinforcing effect in the epoxy matrix. 

In MD simulations, the unit cell was constructed with a sufficiently large amount of epoxy 

molecules beyond the ends of the radially-grown CNTs (Subramanian et al., 2018). The ratio 

of the CNT height to the total height of the epoxy region (relative height fraction) is assumed 

to be attributed to the extended reinforcing effect around the fiber-matrix interphase region. 

The relative height fraction is used as a measure to scale the nanoscale interphase model. It is 

assumed to implicitly account for the CNT's varying heights around the fiber surface at the 

microscale. In the future, a comprehensive MD investigation of the interphase region for 

varying relative height fractions is expected to verify this model hypothesis. In the present 

study, the microscale interphase 𝑡  is computed using the relative height fraction of ~1.5 

estimated from the MD model (Subramanian et al. 2018). For instance, an interphase thickness 

of 500 nm corresponds to radially-grown CNTs of ~333 nm long in the annular growth 

pattern.  

Each subcell in the unit cell is assigned a material constitutive law to describe the local 

mechanical behavior. The fiber subcells are defined as transversely isotropic with linear elastic 

constitutive law. The polymer subcells are defined as isotropic material, while the interphase 

is modeled as orthotropic. The implementation of the damage model has been performed on 

a local scale. Therefore, damage evolves in each subcell based on the local stress state. The 

damage model for polymer matrix and radially-grown CNT/fiber/matrix interphase, 
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described in the previous subsection, is applied to the RUC within the HFGMC framework. 

As stated before, the stiffness matrix of the interphase subcell is transformed with respect to 

the angle formed by the in-plane axis of the local coordinate system (x1,x2,x3) representing the 

material plane to the axis along the fiber direction (y1-direction), as illustrated in Figure 9. 

Therefore, the subcell strain components obtained from displacement field variables are 

transformed back to the local coordinate system, which is then used to evaluate the local stress 

state in the material plane. The interphase subcell's local stresses are degraded for the given 

damage level and are transformed back to the global coordinate system. This process is 

repeated for each interphase subcell and at each loading increment.  

Due to damage, the implementation of this model for post-peak softening analysis will 

cause strain localization with a resulting mesh-dependency of the numerical results. Although 

the homogenized elastic properties converge with subcell mesh, some regularization technique 

is required for post-peak softening behavior based on several methods proposed in the 

literature. A suitable regularization method for the HFGMC framework will be integrated in 

the future to mitigate the spurious mesh sensitivity of the softening behavior. Hence, the 

developed modeling framework's precision is currently limited and not wholly relied on to 

quantify the post-peak softening response.  

3.3 Analysis and Discussion 

3.3.1 Model Verification and Benchmark 

This section presents results and predictions from the atomistic interphase damage model 

applied to the high-fidelity micromechanical model. The present modeling framework is 

validated by comparing the elastic mechanical properties of unidirectional radially-grown CNT 
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nanocomposite (2% CNT volume fraction) with experimental data from the literature. In Ref. 

(Kulkarni et al. 2010), radially-grown CNT composite lamina was manufactured with single-

wall CNTs of 100 𝑛𝑚 height and 30 𝑛𝑚 diameter, radially aligned on microfiber surface of 

diameter 5.2 𝜇𝑚. The microfiber volume fraction of the composite lamina was 40%, with the 

resulting CNT volume fraction at 2 %, respectively. The relative height fraction (~1.5) of the 

interphase material is used to scale the thickness corresponding to the 100 𝑛𝑚 CNT height. 

An areal density of ~615 CNTs per 𝜇𝑚  is estimated using the fiber diameter, volume fraction, 

CNT diameter, and interphase thickness in Eq. (18). The microscale unit cell is generated with 

these properties and is subject to boundary conditions corresponding to deformation along 

the direction transverse to the fiber. The predicted value of the transverse elastic modulus 

agrees well with the experimental data when the interphase thickness is estimated to be ~ 150 

𝑛𝑚 (substantially equivalent to 100 nm long CNTs). The specific material properties and input 

parameters used in the microscale and sub-micro scale constitutive models are summarized in 

Table 1 and Table 2. It is worth mentioning that the reported experimental data for ultimate 

strength and failure strain in Kulkarni et al. 2010 was ambiguous. A strength of 29 MPa and a 

failure strain of 0.28 % was reported, which is too low for a 40 % fiber volume fraction, 

considering that traditional CFRP composite exhibits much higher strength and strain to 

failure.  As a result, these values could not be used to verify the damage modeling aspects. 

Table 1. Elastic Material Properties of Microscale Constituents 

Material E1  

(GPa) 

E2  

(GPa) 

E3  

(GPa) 

G12  

(GPa) 

G13  

(GPa) 

G23  

(GPa) 

Fiber 294 18.5 18.5 7.1 7.1 25 
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Epoxy (Rai et al. 2017) 2.2 2.2 2.2 0.76 0.76 0.76 

Interphase  17.32 15.39 27.61 2.35 4.58 3.16 

 

 

Table 2. Input Properties for Matrix and Interphase Damage Model 

Material Parameters 

Epoxy (Rai et al. 2017) 𝑌  = 0.12 MPa,  𝜂 = 0.40 

Interphase 𝛼 = 0.20,   𝜂 = 0.042 

 

Table 3. Comparison Between Experiments and Microscale Model 

 

Atomistically-
informed HFGMC Experimental data 

E11 
(GPa) 

E22 

(GPa) E11 (GPa) E22 (GPa) 

CFRP w/ radially-grown 
CNT 187¶ 10.49⸸ 

203 ± 7.6¶ 

[43] 
10.02 ± 1.13⸸ 

[42] 

CFRP 189.33¶ 8.25⸸ 
198.3 ± 5.0¶ 

[43] 
7.8 ± 1.09⸸ 

[44] 
¶70% Fiber Volume Fraction   ⸸40% Fiber Volume Fraction 

 
As shown in Table 3, the predicted longitudinal and transverse modulus obtained from 

the HFGMC model agrees well with the experimental observations. The predicted elastic 

response of radially-grown nanocomposite yields up to a 21.3% improvement in the transverse 

modulus with respect to traditional CFRP composites, as shown in Table 3. However, the 

longitudinal modulus of the composite deteriorates in the presence of a heterogeneous 

interphase region. This degradation could be attributed to the interphase region acting as 

surface defects on the fiber, thereby degrading the load transfer characteristics along the fiber 

direction.  
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Table 4. Present Model Benchmarked with Literature and Experiment Data 

Method ET (GPa) Error (%) 

Experiment (Kulkarni et al. 2010) 10.02 - 

Present HFGMC model 

Generalized self-consistent (GSC) model (Lurie et al. 2018) 

10.49 

10.09 

4.7 

0.69 

Finite element model (Kundalwal and Ray 2012) 13.93 39 

Mori-Tanaka model (Kundalwal and Ray 2011) 11.91 18.86 

Simple unit cell (SUC) model (Hassanzadeh et al. 2018) 

Effective fiber model (Rafiee and Gorbanhosseini 2018) 

10.38 

11.20 

3.5 

11.7 

 

As shown in Table 4, the transverse Young's modulus predicted using the multiscale model 

benchmarks well with finite element and analytical methods in the published literature. 

Although literature models do compare well with experiments, the suitability of those 

approaches is generally limited to investigating only the effective elastic properties. The 

present multiscale model can capture fundamental level damage mechanisms and interactions 

through the atomistically informed damage model and HFGMC theory. It is worth mentioning 

that existing literature models compared with experiments consider a highly crosslinked 

polymer with a modulus ranging between 3 to 5 GPa. Moreover, MD simulations of epoxy 

polymer curing showed the most likely crosslinking degree to be 56 %, with a standard 

deviation of 15 % (Subramanian et al., 2015). However, in the present multiscale model, a 

crosslinking degree of 40 % is estimated to show good agreement with the experimental data 

(Kulkarni et al. 2010) within a 5 % error. This discrepancy is hypothesized to be due to the 

presumed idealized RUC with deterministic material properties.  
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The multiscale model could be extended to account for distribution in the crosslinking 

degree, fiber volume fraction, CNT height, and CNT areal density to quantify the uncertainty 

in the predicted transverse modulus. However, the present investigation's scope is limited to 

a parametric model assessment of the influence of such parameters on the output mechanical 

properties of interest. Additionally, the HFGMC theory predicts local strain profiles and 

damage contours, which could be beneficial to an improved understanding of the mechanisms 

that contribute to improving the composite transverse Young's modulus, strength, and 

toughness. 

3.3.2 Sensitivity Analysis 

This section presents the merits of the radially-grown architecture to the behavior of 

traditional CFRP composites. As a case study for microstructural analysis, the microscale unit 

cells with radially-grown CNT architecture with ~150 nm interphase thickness and traditional 

CFRP composite with no reinforced interphase are generated. The model is generated with a 2 

% volume fraction of CNT (same as the one used for model validation). The two microscale 

constituent properties that govern the global behavior of a traditional CFRP composite, namely, 

polymer curing degree and microfiber volume fraction, are considered to investigate the variation 

in effective elastic properties. The effect of polymer crosslinking degree on the effective 

properties of radially-grown FFRP and CFRP composites is shown in Figure 11 (a)-(c). The 

nanoengineered interphase does not enhance the modulus in the longitudinal direction but shows 

a noticeable increase in properties transverse to the fiber. For a polymer crosslinking degree of 

60%, 30% increase in transverse Young's modulus and up to 50% increase in transverse shear 

modulus is observed (see Fig 11 (b) - (c)). However, the effect of crosslinking degree on the 
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percentage enhancement in properties with and without the presence of a CNT-reinforced 

fiber-matrix interphase region is observed to be trivial.     

 

 

Figure 11. Comparison Between (a) Longitudinal; (b) Transverse; (c) Transverse Shear 

Modulus for Varying Crosslinking Degree. 

Similarly, comparing effective properties between radially-grown CNT-CFRP and 

traditional CFRP with the varying carbon fiber volume fraction is shown in Figure 12 (a)-(c). 

The CNT-reinforced interphase did not change the longitudinal modulus. However, the 

(a) (b) 

(c) 
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radially-grown CNTs on the fiber surface significantly improve the transverse elastic and shear 

modulus. For instance, at a 60 % fiber volume, the traditional CFRP and CNT-CFRP value 

correspond to a 27 % increment. Similarly, at a 60 % fiber volume fraction, the presence of 

radially-grown CNTs on the fiber surface increases the transverse shear modulus by 57 %. 

The transverse properties of the radially-grown CNT architecture relative to traditional CFRP 

are attributed to CNT-reinforced interphase subcells with enhanced stiffness in the CNT 

growth direction, aligned along the direction transverse to the fiber. 

 

 

Figure 12. Comparison Between (a) Longitudinal; (b) Transverse; (c) Transverse Shear 

Modulus for Varying Fiber Volume %. 

(a) 
(b) 

(c) 
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Two parametric analysis cases are considered to investigate the effect of the CNT-

reinforced interphase region on the mechanical behavior of radially-grown CNT 

nanocomposite. In the first case, the effect of the length of the CNTs (eventually the thickness 

of the interphase region) on the nanocomposite's homogenized properties is investigated. The 

microscale unit cell is generated with a fiber diameter of 5 𝜇𝑚, 30% fiber volume fraction, and 

20% polymer crosslinking degree. By varying the CNT height (virtually the interphase 

thickness) and assuming a constant CNT areal density of 100 CNTs/ 𝜇𝑚2, the parametric 

analysis is carried out for up to ~5 % volume fractions of CNT. The effect of interphase 

thickness on the transverse properties of radially-grown FFRP is shown in Figure 13 (a)-(b). 

Regarding the longitudinal properties, the increase in interphase thickness did not significantly 

change the properties. However, for 3 𝜇𝑚 interphase thickness, the transverse Young's 

modulus and the shear modulus show improvement by 23% and 47%, respectively, compared 

to traditional FRP composite with no reinforced interphase region. 

               

Figure 13. Effect of Interphase Thickness on (a) Transverse; (b) Transverse Shear Modulus 

In the second case, the effect of CNT areal density on the effective properties of the 

nanocomposite is explored. The microscale unit cell is generated for the same fiber and matrix 

(a) (b) 
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properties. By varying the CNT areal density and assuming a constant interphase thickness of 

150 nm is assumed, the parametric analysis is carried out for up to ~ 12 % volume fractions 

of CNT. Figure 14 (a)-(b) shows the effect of areal density on the transverse properties. The 

increase in areal density does not significantly enhance the transverse Young's modulus, 

showing a minor decrease in the transverse shear modulus. In general, the increase in CNT 

areal density or the CNT volume fraction in the interphase region is expected to enhance the 

elastic modulus primarily in the direction transverse to the fiber. The author hypothesizes that 

this disagreement is due to the variations in material properties in the interphase unit cell along 

the direction of CNT growth, which is not considered by the present modeling effort. Further 

investigation on the effect of areal density in the nanoscale unit cell along the growth direction 

is crucial to model the reinforcing effects at the micro length scale adequately.  

     

Figure 14. Effect of CNT Areal Density on (a) Transverse; (b) Transverse Shear Modulus 

3.3.3 Damage Simulation under Out-of-plane Loading 

The influence of matrix and CNT-reinforced interphase properties on the transverse 

nonlinear behavior is simulated to further assess strength and toughness enhancement capability. 

The microscale unit cell generated with a 30% volume fraction of fiber, 40% polymer crosslinking 
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degree, and 150 nm interphase thickness is used for this study. It is worth mentioning that the 

interphase rupture criterion for the atomistically-informed CDM model is set to 100 % to 

simulate a gradual softening response. This constituent level damage threshold value can be 

accurately estimated once the experimental data for strength and toughness becomes available. 

 The variation of transverse stress-strain response of radially-grown CNT-CFRP with two 

areal density cases is shown in Figure 15. The model does not show any significant variation in 

transverse Young's modulus. However, the increase in CNT areal density improves transverse 

tensile strength and strain to failure. At 3000 CNTs per 𝜇𝑚2, which corresponds to ~5 % volume 

fraction of CNT, the model predicts up to 25 % improvement in transverse tensile strength. This 

is attributed to the nanoscale phenomena, where the increase in areal density leads to improved 

damage saturation in the interphase region. The toughness or energy absorption capabilities 

determined by the area under the stress-strain curve improve with the increase in areal density. 

This enhancement is attributed to the pronounced nanoscale strain hardening tendencies due to 

the reorientation of CNTs along the loading direction. Furthermore, this enhancement could 

improve damage resistance in the out-of-plane direction and interlaminar strength in radially-

grown CNT architecture. These observations are consistent with existing experimental 

investigations where the highly condensed deposition of radially-grown CNTs on fiber surface 

using a vapor deposition technique improved fracture energy by 45 % (Karapappas et al., 

2009).  
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Figure 15. Predicted Transverse Failure Response for Different CNT Areal Density. 

The variation of transverse stress-strain response of radially-grown CNT-CFRP with CNT-

reinforced interphase thickness is shown in Figure 16. As shown before, the increase in interphase 

thickness enhances the transverse Young's modulus. In the inelastic regime, the increase in 

interphase thickness improves the transverse strength of the composite. At 2 𝜇𝑚 interphase 

thickness and 100 CNTs per 𝜇𝑚2, which corresponds to ~ 3.2 % volume fraction of CNT, the 

model predicts a 20.4% improvement in transverse tensile strength compared to traditional FRP. 

The increase in interphase thickness (virtually CNT height) leads to an increased region of 

stiffness around the fiber, which improves the composite stiffness and strength. The 

interphase region also acts as a shielding transition layer, which reduces the stress 

concentrations in the surrounding matrix and delays the onset of damage. This phenomenon 

is further demonstrated in Sections 3.3.4 and 3.3.5.   
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Figure 16. Predicted Transverse Failure Response for Varying Interphase Thickness. 

Last, the microscale unit cell is generated for the same fiber properties and 150 𝑛𝑚 CNT-

reinforced interphase thickness. The variation of transverse stress-strain response of radially-

grown CNT-CFRP for two cases of polymer crosslinking degree is shown in Figure 17. The 

nanocomposite exhibits more energy absorption capabilities at the lower crosslinking degree with 

a higher strain to failure. The increase in crosslinking degree causes increased load transfer 

characteristics but increased brittle response with a lower strain to failure. This variation is 

attributed to the nanoscale phenomena where bond breakage in neat epoxy becomes more brittle 

with an increase in crosslinking degree (Rai et al., 2017). 
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Figure 17. Predicted Transverse Failure Response for Varying Crosslinking Degree 

3.3.4 Effect of Interphase on Inter-fiber Stresses 

The HFGMC unit cell model is then analyzed in the elastic regime to investigate the effect of 

nanoengineered interphase on stresses expected to play a role in the onset of damage. While the 

debonding of CNT/epoxy is a nanoscale damage mechanism, the failure of epoxy close to stress 

concentration regions and the debonding of the fiber/matrix interface are primary failure modes 

expected to be seen at the microscale. The inter-fiber stress distribution, relevant to the 

fiber/matrix debond and matrix cracking, is studied to investigate this phenomenon. The 

microscale unit cell of 30 % fiber volume fraction with and without nanoengineered interphase 

subcells is subjected to boundary conditions mimicking deformation in the transverse direction. 

The model is generated with a 2 % volume fraction of CNT. A displacement in the  𝑦 - direction 

corresponding to an average transverse strain of 0.3 %, which is well below the threshold strain 

for the constituent phases, is applied to the unit cell. Two stress components characterize the 
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stresses in the matrix region adjacent to the fiber interface; normal 𝜎 (𝜃) and tangential 𝜎 (𝜃), 

interfacial stresses. These stress components are calculated with respect to the cylindrical 

coordinates (𝑟, 𝜃,z) located at the fiber center. The fiber/matrix interfacial stresses are 

averaged over a thin region of matrix subcells around the fiber in the traditional FRP unit cell. 

In CNT-FRP, these stresses are in the matrix subcells around the interphase. The stress profile 

around the fiber/matrix interface in a quarter fiber unit cell of CFRP and radially-grown CNT-

CFRP are presented in Figures 18 and 19. The stress distribution profile plotted between 90° 

and 180° for just one-quarter of the fiber. 

 

Figure 18. (a) Effect Of Interphase on Normal Interfacial Stresses 𝜎 (𝜃); (b) RUC Normal 

Interfacial Stress Contour 

(a) (b) 



  52 

 

Figure 19. (a) Effect of Interphase on Tangential Interfacial Stresses 𝜎 (𝜃); (b) RUC 

Tangential Interfacial Stress Contour 

In CFRP composites with no CNTs, the normal interfacial stresses 𝜎 (𝜃) gradually 

increases and reaches a maximum value at 180°Which is aligned with the transverse loading 

direction. The onset of debonding is expected to occur if the value of interface stress at 180° 

exceeds the interfacial strength. The normal interfacial stress in radially-grown CNT-CFRP 

shows a consistent trend of being lower with respect to CFRP (see Figure 18 (a)). Figure 18 

(b) shows the contour plot of normal interfacial stresses in the matrix-rich subcells. The model 

shows a 20% reduction in the magnitude of normal stress at 𝜃 = 180°, compared to the model 

without CNTs. Figure 19 (b) shows the contour plot of tangential interfacial stresses in the 

matrix-rich subcells around the interphase region. The maximum peak is at around 𝜃 = 140° 

and is around 60% lower than the normal stress peaks. As seen in Figure 19 (a), the magnitude 

of interfacial shear stress is also significantly reduced compared to the traditional FRP 

composite. The presence of nanoengineered interphase with orthotropic material properties 

suppresses the stress concentration in the matrix because of the mismatch in properties of the 

fiber and the matrix. Similar results and trends were reported by Romanov et al. (2015) and 

(b) 

(a) (b) 
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Matveeva et al. (2019). Moreover, these predictions and observations are consistent with 

existing experimental investigations where radially-grown CNT on the fiber surface has better 

transverse and interfacial properties than traditional CFRPs (Carpenter et al., 2011; Wood et 

al. 2012). 

3.3.5 Effect of Interphase on Damage Propagation 

With a 2 % volume fraction of CNTs generated in Section 3.3.4, the microscale model is 

further used to investigate the effect of CNT-enhanced interphase on damage propagation. The 

unit cell is subject to deformation transverse to the fiber direction beyond the ultimate point. The 

developed multiscale model can predict the strength and toughness by accounting for the 

combined effect of the nanoscale and microscale damage mechanisms, namely, CNT/epoxy 

debonding, damage in the matrix, and fiber/matrix debonding. The multiscale model predictions 

of the transverse tensile stress-strain response of traditional CFRP and radially-grown CNT 

architecture are shown in Figure 20 (a). It is worth mentioning that CFRP's predicted transverse 

tensile strength is much larger than the experimental values. A rupture criterion can define the 

damage threshold for the polymer matrix at which global failure occurs. At the 2.5 % threshold 

value, the estimated transverse tensile strength of the CFRP was about 82 MPa, which 

correlates well with the experimental data (Gilat et al., 2002). However, as mentioned before, 

the microscale test data available for the radially-grown CNT architecture did not provide a 

comparable basis for refining the damage model for the CNT-reinforced fiber-matrix 

interphase region. Moreover, the scope of this investigation is to explore the progressive 

nature of damage that could be attributed to the enhancement in the composite fracture 

toughness and energy absorption capabilities. Therefore, the polymer and interphase damage 

model's rupture criteria are set to 100 % to simulate the complete softening response. 
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As shown in Figure 20 (a), the CNT-reinforced interphase increases the transverse tensile 

strength and energy absorption capabilities. Figure 20 (b) shows the damage states of radially-

grown FFRP composite. It is observed that the damage regions are contained in a concentrated 

area around the circumference of the fiber corresponding to the initiation sites. Damage initiation 

occurs in the interphase and epoxy, while a significant of it is in the matrix around the interphase 

leading to potential debonding sites. The model initially shows substantial damage in polymer, 

which is accompanied by the degradation of interphase subcells. The interphase degradation 

implicitly accounts for the nanoscale bond breakage phenomena leading to CNT/epoxy 

debonding and following a dual softening behavior, which consumes more energy and further 

toughens the material. Finally, the failure of the interphase, along with matrix subcells, leads to 

complete fiber/matrix debonding. These observations indicate that epoxy damage is the primary 

toughening mechanism, while CNT/epoxy or fiber/epoxy debonding plays secondary roles. 

Nevertheless, all these mechanisms collectively contribute to the improvement in transverse 

strength and toughness properties.  

 

(b) 
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Figure 20. (a) Comparison of Transverse Failure Response with Traditional CFRP; (b) Local 

Subcell Damage Contour with Radially-Grown CNT 

3.4 Summary 

An atomistically-informed multiscale modeling framework was extended to evaluate the 

macroscopic properties of traditional fiber-reinforced polymer composites with radially-grown 

CNT architecture. The multiscale model accounts for physics-based constitutive laws and scale 

bridging mechanisms derived from molecular dynamics simulations. The constitutive models 

were integrated within a high-fidelity micromechanics framework. The transverse elastic 

modulus of radially-grown CNT-CFRP estimated by the high-fidelity micromechanical model 

was in good agreement with those predicted by the numerical and effective properties 

approach and the experimental data. Parametric studies were conducted to assess the capability 

to enhance stiffness, strength, and toughness of radially-grown CNT architecture by varying 

the matrix, reinforced fiber, and radially-grown CNT properties. The increase in CNT 

areal/growth density enhanced radially-grown CNT architecture's toughness and energy 

absorption capabilities. The increase in interphase thickness around the fiber (virtually the 

CNT height) showed notable improvements in transverse Young's modulus and transverse 

shear modulus.  

The presence of radially-grown CNTs reduced the normal and shear interfacial stresses at 

the fiber/matrix interface. This reduction significantly affected the matrix-rich region's stresses 

that governed the onset of damage near the interphase region. The overall effect of radially-

grown CNT on the damage resistance in the out-of-plane direction was investigated by 

comparing the stress-strain response with traditional FRP composites and investigating the 

microscale damage evolution. The damage originated in matrix-rich subcells around the CNT-

(b) 
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reinforced interphase region, accompanied by the degradation of interphase subcells to form 

debonding sites around the microfiber. The model also indicated the ability to predict the 

concurrent effects of the matrix and interphase damage mechanisms attributed to improved 

composite strength and toughness. 

Based on the investigation presented in Sections 3.2 and 3.3, the CNT areal density has 

substantial effects on the improvement in strength; however, only marginal improvements 

were observed in stiffness at relatively high-volume fractions of CNT. The nanoscale-

informed interphase continuum model and high-fidelity micromechanics theory can 

adequately capture the impact of radially-grown CNTs in the fiber/matrix interface. The 

methodology can be further integrated with finite element models of structural scale geometry 

to investigate the impact of radially-grown CNTs on critical properties such as interlaminar 

fracture toughness, interlaminar shear strength, and bearing strength. However, the HFGMC 

theory relies heavily on the description of microscale features and requires many internal 

variables, leading to high computational costs. Therefore, in the next chapter, a novel surrogate 

model is also developed to significantly replace full-field nonlinear HFGMC simulations and 

decrease the computational time and memory requirements of concurrent multiscale 

simulations. 
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CHAPTER 4 

REDUCED ORDER MODEL FOR EFFICIENT MICROMECHANICS  

4.1 Introduction 

A significant limitation of the HFGMC micromechanics theory implemented in Chapter 

3 is that incorporating a higher-order displacement field increases the number of unknowns 

per subcell, leading to a more extensive system of algebraic equations for the boundary value 

problem. Moreover, the accurate prediction of the effective composite behavior with inelastic 

subdomains relies heavily on the mesh discretization level necessary to resolve the subscale 

features and achieve numerical convergence. As a result, many internal variables are required, 

leading to high computational costs while limiting its use to multiscale analyses of small-scale 

coupons. Recently, computational reduced-order models (ROMs) built on full-field physics-

based simulations have been developed to approximate global constitutive behavior with only 

a finite set of internal variables. These models are used at macroscopic integration points and 

can be evaluated many orders of magnitude faster than their full-field-based counterparts. A 

widely used model reduction technique is based on the proper orthogonal decomposition 

(POD), which is also known as principal component analysis (PCA) and singular value 

decomposition (SVD). Such methods mainly aim to reduce the high number of equations of 

full-field high-fidelity models such as FE methods through the projection of the entire 

equations on a sub-feature space. The POD-based ROM is often implemented in mechanics 

problems by creating a reduced basis from several snapshots of the full-field mechanical 
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response over the solution time. The optimally ordered set of basis functions are then used to 

solve the necessary boundary value problem in a reduced dimensionality space. 

A ROM or surrogate model is then be formulated by truncating the optimal basis within 

a specific cut-off or threshold value. For multiscale analysis of composites, POD and its 

variants have been widely used for nonlinear heat conduction (Monteiro et al. 2008),  

multiscale fracture mechanics (Oliver et al. 2017), and damage analysis (Bhattacharyya et al. 

2019, 2020). Another class of ROM technique is based on the hyper-reduction methods 

(Amsallem et al. 2015, Oliver et al. 2017), which approximate the integral by introducing a 

global basis to represent the integrand (nodal vector approximation) or by using a reduced set 

of integration points with empirically determined weights (integral quadrature approximation) 

(Farhat et al. 2015). Some examples of this class of ROM are the Discrete Empirical 

Interpolation Method (DEIM) (Chaturantabu and Sorensen 2010, Peherstorfer et al. 2014), 

Missing Point Estimation (MPE) method (Astrid et al. 2008), and Empirical Cubature Method 

(ECM) (Hernandez et al. 2017). Van Tuijl et al. (2018) present a comparison of the EIM and 

ECM for solving the microscale boundary value problem. Although the POD and hyper-

reduction-based methods are widely used, they are better suited for linear or weakly nonlinear 

processes. This is because it heavily relies on a linear combination of only a few basis vectors. 

Besides, these models are known to drift from the highly nonlinear full-field simulations since 

the reduced basis is formulated based on the macroscopic response instead of microscopic 

quantities such as local displacement or inelastic strain fields. As a result, a significant challenge 

in these models is also to capture the nonlinear, path/history-dependent global material 

response while retaining relevant microscopic field quantitates.  
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A significant development in this direction is implementing transformation field analysis 

(TFA) theory (Dvorak and Benveniste 1992) to solve the microscale boundary value problem. 

In general, the internal deformation of each constituent phase in a composite results from 

internal stress fields arising from mechanical loads and thermal or other inelastic strains. If the 

deforming constituent phase is separated from the entire domain, it will deform freely without 

any contribution from any mechanical loads. However, the surrounding material restricts the 

deformation and generates internal strains, usually referred to as residual or transformation 

strain fields. The transformation fields are usually attributed to physically activated fields such 

as uncoupled thermal and phase transformations or inelastic strains that depend on the path 

or loading history. Coupled electromechanical deformation are also examples of 

transformation fields that depend on the evolution of other local electrical fields within the 

material domain. In the context of TFA theory, it is assumed that these transformation strain 

fields are represented by distributions that are piecewise uniform either in each phase or in the 

local volume 𝑉  within these phases. Moreover, for small strain approximations, these fields 

are additively superimposed with the deformation induced by the uniform global strain fields. 

Therefore, the total local strain or stress field caused by the uniform global strain 𝜺 or stress 

𝝈 and a piecewise uniform eigenstrain 𝜇  or eigenstress 𝜆  distribution is given as 

𝜺 = 𝔸 : 𝜺 + 𝐷 𝜇  
(4.1) 

𝝈 = ℕ : 𝝈 + ∑ 𝐹 𝜆 , (𝑟, 𝑠 = 1, … . 𝑁) (4.2) 

 The 𝐷  and 𝐷  are the self-induced and transmitted eigenstrain influence functions, 𝐹  

and 𝐹  are the corresponding eigenstress influence functions. 𝔸  and ℕ  are the mechanical 

strain and stress concentration tensors. The TFA formulation allows precomputing these 
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influence functions and concentration tensors in the preprocessing phase, allowing for the 

nonlinear analysis to be carried out with only a smaller number of unknowns. However, the 

assumption of piecewise uniform inelastic strain fields often requires a subdivision of each 

constituent phase into several sub-domains to predict the effective composite behavior with 

reasonable accuracy (Dvorak et al. 1994, Oskay and Fish 2007). Subsequently, the nonuniform 

transformation field analysis (NTFA) theory was developed by Michel and Suquet (2003), 

where the microscopic plastic or inelastic strain fields are no longer assumed to be piecewise 

uniform. The NTFA overcomes the drawbacks of TFA by defining the inelastic or plastic 

strain fields within each phase using a set of tensorial modes and subsequently capturing large 

deviations from uniformity. The choice of inelastic modes can be confined to each constituent 

phase or over the entire microscale domain. Notably, the NTFA method also incorporates 

microstructural information into the ROM, which is a crucial difference from other techniques 

such as the (a priori) hyper-reduction method (Ryckelynck 2005), the proper generalized 

decomposition method (Relun et al. 2013), or the general (Galerkin) projection-based ROMs 

(Robens-Radermacher et al. 2018). It provides localization rules to reconstruct local field 

quantities using precomputed operators and influence functions. 

Most work on NTFA based ROMs focuses on simplifying the theory with various 

microscopic constituent models. Roussette et al. (2009) first extended the theory to 

composites with viscoplasticity and used POD to identify plastic modes. Michel and Suquet 

(2010) showed an improved efficiency-to-accuracy ratio by implementing the two-dimensional 

implementation method into the fast Fourier transform (FFT) theory. Additionally, they 

extended this formulation to account for cyclic loading conditions. Fritzen (2010) and (2013) 

later provided a 3D implementation of the theory using FE methods while extending it to 

viscoelastic composites composed of a matrix containing elastic inclusions. Largenton et al. 
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2014 further expanded the method to account for more viscoelastic phases in the presence of 

aging and swelling. To date, very few literature contributions have been made to the study of 

micro constituent level damage using the NTFA theory. Recently, Ju and Mahnken 2016, 

provided an FE implementation of the NTFA to consider softening effects due to combined 

plasticity and damage through an alternate formulation of the yield function where the damage 

state variable degraded the yield stress. However, in their case, the conventional NTFA 

approximation did not provide enough accuracy and failed to capture a highly nonlinear 

effective response. Instead, an adaptive NTFA model was proposed, which allowed for 

switching back to full-field FE simulations in regions within the RUC beyond a critical state 

of damage to improve the overall prediction accuracy. The computational costs increased 

using this approach, and it could not be applied to constitutive equations with damage state 

variables acting on the elastic modulus or the effective stress field.  

In this chapter, a novel adaptation of the NTFA in conjunction with the HFGMC theory 

is presented to consider softening effects caused by damage. The distinctive feature of this 

work is that continuum damage state effects are considered as damage-induced inelastic strains 

acting on the individual material phase. For this purpose, the strain equivalence principle 

replaces the nominal stress with the effective stress in the damaged configuration. These 

assumptions allow for applying the superposition principle in the NTFA theory and solving 

the eigenstress or strain field in one phase based on the damage-induced inelastic strain field 

in another phase. A three-phase nanocomposite with an isotropic polymer matrix, transversely 

isotropic fibers, and orthotropic fiber-matrix interphase is used to demonstrate the predictive 

capability of the developed ROM. The reduced constitutive model of the inelastic phase has 

evolution equations and yield functions based on their microscopic counterparts. 



  62 

The present chapter is organized as follows. Section 4.2 presents the HFGMC governing 

equations and constitutive model required to simulate the homogenized behavior of the 

composite subject to damage-induced inelastic strains. In Section 4.3, the NTFA procedure is 

extended to account for the damage softening effects by approximating the inelastic strain 

field. Section 4.4 presents the numerical implementation of the NTFA using HFGMC to 

compute inelastic modes and to localize operators for the ROM. Two types of inelastic mode 

identification procedures are discussed, with the algorithms presented in detail. In Section 4.5, 

the accuracy and efficiency of the developed ROM are assessed by comparing the global and 

local field quantities for different loading paths with full-field HFGMC simulations. 

Notation: All quantities on the macroscale are symbolized using overlined letters such as �̅� 

while quantities on the microscale are not overlined. Boldface lower-case Greek letters are 

reserved for second-order tensors (e.g., 𝝐, 𝝈, 𝜼). Regular lower-case Greek with a capped letter 

such as 𝜉 denotes spatial or temporal vectors. Fourth-order tensors are denoted using letter-

like symbols ℂ, ℝ, ℕ and alike. Other matrices are defined using letter-like scripts 𝒜, 𝒟, 𝒦 and 

alike. The individual components of the vectors, tensors, and matrices are denoted using 

regular letters with subscript indices (e.g., 𝜉 , 𝒜  ). The L2 norm of a tensor or a vector is 

symbolized by ‖𝐴‖ . Additionally, the volume averaging operator of a quantity ∎ in the 

domain 𝑟 is defined as 

〈∎〉 =
1

|Θ |
Θ( )  

( )

∎ (4.3) 

where |Θ | denotes the total volume of  the phase 𝑟, Θ( )  denotes the subcell or sub element 

(𝛽) volume, and 𝑁(𝑟) denotes the total number of  subcells belonging to phase 𝑟. If  𝑟 is 

neglected, the operator averages the quantity over the entire RUC/RVE domain Ω. 



  63 

4.2 Problem Statement and Governing Equations 

The fiber-reinforced polymer composites with radially grown CNTs on fiber presented in 

the previous chapter will illustrate the ROM developed in this chapter. It contains three 

distinct phases: radially grown CNTs, microfiber inclusions, and polymer matrix. No 

experimental data are available for the nonlinear mechanical response of a unidirectional (UD) 

FFRP composite under complex multiaxial loading. Therefore, reference results for the 

mechanical response of these three-phase nanocomposites must be generated using full-field 

simulations.  

In the previous chapter, the nonlinear behavior of the FFRP composite was simulated 

using an idealized microscale RUC containing three distinct phases. CNTs in the fiber-matrix 

transition region result in a complex stress state, creating an additional layer of stiffness around 

the fiber at the microscale. Consequently, the CNT-enhanced interphase region was 

represented using a homogenous continuum medium with thickness representing the height 

of radially grown CNTs. The FFRP composite RUC is shown in Figure 21. The microfiber 

phase is modeled as linear elastic transversely isotropic, while the polymer matrix phase is 

isotropic. The explicit interphase region is modeled with linear elastic orthotropic properties. 

The damage initiation of the matrix is modeled using CDM with an evolution equation 

developed to capture the polymer mechanics arising from covalent bond breakage at the nano 

length scale. The damage state variable is atomistically informed and initially developed using 

a nonlinear response from MD simulations of epoxy resin and hardener molecules. More 

details on the MD simulations and constitutive model development can be found in Rai et al. 

2017. The composite RUC is simulated using the HFGMC micromechanics approach. As 

mentioned in the previous chapter, the HFGMC approach can capture the normal-shear 
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coupling effects in the composite and the load transfer characteristics between individual 

phases. A brief account of the necessary governing equations and the nonlinear constitutive 

equations for the polymer matrix is given in the following subsections.  

 

Figure 21. Multiscale Homogenization Scheme Using HFGMC Approach 

4.2.1 Damage-induced Inelastic Strain Formulation 

The UD FFRP composite is defined using a triply periodic RUC discretized into 𝑁 number 

of subcells. The RUC is defined in the 𝑥 − 𝑥 − 𝑥  plane with microfiber inclusion and 

extended infinitely in the 𝑥 − direction. Each subcell (𝛽) is defined in the local 𝑦 − 𝑦 −

𝑦  coordinate system, with 𝑑, ℎ, 𝑙 as the subcell dimensions. The local subcell displacement 

field is given as 
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𝑢 ( ) = 𝜖̅ 𝑥 + 𝑊 ( )
( ) + 𝑦 𝑊 ( )

( ) +
1

2
3𝑦 −

𝑑

4
𝑊 ( )

( )

+  𝑦 𝑊 ( )
( ) +

1

2
3𝑦 −

ℎ

4
𝑊 ( )

( ) +  𝑦 𝑊 ( )
( )

+
1

2
3𝑦 −

𝑙

4
𝑊 ( )

( ) 

(4.4) 

where 𝑊 ( )
( ) are the unknown displacement micro variables and 𝜖 ̅is the average remote 

strain field. For small deformation problems, the subcell strain field 𝜺( ) is obtained as 

𝜺( )(𝑡) = 𝜖(̅𝑡) + 𝑢
,

( )
(𝑡) (4.5) 

where 𝑢
,

( )  comprises the fluctuating displacement micro variables. Each subcell in the RUC 

is assigned material properties and constitutive equations to describe the sub-micro scale 

material behavior. Using the strain equivalence principle and assuming that the damage state 

in each direction evolves independently, the generalized 3D Hook’s law for linear elastic 

materials can be defined as 

𝝈( )(𝑡) = 𝕀 − 𝔻( )(𝑡) : ℂ( ): 𝜺( )(𝑡) (4.6) 

where 𝝈( ), ℂ( ), 𝕀 are the microscopic subcell stress field, fourth-order elastic stiffness tensor, 

and fourth-order identity tensor, respectively. 𝔻( ) is a fourth-order damage tensor with 

diagonal components comprising six independent damage variables (𝜔
( )

, 𝜔
( )

, … 𝜔
( )

) and 

non-diagonal components as zero. The above expression can be rewritten as  

𝝈( )(𝑡) = ℂ( ): 𝜺( )(𝑡) − 𝜺
( )

(𝑡)  

𝜺
( )

(𝑡) = 𝔻( )(𝑡) ∶ 𝜺( )(𝑡) 

(4.7) 

(4.8) 
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where 𝜺( ) is the subcell damage-induced inelastic strain field. The damage state formulated 

in terms of this inelastic strain field allows applying the superposition principle and 

approximation in the NTFA theory, as discussed in Section 4.3. The global RUC stress field 

is defined by volume averaging Eq. (4.7) over the entire domain Ω: 

𝝈(𝑡) =  〈𝝈( )(𝑡)〉 (4.9) 

The microscopic stress field in Eq. (4.7) can be directly used to determine subcell surface-

averaged traction force vector 𝑡( ). In the reformulated HFGMC (Balasu et al. 2020), the 

overall computational efficiency is significantly improved by deriving 𝑡( ) as a function of 

surface-averaged fluctuating displacement components. The surface-averaged traction is given 

as  

𝑡( ) = [𝒦]( ) ∙ 𝑢( ) + [𝒞]( ) ∙ 𝜖 ̅ − 𝜺
( )

  (4.10) 

where [𝒦]( ) is the subcell stiffness matrix, [𝒞]( ) is a subcell system matrix containing the 

elastic properties and 𝑢( ) is the surface-averaged subcell displacement vector. The 

components of these system matrices can be found in Balasu et al. 2020. By imposing traction 

continuity conditions between adjacent subcells and periodic boundary conditions on the 

exterior boundaries, the global system of linear algebraic equations can be formulated as 

𝒦 ∙ 𝑢 = 𝑓 (𝜖)̅ + 𝑔(𝜺 ) (4.11) 

where 𝒦 is the global RUC stiffness matrix, the vector 𝑢 represents the unknown surface-

averaged displacements, vector 𝑓 represents the external force due to the average remote strain 

field, and 𝑔 contains the traction forces due to the microscopic damage-induced inelastic strain 

field 𝜺( ) that is implicitly dependent on the solution vector 𝑢. Equation (4.11) is analogous 

to the FE method, realized by defining the global stiffness matrix, applied external forces, and 
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internal resisting forces. However, unlike conventional nonlinear FE methods, 𝒦 does not 

change iteratively since the nonlinear contributions due to subcell constituent damage are 

accounted for in the vector 𝑔. The global system of equations is solved twice per iteration per 

increment: first, solve the RUC boundary value problem without inelastic fields; next, update 

the inelastic field quantities using an iterative integration scheme. The solution vector 𝑢 is then 

used to determine the microscopic subcell strain and stress field defined in Eq. (4.5) and (4.7). 

It must be noted that most of the computational cost incurred is due to the factorization of 

the 9𝑁 ∗ 9𝑁 global stiffness matrix and the number of iterations it takes to achieve a 

converged solution at every inelastic load increment. Therefore, order reduction is a beneficial 

option for improving the computational efficiency associated with the repeated solution of 

the HFGMC global system of algebraic equations. 

4.2.2 Constituent Equations 

The atomistically informed CDM model for polymer matrix will illustrate the NTFA-based 

ROM adaptation for nonlinearity due to damage. Using the strain equivalence principle, the 

microscopic, elastic-free energy term with isotropic damage can be written as 

𝜓 =  
1

2𝜌
1 − 𝜔(𝑡) ∙ 𝝈(𝑡) ∶ 𝜺𝒆(𝑡) (4.12) 

where 𝜌 is the material density, 𝝈 is the effective stress field, 𝜺 is the elastic strain field, and 𝜔 

is the isotropic continuum damage variable. As in Eq. (4.7), the above expression can be 

rewritten in terms of the damage-induced inelastic strain 𝜺  as follows. 

𝜓 =  
1

2𝜌
𝝈 ∶ 𝜺(𝑡) − 𝜺 (𝑡)  

𝜺 (𝑡) = 𝜔(𝑡) ∙ 𝜺𝒆(𝑡) 

(4.13) 

(4.14) 
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In the absence of plastic strains, the elastic strain 𝜺𝒆 is equal to the total strain determined 

using Eq. (4.5). Consequently, Cauchy’s nominal stress field can be defined as 

𝝈 = 𝜌
𝛿𝜓

𝛿𝜺
=  1 − 𝜔(𝑡) ∙ 𝝈(𝑡) (4.15) 

The thermodynamic conjugate force associated with damage 𝜔 can be defined from the free 

energy term as 

𝑌 =  −𝜌
𝛿𝜓

𝛿𝜔
=  

1

2
 𝝈(𝑡) ∶ 𝜺(𝑡) (4.16) 

The classical Lemaitre yield function is given by 

𝜙 =

3
2

‖𝝈‖𝟐

1 − 𝜔(𝑡)
− 𝜎   

(4.17) 

where 𝜎  is the material yield strength. The damage evolution in the polymer matrix simulates 

the nanoscale covalent bond breakage process and is expressed as 

�̇� =
�̇�

2
sgn(𝑥)

−(1 − 𝜃)|𝑥| − |𝑥|

2(1 − 𝜃)|𝑥| + (1 − 𝜃) − 1
+ 1  

𝑥 = 2
𝑌

𝑌

( )
− 1 

(4.18) 

where 𝜃 is the polymer crosslinking degree and 𝑌  is the minimum elastic energy required to 

initiate damage. The elastic modulus of the polymer matrix is a function of the crosslinking 

degree (Rai et al. 2017) The model predicts more ductile post-yield behavior at lower 

crosslinking degrees than at higher crosslinking degrees. The above expression follows a 

sigmoidal evolution curve with initial exponential growth followed by a linear phase and 

damage saturation. The evolution of the damage state variable is coupled to the viscoplastic 

multiplier �̇� obtained using the Peric formulations and is given as 
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�̇� =
1

𝐺

𝜙 +  𝜎

𝜎
− 1  

(4.19) 

where 𝐺 and 𝑛 are the viscoplastic constants. It is worth mentioning that the above 

constitutive equations are a simplified version of the model proposed by Rai et al. (2017). The 

original model accounts for both damage and plasticity effects. 

Note that the damage evolution law presented in Eq. (4.18) does not account for a 

characteristic element size or fracture energy parameter. As a result, theoretically, 

incorporating this model within the HFGMC framework can result in strain localization and 

spurious mesh sensitivity of the softening behavior. While mesh objectivity is crucial, the 

proposed CDM model merely demonstrates the application of the NTFA theory to derive a 

reduced-order macroscopic CDM formulation that requires fewer internal variables and is 

evaluated only once at each time step. In addition, the developed ROM is expected to 

inherently preserve mesh dependency since the localization operators and inelastic modes are 

computed based on the data generated using full-field HFGMC simulations for a given 

discretization of the microstructure. In the future, a suitable regularization method can be 

introduced into the constituent damage model to circumvent the mesh-dependency of full-

field simulations and the corresponding NTFA-based ROM predictions 

4.3 NTFA-based ROM 

The NTFA formulations available in the literature include a constitutive plasticity model 

with isotropic/kinematic hardening effects. Ju and Mahnken 2016 provide the formulation to 

account for softening effects due to combined plasticity and damage. In a typical CDM model, 

the damage state variable is a function of the damage conjugate force, defined in Eq. (4.16), 

and it is used to degrade the elastic modulus or the effective stress field. Ju and Mahnken 2016 



  70 

coupled the evolution of the damage evolution to an equivalent plastic strain field and 

degraded only the yield stress in the yield function. This formulation allowed applying the 

NTFA superposition principle on a unified inelastic strain field that implicitly accounts for 

both plasticity and damage. However, the conventional NTFA approximation did not provide 

adequate accuracy and failed to capture the RUC’s nonlinear response and highly 

heterogeneous local stress fields.  

This section proposes a new NTFA formulation where the continuum damage state 

variable is formulated as a damage-induced inelastic strain field. This assumption allows for 

applying the superposition principle in the NTFA theory and solving the transformation strain 

or eigenstress fields in each constituent phase. This assumption also allows for approximating 

inelastic strain fields into a set of modes that will serve as shape functions explicitly pertinent 

to the plastic and damage-induced inelastic strains. The NTFA-based ROM adaptation to 

account for the combined damage-induced inelastic strain, together with plasticity and 

hardening effects, will remain an aspect of our future work. The present study focuses on 

introducing the formulation accounting for the damage-induced inelastic strain field only. The 

NTFA localization rules and the reduced constitutive equations for an arbitrary inelastic phase 

𝑟 are derived as follows. The space-time dependency of the damage-induced inelastic strain 

field 𝜺( ) is approximated into a finite set of deformation modes given by 

𝜺
( )

(𝑡) = 𝝁
( )

𝜉 (𝑡)

( )

 

(4.20) 

where 𝑀(𝑟) denotes the total number of modes in phase 𝑟, 𝜉 (𝑡) is the time-dependent 

damage mode activity coefficient, 𝝁
( ) is the heterogenous tensorial inelastic mode. Unlike 

TFA, the introduction of spatial heterogeneity in the inelastic strains allows for a more accurate 
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representation of the nonlinear deformation processes. The critical elements of the NTFA 

model are: (i) identification of the damage-induced inelastic modes and (ii) determination of 

the evolution of damage mode activity coefficients 𝜉 (𝑡). A small number of inelastic modes 

are constructed to form a suitable basis for Eq. (4.20). The mode identification procedure and 

the algorithm are presented in Section 4.4.2.  

Once the modes are identified, using the approximation of inelastic strains in Eq. (4.20), 

the superposition principle of the NTFA theory leads to the following localization rule for the 

microscopic subcell strain field: 

𝜺( )(𝑡) = 𝔸( ): 𝜺(𝑡) + 𝜼
( )

𝜉 (𝑡)

( )

 

(4.21) 

where 𝜼( ) denotes the eigenstrain tensor. The fourth-order tensor 𝔸( ) denotes the subcell 

mechanical strain concentration operator, determined by performing six independent elastic 

strain path computations for the HFGMC boundary volume problem outlined in Section 

4.4.1. The eigenstrain tensor is computed by solving 𝑀(𝑟) linear elastic eigenstress problems 

(see Section 4.4.1 for more details). Combining Eq. (4.20) and (4.21) with Eq. (4.7), the 

localization rule for the subcell stress field is given by 

𝝈( )(𝑡) = ℂ( ): 𝔸( ): 𝜺(𝑡) + 𝝆
( )

𝜉 (𝑡)

( )

 

(4.22) 

where 𝝆( )
=  ℂ( ): 𝜼

( )
−  𝝁

( )  is the eigenstress tensor. 

To prescribe the evolution of the damage mode activity coefficient 𝜉 , further assumptions 

are required to derive reduced macroscopic constitutive equations and yield functions 

associated with the inelastic modes. First, the macroscopic free energy density per unit volume 
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of the heterogeneous material is formulated by volume averaging the microscopic free energy 

term in Eq. (4.13) as 

𝑤(𝜺, 𝜉) =  〈𝜌𝜓 (𝜺( ), 𝜺
( )

)〉 (4.23) 

The average macroscopic strain 𝜺 and the mode activity coefficient vector 𝜉 are the new 

variables at the macroscopic material point. Then, the thermodynamic conjugate driving force 

with respect to the 𝑘-th mode activity coefficient of phase 𝑟 is defined as  

𝜏 ( ) =  −
𝛿𝑤

𝛿𝜉
=  − 〈𝜌

𝛿𝜓

𝛿𝜉
〉 =  − 〈𝜌

𝛿𝜓

𝛿𝜺( )
: 𝜼

( )
+

𝛿𝜓

𝛿𝜺
( )

: 𝝁
( )

〉 

=    
1

2
〈𝝈( ): 𝝁

( )
〉 − 〈𝝈( ): 𝜼

( )
〉      

(4.24) 

Following the work of Fritzen and Bohlke (2013), in Eq, (4.24), the term 〈𝝈( ): 𝜼
( )

〉 = 0 

since  〈𝜼
( )

〉 = 0 and due to static admissibility of the local stress field 𝝈( ) and eigenstress 

tensor 𝝆( ). Therefore, by combining Eq (4.24) with Eq. (4.22), the simplified expression for 

the thermodynamic conjugate force is given as 

𝜏 ( ) =
1

2
𝔸( ) : ℂ( ): 𝝁

( )
: 𝜺(𝑡) +

1

2
𝜉 (𝑡) 𝝁

( )
: 𝝆

( )

( )

 

(4.25) 

The orthonormal basis is given by 

𝑩( ) = 𝒆 ⊗ 𝒆 , 𝑩( ) = 𝒆 ⊗ 𝒆  

𝑩( ) = 𝒆 ⊗ 𝒆 , 𝑩( ) = 𝑠𝑦𝑚(𝒆 ⊗ 𝒆 ) 

𝑩( ) = 𝑠𝑦𝑚(𝒆 ⊗ 𝒆 ), 𝑩( ) = 𝑠𝑦𝑚(𝒆 ⊗ 𝒆 ) 

(4.26) 

Consequently, Eq. (4.25) can be expressed in a convenient matrix-vector form as follows. 

�̂�( ) = 𝒜 ∙ 𝜀(̅𝑡) + ℒ ∙ 𝜉(𝑡) (4.27) 
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𝜀̅ = 𝜀̅ ∶ 𝑩( ) , (𝑖 = 1, … ,6) 

𝒜 =
1

2
𝔸( ) : ℂ( ): 𝝁

( )
: 𝑩( ) , (𝑖 = 1, … ,6;  𝑘 = 1, … , 𝑀) 

ℒ =  
1

2
𝝁

( )
: 𝝆

( )
 , (𝑘, 𝑙 = 1, … , 𝑀) 

In the above expression, the thermodynamic conjugate forces and the corresponding damage 

mode activity coefficients are denoted in vector form �̂� = �̂� … �̂� … �̂� ( ) and 𝜉 =

𝜉 … 𝜉 … 𝜉 ( ) , respectively. The elastic influence matrix 𝒜 and the mode interaction 

matrix ℒ is computed once and for all.  

In the coupled NTFA model proposed by Michel and Suquet (2003), the thermodynamic 

conjugate forces acting on the entire inelastic phase is a quadratic average of all the forces 

acting on all modes contained within that phase. Following this assumption, the macroscopic 

damage variable 𝜔  representing the state of the entire inelastic phase 𝑟 is introduced. The 

damage variable depends on the norm of the macroscopic equivalent damage conjugate force 

vector 𝑦, analogous to the microscopic subcell damage conjugate force 𝒀( ). The equivalent 

force is derived by multiplying Eq. (4.16) by 𝝁( ) and averaging over the entire volume: 

𝑦 ( ) = 𝝁
( )

: 𝒀( )  

= �̂�
( )

∙ 𝑌( )  

(4.28) 

where �̂�  and 𝑌 are the 𝑘-th microscopic inelastic mode and the damage conjugate force 

written in its vector form. In this work, the microscopic inelastic phase is subject to isotropic 

damage. Hence, the components of the vector 𝑌 are equal (𝑌
( )

= 𝑌
( )

= ⋯ 𝑌
( )

= 𝑌( )), 

leading to the following expressions:  



  74 

𝑦 ( ) = 𝓂
( )

∙ 𝑌( ) =
1

2
𝓂

( )
∙ 𝝈( ): 𝜺( )  

𝓂
( )

= 𝜇 ,
( ) 

(4.29) 

(4.30) 

Accounting for the Hill’s Mandel condition and static admissibility of the eigenstrain and stress 

fields along with Eq. (4.21) and (4.22), the above expression is further simplified as 

𝑦 ( ) =
1

2
 𝜺(𝑡): 𝔽 : 𝜺(𝑡) −

1

2
 𝜺(𝑡): 𝜉 (𝑡)

( )

 

𝜹( ) 

𝔽( ) = 𝓂
( )

∙ 𝔸( ) : ℂ( ): 𝔸( ) , (𝑘 = 1, … , 𝑀) 

𝜹( ) = 𝓂
( )

∙ 𝔸( ) : ℂ( ): 𝝁
( )

, (𝑘, 𝑙 = 1, … , 𝑀) 

(4.31) 

The first term in Eq. (4.31) is highly analogous to the damage conjugate force or elastic 

strain energy defined by Eq. (4.16). The additional term accounts for the mode interaction 

effects linked by the inelastic mode field and mode activity coefficients. Moreover, the coupled 

macroscopic equivalent damage variable analogous to the microscopic damage variable in Eq. 

(4.18) is defined as  

�̇�( ) =
�̇�( )

2
𝑓 𝑦( )  

(4.32) 

where 𝑦( )  is the L2 norm of the reduced damage conjugate force vector 𝑦. Based on the 

modified coupled model suggested by Fritzen and Bohlke (2013), the reduced yield function 

for the phase 𝑟 analogous to Eq. (4.17) is proposed as 

𝜙( ) =
�̂�( )

1 − 𝜔( )
−

2

3
𝑐 𝜎  

(4.33) 
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where 𝑐  is the volume fraction of the inelastic constituent in the RUC, i.e., 𝑐 =  Ω Ω⁄ . The 

reduced viscoplastic multiplier analogous to Eq. (4.17) is defined by 

�̇�( ) =
1

𝐾

𝜙( ) + 𝜎

𝜎
− 1  

(4.34) 

Likewise, the cumulative mode activity coefficient vector 𝜉 is formulated by pre-multiplying 

Eq. (4.20) on both sides by 𝝁
( ), combining with Eq. (4.14) and average over the entire 

volume: 

𝝁
( )

: 𝜺
( )

= 𝝁
( )

: 𝝁
( )

𝜉  

𝜉 =
𝝁

( )
: 𝜔( ) ∙ 𝜺( )

𝝁
( )

: 𝝁
( )

 

(4.35) 

Combining with Eq. (4.21), the above expression is simplified and written in a more 

convenient form: 

𝜉( ) = 𝜔( ) ⋅ 𝒫 ⋅ 𝜀(̅𝑡) +  𝜒 ⋅ 𝜉(𝑡)  

𝒫 =  
𝝁

( )
: 𝔸( )

𝝁
( )

: 𝝁
( )

: 𝑩( ) , (𝑖 = 1, … ,6;  𝑘 = 1, … , 𝑀) 

𝜒 =  
𝝁

( )
: 𝜼

( )

𝝁
( )

: 𝝁
( )

 

(4.36) 

It should be noted that the initial heterogenous damage variable field 𝜔( ) is treated as 

homogenous here, i.e., 𝜔( ) = 𝜔( ) = constant. This assumption is numerically verified in 

Section 4.5.1. Once the reduced damage state variable 𝜔  and the associated mode activity 
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coefficient vector 𝜉 are obtained, the macroscopic average stress tensor for the composite is 

obtained by volume averaging of Eq. (4.22):  

𝝈(𝑡) =  〈𝝈( )(𝑡)〉 = ℂ ∶ 𝜺(𝑡) + 𝜉 (𝑡) 〈𝝆
( )

〉

( )

 

(4.37) 

where ℂ is the macroscopic fourth-order stiffness tensor evaluated numerically using the 

HFGMC approach. Note that all the system matrices defined in Eq. (4.27), (4.31), and (4.36) 

are computed once for all. Unlike the HFGMC approach, the reduced constitutive equations 

are evaluated only once for the entire inelastic phase 𝑟 at each time step. The total number of 

internal variables necessary to solve the reduced constitutive equations is equal to the total 

number of modes 𝑀(𝑟). 

While the NTFA formulation presented in this section is based on small-strain 

assumptions, it may be possible to extend the approach to the finite-strain regime, which will 

be crucial for considering composite microstructures undergoing large deformation, such as 

hyper elasticity and crystal plasticity. Note that there are no known contributions in the 

literature demonstrating the extension of the NTFA formulation to the finite-strain regime. 

For this purpose, the HFGMC boundary value problem can first be formulated in the 

reference configuration to account for the finite-strain mechanical response. The stress and 

strain measures of each sub-element become Piola-Kirchhoff stress and deformation gradient 

tensor. A suitable decomposition procedure can then approximate the deformation gradient 

field into a set of orthogonal modes. Once the modes are identified, the NTFA theory could 

lead to a localization rule for the microscale deformation gradient field like Eq. (4.21). 

Moreover, a reduced free energy term accounting for large deformation and a conjugate force 

analogous to the Piola-Kirchhoff stress may be derived using the assumptions made in Eq. 
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(4.23) and (4.24). Nonetheless, extending to large deformation will gain applicability of the 

approach to geometrically nonlinear problems, which will provide a more rigorous validation 

standard for the accuracy of the NTFA ROM in the future 

4.4 Numerical Implementation 

This section presents the numerical implementation of the NTFA ROM using the 

HFGMC approach to compute the necessary reduced constitutive system matrices and 

inelastic modes. The individual steps involved in this preprocessing stage of the ROM are 

illustrated in Figure 22. The first step involves spatial discretization of the composite RUC and 

prescribing necessary material constants and damage models for the constituent phases. A 

brief account of the RUC discretization and constituent equations is provided in Section 4.2. 

Next, several strain path computations are performed on the RUC using the HFGMC 

micromechanics approach. The computations are used to investigate the following aspects: (i) 

mechanical strain concentration and effective stiffness tensor of the RUC; (ii) linear eigenstrain 

analyses necessary for the local NTFA eigenstress field data; (iii) nonlinear simulations 

generating the inelastic strain snapshots necessary for the mode identification process. Last, 

the system matrices derived in Section 4.3 are computed based on the generated local field 

data obtained from strain path computations. Further details are given in the following 

subsections. 
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Figure 22. Preprocessing Steps in NTFA-Based ROM 

4.4.1 Strain Path Computations 

Several numerical computations are performed to investigate the linear elastic properties 

and each subcell’s eigenstrain fields in the generated RUC. For a 3D case, the linear elastic 

properties are identified from six independent linear elastic simulations of the RUC obtained 

by solving Eq. (4.10) in Section 4.2.1 as 

𝒦 ∙ 𝑢 = 𝑓 (𝜖 ̅( )) (4.38) 

𝜖̅( ) =  𝜖 ∙ 𝑩( ) (𝑖 = 1, … ,6) (4.39) 

where 𝜖̅( ) is applied as the average remote strain and 𝜖  is a positive constant. The solution 

of Eq. (4.38) enables establishing the following localization relation, which expresses the local 

strain in subcell (𝛽) in terms of the strain concentration tensor 𝔸( ) and remote average strain 

as 
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𝜺( ) = 𝔸( ): 𝜖 ̅( ) (4.40) 

For each of the six independent elastic strain paths, Eq. (4.40) provides six components of the 

subcell strain field, which are equal to the elements in the first column of the tensor 𝔸( ). 

Subsequently, the macroscopic fourth-order elastic stiffness tensor is obtained as 

ℂ =  〈ℂ( ): 𝔸( )〉 (4.41) 

Assuming that the modes are known, the eigenstrain field 𝜼
( ) created by an inelastic 

strain field under a vanishing remote average strain field is determined by solving the boundary 

value problem in Eq. (4.10) while interpreting 𝝁
( ) as the applied inelastic strain field. The 

eigenstrain field due to the 𝑘-th mode inelastic strain field in phase 𝑟 is obtained by solving 

𝑀(𝑟) eigenstress problems given by  

𝒦 ∙ 𝑢 = 𝑔 (𝝁 ) (4.42) 

where vector 𝑔  contains the traction forces due to the subcell inelastic mode 𝝁( ). The local 

subcell strain obtained from the solution vector 𝑢 of Eq. (4.42) is the 𝑘-th eigenstrain field. 

The corresponding eigenstress fields are then computed using Eq (4.22).  

Additionally, multiple nonlinear simulations are performed to generate snapshots of 

inelastic strain fields 𝜺( ), necessary for the mode identification procedure discussed in Section 

4.4.2. The modes’ nature is determined by the strain loading paths used in generating the 

snapshots of 𝜺
( ). In general, one can choose any arbitrary multiaxial strain path that the 

homogenized composite is likely to experience at the macroscopic integration point. For 

simplicity, the following two strain path computations are considered in the present study: 

Σ∗
( )

= 𝑩( ), Σ∗
( )

= 𝑩( ) + 𝑩( )   (4.43) 
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The first loading case is out-of-plane uniaxial normal strain applied along the 𝑥 −direction. 

The second case is out-of-plane biaxial normal strains applied along the 𝑥  and 𝑥  direction. 

The corresponding individual computations with the associated strain paths are given by 

𝜖̅( ) =  𝜖 ( ) ∙ Σ∗
( )

 (𝑖 = 1, 2) (4.44) 

The inelastic strain fields generated by each nonlinear computation is temporally discretized 

into 𝑁  frames or snapshots in the chronological sequence. Therefore, the total number of 

snapshots are 𝑁 ∗ 𝑁 , where 𝑁  represents the number of inelastic strain path computations.  

4.4.2 Inelastic Mode Identification 

The NTFA formulation proposed by Michel and Suquet (2010) and Fritzen (2013) 

provided the following requirements for the choice of plastic or inelastic modes: (i) 

normalization condition with respect to the inelastic phase domain Ω , i.e., 𝝁
( )

= 1; 

(ii) the support of each mode is confined within the corresponding inelastic phase 𝑟; (iii) the 

modes are incompressible, i.e., 𝑡𝑟 𝝁
( )

= 0; (iv) the modes are orthogonal to each other, 

i.e., 𝝁
( )

: 𝝁
( )

= 0, when 𝑖 ≠ 𝑗. Later, Fritzen (2013) suggested that the normalization 

condition does not replicate a highly heterogeneous material response. Hence, a modified 

requirement was proposed, where the modes are normalized with respect to their active plastic 

or inelastic volume fraction 𝑐 ( )of the 𝑘-th mode: 

𝑐 ( ) =  1 𝝁   ≤  𝑐  (4.45) 

where 𝛿 is a cut-off parameter and 𝝁  denotes the mode before normalization. Note that the 

𝑘-th active inelastic volume fraction of phase 𝑟 is always less than or equal to the total volume 
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fraction 𝑐  A flexible option for the cut-off criteria is to set the parameter 𝛿 =

 10 ….. 𝑚𝑎𝑥 𝝁 .  

 Two different mode identification procedures are used and studied here: the Karhunen-

Loeve (KL) decomposition and the modified Gram-Schmidt (GS) method. In both methods, 

the inelastic strain field snapshots 𝜺
( ) are used to construct modes 𝝁

( ), essential for the 

NTFA formulation. The KL decomposition is based on the proper orthogonal decomposition 

of the correlation matrix 𝐾 computed using these snapshots. The eigenvalues and eigenvectors 

of the covariance matrix are used to construct inelastic modes. The dominant modes are 

retained based on an eigenvalue cut-off parameter 𝛼. The modes are then normalized with 

respect to the active inelastic volume fraction. The decomposition algorithm is presented in 

Table 5. 

Table 5.  Algorithm for Karhunen-Loeve Decomposition Procedure 

1. Normalize 𝑁  snapshots of  damage-induced inelastic strains in phase 𝑟 

𝜺 =  
𝜺

𝜺
 (𝑖 = 1, … 𝑁 ) 

2. Compute correlation matrix 𝐾 

𝐾 =  𝜺 : 𝜺   (𝑖 = 1, … 𝑁 , 𝑗 = 𝑖, … 𝑁 ) 

3. Compute eigenvalues 𝜆  and eigenvectors 𝜐 . Let 𝜆  ≥ 𝜆  for 𝑗 > 𝑖  

4. Find M dominant eigenvalues based on the cut-off  criteria 

∑ 𝜆

∑ 𝜆
 ≥ 𝛼 

5. Construct 𝝁  modes using a linear combination of  inelastic strains and 
eigenvectors 

∑ 𝜐 ⋅ 𝜺 = 𝝁 ,  (𝑘 = 1, … 𝑀)  

6. Renormalize modes with respect to the active plastic volume of  phase 𝑟 
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𝝁 =
𝑐 ( )𝝁

𝝁
 

While the KL decomposition method is a straightforward process, it requires the 

computation of a vast number of L2 norm products of damage-induced inelastic strain field 

snapshots. Moreover, due to the sigmoidal nature of the evolution equation in Eq. (4.18), the 

evolution of inelastic strains is initially nonlinear, followed by linear growth and damage 

saturation to some extent in the macroscopic loading. Due to the non-gaussian nature of the 

nonlinear response, the KL method results in dominating coefficients in the correlation matrix 

𝐾, leading to dominant eigenvalues 𝜆  mainly affected by the last frames of the snapshots. 

Consequently, Fritzen and Böhlke (2010) developed an alternative mode identification process 

known as the modified Gram-Schmidt (GS) method. The GS procedure is based on the L2 

product of inelastic strain fields with a residual threshold based on the snapshots’ co-linearity 

with respect to an existing basis. Unlike the KL method, the GS method cycles through the 

snapshots in reverse order. The current mode basis is enriched with a new inelastic strain field 

if the L2 product exceeds the maximum residual threshold 𝛾. The detailed procedure is 

presented in Table 6 for the reader’s convenience.  
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Table 6. Algorithm for Modified Gram-Schmidt Process 

1. Arrange 𝑁  snapshots in phase 𝑟 in the reverse order (Last frame to the first 
frame). 

Set 𝑖 = 0, M = 0 

2. Increment 𝑖 and compute 𝑟 =  𝜺 : 𝜺  

Cycle through 𝑘 = 1, … 𝑀 and compute 𝑝 = 𝝁 : 𝜺  

while 𝑟 = 𝑟 − (𝑝 ) > 𝛾 
if  𝑟 < 𝛾 go to step 2. 

3. if  𝑟 > 𝛾, compute new mode 

𝝁 =  
𝜺 − ∑ 𝑝 𝝁

√𝑟
 

M = M+1. Go to step 2 

4. Normalize modes with respect to the volume containing inelastic phase 𝑟 

𝝁 =
𝑐 ( )𝝁

𝝁
 

 

A total of 200 snapshots are generated for the two inelastic strain path computations 

defined by Eq. (4.44). Based on these snapshots, both the KL and GS mode identification 

process returns a set of inelastic modes for each case. For the KL method, the eigenvalue cut-

off parameter is set to 0.9999. For the GS method, the residual threshold is set to 𝛾 =  10  to 

generate enough modes for each loading case. The modes extracted for the first strain path 

computation using the two approaches are illustrated in Figure 23. The first and last equivalent 

modes extracted in the matrix phase by applying the KL method are shown in subfigures (a) 

and (c) of Figure 23. Subfigures (b) and (d) show the equivalent modes extracted using the G-

S method. It is worth mentioning that the first mode identified by both these methods is, to 

some extent, similar. Unlike the KL method, the GS method constructs additional modes 
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based on the subsequent inelastic strain field’s co-linearity concerning the first mode. 

Consequently, the last mode identified by the two methods is very distinguishable. Note that 

the GS approach returns more inelastic modes than the KL approach for the two strain path 

computations. A summary of  the number of  modes obtained for each strain path 

computation for the two approaches is shown in Table 7. Before concluding in favor of the 

two approaches, it is worth comparing both methods’ accuracy in predicting the local and 

global field quantities of the RUC.   

 

Figure 23. Illustration of Inelastic Modes for the Two Approaches For (Test Case 1). 

Table 7. Number of Modes for Two Strain Paths 

 𝚺∗
(𝟏) 𝚺∗

(𝟐) 

KL modes 7 5 

GS modes 9 8 
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4.5 ROM Verification 

The FFRP composite RUC shown in Figure 21 is generated using a 30 % fiber volume 

fraction and a 40 % polymer crosslinking degree. The crosslinking degree affects the polymer 

Young’s modulus based on the findings presented in Rai et al. (2017). The CNT-enhanced 

interphase thickness is ~1 um, corresponding to a 5 um fiber diameter. The RUC is discretized 

into 10x43x43 subcells with ten subcells in the fiber direction. The constituent elastic 

properties and necessary damage model parameters are given in Tables 8 and 9. The RUC is 

subject to the two strain path computations defined in Eq. (4.44). The first test case is for out-

of-plane uniaxial normal loading and the second case is for out-of-plane biaxial normal 

loading. It is worth mentioning that the current study primarily focuses on introducing the 

detailed procedure for the NTFA formulation with the HFGMC theory and the localization 

functions necessary to account for the damage-induced inelastic strain fields in the individual 

micro constituents. Hence, the choice of the two idealized inelastic strain paths is merely to 

verify and validate the assumptions made to derive the coupled damage conjugate force and 

the macroscopic damage variable analogous to its microscopic counterpart, as given in Eq 

(4.28) and (4.32). Verification of the ROM’s predictive capability for more realistic loading 

conditions and implementing a different mode identification procedure, if necessary, will 

remain an aspect of our future work. 

In the present work, the NTFA ROM predictions based on the inelastic modes identified 

using KL and GS methods are compared with full-field HFGMC simulations for the two test 

cases. The comparison is carried out for three types of model response: (i) effective response 

of the composite RUC; (ii) local stress field contour; and (iii) probability distribution of local 
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stress field norm in all phases. Additionally, the computational cost of the ROM and HFGMC 

simulations is discussed. 

Table 8. Elastic Material Properties for Micro Constituents 

Material E1 
(GPa) 

E2 
(GPa) 

E3 
(GPa) 

G12 
(GPa) 

G13 
(GPa) 

G23 
(GPa) 

Fiber 294 18.5 18.5 7.1 7.1 25 
Epoxy 2.2 2.2 2.2 0.76 0.76 0.76 

Interphase  17.32 15.39 27.61 2.35 4.58 3.16 
 

Table 9. CDM Model Parameters for Matrix Phase 

𝜽 𝒀𝟎 (MPa) 𝝈𝟎 (MPa) 𝑮 (s) 𝒏 
0.40 0.12 60 15 2.5 

4.5.1 Effective response 

The effective RUC response of the two NTFA ROM test cases are obtained using Eq. 

(4.37) and are illustrated in Figures 24 and 25. The L2 norm of the effective RUC stress field 

‖𝝈‖  predicted based on KL and GS modes are compared with HFGMC simulations, as 

shown in Figures 24 (a) and 5(a). The evolution of the macroscopic damage variable in the 

matrix phase 𝑟 is also compared for the two cases, as shown in Figures 24(b) and 5(b). The 

damage state variable for the NTFA ROM 𝜔( ) is computed using Eq. (4.32). The damage 

variable for HFGMC simulations is computed by volume averaging over the subcell damage 

operator as 𝜔( ) = 𝜔( ) .  

For both the test cases, the predicted RUC stress field norm ‖𝝈‖  and macroscopic damage 

𝜔 are in good agreement with HFGMC simulations. In the case of  ‖𝝈‖ , the NTFA ROM 

based on GS modes shows overall better prediction accuracy than using KL modes. The same 
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conclusion applies to the predicted macroscopic damage evolution. The homogenized damage 

𝜔 predicted using GS modes shows an overall minimal discrepancy between the ROM and 

HFGMC macroscopic damage state. Nevertheless, both KL and GS modes can capture the 

initial acceleration, a steady-state growth, followed by saturation due to the sigmoidal nature 

of  damage evolution defined by Eq. (4.18). Moreover, these close agreements are also a 

numerical verification for the assumptions used to derive Eqs. (4.28), (4.32), and (4.36), where 

the heterogeneity due to local subcell damage variables 𝜔( ) is treated as homogenous in the 

entire phase, i.e., 𝜔( ) = 〈𝜔( )〉 . Further studies are carried out to investigate the local stress 

field in individual constituent phases. 

 

Figure 24. Comparison Between HFGMC and ROM for Test Case 1: (a) Effective RUC 

Stress Norm; (b) RUC Damage Evolution 
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Figure 25. Comparison Between HFGMC and ROM for Test Case 2: (a) Effective RUC 

Stress Norm; (b) RUC Damage Evolution 

4.5.2 Local stress fields 

In each constituent phase, the local stress field predicted using the NTFA ROM is 

compared with HFGMC simulations at peak RUC stress and the end of the load step. The 

ROM subcell stress fields are reconstructed using Eq. (4.22). The L2 norm of the subcell stress 

field 𝝈( )  is used, and the comparison is made for predictions based on KL and GS modes. 

Figure 26 shows the comparison of the local stress field obtained for test case 1. Both KL and 

GS show good agreement with the HFGMC simulation at peak stress (t = 1250). However, 

the predictions based on KL modes do not capture the local stress field contour at the end of 

the load step (t = 3000). The local stress field mismatch is more significant in the matrix region, 

attributed to the KL method’s inability to capture non-gaussian (sigmoidal) damage evolution 

(Eq 4.18). In contrast, the stress contour predicted using GS modes shows good agreement 

with the HFGMC simulation with only a slight discrepancy in some matrix regions around the 

fiber. Nevertheless, the GS modes are sufficient to capture the general heterogeneity in the 
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local stress field due to the mismatch in material properties between the fiber, matrix, and 

explicit interphase region. 

A similar conclusion applies to the predicted RUC stress field contour for test case 2 (see 

Figure 27). The ROM using GS modes shows better prediction accuracy at peak RUC stress 

(t = 900) and the end of  the load step (t = 2000).  The discrepancy in the stress field contour 

predicted based on GS modes at t = 2000 remains small compared to the local stress field 

predicted using KL modes. The probability distribution of  the local stress field in each phase 

obtained for the two test cases is investigated in the following subsection. 

 

Figure 26.  Comparison of Norm of RUC Stress Field Contour for Test Case 1. 
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Figure 27. Comparison of Norm of RUC Stress Field Contour for Test Case 2. 

4.5.3 Local stress distribution of the phases 

The ROM predictions for the local stress distribution in each phase are compared with 

full-field reference simulations. The L2 norm of the local subcell stress field 𝝈( )  is used, 

and its probability distribution in each phase is compared with HFGMC simulations. For this 

purpose, a quantile-quantile (q-q) plot is used to determine whether the local stress fields 

obtained from the ROM and HFGMC computations come from the same distribution family. 

A 450 reference line is plotted using the quantiles of both the data sets. If the two data sets 

come from the same distribution, the data points should fall close to this reference line. The 

comparison is made for both KL and GS modes.  

Figure 28 shows the q-q distribution plot of each constituent phase predicted using KL 

modes for test case 1. The comparison is made at peak RUC stress. Figure 28 (b) shows that 

the local stress distribution in the fiber and interphase is in good agreement with HFGMC 
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simulation. However, the inelastic matrix phase’s distribution shows some deviations from the 

reference data set (see Figure 28 (a)). On the other hand, the probability distribution of local 

stress fields predicted based on GS modes is in excellent agreement with HFGMC simulations, 

particularly in the matrix phase, as shown in Figure 29. 

 

Figure 28. Distribution of Norm of Local Stress Field Using KL Modes (Test Case 1) 

 

Figure 29. Distribution of Norm of Local Stress Field Using GS Modes (Test Case 1) 

For test case 2, the comparison is made at peak RUC stress and the load step’s end. Figure 

30 shows the q-q distribution plot of each constituent phase predicted using KL modes. The 

local stress distribution in all three phases is in good agreement with HFGMC simulations at 

peak RUC stress (t = 900 in Fig. 25 (a)). However, the probability distribution of the phases 
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based on KL modes at the end of the load step (t = 2000) does not agree well with the 

reference data set from HFGMC simulations. Figure 31 shows the q-q distribution plot 

predicted using GS modes. In contrast to KL modes, the distribution of stress fields predicted 

using GS modes is in good agreement with HFGMC simulations at peak RUC stress and the 

end of the load step. These comparisons further show that the GS modes can adequately 

capture the heterogeneity in the local stress field. 

 

 

Figure 30. Distribution of Norm of Local Stress Field Using KL Modes (Test Case 2) 
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Figure 31. Distribution of Norm of Local Stress Field Using GS Modes (Test Case 2) 

4.5.4 Gain in Computational Time 

All computations were performed on an Intel Xeon Processor ES-2680 machine 

consisting of 28 cores with 4 GB memory per core. The computational cost of the ROM and 

HFGMC simulations are compared for test case 1. The CPU time taken to solve the composite 

RUC with ~18,000 subcells using HFGMC simulations was around 13,680 secs. The HFGMC 

implementation results in 162,000 global systems of equations with 162,000 unknowns for the 

entire RUC. As a result, the full-field computations required over 4 GB of memory to store 

the global stiffness matrix defined in Eq. (4.9), together with the history and damage state 

variables for each subcell in the RUC.  
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In contrast, the NTFA approach shows significant improvement in both the 

computational time and memory requirements. The NTFA approach using KL modes has 

only seven internal variables (one per mode) for the entire RUC and took about 53 secs to 

predict the overall effective behavior defined by Eq. (4.35). The local field quantities are only 

reconstructed at any specific point in the load step when necessary. Likewise, the NTFA 

approach using GS modes (nine internal variables) took about 92 secs to predict effective RUC 

behavior. The two NTFA cases differ in cost by a factor of 1.73 approximately. However, the 

gain in CPU times obtained by using the NTFA approach over the HFGMC simulations is by 

a factor of over 100.  

Moreover, the NTFA implementation required well below 500 MB of memory to simulate 

the same composite RUC and store all the necessary internal variables, system matrices, and 

local subcell field data. This reduction by over eight orders of magnitude in the memory 

requirement enables the NTFA implementation to efficiently simulate RUCs with a much finer 

discretization at every macroscopic integration point. 

4.6 Summary 

A reduced-order model (ROM) for composite materials based on a novel adaption of the 

nonuniform transformation field analysis (NTFA) with the high-fidelity generalized method 

of cells (HFGMC) theory was developed. The original NTFA theory was extended to account 

for material nonlinearity due to damage at the micro constituent level. A distinctive feature is 

that the continuum damage state variable was formulated as damage-induced inelastic strains, 

which allowed applying the superposition principle in the NTFA theory and solving the phase 

transformation strain or eigenstress fields. The nonuniformity in this inelastic strain field was 

approximated using tensorial modes that serve as deformation shape functions. A 
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macroscopic damage state variable was formulated to have the same evolution function as its 

microscopic counterpart using a finite number of inelastic modes. 

The ROM’s ability to handle highly heterogeneous local fields between constituent 

interphases, in addition to damage softening, was demonstrated for normal loading conditions. 

This was encountered in three-phase nanocomposites defined by nanoengineered orthotropic 

fiber-matrix interphase and matrix phase subject to damage, which was chosen to illustrate the 

developed theory. Two different mode identification approaches were investigated: (i) 

Karhunen-Loeve (KL) decomposition and (ii) Gram-Schmidt (GS). Both approaches captured 

the effective RUC stress response and damage evolution with enough accuracy. The model 

with GS modes showed overall better accuracy for the predicted local stress field distribution. 

The NTFA approach showed a significant improvement in computational time and memory 

requirements than the HFGMC approach, making the model attractive for large-scale 

concurrent multiscale simulations. The current NTFA formulation forms the basis for further 

developing the theory to account for nonlinearity due to rate-dependent plasticity and damage 

effects with improved predictive accuracy.  

While the two idealized inelastic strain paths in Section 4.4 verify the assumptions made 

in deriving the reduced-order CDM formulation analogous to its microscopic counterpart, the 

applicability of the ROM in multiscale simulations requires verification under more realistic 

loading conditions. It is important to note that under complex loading such as combined 

transverse tensile/compressive and transverse shear, the CDM computation results in highly 

heterogeneous damage localization bands that deflect and evolve within the composite 

microstructure.  

Since the present CDM model and HFGMC theory do not account for mesh objectivity, 

an alternative formulation is needed to capture more realistic cases where mixed-mode damage 
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or crack localization bands appear and evolve across periodic boundaries. For example, 

integral-based non-local theories can simulate a progressive transition from diffuse damage to 

strain localization and regularizing continuum damage evolution. Therefore, similar theories 

can be incorporated within the HFGMC framework to regularize the present CDM model 

and capture damage-dependent non-local interactions. This could help achieve mesh 

objectivity and capture fully bridged damage localization bands under more realistic loading 

conditions. In the context of the proposed approach, the NTFA deformation modes can now 

be based on damage-induced inelastic strain fields obtained using regularized non-local CDM 

computations. Besides, the ROM utilizes strain concentration tensors for each sub-element, 

which are precomputed using the second-order displacement fields of the HFGMC theory 

and introduce normal-shear coupling. Therefore, with sufficient inelastic modes, the 

developed NTFA ROM is expected to effectively capture the formation and evolution of 

highly heterogeneous localization bands. The investigation of the method’s predictive 

capability under complex loading conditions and its implementation into a commercial finite 

element code for multiscale analysis is a prospect for future research. 
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CHAPTER 5 

HIGH FIDELITY MODELING OF SANDWICH SPACE STRUCTURES 

5.1 Introduction  

A secondary objective of the research presented in this proposal is developing a high-

fidelity modeling framework that allows for a consistent way of performing mechanical and 

thermal strength analysis to correlate the failure response of composite sandwich structures 

with experimental observations. Earlier efforts to model sandwich structures involved using 

well-established analytical approaches such as equivalent single layer and higher-order 

sandwich panel theories (Mindlin 1951; Reddy 1984; Najafizadeh and Heydari 2004; Dafedar 

and Desai 2002; Kapuria and Achary 2004). In general, an equivalent single layer is defined 

with the same bending stiffness as the skins only while neglecting core through-thickness 

flexibility and any interactions between the skin and core. The higher-order theories account 

for the through-thickness flexibility of the core and can be used to investigate hygrothermal 

effects, buckling, and nonlinear behavior in sandwich panels (Frostig 1997; Frostig and 

Thomsen 2005). Likewise, the core sheet material with a complex cellular geometry is often 

modeled as a single orthotropic layer with homogenized stiffness properties estimated using 

various analytical theories (Klintworth and Stronge 1988; Yang and Becker 2004). While these 

methods are useful in preliminary design and quick estimates, they are not suitable for 

predicting the strength, localized damage hot spots, and failure mechanisms accurately. 

FE modeling is a popular tool in analyzing complex structures and has been widely used 

to capture nonlinear responses in composite sandwich structures. Layered shell elements, 

whose elastic properties are derived using classical laminate theory, are widely used in FE 
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analysis to simulate core as one of the laminate layers (Li et al. 2016; Liu et al. 2016). However, 

this approach does not fully capture the bending and shear behavior of the panel and fails to 

account for failure modes, such as delamination. On the other hand, composite laminates 

modeled using several layers of solid brick elements capture the through-thickness stresses 

and the stresses at the layer’s interface, which becomes significant with an increase in the 

number of plies. Using linear elastic properties combined with failure criteria can predict 

strength; however, it fails to predict damage initiation and evolution in composite sandwich 

materials. As a result, progressive damage models are implemented to capture the initiation 

and evolution of damage in thin composite skins before the structural collapse.  

The properties of the core sheet material are accurately estimated by explicitly modeling 

the complex core cellular geometries (Russel et al. 2011; Giglio et al. 2012; Chamis et al. 1986). 

The use of explicitly modeled honeycomb core sheet geometry using 3D shell elements 

accurately captures the orthotropic stiffness behavior and local failure mechanisms such as 

core shear and cell wall buckling (Lyford and Andrew 2017). It is worth mentioning that 

structural loads on adhesively bonded fittings and joints cause localized core buckling near the 

fitting region and often lead to premature joint failure (Smith and Banerjee 2012). Hence, it 

may be more appropriate for representing the detailed cellular geometry in such composite 

sandwich panels to capture the localized nonlinear effects, despite the increase in model size 

and added computational cost.  

This chapter presents an investigation into the thermal degradation and failure response 

of complex composite sandwich structures with adhesively bonded metallic fittings subject to 

cyclic thermal loading. First, detailed analyses are conducted to investigate the failure and 

predict the intrinsic nonlinear material properties of sandwich panels with a specific aerospace-

grade Aluminum 5056 honeycomb core and an MJ-type high modulus fiber/cyanate ester-
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based resin composite skin. The cellular honeycomb core geometry and the composite skin, 

fittings, and adhesives are modeled using shell and solid finite elements. A cup joint is chosen 

to investigate the honeycomb core buckling failure under cup pull-out loading normal to the 

panel. The nonlinear effects of the core shearing and the local plastic deformation in the 

Aluminum 5056 alloy are analytically predicted to match the test coupon’s load versus 

displacement curve. An H-Clip fitting bonded to the sandwich panel’s edge is then used to 

investigate the progressive damage response of the M55J/CE-3 resin composite skins. 

Sandwich panels with H-Clip fitting loaded under shear, normal, and pull-off directions exhibit 

failure modes involving face sheet compression, core failure, and face wrinkling. A CDM-

based failure model is developed and implemented as a user-defined material subroutine to 

capture the stiffness degradation and associated failure modes in the composite face sheet. 

The damage model parameters are calibrated to match the predicted load-displacement curve 

with experiments under different loading conditions.  

 

Figure 32. Schematic of High Fidelity Analysis of Sandwich Structures 

Last, the nonlinear material properties and modeling strategies are incorporated in the 

subsequent FE analysis of a spacecraft’s thrust tube sandwich structure with bonded metallic 
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fittings subjected to cyclic thermal loading. Figure 32 illustrates the modeling framework and 

the information flow. Detailed stress and failure analysis are performed considering the 

complex stress states developed in the core, face sheet, and adhesives. The predicted damage 

hot spots of the sandwich panel coupon with a cup bonded fitting are correlated with the 

expected response and experimental observations. The developed methodology for analyzing 

sandwich structures can be extended to investigate spacecraft thrust tube sections with other 

configurations of bonded joints and fittings. 

5.2 Methodology 

A typical sandwich structure comprises thick sandwich panels, thin adhesive layers, and 

metallic fittings. High-fidelity FE models are built using Abaqus commercial software 

(ABAQUS 2013) with explicitly modeled adhesive elements, honeycomb core geometry, and 

composite face sheet. The material parameters required to capture damage and failure in 

specific grade honeycomb core and composite face sheets are not well reported by the 

manufacturer or in the published literature, owing to the experimental difficulties associated 

with testing small-diameter fibers and multiple configurations of core sheet geometry. 

Therefore, the initial goal is to investigate failure mechanisms and predict the necessary 

constitutive parameters for the specific Aluminum 5056 honeycomb core and  M55J/cyanate 

ester-based resin composite material. The estimated parameters and the methodology are then 

incorporated to analyze a spacecraft’s thrust tube composite structure with metallic fittings 

subjected to thermal cycling. 



  101 

5.2.1 Cup Fitting Coupon with Normal-to-panel Loading 

5.2.1.1 Model Setup 

The developed FE model consists of the cup fitting bonded to the sandwich panel made 

of Aluminum 2024 alloy face sheets, as illustrated in Figure 33. The cup fitting is designed to 

hold the load in the center of the panel and is often used to support components or adjacent 

panels. The coupon has two adhesive bond lines: the lower and the upper bond lines between 

face sheet and cup fitting. The adhesives have a general thickness of 0.01 inches and are 

modeled as EA9309.NA material with elastic and plastic properties was obtained from 

(Stapleton et al. 2010). The cup fitting is modeled as a 7075-T6 aluminum alloy with 

elastoplastic constitutive properties (Dey et al. 2016). The face sheet/adhesive/cup fitting 

interface is modeled as perfectly bonded with common nodes shared by their corresponding 

elements (Chen and Yan 2012). The inner surface of the face sheet is connected to the edge 

nodes of the honeycomb core-shell geometry using node-surface-based TIE constraints. The 

fitting and adhesives are modeled using solid brick elements with reduced integration points 

to ensure adequate load transfer to the panel with a decreased computational cost. The panel 

face sheets are modeled using reduced-integration shell elements since the face sheet is not 

expected to contribute to the failure of the cup fitting. However, the honeycomb core is 

expected to contribute to failure; hence, shell elements with four integration points are used. 

The fully-integrated shell elements cannot hourglass and are used to accurately model the 

regions undergoing large deformation due to core buckling. The final model resulted in 

approximately 114462 and 18756 shell elements generated for the honeycomb core and face 

sheet, respectively, and 7473 solid elements for the adhesives and cup fitting. 
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Figure 33. FE Model of Sandwich Panel with Aluminum Skin and Cup Fitting 

While the face sheet/adhesive/fastener interface transfers load from the cup to the panel, 

the honeycomb core is responsible for transferring load between the face sheet by carrying the 

load in shear. The cell walls of the honeycomb geometry plastically deform when the core 

exceeds its shear strength capabilities. In the developed model, the honeycomb core utilizes 

an Aluminum 5056-H39 alloy foil material and has a 3.1 pcf (per cubic feet) nominal density. 

The specific temper of aluminum 5056 is almost exclusively used as a component of the 

manufactured honeycomb sheet. There is very little information providing specific strength 

properties for the material itself. Hence, yield strength of 50 ksi and ultimate strength of 60 

ksi was initially assumed, and the stress-strain curve was fit around these values based on the 

known modulus and a typical stress-strain pattern, as shown in Figure 34 (a). The cell wall 

thickness is altered to simulate the manufacturing tolerances and account for imperfections in 

the honeycomb material. The thickness is reduced by ~10 % in all the honeycomb core cells. 

A flatwise pull-out load test is simulated by imposing a Z-axis displacement, which attempts 

to pull the cup out of the panel. The load is applied through a reference point tied to a set of 
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nodes in the fitting that simulates the fastener region. The coupon’s load-displacement 

response is readily obtained from the reference point and compared with experimental data. 

The experimental results for the cup fitting coupon were obtained from a previous investigation 

by Lyford and Andrew (2017). The coupon test was conducted using an Instron universal testing 

machine. A fastener was mounted inside the cup fitting that was closer to the edge of the panel. 

The coupon test was conducted by pulling the fastener in the flat-wise normal direction, as 

shown in Figure 35. The coupon was secured to a pair of aluminum reaction plates that 

sandwiched the coupon and reacted to the applied load. The deflection at the head of the 

tensometer was measured as well as the applied load. Six coupons were tested to ensure the 

results were reliable and the failure modes were consistent. 

5.2.1.2 Analysis and Discussion 

In the previous study, a modified Riks’ method in the Abaqus/Standard was chosen as the 

solver to capture the post-buckling response of the honeycomb core. Rik’s method required 

artificially smeared shape eigenvectors onto the honeycomb core mesh to trigger the cell wall 

buckling. While the approach showed good accuracy, the method may not work well with 

larger models with significant discontinuities in the solution. Moreover, introducing local 

imperfections to trigger buckling artificially becomes highly dependent on numerical 

parameters rather than a consequent physical process. In this investigation, the 

Abaqus/Explicit solver is chosen to simulate the global nonlinear response due to local cell 

wall buckling. The explicit dynamics method with low loading rates ensures minimal inertial 

effects and can physically simulate global nonlinear behavior due to local plastic or damage 

response. Moreover, the need to simulate progressive material degradation and failure with 
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element deletion makes the dynamic solver suitable for efficient nonlinear analysis. In the 

present analyses, an enhanced viscous-based hourglass control is used to suppress spurious 

energy modes and mass scaling to achieve the critical stable time increment. 

 

Figure 34. (a) Stress-Strain Curve for Al 5056 Alloy; (b) Effect of Plastic Deformation 

Sensitivity studies are conducted to understand the significance of plasticity in the 

aluminum core, face sheet, and adhesive. Figure 34 (b) compares the load-displacement 

response for different cases of plasticity in the various components. The global nonlinear and 

failure response is primarily dominated by the localized plastic deformation in the aluminum 

5056 material, which leads to core cell wall buckling. The plasticity in the aluminum face sheet 

is only notable in the later stages of the load-displacement response. However, the load-

displacement response collapse occurs much earlier when the plasticity in the adhesive is 

considered. 

Additionally, core buckling is observed to be localized around the cup fitting region. The 

local structure stresses and deformation shape from the model are compared to that of the 

 

(a) (b) 
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experiments (Lyford and Andrew 2017). As seen in Figure 35, the buckling pattern is physical 

and correlates well with the experimentally observed pattern.  

 

 

Figure 35. Comparison Of Predicted Buckling with Experiments (Lyford And Andrew 2017) 

A preliminary comparison of the model response with the test results shows that the 

predicted coupon stiffness agrees well with the stiffness of the tested coupon. However, the 

point of departure from the linear part of the load-displacement response and the ultimate 

failure load did not match the test results. The Al 5056 alloy stress-strain curve is numerically 

estimated to minimize the predicted post-linear coupon response discrepancy. The yield 

strength of 50 ksi was too high to correlate with the core failure due to shear buckling. Hence, 

the yield strength is reduced to 40 ksi, and a smooth transition from the yield point to the 

ultimate strength is established to sufficiently match the point of departure from the linear 

part of the load-displacement curve and the ultimate load (see Figure 36 (a)). The model 

predictions using the estimated honeycomb core material properties compare well with the 

various test coupon results shown in Figure 36 (b). The calibrated stress-strain curve for the 
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Al 5056 core material will be used for subsequent analysis of honeycomb sandwich panel 

coupons discussed in the next section.  

 

Figure 36. (a) Estimated Stress-Strain Curve (Red) for Al 5056; (b) Comparison of Predicted 

Load-Displacement Response with Test Data (Lyford And Andrew 2017) 

5.2.2 H-Clip Fitting Coupon with Composite Skin 

5.2.2.1 Model Development 

The H-Clip fitting is designed to facilitate the edge-edge connection between adjacent 

structures or components. The FE model of the H-Clip coupon is developed as per the tested 

configuration, as shown in Figure 37. The bottom and the top face sheet are created with 3-

ply composite skin using solid elements partitioned to represent each ply. The skin is made of 

M55J high modulus unidirectional fibers reinforced in CE-3 resin and consists of [+60/0/-

60] stacking sequence with +60o as the outermost ply. The honeycomb core sheet used in this 

model has a 3.1 pcf nominal density. Note that the core material utilizes the calibrated plasticity 

curve for Aluminum 5056 alloy from the analysis presented in the previous subsection. 

Estimated 

 

(a) (b) 
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A beam element with a circular profile is introduced to simulate loads from the bolt to the 

coupon. The ends of the beam element are connected to the circumferential edge of the H-

clip hole. A reference point is introduced and connected to the beam element using equation 

constraints to emulate displacement from the load head to the bolt-fastener assembly. The 0o 

fiber direction is along the y-axis and runs perpendicular to the core ribbon direction along 

the x-axis. The two ends of the coupon are constrained to emulate fixed boundary conditions. 

Additionally, all the elements in the face sheet, fitting and adhesive have at least three elements 

through-thickness. This ensures higher fidelity and captures all local deformation behavior. 

The final model with the converged mesh comprises 238280 shell elements for the honeycomb 

core, eight elements for the beam element, and 265082 reduced integration solid elements for 

the face sheet, adhesives, and fitting geometry.  

  

Figure 37. FE Model of Composite Sandwich Panel with Adhesively Bonded H-Clip Fitting 

Hashin’s failure criteria are used to evaluate the different failure modes in the composite 

face sheet. The criteria distinguish tensile and compressive modes of the fiber and the matrix 

and interact with more than one stress component to evaluate the different failure 

mechanisms. Since the inbuilt Hashin damage model in Abaqus is limited to plane stress 
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formulations, it could not be used directly in this work. In this study, the composite face sheets 

are modeled using solid brick elements to capture through-thickness stresses and the stresses 

between individual ply accurately. Therefore, a CDM-based damage model with a modified 

3D Hashin type failure criteria is implemented using a user-defined material subroutine. Note 

that the damage model used in this study also accounts for interaction between fiber and 

matrix damage modes and shear using damage interaction coefficients while capturing 

through-thickness deformation. 

The CDM model is evaluated at every integration point of the face sheet element, and the 

damage is homogenized and treated as degradation of the element’s stiffness matrix. Four 

failure mode indices, 𝑑 , 𝑑 , 𝑑 , 𝑑  are used to evaluate the 3D Hashin-type failure criteria 

(see Table 10). The first criterion corresponds to fiber failure. The second failure corresponds 

to matrix-dominated failure. The third failure corresponds to transverse matrix failure (flatwise 

normal). The last mode corresponds to shear-dominated failures (interlaminar shear). 

Table 10. Failure Modes and Failure Criteria of Composite Plies 

Failure Mode Failure criteria (Hashin criteria) 
Matrix Failure 𝜎 > 0 

𝑑 =
𝜎

𝑌 + 𝜏
𝑆 + 𝜏

𝑆 ≥ 1 

𝜎 < 0 
𝑑 =

𝜎
𝑌 + 𝜏

𝑆 + 𝜏
𝑆 ≥ 1 

Shear Failure 𝜎  
𝑑 =

𝜎
𝑋 + 𝜏

𝑆 + 𝜏
𝑆 ≥ 1 

Delamination  
(flatwise normal) 

𝜎  
𝑑 =

𝜎
𝑍 + 𝜏

𝑆 + 𝜏
𝑆 ≥ 1 

Fiber Failure 𝜎 > 0 
𝑑 =

𝜎
𝑋 + 𝜏

𝑆 + 𝜏
𝑆 ≥ 1 

𝜎 < 0 
𝑑 =

𝜎
𝑋 ≥ 1 
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Once the failure criteria are satisfied, the damage initiates, and the subsequent damage 

evolution is assumed to follow a linear degradation law. Element deletion is performed when 

the damage variable reaches the critical value of 0.9.  It is important to note that the 

implementation of constitutive models with strain-softening behavior results in mesh-

dependency. The energy dissipated due to damage in the element decreases with a decrease in 

the element size. Therefore, the finite element characteristic length scales are used, related to 

the element size in the face sheet, and the softening due to damage is expressed as a traction-

separation relation (Pineda and Waas 2013; Lapczyk and Hurtado 2007). The use of 

characteristic length scales and traction-separation relation ensures that the energy released 

during the damage process is per unit area, not per unit volume. This approach mitigates the 

dependence of the predicted softening response on the mesh density (Pineda and Waas 2013; 

Lapczyk and Hurtado 2007; Jirasek 1995).  Matzenmiller et al. (1995) show that the evolution 

of damage in the constitutive material is related to fracture toughness and characteristic length. 

A modified form of their evolution equation is used to determine the temporal evolution of 

the continuum damage variable for the four different failure modes: 

𝑑 = 1 − 1 +
  

   
       (5.1) 

𝑑 = 1 − 1 +
  

   ( )        (5.2) 

𝑑 = 1 − 1 +
  

   ( )        (5.3) 
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𝑑 = 1 − 1 +
( )/

  
   ( )        (5.4) 

where 𝑋, 𝑌, 𝑍, 𝑆 and 𝜖 , 𝜖 , 𝜖 , 𝜖   are the tensile or compressive strengths and their 

corresponding critical strains in the fiber, matrix, flatwise normal and shear direction, 

respectively. The finite element characteristic length is denoted by 𝑙 . 𝐺 , 𝐺  and 𝐺  are 

fracture toughness in the fiber, matrix, and flatwise normal direction and are different for 

tension and compression failure. 𝐺  is the Mode II critical energy release rate for the in-plane 

shear failure. Since the fiber and matrix damage modes can also affect the shear stiffness 

reduction, the in-plane and out-of-plane shear damage variables di (i=4,5,6) are expressed as 

the following phenomenological equations 

𝑑 = 1 − (1 − 𝜂𝑑 )(1 − 𝛽𝑑 )(1 − 𝑑 )       (5.5) 

𝑑 = 1 − (1 − 𝛽𝑑 )(1 − 𝛽𝑑 )         (5.6) 

𝑑 = 1 − (1 − 𝜂𝑑 )(1 − 𝛽𝑑 )         (5.7) 

where 𝜂 and  are regarded as interaction factors to account for the effect of the fiber and 

matrix damage on the degradation of the damaged shear stiffnesses.  

The elastic and strength properties are obtained from previous investigations and 

manufacturer data sheets (Stoumbos et al. 2014). However, the availability of the desired 

fracture toughness properties for M55J/CE-3 is extremely limited in the published literature. 

The matrix fracture toughness of IM7/977-3 (Iarve et al. 2015) is used to predict flatwise 

interply delamination (GZ). Additionally, the fiber fracture toughness properties of IM7/8552, 

another carbon fiber reinforced system, are used as initial values in the present study (Pinho 
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et al. 2006; Miami et al. 2007). The mode I matrix fracture toughness, the mode II critical 

energy release rates, and the shear damage mode interaction factors are additional parameters 

estimated to better correlate the predicted H-Clip coupon’s nonlinear response with 

experimental data. Preliminary analysis and sensitivity studies of the H-Clip fitting coupon 

revealed the primary and secondary failure mechanisms under both pull-off and shear loading 

conditions. The final drop in the load-displacement curve occurs due to compressive matrix 

cracking for the pull-off load tests. The compressive matrix fracture toughness (GYC) was 

estimated to match the predicted ultimate failure load with the experimental data. In the case 

of shear loading, the final coupon failure is dominated by tensile matrix cracking. The tensile 

matrix fracture toughness (GXC) was calibrated to match the predicted ultimate failure load 

with experiments. The in-plane shear damage was responsible for the initial deviation of the 

predicted load-displacement response from the linear elastic regime. Therefore, the mode II 

critical energy release rate (GII)  and the two damage interaction parameters are further 

adjusted to improve prediction accuracy. Note that the shear mode interaction factors of the 

fiber (𝜂) and matrix damage (𝛽) are assumed to be the same in this study. The summary of 

material constants used in the developed constitutive model for the M55J/CE-3 face sheet is 

shown in Table 11. 
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Table 11. Material Properties Used for M55J/CE-3 Unidirectional Composite Lamina 

 

† IM7/977-3 properties (Iarve et al. 2015) 
*  IM7/8552 properties (Pinho et al. 2006; Miami et al. 2007) 
‡ Estimated 

The experimental results for the H-Clip fitting coupon were obtained from a previous 

investigation (Stoumbos et al. 2014). The coupon tests were performed using an Instron universal 

test machine at the Northrop Grumman facility. The panel was supported by a fixture providing 

attachment and loading to the H-Clip along the nominal centerline of the test coupon. The 

coupon was secured to a pair of aluminum reaction plates that sandwiched the coupon and 

reacted to the applied load. The test consisted of pulling the H-Clip in shear (+x axis) and pull-

off (+y axis) directions until past their ultimate load capacity. For each test case, the coupon was 

secured to T-slot plates providing lateral adjustment to align the H-Clip fixture over the load 

head. Each coupon was manually aligned to minimize binding at the rod end and clevis interface 

that would have caused premature failure of the coupon. The machine head displacement rate 

was 0.025 inches/min, and the tests were performed at room temperature. The deflection at the 

head of the tensometer was measured, and the applied load, with several coupons for each load 

case, was tested to ensure test reliability and failure mode consistency. It is also worth mentioning 

that only the coupon test results that set the upper and lower limit of the obtained stiffness and 

ultimate failure load are used for model validation, as shown in Figures 38 and 41. 

Elastic Properties 
E11 40 Msi 
E22 0.804 Msi 
E33 0.804 Msi 
G12 0.610 Msi 
G23 0.160 Msi 
G13 0.610 Msi 
v12 0.271  
v23 0.271  
v13 0.271  

Fracture Properties 
GXT

* 607 lbf/in 
GXC

* 868 lbf/in 
GYT

‡ 1.5 lbf/in 
GYC

‡ 48 lbf/in 
GZ

† 1.5 lbf/in 
GII

‡ 2.2 lbf/in 
𝜂‡ 0.3  
‡ 0.3  

Strength Properties 
XT 280 ksi 
XC -112 ksi 
YT 3.4 ksi 
YC -23.9 ksi 
ZT 2.2 ksi 
ZC -2.2 ksi 
ST 4.2 ksi 
SC -4.2 ksi 
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5.2.2.2 Analysis and Discussion 

First, the base model is simulated to assess the stiffness of the coupon in the linear elastic 

regime and match with experimental results. The model initially overestimated the coupon 

stiffness under shear (x-axis) and pull-off (y-axis) loading conditions. It is important to note 

that the displacement from the actual test data was measured at the head of the tensometer 

and not at the coupon itself. This could mean that the deflection of the load-fixture, which 

was relatively long in the shear and pull-off load tests, was not accounted for in the base model. 

Hence, a compliance loss factor is introduced in the form of equation constraints to adjust the 

transfer of displacement from the load head to the bolt-fastener assembly. Consequently, a 30 

% loss in compliance is identified to better match the predicted model stiffness with that of 

the experiments in both shear and pull-off directions. On the other hand, the predicted 

coupon stiffness along the z-direction (normal) was in good agreement with the experiments 

with no compliance loss.    

 Figure 38 shows the comparison between the predicted and experimental load-

displacement curves under shear (x-axis) loading conditions. The model prediction using the 

assumed fracture toughness values compares well with the experimental results. The 

progression of failure events is also labeled along the simulated load-displacement curve. The 

leading failure events and their corresponding damage contours in the outermost ply are 

shown in Figure 39. The contours shown under the corresponding failure modes have 

different upper and lower bounds for the damage variable. Hence, the subplots merely present 

the predicted hot-spots and propagation paths and not be wholly relied on to compare damage 

intensities under different failure modes. The initial deviation from the linear response (at 

point A) occurs due to compressive fiber failure in the outermost ply. Also, the fiber failure 
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interacts with the in-plane shear mode, and damage localizes near the fitting edges.  The 

degradation of the fiber and in-plane shear modulus of the outer ply (+60  o) increases the 

middle ply's compressive stresses (0o). Beyond point C, compressive matrix cracking initiates 

in the 0o ply near the fitting region and degrades that layer's transverse stiffness. The drop in 

the load-displacement response before point D indicates face sheet failure without being able 

to carry the additional load. Beyond point D, the load gets transferred to the core, and a core 

tensile/compressive failure in the shear direction would cause the load-displacement curve to 

either saturate or drop beyond point E. The predicted final failure pattern near the fitting edge 

also compares well with the failed test coupon, as shown in Figure 40.   

 

Figure 38. Comparison of Predicted Response and Test Results Under Shear Loading 
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Figure 39. Progressive Failure in Outermost Composite Ply (+60 O) Under Shear Loading  
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Figure 40. Comparison of Predicted Failure Pattern and Failed Test Coupon 

Likewise, along the pull-off (y-axis) direction, the analysis predicts face sheet rupture near 

the fitting region due to tensile matrix cracking in the +60o outermost ply. Figure 41 shows 

the comparison between the predicted and experimental load-displacement curves and labels 

the progression of failure events under pull-off loading conditions. The simulated load-

displacement response using the estimated fracture toughness values matches well with the 

experimental results. Figure 42 shows the corresponding damage contours in the outermost 

ply. The initial deviation from the linear elastic regime occurs due to a combination of tensile 

matrix cracking, delamination, and in-plane shear failure in the outermost ply with tensile 

matrix cracking as the dominant mechanism. As damage propagates, the drop in the curve 

beyond point C indicates complete face sheet rupture due to matrix tensile cracking and 

delamination. 
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Moreover, face sheet rupture causes highly localized shear stresses in the honeycomb core, 

revealing possible hotspots for core rupture, as shown in Figure 43. It is also worth mentioning 

that the predicted failure pattern agreed well with the experimental observations. The 

developed damage model with the estimated material constants and the honeycomb core 

elasto-plastic response will be incorporated in analyzing a spacecraft’s thrust tube sandwich 

structure discussed in the following subsection. 

 

Figure 41. Comparison of Predicted Response and Test Results For Pull-Off Loading 
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Figure 42. Progressive Failure in Outermost Composite Ply (+60 O) Under Pull-Off Loading  

 

Figure 43. Shear Stresses in Honeycomb Core Under Pull-Off (Y-Axis) Loading 
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5.2.3 Sandwich Panel under Thermal Cyclic Loading 

5.2.3.1 Model Setup 

Earlier in the design phase, the composite materials used in spacecraft sandwich structures 

must appropriately account for the predicted in-orbit temperatures specific to that space 

mission. Recently, a space launch vehicle with an all-composite thrust tube containing several 

configurations of bonded metallic fittings was built at the Northrop Grumman facility. During 

the design verification phase, multiple anomalies and instances of visual fiber damage and 

cracked bonds were identified in the thrust tube post several cycles of thermal loading. Figure 

44 shows a typical example of visual fiber damage at a cup-fitting location. Various test 

coupons of the sandwich structure with different configurations of bonded fittings were 

further developed and subjected to thermal cycling as part of the internal research and 

development. The present modeling effort aims to assess potential modes of failure and 

damage hot spots in such test coupons with a cup bonded fitting using the estimated nonlinear 

material properties and the established modeling strategies from the previous investigations. 

 

Figure 44. (a) Schematic of Spacecraft Thrust Tube with Bonded Fittings; (b) Thrust Tube 

Failure Near Fitting Post Thermal Cycling 

(a) (b) 
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The thrust tube fitting test coupon is modeled as a flat section of dimensions 10” x 10” x 

0.5”. The coupon model consists of Al 5056 honeycomb core with 6.1 pcf nominal density, 

22-ply composite skins made of M55J/CE-3, EA.9309.NA adhesives, Al 7075-T73 washers, 

and Ti-6Al-4V cup fitting. The face sheet consists of [-45/0/0/0/+45/0/0/0/-

45/0/0/0/+45/0/0/0/-45/0/0/0/0/+45] stacking sequence with -45o as the outermost ply. 

The 0o fiber direction is along the y-axis and runs perpendicular to the core ribbon direction 

along the x-axis. The detailed model of the test coupon is depicted in Figure 45 (a). The 

adhesive layer is modeled between the washer and face sheets on both the inner and outer 

sides of the thrust tube. Additional adhesive elements are modeled between the cup and the 

outer washer.  

The face sheet, fitting, adhesives, and washers are modeled as perfectly bonded with 

common nodes between them to achieve a stable transfer of thermal loads at the interfaces. 

These components are meshed using solid brick elements with reduced integration points. 

The critical regions around the bonded cup fitting and the free edge interface used a more 

refined mesh relative to the strain gradients near the insert hole on the face sheet and core. 

Some relatively poorly formed elements in the face sheet were caused by having to mesh a 

circular cup fitting through the panel insert with a washer bonded to the face sheet while 

maintaining a structured mesh. Such regions were carefully partitioned to ensure the uniform 

transition of mesh and improve element aspect ratios. The honeycomb core is meshed 

separately using reduced-integration shell elements and discretized sufficiently to prevent 

excessive negative element volumes or other excessive distortion from occurring under high 

compressive and shear loads. The refined FE model resulted in approximately 727831 shell 

elements generated for the honeycomb core and 558152 solid elements for the face sheet, 

adhesives, washer, and fitting. The honeycomb core and the face sheets are connected using 
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node-surface TIE constraints. The node-surface-based constraint prevents each node on the 

honeycomb core element from punching inward and penetrating the face sheet. An enhanced 

viscous-based hourglass control was used to suppress energy modes that could trigger 

excessive distortion of solid elements with reduced integration points. Mass scaling was also 

used to achieve a stable time increment and prevent excessive incremental rotation of elements 

undergoing large deformation. 

 

Figure 45. (a) Full Model Assembly; (b) Closer Look of Mesh Connectivity 

The developed model includes the estimated elasto-plastic response for the honeycomb 

core and temperature-dependent CTE values obtained from the manufacturer datasheet. The 

temperature-dependent properties for the composite skin are obtained from another 

investigation (Stoumbos et al. 2014) (see Table 12). They are used as input in the developed 

user-defined material subroutine. This temperature dependence is described assuming a linear 

interpolation using the set of values from Table 12 for each material property at different 

temperatures. The subroutine internally computes the thermal strains and utilizes mechanical 

strains for the local stress analysis and subsequent evaluation of the developed damage model. 

(a) (b) 
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The temperature-dependent adhesive properties are obtained from the manufacturer (see 

Table 13) and are input in the form of Abaqus tabulated values. The material response for 

titanium cup fitting is assumed to be linear elastic, whose properties are also obtained from 

the published literature (Lampman and Zore 1990). 

Table 12. Temperature-Dependent Material Properties of M55J/CE-3 0o Ply 

 

 

 

 

 

 

 

 

Table 13. Temperature-Dependent Material Properties of EA.9309.NA Adhesive 

 

 

Boundary conditions are applied to the coupon model as per test configurations. The 

nodes on the left end are constrained in the x-direction, while the top surface is constrained 

in the y-direction (see Figure 46). The other two ends are free to expand uniformly along the 

circumferential x-y plane. A kinematic coupling constraint is applied between a centroid node 

and node sets on the components corresponding to the free end of the coupon. Figure 47 

illustrates individual centroid nodes on the face sheet and core (denoted by red), each 

 -37oC 22oC 63oC  
E11 40.5 40 39.7 Msi 
E22 0.875 0.804 0.765 Msi 
E33 0.875 0.804 0.765 Msi 
G12 0.6665 0.610 0.579 Msi 
G23 0.1843 0.160 0.143 Msi 
G13 0.6665 0.610 0.579 Msi 
v12 0.2795 0.271 0.2778  
v23 0.2838 0.271 0.2779  
v13 0.279 0.271 0.2778  
𝛼  -1.12 -1.08 -1.05 10-6/oC 
𝛼  2.93 3.17 3.37 10-5/oC 
𝛼  2.93 3.17 3.37 10-5/oC 

 -37oC -19oC 22oC 63oC  
E 0.4884 0.4669 0.418 0.240 Msi 
v 0.33 0.35 0.4 0.25  
𝛼 6.57 6.91 9.4 8.46 10-5/oC 
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connected to their respective node sets (denoted by the yellow lines). The coupon model is 

exposed to pre-defined temperature field boundary conditions, which involve one complete 

temperature cycle from ambient to +63oC and then to –50oC. A stable mass scaling was used 

in the dynamic/explicit solver to decrease the solution time by increasing the minimum stable 

time increment to 1.0e-05 throughout the thermal load cycle. 

 

Figure 46. Displacement Boundary Conditions 

 

Figure 47. Kinematic Coupling Constraints on Free Ends for Uniform Expansion 
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5.3 Analysis and Discussion 

First, the analysis is performed to investigate damage initiation and propagation in the 

composite face sheets. Figure 48 shows the progressive failure event in the outer ply of the 

face sheet on the outer side of the coupon (along +z) over different stages of cyclic thermal 

loading. Note that the figure does not illustrate the entire geometry but only the region near 

the fitting, which is of interest in correlation with experiments. During the hot conditioning 

part of the cycle, there are no signs of damage in the face sheet. However, at –5oC, damage 

initiates in the outer ply near the free edge boundary of the fitting due to delamination and in-

plane shear. The failure initiation in the face sheet is attributed to the significant mismatch in 

CTE values, resulting in high thermal strains in the skin near the fitting boundary. At – 30oC, 

damage initiates near the fitting hole region due to delamination and shear. As the load cycle 

approaches – 40oC, damage begins to initiate near the fitting hole due to compressive fiber 

failure. Beyond – 40oC, the fiber damage grows in magnitude and propagates towards the free 

edge of the fitting. As a result, the shear damage near the hole coalesces with damage near the 

free edge of the fitting. Figure 49 illustrates the progressive failure events in the outermost 

face sheet on the inner side of the coupon (along -z). Likewise, the failure pattern is like the 

coupon's outer side (along +z) and is dominated by delamination and in-plane shear.  

It is important to note that element deletion was unnecessary since the damage variables 

did not reach their corresponding threshold values. Further application of thermal cycles may 

increase the damage to its threshold value and trigger element deletion to investigate the post-

failure response. Nevertheless, the analysis identified delamination and in-plane shear as 

potential failure modes that could lead to complete coupon failure. It is worth mentioning that 

the predicted damage initiation hot spot near the free edge boundary of the fitting correlates 
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well with the experimental observations. Additional investigations on the nonlinear response 

of honeycomb core and adhesives are carried out to better understand the underlying 

mechanisms, potential root causes, and damage precursors.  

 

Figure 48. Damage Evolution in Outermost Ply (Along +Z) At Different Temperatures 
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Figure 49. Damage Evolution in Outermost Ply (Along -Z) At Subzero Temperatures 

The plastic deformation in the honeycomb core is another important phenomenon 

affecting the damage initiation and propagation in the composite face sheet. The variation of 

the honeycomb core's plastic dissipation energy is computed and plotted against the 

fluctuating temperature values, as shown in Figure 50. Points A to B corresponds to the hot 

conditioning, while beyond C corresponds to the cold conditioning part of the cycle. The 

plastic dissipation energy increases significantly up to point A, which is about 40oC, followed 

by saturation and a relatively less significant spike in energy as the temperature reaches 63oC. 

However, the dissipation energy remains saturated during most of the cold conditioning part 

of the cycle except when the temperature approaches –50oC (point D). The saturated 
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dissipation energy indicates the negligible effect of the honeycomb core on the microcrack 

formation in the face sheet during the cold conditioning part of the cycle.  

 

Figure 50. Plastic Dissipation in Core at Different Temperature Stages 

Figures 51 (a) and (b) show the von-mises stresses in the honeycomb core near the fitting 

region at 63oC (point B) and –50oC (point D). There is a significant increase in local stress 

concentrations in the cell walls of the honeycomb core adjacent to the face sheet, which could 

indicate potential sites for delamination due to composite face sheet-core debonding. Besides, 

further thermal cycles could lead to higher stresses at the interface between the face sheet and 

core. Nevertheless, in the present study, the face sheet-core interface is modeled using perfect 

bonding conditions and does not account for debonding. 
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Figure 51. Von-Mises Stresses in Honeycomb Core at: (a) 63oC and (b) -50oC 

Similarly, the deformation behavior of the adhesive layers is investigated. Figure 52 shows 

the variation of plastic dissipation energy in the adhesive layer between the washer and 

outermost composite skin at different temperatures. The deformation of the adhesive layer 

remains in the linear elastic regime during the hot conditioning part of the cycle. However, as 

the temperature approaches –5oC, the adhesive layer enters the plastic regime, and the 

dissipation energy continues to increase until –50oC rapidly. The initiation point also correlates 

well with the fact that face sheet microcracks initiate near the free edge beyond – 5oC. Figure 

53 shows the equivalent plastic strain in the adhesive layer between outer skin and washer at 

(a) 

(b) 
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–37 C and – 50 C thermal cycle temperature. A closer look at the elements shows high 

concentrations of equivalent plastic strain at the adhesive bond line layer boundary. This 

suggests the adhesives' significant contribution to the damage initiation and evolution in the 

composite face sheet and bond line cracking at the free edge of the fitting as potential damage 

precursor. 

 

Figure 52. Plastic Dissipation in Adhesive Layer At Different Temperature Stages 

 

Figure 53. Equivalent Plastic Strain in Adhesive Layer at; (a) -37oC and (b) -50oC 

(a) (b) 
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5.4 Summary 

A high-fidelity modeling methodology to investigate the thermomechanical performance 

of complex sandwich space structures was developed. Detailed finite element analyses were 

performed to investigate failure mechanisms in sandwich panel coupons with a specific 

aluminum honeycomb core and carbon-epoxy composite face sheet. The cellular honeycomb 

core sheet, composite laminate face sheet, metallic fittings, and adhesives were explicitly 

modeled to precisely capture the load transfer behavior and geometrical nonlinearities. 

Sandwich panel coupon subject to flatwise tension loading was used to investigate the 

honeycomb core's local and global buckling response, which is primarily dominated by the 

plastic deformation of the aluminum core material. The plastic deformation of bonded 

adhesives had a notable effect on the pre-peak nonlinear response. Panels with H-Clip fitting 

were then chosen to investigate the progressive damage response in the composite face sheet 

under different loading conditions. The material property degradation and associated failure 

modes were captured using a CDM-based failure model. The necessary material constants for 

the damage model were numerically estimated to match the predicted load-displacement 

response with that of experiments. The developed model captured localized damage initiation 

and propagation under different failure modes associated with face sheet compression, 

rupture, and delamination.  

The estimated material constants and modeling strategies were incorporated in the 

subsequent analysis of a spacecraft’s thrust tube sandwich coupon with bonded metallic 

fittings subjected to cyclic thermal loading. The developed model of the coupon predicted 

failure in the outer and innermost face sheets near the boundary of the fitting region. The 

analysis identified delamination and in-plane shear failure as dominant failure modes with 
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additional modes such as compressive fiber and tensile matrix cracking. The underlying root 

cause was attributed to the mismatch in CTE values that results in high thermal gradients at 

the bonded fitting interface during the cold conditioning part of the cyclic thermal loading. 

The adhesives along the free edge of the fitting region plastically deformed, indicating potential 

bond line cracking before the formation of microcracks in the composite face sheet. Also, the 

honeycomb core indicated possible hot spots for delamination due to face sheet-core 

debonding. However, the plastic deformation of the core sheet had a negligible effect on the 

microcrack formation in the composite face sheet. The identified failure and damage modes 

of the specific thrust tube sandwich coupon with a cup bonded fitting correlated well with the 

experimentally observed response. The methodology for the analysis of sandwich structures 

presented in this paper can be extended to investigate the qualitative performance of thrust 

tube coupons with other bonded joints and fittings configurations. Future work will include 

incorporating additional temperature-dependent material properties for the specific composite 

and adhesives obtained from detailed experimental characterization and testing to improve 

prediction accuracy. 
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CHAPTER 6 

CONTRIBUTIONS AND FUTURE WORK 

6.1 Contributions 

The research work presented in this dissertation was primarily motivated by the lack of 

efficient techniques to bridge atomistic scale information with microscale and higher length 

scales for the analysis of complex nanoengineered composite material systems such as radially 

grown CNT architecture. To address this gap in literature, physics-based models and 

atomistically-informed efficient multiscale analysis framework were developed in this work for 

the linear and nonlinear analysis of nanoengineered composite materials. Summarizing the 

significant contributions of this work, the following achievements are noted: 

 Developed an atomistically-informed high-fidelity microscale model for CFRP 

composites with radially-grown CNT architecture that utilized nanoscale-derived elastic and 

inelastic information and variation in the architectural parameters to efficiently estimate the 

nanocomposite properties at higher length scales. 

 Developed a thermodynamically admissible constitutive model to efficiently transfer 

inelastic dual stress-softening behavior from discrete atomistic MD simulations of radially-

grown CNT interphase region to higher length scales using a continuum damage mechanics 

approach. 

 Investigated the linear and nonlinear effects of the unidirectional CFRP composites 

with radially-grown CNT architecture under mechanical loading, using the developed 

atomistically informed damage model. 
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 Investigated the effects of damage initiation and propagation with and without the 

presence of radially-grown CNTs and correlated subscale stress distribution and damage 

localization to the out-of-plane global mechanical response. 

 Developed a reduced-order approximation of the high-fidelity microscale model to 

reduce the computational cost and memory requirements of repeated micromechanics 

simulations and efficiently transfer the homogenized microstructural response to higher length 

scales. Demonstrated improved computational time and memory by an order of 100 and 8, 

respectively. 

Following are the secondary contributions from the research work presented in this 

dissertation: 

 Investigated failure mechanisms and captured the intrinsic nonlinear material behavior 

of specific aerospace-grade aluminum honeycomb core and CFRP composite face sheets. 

 Investigated the thermomechanical performance of complex honeycomb core 

composite sandwich space structures with adhesively bonded fittings exposed to extreme 

temperature ranges using high-fidelity FE modeling techniques. 

 Demonstrated the use of a computational methodology for consistent analysis of 

mechanical and thermal strength degradation in complex sandwich composite structures. 

With these achievements, the research presented in this dissertation will lead to an 

improved understanding of the load transfer characteristics, damage precursors, and failure 

mechanisms in complex nanoengineered composites and composite sandwich structures, 

which can be utilized to tailor their performance. The developed ROM will also be beneficial 



  134 

to predict the global and local response of composites in general with significantly improved 

computational efficiency.  

6.2 Future Work 

Although this research work presents techniques for atomistically-informed multiscale 

modeling of complex nanoengineered composites, several gaps can be further addressed to 

further improve the current understanding of scale-specific damage initiation and propagation 

mechanisms in these material systems. For instance, the atomistically-informed interphase 

model developed in Chapter 2 does not account for the effect of CNT areal density on the 

interphase modulus along the CNT growth direction. Additional analysis at the nanoscale 

should be carried out to further improve the accuracy of the predicted properties while 

accounting for variation in moduli of the interphase material in all three directions. Moreover, 

it is essential to consider other competing damage mechanisms occurring at the nanoscale, 

such as CNT breakage, neglected in the current modeling effort. Nevertheless, the developed 

framework provides a strong foundation for future improvements towards increasing fidelity 

and can optimize the design and performance of radially-grown CNT architecture. 

The ROM presented in Chapter 4 has been verified and validated for simple loading 

conditions such as uniaxial tensile and biaxial loading conditions. Verifying the model’s 

predictive capability for more realistic and complex loading conditions will require a more 

sophisticated mode identification procedure that can preserve both the subscale and global 

features with sufficient accuracy. Implementing other mode identification procedures and 

adapting the model within a FE multiscale code can be aspects of future investigations. 
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