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ABSTRACT

The COVID-19 outbreak that started in 2020, brought the world to its knees and

is still a menace after three years. Over eighty-five million cases and over a million

deaths have occurred due to COVID-19 during that time in the United States alone.

A great deal of research has gone into making epidemic models to show the impact

of the virus by plotting the cases, deaths, and hospitalization due to COVID-19.

However, there is very less research that has anything to do with mapping different

variants of COVID-19. SARS-CoV-2, the virus that causes COVID-19, constantly

mutates and multiple variants have emerged over time. The major variants include

Beta, Gamma, Delta and the recent one, Omicron.

The purpose of the research done in this thesis is to modify one of the epidemic

models i.e., the Spatially Informed Rapid Testing for Epidemic Model (SIRTEM), in

such a way that various variants of the virus will be modelled at the same time. The

model will be assessed by adding the Omicron and the Delta variants and in doing

so, the effects of different variants can be studied by looking at the positive cases,

hospitalizations, and deaths from both the variants for the Arizona Population. The

focus will be to find the best infection rate and testing rate by using Random numbers

so that the published positive cases and the positive cases derived from the model

have the least mean square error.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

COVID -19 which started on December 31st, 2019 has changed the world dras-

tically. Over the past three years, COVID-19 has had more than eighty-five million

cases and about one million deaths. Not only did it cause one of the biggest pandemics

in recent history, it had severe effect on the world economy.

To curb this, researchers created epidemic models to show the impact of the virus

by forecasting future cases and deaths that can occur due to COVID-19. SEIR,

which stands for susceptible, exposed, infected and recovered, is one of the most

common epidemic models researchers use. SIRTEM is a modified version of SEIR that

includes multiple compartments: testing, isolation, quarantine, hospitalization and

immunization combined with the four compartments of SEIR. However, these models

do not incorporate various variants. SARS-CoV-2, the virus that causes COVID-19,

constantly mutates, and multiple variants have emerged like Beta, Gamma, Delta

and the recent one, Omicron.

Our research will focus on formulating the problem of multiple variants and un-

derstanding the impact of different variants in the population. Our research goal is to

redesign the SIRTEM, which will encompass various variants. The focus is to assess

the effects of different variants on the number of cases, deaths and hospitalizations.
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1.2 Challenges and Outcomes

The revised model presents the following new challenges:

1. Amend the underlying equations: The equations in the SIRTEM model

should be altered to add multiple variants. There is limited knowledge about

epidemic models, which have several variants. There are different ways to do

the implementation, and selection of the best one is required.

2. Calibration for different variants: Each variant has unique features, in-

cluding testing, hospitalization and death rates. This poses a challenge for

the mathematical analysis, as modeling the variant’s characteristics requires

detailed research. Different predictive models need to be considered for this.

3. Algorithm for simulation parameters: A method for tuning the simulation

parameters like the infection and testing rates needs to be created. The tech-

nique used in SIRTEM can be used but needs to be modified to simultaneously

tune for various variants. Other parameters that need to be checked are the

hospitalization and death rates.

2



1.3 Thesis Structure

The content of thesis is organized as follows :

1. Chapter 2: Presents the epidemic modeling and simulation that is present

right now. It also shows the gaps in the literature.

2. Chapter 3: Describes the methodology and design for the modified SIRTEM

which includes multiple variants. Fine tuning of the parameters will be done in

this chapter as well.

3. Chapter 4: Presents the numerical analysis from the model.

4. Chapter 5: Conclusions and directions for future work are presented.

3



Chapter 2

LITERATURE REVIEW

In this chapter, the relevant literature is reviewed to understand the different epidemic

models. For the same, a variety of topics from epidemic modeling in general and its

different examples is covered.

2.1 Epidemiological Modeling

Epidemiological modeling is playing a critical role right now because of COVID-

19. Policies are being carried out from the information gained from these models.

Epidemiological modeling can be dated back to the 1700s, when Daniel Bernoulli de-

vised one such model for the smallpox disease. Since then, epidemiological modelling

research has advanced a lot, especially during the COVID-19 pandemic. The basic

types of epidemiological modeling are (i) Stochastic (Random), (ii) Deterministic [17].

Stochastic (Random) Models

These models are essential when the infectious population is tiny. Stochastic models

always converge to a state where the disease is eradicated from the people. The

REED-Frost model is one of the first stochastic models created but was published

later on [7; 16]. The Reed Frost model is one of the simplest stochastic epidemic

models. Each infected individual at a time t independently infects individuals in the

susceptible population with a probability p. The population that become infected by

the individuals then makes up the infected population at time t +1 and the infected

individuals at time t are removed from the epidemic process. The Greenwood Model

was also developed during the same time [20]. Both of them are bi-variate Markov

4



models, but they differ in assuming the probability of infection. The Greenwood

method assumes pi = p where p is constant, and the Reed Frost method assumes

pi = pi which changes after each time step.

Another set of stochastic models is the branching epidemic processes [9]. One of the

simplest examples of the branching epidemic process is Galton–Watson [29]. This

method assumes R0 individuals from the susceptible population get infected by each

infected individual. It also assumes that each infected individual is independent of

all infected individuals. The probability generating function for the number of new

infections is f(t) =
∑∞

k=0 pk · tk where f ′(1) = R0.

Stochastic models can be extended to deterministic models like SIR, SIS, SEIR,etc

[25; 23; 9; 30; 28; 26; 11; 15; 27; 19; 18; 21; 12]. These deterministic models are

reviewed in the next subsection.

Deterministic Models

In deterministic models, the number of infected can be set as real numbers, which

are less than one and greater than zero ( so that the virus can spread). Kermack

and McKendrick constructed a straightforward model called the Susceptible-Infected-

Recovered (SIR) model that is still used for developing more complex epidemic models

[22] which is shown in Figure 2.1. In SIR, an individual who is susceptible gets in-

fected and moves to the infected compartment. After a few days, the individual can

recover and move onto the recovery compartment. Another model is the Susceptible-

Infected-Susceptible (SIS), where after an individual recovers, they go back to being

susceptible, which is shown in Figure 2.2.

The major deterministic model that is used is the Susceptible-Exposed-Infected-

Recovered (SEIR) model which is shown in Figure 2.3[5; 10; 24; 8]. The individual

moves from susceptible to exposed compartment after being exposed to an infected

5



individual. There is a chance that even if exposed, an individual cannot be infected,

and they go back to being susceptible. Spatially Informed Rapid Testing for Epidemic

Model (SIRTEM) is a modified SEIR model, which is shown in Figure 2.4 ([13]) which

is what we will use to make the revised model for multiple variants for this thesis.

Figure 2.1: SIR Compartmental Diagram. Source - [9]

Figure 2.2: SIS Compartmental Diagram. Source - [9]

6



Figure 2.3: SEIR Compartmental Diagram. Source - [1]

2.2 Literature Gap

We found abundant research work on epidemic models that can forecast and pre-

dict the positive cases, hospitalizations and deaths of a disease as a whole. However,

there is not much research done in finding and predicting the positive cases, hospi-

talizations and deaths for each disease variant.

We propose a modified version of SIRTEM which will include multiple variants

simultaneously. We believe that mapping different variants can make better policies

to prevent hospitalizations and deaths.

7



Figure 2.4: Overview of the SIRTEM Coupled Epidemic/Testing Model

(Components, Sub-components, and Transitions). Source - [13]
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Chapter 3

METHODOLOGY

The main goal of this research is to modify the existing SIRTEM for single city

so that it can model n different variants at the same time. We will start by checking

where the model needs to be split so that it goes to n separate sets of compartments.

Another goal is make a custom algorithm to calibrate the simulation parameters of

the model which is similar to the one used by produced in the SIRTEM model.

3.1 Multiple Variant SIRTEM (MVSIRTEM)

Figure 3.1: Overview of the Modified SIRTEM Coupled Epidemic/Testing Model

for Simplicity, the Figure Ignores the Sub Components

Figure 3.1 shows the modified SIRTEM model with the addition of separate sets of

compartments for n different variants. Let n be the number of variants of COVID-19.

The model starts with a common susceptible population where no one is infected.

An individual from this component can proceed to n different exposed components,

one for each of the variants based. Then the individual goes onto the testing phase

9



which is different for each variant. After that the individual moves onto the recovered

and immunization components. From there the individual can proceed to the falsely

presumed components or back to the common susceptible population. An assumption

is made that the testing rate for each of the variants will be different depending on

the severity of the variant. Another assumption that is made is that testing allows

us to determine the variant the patient is affected by.

3.2 Compartment Details

In the following subsections, we provide detailed description about each of the

sets of compartments. The set of compartments in the model are Susceptible, Ex-

posed, Asymptomatic Testing Process, Symptomatic Testing Process, Recovered and

Immunization Process, and Falsely Presumed Process.

Susceptible

Susceptible is the compartment that houses the population that is non infected and

does not have any symptoms. The susceptible population can be exposed to n different

types of COVID-19 variants and they move onto the respective exposed compartment.

Exposed

The exposed compartment for each variant is controlled by the following equations:

dEv

dt
=

(
βv · S(t) + β

′

v · FPIv(t)
)
· Infectedv(t)

N
−
(
pera + pers

)
· Ev(t) (3.1)

where the total number of infected individuals at time t is,

Infectedv(t) = r ·
(
PSv(t) + PAv(t) + IAv(t) + ATNv(t)

)
+ ISv(t) + STNv(t).(3.2)

10



Table 3.1: MVSIRTEM Model Parameters. Source - [13]

Parameters Description

tp Sensitivity of diagnostic test

tn Specificity of diagnostic test

τ Time to obtain the result for diag. test (days)

ϕv Testing rate for diagnostic test the symptomatic population (ratio per day) for variant v of the virus

ϕav Testing rate for diagnostic test the non-symptomatic population (ratio per day) for variant v of the virus

tpse Sensitivity of the serology test

tnse Specificity of the serology test

τse Time to obtain the result for the serology test (days)

ϕse Testing rate for the serology test (ratio of the relevant population per day)

βv Infection rate for the susceptible population for variant v (ratio)

β′
v Infection rate for the population of individuals who are falsely presumed immune for variant v(ratio)

r The ratio of the transmission rate of asymptomatic individuals to the transmission rate of symptomatic individuals

pera Percentage of individuals with COVID-19 who are asymptomatic

pers Percentage of individuals with COVID-19 who are symptomatic

η Incubation length (days)

λa Length of recovery for asymptomatic individuals (days)

λs Length of recovery for symptomatic individuals (days)

λq Length of quarantine (days)

λh Hospitalization length (days)

hv Hospitalization rate for individuals with variant v(ratio of the quarantined population, per day)

κv Mortality rate for symptomatic population with variant v(per day)

κhv Mortality rate for the hospitalized individuals with variant v(per day)

g Ratio of the susceptible individuals who has fever and cough for non-COVID infections (ratio, per day)

The term Infectedv(t) here is the sum of the compartments that are having

individuals with infections brought by variant v at time t. βv, represents the number

of new daily infection produced by a single infectious individual with the variant v

and it is equivalent to the product of contact rate and disease transmission rate of

variant v. Individuals move from Susceptible to Exposed compartment of variant v

at the rate of βv · Infectedv(t) · S(t)N
where N is the total population. The parameter,

β
′
v, is a higher infection rate parameter, which is applied to the falsely presumed

immune individuals (FPI) compartment (i.e., individuals that have a false positive

11



Table 3.2: Sub-compartments Relevant for the Asymptomatic Testing Process.

Source - [13]

Sub-Compartment Sub-Compartment

S Susceptible population Ev Pop. exposed to the variant v of the virus

PAv Pre-asymptomatic population with variant v of the virus IAv Infected pop. who are asymptomatic with variant v of the virus

ATv Asymp. pop. with variant v of the virus receiving diagnostic test ATNv Asymptomatic pop. with variant v of the virus with negative test result

QAPv Asymp. pop. with variant v of the virus quarantined after a test URv Pop. with unknown immunity due to unknown infection

KRv Pop. of known recovered individuals from variant v of the virus NTv Susceptible pop. with variant v of the virus receiving diagnostic test

NTNv Pop. of non-infected indiv. who test negative with variant v of the virus NTQv Non-infected pop. quarantined due to testing error with variant v of the virus

FPIv Pop. of indiv. with variant v of the virus who are falsely presumed immune PSv Infected pop. who are pre-symptomatic with variant v of the virus

ISv Infected pop. who are symptomatic with variant v of the virus STNv Symptomatic pop. with variant v of the virus who test negative (by error)

with the serology test). Finally, equation (3.2) shows that individuals can be infected

and either can be asymptomatic or symptomatic.

Asymptomatic Testing Process

The asymptomatic testing process is used to randomly test individuals in suscepti-

ble and distinguish the infected asymptomatic from the susceptible population. The

asymptomatic population contains the infected asymptomatic individuals with vari-

ant v and the susceptible population who are not infected. It is not easy to differen-

tiate the individuals in both the populations. Table 3.2 shows the sub-compartments

that are in the asymptomatic testing process. An assumption is made that the asymp-

tomatic population consists individuals infected with variant v who are asymptomatic.

An individual exposed to variant v of the virus will become an infected asymp-

tomatic individual at the rate of pera. The virus will incubate for η days and the

individual will be assumed to be pre-asymptomatic during that time. After η days,

if the individual has symptoms, he/she will move onto to be part of the infected

asymptomatic population:

dPAv

dt
= pera · Ev(t)− PAv(t− η) (3.3)

12



The Infected asymptomatic population of variant v can either increase or de-

crease depending on how many pre-asymptomatic individuals become asymptomatic

and when they recover from the virus. The random testing for the asymptomatic

population is done at the rate of ϕav · IAv(t).

dIAv

dt
= PAv(t− η) + ATNv(t)− ϕav · IAv(t)− λ · IAv(t) (3.4)

λ is assumed as the rate at which individuals recover naturally or without care after

being infected with variant v and gains immunity.

dURv

dt
= λ · IAv(t) + λ · ISv(t)− URv(t) (3.5)

Individuals who are asymptomatic can get randomly tested. The following equa-

tion shows this:

dATv

dt
= ϕav · IAv(t)− ATv(t− τ) (3.6)

Differentiating the susceptible population with the infected asymptomatic popu-

lation with variant v can’t be done. Therefore random testing is done also to the

susceptible population:

dNTv

dt
= ϕav · S(t)−NTv(t− τ) (3.7)

The specificity, tn, is the ability to correctly identify individual without the virus:

dNTNv

dt
= tn ·NTv(t− τ)−NTNv(t) (3.8)

From the asymptomatic compartment, individuals leave after testing negative:

dATNv

dt
= (1− tp) · ATv(t− τ)− ATNv(t) (3.9)
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If an individual from asymptomatic tests positive, the asymptomatic individual is

quarantined for λq days:

dQAPv

dt
= tp · ATv(t− τ)−QAPv(t− λq) (3.10)

If a test result is falsely positive, a non infected susceptible individual will be, falsely,

quarantined for λq days:

dNTQv

dt
= (1− tn) ·NTv(t− τ)−NTQv(t− λq) (3.11)

After the end of the quarantine period, the individual can recover:

dKRv

dt
= QAPv(t−λq)+FSQv(t−λq)+QSPv(t−λq)+tn1·HTv(t−τ)−KRv(t) (3.12)

The above equation considers other populations as well who leave quarantine. In

particular, FSQv denotes those individuals who are falsely presumed susceptible and

thus wrongly quarantined for variant v (Table 3.5), QSPv denotes symptomatic indi-

viduals who are quarantined with positive test results from variant v (Table 3.3), and

HTv denotes portion of the population who received testing while being hospitalized

(Table 3.3).
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Table 3.3: Sub-compartments Relevant for the Symptomatic Testing Process.

Source - [13]

Sub-Compartment Sub-Compartment

Ev Pop. exposed to the variant v of the virus PSv Pre-Symptomatic population with variant v

ISv Infected pop. who are symptomatic with variant v STv Symptomatic pop. receiving test with variant v

STNv Symptomatic pop. with negative test result of variant v QSPv Symp. pop. quarantined after a test with variant v

URv Pop. with unknown immunity due to unknown infection KRv Pop. of known recovered individuals from variant v

HBQv Pop. need hospitalization from variant v before a quarantine HDQv Pop. with variant v need hospitalization during quarantine

HBTv Portion of HBQ tested with variant v while hospitalized HDTv Portion of HDQ tested with variant v while hospitalized

FS Pop. showing flu symptoms FTv Pop. with flu symptom receiving test

FTN Pop. with flu symptom tested negative for COVID-19 FTQ Pop. with flu symptom quarantined due to false positive

GSv Pop. with other COVID-like symptoms GTv Pop. with other COVID-like symptoms receiving test

GTN Pop. with other symptoms tested negative for COVID-19 GTQ Pop. with other symptoms quarantined due to false positive

Dv Pop. who have not recovered from the infection with variant v (dead)

Symptomatic Testing Process

The symptomatic testing process is designed to model the testing process for individ-

uals who show COVID-19 like symptoms. Symptomatic individuals is separated into

three populations: (a) COVID-infected symptomatic with variant v, (b) general sick

(fever, coughing), and (c) flu symptomatic. They are differentiated using diagnostic

testing.

Much like the asymptomatic process discussed before, the process consists of test-

ing, isolation, and quarantine sub-processes. But also includes hospitalization and

death for severe cases. The compartments presented in Table 3.3 along with the

following differential equations define the transitions between relevant states in the

symptomatic process.

An individual exposed to variant v of the virus will become an infected symp-

tomatic individual at the rate of pers rate. The virus will incubate for η days and the

individual will be assumed to be pre-symptomatic during that time. After η days,

if the individual has symptoms, he/she will move onto to be part of the infected
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symptomatic population:

dPSv

dt
= pers · Ev(t)− PSv(t− η) (3.13)

Similar to the asymptomatic population (Equation 3.4), individuals of infected

symptomatic (ISv(t)) get tested at the rate ϕsv. At the rate of λ, individuals recover

naturally from ISv(t). Another way an individual can leave is either at the rate of

κ to death and at the rate of h rates to becoming individuals hospitalized with the

severe cases, respectively:

dISv

dt
= PSv(t−η)+STNv(t)−ϕsv ·ISv(t)−λ ·ISv(t)−κv ·ISv(t)−hv ·ISv(t) (3.14)

As before, τ , represents response time of the testing:

dSTv

dt
= ϕsv · ISv(t)− STv(t− τ). (3.15)

If an individual is testing positive, he/she is quarantined for λq days until recovery:

dQSPv

dt
= tp · STv(t− τ)−QSPv(t− λq) (3.16)

Recovery process is governed by Equation 3.12 listed earlier, replicated below for

quick reference:

dKRv

dt
= QAPv(t− λq) + FSQv(t− λq) +QSPv(t− λq) + tn ·HT (t− τ)

If a symptomatic individual falsely test negative, the individual continues to spread

the variant v of the virus:

dSTNv

dt
= (1− tp) · STv(t− τ)− STNv(t) (3.17)
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Equation 3.5, shown earlier for asymptomatic individuals and listed below for

quick reference, also captures the rate, λ, with which symptomatic individuals recover

from variant v of the disease and are immunized in the process.

If an individual’s situation worsens, they become hospitalized at the rate of hv. They

can be admitted before or during quarantine:

dHBQv

dt
= hv · IS(vt− λh) + (1− tn) ·HBTv(t− τ)− κhv ·HBQv(t) (3.18)

dHDQv

dt
= hv ·QSPv(t− λh) + (1− tn) ·HDTv(t− τ)− κhv ·HDQv(t) (3.19)

Individuals can leave the hospital with either a negative test result or through

death. After spending λh days in the hospital, the hospitalized individuals will take a

test to check if the virus is still active and they will continue to be hospitalized when

the test result is positive:

dHBTv

dt
= HBQv(t− λh)−HBTv(t− τ) (3.20)

dHDTv

dt
= HDQv(t− λh)−HDTv(t− τ) (3.21)

They can also move to the recovered compartment as described in Equation 3.12.

The death rate for hospitalized individuals with variant v is a higher rate of

κhv, while the death rate for symptomatic individuals with variant v who are not

hospitalized is, κv:

dDv

dt
= κhv ·

(
HBQv(t) +HDQv(t)

)
+ κv ·QSPv(t) + κv · ISv(t) (3.22)

During the epidemic, part of the non-infected population can show COVID-19

like symptoms due to other illnesses and they may need to be tested. The following
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two equations leverage the flu and gsick rate parameters to describe the portion of

the population which show flu-like and general sick symptoms, such as fever and

coughing, indistinguishable from COVID-19.

dFS

dt
= flu · S(t)− FS(t) (3.23)

dGS

dt
= gsick · S(t)−GS(t) (3.24)

Since they show COVID-19 like symptoms, these individuals may be subject to

symptomatic testing, analogous to Equation 3.15:

dFT

dt
=

n∑
v=1

phisv · FS(t)− FT (t− τ) (3.25)

dGT

dt
= ϕsv ·GS(t)−GT (t− τ) (3.26)

Even though these individuals are not COVID-19 infected, in the case of a false

positive, they will be quarantined for λq days:

dFTQ

dt
= (1− tn) ·NTv(t− τ)− FTQ(t− λq) (3.27)

dGTQ

dt
= (1− tn) ·GT (t− τ)−GTQ(t− λq) (3.28)

those non-infected patients whose test are true negative return to the susceptible

population:

dGTN

dt
= tn·GT (t− τ)−GTN(t) (3.29)

dFTN

dt
= tn · FT (t− τ)− FTN(t) (3.30)
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Table 3.4: Sub-compartments Relevant for the Process Through Which Individuals

Obtain Immunity. Source - [13]

Sub-Compartment Sub-Compartment

KRv Pop. of known recovered individuals from variant v IM Pop. of individuals with immunity

STI Pop. of immune indiv. receiving serology (anti-body) test SII Pop. of not-immune indiv. receiving serology test

FPI Pop. of individuals who are falsely presumed being immune

Recovered and Immunization Process

The role of the immunity process is to show how recovered individuals from different

variants of COVID-19 get immunized against reinfection for a certain period of time.

This model is governed with sub-compartments presented in Table 3.4 along with the

following equations:

Any person who recovers from the different variants of the disease (KRv(t)), will

have immunity for γ days. The recovered individuals can be separated into immunized

individuals and individuals whose immunity fades before γ days. We can assume that

the government will provide serology tests at a rate of ϕse for both groups, IM(t) and

FPI(t), and since we can’t tell which individual has lost their immunity, serology

testing is needed. The serology test takes τse days to provide the result:

dIM

dt
= KRv(t)− IM(t− γ)− ϕse · IM(t) + tpse · STI(t− τse) (3.31)

Some of the individuals (STI) who receive serology tests are immune, while others

may be falsely presumed immune (FPI):

dSTI

dt
= ϕse · IM(t)− STI(t− τse) (3.32)

dSII

dt
= ϕse · FPI(t)− FPI(t− τse) (3.33)
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Table 3.5: Sub-compartments Relevant for Individuals Who Are Falsely Presumed

Susceptible. Source - [13]

Sub-Compartment Sub-Compartment

URv Pop. with unknown immunity due to unknown infection FPS Pop. falsely presumed susceptible

FSTi Pop. falsely presumed susceptible receiving diag. test i FSTP Pop. falsely presumed susceptible who test negative

FSQ Pop. falsely presumed susceptible (wrongly) quarantined

Individuals reach Falsely Presumed Immune (FPI(t)) for various reasons: (a) the

individual may lose immunity (IM(t-γ)), (b,c) some individuals may be quarantined

after false positive result due to flu symptoms (FSQ(t-λq),or after a general sickness

(GSQ(t-λq)),and (d) after a testing error ((NTQ(t-λq)):

dFPI

dt
= IM(t−γ)+GSQ(t−λq)+FSQ(t−λq)+NTQ(t−λq)−β

′

v ·FPI(t) (3.34)

For these individuals, we can apply a higher infection rate (β′
v > βv) in Equation 3.1,

because these individuals are likely to socialize more than pure susceptible ones.

Finally, like the diagnostic tests, the serology tests are also imperfect. We use

accuracy of tpse and tnse for sensitivity and specificity, respectively.

Falsely Presumed Susceptible Process

The falsely presumed susceptible process is made to study the individuals that re-

covered naturally from different variants of COVID-19. These individuals have im-

munity after recovering but they falsely presume themselves as susceptible. The

sub-compartments in the falsely presumed susceptible process are listed in Table 3.5.

As formalized in Equation 3.5, unknown recovered individuals, who had variant

v of COVID-19 but recovered naturally, have immunity against the different variants

of COVID-19. These individuals move to the falsely presumed susceptible (FPS)

since they regard themselves susceptible. Other individuals who are falsely presumed
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susceptible include individuals who are already falsely presumed negative and test

negative for a diagnostic test and others who are immune, but receive a false negative

for a serology test:

dFPS

dt
=

n∑
v=1

URv(t)+FSTN(t)+(1−tpse) ·STI(t−τse)−FPS(t−γ)−ϕav ·FPS(t)

(3.35)

Individuals in FPS(t) will lose immunity after γ days and move back to the main

susceptible compartment. The above equation also captures that, while they are

falsely presumed susceptible, they may be subject to regular random testing, with

rate, ϕav. These tested individuals move to the corresponding FST compartment:

dFST

dt
= ϕav · FPS(t)− FST (t− τ) (3.36)

Some of these falsely presumed susceptible individuals will test negative:

FSTN

dt
= tn · FST (t− τ)− FSTN(t) (3.37)

Others, however, may test positive, and get quarantined for λq days, due to testing

errors:

dFSQ

dt
= (1− tn) · FST (t− τ)− FSQ(t− λq) (3.38)

3.3 Model Validation

Parameter Calibration

For a given geographic location (this could be county, state, city), we can calibrate

the SIRTEM model by estimating the infection rate (βv) and testing rate (ϕsv) for

each of the variants using published data of confirmed positive and negative cases

(Table 3.6).

We obtain estimation of these parameters by solving an equation. Given the com-

plexity of the simulator, we cannot optimize the likelihood in closed form. Therefore,
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an algorithm where the discrepancy between the daily positive and negative cases

predicted against the real data is improved after every iteration.

(P ) : min
ω∈Ω

Z (ω) =
1

2

[
1
d

∑d
t=1(ŷ

(+)
tv |ω)− y

(+)
tv )2)

y
(+)
tv

+
1
d

∑d
t=1(ŷ

(−)
tv |ω)− y

(−)
tv )2

y
(−)
tv

]
(3.39)

MAPE =
1

d

∣∣∣∣ d∑
t=1

(Actualt − Forecastt)

Actualt

∣∣∣∣ (3.40)

In equation (3.39), ŷ
(+)
tv , ŷ

(−)
tv are the SIRTEM predictions for positive and negative

cases at time t (day) for the variant v, respectively. y
(+)
tv , y

(−)
tv denotes the confirmed

positive and negative cases for variant v which is obtained from public sources [2; 6].

Each error term is then normalized by using the average confirmed cases for each

variant v, y
(+)
tv and y

(−)
tv , respectively.MAPE in (3.40) is Mean absolute percentage

error.It is used to find MAPE for positive cases, negative cases, hospitalization and

deaths.

Observing that the infection rate βv and the testing rate ϕv of the v-th variant

are time dependent random process, we assume both to be auto-regressive processes.

In particular, following the approach in [13], we use an order 2 autoregressive model

(AR(2)) model. This is because the parameter βv is the product of transmissibility

of the disease and the likelihood of interactions among individuals within the popula-

tion.These two probabilities are non memoryless. Similarly, in practice, the diagnostic

testing rate cannot be assumed to be memoryless. Since auto-regressive processes are

used to model situations where an observation at a given time depends on the past,

they are suitable to model the evaluation of the βv and ϕv parameters over time. As

a result, for each week k, the equations of βv and ϕv for a variant are:

βvk = a0v + a1v · βvk−1 + a2v · βvk−2 + ebvk (3.41)

ϕvk = b0v + b1v · ϕvk−1 + b2v · ϕvk−2 + esvk (3.42)
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Here ebvk and esvk are not learnable parameters, but noise terms. Under these

assumptions, the decision vector is ω = [av,bv]. av and bv are 3-dimensional vectors

which needs to be estimated. This results in a 6-dimensional decision problem. We use

K weeks of data to calibrate. Specifically, we designed a procedure for the finding the

optimum auto-regressive parameters in (3.41)-(3.42). The approach is summarized

below:
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Algorithm 1: Calibration Algorithm for av,bv.

Input: : Initialize a set of uniform random numbers for Av(∀v),Bv(∀v) and

Z̃v
∗
=∞(∀v)

for av ⊂ Av do

for bv ⊂ Bv do

Step1 : Use AR(2) eqn. (3.41)-(3.42) to determine the MVSIRTEM

parameters βv,ϕv from av,bv;

Step2 : Run MVSIRTEM for K weeks and obtain the daily estimates(
ŷtv

(+), ŷtv
(−)

)K×7

t=1
, use training data

(
y
(+)
tv , y

(−)
tv

)K×7

t=1
and calculate

Z(ω) using eqn. (3.39) for each variant v;

Step 3: Update the incumbent;

if Zv(ω) < Z̃v
∗
then

ω̃∗ ← ω;

Z̃v
∗ ← Zv(ω);

end

end

end

Step 4: Estimate an AR(2) model using ω̃∗ to predict the next βv and ϕv for

1 weeks and run MVSIRTEM for k+ 1 weeks and obtain the daily estimates

and calculate MAPE for positive cases, hospitalization and deaths using

eqn. (3.40)
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Table 3.6: Default Values for Various MVSIRTEM Model Parameters. Source - [13]

Parameter Description Values

tp Sensitivity of diagnostic test 0.75

tn Specificity of the diagnostic test 0.95

tpse Sensitivity of the serology test 0.84

tnse Specificity of the serology test 0.97

τ Time to result for diagnostic test 3days

τse Time to result for the serology test 5days

ϕv Diagnostic testing rate for symptomatic individuals for variant v Estimated

ϕa Diagnostic testing rate for non-symptomatic individuals 0

ϕse Serology Test rate 0.01

βv Infection rate for the susceptible pop. for variant v Estimated

β′
v Inf. rate for falsely presumed immune pop. (ratio) for variant v 1.2 · βv

r Ratio of transmission rates for asympt. population against sympt. population 0.51

pera Percentage of ind. with COVID-19 who are asymptomatic 0.16

pers Percentage of ind. with COVID-19 who are symptomatic 0.84

η Incubation length (days) 3.2 days

λa Length of recovery for asymptomatic ind. (days) 3.5 days

λs Length of recovery for symptomatic ind. (days) 7 days

λq Length of quarantine (days) 14 days

hv hospitalization rate (ratio of quarantined pop, per day) for variant v Estimated

λh Hospitalization length (days) 6 days

κv Mortality rate for symptomatic pop. (per day) for variant v Estimated

κhv Mortality rate for hospitalized individuals (per day) for variant v Estimated

g Ratio of susc. who have fever for non COVID infections (ratio, per day) 0.04
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Chapter 4

EXPERIMENTS AND RESULTS

4.1 Calibration of av,bv for Omicron and Delta

The experiment that has been carried out is for two variants Delta and Omicron.

The simulation model was developed in MATLAB where the differential equations

were formulated and solved using the dde23.m library [4]. The experiment is cali-

brated using the state of Arizona’s published positive and negative cases [2]. Since

there is no accurate published data for positive and negative cases for Arizona, we

use the Nowcast [6]. Nowcast is a data set that shows the proportions of the different

variants for every week.

The simulation was run from September 6th 2021 to January 23rd 2022 for the

calibration part. For simplification, the sub variants of Omicron i.e., BA1.1 and BA.2

were considered one variant. The Nowcast ratios for Omicron and Delta during that

time are shown in Figure 4.1. Using the Nowcast data, we can find the ratio of

Positive and Negative cases for each variant from the published data.

For finding the auto-regressive parameters for both the variants, we use the range

in Table 4.1. The values are obtained by using the rand function in MATLAB. 500

values were found for each of the parameters. The next section shows how we calibrate

the hospitalization and mortality rates for both variants.
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Figure 4.1: Ratio Between Omicron and Delta Using the Nowcast Data

Table 4.1: Range of Auto-regressive Parameters for Variant v ∈ [Delta,Omicron]

AR Parameter Range

a0v (0,2)

a1v (-2,2)

a2v (-2,2)

b0v (0,2)

b1v (-2,2)

b2v ( -20,20)

4.2 Other Parameters

Calibration of parameters like mortality rate and hospitalization rate needs to be

done for each of the variants. The deaths and hospitalizations for each of the variant

is found. The mortality rate and hospitalization rate for week i is formulated using
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the below equations:

κvi =
1

9.5
· dvi
y
(+)
vi

(4.1)

κhvi =
8

9.5
· dvi
y
(+)
vi

(4.2)

hvi =
Hvi

y
(+)
i

(4.3)

In the above equations, y
(+)
vi is the positive cases of variant v during week i. In

equation (4.1) and (4.2), dvi is the amount out deaths that occurred due to variant

v during week i. The ratio 1
9.5

and 8
9.5

are assumed as hospitalised patients have a

higher death rate [14; 3]. In equation (4.3), Hvi is the amount of hospitalised patients

from variant v during week i.

4.3 Results

We first ran the simulation for 10 weeks ( September 6th to November 14th 2021 )

where only the Delta variant was prevalent. Then when Omicron started on November

15th 2021, we ran the training simulation for n weeks where n ∈ [4, 5, 6, 7, 8, 9] and

then a forecast is done for n+ 1th week. The parameters change over each iteration.

In the following subsections, we show the results for positive cases, hospitalisation

and number of deaths. As we are focusing on the multi variant results, the results

for Delta variant between September 6th 2021 to November 14th 2021 is omitted.
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Positive cases

Figure 4.2a and Figure 4.2c shows the trained model results during November 15th

to December 12th 2021 for positive cases due to the Delta and Omicron variants

respectively. As we can see in Tables 4.2 and 4.4, the trained MAPE during that

time period is very high. This due to the fact that the training is done for a short

time horizon of four weeks. Figure 4.2b and Figure 4.2d shows the forecast model

results during December 13th - December 19th 2021 for positive cases due to the

Delta and Omicron variants respectively. Due to the high MAPE in the training

data, the forecast MAPE is also high as seen in Tables 4.3 and 4.5.

Figure 4.3a and Figure 4.3c shows the trained model results during November

15th to December 19th 2021 for positive cases due to the Delta and Omicron variants

respectively. As we can see in Tables 4.2 and 4.4, the trained MAPE during that

time period is decreased by 0.4% and 0.2% for Delta and Omicron respectively from

the previous training time horizon. This negligible increase in training accuracy is

because the time horizon for training increased to five weeks.

Figure 4.3b and Figure 4.3d shows the forecast model results during December

20th - December 26th 2021 for positive cases due to the Delta and Omicron variants

respectively. The Forecast MAPE has decreased by 0.5% and 7.9% for Delta and

Omicron respectively from the previous time horizon as seen in Tables 4.3 and 4.5.

The longer time horizon used for training has increased forecasting accuracy of the

model.

Figure 4.4a and Figure 4.4c shows the trained model results during November

15th to December 26th 2021 for positive cases due to the Delta and Omicron variants

respectively. As we can see in Tables 4.2 and 4.4, the trained MAPE during that

time period is decreased by 0.7% and 0.8% for Delta and Omicron respectively from
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the previous training time horizon. This negligible increase in training accuracy is

because the time horizon for training increased to six weeks.

Figure 4.4b and Figure 4.4d shows the forecast model results during December

27th 2021 - January 2nd 2022 for positive cases due to the Delta and Omicron variants

respectively. The Forecast MAPE has increased by 0.7% and 1.5% for Delta and

Omicron respectively from the previous time horizon as seen in Tables 4.3 and 4.5.

This increase in MAPE can be because, the positive case due to Delta variant started

decreasing very rapidly and was replaced by positive cases due to Omicron variant.

Figure 4.5a and Figure 4.5c shows the trained model results during November

15th 2021 to January 2nd 2022 for positive cases due to the Delta and Omicron

variants respectively. As we can see in Tables 4.2 and 4.4, the trained MAPE during

that time period is decreased by 0.1% and 1.1% for Delta and Omicron respectively

from the previous training time horizon. This increase in training accuracy is because

the time horizon for training increased to seven weeks.

Figure 4.5b and Figure 4.5d shows the forecast model results during January

3rd - January 9th 2022 for positive cases due to the Delta and Omicron variants

respectively. The Forecast MAPE has decreased by 2.1% and 5.4% for Delta and

Omicron respectively from the previous time horizon as seen in Tables 4.3 and 4.5.

The longer time horizon used for training has increased forecasting accuracy of the

model.

Figure 4.6a and Figure 4.6c shows the trained model results during November

15th 2021 to January 9th 2022 for positive cases due to the Delta and Omicron vari-

ants respectively. As we can see in Tables 4.2 and 4.4, the trained MAPE during that

time period is increased by 0.2% and decreased by 5.4% for Delta and Omicron re-

spectively from the previous training time horizon. The increase in training accuracy

for Omicron is because the time horizon for training increased to eight weeks and
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the negligible decrease in training accuracy for Delta is because the amount exposed

individuals for delta decreased rapidly.

Figure 4.6b and Figure 4.6d shows the forecast model results during January

10th - January 16th 2022 for positive cases due to the Delta and Omicron variants

respectively. The Forecast MAPE has increased by 0.7% and decreased by 10% for

Delta and Omicron respectively from the previous time horizon as seen in Tables 4.3

and 4.5. The forecast results is emulating the training model results for both variants.

Figure 4.7a and Figure 4.7c shows the trained model results during November

15th 2021 to January 16th 2022 for positive cases due to the Delta and Omicron vari-

ants respectively. As we can see in Tables 4.2 and 4.4, the trained MAPE during that

time period is decreased by 1.5% and increased by 0.3% for Delta and Omicron re-

spectively from the previous training time horizon. The decrease in training accuracy

for Omicron is because the amount of positive cases started decreasing rapidly after

reaching a peak. The negligible increase in training accuracy for Delta is because the

time horizon for training increased to nine weeks.

Figure 4.7b and Figure 4.7d shows the forecast model results during January

17th - January 23rd 2021 for positive cases due to the Delta and Omicron variants

respectively. The Forecast MAPE has decreased by 3.1% and 1.4% for Delta and

Omicron respectively from the previous time horizon as seen in Tables 4.3 and 4.5.

The longer time horizon used for training has increased forecasting accuracy of the

model.
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(a) Trained Positive Cases Due to

Delta Variant Between Nov 15th

2021 - Dec 12th 2021

(b) Forecasted Positive Cases Due

to Delta Variant Between Dec 13th

2021 - Dec 19th 2021

(c) Trained Positive Cases Due to

Omicron Variant Between Nov 15th

2021 - Dec 12th 2021

(d) Forecasted Positive Cases Due

to Omicron Variant Between Dec

13th 2021 - Dec 19th 2021

Figure 4.2: Positive Cases Between Nov 15th 2021 - Dec 19th 2021 (Model Vs

Published)

Hospitalization

Tables 4.6 and 4.8 shows the MAPE for the trained hospitalizations due to Delta

and Omicron variants respectively. From this we can see that, as the training time

horizon gets longer, the MAPE for the training data gradually decreases, just like we

saw in the earlier subsection of positive cases. However after 4 iterations (in making

the training horizon longer) in both the delta and omicron variants, it reaches a

stationary state where the difference in error is almost negligible . This is because

the AR(2) model is trained using the positive and negative cases and hospitalizations
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(a) Trained Positive Cases Due to

Delta Variant Between Nov 15th

2021 - Dec 19th 2021

(b) Forecasted Positive Cases Due

to Delta Variant Between Dec 20th

2021 - Dec 26th 2021

(c) Trained Positive Cases Due to

Omicron Variant Between Nov 15th

2021 - Dec 19th 2021

(d) Forecasted Positive Cases Due

to Omicron Variant Between Dec

20th 2021 - Dec 26th 2021

Figure 4.3: Positive Cases Between Nov 15th 2021 - Dec 26th 2021 (Model Vs

Published)

rate is derived from only the positive cases.

Tables 4.7 and 4.9 shows the MAPE for the forecasted hospitalizations due to Delta

and Omicron variants respectively. The MAPE for the forecasted hospitalizations has

a downward trend as the training time horizon gets longer but like the training MAPE,

it also reaches a stationary state where the difference in error is almost negligible also.
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(a) Trained Positive Cases Due to

Delta Variant Between Nov 15th

2021 - Dec 26th 2021

(b) Forecasted Positive Cases Due

to Delta Variant Between Dec 27th

2021 - Jan 2nd 2022

(c) Trained Positive Cases Due to

Omicron Variant Between Nov 15th

2021 - Dec 26th 2021

(d) Forecasted Positive Cases Due

to Omicron Variant Between Dec

27th 2021 - Jan 2nd 2022

Figure 4.4: Positive Cases Between Nov 15th 2021 - Jan 2nd 2022 (Model Vs

Published)

Deaths

Tables 4.6 and 4.8 shows the MAPE for the trained deaths due to Delta and Omicron

variants respectively. From this we can see that, as the training time horizon gets

longer, the MAPE for the training data gradually decreases, just like we saw in the

earlier subsection of positive cases. However after four iterations and three iterations

(in making the training horizon longer) in the delta and omicron variant respectively,

it reaches a stationary state where the difference in error is almost negligible . This

is because just like the hospitalization rates, the AR(2) model is trained using the
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(a) Trained Positive Cases Due to

Delta Variant Between Nov 15th

2021 - Jan 2nd 2022

(b) Forecasted Positive Cases Due

to Delta Variant Between Jan 3rd

2022 - Jan 9th 2022

(c) Trained Positive Cases due to

Omicron variant between Nov 15th

2021 - Jan 2nd 2022

(d) Trained Positive Cases Due to

Omicron Variant Between Jan 3rd

2022 - Jan 9th 2022

Figure 4.5: Positive Cases Between Nov 15th 2021 - Jan 9th 2022 (Model Vs

Published)

positive and negative cases and death rates are derived from only the positive cases.

Tables 4.7 and 4.9 shows the MAPE for the forecasted deaths due to Delta and

Omicron variants respectively. The MAPE for the forecasted deaths has a downward

trend as the training time horizon gets longer but like the training MAPE, it also

reaches a stationary state where the difference in error is almost negligible also.

In the next section we summarize the results that we obtained in the previous

section.

35



(a) Trained Positive Cases Due to

Delta Variant Between Nov 15th

2021 - Jan 9th 2022

(b) Forecasted Positive Cases Due

to Delta Variant Between Jan 10th

2022 - Jan 16th 2022

(c) Trained Positive Cases Due to

Omicron Variant Between Nov 15th

2021 - Jan 9th 2022

(d) Forecasted Positive Cases Due

to Omicron Variant Between Jan

10th 2022 - Jan 16th 2022

Figure 4.6: Positive Cases Between Nov 15th 2021 - Jan 16th 2022 (Model Vs

Published)

4.4 Summary

The summary of the results are mentioned below:

1. For positive cases the MAPE has a downward trend for both the training results

and the forecast results. However, there are times where the MAPE increased

because of rapidly decreasing positive cases.

2. For hospitalizations the MAPE has a downward trend for both the training re-

sults and the forecast results. However, after a few iterations where the training
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(a) Trained Positive Cases Due to

Delta Variant Between Nov 15th

2021 - Jan 16th 2022

(b) Forecasted Positive Cases Due

to Delta Variant Between Jan 17th

2022 - Jan 23rd 2022

(c) Trained Positive Cases Due to

Omicron Variant Between Nov 15th

2021 - Jan 16th 2022

(d) Forecasted Positive Cases Due

to Omicron Variant Between Jan

17th 2022 - Jan 23rd 2022

Figure 4.7: Positive Cases Between Nov 15th 2021 - Jan 23rd 2022 (Model Vs

Published)

time horizon gets longer after each iteration, the difference in error is almost

negligible.

3. For deaths the MAPE has a downward trend for both the training results and

the forecast results. However, after a few iterations where the training time

horizon gets longer after each iteration, the difference in error is almost negli-

gible.

Now we utilize all the discussed results in this chapter to draw conclusions which

is discussed in the next chapter.
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Table 4.2: MAPE for the Trained Positive Cases of Delta Variant

Training Period MAPE for Training

Nov 15th 2021 - Dec 12th 2021 0.13712

Nov 15th 2021 - Dec 19th 2021 0.13391

Nov 15th 2021 - Dec 26th 2021 0.12685

Nov 15th 2021 - Jan 2nd 2022 0.12499

Nov 15th 2021 - Jan 9th 2022 0.12715

Nov 15th 2021 - Jan 16th 2022 0.11262

Table 4.3: MAPE for Forecasted Positive Cases of Delta Variant

Forecast Period MAPE for Forecast

Dec 13th 2021 - Dec 19th 2021 0.20184

Dec 20th 2021 - Dec 26th 2021 0.19597

Dec 27th 2021 - Jan 2nd 2022 0.20750

Jan 3rd 2022 - Jan 9th 2022 0.18631

Jan 10th 2022 - Jan 16th 2022 0.19341

Jan 17th 2022 - Jan 23rd 2022 0.16429
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Table 4.4: MAPE for the Trained Positive Cases of Omicron Variant

Training Period MAPE for Training

Nov 15th 2021 - Dec 12th 2021 0.21609

Nov 15th 2021 - Dec 19th 2021 0.21488

Nov 15th 2021 - Dec 26th 2021 0.20689

Nov 15th 2021 - Jan 2nd 2022 0.18963

Nov 15th 2021 - Jan 9th 2022 0.1786

Nov 15th 2021 - Jan 16th 2022 0.18147

Table 4.5: MAPE for Forecasted Positive Cases of Omicron Variant

Forecast Period MAPE for Forecast

Dec 13th 2021 - Dec 19th 2021 0.42007

Dec 20th 2021 - Dec 26th 2021 0.34123

Dec 27th 2021 - Jan 2nd 2022 0.35609

Jan 3rd 2022 - Jan 9th 2022 0.30261

Jan 10th 2022 - Jan 16th 2022 0.20091

Jan 17th 2022 - Jan 23rd 2022 0.18647
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Table 4.6: MAPE for the Trained Hospitalization of Delta Variant

Training Period MAPE for Training

Nov 15th 2021 - Dec 12th 2021 0.27383

Nov 15th 2021 - Dec 19th 2021 0.24936

Nov 15th 2021 - Dec 26th 2021 0.22752

Nov 15th 2021 - Jan 2nd 2022 0.22029

Nov 15th 2021 - Jan 9th 2022 0.22436

Nov 15th 2021 - Jan 16th 2022 0.22388

Table 4.7: MAPE for Forecasted Hospitalization of Delta Variant

Forecast Period MAPE for Forecast

Dec 13th 2021 - Dec 19th 2021 0.30295

Dec 20th 2021 - Dec 26th 2021 0.28273

Dec 27th 2021 - Jan 2nd 2022 0.28031

Jan 3rd 2022 - Jan 9th 2022 0.27646

Jan 10th 2022 - Jan 16th 2022 0.27753

Jan 17th 2022 - Jan 23rd 2022 0.27336
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Table 4.8: MAPE for the Trained Hospitalization of Omicron Variant

Training Period MAPE for Training

Nov 15th 2021 - Dec 12th 2021 0.34863

Nov 15th 2021 - Dec 19th 2021 0.31519

Nov 15th 2021 - Dec 26th 2021 0.29324

Nov 15th 2021 - Jan 2nd 2022 0.26851

Nov 15th 2021 - Jan 9th 2022 0.25043

Nov 15th 2021 - Jan 16th 2022 0.25553

Table 4.9: MAPE for Forecasted Hospitalization of Omicron Variant

Forecast Period MAPE for Forecast

Dec 13th 2021 - Dec 19th 2021 0.36286

Dec 20th 2021 - Dec 26th 2021 0.34273

Dec 27th 2021 - Jan 2nd 2022 0.35315

Jan 3rd 2022 - Jan 9th 2022 0.33816

Jan 10th 2022 - Jan 16th 2022 0.32227

Jan 17th 2022 - Jan 23rd 2022 0.32571
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Table 4.10: MAPE for the Trained Deaths of Delta Variant

Training Period MAPE for Training

Nov 15th 2021 - Dec 12th 2021 0.30738

Nov 15th 2021 - Dec 19th 2021 0.28154

Nov 15th 2021 - Dec 26th 2021 0.25647

Nov 15th 2021 - Jan 2nd 2022 0.23921

Nov 15th 2021 - Jan 9th 2022 0.23817

Nov 15th 2021 - Jan 16th 2022 0.23633

Table 4.11: MAPE for Forecasted Deaths of Delta Variant

Forecast Period MAPE for Forecast

Dec 13th 2021 - Dec 19th 2021 0.35636

Dec 20th 2021 - Dec 26th 2021 0.31236

Dec 27th 2021 - Jan 2nd 2022 0.32629

Jan 3rd 2022 - Jan 9th 2022 0.32034

Jan 10th 2022 - Jan 16th 2022 0.32974

Jan 17th 2022 - Jan 23rd 2022 0.32821
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Table 4.12: MAPE for the Trained Deaths of Omicron Variant

Training Period MAPE for Training

Nov 15th 2021 - Dec 12th 2021 0.38683

Nov 15th 2021 - Dec 19th 2021 0.35432

Nov 15th 2021 - Dec 26th 2021 0.32187

Nov 15th 2021 - Jan 2nd 2022 0.29934

Nov 15th 2021 - Jan 9th 2022 0.29979

Nov 15th 2021 - Jan 16th 2022 0.29775

Table 4.13: MAPE for Forecasted Deaths of Omicron Variant

Forecast Period MAPE for Forecast

Dec 13th 2021 - Dec 19th 2021 0.44863

Dec 20th 2021 - Dec 26th 2021 0.38399

Dec 27th 2021 - Jan 2nd 2022 0.3251

Jan 3rd 2022 - Jan 9th 2022 0.3298

Jan 10th 2022 - Jan 16th 2022 0.33204

Jan 17th 2022 - Jan 23rd 2022 0.33311
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Epidemic models are designed to show how likely outcome of a pandemic and

inform the public about the severity and spread of the disease. MVSIRTEM takes

this to another level and shows how each disease variant can increase in the popu-

lation. MVSIRTEM shows how Omicron became the primary variant of COVID-19

and replaced the Delta variant. The objectives of this thesis were to make changes to

the underlying equations to add multiple variants and calibrate different parameters.

We summarise the mentioned points below:

1. The grid search used in finding the auto-regressive parameters of the AR(2)

model can be used to accurately find the parameters, however, is computation-

ally expensive and time-consuming. Other types of searches like jump search,

interpolation search, etc, may give similar results but with less usage of com-

putation power and time but further experimentation is required.

2. MVSIRTEM can be used to model multiple variants. The accuracy of the model

increases as the training set used becomes larger.

3. MVSIRTEM has a stationary MAPE for Hospitalizations and Deaths after a few

iterations of making the training set larger. This may be rectified by training

the hospitalization and death rates of the model but this may also cause over-

fitting. Additional experimentation is required to ascertain this.
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5.2 Future Work

There are immense opportunities in the presented research work for advancements.

Below are a few of the mentions:

1. Adding multiple populations: MVSIRTEM has only one susceptible popu-

lation. But in realistic terms, there can be multiple susceptible populations and

can vary from a small town to different countries. The model can be extended

to work with multiple populations.

2. Adding vaccination protocols: MVSIRTEM doesn’t account for the vacci-

nations and how it controls the spread of the disease and reduces the hospital-

ization rates and death rates. The model can be extended to add vaccination

protocols.

3. Adding multiple age groups: At present, MVSIRTEM doesn’t take into

account different age groups and how they have they interact with the other

age groups. The model can be extended to have different age groups.
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