
Coding and Non-coding RNA Expression in Rodent Models of Cocaine Craving  

by 

Annika Vannan 
 
 
 
 
 

A Dissertation Presented in Partial Fulfillment  
of the Requirements for the Degree  

Doctor of Philosophy  
 
 
 
 
 
 
 
 
 
 

Approved April 2022 by the 
Graduate Supervisory Committee:  

 
Janet L. Neisewander, Co-Chair 

Melissa A. Wilson, Co-Chair 
Deveroux Ferguson 

M. Foster Olive 
Nora I. Perrone-Bizzozero 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY 

August 2022  



i 

ABSTRACT    

Substance use disorders (SUDs) are difficult to treat, in part because drug craving can be 

elicited by exposure to drug-associated environments and cues within the environment. 

Furthermore, this craving becomes more pronounced as abstinence progresses and it can 

take months to years for cue-elicited craving to finally wane. This important hallmark of 

addiction is modeled in rodents by exposing them to light/tone cues associated with the 

self-administration (SA) of cocaine. Cue exposure results in drug-seeking behavior, an 

animal analogue for drug craving. The overarching goal of this dissertation was to use 

the rodent SA model to explore the nucleus accumbens (NAc), a key brain region in the 

neural pathway of craving, and examine ribonucleic acid (RNA) expression that may 

underlie cocaine-seeking behavior. This includes messenger RNAs (mRNAs), which 

encode directly for proteins, and non-coding RNAs, which are important regulators of 

mRNA expression and cellular function. My first experiment aimed to identify non-

coding microRNAs, which directly target and suppress mRNA expression, that are 

differentially expressed in animals with high or low cocaine-seeking behavior. In the 

second study, I compared RNA-sequencing (RNA-seq) datasets from rodent models of 

cocaine abstinence and developed a novel workflow to narrow candidate genes. In the 

final experiment, I utilized RNA-seq and reverse transcription real-time quantitative 

polymerase chain reaction (RT-qPCR) to identify and explore non-coding, circular RNAs 

that may influence gene regulatory networks and impact drug-seeking behavior. Overall, 

these studies promote our understanding of the neurogenetic mechanisms of craving and 

they suggest recommendations for improving the experimental design of future 

neurogenomic studies. 
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CHAPTER 1 

GENERAL OVERVIEW 

 

Substance Use Disorders 

 Substance use disorders (SUDs) are a pervasive global issue with huge financial 

and social burdens. In the U.S. alone, SUDs cost more than $700 billion annually related 

to health care, crime, and loss of productivity (National Drug Intelligence Center, 2011; 

National Institute on Drug Abuse, 2017). Addiction also has devastating personal 

consequences, both for individuals suffering from SUDs and their communities. Though 

statistics on SUDs and drug abuse rates have varied somewhat across the past few 

decades, many trends are worsening. For example, drug overdoses and overdose deaths 

were on the rise prior to 2019 (Kariisa et al., 2019; National Institute on Drug Abuse, 

2022), and they spiked even further during the COVID-19 pandemic as access to SUDs 

treatments and resources became more limited (Kuehn, 2021; Nguyen & Buxton, 2021). 

Thus, the need for therapeutic options remains critical. 

  

SUDs Symptomatology: Drug Craving and Relapse 

The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM 

5) lists 11 diagnostic criteria for SUDs related to a loss of control over drug intake even as 

personal, health, and psychological consequences of drug use mount (American 

Psychiatric Association et al., 2013). In response to decades of addiction research, the 

diagnostic criteria for SUDs were updated in 2013 to include drug craving. Craving, or 

the desire to seek out and use drug, is a hot topic in SUDs, and there are valid animal 

models for studying craving (Gawin & Kleber, 1986; Markou et al., 1993; M. A. Smith, 

2020; Wolf, 2016). Though craving can be triggered by a variety of stimuli, including 
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stress (Sinha et al., 1999), it is most often studied in the context of drug-associated cues. 

Cues such as a crack pipe or lighter that are repeatedly linked with the drug-taking 

experience can acquire incentive salience, such that presentation of these cues without 

the drug itself can trigger feelings of craving (Childress et al., 1993; Ehrman et al., 1992; 

T. E. Robinson & Berridge, 1993). A major difficulty in treating SUDs is that cue-induced 

craving worsens during abstinence, a phenomenon known as the incubation effect 

(Grimm et al., 2001; Neisewander et al., 2000; Tran-Nguyen et al., 1998). This increased 

craving often manifests in drug-seeking behavior, which can lead to relapse (Sinha, 2013; 

Weiss, 2005). Individuals may relapse many times over the course of treatment for 

SUDs, re-entering the cycle of drug abuse. A better understanding of the neurobiological 

mechanisms of drug craving is imperative to preventing relapse and developing new 

SUDs treatments. 

 

Modeling Drug Abuse and Craving in Animals 

Various behavioral models have been designed to examine SUDs 

symptomatology in animals. The gold standard of these models is self-administration 

(SA), which endures as the most highly-regarded preclinical paradigm in the addiction 

field due to its high face, construct, and predictive validity (Panlilio & Goldberg, 2007; 

Spanagel, 2017). In the SA model, animals are trained in operant conditioning chambers 

to voluntarily perform tasks to receive drug (Panlilio & Goldberg, 2007). Over the course 

of days, weeks, or months, animals learn that a specific response (e.g. pressing a lever, or 

poking their nose in a hole) results in administration of drug. Delivery of this reinforcer 

is contingent upon completion of a schedule of reinforcement, where performance 

requirements can be fixed or varied. For example, with a fixed ratio (FR) 1 schedule, one 

response (e.g. one lever press) results in one drug delivery. In more complex behavioral 
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models, the schedule of reinforcement may change between or within sessions (e.g. 

variable ratio (VR), variable interval (VI), or progressive ratio (PR) schedules). 

 In animals, incubation of drug craving is robust and replicable using several 

variations on the SA model, including cue reactivity (Markou et al., 1993; M. A. Smith, 

2020; Wolf, 2016). Typically, animals will learn to self-administer drug as the primary 

reinforcer, with cues presented simultaneously. For example, if a light and tone cue 

trigger as drug is delivered, the animal will learn to associate those cues with the drug-

taking experience. The cue reactivity paradigm harnesses the acquired incentive salience 

of those cues as a measure of drug craving. With cue reactivity, animals are trained in 

drug SA over many daily sessions and are then placed in forced abstinence. During this 

time, they remain in their home cage environment and do not have access to the operant 

conditioning chamber. After an experimentally-determined time period, animals return 

to the SA environment. In a post-abstinence test, animals are able to perform the 

previously trained behavior (e.g. lever press or nose poke), though it results in the 

delivery of the drug-associated cues without the drug itself. Because animals will readily 

perform the behavior even in the absence of drug, this measure of drug-”seeking” 

behavior is considered a proxy for craving (Markou et al., 1993; M. A. Smith, 2020). 

 

The Genetics of SUDs 

 SUDs are marked by high genetic complexity that is difficult to disentangle in 

human populations (Agrawal et al., 2012; Buckland, 2008; Goldman et al., 2005). 

Though SUDs are partly heritable (Uhl et al., 2008), they likely involve many genetic 

susceptibility variants with small effect sizes, which may be overlooked by genome-wide 

association studies (GWAS) (Buckland, 2008; Deak & Johnson, 2021). Moreover, 

addictive behaviors are driven by gene-environment interactions and dynamic gene 
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expression changes difficult to study in human populations (Buckland, 2008; Goldman 

et al., 2005).  While there are many available technologies and tools for human 

behavioral and genetics research, it is difficult to obtain a fine-tuned understanding of 

neurobiological mechanisms using human subjects. However, the underlying 

neurobiological mechanisms of reward and motivation are presumed to be shared 

between humans and other animals (Martínez-García & Lanuza, 2018; Panksepp et al., 

2002; Scaplen & Kaun, 2016). Thus, animal models have been instrumental in 

developing our understanding of drug abuse and SUDs at the molecular level (Spanagel, 

2017).  

 

Expression of Coding and Non-Coding RNAs 

 Under the central dogma of molecular biology, DNA sequences (genes) are 

transcribed into RNA copies that serve as the template for translation into proteins. In 

this simplistic model, proteins perform functions in the cell, while “coding” RNAs 

primarily serve as intermediaries in the process of protein biogenesis. The amount of 

RNA that corresponds to a specific gene is then a measure of that gene’s expression. 

Gene expression is one of the most widely-used metrics for determining dynamic 

biological differences between groups. Importantly, gene expression is regulated by 

many cellular processes. For example, non-coding RNAs, initially considered “junk" 

because they did not encode for proteins, have now emerged as important regulators of 

gene expression. 

 

MicroRNAs 

 MicroRNAs (miRNAs) are small, non-coding RNAs approximately 22 nucleotides 

(NTs) in length that post-transcriptionally regulate gene expression. In their mature, 
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single-stranded form, miRNAs are incorporated into the RNA-induced silencing complex 

(RISC) (Filipowicz, 2005). Targets are recognized by RISC through binding of the 6-8 

nucleotide “seed sequence” on the miRNA to miRNA response elements (MREs) on the 

mRNAs. RISC then directs suppression of the mRNA target through translational 

repression, cleaving of the target, or other mechanisms (Bartel, 2004, 2009). 

Importantly, the miRNA seed does not need to bind with perfect complementarity to the 

mRNA in order to regulate its expression (Bartel, 2004). In addition, while MREs 

typically occur on the 3’ untranslated regions (UTRs) of mRNAs, they can also be found 

on 5’UTRs or in coding regions (Hausser et al., 2013; Lai, 2002; Lee et al., 1993; Lytle et 

al., 2007). Therefore, a single miRNA may target and suppress hundreds or thousands of 

mRNAs. Hundreds of miRNAs have now been identified, most of which are conserved 

across mammals (Friedman et al., 2009). This has led to interest in miRNAs as “master 

regulators” of gene expression with therapeutic promise in translational medicine. 

 Many miRNAs have been linked to basic brain function and synaptic plasticity 

(see (Forero et al., 2010; Gowen et al., 2021; A. C. W. Smith & Kenny, 2018) for reviews). 

For example, a study in Dicer-deficient zebrafish, which lack the protein necessary to 

produce mature miRNAs, suggests that miRNAs are critical to healthy development of 

the central nervous system (Giraldez et al., 2005). miRNAs are widely expressed 

throughout the brain in both glia and neurons, including at dendrites, axons, and 

synapses (O’Carroll & Schaefer, 2013). A small number of miRNAs are also enriched in 

the brain or at synapses (Adlakha & Saini, 2014), but any brain-expressed miRNAs can 

impact synaptic plasticity genes, and there is increasing evidence that miRNAs regulate 

drug-induced plasticity. For example, miR-212/miR-132, miR-495, and miR-124 have all 

been implicated in rodent models of cocaine abuse (Bastle et al., 2018; Chandrasekar & 

Dreyer, 2009; Im et al., 2010; Jasińska et al., 2016; Sadakierska-Chudy et al., 2017). 
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These miRNAs are regulated by, or target, known addiction and synaptic plasticity 

proteins, such as CREB, BDNF, CaMKIIa, and several integrins, which in turn regulate 

synaptic size and strength (see (A. C. W. Smith & Kenny, 2018) for a review of these 

miRNAs). However, miRNAs have only been studied in a small number of SUDs models. 

More research is necessary to understand what other miRNAs may regulate drug-related 

behaviors, including cocaine-seeking and craving. 

 

Circular RNAs 

Circular RNAs (circRNAs) are a class of non-coding RNAs (though see 

(Pamudurti et al., 2017) that have been largely overlooked for decades. The first 

circRNA, a plant viroid, was discovered in 1976 by (Sanger et al., 1976), and the first 

eukaryotic circRNA was found just years later (Hsu & Coca-Prados, 1979). Despite this 

early discovery, circRNAs were not commonly studied until the 2010’s, as researchers 

initially believed they were rare in eukaryotes and arose only due to abnormal or 

erroneous splicing (Nigro et al., 1991). Now, circRNAs are known to be abundant in 

eukaryotes and largely conserved across mammalian genomes (Jeck et al., 2013; Rybak-

Wolf et al., 2015; Salzman et al., 2013), and thus circRNAs are undergoing a research 

renaissance. 

Though our understanding of circRNAs is still in its infancy, emerging research 

suggests they are potent regulators of gene expression. circRNAs are generated via 

backsplicing of linear pre-mRNAs that results in RNA circles (L.-L. Chen & Yang, 2015). 

Though they may contain introns or span intergenic regions, most known circRNAs are 

derived from exons of their host genes (Jeck & Sharpless, 2014; Y. Zhang et al., 2013). 

This close relationship between circRNAs and their corresponding linear mRNA 

transcripts suggests many circRNAs regulate expression of their host genes through 
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competitive splicing (Ashwal-Fluss et al., 2014). In addition, circRNAs can interact with 

RNA-binding proteins (RBPs) (Conn et al., 2015; Dell’Orco et al., 2020; Zang et al., 

2020), bind to and sequester miRNAs (Hansen et al., 2013; Memczak et al., 2013), and 

even bind directly to mRNAs to influence expression (Hafez et al., 2022). Through 

interactions with multiple protein and RNA classes, circRNAs can act as major players in 

regulatory networks. For example, circRNAs may compete with linear mRNAs for 

binding to miRNAs, forming competing endogenous RNA (ceRNA) networks of 

circRNA-miRNA-mRNA interactions (Salmena et al., 2011). In this way, circRNAs can 

suppress the action of miRNAs, preventing miRNA repression of target genes. 

circRNAs are exciting targets for neurobiological research because they are 

enriched in the brain, particularly at synapses, and often arise from synaptic plasticity 

genes (Rybak-Wolf et al., 2015; You et al., 2015). For example, circHomer1 forms via 

alternative splicing of the Homer1b transcript of Homer1 (You et al., 2015; Zimmerman 

et al., 2020), a known synaptic plasticity gene with relevance to drug addiction 

(Szumlinski et al., 2008, 2006). Early evidence from (You et al., 2015) demonstrated 

that circHomer1 is enriched at synaptosomes and rapidly localizes to dendrites during 

periods of neuronal activity, suggesting that circHomer1, like the proteins encoded by its 

host gene, plays a role in synaptic plasticity. Since then, several studies have implicated 

this circRNA and others in neurological disorders relating to learning and memory, 

supporting a role for circRNAs in many aspects of neuronal and brain function (Floris et 

al., 2017; Hafez et al., 2022; Lukiw, 2013; Mehta et al., 2020; Zimmerman et al., 2020). 

However, few studies have examined circRNAs and their corresponding ceRNA networks 

in drug abuse (Dell’Orco et al., 2021, 2020; Floris et al., 2022; J. Li et al., 2020), leaving 

the role of circRNAs in addiction a wide-open field for discovery. 
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Analyzing RNA Expression 

There are many techniques for comparing expression of RNAs. One tried-and-

true technique is quantitative real-time polymerase chain reaction (RT-qPCR), which can 

be used to measure expression of a single RNA (Gibson et al., 1996). To prepare for RT-

qPCR, first RNA is isolated from a sample, and then complementary DNA (cDNA) is 

synthesized and amplified as a proxy for the RNA. To detect and quantify the RNA, PCR 

is performed with primers that are designed to anneal to the cDNA based on the 

sequence of interest. As the cDNA is extended, a fluorescent probe or dye added to the 

reaction emits a signal. The output measure of gene expression is the number of PCR 

cycles required to reach a threshold level of fluorescence, such that a lower cycle number 

indicates higher expression. This metric is then compared to expression of a chosen 

housekeeping gene that has consistent expression across samples. Non-coding RNAs can 

also be measured with RT-qPCR. In standard cDNA synthesis, an oligo(dT) primer is 

added which anneals to the poly(A) tail. However, certain non-coding RNAs such as 

miRNAs and circRNAs do not have poly(A) tails (Bartel, 2004; Jeck & Sharpless, 2014). 

Thus, a frequent approach for cDNA synthesis of miRNAs is to first add poly(A) tails and 

adapter sequences (Krepelkova et al., 2019). For circRNAs, random primers can be used 

in place of oligo(DT) primers to ensure all RNAs are amplified, regardless of poly(A) 

tailing. For circRNA analysis, primer design is also an important consideration, as the 

primers should be specific to the circular form and not their linear mRNA counterparts, 

with which they share high sequence similarity. To do so, primers must target sequences 

that flank the backsplice junction of the circRNA and face outward with respect to the 

genomic sequence (Jeck & Sharpless, 2014). 

Microarray and other array techniques allow for RNA expression analysis on a 

larger scale. While only a handful of RNA sequences can be quantified with a single RT-
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qPCR run, arrays allow the user to examine many RNAs at once. With microarrays, 

cDNA is placed on a microchip with hundreds or thousands of wells (Schena et al., 1995; 

Shalon et al., 1996). Each well corresponds to a specific sequence of interest and contains 

many DNA probes for that sequence. The cDNA hybridizes to these DNA probes, and 

RNA expression is then quantified based on the level of fluorescence in each well (Shalon 

et al., 1996). Importantly, microarrays rely on cDNA and thus amplification, which may 

introduce bias if some samples are amplified more efficiently than others. Other array 

techniques, including the nCounter technology developed by Nanostring, bypass this 

issue by allowing RNA to hybridize to RNA probes with no cDNA synthesis requirement 

(Eastel et al., 2019; Geiss et al., 2008; Kulkarni, 2011). Whichever technique is used, 

small modifications to the sample preparation and array can be made to analyze a wide 

variety of coding and non-coding RNAs. 

With RNA-sequencing (RNA-seq), RNA expression can be quantified for the 

whole transcriptome (Wang et al., 2009). With this technique, cDNA is cut into smaller 

fragments that are directly sequenced. These sequence reads can then be aligned to a 

reference genome or transcriptome, and reads that align accurately to a known DNA or 

RNA sequence can be quantified. Lastly, samples and treatment groups can be compared 

to find genes that are differentially expressed in the conditions of interest. With this 

approach, expression can be quantified and assessed for all RNA transcripts, along with 

some non-coding RNAs. Because of this, RNA-seq has become extremely popular in 

recent years across many disciplines, particularly as costs continue to decrease. RNA-seq 

data can also be utilized to identify non-coding RNAs. For example, several tools have 

been developed to identify circRNAs from RNA-seq data, usually by finding backsplice 

junctions and adjacent sequences from reads that do not align to the reference (L. Chen 

et al., 2021; Zeng et al., 2017). As with RT-qPCR, circRNA identification can be 
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facilitated by enriching for circRNAs and/or depleting mRNAs during sample 

preparation. However, most RNA-seq data can still be used to measure circRNAs 

expression, though at lower read counts, as long as it is not poly(A)+ selected (i.e., 

circRNA-depleted). Though using RNA-seq data that is not mRNA-depleted will reduce 

the accuracy of circRNA identification (L. Chen et al., 2021), this allows for the 

assessment of both circRNAs and coding RNAs from the same dataset, and can be 

appropriate depending on the specific study goal. 

 

Research Aims and Brief Overview 

 In this dissertation, I focus on coding and non-coding RNA expression in the NAc 

that underlies cocaine craving in rodents. Most commonly, I utilize the cue reactivity 

model in rats to measure cocaine-seeking behavior post-abstinence. In Chapter 2, I used 

this model along with environmental enrichment (EE), a therapeutic intervention known 

to attenuate drug-seeking behavior (Powell, Vannan, et al., 2020; Thiel et al., 2011, 

2009; Vannan et al., 2018). Using a Nanostring array, I identified miRNAs in the NAc 

shell related to craving and the molecular pathways they are likely to regulate. In 

Chapter 3, I compared several publicly available RNA-seq datasets, including one 

previously published in our lab, centering around cocaine craving in rodent models. 

Utilizing these data as a test case, I implemented a new workflow for candidate gene 

prioritization while providing a critique of standard RNA-seq analysis practices in the 

field. In Chapter 4, I identified several candidate circRNAs as related to cocaine craving, 

and constructed theoretical ceRNA networks for these circRNAs to illustrate possible 

mechanisms of genetic regulation related to cocaine craving. Overall, these works 

contribute to a greater understanding of coding and non-coding RNAs in rodent models 

of cocaine craving. 
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 Some of the research in this dissertation has either been previously published or 

is currently under review. Chapter 2, entitled “microRNA regulation related to the 

protective effects of environmental enrichment against cocaine-seeking behavior”, was 

previously published in Drug and Alcohol Dependence in April 2021 (Vannan et al., 

2021), with Dr. Gregory L. Powell as co-first author, Drs. Michela Dell’Orco and Melissa 

A. Wilson as co-authors, and Drs. Nora I. Perrone-Bizzozero and Janet L. Neisewander 

as co-senior authors. I contributed to the bioinformatics analyses with the co-first author 

and interpreted and curated the results for publication. Chapter 3, “An approach for 

prioritizing candidate genes from RNA-seq using preclinical cocaine datasets as a test 

case” is under review for publication. It is co-authored by Drs. Michela Dell’Orco, Nora I. 

Perrone-Bizzozero, and Janet L. Neisewander, with Dr. Melissa A. Wilson as senior 

author. I initially conceptualized the questions and approach used in this chapter, and 

the other authors helped refine the approach and interpretations. Chapter 4, “Alterations 

in circular RNA expression in the rat nucleus accumbens shell may regulate circRNA-

miRNA-mRNA regulatory networks in a model of cocaine craving”, has not yet been 

submitted for publication. Planned authors include Michael C. Johnson as co-first 

author, Drs. Michela Dell’Orco, Gregory L. Powell, Nikolaos Mellios, Melissa A. Wilson, 

and Nora I. Perrone-Bizzozero as co-authors, and Dr. Janet L. Neisewander as senior 

author. I performed the bioinformatics analyses, and collaborated with Michael C. 

Johnson, a Master’s student at Arizona State University, to collect the behavioral and 

RT-qPCR data. 
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CHAPTER 2 

MICRORNA REGULATION RELATED TO THE PROTECTIVE EFFECTS OF 

ENVIRONMENTAL ENRICHMENT AGAINST COCAINE-SEEKING 

BEHAVIOR 

 

Previously published as: 

Vannan, A., Powell, G. L., Dell'Orco, M., Wilson, M. A., Perrone-Bizzozero, N. I., & 

Neisewander, J. L. (2021). MicroRNA regulation related to the protective effects 

of environmental enrichment against cocaine-seeking behavior. Drug and 

Alcohol Dependence, 221, 108585. 

https://doi.org/10.1016/j.drugalcdep.2021.108585 

 

Abstract 

MicroRNAs (miRNAs) are “master post-transcriptional regulators” of gene 

expression. Here we investigate miRNAs involved in the incentive motivation for cocaine 

elicited by exposure to cocaine-associated cues. We conducted NanoString nCounter 

analyses of microRNA expression in the nucleus accumbens shell of male rats that had 

been tested for cue reactivity in a previous study. These rats had been trained to self-

administer cocaine while living in isolate housing, then during a subsequent 21-day 

forced abstinence period they either stayed under isolate housing or switched to 

environmental enrichment (EE), as this EE intervention is known to decrease cocaine 

seeking. This allowed us to create groups of “high” and “low” cocaine seekers using a 

median split of cocaine-seeking behavior. Differential expression analysis across high- 

and low-seekers identified 33 microRNAs that were differentially expressed in the 

nucleus accumbens shell. Predicted mRNA targets of these microRNAs are implicated in 
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synaptic plasticity, neuronal signaling, and neuroinflammation signaling, and many are 

known addiction-related genes. Of the 33 differentially-expressed microRNAs, 8 were 

specifically downregulated in the low-seeking group and another set of 8 had expression 

levels that were significantly correlated with cocaine-seeking behavior. These findings 

not only confirm the involvement of previously identified microRNAs (e.g., miR-212, 

miR-495) but also reveal novel microRNAs (e.g., miR-3557, miR-377) that alter, or are 

altered by, processes associated with cocaine-seeking behavior. Further research 

examining the mechanisms involved in these microRNA changes and their effects on 

signaling may reveal novel therapeutic targets for attenuating drug craving. 
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Introduction 

Psychostimulant abuse is a significant, ongoing problem in the U.S with 

devastating economic and social costs to drug abusers and their communities (National 

Drug Intelligence Center, 2011; National Institute on Drug Abuse, 2017; Pomara et al., 

2012). Cocaine use disorders (CUDs) in particular are a serious issue, as cocaine-related 

deaths have increased substantially over the past few decades, even as general use has 

declined (Center for Behavioral Health Statistics and Quality, 2015; McCall Jones et al., 

2017; National Institute on Drug Abuse, 2020). Unfortunately, there are few treatment 

options that are effective in promoting long-term abstinence from drug use, especially 

psychostimulant use. Consequently, 40-60% of drug users relapse within the first year of 

abstinence (National Institute on Drug Abuse, 2018)). This is in part because drug-

associated cues elicit drug craving that strengthens over prolonged abstinence, leaving 

those with CUDs vulnerable to relapse despite efforts to cease drug use (Dackis & 

O’Brien, 2001; Gawin & Kleber, 1986; Neisewander et al., 2000). For example, cues such 

as a crack pipe or crack house acquire conditioned stimulus effects which can trigger 

craving and relapse (Ciccocioppo et al., 2004; Conklin & Tiffany, 2002; Ehrman et al., 

1992; Weiss et al., 2001). Motivational effects of cocaine-conditioned cues persist even 

after months without drug use in animal models of drug-seeking, a phenomenon 

referred to as incubation of craving (Grimm et al., 2001; Neisewander et al., 2000; Tran-

Nguyen et al., 1998). Thus, treatments that reduce cue-elicited craving are needed to 

promote long-term abstinence. 

In both animals and humans, various forms of enrichment are effective in 

attenuating cocaine-related behaviors throughout the abstinence-relapse cycle (Lynch et 

al., 2013; Vannan et al., 2018). Typically, environmental enrichment (EE) in animal 

models consists of social housing in small groups that are given access to novel toys 
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and/or exercise equipment. Importantly, EE is effective in reducing drug-seeking 

behavior when given as an intervention during abstinence, as measured in cocaine 

conditioned place preference and operant behavior animal models (Chauvet et al., 2011; 

Ma et al., 2016; Thiel et al., 2011, 2010, 2009). Thus, EE can be used as a tool 

experimentally to create groups of animals with differing levels of cocaine-seeking 

behavior. 

There is growing interest in the epigenetics of drug abuse, including the role of 

microRNAs (miRNAs). In general, mammalian miRNAs post-transcriptionally silence 

gene expression by the imperfect base-pairing of nucleotides at positions 2-8 in the 5’ 

end of the miRNA (widely referred to as the “seed sequence”) and other miRNA 

sequences to the 3’ untranslated regions (UTRs) of target mRNAs (Bartel, 2009; Schirle 

et al., 2014). Because hundreds to thousands of genes have miRNA target sequences in 

the 3’UTRs, miRNAs function as “master regulators” of gene expression (Plotnikova et 

al., 2019). The capacity of miRNAs to manipulate and alter gene expression has made 

this class of RNAs an exciting avenue for finding new therapeutic targets for CUDs 

treatment development. So far, several miRNAs have been shown to play a role in the 

motivational processes underlying CUDs, including the let-7 family (Chandrasekar & 

Dreyer, 2009, 2011), miR-212 (Hollander et al., 2010; Im et al., 2010), miR-495 (Bastle 

et al., 2018), and others (Kenny, 2014). It is likely that many miRNAs that contribute to 

resilience or susceptibility to CUDs have not yet been identified. Furthermore, many 

previous studies have examined the NAc as a whole, including both the core and shell, 

yet these subregions interface differently with corticolimbic inputs and play different 

roles in cocaine-seeking behavior. For instance, the NAc shell receives input from the 

basolateral amygdala, and this pathway is involved in processing incentive salience of 

cocaine-associated cues (Ma et al., 2016; Millan & McNally, 2011). 
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The present study employed NanoString nCounter analysis to identify miRNAs 

that are differentially-expressed in the NAc shell in rats with “high” vs. “low” levels of 

cocaine-seeking behavior. Tissue was harvested from a subset of rats utilized in a 

previous experiment (Powell et al., 2020) that had confirmed that rats with a history of 

cocaine self-administration exhibit less operant responding reinforced by cocaine-

associated light/tone cues when they were housed in EE for 21 days of abstinence than 

when housed in isolation (ISO) [90.25 ± 20.96 and 207.4 ± 33.55 mean responses ± 

SEM, respectively (n=15-16/group)]. Here, we took advantage of the varying degrees of 

cue-elicited motivation for cocaine across a subset of the animals from this study to 

explore miRNAs as possible mediators of cue-elicited cocaine-seeking behavior.  

 

Methods 

Animals and tissue collection. All experiments were conducted in 

accordance with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals and approved by the Institutional Animal care and Use Committee 

at Arizona State University. Male Sprague-Dawley rats (N=12) used in a previous study 

(Powell, Vannan, et al., 2020) were sacrificed by isoflurane overdose immediately after a 

1-h test for cocaine cue reactivity. In the previous study, single-housed rats had been 

trained to self-administer cocaine (0.75 mg/kg, IV) delivered response-contingently with 

light and tone cues. After ≥15, 2-h sessions of training, rats underwent 21 days of forced 

abstinence, either remaining in single-housing or switching to an enriched environment 

with 3-5 cage mates, a running wheel, tubes, toys to enhance novelty, and extra nesting 

materials. Upon completion of forced abstinence, animals were placed back into the self-

administration chamber with the cues, but not cocaine, available response-contingently 

(i.e., cue reactivity test) (Acosta et al., 2008; Kufahl et al., 2009). The number of times 
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that a rat pressed the lever resulting in cue presentations without cocaine delivery was 

used as a measure of cocaine-seeking behavior and is thought to reflect the degree of 

incentive motivation for cocaine elicited by the cues. Within 5 min of completing the test, 

brains were harvested and rapidly frozen in 2-methylbutane that was placed on dry ice to 

achieve a temperature of approximately -20°C. Later, 2 mm coronal sections containing 

the NAc shell were excised using a brain matrix to place razor blades at the appropriate 

location on the ventral surface of the brain for capturing the NAc in the tissue section. 

Tissue punches were then taken containing the NAc core and anterior commissure (1 

mm diameter). Secondary punches (2 mm diameter) were taken containing the NAc shell 

using the previously punched location of the core as a landmark. RNA was isolated from 

the NAc shell samples using the standard Trizol method as performed previously (Bastle 

et al., 2018). Samples (100-150 ng of RNA) were then analyzed for miRNA expression 

using the Nanostring® nCounter Rat miRNA Expression Assay Kit v1.5 at the University 

of Arizona Genetics Core. The panel quantifies expression of 423 rat miRNAs in version 

v1.5, slightly fewer than the 496 listed in the miRBase Rattus norvegicus miRNA 

database.  

Bioinformatics analyses. Nanostring nCounter analysis provided expression 

levels of miRNAs as raw counts for each miRNA in the sample. 100 ng total RNA was 

used in a multiplexed reaction to anneal specific miRNA tags followed by ligation and 

enzymatic purification to remove excess unincorporated tags in the assay, using the 

manufacturer protocol. Sequence specific fluorescent reporter probes and biotinylated 

capture probes were hybridized to ligated target nucleic acid complexes overnight at 

65°C for >12 h, followed by a series of automated washes and immobilization onto a 

streptavidin lined cartridge for data collection. Digital images from the cartridges were 

obtained over 4 h with the nCounter Digital Analyzer (CCD camera and microscope 
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objective lens) using 555 FOV data resolution. Digital counts were tabulated and 

exported as comma separated values. 

Differential expression analysis was performed using the R package “limma” 

(Ritchie et al., 2015) to identify differences in miRNA expression between the high- and 

low-seeking groups. Briefly, normalization factors were calculated to scale the raw 

library sizes. Raw counts were converted to counts per million reads (CPM) for each 

miRNA, and miRNAs with very low expression (CPM <30) were filtered out, which 

removed 68 of 420 miRNAs before the analysis. Weighted least squares were calculated 

for each miRNA and sample, then a linear model was fit. Contrasts were performed on 

the fitted linear model to compare expression of each miRNA between high- and low-

seeking groups based on log2 fold change values.  

TargetScan 7.2, a miRNA target predictor, was used to determine possible mRNA 

targets of the differentially-expressed miRNAs (http://www.targetscan.org/vert_72) 

(Agarwal et al., 2015). TargetScan predicts targets based on the miRNA’s seed sequence, 

as well as conserved sites on mRNAs that fully or partially match this sequence. For 

some miRNAs, the available data on the predicted mRNA targets applied not to a single 

miRNA, but to a miRNA family. For example, mir-3573-5p is part of the miR-423-

5p/3573-5p family and predicted targets for all miRNAs in this family are shared. To 

obtain accurate TargetScan predictions, MIMAT accession numbers provided by 

Nanostring were used to determine whether each mature miRNA originated from the 5’ 

or 3’ arm of its precursor. Prior literature does not always follow this convention; thus, in 

this paper, the 3p/5p label is only included when discussing results of the current study 

exclusive of comparisons to other work, or when prior authors have made the miRNA 

designations clear. 
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Because some miRNAs were upregulated, while others were downregulated, 

predicted mRNA targets were given “impact scores” to signify the levels of up- and 

downregulation that might result from the miRNA changes. The predicted targets and 

impact scores were input into IPA (version 51963813; QIAGEN Inc.) to identify 

significantly regulated pathways (Krämer et al., 2014). We then compared the 

TargetScan predicted mRNA targets of the differentially-expressed miRNAs to the 

known addiction-related genes in the Knowledgebase of Addiction-Related Genes 

(KARG) database (http://karg.cbi.pku.edu.cn) (C.-Y. Li et al., 2008). At the time of 

analysis, the rat KARG contained 1135 genes, of which 347 had an evidence score of 2 or 

more (were supported by 2 or more lines of evidence), and these were the only genes 

included in the analysis.  

miRNA validation with RT-qPCR. Leftover RNA from the same samples 

used for the Nanostring analyses was used to validate select miRNAs. For each sample, 

approximately 45 ng of purified RNA were used to prepare cDNA using the Taqman® 

Advanced MicroRNA cDNA synthesis kit (Applied Biosystems, Foster City, CA, USA, # 

A28007), Taqman® Advanced MicroRNA Assay primers (Life Technologies, Grand 

Island, NY, USA) for miR-376c-3p, miR-107-3p, and miR-212-3p, and Taqman® 

MicroRNA Assay primer for the control transcript U6. cDNA for each sample was diluted 

1:100 with nuclease-free water, then run in triplicate for each miRNA and U6. Relative 

expression was determined using the comparative 2-∆Ct method (Livak & Schmittgen, 

2001). 

Statistical analysis. Rats were divided into groups based on median split of 

cocaine-seeking behavior. Statistical calculations were performed in GraphPad Prism 8, 

or R 3.6 (R Core Team, 2014). Linear regressions were used to analyze the correlation 

between miRNA levels (CPM) and cocaine-seeking behavior. For differential expression 
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analysis, p-values and false discovery rates (FDR) using the Benjamini-Hochberg 

method were calculated using the R package “limma” (Ritchie et al., 2015). The statistical 

threshold for all tests was p < 0.05. 

Data availability. Nanostring data are deposited in the Gene Expression 

Omnibus (GSE153524). R code used for data analyses are available at 

https://gitlab.com/neisewander_asu/vannan-powell-2020. 

 

Results 

Differentially-expressed miRNAs in the NAc shell correlate with 

cocaine-seeking behavior. The high and low cocaine-seeking groups (n=6/group) 

derived from the median split of cocaine seeking values were significantly different in 

their cocaine-seeking behavior [t(10) = 3.452, p = 0.0062, Figure 1A]. Cocaine-seeking 

values aligned well with housing condition: the “high” cocaine-seeking group consisted 

of 83.3% (5) ISO and 16.7% (1) EE rats and vice versa for the “low” cocaine-seeking 

group. In total, expression levels of 75 miRNAs were significantly correlated with 

cocaine-seeking behavior (Supplementary Table 1), although not all of these miRNAs 

were differentially expressed in the low vs. high seeking groups. Analysis of Nanostring 

counts using limma identified 33 miRNAs that were differentially expressed in the NAc 

shell in animals that displayed high versus low cocaine-seeking behavior (Table 1). Of 

these, 8 were downregulated and 25 were upregulated (Fold Change >1 and <1 on Table 

1, respectively) in the low-seeking group relative to the high-seeking group. For Table 1, 

log2 fold change values have been converted to linear values where Fold Change = 

2^(log2 values). In addition, 8 of the 33 miRNAs had expression levels that correlated 

with cocaine-seeking behavior, 5 positively and 3 negatively (Figure 1C). 
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Chapter 2, Figure 1. Correlation of miRNA expression levels and the number of active 
lever presses during the cue reactivity test in each animal. (A). Separation of groups of 
the low- (blue) and high-seeking (orange) groups determined by median split of active 
lever presses. Boxes indicate median and quartiles; whiskers indicate minimum and 
maximum. * indicates difference from low-seeking group, p < 0.05, independent 
samples t-test. Positive (B) and negative (C) Pearson correlations of miRNA expression 
with cocaine-seeking behavior, as measured by active lever presses during the cue 
reactivity test. Isolated and enriched animals are depicted with open black circles and 
green squares, respectively. Only miRNAs that had both significantly different 
expression between high- and low-seeking groups and that correlated significantly with 
behavior (table inset on each graph) are shown here. 
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Chapter 2, Table 1 

Differentially-Expressed miRNAs between the High- and Low-Seeking 
Groups 
 

miRNA 
High-Seeking 

(CPM)1 
Low-Seeking 

(CPM) 
Fold 

Change2 
P-Value FDR3 

miRNAs with higher expression in high cocaine-seeking animals 

miR-463-3p 37.04 23.26 1.447 0.0188 0.3885 

miR-346-5p 42.42 26.40 1.439 0.0114 0.3291 

miR-483-3p 45.76 29.62 1.431 0.0036 0.3108 

miR-3557-5p 33.24 21.68 1.417 0.0074 0.3108 

miR-193a-3p 32.98 20.81 1.390 0.0275 0.4400 

miR-133a-3p 68.68 46.95 1.378 0.0133 0.3291 

miR-142-5p 43.47 28.52 1.342 0.0385 0.4906 

miR-3573-5p 39.58 26.59 1.331 0.0204 0.3993 

miRNAs with higher expression in low cocaine-seeking animals 

miR-29a-3p 68099.60 70947.29 0.878 0.0360 0.4868 

miR-16-5p 10815.91 11290.58 0.875 0.0465 0.5104 

miR-93-5p 306.12 324.61 0.864 0.0326 0.4783 

miR-495-3p 6727.51 7266.45 0.850 0.0422 0.4906 

miR-376c-3p 1106.98 1197.90 0.845 0.0289 0.4429 

miR-410-3pa 2722.19 2973.03 0.841 0.0239 0.4205 

miR-329-3p 5361.27 5863.05 0.834 0.0432 0.4906 

let-7a-5p 7226.04 7915.63 0.833 0.0258 0.4320 

miR-652-3p 734.49 800.55 0.832 0.0486 0.5104 

miR-377-3p 290.24 320.87 0.832 0.0418 0.4906 

miR-107-3p 23171.08 25691.54 0.828 0.0150 0.3291 

miR-138-5p 1727.38 1915.73 0.822 0.0225 0.4175 

miR-487b-3p 4030.70 4628.25 0.802 0.0066 0.3108 

miR-344b-1-3p/ 
miR-344b-2-3pa 

357.45 411.75 0.793 0.0026 0.3108 

miR-128-3p 1644.39 1883.53 0.791 0.0346 0.4868 

miR-137-3p 2451.13 2888.88 0.790 0.0147 0.3291 

miR-323-3p 1155.50 1336.43 0.790 0.0088 0.3108 

miR-337-3p 317.90 377.92 0.776 0.0051 0.3108 

miR-125b-3p 1341.30 1589.26 0.772 0.0125 0.3291 

miR-409-5p 326.65 389.53 0.771 0.0049 0.3108 

miR-218a-5p 6391.04 7740.13 0.759 0.0393 0.4906 
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miR-212-3pb 354.77 448.44 0.728 0.0078 0.3108 

miRNA 
High-Seeking 

(CPM)1 
Low-Seeking 

(CPM) 
Fold 

Change2 
P-Value FDR3 

miR-130b-3p 1279.74 1616.11 0.719 0.0104 0.3291 

miR-221-3p 862.09 1078.44 0.718 0.0087 0.3108 

miR-132-3pb 25643.46 32814.25 0.710 0.0188 0.3885 
 

a, bIndicate miRNAs in the same family. 
 
1 miRNA expression levels were calculated as counts per million (CPM) and where 
available, 3p or 5p designations are included. 
 
2 Fold change is an estimate of the effect derived from the log2 fold changes from 
“limma”, which were then converted to linear values with the equation 2^(log2 value).  
Values <1 signifies higher expression in high-seeking animals, and values >1 signifies 
higher expression in low-seeking animals.  
 
3 FDR = false discovery rate. 
 
 

Nanostring results for miR-376c-3p, miR-107-3p, and miR-212-3p, which were 

all elevated in low-seeking animals, were validated using RT-qPCR (Supplementary 

Figure 1). Subsequent t-tests including all rats (n=6 of each group) did not show 

significant differences in expression between high- and low-seeking groups for these 

miRNAs. However, separating the seeking groups into quartiles (including only the 3 

highest and 3 lowest cocaine-seeking animals), revealed significantly higher expression 

in the low-seeking group for miR-376c-3p [t(4) = 3.05, p = 0.0379, Supplementary 

Figure 1A] and miR-107-3p [t(4) = 2.81, p = 0.0481, Supplementary Figure 1B]. Although 

the values for miR-212-3p did not quite meet the threshold for significance after 

separating animals into quartiles [t(4) = 2.63, p = 0.0583], they did correlate 

significantly with behavior overall ([F(1,10) = 6.16, p = 0.0324]) (Supplementary Figure 

1C). 

Predicted mRNA targets of the differentially-expressed miRNAs. 

TargetScan 7.2 was utilized to identify predicted mRNA targets of the differentially-
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expressed miRNAs for the rat, which were then utilized in subsequent analyses. The 

number of predicted targets varied for each miRNA and ranged from 11 (miR-487b-3p) 

to 3,972 (miR-3557-5p). 

 To create a list for input into IPA, first we determined the overall impact of our 

miRNAs on the list of predicted targets (mRNAs) relative to the low-seeking condition. If 

a miRNA was upregulated in low cocaine-seeking animals, its predicted targets were 

given a score of -1, as they would be downregulated by that miRNA, whereas targets of 

downregulated miRNAs were given a score of +1. For example, the mRNA Nuclear factor 

I B (Nfib) is a predicted target of 16 differentially-expressed miRNAs, of which 3 were 

downregulated in the low-seeking group (+3) and 13 of which were upregulated (-13), 

leading to a total impact score of -10 (Supplementary Table 2). We began with 9,761 

predicted targets, which comprised 23.76% of the transcribed genes in the tissue 

analyzed. Because more miRNAs were upregulated rather than downregulated in the 

low-seeking condition, predicted targets were more likely to have a negative impact 

score, and negative impact scores were greater in magnitude: 6,456 targets had a 

negative impact score (range: -1 to -14); 3,305 had a positive or 0 impact score (range: 0 

to +3.) Because IPA analysis is more robust with smaller lists of genes, we prioritized 

candidates based on impact score. Only mRNA targets that were mapped to IPA and had 

an impact score of -3 or lower and +1 or higher were included, reducing the list to 3,600 

predicted mRNA targets. 
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Chapter 2, Figure 2. Summary of pathway analysis using IPA. Panels depict several pathways (A) and diseases and functions 
(B) related to the predicted targets of the differentially-expressed miRNAs. Threshold levels indicate –[log (p = 0.05)]. Bar 
colors represent the ranges of the z-score calculated by IPA. Darker shades indicate z-scores farther from zero, and blue 
indicates a negative z-score. 
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The majority of mRNAs were predicted targets of only 1 or 2 differentially-

expressed miRNAs (6,128; 62.8%). However, 9 mRNAs were targets of 15 or more 

miRNAs: Zinc finger and BTB domain containing 20 (Zbtb20), Nuclear factor of 

activated T-cells 5 (Nfat5), Argonaute RNA-induced silencing complex (RISC) 

component 1 (Ago1), Nfib, Protein quaking (Qki), Phosphodiesterase 3A (Pde3a), 

Retinoic acid receptor-related orphan receptor B (Rorb), Transcription factor 4 (Tcf4), 

and Kruppel like factor 7 (Klf7), with impact scores ranging from -8 to -14. In total, 136 

mRNAs (1.39%) were predicted targets of at least 10 differentially-expressed miRNAs. 

IPA revealed many significant pathways, Including Wnt/ β-catenin Signaling, 

Synaptogenesis Signaling Pathway, Axonal Guidance Signaling, Dopamine/DARPP34 

Feedback in cAMP Signaling, CREB Signaling in Neurons, and ERK5 Signaling, among 

others (Figure 2A, Supplementary Table 3). Significant Diseases and Functions were also 

provided by IPA (Figure 2B, Supplementary Table 4) and included: Learning in the 

category Behavior; Development of Neurons and Morphogenesis of Neurons in the 

categories Cellular Development and Cellular Growth and Proliferation; Migration of 

Neurons in the category Cellular Movement; Transcription of RNA and Expression of 

RNA in the category Gene Expression; and Neurotransmission in the category Nervous 

System Development and Function (Supplementary Tables 5-10). 

miRNAs and addiction-related genes. For each miRNA, the number of 

predicted targets found in TargetScan was also compiled and then cross-referenced to 

addiction-related genes in the KARG database (Table 2). Three miRNAs, miR-3557-5p, 

miR-377-3p, and miR-337-3p, targeted a large percentage of KARG  (between 17.00% 

and 24.21%). Together, the putative targets of significant miRNAs covered 205 (59.1%) 

of the 347 KARG genes included in our analysis. Several addiction-related mRNAs were 

predicted to be targets of at least 10 differentially-expressed miRNAs: Nuclear factor I A 



 

27 

(Nfia), Nfib, Circadian locomotor output cycles protein kaput (Clock), Ataxin 1 (Atxn1), 

cyclic AMP (cAMP)-responsive element binding protein 1 (Creb1), Zinc finger and BTB 

domain containing 16 (Zbtb16), Purine rich element binding protein A (Pura), and 

Gamma-aminobutyric acid (GABA) type B receptor subunit 2 (Gabbr2), potentially  

indicative of their key role in cocaine-seeking and drug motivation 

(Supplementary Table 11). Notably, all these mRNAs were predicted to be downregulated 

in the low-seeking group compared to high-seeking, with impact scores between -4 

(Zbtb16) and -11 (Atxn1) (Supplementary Table 2). 

 

Discussion 

NanoString nCounter analysis of the NAc shell of male rats with a history of 

cocaine self-administration that were tested for cocaine-seeking behavior after 21 days of 

abstinence identified 33 miRNAs displaying differential expression in the “high” and 

“low” cocaine-seeking groups. Of these, expression of 8 miRNAs correlated significantly 

with cocaine-seeking behavior. Predicted mRNA targets of the 33 miRNAs were analyzed 

using IPA, which revealed several significant pathways including Synaptogenesis and 

Opioid Signaling. Cross-reference of TargetScan and the KARG database showed that 

many of these miRNAs were predicted to target mRNAs of addiction-related genes. 
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Chapter 2, Table 2 

Overlap of the Predicted mRNA Targets for Each miRNA in TargetScan and 
KARG Databases. 
 

miRNA TargetScan1 KARG1 % KARG2 

miRNAs with higher expression in high cocaine-seeking animals 

miR-463-3p 1396 26 7.49 % 

miR-346-5p 114 6 1.73 % 

miR-483-3p 79 4 1.15 % 

miR-3557-5p 3972 84 24.21 % 

miR-193a-3p 190 5 1.44 % 

miR-133a-3p 549 25 7.20 % 

miR-142-5p 704 21 6.05 % 

miR-3573-5p 129^ 6 1.73 % 

miRNAs with higher expression in low cocaine-seeking animals 

miR-29a-3p 1013 32 9.22 % 

miR-16-5p 1090^ 30 8.65 % 

miR-93-5p 1056^ 29 8.36 % 

miR-495-3p 616 22 6.34 % 

miR-376c-3p 188^ 7 2.02 % 

miR-410-3pa 497^ 14 4.03 % 

miR-329-3p 255^ 7 2.02 % 

let-7a-5p 1022^ 19 5.48 % 

miR-652-3p 14 1 0.29 % 

miR-107-3p 558^ 22 6.34 % 

miR-138-5p 537 16 4.61 % 

miR-487b-3p 11 1 0.29 % 

miR-344b-1-3p/ 
miR-344b-2-3pa 

497^ 14 4.03 % 

miR-128-3p 950 25 7.20 % 

miR-137-3p 1019 26 7.49 % 

miR-323-3p 357 10 2.88 % 

miR-337-3p 3243 65 18.73 % 

miR-125b-3p 443 9 2.59 % 

miR-409-5p 100 2 0.58 % 

miR-218a-5p 869 26 7.49 % 

miR-212-3pb 360^ 14 4.03 % 
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miR-130b-3p 748^ 19 5.48 % 

miR-221-3p 366^ 14 4.03 % 

miR-132-3pb 360^ 14 4.03 % 

 
^ Represents miRNAs that were present on TargetScan as miRNA families, not 
individual miRNAs. miRNAs in the same family share their seed sequence and thus the 
same predicted miRNA targets. 

a, b Indicate miRNAs in the same family. 

1 Values are the number of predicted mRNA targets found in each respective database. 

2 Percentage of KARG that the predicted targets comprise. Colors indicate miRNAs 
relative to the other group. 
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Many of the differentially-expressed miRNAs identified in this study have been 

previously implicated in drug abuse, including miR-29a, miR-16, miR-495, mir-376c, 

miR-329, miR-138, miR-137, miR-337, miR-125b, miR-212, miR-130b, miR-221, and 

miR-132 (Bastle et al., 2018; Dave & Khalili, 2010; Eipper-Mains et al., 2011; Hollander 

et al., 2010; Im & Kenny, 2012; Lippi et al., 2011; Schaefer et al., 2010; Shin et al., 2010). 

Interestingly, these miRNAs all had greater expression in the low-seeking group 

compared to the high-seeking group. Of these, miR-212, a CREB-induced activity-

dependent miRNA in the same family as miR-132, is perhaps the best-studied in the 

addiction field. For example, Sadakierska-Chudy et al. (Sadakierska-Chudy et al., 2017) 

found that 2-h daily access to cocaine increases both miR-212 and miR-132 in the dorsal 

striatum compared to saline-yoked controls, and this increase is persistent, lasting 10 

days into subsequent extinction training. In addition, Hollander et al. (Hollander et al., 

2010) demonstrated that miR-212 and miR-132 may be involved in the transition from 

casual to compulsive drug use, as both are upregulated in the dorsal striatum following 

extended (6-h) daily cocaine self-administration compared to cocaine-naïve rats. They 

also found that striatal miR-212 overexpression reduces compulsive-like cocaine-taking 

behavior during extended access (6-h daily sessions), while knockdown produces more 

compulsive cocaine consumption. Due to the close relatedness of miR-132 to miR-212, 

the authors suggest miR-132 may play a similar role in compulsive cocaine-taking. In the 

present study, the increased expression of miR-212 and miR-132 in the NAc shell of rats 

with low cocaine-seeking behavior suggests that these miRNAs are protective against 

motivation for cocaine. Together, it appears that striatal miR-212 and miR-132 

expression may shield against two defining phases of CUDs: transition to an addicted-

like phenotype as well as craving during protracted abstinence. 
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Among the miRNAs previously associated with motivation for cocaine is miR-

495, a miRNA that we identified because its levels decrease during cocaine self-

administration and its over-expression in the NAc shell attenuates motivation for 

cocaine (Bastle et al., 2018). We have shown that miR-495  regulates expression of 

multiple addiction-related genes including Brain derived neurotrophic factor (Bdnf), 

Calcium-calmodulin activated protein kinase IIα (Camk2a) and Activity-regulated 

cytoskeleton-associated protein (Arc) among other mRNAs such as Per2 and Gria3 

(Bastle et al., 2018). Here, we found that miR-495 has higher expression in low-seeking 

animals, supporting our prior research that suggests upregulation of miR-495 is 

protective against motivation for drugs of abuse.  

To identify novel candidate miRNAs that may regulate cocaine-related behavior 

in this study we cross-referenced TargetScan and KARG. Of the 33 differentially-

expressed miRNAs, miR-3557-5p, miR-377-3p, and miR-337-3p were predicted to target 

particularly high percentages of the KARG database (>17.00%, up to 24.14%). Of these 3, 

miR-3557-5p and miR-377-3p have not been studied in substance abuse or psychiatric 

illness to our knowledge, suggesting they may be novel targets for addiction research. 

However, miRNAs that were predicted to target a large percentage of KARG also had 

many TargetScan predicted targets (>2000). Caution is needed when the number of 

predicted targets is so large, due to an increased likelihood of false positives and 

limitations of these databases.  By contrast, miRNAs with fewer than 200 predicted 

targets (miR-346-5p, miR-483-3p, miR-193a-3p, miR-3573-5p, miR-376c-3p, miR-652-

3p, miR-487b-3p, miR-409-5p) had little overlap with the KARG database (under 

2.02%). 

Among the miRNAs predicted to target expression of a large number of 

addiction-related genes, miR-337-3p has been the subject of prior drug abuse research. 
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Here, we found that miR-337-3p has significantly higher expression in the low-seeking 

group, suggesting it may be protective against cocaine-seeking behavior. However, in 

striatal Dopamine Receptor 2 (Drd2)-expressing neurons, miR-337-3p is upregulated 

after acute cocaine injection in mice (Schaefer et al., 2010), suggesting that this miRNA 

may be associated with the initial neurobiological changes after drug exposure. Similarly, 

miR-376c, miR-138, and miR-137, which all have significantly higher expression in the 

low-seeking group in our study, are also upregulated in striatal Drd2-expressing neurons 

after acute cocaine injection (Schaefer et al., 2010). Therefore, these miRNAs may either 

protect against or facilitate addictive behaviors depending on factors such as previous 

drug experience. Other factors that may contribute to these seemingly contradictory 

results include differences in the brain region studied and cell-type specificity. 

Several addiction studies have identified the importance of let-7 miRNAs, 

particularly let-7d (Chandrasekar & Dreyer, 2009, 2011; He et al., 2010; Hollander et al., 

2010), although these miRNAs have few addiction-related targets according to KARG 

(1.86%). For example, let-7d expression is decreased in regions of the mesolimbic reward 

pathway including the NAc core and shell, striatum, and ventral tegmental area after 15 

days of daily cocaine injections compared to saline controls (Chandrasekar & Dreyer, 

2009), whereas overexpression of let-7d in the NAc attenuates cocaine conditioned place 

preference (Chandrasekar & Dreyer, 2011). Here, we demonstrate that another let-7 

family member, let-7a, has higher expression in low-seeking animals and displays a 

significant negative correlation with cocaine-seeking. Together, these data suggest let-7 

miRNAs may modulate different aspects of cocaine-related behavior.  Although 

TargetScan assumes the same predicted targets for all let-7 miRNAs, differences in their 

biogenesis and expression patterns may contribute to distinct roles in neuronal function 

and thus drug abuse (Roush & Slack, 2008). 
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Many of the miRNAs identified here have been explored primarily in relation to 

other psychiatric illnesses, such as schizophrenia and depression, which have high 

comorbidity with substance abuse (Batel, 2000; Kessler et al., 2005; Kosten et al., 1998; 

Paykel et al., 2005). For example,  miR-16, miR-495, miR-652, miR-107, miR-138, and 

miR-137 have been linked to schizophrenia (Beveridge et al., 2010; Moreau et al., 2011; 

Ripke et al., 2011; Santarelli et al., 2011; Wright et al., 2013) and were all upregulated in 

the low-seeking group compared to the high-seeking animals in the present study. 

Similarly, miR-16 has been implicated in depression, and is believed to underlie the 

therapeutic effects of the antidepressant fluoextine through targeted downregulation of 

the serotonin transporter (SERT) mRNA (Slc6a4) (Baudry et al., 2010). Importantly, 

antidepressants that blocks serotonin reuptake through SERT, encoded by the gene 

Slc6a4, are effective in reducing cocaine-seeking and -taking in some preclinical models 

(Baker et al., 2001; Burmeister et al., 2003; Harris et al., 2001; Richardson & Roberts, 

1991). This suggests that miR-16-5p, which was found here to have higher expression in 

low-seeking rats, may be therapeutic for treating addiction by reducing depressive 

symptoms. The overlap of miRNAs implicated in addiction and comorbid psychiatric 

illnesses may help inform treatments for those suffering from addiction occurring in 

conjunction with, or exacerbated by, other conditions.  

We utilized IPA to uncover pathways that are potentially regulated by the 33 

differentially-expressed miRNAs by inputting the miRNAs’ predicted mRNA targets and 

the estimated impact of the miRNAs on their expression (i.e. impact score).  This 

analysis revealed several pathways, including Axonal Guidance Signaling, Opioid 

Signaling, and ERK5 signaling, that are potentially regulated by the differentially-

expressed miRNAs. Many of these pathways have previously been implicated in 

addiction, including WNT/β-catenin signaling (Cuesta & Pacchioni, 2017) and 
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Neuroinflammation signaling pathway (Clark et al., 2013). These results also validate 

our recent RNA-seq analysis of the NAc shell in animals that underwent the same 

training and testing procedures as the present study, except that in addition to EE and 

ISO housing, animals also underwent different lengths of forced abstinence (1 or 21 days) 

(Powell, Vannan, et al., 2020). We found that contrasting EE and ISO animals given 21 

days of abstinence, similar to the present study, implicated several of the pathways found 

here, including Synaptogenesis Signaling, Reelin Signaling, Neuroinflammation 

Signaling, Synaptic Long-Term Potentiation, and CREB Signaling in Neurons, and that 

Bdnf, a widely studied addiction gene (Xuan Li & Wolf, 2015), was a top upstream 

regulator of this comparison. In the present study, 7 miRNAs are predicted to target 

Bdnf with an impact score of -7. IPA also revealed significant functions of the predicted 

targets including Dendritic Growth/Branching and Morphology of Dendritic Spines, 

which support prior research that several of our miRNAs of interest, including miR-29a, 

miR-329, miR-137 and miR-132, regulate dendritic spine formation and morphology 

(Impey et al., 2010; Lippi et al., 2011; Smrt et al., 2010) Indeed, our IPA results both 

validate and expand on current knowledge by implicating several miRNAs in cue-elicited 

cocaine-seeking behavior. 

Of the pathways identified in the current study, CREB signaling is one of the 

most highly studied in addiction (William A. Carlezon et al., 2005; Krasnova et al., 2016; 

Kreibich et al., 2009; Larson et al., 2011; Mattson et al., 2005). As mentioned earlier, 

increased miR-212 expression is related to reduced compulsive-like cocaine-taking 

behavior, which is thought to involve increasing CREB signaling and decreasing 

MeCP2/BDNF signaling (Hollander et al., 2010; Im et al., 2010). Similarly, our prior 

study suggested CREB Signaling in Neurons is an important mechanism underlying 

cocaine-seeking behavior, and found that Creb1 was a top upstream regulator of the 
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differentially-expressed RNAs in the contrast between EE and ISO animals with 21 days 

of abstinence (Powell, Vannan, et al., 2020). Here, we found that 11 of the 33 

differentially-expressed miRNAs in high- vs. low-cocaine seeking animals are predicted 

to target Creb1 (impact score = -7), suggesting that these miRNAs may be important 

regulators of the pathways identified in our previous study.  

A caveat of the median split used to examine the effects of housing environment 

during forced abstinence in the present study is that animals at the outer range of the 

housing groups showed nearly the same lever pressing during the cue reactivity tests, as 

can be seen in Figure 1A. We considered using a quartile analysis, which includes only 

the 3 animals with the greatest and least cue reactivity (i.e., 6 total animals representing 

the first and fourth quartiles of the total dataset), however, a drawback to this approach 

is the loss of power due to smaller sample size, reducing the capacity to find potentially 

relevant changes in miRNA expression. Our follow up analyses showing significant 

correlations of cocaine-seeking behavior with expression of 75 individual miRNAs, 

including 8 of the 33 miRNAs that are differentially expressed between “low” and “high” 

reactivity groups, mitigated concern with our approach. Furthermore, a preliminary 

comparison to the quartile analysis showed 11 differentially-expressed miRNAs, 4 of 

which are shared with the original analysis (miR-346-5p, miR-193a-3p, miR-3573-3p, 

and miR-107-3p). These 4 miRNAs, along with 4 of the 7 uniquely identified miRNAs 

(miR-301b-3p, miR-3561-3p, miR-3558-3p, and miR-208b-3p), are significantly 

correlated with behavior. We also used the quartile analysis in our follow-up RT-qPCR 

validation experiments, which confirmed increased expression of miR-276c and miR-

107-3p in the low-seeking group relative to high-seeking animals, and additionally 

showed a significant correlation of miR-212-3p expression with cocaine-seeking behavior 

with all 12 animals. Finally, Nanostring nCounter employs dual probes and hybridization 
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to directly measure target molecules without the bias of amplification-dependent 

techniques (e.g. RT-qPCR) (Eastel et al., 2019), and though not as sensitive as small 

RNA-seq, Nanostring displays improved detection of lowly-expressed miRNAs that 

might be missed by techniques such as microarrays (Eastel et al., 2019; Kulkarni, 2011). 

This is especially important for detecting disease biomarkers, which may be present in 

low abundance (Foye et al., 2017). Indeed, for the present study, all 8 differentially-

expressed miRNAs that were elevated in the high-seeking group displayed low CPM 

values. Still, Nanostring is a proprietary platform, which somewhat limits flexibility and 

future use. In addition, the specificity of the assay depends largely on the design of the 

probes (Eastel et al., 2019); here, however, we used a pre-designed assay from 

Nanostring that has been widely used by other researchers (Chaudhuri et al., 2018; 

Mellios et al., 2018; Murphy et al., 2014), bolstering confidence in our approach. 

 

Conclusion 

In this study, we identified 33 miRNAs that are differentially-expressed in rats 

displaying high versus low cocaine-seeking behavior. Although this study focused on 

motivation for cocaine during abstinence, it is possible that the miRNAs identified may 

be relevant to other aspects of CUDs, as others have linked miRNAs to acute cocaine 

exposure (Bastle et al., 2018), escalation of cocaine self-administration (Hollander et al., 

2010), and cocaine CPP (Chandrasekar & Dreyer, 2011; Viola et al., 2016). 

Understanding the role of these miRNAs in motivation for cocaine may lead to novel 

treatments as currently pioneered in the cancer field, where some miRNA therapeutics 

have even advanced to clinical trials (Bonneau et al., 2019; Wahid et al., 2010). Further 

research on the role of miRNAs in CUDs will aid in understanding the underlying 
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mechanisms involved and position the field to capitalize on the knowledge for 

development of treatments. 

 

Supplementary information 

 Supplementary Figure 1 is included at the end of this chapter. Supplementary 

Tables 1-11 are provided on GitHub (https://github.com/SexChrLab/Vannan-

Dissertation-Supplements). 
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Chapter 2, Supplementary Figure 1. Select differentially-expressed miRNAs from 
the Nanostring analysis were validated with RT-qPCR. Animals were separated into 
quartiles by cocaine-seeking behavior, and the 3 lowest (blue) and 3 highest (orange) 
seekers are depicted. Low-seeking animals had higher expression of miR-376c-3p (A) 
and miR-107-3p (B) compared to high seekers. For miR-212-3p (C), this comparison was 
not significant, though there was a significant correlation of relative expression derived 
from RT-qPCR and cocaine-seeking behavior. For the correlation, isolated and enriched 
animals are depicted with open black circles and green squares, respectively.  
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CHAPTER 3 

AN APPROACH FOR PRIORITIZING CANDIDATE GENES FROM RNA-SEQ 

USING PRECLINICAL COCAINE CRAVING DATASETS AS A TEST CASE 

                                                                                                               

Submitted for publication as: 

Vannan, A., Dell’Orco, M., Perrone-Bizzozero, N. I., Neisewander, J. L., Wilson M. A. An 

approach for prioritizing candidate genes from RNA-seq using preclinical cocaine 

craving datasets as a test case. 

 

 Abstract 

The addiction field relies heavily on rodent models to probe the complex molecular 

mechanisms underlying drug motivation and reward. However, findings in animal 

research often fail to be reproduced or translated into clinical treatments. Here, we 

developed and applied standardized workflows to three RNA-sequencing (RNA-seq) 

studies in rodent self-administration models to assess reproducibility and translational 

viability of potential gene targets. Generally, we found low overlap of differentially-

expressed genes (DEGs) across datasets using a significance level of P < 0.05, and only 1 

DEG in any dataset after correcting for multiple testing (FDR < 0.05 or FDR < 0.1), 

raising concerns about false positives. When using a nominal P value, which is a 

standard used in the field, we found potential genomic targets for drug craving and 

withdrawal that overlap across datasets. Several of these shared genes are conserved in 

humans and/or are highly expressed in reward regions of the brain, but the sample sizes 

in all datasets limit the power to distinguish true positives from false positives. Thus, we 

advocate for improved RNA-seq experimental design, data collection, statistical testing, 
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and metadata reporting that will bolster the field’s ability to communicate across 

research groups and advance addiction science in a more reproducible manner. 
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Introduction 

Substance use disorders (SUDs) are a critical health issue resulting in substantial 

financial and social costs in the U.S. and worldwide (Cartwright, 2008). SUDs are driven 

by gene-environment interactions and manifest in complex behavioral phenotypes that 

are difficult to disentangle in clinical populations (Buckland, 2008; Goldman et al., 

2005). Because of this, few studies in human cocaine abusers are able to incorporate 

both behavioral information and an unbiased evaluation of genetic data, e.g. through a 

genome-wide association study (GWAS) or next-generation sequencing (though see 

(Marees et al., 2020). Thus, animal models have been critical to our understanding of the 

behavioral and genetic correlates of drug abuse. The self-administration (SA) paradigm, 

in which animals learn to repeatedly perform a behavior (e.g. lever press or nose poke) to 

receive a drug reinforcer, has long been considered the gold standard of preclinical 

addiction research (Mello & Negus, 1996). Variations on the SA model have been used to 

study many aspects of substance abuse, including the pharmacological effects of drugs, 

initiation and maintenance of drug use, and escalation of drug intake, among others (see 

(Belin-Rauscent et al., 2016; Sanchis-Segura & Spanagel, 2006; M. A. Smith, 2020) for 

reviews and critiques). Many preclinical paradigms have shown strong predictive validity 

for human behavior (Spanagel, 2017), but insights from rodent models have often failed 

to translate to effective clinical treatments (Kalant, 2010; Venniro et al., 2020). 

Drug craving increases or “incubates'' after prolonged withdrawal, which 

promotes drug-seeking behavior in animals and is thought to precede relapse in human 

drug abusers (Grimm et al., 2001; Neisewander et al., 2000; Tran-Nguyen et al., 1998). 

Because animal models allow researchers to probe biological mechanisms with much 

greater detail than is viable in human subjects, the translational relevance of SA relies 

not just on behavioral similarity between humans and animals, but on convergent 
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neurobiology. While the neural circuitry of reward is broadly shared between mammals 

(Martínez-García & Lanuza, 2018; Panksepp et al., 2002; Scaplen & Kaun, 2016), gene 

expression variation throughout development between humans and rodents (Cardoso-

Moreira et al., 2019, 2020), may have implications for developing treatments based on 

rodent data. Therapeutic development remains a critical goal of preclinical research, 

particularly for CUDs, which have no FDA-approved therapeutics despite successful 

medications development for other SUDs (Lerman et al., 2007; Soyka & Müller, 2017; 

Veilleux et al., 2010) and increased cocaine-related overdose deaths in recent years 

(Cano et al., 2020). Even more challenging for studying CUDs is that there exist clear, 

and sometimes stark, differences in behavioral and neurobiological responses to drugs, 

both between rodent species (Ary & Szumlinski, 2007; Cunningham et al., 1993; 

Ellenbroek & Youn, 2016; Spanagel, 2017; H.-Y. Zhang et al., 2015) and even between 

strains of the same species (Crabbe, 2002; McClearn & Rodgers, 1959). Some 

researchers have begun to tackle these issues by leveraging data across rodents and 

humans to hone in on convergent pathways and genes in drug abuse that may lead to 

more successful therapeutic targets (Forero & González-Giraldo, 2020; Huggett et al., 

2020; Huggett & Stallings, 2020). 

Here, we developed and implemented a pipeline to use multiple lines of evidence 

to identify candidate genes involved in craving and abstinence. We used three publicly-

available RNA-sequencing (RNA-seq) datasets from rodents that underwent cocaine SA 

and prolonged abstinence to identify reproducible signals with convergent preclinical 

evidence. Though these studies had some methodological variation, each had the key, 

common feature of prolonged cocaine abstinence, an important hallmark of the 

incubation effect that suggests all studies shared the underlying phenomenon of cocaine 

craving. However, we found low overlap of craving-related genes across datasets using a 
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nominal P value (P < 0.05) and only 1 significant gene in a single dataset after correcting 

for multiple testing (FDR < 0.05 or 0.1). Utilizing the shared genes (P < 0.05) as a test 

case, we demonstrate the need to consider evolutionary conservation and expression 

across central nervous system (CNS) tissues when selecting candidate genes for further 

study. We propose that using this methodology can narrow down candidate genes that 

are potential therapeutic targets due to likelihood of functional conservation with 

humans or expression levels in reward-related brain regions. However, low sample sizes 

in all datasets limit our ability to detect true positives. Therefore, we make specific 

recommendations for collecting and reporting RNA-seq data, which will facilitate 

communication across labs and allow us to leverage our collective knowledge to advance 

addiction science. 

 

Methods 

Data selection, access, and availability. Three publicly available RNA-seq 

datasets were selected based on similarity in their experimental designs and the 

inclusion of treatment groups relevant to cocaine craving (Carpenter et al., 2020; Powell, 

Vannan, et al., 2020; Walker et al., 2018). Because the datasets have been published 

previously, we hereafter refer to them by their first authors (Carpenter, Powell, and 

Walker). Raw RNA-seq files were downloaded from NCBI’s Sequencing Read Archive 

(Carpenter: SRP234876, Powell: SRP246331; Walker: SRP132477). Summaries of 

relevant design parameters and differences between studies are described in Table 1. 

Additional information about these files, detailed descriptions of analyses, and scripts 

are provided on GitHub (https://github.com/SexChrLab/RodentAddiction). 
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Chapter 3, Table 1 
 
Description of Cocaine Self-Administration Paradigms Used in Each Study 

 

Study Species Sex 
Surgical 

Anesthesia 
Drug 

SA 
Sessions 

Schedule(s) of 
Reinforcement 

Abstinence Post-Abstinence 

Carpenter et 
al. (2020) 

Mouse Male Ketamine, 
xylazine 

Cocaine (0.7 
mg/kg) or 
Saline, IV 

2 hr/d, 
21d 

FR1 1 or 28 days Extracted whole nucleus 
accumbens* 

Walker et 
al. (2018) 

Mouse Male Ketamine, 
xylazine 

Cocaine (0.5 
mg/kg) or 
Saline, IV 

2 hr/d, 
10-15d 

Progression 
from FR1 up to 

FR2 

1 or 30 days 1d abstinence: None 
30d abstinence: Saline 
or Cocaine challenge 

injection and SA context 
re-exposure 

Extracted whole nucleus 
accumbens* 

Powell et al. 
(2020) 

Rat Male Isoflurane Cocaine (0.75 
mg/kg), IV 

2 hr/d, 
≥15d 

Progression 
from FR1 up to 

VR5 

1 or 21 
days^ 

Cue reactivity test 
Extracted nucleus 
accumbens shell 

 
^Animals in this study were either maintained in their original housing (isolation) or moved to environmental enrichment 
conditions during abstinence. Only animals that underwent abstinence in isolation were considered for further analysis (see 
Table 2). 
 
*Other tissues were extracted for these experiments, but only the nucleus accumbens was included in this analysis. 
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We focused on the nucleus accumbens (NAc), a mesolimbic region fundamental 

to drug motivation and reward (Floresco, 2015). Treatment groups were selected to 

create pairwise contrasts within an experiment that were similar to an experiment by 

another research group. In all three studies, rodents underwent cocaine SA and forced 

abstinence for a short (1d) or long (21-30d) interval. The Carpenter and Walker studies 

additionally included saline SA, allowing for contrasts between long-term abstinence 

from saline and long-term abstinence from cocaine. All three studies compare a 

treatment group likely to show low cocaine craving (either short term abstinence from 

cocaine SA or long term abstinence from saline SA) to a group likely to show higher 

craving (long term abstinence from cocaine SA) based on previous literature (Grimm et 

al., 2001; Neisewander et al., 2000; Tran-Nguyen et al., 1998). Full descriptions of the 

treatment groups and contrasts performed for each study, along with abbreviated names 

for each contrast, are available in Table 2. Two contrasts were excluded from the analysis 

due to extreme batch effects or substantial differences between groups beyond the 

phenomenon of interest (abstinence-induced craving). 
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Chapter 3, Table 2 
 
Description of Tissues and Treatment Groups in Each Study That Were Considered in the Present Analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Only the treatment groups considered for the present analysis are described here. Where applicable, treatment groups that 
display relatively higher levels of cocaine craving or cocaine-seeking behavior, either measured directly within a study or 
predicted by the literature, are underlined and italicized. 
 
^ For the Powell dataset, only animals that underwent abstinence in isolation were listed here (see Table 1). 

 

Study 
Group Self-Administration (SA) and 

Abstinence (ABS) Conditions 
Included 

Comparisons 
Excluded 

Comparisons 
Reason for Exclusion 

Carpenter et 
al. (2020) 

S1: Saline SA, 1d ABS 
S28: Saline SA, 28d ABS 
C1: Cocaine SA, 1d ABS 
C28: Cocaine SA, 28d ABS 

S28 vs. C28 1.  S1 vs. S28 
2.  S1 vs. C1 
3.  C1 vs. C28 

1. No cocaine groups 
2. Both groups received 1d ABS; No 
incubation of cocaine craving 
3. Extreme batch effects; Samples in 
each treatment group were analyzed in 
separate sequencing runs, with no 
overlap 

Walker et al. 
(2018) 

S30: Saline SA, 30d  ABS, Saline 
challenge injection and context re-
exposure 
C1: Cocaine SA, 1d  ABS 
C30: Cocaine SA, 30d  ABS, Saline 
challenge injection and context re-
exposure 

S30 vs. C30 1.  S1 vs. S30 
2.  S1 vs. C1 
3.  C1 vs. C30 

1. No cocaine groups 
2. Both groups received 1d ABS; No 
incubation of cocaine craving 
3. Groups are different not just in ABS 
length, but in post-abstinence testing 

Powell et al. 
(2020) ^ 

C1: Cocaine SA, 1d  ABS, cue 
reactivity test 
C21: Cocaine SA, 21d  ABS, cue 
reactivity test  

C1 vs. C21 N/A N/A 
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We focused on the nucleus accumbens (NAc), a mesolimbic region fundamental 

to drug motivation and reward (Floresco, 2015). Treatment groups were selected to 

create pairwise contrasts within an experiment that were similar to an experiment by 

another research group. In all three studies, rodents underwent cocaine SA and forced 

abstinence for a short (1d) or long (21-30d) interval. The Carpenter and Walker studies 

additionally included saline SA, allowing for contrasts between long-term abstinence 

from saline and long-term abstinence from cocaine. All three studies compare a 

treatment group likely to show low cocaine craving (either short term abstinence from 

cocaine SA or long term abstinence from saline SA) to a group likely to show higher 

craving (long term abstinence from cocaine SA) based on previous literature (Grimm et 

al., 2001; Neisewander et al., 2000; Tran-Nguyen et al., 1998). Full descriptions of the 

treatment groups and contrasts performed for each study, along with abbreviated names 

for each contrast, are available in Table 2. Two contrasts were excluded from the analysis 

due to extreme batch effects or substantial differences between groups beyond the 

phenomenon of interest (abstinence-induced craving). 

RNA-seq workflow and differential expression analysis. The project 

workflow from downloading sequencing files to obtaining differentially expressed genes 

(DEGs) is described in Supplementary Figure 1. Original sequencing files were assessed 

for quality using FastQC (Andrews, 2010) to generate reports and MultiQC (Ewels et al., 

2016) to visualize reports in aggregate. BBDuk (part of the BBTools suite; 

http://jgi.doe.gov/data-and-tools/bbtools) was used to trim reads from all experiments 

using the same basic parameters (“ktrim=r k=21 mink=11 hdist=2 qtrim=rl trimq=30 

maq=20”). The minlen parameter was set to half of the original read length, which varied 

between experiments. Adapters and overrepresented sequences were additionally 

trimmed where applicable. Before alignment, library type (e.g. unstranded, reverse-
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stranded) was determined with Salmon using the Ensembl GRCm39 mouse (Carpenter, 

Walker) and Rn6 rat transcriptome indexes from Refgenie (Stolarczyk et al., 2020). 

Splice-aware HISAT2 genome indexes were created for the Ensembl GRCm39 mouse 

(Carpenter, Walker) or mRatBN7.2 rat (Powell), and then trimmed reads were aligned 

using the library type identified by Salmon for the --rna-strandness parameter and other 

settings at default. Gene read counts were quantified for primary alignments (--primary) 

with featureCounts (Liao et al., 2014) using the -s parameter to specify library type. 

For each of the three datasets, edgeR (M. D. Robinson et al., 2010) was used to 

transform and normalize read counts (e.g. from raw counts to fragments per kilobase per 

million mapped reads (FPKM)) and to filter out lowly-expressed genes. Genes were 

retained if their mean expression was greater than 0.5 FPKM for at least one of the two 

treatment groups in a study and had a raw read count of at least 6 in greater than or 

equal to the lowest sample size for that comparison. Raw counts were transformed to 

log2 counts per million (CPM), and outlier samples were removed based on 

multidimensional scaling (MDS) plots of the top 100 genes with the highest variance 

shared between groups. Genes were filtered and transformed again after outlier removal, 

and gene expression values from the remaining samples were normalized using the 

trimmed-means method (TMM) (M. D. Robinson & Oshlack, 2010). Next, limma voom 

(Law et al., 2014; Ritchie et al., 2015) was used to build linear models that accounted for 

technical sources of variation (sequencing lane or batch) identified by the package 

variancePartition (M. D. Robinson et al., 2010). Linear models were fitted using the least 

squares method, and empirical Bayes statistics were generated for each contrast. 

Common craving genes between studies. To test our proposed workflow, 

DEGs in each dataset were identified with a cutoff of P value < 0.05, as only 1 DEG 

remained in any dataset after FDR correction (FDR > 0.05 or FDR > 0.1). The data 
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analysis process beginning with identified DEGs is visualized in Figure 1. Bioconductor’s 

biomaRt (Durinck et al., 2005, 2009) and genomes from Ensembl release 105 

(December 2021) were used to identify common DEGs between mouse and rat by 

identifying homologous genes. Next, DEGs shared between at least 2 contrasts were 

designated Craving genes and included in subsequent analyses. To further increase 

confidence, DEGs were only considered “shared” if they were regulated in the same 

direction for both contrasts. The final set of Craving genes were those shared genes that 

also had human homologs when compared to the human genome GRCh38.p13. For 

example, Cartpt was downregulated in C28 relative to S28 for Carpenter, downregulated 

in C30 relative to S30 in Walker, and had a human homolog (CARTPT), so was included 

as a Craving gene. 

RNA-seq power analysis. After filtering genes and removing outlier samples 

according to the above criteria, power analyses were conducted separately for each 

dataset with the goal of 0.8 power using a FDR > 0.1 threshold. Using the R package 

ssizeRNA (Bi & Liu, 2016), the sample size required to achieve appropriate power was 

calculated based on values from each dataset, including the total number of genes 

(nGenes), the mean read count of the control group (mu), and tagwise dispersions 

estimated by edgeR (disp). Several values were used for the expected proportion of DEGs 

(0.05, 0.1, 0.2) and fold change for each DEG (1.15, 1.25, 1.5, and 2). 
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Chapter 3, Figure 1. Workflow after differential expression analysis. After obtaining 
differentially-expressed genes (DEGs) from each study, DEGs were compared between 
datasets. Because the Powell dataset used rats and the others used mice, the DEGs for 
Powell were first converted to their mouse homologs. Genes were considered “shared” if 
they were called as DEGs in 2 or all 3 studies. Human homologs were found for these 
shared “Craving” genes, which were then analyzed for conservation across species by 
comparing sequence similarity, dN/dS, and developmental expression in the forebrain 
between human, mouse, and rat. Sequence similarity and dN/dS data were obtained 
from ENSEMBL through the R package biomaRt. Developmental expression data were 
obtained from Cardoso-Moreira et al. (2020). Next, Craving genes were assessed for 
their specificity to the brain and expression across brain tissues, including possible sex 
differences, using human data from the Gene-Tissue Expression (GTEx) database. 
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Evolutionary conservation of craving-related genes. To determine the 

evolutionary conservation of Craving genes across human, mouse, and rat, we 

incorporated developmental gene expression data, sequence similarity, and the ratio of 

divergence at nonsynonymous and synonymous sites (dN/dS), which has been used as 

an indicator of evolution’s selective pressure acting on protein coding genes (Yang & 

Bielawski, 2000). For sequence similarity and dN/dS comparisons, Craving genes were 

analyzed separately for human-mouse and human-rat homologs, using only one-to-one 

homologs. Sequence similarity, scored as a percentage of matched nucleotides of a 

rodent gene compared to its human homolog, was obtained from the Ensembl database 

using biomaRt (Durinck et al., 2005, 2009). To obtain dN and dS values, an older 

Ensembl release (99; January 2020) was used due to availability of these metrics. dN/dS 

values were calculated for each Craving gene compared to its human homolog. Mann-

Whitney U tests were used for both sequence similarity and dN/dS comparisons. 

As part of a comprehensive project on species differences in developmental gene 

expression, Cardoso-Moreira et al. (Cardoso-Moreira et al., 2020) utilized previously 

collected RNA-sequencing data from several tissues of human, mouse, rat, and other 

species across developmental time points (Cardoso-Moreira et al., 2019) to determine 

which genes diverged in their temporal expression patterns across species. Utilizing their 

forebrain data, we categorized Craving genes as developmentally conserved between 

human, mouse, and rat (HMR), only human and mouse (HM), only human and rat (HR), 

or not conserved between humans and either rodent species (H), and compared them to 

all other genes in the dataset using Fisher’s exact test. 

Brain specificity and expression across central nervous system (CNS) 

tissues. Human homologs for the Craving genes were examined for expression in 

healthy human tissues using the publicly available Genotype-Tissue Expression (GTEx) 
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Project database (GTEx Consortium, 2013; Melé et al., 2015) 

(https://www.gtexportal.org/home/). Expression data in transcripts per million (TPM) 

was obtained for 51 human tissues, including 12 CNS tissues: amygdala, anterior 

cingulate cortex BA24, caudate, cerebellum, frontal cortex BA9, hippocampus, 

hypothalamus, nucleus accumbens, putamen, pituitary gland, spinal cord cervical C1, 

and substantia nigra. All CNS tissues were collected by the Miami Brain Bank, with the 

exception of 2 cortical and cerebellar tissues that were excluded from the present 

analysis, as they were replicates not collected by the same research group. 

For each gene, the mean expression in TPM across individuals was summed for 

both CNS and non-CNS tissues, excluding brain replicates and cell lines. From this, a 

brain specificity score was calculated as the log2 fold change of the ratio of total CNS 

expression over total expression in other tissues. Specificity of Craving genes was 

compared to all other genes using a Mann-Whitney U test.  

To assess for potential sex differences in CNS expression of human homologs of 

Craving genes, mean and median gene expression was obtained only for samples that 

were age-matched between the sexes for individuals ≥ 55 years of age. Two-way Type III 

ANOVAs were used to analyze effects of Tissue and Sex as well as Sex:Tissue 

interactions. Post-hoc Tukey’s tests were used to further assess main effects or 

interactions. 

 

Results 

Differential expression analysis reveals few common genes and 

regulated pathways between craving-related datasets. After filtering out genes 

with low expression, the datasets contained 10,026 (Carpenter), 9,948 (Walker), and 

7,104 (Powell) genes each. The Supplementary Materials contain summaries of the 
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processing for each sample (Supplementary Table 1) and final statistics for each dataset 

(Supplementary Table 2). Two outlier samples were removed from the Powell C21 group 

because they did not cluster with other samples on the MDS plot. MDS and 

variancePartition plots showed that the experimental variables sequencing batch 

(Walker) and lane (Powell) explained a larger portion of the variation in gene expression 

than the treatment groups, so these variables were incorporated into the linear models 

before differential expression analysis. Supplementary Figures 2-4 contain MDS and 

variancePartition plots, along with voom (Law et al., 2014) results before and after linear 

modeling. Final sample sizes were 12 (6/group; Carpenter), 11 (5-6/group; Walker) and 4 

(2/group; Powell). 

To demonstrate how to use evolutionary and human medical data to prioritize 

RNAseq results, we proceeded with using a P value < 0.05 (Figure 2, Supplementary 

Tables 2-4). For the Carpenter contrast, there were 633 DEGs, with 304 up- and 329 

downregulated in C28 relative to S28. A similar number of DEGs were identified for the 

Walker contrast (139 DEGs; 39 up- and 100 downregulated in C30 relative to S30), while 

the Powell contrast had 633 DEGs (289 up- and 291 downregulated in C21 relative to 

C1). In contrast, only 1 DEG was identified using an FDR threshold of 0.05 or 0.1 across 

all three datasets. This gene, AC239701.1 (ENSRNOG00000060437, adjusted P = 

0.046), was significantly downregulated in the Powell dataset and is thought to be a 

pseudogene and does not yet have a known function, though a recent study suggests it 

may be sexually dimorphic in microglia (Ewald et al., 2020).  
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Chapter 3, Figure 2. Differentially-expressed genes (DEGs) within and across 
datasets. (A) Volcano plots depicting the spread of gene expression data for the 
Carpenter (teal), Walker (purple), and Powell (yellow) comparisons. Dashed lines 
indicate an uncorrected P value cutoff of < 0.05 (horizontal). Genes that met this 
criterion are colored to indicate that they are downregulated (blue) or upregulated (red) 
in the high craving group relative to the low craving group of a given dataset. (B) The 
number of DEGs according to the listed criteria. Note that only 1 DEG (for Powell) was 
found using stricter statistical thresholds corrected for False Discovery Rate (FDR), 
either FDR > 0.05 or FDR > 0.1. A 3-way Venn diagram shows the overlapping DEGs 
between studies, with 65 genes shared between two studies and none shared between all 
three. Comparisons on the Venn diagram are listed as “low” vs. “high” craving groups. 
After accounting for the direction of the overlapping genes (e.g. a gene upregulated in 
“high” craving for one study that is also upregulated in the “high” craving group for 
another study is regulated in the same direction), 33 genes were considered “shared” 
between studies. This corresponded to 31 human homologs. ^For Powell, the number of 
genes is listed as mouse homologs, with the original rat genes indicated in parentheses. 
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We further used sequence homology to identify comparable genes across studies. 

To compare DEGs between the Powell contrast and the others, Ensembl IDs for rat genes 

were first converted to a list of mouse homologs. This reduced the Powell dataset to 534 

rat DEGs (270 up- and 264 downregulated) corresponding to 548 mouse homologs (280 

up- and 268 downregulated). Some rat genes had more than one ortholog in mouse, 

resulting in a higher number of mouse orthologs than initial rat genes. No genes were 

differentially expressed between all 3 contrasts. There were 15 shared genes between 

Carpenter and Walker, 45 between Carpenter and Powell, and 5 between Walker and 

Powell, of which 10, 21, and 3 were regulated in the same direction. These correspond to 

9, 21, and 3 human homologs, respectively, for a total of 33 Craving genes when taking 

the union across all three comparisons. Of these 33 genes, one was excluded from the 

analyses because it was not annotated/present in the majority of the downstream 

datasets, in human it is annotated as a novel transcript (AC009690.3 or 

ENSG00000273025), and because it is annotated as a novel paralog of another Craving 

gene, CELF6. The final 32 genes are as follows: AGK, AMZ1, B2M, BCAS1, BTG1, 

CACYBP, CARTPT, CCDC88C, CELF6, EGR2, FABP7, FKBP4, FTH1, GPD1, GUCY1A3, 

HAPLN2, HSPA8, IRS2, KIF5A, LYPD1, MBP, MOBP, NTS, PHLDA1, PITPNM3, RGS5, 

RPS6KA2, SOX17, TIPARP, TTLL1, USP46, and VIM. For full names of all discussed 

genes, see the Supplementary Material. 
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Chapter 3, Figure 3. Estimated necessary sample size per group using the R package 
ssizeRNA. The number of samples, up to 30, that are necessary to reach varying levels of 
power are shown for the Carpenter (top panel; teal), Walker (middle panel; purple), and 
Powell (bottom panel; yellow) datasets. Dashed red lines indicate 0.8 power with FDR < 
0.05. Power varies with the proportion of differentially-expressed genes (DEGs) and 
their fold change (FC). Because these metrics were not directly attainable for these 
datasets, varying proportions of DEGs and fold changes were tested and are indicated 
with different shapes and colors, respectively. For these theoretical calculations, FC is 
relative to all DEGs (e.g. if the proportion of DEGs is 0.2 and FC is 2, it is expected that 
20% of genes are DEGs, all with FC of at least 2). For clarity on the Carpenter (teal) and 
Walker (purple) plots, the sample size estimations for FC of 2 are shown only for a 
proportion of DEGs equaling 0.2, though similar sample sizes are required for 0.05 or 
0.1. 
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RNA-seq power analysis. Because almost no DEGs were identified for each 

study using an FDR cutoff, we calculated the sample size per group required to reach 0.8 

power for each dataset with FDR < 0.05. Estimated sample size varied for each dataset 

based on the expected proportion of DEGs and their fold change values (Figure 3). For 

example, assuming a small effect size for each DEG (fold change of 1.25) but a high 

proportion of DEGs (0.2, or 20%), the datasets were estimated to need 7 (Carpenter), 13 

(Walker), or about 25 (Powell) samples per group. Calculating for both a large effect size 

(fold change of 2) and high proportion of DEGs (0.2, or 20%), all three datasets were 

estimated to need only about 3 samples. In a more realistic scenario, where fewer genes 

are differentially expressed (5%, corresponding to 500 genes for every 10,000), each 

with a small fold change difference (1.25), the estimated necessary sample size varies 

more between datasets, with just 8 for Carpenter, but 16 for Walker and > 30 for Powell. 

This is unsurprising, since power analysis tools for RNA-seq are more accurate in 

estimating necessary sample size when the pilot or input data has more samples 

(Poplawski & Binder, 2018), and the Carpenter and Powell datasets contained the most 

and fewest samples per group, respectively. The Powell dataset also shows the highest 

mean dispersion across all genes (0.056, vs. 0.015 for Carpenter and 0.028 for Walker; 

Supplementary Table 2). 

Prioritizing Craving genes using evolutionarily conservation. We 

propose that therapeutically relevant Craving genes are conserved between rodents and 

humans, and as such evolutionary conservation is a measure to prioritize RNA-seq 

candidates. We find that overall, Craving genes showed somewhat higher sequence 

similarity for both human-mouse (Mann–Whitney U = 307576, n1 = 31, n2 = 16699, 

median1 = 91.7, median2 = 87.1, P = 0.0696) and human-rat (Mann–Whitney U = 

270762, n1 = 29, n2 = 15863, median1 = 89.1, median2 = 86.2, P = 0.0988) homologs 
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when compared to all other homologous pairs in the genome (Figure 4A), though results 

did not reach statistical significance. Craving genes did not have significantly different 

dN/dS values for either human-mouse (Mann–Whitney U = 182458, n1 = 28, n2 = 15067, 

median1 = 0.093, median2 = 0.109, P = 0.216) or human-rat (Mann–Whitney U = 

162708, n1 = 27, n2 = 14260, median1 = 0.088, median2 = 0.110, P = 0.164) homologs 

compared to other homologs (Figure 4B). Only one-to-one homologs were included in 

the statistical analyses, but where available, sequence similarity and dN/dS ranges for all 

homologs are available in Supplementary Table 6. 

We suggest developmental trajectory as another measure of conservation for 

prioritizing candidate genes. A Fisher’s exact test indicated no difference in the 

evolutionary conservation of Craving gene homolog developmental trajectories in the 

forebrain compared to all other genes (n1 = 21, n2 = 9824, P = 0.643, Figure 4C). This 

analysis excluded genes that had no data available (CELF6, FKBP4,  FTH1, HSPA8, 

LYPD1, TIPARP, and USP46), or that had data only for human-mouse (GPD1, PHLDA1, 

RPS6KA2) or human-rat (SOX17) comparisons and not the other rodent species 

(Cardoso-Moreira et al., 2020). All Craving genes with complete available data showed 

conservation in their developmental expression in the forebrain of human, mouse, and 

rat, with the exception of CACYBP, NTS, and RGS5. Individual conservation results for 

each gene are presented in Supplementary Table 6. 
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Chapter 3, Figure 4. Conservation of Craving genes. (A) Sequence similarity, 
measured as percentage similarity of the rodent gene to its human homolog. (B) dN/dS 
values for human-mouse and human-rat orthologs. (C) Conservation of gene expression 
patterns across development in the forebrain, utilizing data from Cardoso-Moreira et al. 
(Cardoso-Moreira et al., 2020). HMR = conserved expression across development in 
human, mouse, and rat; HM = conserved expression in only human and mouse; HR = 
conserved expression only in human and rat; H = developmental expression not 
conserved between humans and either rodent species. For all conservation analyses, only 
homologs that mapped one-to-one from rodent to human were included in the analysis. 
P-values are listed on each panel, indicating no significant difference between Craving 
and all other homologs/genes utilizing Mann-Whitney U test (sequence similarity, 
dN/dS) or Fisher’s exact test (developmental expression). 
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For each Conservation measurement (sequence similarity, dN/dS, developmental 

conservation), genes were categorized as having High, Medium, or Low conservation 

(Table 3). For sequence similarity, genes were categorized as High, Medium, and Low if 

they had similarity ≥ 90%, between 80 and 90%, or < 80%, respectively. For dN/dS 

scores, genes were considered to have High conservation if they had values below the 

Craving median (0.11), Medium conservation at any other non-outlier value (≤ 0.2), and 

Low if they were outliers (> 0.2). dN/dS values were categorized as “High” if they were 

missing due to 100% sequence similarity, and not categorized in any other cases of 

missing data. Developmental conservation was categorized as High if the gene shared its 

developmental expression pattern in human, mouse and rat (HMR), Medium if its 

temporal expression in humans was shared with either mouse (HM) or rat (HR), and 

Low for no conservation with either rodent species (H). Genes with no data for both the 

human-mouse and human-rat comparisons were not categorized. For genes where data 

was available for one rodent species and not the other, they were categorized as Medium 

for shared developmental expression in the forebrain with that species, and Low if they 

did not. 
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Chapter 3, Table 3 
 
Prioritization of Candidate Craving Genes 

 

 Conservation Prioritization Expression Prioritization 

Human 
Gene 

Symbol 

Human-
Mouse 

Sequence 
Similarity 

Human-
Mouse 
dN/dS 

Human-Rat 
Sequence 
Similarity 

Human-Rat 
dN/dS 

Developmental 
Conservation in 

Forebrain 

Brain 
Specificity 

Score 

Brain Region 
Enrichment 

Mean Brain 
Expression 

(TPM) 

CARTPT 96.55 0.0523 94.83 0.0654 HMR 1.44 BRN-HYP 49.13 

LYPD1* 93.62 0.0644 92.91 0.0573 NA 1.97 BRN-NAC 17.48 

MOBP 75.96 0.1524 76.50 0.1363 HMR 7.82 BRN-SPC 253.85 

HAPLN2 91.76 0.0484 91.47 0.0567 HMR 4.00 BRN-SPC 134.58 

TIPARP* 92.69 0.0983 92.39 0.0999 NA -3.00 BRN-PTRY, 
BRN-SPC 

10.39 

IRS2 85.58 0.0517 86.25 0.0517 HMR -1.86 BRN-PTRY 18.62 

VIM 97.42 0.0239 88.84 0.0223 HMR -4.31 BRN-PTRY 126.47 

CELF6$+ 95.43% 0.0470 96.47% 0.0375 NA -1.32 BRN-PTRY 19.13 

GUCY1A3 89.86 0.0697 89.13 0.0763 HMR -2.93 BRN-NAC 4.66 

CCDC88C 82.20 0.1051 84.02 0.0881 HMR -2.30 BRN-CAU, 
BRN-NAC 

5.24 

EGR2 88.87 0.1078 89.08 0.1010 HMR -2.82 BRN-PTRY 3.24 
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 Conservation Prioritization Expression Prioritization 

Human 
Gene 

Symbol 

Human-
Mouse 

Sequence 
Similarity 

Human-
Mouse 
dN/dS 

Human-Rat 
Sequence 
Similarity 

Human-Rat 
dN/dS 

Developmental 
Conservation in 

Forebrain 

Brain 
Specificity 

Score 

Brain Region 
Enrichment 

Mean Brain 
Expression 

(TPM) 

HSPA8$ 99.85 0.0011 86.53% to 
99.85% 

0.0035 to 
0.024 

NA -1.64 BRN-CB-a, 
BRN-PTRY 

389.02 

RGS5 90.06 0.1354 85.08 0.1260 HR -2.83 BRN-CAU, 
BRN-CTX-a, 
BRN-PUT, 
BRN-SN 

73.24 

NTS 81.18 0.1602 77.06 0.1942 HR 0.85 BRN-HYP, 
BRN-PTRY 

12.82 

PITPNM3 94.46 0.0431 94.76 0.0416 HMR -0.63 BRN-CB-a 24.02 

AGK 91.71 0.0889 90.76 0.0965 HMR -1.54 BRN-CB-a 14.41 

BTG1$ 100.00 NA 99.42 0.0180 HMR -3.55 BRN-CB-a 31.06 

TTLL1 96.93 NA 97.40 NA HMR -1.04 BRN-CB-a 13.73 

USP46* 100.00 NA 96.99 0.0035 NA -0.30 BRN-CB-a 17.55 

FKBP4 89.76 0.0962 89.98 0.1169 NA -1.73 BRN-CB-a 47.41 

RPS6KA2* 95.63 0.0518 91.95 0.0488 HM* -1.33 BRN-SPC 31.66 

GPD1 93.98 0.0561 94.27 0.0586 HM* -3.15 BRN-SPC 20.05 

FTH1^ 91.80 0.1156 NA^ 0.0800 NA -2.05 BRN-SPC 1135.39 
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 Conservation Prioritization Expression Prioritization 

Human 
Gene 

Symbol 

Human-
Mouse 

Sequence 
Similarity 

Human-
Mouse 
dN/dS 

Human-Rat 
Sequence 
Similarity 

Human-Rat 
dN/dS 

Developmental 
Conservation in 

Forebrain 

Brain 
Specificity 

Score 

Brain Region 
Enrichment 

Mean Brain 
Expression 

(TPM) 

AMZ1 73.69 0.1273 75.50 0.1067 HMR 0.98 BRN-ACC, 
BRN-AMY, 
BRN-NAC 

2.09 

MBP 71.71 0.2698 88.16 0.2377 HMR 4.92 BRN-SPC 1830.85 

FABP7 79.55 0.2535 88.64 0.2462 HMR 2.80 BRN-CB-a 32.50 

B2M 68.07 0.1612 62.18 0.1328 HMR -3.49 BRN-PTRY, 
BRN-SPC 

379.43 

BCAS1 62.64 0.5496 66.14 0.4783 HMR 3.29 BRN-SPC 204.70 

CACYBP 93.42 0.0623 90.35 0.0732 H -0.75 BRN-CB-a, 
BRN-CTX 

55.87 

SOX17* 84.54 0.0666 84.30 0.0658 H* -4.67 BRN-SN, 
BRN-SPC 

2.42 

PHLDA1* 85.54 0.1058 85.79 0.1127 H* -2.56 BRN-AMY, 
BRN-CTX-a, 
BRN-HYP, 
BRN-PTRY, 
BRN-SN 

10.80 

 
Genes were categorized as High (green), Medium (yellow), and Low (red) priority for each conservation and brain expression 
metric. Complete data are listed here, even for homologs that do not map one-to-one and were not included in the statistical 
analyses. Sequence similarity was measured as the percentage match between a rodent gene and its human homolog. Data from 
Cardoso-Moreira et al. (Cardoso-Moreira et al., 2020) was used to determine conservation of gene expression patterns across 
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development in the forebrain. HMR = conserved expression across development in human, mouse, and rat; HM = conserved 
expression in only human and mouse; HR = conserved expression only in human and rat; H = developmental expression not 
conserved between humans and either rodent species. Developmental conservation assignments listed in this table are based on 
this available data only, assuming developmental expression is not conserved with the untested species. For example, GPD1 is 
"HM" because its developmental expression is conserved between human and mouse, but data is not available for human vs. rat. 
Brain specificity was calculated as the log2 fold change of the total expression in central nervous system (CNS) tissues compared 
to non-CNS tissues, using data from the GTEx database. The brain region(s) with the highest expression were determined based 
on post-hoc Tukey’s tests (Supplementary Table 9). See Supplementary Material for brain region abbreviations. Mean brain 
expression was calculated by obtaining the mean expression in TPM for each brain tissue across all individuals regardless of age, 
then calculating the grand mean.  
 
* Indicates genes that do not have complete developmental expression data available, i.e. genes that only had data comparing 
human and mouse (GPD1, PHLDA1, RPS6KA2) or human and rat (SOX17). 
 
$ Indicates homologs with one-to-many or many-to-one mapping. For some of these homologs, sequence similarity and/or 
dN/dS are given as a range. 
 
^ FTH1 has a rat ortholog according to the January 2020 but not December 2021 Ensembl release, and thus a dN/dS value is 
listed but not sequence similarity. 
 
+ CELF6 is a paralog of another Craving gene that corresponds to a poorly annotated novel transcript, ENSG00000273025, 
which was excluded from the analyses.
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Though the overall set of Craving genes is not more or less evolutionarily 

conserved than other genes, there are individual genes that would make poor candidates 

based on their conservation. For example, human FTH1 has a homolog in mouse but not 

rat, so studies of this gene would need to be confined only to mouse models, limiting 

translational utility. Some Craving genes were also outliers with very low sequence 

similarity and/or high dN/dS values, including BCAS1, B2M, FABP7, and MBP (Figure 

5A, B, Table 3); however, all of these genes are conserved in their developmental 

expression in the forebrain across the three species. Importantly, several other genes are 

not developmentally conserved, including NTS and RGS5, which have conserved 

expression between human and rat only. CACYBP, which has high sequence similarity 

between human and mouse (93.4%) and human and rat (90.3%), is not conserved 

between human and either rodent species for developmental expression in the forebrain. 

This emphasizes the importance of considering functional conservation when selecting a 

candidate gene. 

Narrowing candidate Craving genes by brain specificity and brain 

tissue- and sex-specific expression. Utilizing the GTEx dataset, we found that 

Craving genes are expressed with higher brain specificity than other genes after CNS- 

and body-exclusive genes were removed (Mann-Whitney U = 1233008, n1 = 32, n2 = 

55305, median1 =  -1.44, median2 = -2.51, P = 0.000116, Figure 5A). This result remains 

significant even after filtering out lowly-expressed genes with a grand mean of ≤ 1 

(Mann–Whitney U = 428911, n1 = 31, n2 = 20624, median1 =  -1.54, median2 = -2.36, P = 

0.000992; excluding the lowly-expressed Craving gene AMZ1) or ≤ 4 TPM (Mann–

Whitney U = 299236, n1 = 31, n2 = 14404, median1 =  -1.54, median2 = -2.35, P = 

0.00105; also excluding AMZ1) across all tissues. Figure 5B and 5C depict the overall 
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gene expression across tissues for 2 previously identified addiction genes, CREB1 (W. A. 

Carlezon et al., 1998; McClung & Nestler, 2003) and C1QL2 (Gelernter et al., 2014; 

Huggett & Stallings, 2020), and the 4 Craving genes with the highest CNS specificity: 

MOBP, KIF5A, MBP, and HAPLN2. 
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Chapter 3, Figure 5. Brain specificity of Craving genes. (A) Brain specificity, as 
measured by log2 fold change of expression in CNS tissues vs. all other tissues, of 
Craving genes (orange) compared to all other genes (gray) in GTEx V8. Select genes are 
labeled, including 2 outliers for Craving genes, and several established addiction genes - 
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CREB1 (W. A. Carlezon et al., 1998; McClung & Nestler, 2003), C1QL2 (Gelernter et al., 
2014; Huggett & Stallings, 2020), DRD3 (Neisewander et al., 2014; Powell et al., 2018; 
Powell, Namba, et al., 2020), FAM53B (Gelernter et al., 2014), and NR4A1 (Carpenter et 
al., 2020). P = 0.00012 indicates a significant difference between Craving and all other 
genes with Mann-Whitney U test. Mean and median expression in transcripts per 
million (TPM), indicated by X’s and circles, respectively, are shown for (B) 2 known 
addiction genes and (c) the 4 Craving genes with the highest brain specificity, using all 
available samples from GTEx. For (B) and (C), the overall brain specificity score for each 
gene is also listed. Purple and gray indicate CNS and non-CNS tissues, respectively. Full 
names for abbreviated genes and tissues are listed in the Supplementary Material.
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Next, we probed for possible sex and tissue differences in brain expression of 

Craving genes, which is important when developing additional experiments and 

considering translation to humans. Using age-matched data for males and females ≥ 55 

years, we performed two-way ANOVAs by Sex and Tissue for the 12 CNS tissues. ANOVA 

and post-hoc Tukey statistics for Sex and Sex:Tissue interactions are reported in 

Supplementary Tables 7-10. All 32 genes showed a significant main effect of Tissue. Post-

hoc Tukey’s tests were used to determine which brain tissue(s) showed enriched 

expression of a gene relative to others and to generate compact letter displays (CLDs) to 

cluster tissues with similar expression levels (e.g., “a” has the highest expression, “b” has 

the second-highest expression, and so on) (Supplementary Table 9). For example, KIF5A 

shows higher expression in the cortex relative to all other tissues and is denoted with the 

only “a”; however, for NTS, the pituitary gland shows significantly higher expression 

than all other tissues except the hypothalamus, so they are designated as “a” and “ab”, 

respectively; Supplementary Figure 5). We then categorized genes as having “enriched” 

expression in specific brain tissue(s) if the CLD included the letter “a” (Table 3). 

Of the 5 genes that had a significant main effect of Sex, 4 had higher expression 

in males (AMZ1, NTS, PITPNM3, TTLL1) and 1 was more highly expressed in females 

(B2M). Several genes also showed a significant Sex:Tissue interaction, including 

CARTPT, which has higher expression in males in BRN-CAU, as well as NTS and 

RPS6KA2, which both have higher expression in males in BRN-PTRY. HAPLN2 also 

showed a significant Sex:Tissue interaction, but none of the post-hoc tests for this 

interaction were significant after Tukey’s correction. Summary brain expression results 

for each gene are presented in Table 3. Supplementary Figure 5 shows expression of each 

Craving gene across Sex and Tissue using the age-matched samples. 
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Craving genes were categorized as High, Medium, or Low priority based on the 

brain expression data (Table 3). The following criteria were used: High - brain specificity 

> 0 and enriched expression in reward regions, but not cerebellum or spinal cord, 

according to post-hoc Tukey’s tests (Supplementary Tables 9 & 11); Medium - brain 

specificity > 0 but enriched expression only in non-reward reward regions, or brain 

specificity < 0 but enriched expression in reward regions; Low - brain specificity ≤ 0 and 

has enriched expression only in cerebellum and/or spinal cord. The following tissues 

were considered reward-related: anterior cingulate cortex, amygdala, caudate, frontal 

cortex, hippocampus, hypothalamus, nucleus accumbens, pituitary gland, putamen, and 

substantia nigra. The grand mean of expression (TPM) for all brain tissues was also 

calculated for each gene, and genes were categorized as High, Medium, and Low if their 

expression was ≥ 20, between 10 and 20, or < 10 TPM, respectively. 

Using this approach, we found genes that would make exciting candidates to 

explore for a role in craving and reward. Though most of these genes do not show sex 

differences in brain expression for healthy human adults, for those that do (e.g. CARTPT, 

NTS), extra consideration should be made to design any preclinical experiments with 

adequate power to detect possible sex differences. Ten genes have higher expression in 

the brain than the rest of the body: MOBP, KIF5A, MBP, HAPLN2, BCAS1, FABP7, 

LYPD1, CARTPT, AMZ1, and NTS (Supplementary Table 11). Post-hoc Tukey’s tests 

indicate that five of these genes (MOBP, MBP, HAPLN2, BCAS1, and FABP7) are 

preferentially expressed in the spinal cord or cerebellum, which are tissues not 

conventionally associated with addiction. Rather, creating therapeutics that target genes 

expressed highly in these tissues may lead to negative side effects. However, other genes 

are highly expressed in reward-related regions. For example, KIF5A and LYPD1 are most 

expressed in the cortex and nucleus accumbens, respectively. AMZ1 has equally high 
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expression in the anterior cingulate cortex, amygdala, and nucleus accumbens, which are 

all involved in emotional and reward processing. Many other Craving genes do not have 

high brain specificity, but within the brain are most expressed in reward-related regions. 

This includes IRS2 (highest expression in pituitary gland), CCDC88C (highest in caudate 

and nucleus accumbens), and GUCY1A3 (highest in nucleus accumbens). 

 

Discussion 

We analyzed three RNA-seq datasets from rodents that underwent cocaine SA 

and prolonged abstinence, with the goal to identify craving-related genes with 

convergent evidence across preclinical models and research labs. Using the same, 

reproducible RNA-seq analysis pipeline for each dataset, we found that only 1 DEG 

survived corrections for false discovery rate in any dataset, using FDR < 0.05 or < 0.1. 

Using a less stringent threshold (uncorrected P value < 0.05), hundreds of DEGs were 

identified for each study. However, no DEGs overlapped between all 3 datasets, and only 

33 genes were shared between 2 datasets and also regulated in the same direction for 

both. This low overlap may suggest large differences in the neurogenomic outcomes of 

each behavioral model, but is more likely caused by low sample sizes and low power to 

detect true DEGs. Using this set of shared “Craving” genes as a test case, we suggest a 

next step toward further refining lists of candidate genes is prioritizing those with 

evolutionary and functional conservation and those with brain specificity. Within each 

conservation or brain expression metric, we categorized genes as having High, Medium, 

or Low priority to determine which would make better candidates for translational 

research and validation. 

Using this approach, we found several candidate genes of particular interest 

because they are both highly conserved and are enriched in brain tissues involved in 
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reward (CARTPT, KIF5A, LYPD1). Several other candidates are well-conserved and show 

high brain specificity, though they have enriched expression in non-reward regions 

(MOBP, HAPLN2). Using this prioritization strategy, we also identify several genes that 

are poorer candidates because they are less conserved (BCAS1, MBP, FTH1, PHLDA1), 

are not brain-specific and have higher expression in non-reward tissues (AGK, BTG1, 

TTLL1, USP46, PITPNM3) or all three (B2M, CACYBP, FKBP4, GPD1, RPS6KA2). 

We initially expected a large overlap in DEGs across the studies reflective of 

cocaine craving. While there are differences in each study’s design (Table 1), each dataset 

examined gene expression patterns in the NAc and included treatment groups that vary 

in post-abstinence cocaine craving, whether this was measured directly (Powell) or can 

be predicted based on prior literature on the incubation effect (Carpenter, Walker) 

(Grimm et al., 2001; Neisewander et al., 2000; Tran-Nguyen et al., 1998). For the 

Carpenter and Walker data sets, we performed pairwise comparisons between mice that 

underwent saline or cocaine SA followed by prolonged abstinence (28 or 30d). For the 

Powell experiment, incubation was modeled more directly, as rats underwent cocaine SA 

and either short (1d) or long-term abstinence (21d). For all three datasets, we compared 

a group likely to demonstrate low cocaine craving (long-term abstinence from saline SA, 

or short-term abstinence from cocaine SA) to a group with higher craving (long-term 

abstinence from cocaine SA). Thus, we expected to identify potential Craving genes from 

a high degree of overlap between studies. Instead, we found low overlap of DEGs 

between the studies. Notably, there are some differences between the experiments that 

might contribute to a reduced overlap in DEGs, such as the rodent species (mouse, rat), 

tissue studied (whole NAc, NAc shell), or experimental manipulations post-abstinence 

(saline injections, context re-exposure, cue-reactivity) (Tables 1 and 2). For example, in 

both the Carpenter and Walker studies, craving was not measured directly, e.g. through a 
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cue reactivity test. Though the Carpenter and Walker studies are more similar to each 

other than to the Powell study, they still have low overlap in DEGs (Figure 2). 

Meanwhile, the Powell dataset shows more DEGs than either Carpenter or Walker. This 

may be due to the cue reactivity test, which assesses general learning and memory in 

addition to cocaine-seeking behavior. Many learning and memory genes are also 

implicated in the SUDs literature, and the addition of a cue reactivity test may lead to a 

greater number of DEGs as a reflection of this additional psychological process. 

         Use of uncorrected P values may also result in low overlap, even between similar 

datasets. This may in part be because DEGs identified with this lenient threshold are 

likely to include many false positives, creating the appearance of large differences 

between datasets (Mukamel, 2021; Noble, 2009). In response to a recent critique about 

using uncorrected P values (Mukamel, 2021), Walker et al. (Walker et al., 2021) note that 

even using a nominal P value, potential genomic targets can be validated by comparisons 

to prior literature. Similarly, individual genes or transcripts may be validated with 

approaches such as RT-qPCR, though this is typically used to spot check the validity of 

only a small subset of DEGs. However, it is not always clear whether authors have 

reported those DEGs, if any, that failed to validate with RT-qPCR. In either case, 

confirming RNA-seq results for a single gene or a small set of genes does not 

automatically indicate that all identified DEGs are true positives. 

         Even after running all datasets through the same pipeline to avoid technical 

biases that could result in differences in detecting DEGs, the datasets used here are 

underpowered to detect true DEGs after correcting for multiple testing. We performed 

power analyses for each dataset and found that appropriate statistical power (0.8) is only 

achieved at low sample sizes when the expected number of DEGs and their fold changes 

are both high (Figure 3). The true number of DEGs and their fold changes are unknown, 
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but based on volcano plots showing the spread of gene expression differences, it is likely 

that the actual fold change for most DEGs is low, around 1.15 to 1.5, with fewer DEGs 

having a fold change of 2 or higher (Figure 2, Supplementary Table 2). Notably, the issue 

of low power is not limited to the datasets selected here, and instead reflects a common 

trend in the addiction field and neuroscience at large, where tissue-level gene expression 

changes are usually small. Differential expression and pathway analyses are regularly 

published using uncorrected P values, perhaps because correcting for multiple testing 

would severely reduce or entirely eliminate any DEGs (for example, see (Mukamel, 

2021)). Because of this, we can neither detect true DEGs within the datasets nor 

determine the true overlap between datasets. However, with greater sample sizes, this 

method of comparing datasets could reveal not just shared DEGs, but gene expression 

patterns that are exclusively altered by a specific experimental design. This would 

enhance our understanding of different preclinical models and be a step toward 

unraveling the complexity of addictive behaviors. 

There has been extensive discussion about necessary sample sizes for RNA-seq 

analysis, which have evolved from early rules of thumb suggesting only 3 samples per 

group is sufficient. A highly-cited analysis by Schurch et al. (Schurch et al., 2016) 

determined that a sample size of 6 to 12 should be sufficient for detecting the majority of 

DEGs using most differential expression tools. However, this was based on RNA-seq 

data from yeast, which have simple, small transcriptomes, and by comparing wild-types 

to mutants with a robust gene expression phenotype. In contrast, SUDs are likely to be 

driven by complex interactions of many genes with low effect sizes (Geschwind & Flint, 

2015; Prom-Wormley et al., 2017) that are difficult to detect transcriptome-wide without 

an adequately large sample size. Rather than assume a specific sample size will be 

adequate, many tools have been developed to estimate the necessary sample size for a 
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given RNA-seq experiment based on pilot data. While some of these are more accurate 

than others, all tools drop off in reliability when the fold changes of true DEGs are small 

(Poplawski & Binder, 2018). This is partly because these tools rely on simplified 

assumptions about the data (e.g. that the fold change is fixed for all DEGs, as in Figure 3) 

that may be too complex to holistically model (Z. Wu & Wu, 2016). While sample size 

estimation tools are a useful starting point, it is likely that the number of samples 

required for an appropriately powered RNA-seq study of behavior or addiction is higher 

than for simpler experimental designs. In general, the necessary sample size is likely to 

be at least the number needed for RT-qPCR validation or behavioral testing, if not more, 

due to the many variables in sequencing that cannot be accounted for directly.  

Under the assumption that overlapping DEGs between studies generated from 

uncorrected P values will still contain false positives, we moved forward using the shared 

“Craving” genes (P < 0.05) as a test case for illustrating how to prioritize candidate genes 

that are likely to translate from rodents to humans. We reasoned that such genes should 

have shared evolutionary conservation between mouse, rat, and human. Indeed, we 

found that Craving genes had generally high sequence similarity and low dN/dS values 

between their rodent and human homologs (Figure 5A, 5B), though they were not 

significantly different from all other genes. Overall, it appears that these genes are 

evolving under strong purifying selection, and that there are evolutionary pressures to 

retain the same amino acid encoding even where the exact sequences diverge. While all 

of our Craving genes have low dN/dS values (all < 1, median = 0.11 for both human-

mouse and human-rat orthologs), there are several outliers with higher dN/dS values (> 

0.2; Low priority), including BCAS1, FABP7, and MBP (Figure 5A, Table 3). Though 

these also have Low sequence similarity (62.6 to 71.2% for both human-mouse and 

human-rat homologs, with the exception of 88.6% for the FABP7 human-rat 
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comparison), several other genes (B2M, MOBP) show Low (> 80%) or Medium (between 

80% and 90%) sequence similarity but still have low dN/dS values (> 0.17; Low or 

Medium priority). Thus, despite some changes in their coding sequences, the genes are 

still likely to be under evolutionary selection that maintains their protein conformation 

and perhaps their molecular function as well. By considering both sequence similarity 

and dN/dS values, we can discard genes as poor candidates due to low sequence 

similarity (BCAS1, FABP7, MBP) while tentatively retaining genes with low sequence 

similarity but low dN/dS values (B2M, MOBP). 

Similarly, our analysis revealed that most Craving genes have conserved 

expression across matched developmental stages in the forebrain of human, mouse, and 

rat (Figure 5C), though again they are not conserved more than other genes. However, by 

adding this with dN/dS we can identify genes with relatively high sequence similarity 

(High or Medium priority) and low dN/dS (High priority), but which show divergent 

developmental expression (CACYBP, PHLDA1, SOX17), suggesting their function may 

not be conserved across species, at least in the context of development. Given that many 

known addiction-related genes are strongly implicated in brain development, and 

abnormal neurodevelopment can increase risk of SUDs in adulthood (McCrory & Mayes, 

2015), genes that are not conserved across development are likely to have less 

translational utility. In addition, genes that are highly conserved across all metrics, such 

as AGK, BTG1, CARTPT, HAPLN2, KIF5A, and PITPNM3, may be even better-suited for 

study in preclinical rodent models. 

We further propose to narrow translational rodent targets based on whether their 

homologs in humans have enriched expression across human brain tissues. Within the 

brain, genes that are most highly expressed in reward regions such as the amygdala, 

nucleus accumbens, and the dorsal striatum are appealing candidates for future study. 
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For example, CCDC88C, PHLDA1, RGS5, and GUCY1A3 show elevated expression in 

these regions (Table 3). Of these, GUCY1A3 is of particular interest as it encodes an 

isoform of guanylate cyclase that can form heterodimers that are activated by nitric oxide 

(NO) (Koesling et al., 2004). NO signaling has been implicated in SUDs (Alexander C. W. 

Smith et al., 2017; Vleeming et al., 2002), and GUCY1A3 is specifically implicated in 

nonhuman primate models of early-life stress (Sabatini et al., 2007), ADHD, Tourette 

Syndrome (Tsetsos et al., 2016), and glioma (Saino et al., 2004). However, these genes, 

and Craving genes overall, do not have higher brain specificity than other genes, and 

thus we have categorized them as Medium priority based on brain expression (Figure 6A, 

Table 3). Still, several candidate Craving genes do show elevated expression in the brain 

compared to non-CNS tissues (MOBP, KIF5A, MBP, HAPLN2, BCAS1, FABP7, LYPD1, 

CARTPT, AMZ1, NTS). While a gene does not need to be brain-specific to have an impact 

on reward processing and behavior (e.g. the well-studied addiction gene CREB1 is not 

brain specific, Figure 6B), ubiquitous expression may make these genes difficult to target 

with therapeutics without negative off-target effects in other tissues. For example, we 

find the myelin oligodendrocyte gene MOBP has 8-fold higher expression in the brain 

relative to all other tissues, suggesting targeting its expression may have a stronger effect 

in the brain than the rest of the body. MOBP has already been implicated in cocaine 

abuse (Albertson et al., 2004, 2006). However, MOBP is most highly expressed in spinal 

cord tissue, and therapeutics that target this gene may provoke motor side effects. Other 

Craving genes score as High for brain expression prioritization because they show brain-

specificity and are highly expressed in reward regions (CARTPT, KIF5A, LYPD1). Of 

these, CARTPT is a prepropeptide related to the addiction gene CART (Cocaine and 

Amphetamine Regulated Transcript) (Kuhar et al., 2005; Ong & McNally, 2020), and 

both KIF5A and LYPD1 are involved in neuroplasticity. KIF5A is a neuron-specific 
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kinesin that plays a role in trafficking of neuronal vesicles (Matsuzaki et al., 2011), 

including maintenance of axons via transport of mitochondria (Campbell et al., 2014). 

Meanwhile, LYPD1, also called LYNX2, modulates nicotinic acetylcholine receptors and 

is associated with increased fear and anxiety-like behavior in LYPD1-knockout mice 

(Dessaud et al., 2006; Tekinay et al., 2009). With the exception of missing 

developmental expression data for LYPD1, all three of these genes are also highly 

conserved. Genes that are not brain specific and show enriched expressed in non-reward 

regions of the brain (e.g. cerebellum and/or spinal cord) are Low priority candidate 

genes (AGK, BTG1, FKBP4, FTH1, GPD1, PITPNM3, RPS6KA2, TTLL1). Still, when 

selecting candidate genes for preclinical rodent research, conservation is of greater 

importance than brain expression. Some of these genes are already Low priority for one 

or more conservation metrics (FTH1), while others are highly conserved (AGK, BTG1, 

PITPNM3). 

At its best, RNA-seq allows for unbiased candidate gene discovery across the 

transcriptome, but the standard common practice fails to capitalize on its potential. 

Though it may be tempting to reduce sequencing and animal costs by lowering sample 

size, this is particularly problematic in RNA-seq, because gene expression trends 

identified with a nominal P value will not necessarily hold with higher sample sizes and 

more robust statistics. Though financial costs were once a major limiter of sample size, 

sequencing has become less expensive in recent years, and there remains the opportunity 

for large-scale collaboration between labs, such as through NIH U or P grants (National 

Institutes of Health, 2019). With more funding, along with better reporting of methods, 

results, and code by researchers, RNA-seq can become an important tool in discovery of 

candidate genes rather than suspect for generating unreliable DEGs (Simoneau et al., 

2021). Further, we show here that additional steps taken after differential expression 
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analysis, such as determining the evolutionary conservation and regional expression of 

candidate genes, can potentially narrow down future targets of study. Utilizing this 

approach, along with ensuring proper power, will both bolster the reliability of individual 

RNA-seq studies and provide a stronger foundation for preclinical research to bridge the 

translational gap. 

 

Supplementary information 

Full names for all discussed genes can be found in Appendix A: Chapter 3 Gene 

and Tissue Abbreviations. Supplementary Figures 1-4 are included at the end of this 

chapter. Supplementary Tables 1-11 and Supplementary Figure 5 are provided on GitHub 

(https://github.com/SexChrLab/Vannan-Dissertation-Supplements).  
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Chapter 3, Supplementary Figure 1. RNA-seq pipeline for differential expression analysis. All 3 datasets were analyzed 
separately using the above pipeline. 
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Chapter 3, Supplementary Figure 2. RNA-seq processing for Carpenter S28 vs. 
C28 dataset. (A, C) Multidimensional scaling (MDS) plots for the top 100 genes with the 
largest fold change differences between groups before (A) and after (C) voom 
transformation. Principal components 1 and 2 (left) and 3 and 4 (right) are shown, along 
with the percentage of variation captured by each component. Blue and red signify the 
S28 and C28 groups, respectively. (B) limma voom was used to apply a linear model to 
the data. Gene expression was measured in CPM with (A, C) and without (B) log2 
transformation. 
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Chapter 3, Supplementary Figure 3. RNA-seq processing for Walker S30 vs. C30 
dataset. (A, D) Multidimensional scaling (MDS) plots for the top 100 genes with the 
largest fold change differences between groups before (A) and after (D) voom 
transformation. Principal components 1 and 2 (left) and 3 and 4 (right) are shown, along 
with the percentage of variation captured by each component. Blue and red signify the 
S30 and C30 groups, respectively. Shapes represent different sequencing batches. (B) 
limma voom was used to apply a linear model to the data, including both Treatment 
group and Batch, based on plots in (C) which indicate the highest percentage of variance 
was explained by Batch. (C) Variance partition plots showing the percentage of the gene 
expression variance explained by the variables sequencing Batch (green), sequencing 
Instrument (yellow), and Treatment (brown), along with Residuals (gray). Total 
percentages are shown on the left and are broken down by the first 10 dimensions on the 
right. Gene expression was measured in CPM with (A, D) and without (B, C) log2 
transformation. 
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Chapter 3, Supplementary Figure 4. RNA-seq processing for Powell C1 vs. C21 
dataset. (A, D) Multidimensional scaling (MDS) plots for the top 100 genes with the 
largest fold change differences between groups before (A) and after (D) voom 
transformation and removal of 2 outliers. Principal components 1 and 2 (left) and 3 and 
4 (right) are shown, along with the percentage of variation captured by each component. 
Blue and red signify the C1 and C21 groups, respectively. Shapes represent different 
sequencing lanes. (B) limma voom was used to apply a linear model to the data, 
including both Treatment group and Lane, based on plots (c) which indicate the highest 
percentage of variance was explained by Lane. (C) Variance partition plots showing the 
percentage of the gene expression variance explained by the variables sequencing Lane 
(green) and Treatment (brown), along with Residuals (gray). Total percentages are 
shown on the left and are broken down by the first 10 dimensions on the right. Gene 
expression was measured in CPM with (A, D) and without (B, C) log2 transformation. 
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CHAPTER 4 

ALTERATIONS IN CIRCULAR RNA EXPRESSION IN THE RAT NUCLEUS 

ACCUMBENS SHELL MAY REGULATE circRNA-miRNA-mRNA 

REGULATORY NETWORKS IN A MODEL OF COCAINE CRAVING 

 

In preparation for publication as: 

Vannan, A., Johnson, M. C., Dell’Orco, M., Powell, G. L., Mellios, N., Wilson, M. A., 

Perrone-Bizzozero, N. I., Neisewander, J. L. Alterations in circular RNA 

expression in the rat nucleus accumbens shell may regulate circRNA-miRNA-

mRNA regulatory networks in a model of cocaine craving. 

 

Abstract 

Emerging evidence indicates that circular RNAs (circRNAs) regulate complex RNA 

networks in the brain that underlie synaptic plasticity and psychiatric disease. Here we 

used bioinformatics tools to analyze publicly available RNA-sequencing (RNA-seq) data 

from our group, which allowed us to identify candidate circRNAs associated with cocaine 

craving in the nucleus accumbens (NAc) shell. A new set of male and female rats was 

then used to validate these findings. Among the candidate craving circRNAs is 

circHomer1, which is widely implicated in learning, memory, and cognition, along with 

circArid1a and circMapkap1. In particular, we find that circAnkrd12, circArid1a, 

circHomer1, and circMapkap1 are expressed more highly in the NAc shell of rats that 

show lower cocaine-seeking behavior in a post-abstinence cue-reactivity test using RNA-

seq data. Follow-up RT-qPCR suggests that circHomer1 is specifically downregulated 

after long term abstinence from cocaine compared to saline controls, but that this effect 

is specific to bulk RNA and not synaptosomal fractions. As well, circMapkap1 appears to 
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be downregulated after short abstinence from cocaine compared to saline. By 

constructing theoretical competing endogenous RNA (ceRNA) networks, our findings 

suggest these circRNAs may regulate expression of synaptic plasticity and 

neuroinflammatory genes through binding and sequestering microRNAs (miRNAs) that 

typically suppress expression of target mRNAs. These miRNAs include miR-330-5p and 

miR-760-3p among others. These findings support ongoing work implicating 

circHomer1 in psychiatric disorders and encourage the exploration of novel circRNAs 

such as circArid1a and circMapkap1 in addiction and drug craving research. 
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Introduction 

Substance use disorders (SUDs) are both financially costly (Cartwright, 2008; 

National Drug Intelligence Center, 2011) and socially devastating, but effective 

therapeutic options are limited. A major complication in treating SUDs is that addiction 

is a chronic, relapsing disorder, in part because sensory cues associated with the drug-

taking experience (e.g. a crack pipe or lighter) can take on conditioned stimulus effects 

with long-lasting salience (Childress et al., 1993, 1988; Ehrman et al., 1992; Grant et al., 

1996). Subsequently, exposure to drug-associated cues can drive craving and lead to 

drug-seeking behavior and relapse (Grimm et al., 2001; Namba et al., 2018; Neisewander 

et al., 2000; Tran-Nguyen et al., 1998). Worse yet, craving is known to increase during 

periods of prolonged abstinence (known as the “incubation effect”) in both humans 

(Gawin & Kleber, 1986; Parvaz et al., 2016) and animal models (Grimm et al., 2001; 

Neisewander et al., 2000; Tran-Nguyen et al., 1998). This is due in part to drug-induced, 

maladaptive neuroplasticity that persists or worsens during abstinence (Koob & Le Moal, 

2005; Russo et al., 2010; A. C. W. Smith & Kenny, 2018). As a result, there is a profound 

need to understand the neural mechanisms of neuroplasticity and cue-elicited drug 

craving after abstinence. 

Neural plasticity is regulated in part by circular RNAs (circRNAs), a relatively 

novel class of highly stable, non-coding RNAs (Memczak et al., 2013; You et al., 2015). 

circRNAs typically form via post-transcriptional back-splicing to produce a circular form 

of linear pre-mRNA from their host genes (L.-L. Chen & Yang, 2015; Jeck et al., 2013). 

Though thousands of circRNAs have been identified in humans and rodents, their 

specific functions are still the subject of ongoing research (W. Chen & Schuman, 2016; 

Xiang Li et al., 2018; Qu et al., 2015). Importantly, many circRNAs are enriched at 

synapses and arise from genes that are implicated in synaptic plasticity (You et al., 2015). 
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Several studies show that circRNAs act as sponges for microRNAs (miRNAs) by binding 

to and sequestering them, thereby preventing them from suppressing their targets 

(Hansen et al., 2013). Because circRNAs can compete with other RNAs, particularly 

mRNAs, for miRNA binding, these RNAs form competing endogenous RNA (ceRNA) 

networks of circRNA-miRNA-mRNA interactions that regulate gene expression(Salmena 

et al., 2011). circRNAs can also modulate transcription of their linear mRNA 

counterparts through competitive alternative splicing (Ashwal-Fluss et al., 2014; Hafez 

et al., 2022). Overall, these highly conserved RNAs (Rybak-Wolf et al., 2015) have great 

potential as translational targets for regulating mechanisms of drug-induced neural 

plasticity and drug craving. 

In this study, we utilize prior RNA-sequencing (RNA-seq) data to identify 

candidate circRNAs predicted to regulate gene networks in a model of cocaine craving. 

In this previous experiment (Powell, Vannan, et al., 2020), male rats were trained in 

cocaine self-administration (SA), and then placed in environmental enrichment (EE) 

during abstinence. In line with prior work (Thiel et al., 2010, 2009; Vannan et al., 2018), 

we found that after prolonged (21d) abstinence, rats had increased cocaine-seeking 

behavior in a cue-reactivity test, and that this incubation of craving was attenuated by 

EE. Using circRNA prediction tools (CIRI2, CIRCExplorer2) on RNA-seq data conducted 

on the nucleus accumbens (NAc) shell of these rats revealed three circRNAs that may 

underlie cocaine craving, including circHomer1, which has previously been studied in 

addiction and reversal learning (Dell’Orco et al., 2020; Zimmerman et al., 2020), and a 

novel candidate, circMapkap1. To build on this foundation, I validated expression of 

these circRNAs using tissue obtained from my collaborator, Michael Johnson, who 

tested the hypothesis that male and female rats would exhibit down-regulation of 

circHomer1 after protracted abstinence for his Master’s thesis research. I then 
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constructed ceRNA networks using bioinformatics analyses of predicted circRNA-

miRNA and miRNA-target interactions. Overall, these studies provide evidence for 

several candidate circRNAs in the modulation of cue-elicited cocaine craving, and 

suggest potential regulatory networks for these circRNAs in the NAc shell. 

 

Methods 

RNA-seq and data availability. RNA-seq data collected for a prior 

experiment (Powell, Vannan, et al., 2020) were used to identify circRNAs involved in 

cocaine craving. Briefly, RNA was prepared using the Nugen Ovation RNA-seq system 

(#7102-32; Tecan Genomics, Inc., Redwood City, California USA) and had not been 

treated to deplete linear RNAs or enrich circRNAs. Libraries were created using the Kapa 

Biosystem library, and sequencing was performed on a 1 × 75 flow cell using an Illumina 

NextSeq500 instrument. Raw RNA-seq files can be downloaded from NCBI’s Sequencing 

Read Archive (SRP246331) and are deposited in the Gene Expression Omnibus (GEO; 

GSE144606). The raw circRNA count files will be uploaded to GEO upon submission of 

this work for publication. Descriptions of analyses and associated code are provided on 

GitHub (https://github.com/SexChrLab/Craving-circRNAs).  

Animals. Adult male and female Sprague-Dawley rats (200-225 g on arrival; 

Charles River Laboratories, Wilmington, Massachusetts, USA) were individually housed 

on arrival (21.6 x 45.7 x 17.8 cm) on a 14:10 light:dark cycle with access to food and water 

ad libitum. All experiments were conducted in accordance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals and approved by the 

Institutional Animal care and Use Committee at Arizona State University. 

Surgical procedures. For rats used to generate the prior RNA-seq data, see 

surgical procedures in (Powell, Vannan, et al., 2020). The new set of rats underwent 
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surgery under 2-3% isoflurane anesthesia to implant a catheter into the jugular vein as 

previously described (Powell et al., 2019). A catheter was implanted into the jugular vein 

and tunneled subcutaneously to a small incision between the shoulder blades and 

secured there with a backpack-style cannula (PlasticsOne®, Roanoke, VA). After surgery, 

rats were given meloxicam (1 mg/kg/mL, SC) and buprenorphine (0.05 mg/kg/mL, SC) 

as analgesics and the antibiotic cefazolin (100 mg/kg/mL, IV). Meloxicam was 

administered for at least 5 days after surgery, and cefazolin was given for at least 2 days 

after surgery. Thereafter, catheters were flushed daily with heparinized saline (70 U/mL, 

IV) to maintain patency. Catheter function was assessed periodically with methohexital 

sodium (16.67 mg/mL, IV) (Pentkowski et al., 2010). 

Self-administration and cue reactivity testing. Separate sets of rats were 

tested using similar methods. For (Powell, Vannan, et al., 2020), male rats (N = 62) were 

trained to self-administer cocaine (0.75 mg/kg/0.1 mL infusion, IV) in daily 2h sessions 

6d/wk. Self-administration (SA) sessions took place in operant conditioning chambers 

(30 × 24 × 21 cm; Med Associates Inc, St. Albans, VT). Completion of an operant 

schedule resulted in a 6s drug infusion and contingent presentation of light and tone 

cues after a 1-s delay. A second inactive lever was available, and presses were recorded 

though they produced no consequences. Infusions were followed by a 20s timeout during 

which infusions and cues were not available. Rats began SA training on a fixed ratio (FR) 

1 schedule, with a single active lever press required for a drug infusion. Within the 

session, rats advanced to variable ratio (VR) 2, 3, and 5 schedules if 7 infusions were 

received in 1 hr. After three consecutive sessions ending on a VR5 schedule, the starting 

schedule was advanced, such that rats progressed through FR1, VR2, VR3, and VR5 

schedules over the course of ≥ 15 sessions. After each session, rats were fed to maintain 

them at 90% of their free-feeding body weight. Upon completion of three consecutive 
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sessions on a VR5 starting schedule, food was given ad libitum thereafter throughout the 

rest of the experiment. Rats that achieved stable (< 25% variability) cocaine infusions 

across three consecutive sessions after free feeding were placed into abstinence for 1 or 

21 d, either in the same isolated housing (ISO) as before or in environmental enrichment 

(EE), which is known to attenuate drug craving in rats when used as a therapeutic 

intervention during abstinence (Thiel et al., 2012, 2009; Vannan et al., 2018). In EE, rats 

were housed in large tubs (74 × 91 × 36 cm) in groups of 3-6 and were given access to 

toys, such as a running wheel or PVC tubes, that were exchanged every 3 days to enhance 

novelty. Treatment groups were counterbalanced based on cocaine consumption. Rats 

were handled daily during both SA and abstinence. After 1 or 21d of forced abstinence, 

rats returned to their SA chambers for a 1 h cue-reactivity test. During this time, cocaine 

was unavailable, but the light and tone cues that were previously paired with cocaine 

infusions were conferred on an FR1 schedule. Cocaine-seeking behavior, a proxy for drug 

craving, was measured by active lever presses. 

An additional set of rats was used to validate craving-related circRNAs of 

interest. Male and female rats underwent behavioral testing as described above, with 

some differences. For this set, all rats were maintained in isolated housing throughout 

the experiment, including during the 1 or 21 d abstinence period, and additional rats 

were added as saline-yoked controls. For saline animals, cues were presented and 

infusion of saline (0.1 mL) was delivered only when a partnered rat received a cocaine 

infusion, and thus these rats did not develop a cue-drug association as with cocaine SA. 

This second set of animals was run in three separate behavioral cohorts (n = 12-

21/cohort) to achieve the complete sample size (N = 48, 24 males and 24 females). 

Identification, expression, and species conservation of circRNAs. Raw 

sequencing reads were assessed for quality using FastQC (Andrews, 2010) and MultiQC 
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(Ewels et al., 2016) and were subsequently trimmed of adapters and overrepresented 

sequences using BBDuk from the BBTools suite (http://jgi.doe.gov/data-and-

tools/bbtools). Reads were trimmed using the following parameters: ref=adapters.fa 

ktrim=r k=21 mink=11 hdist=2 trimpolya=10 trimpolyg=10 qtrim=rl trimq=30 

minlen=38 maq=20, where minlen was set to approximately half of the original read 

length (75 bp). Trimmed reads were aligned to the Ensembl mRatBN7.2 rat genome 

release 105 using BWA (H. Li, 2013) using the threshold parameter -T 19 as 

recommended by the CIRI2 developers. The BamTools (Barnett et al., 2011) and 

Samtools (H. Li et al., 2009) packages were used to assess the number of mapped reads 

after alignment.  

To increase accuracy in identifying circRNAs from a standard RNA-seq 

preparation, two separate tools were used to verify the presence of circRNAs. Aligned 

reads from BWA were run through the basic CIRI2 (Gao et al., 2018) pipeline and 

through CIRCexplorer2 (X.-O. Zhang et al., 2016) annotate and parse functions, all using 

default settings. As part of these pipelines, back-splice junctions were quantified and 

annotated to their corresponding host genes or introns. To increase confidence in the 

analysis, only those circRNAs identified in a given sample by both tools with at least 2 

reads were selected for further analysis. CIRI2 and CIRCexplorer2 use 1-based and 0-

based indexing, respectively, so genomic locations from CIRCexplorer2 were first 

converted to 1-based indexing before comparing between tools. To compare circRNA 

expression across treatment groups, read counts were first converted into counts per 

million (CPM) based on the number of BWA-mapped reads per sample. 

To determine whether the identified rat circRNAs are conserved with human, we 

utilized NCBI’s standard nucleotide BLAST (blastn) to compare rat circRNA sequences 

to their closest human circRNAs obtained from circRNADB (X. Chen et al., 2016). We 
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also obtained the sequence similarity of the linear genes for rat compared to human 

using biomaRt in R (Durinck et al., 2005) and extracting data from the human genome 

from Ensembl release 105 (December 2021). 

For simplification, circRNAs are hereafter referred to by “circ” and their host 

gene (e.g. circHomer1), though other circRNAs may arise from the same host genes. For 

circRNAs discussed in this text, genomic locations are listed in Table 2. For all other 

circRNAs, please see the CIRI2 and CIRCExplorer2 output files deposited in GEO. 

Synaptosome and RNA isolation, cDNA synthesis, and RT-qPCR. 

Within 10 minutes of completing the cue reactivity test, rats were sacrificed by isoflurane 

overdose and brains were harvested. The fresh tissue was sliced into 2 mm coronal 

sections containing the NAc. To isolate the shell, first the core was excised with a 1 mm 

tissue punch, and then a secondary 2 mm punch was taken using the removed core as a 

landmark. Next, crude synaptosomes (SYN) were isolated as previously described (Boese 

et al., 2016; Dell’Orco et al., 2020; Rao & Steward, 1991). Shell tissue was homogenized 

in 200 mL of ice cold homogenization buffer (0.1 mM EDTA, 0.25 mM DTT, 2 mM 

HEPES in a 7.5 pH, 0.32 M sucrose solution) which was supplemented with 200 U/mL 

RNAseOUTTM (Invitrogen). Samples were centrifuged at 2,000 x g for 2 min, resulting in 

a pellet containing nuclei and cellular debris (P1) and a supernatant (S1a). P1 was 

resuspended in 100 µL homogenization buffer and centrifuged again at 2,000 x g for 2 

min. The resulting supernatant (S1b) was combined with S1a and then centrifuged at 

17,000 x g for 10 min. The final supernatant (S2) was removed, and the final pellet (P2) 

constituted the crude synaptosomal fraction. A subset of samples were validated for 

purification efficiency by measuring the brain-specific and SYN-enriched gene BC1 in S1 

and S2 supernatant fractions and the P2 pellet (Boese et al., 2016). For each sample, a 
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portion of homogenized tissue 50 µL was stored for isolation of total RNA without 

fractionation. RNA was stored at -80C until further processing. 

RNA isolation was performed on both SYN and total RNA fractions using the 

standard Trizol® (Invitrogen) method. RNA samples (35 ng), were used to prepare 

circRNA-enriched and circRNA-depleted cDNA using the SuperScript™ III First-Strand 

Synthesis System (Invitrogen, # 18080051). cDNA was prepared with random hexamers 

or oligo-dT to aid in circRNA or linear mRNA detection, respectively. cDNA for each 

sample was run in triplicate for each circRNA or mRNA in conjunction with the and 

iTaq™ Universal SYBR®  Green Supermix (BioRad, #1725121) kit. Relative expression 

from RT-qPCR data was calculated using the comparative 2-∆CT method using GAPDH as 

a control (Livak & Schmittgen, 2001). To account for cohort effects 2-∆CT * 100 values 

were divided by the average expression values for the appropriate saline controls. 

Primers for both circRNAs and mRNAs are listed in Table 1. circRNA primers were 

designed to target the circRNA without amplifying the linear mRNAs of the host gene. 

 

Chapter 4, Table 1 

circRNA and mRNA Primers Tested With RT-qPCR 

Target Forward Primer Reverse Primer 

circ-Homer1 TCAATGGGACAGATGATG TTGTGTTTGGGTCGATCTGG 

circ-Mapkap1 CCCTCTGCAGCTGAATAACC TTCTGTGGGCCAGTCTCTTTA 

Gapdh CTCTCTGCTCCTCCCTGTTC TACGGCCAAATCCGTTCACA 

 

Constructing ceRNA networks. circRNA sequences were obtained using the 

R package FcircSEC (Hossain et al., 2020) and the data provided by CIRCexplorer2, 



 

97 

including the circRNA chromosome, start and end sites, strand, and exon number and 

lengths where applicable. Through FcircSEC, transcript information was extracted from 

the CIRCexplorer2 files, and then circRNA sequences were pulled from the rat 

mRatBN7.2 genome using biomaRt in R (Durinck et al., 2005). 

 To determine likely circRNA-miRNA interactions, the 764 rat miRNA sequences 

from miRBase release 22.1 (Griffiths-Jones, 2004; Kozomara et al., 2019) were used as 

queries against 1125 potential circRNA target sequences using miRanda v3.3a (Enright et 

al., 2003) using default settings. To increase confidence, predicted circRNA-miRNA 

interactions were narrowed to those with a match score ≥ 150 and a free energy ≤ -20. If 

a circRNA was predicted to bind to a miRNA at more than one site, its match score and 

free energy scores were summed across all predicted binding sites. 

To find miRNA interactions with potential targets, all the summary counts and 

predictions for 759 rat miRNAs were downloaded from TargetScanMouse 8.0 (Agarwal 

et al., 2015; Friedman et al., 2009). Direct predictions between rat miRNA and rat 

mRNA sequences are not available on TargetScan, so the TargetScanMouse was used to 

obtain predictions for rat miRNAs and 3’UTR sequences that are homologous in mouse. 

This provided information for 759 of the 764 rat miRNAs. Most of the target sequences 

were from mRNAs, but some were long non-coding RNAs or other RNA targets; 

collectively, these are referred to as “mRNAs'' throughout this paper. When referring to 

mRNAs in these networks (e.g. Rgp1), we use the gene names from rat (e.g. RGP1 

homolog, RAB6A GEF complex partner 1) rather than their mouse orthologs (e.g. 

RAB6A GEF complex partner 1), for clarity of reading. miRNA-mRNA interactions were 

labeled as either “High”, “Moderate”, or “Low” confidence based if they had a cumulative 

weighted context++ score (CWCS) ≤ -0.4, > -0.4 and ≤ -0.2, or > -0.2, respectively. For 

reference, CWCS of -0.2 and -0.4 indicate the miRNA is predicted to suppress the 
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mRNA’s expression by 13% and 25%, respectively (Agarwal et al., 2015; QIAGEN, n.d.). 

miRNA-mRNA interactions were only included if they had “High” or “Moderate” CWCS 

and at least 1 binding site predicted to be conserved across mammals. Finally, the list of 

miRNAs was narrowed to those that are known to be expressed in the NAc shell based on 

our recent Nanostring array of 423 rat miRNAs (Vannan et al., 2021) and/or expressed 

in the cerebrum according to the RATEmiRs database of 856 rat miRNAs using the data 

collected from Maastricht University (Bushel et al., 2018, 2020). After filtering to keep 

miRNAs expressed at least 2 CPM in our prior array and/or 2 TMM in the RATEmiRs 

array, 478 miRNAs remained. 

The final dataset consisted of 1105 circRNAs, 410 miRNAs belonging to 319 

miRNA families, and 9544 mRNAs. To assess potential indirect interactions of circRNAs 

and mRNAs (i.e., potential ceRNA pairs) through miRNA intermediaries, 

hypergeometric tests were performed on each ceRNA pair with similar methodology to 

prior publications (Dell’Orco et al., 2021; J.-H. Li et al., 2014). Briefly, the 

hypergeometric tests used 4 parameters, determined for each ceRNA pair: 1) the total 

number of miRNAs with target predictions across the dataset, including those miRNAs 

that did not have any potential circRNA interactions, 2) the number of miRNAs that 

interact with a given mRNA, 3) the number of miRNAs that interact with a given 

circRNA, and 4) the number of miRNAs predicted to interact with both the circRNA and 

the mRNA, i.e. both members of the ceRNA pair. Each miRNA was considered 

individually for this analysis, though miRNAs in the same family share the same seed 

sequence and are predicted to bind to the same target mRNAs. Though some miRNAs 

are predicted to bind to a given circRNA at more than one binding site, each unique 

circRNA-miRNA pair was only considered once in the analysis. Hypergeometric tests for 

2,168,937 potential ceRNA pairs were subjected to FDR correction (Benjamini & 
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Hochberg, 1995). ceRNA-pairs with FDR < 0.05 with at least 4 shared miRNA 

interactions were considered significant. ceRNA networks were visualized using 

Cytoscape v3.9.1 (Su et al., 2014). 

Statistical analyses. Statistical analyses were performed in R 4.1.2 and 

Graphpad Prism 8. For RNA-seq data, the circRNA identification Tool (CIRI2, 

CIRCexplorer2) and Sequencing Lane were included in a linear model assessing the 

effects of Housing condition (Isolation, Enrichment) by Abstinence Length (1, 21d), 

which was subsequently analyzed using two-way ANOVAs. For behavioral and RT-qPCR 

data, saline-yoked animals were combined into one control group as there was no 

difference among them. Data were then compared using two-way ANOVAs of Sex (male, 

female) by Group (saline-yoked, cocaine 1d abstinence, cocaine 21d abstinence). Values 

higher than the third quartile (Q3) + 1.5x the interquartile (IQR) range or lower than the 

first quartile (Q1) – 1.5x IQR were removed as outliers, with a maximum of one outlier 

per group. If two samples in the same group were called as outliers, neither value was 

removed. For RT-qPCR, expression values were divided by the average for the 

appropriate saline control animals in the same cohort. We tested for outliers both before 

and after controlling for saline expression. Outliers were removed prior to controlling for 

saline, though if there were no outliers prior to normalization, we checked for outliers 

after controlling for saline. Type III ANOVAs were used where there was a significant 

interaction effect, and Type II ANOVAs were used in the absence of interaction effects. 

Specific differences between groups were assessed using post-hoc Tukey’s tests. 

Hypergeometric tests were performed as described above. 

 

Results 
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Identification of candidate circRNAs related to cocaine craving. 

Hundreds of circRNAs were identified in each sample, with the majority of circRNAs 

expressed at low levels (≤ 30 reads, Figure 1A). CIRI2 identified more circRNAs than 

CIRCexplorer2 overall, though most circRNAs were identified by both tools. Collapsing 

across all samples, most of the circRNAs identified by both tools are exonic (2931 

circRNAs, 99.73%) though some were intronic (8 circRNAs, 2.72%) (Figure 1B). CIRI2 

identified circRNAs spanning intergenic regions, though these were not identified by 

CIRCexplorer2. One sample from the isolation, 21d group had unusually high sequence 

duplication levels according to FastQC (68.3%, while other samples ranged from 24.7 to 

45.9%) and low identification of circRNAs (Figure 1A), and thus it was excluded from 

subsequent analyses.  

In the search for candidate circRNAs related to cocaine craving, we selected for 

circRNAs that were identified by both tools, but in only 1, 2, or 3 treatment groups (Table 

2). circBbx and circGlce were identified exclusively in the enrichment 21d and isolation 

21d groups, respectively. Three other circRNAs were exclusively identified in one 

treatment group, but only after filtering low-confidence circRNAs (read count < 2): 

circPpil4 (isolation 21d), along with circAABR07049060.1 and circPbrm1 (enrichment 

21d). However, all 5 of these circRNAs were identified at very low read counts (1-5 reads 

per sample), reducing our interest in them as candidate circRNAs in cocaine craving. 
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Chapter 4, Figure 1. circRNA identification from RNA-seq data. (A) circRNAs were 
identified by each tool at various expression levels, though most were expressed at low 
read counts (< 30). circRNAs with a read count ≥ 30 were combined for this plot. Across 
all samples, hundreds of circRNAs were identified, though one outlier sample (marked 
with a red box) had far fewer circRNAs identified by either tool. Red dashed lines 
indicate the filtering threshold, and all circRNAs below this threshold (expressed with > 
2 reads) were removed prior to statistical analyses. (B) The type and genomic span of 
circRNAs identified by either or both tools before filtering. The majority of identified 
were exonic, with some intronic or spanning intergenic regions.
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Chapter 4, Table 2 

circRNA Composition and Conservation 

circRNA and 
Corresponding 

Gene ID 

Genomic 
Location 

Treatment 
Group(s) 

circRNA 
Length 

(bp) 

Exon 
Lengths 

(bp) 

Homologous 
Human circRNA 

Rat-
Human 

Sequence 
Similarity 
(circRNA) 

Rat-
Human 

Sequence 
Similarity 

(Gene) 

circAnkrd12, 
ENSRNOG00
000012733 

9:105629568-
105660854 

All 994 148, 143, 
201, 147, 
69, 148, 
138 

hsa_circ_31497 89.84% 80.31% 

circArid1a, 
ENSRNOG00
000006137 

5:145948264-
145951212 

All 786 117, 456, 
213 

hsa_circ_17116 92.10% 96.50% 

circHomer1, 
ENSRNOG00
000047014 

2:24583888-
24598599 

All 522 157, 132, 
93, 140 

hsa_circ_21738 94.25% 97.46% 

circMapkap1, 
ENSRNOG00
000017583 

3:17741317-
17753437 

All 567 328, 90, 
149 

hsa_circ_29649 93.83% 97.13% 

circSp3, 
ENSRNOG00
000060479 

3:57821407-
57847776 

All 1553 93, 1360 hsa_circ_00233 95.88% 96.80% 

circBbx*, 
ENSRNOG00
000001971 

11:50592225-
50597061 

Enrichment, 
21d ABS 

1291 1006, 136, 
149 

Unknown N/A 87.46% 

circPbrm1*, 
ENSRNOG00
000028227 

16:6256270-
6268891 

Enrichment, 
21d ABS 

1241 280, 106, 
643, 212 

Unknown N/A 97.45% 
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circRNA and 
Corresponding 
Gene ID 

Genomic 
Location 

Treatment 
Group(s) 

circRNA 
Length 
(bp) 

Exon 
Lengths 
(bp) 

Homologous 
Human circRNA 

Rat-
Human 
Sequence 
Similarity 
(circRNA) 

Rat-
Human 
Sequence 
Similarity 
(Gene) 

circPpil4, 
ENSRNOG00
000015552 

1:2277718-
2282190 

Isolation, 21d 
ABS 

602 62, 65, 
118, 143, 
97, 117 

hsa_circ_28189 95.73% 97.15% 

circGlce, 
ENSRNOG00
000025372 

8:62559509-
62579508 

Isolation, 21d 
ABS 

939 246, 599, 
94 

hsa_circ_24529 90.74% 96.11% 

 
Information on circRNAs of interest, including the genomic location and host genes. Where possible, sequence similarity was 
calculated for circRNAs using BLAST for homologous human sequences obtained from circRNADB, and for genes using data 
from Ensembl and biomaRt. Included circRNAs were either expressed in all 11 samples or expressed exclusively in one of the 
4 treatment groups: Isolation 1d abstinence (ABS), Enrichment 1d ABS, Isolation 21d ABS, or Enrichment 21d ABS. * 
Indicates circRNAs that had no human ortholog listed in circRNADB. In all three cases, circRNADB listed circRNAs 
originating from the orthologous human gene, though the circRNAs were not themselves orthologous. ^ This circRNA 
originates from the rat gene AABR07049060.1, which is a low-confidence ortholog of the human gene CCDC171 according to 
Ensembl.
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We then selected for differential expression across groups for circRNAs that were 

confidently expressed (read count > 2) in all 11 samples. Using this approach, we found 

that 5 circRNAs were identified in all samples: circAnkrd12, circArid1a, circHomer1, 

circMapkap1, and circSp3 (Table 2). For these circRNAs, expression (CPM) was 

compared using a linear model of the Housing x Abstinence Length interaction while 

accounting for circRNA identification Tool (CIRI2, CIRCExplorer2) and sequencing Lane 

(2 different lanes) as covariates (Figure 2). One circRNA, circSp3, showed consistent 

expression across all 4 groups, and did not have a significant main effect of Housing (F1,16 

= 0.0535, p = 0.81998), Abstinence Length (F1,16 = 0.3821, p = 0.5452), or Housing x 

Abstinence Length interaction (F1,16 = 0.1806, p = 0.6765). Three circRNAs showed a 

significant effect of Tool: circAnkrd12 (F1,16 = 5.225, p = 0.036), circArid1a (F1,16 = 

28.877, p < 0.0001), and circMapkap1 (F1,16 = 22.701, p = 0.0002), which also had a 

significant effect of Lane (F1,16 = 9.526, p = 0.0071). Three circRNAs had a significant 

main effect of Housing: circArid1a (F1,16 = 5.236, p = 0.0361), circHomer1 (F1,16 = 9.4968, 

p = 0.0071), and circMapkap1 (F1,16 = 7.313, p = 0.0156), all of which showed higher 

expression for enrichment compared to isolation. Lastly, three circRNAs showed a 

significant HousingxAbstinence Length interaction: circAnkrd12 (F1,16 = 8.663, p = 

0.0095), circArid1a (F1,16 = 14.382, p = 0.0016), and circMapkap1 (F1,16 = 17.920, p = 

0.0006). Though not statistically significant, circHomer1 showed a trend for a Housing x 

Abstinence Length interaction (F1,16 = 3.116, p = 0.0966). With only 2-3 rats per group, 

we may be underpowered to detect a significant difference in the samples, especially 

since circRNAs are enriched specifically at synapses and we measured total tissue RNA 

in the RNA-seq experiment. However, we moved forward with circHomer1 as a 

candidate circRNA because it was trending toward significance and has been implicated 

in other addiction models (Bu et al., 2019; J. Li et al., 2020).  
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Chapter 4, Figure 2. circRNA expression from RNA-seq data. Read counts were first converted to counts per million 
mapped reads (CPM) for each of the 5 circRNAs expressed in all 11 samples. Expression differences between housing 
condition and abstinence length were assessed using a linear model accounting for circRNA identification tool and sequencing 
lane. Expression is depicted here as the mean for each sample across both tools (CIRI2 and CIRCexplorer2). * indicates a 
significant difference with Tukey’s test (p < 0.05). P-values for non-significant trends (p < 0.1) are also listed. 
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For those circRNAs showing a Housing effect (circHomer1) or Housing x 

Abstinence Length interaction (circAnkrd12, circArid1a, and circMapkap1), we further 

probed for differences between groups with post-hoc Tukey’s tests. In all cases, it 

appeared that the group with the highest cocaine-seeking, isolation 21d (Powell, Vannan, 

et al., 2020), showed lower expression relative to other treatment groups. For 

circAnkrd12, there was a significantly lower expression in isolation 21d compared to 

both isolation 1d (t16 = -3.098, p = 0.0316) or enrichment 21d (t16 = -2.927, p = 0.0440). 

circArid1a showed significantly lower expression in the isolation 21d group compared to 

enrichment 21d (t16 = -4.355, p = 0.0025) and enrichment 1d (t16 = -3.421, p = 0.0166), 

and a trend for higher expression compared to isolation 1d (t16 = 2.613, p = 0.0798). 

circHomer1 showed significantly lower expression in isolation 21d compared enrichment 

21d (t16 = -2.768, p = 0.0185), and a trend for higher expression in enrichment 21d 

compared to enrichment 1d (t16 = 3.366, p = 0.0597). For circMapkap1, there was 

significantly lower expression in the isolation 21d group compared to enrichment 21d (t16 

= -4.640, p = 0.0014) and isolation 1d (t16 = -3.729, p = 0.00089), along with a trend for 

higher expression in enrichment 1d compared to isolation 21d (t16 = 2.706, p = 0.0671). 

Overall, the expression patterns of these 4 circRNAs suggest the potential for a protective 

role in attenuating cocaine craving. We moved forward with exploring these circRNAs, 

narrowing the focus to those that are highly conserved with human (< 90% sequence 

similarity for both the circRNA and host gene): circArid1a, circHomer1 and 

circMapkap1 (Table 2). Additionally, the latter two circRNAs were validated with RT-

qPCR. 
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Male and female rats show elevated cue-reactivity after prolonged 

abstinence, indicative of incubated cocaine craving. For the validation 

experiment, behavior data was primarily collected by my collaborator, Michael Johnson. 

Cocaine-seeking behavior, measured by active lever presses in a post-abstinence cue 

reactivity test, was compared between cocaine SA and saline-yoked groups. Rats were 

assigned to either 1 or 21d of abstinence, counterbalancing based on average cocaine 

intake during SA. For cue reactivity, 2-way ANOVAs of Sex and Group were performed 

after removing one outlier each from the male saline, male cocaine 21d, and female 

cocaine 1d groups. The ANOVA indicated no significant effect of Sex (F2, 39 = 2.142, p = 

0.1513) nor Treatment x Sex interaction (F2, 39 = 0.8631, p = 0.4298) (Figure 3). 

However, there was a significant main effect of Group (F2, 39 = 86.451, p < 0.0001). Post-

hoc Tukey’s tests for the Group effect indicate that cue reactivity was lower in the saline 

group than cocaine 1d abstinence (t39 = 7.978, p < 0.001) or cocaine 21d abstinence 

groups (t39 = 12.763, p < 0.001) Additionally, cocaine 1d abstinence showed lower active 

lever presses than cocaine 21d abstinence (t39 = 4.096, p = 0.0006), consistent with prior 

research on the incubation of cocaine craving over prolonged abstinence. 
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Chapter 4, Figure 3. Active lever presses (±SEM) during the post-abstinence cue 
reactivity test in a second set of male and female rats. Rats underwent cocaine SA or 
were saline-yoked, and then underwent either 1 or 21d abstinence (N = 47 after removing 
3 outliers). Saline animals were combined into one control group. * indicates significant 
difference from all other groups in post-hoc Tukey’ test after a significant main effect of 
Treatment. Significance level is p < 0.05. 
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Select candidate circRNAs were validated with RT-qPCR. RT-qPCR was 

used to validate expression of the candidate circRNAs in an expanded set of male and 

female rats that underwent cocaine SA or were saline-yoked, with a cue-reactivity test 

after 1 or 21d of abstinence. To account for cohort effects, expression values were divided 

by the average for saline animals in the same cohort as described in the Methods.  

We first analyzed circRNA expression in total RNA fractions, as this was most 

comparable to the RNA-seq analysis, which also used bulk RNA. For circHomer1, 2-way 

ANOVAs revealed a significant main effect of Group (F2, 41 = 3.685, p = 0.0338), though 

no effect of Sex (F1, 41 = 1.084, p = 0.3043) or Group x Sex interaction (F2, 41 = 1.236, p = 

0.3012) after removing 1 outlier (Figure 4A). Post-hoc Tukey’s tests indicated that 

circHomer1 expression was higher in cocaine 21d abstinence compared to saline (t41 = 

2.619, p = 0.0323). However, there was no difference between saline and cocaine 1d (t41 

= 1.705, p = 0.2154) or cocaine 1d compared to cocaine 21d (t41 = 0.821, p = 0.6922). This 

is consistent with the RNA-seq data, which also suggested circHomer1 expression is 

lower in animals with higher cocaine-seeking behavior. For circMapkap1, 2-way 

ANOVAs suggested that expression was consistent across groups and sexes, as there was 

no effect of Group (F2, 41 = 0.616, p = 0.545), Sex (F1, 41 = 0.078, p = 0.782), or Group x 

Sex interaction (F2, 41 = 1.043, p = 0.361) after removing 1 outlier (Figure 4B). 

Because many circRNAs are enriched at synapses, we also analyzed expression in 

SYN fractions. For circHomer1, 2-way ANOVAs indicated no significant main effect of 

Group (F2, 40 = 0.827, p = 0.4447) or Sex (F1, 40 = 0.850, p = 0.3620), although there was 

a strong trend for a Group x Sex interaction (F2, 40 = 3.218, p = 0.0506) after removing 2 

outliers (Figure 4C). This appears to be because females showed high expression of SYN 
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circHomer1 in cocaine 21d abstinence, while expression in males is more consistent 

across treatment groups. For SYN circMapkap1, the 2-way ANOVA indicated a 

significant main effect of Group (F2, 41 = 3.623, p = 0.0356) with no Sex (F1, 41 = 0.0227, p 

= 0.8809) effect or Group x Sex interaction (F2, 41 = 0.105, p = 0.902) after removing 1 

outlier (Figure 4B). In the RNA-seq data from bulk RNA, we found that circMapkap1 

expression was lower in animals with 21d abstinence than 1d abstinence. By contrast, 

post-hoc Tukey’s test showed higher circMapkap1 expression in SYN for saline 

compared to cocaine 1d abstinence (t41 = 2.614, p = 0.0327). However, there was no 

difference between saline and cocaine 21d abstinence (t41 = 0.421, p = 0.9070) or 

between cocaine 1d and 21d (t41 = 2.035, p = 0.1165). 
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Chapter 4, Figure 4. RT-qPCR for candidate circRNAs in the NAc shell. Expression (±SEM) was assessed in total RNA 
samples for (A) circHomer1 and (B) circMapkap1 and in SYN fractions for (C) circHomer1 and (D) circMapkap1 in male 
(blue squares) and female (pink triangles) rats. Expression values were quantified relative to the housekeeping gene GAPDH 
using the comparative 2-∆CT method (Livak & Schmittgen, 2001). Expression values were normalized to the average saline 
expression in each cohort and sex (circHomer1 SYN) or each cohort overall (circHomer1 Total RNA, circMapkap1 Total and 
SYN) and are depicted here as a percentage relative to saline. * indicates significant difference from saline with post-hoc 
Tukey’s tests (p < 0.05). # indicates trending Group x Sex interaction (p = 0.051). 
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circRNA-miRNA interactions and ceRNA networks. ceRNA networks 

were visualized based on predicted circRNA-miRNA and miRNA-mRNA binding along 

with hypothetical circRNA regulation of mRNA targets through hypergeometric tests 

(Figure 5). This analysis was performed for the 3 highly-conserved circRNAs (circArid1a, 

circHomer1, and circMapkap1). Of these circRNAs, circArid1a, circHomer1, and 

circMapkap1 are predicted to bind to 26, 14, and 8 miRNAs with a match score ≥150 and 

free energy ≤ -20 across all predicted binding sites, respectively. After filtering for only 

those miRNAs that were expressed in cerebrum or NAc shell, this was reduced to 16, 10, 

and 4 miRNAs each. Though most of the circRNA-miRNA interactions are predicted to 

occur at only one binding site, some circRNAs are likely to bind to the same miRNA at 

many sites. Of note, circHomer1 has 2 predicted binding sites each for miR-143-3p, miR-

151-3p, and miR-873-3p, and circMapkap1 has 2 predicted binding sites each for miR-

330-5p, miR-345-3p, and miR-6314. Nearly all of the predicted miRNA interactions of 

circArid1a occur at 2 or more binding sites, including one miRNA with 7 sites (miR-

3575) and another with 10 sites (miR-370-3p). Both circArid1a and circHomer1 are 

predicted to bind rno-miR-760-3p, each 1 site, and circArid1a, circHomer1, and 

circMapkap1 are all predicted to bind rno-miR-330-5p, with 3, 1, and 2 site(s) each. 

Interestingly, circArid1a is also predicted to bind rno-miR-326-3p, which has the same 

seed sequence as rno-miR-330-5p. Importantly, most miRNAs predicted to bind to 

circArid1a, circHomer1, and/or circMapkap1 are conserved in mouse (35/45, 78%) and 

human (35/45, 78%), including miR-760-3p and miR-330-5p. Predicted miRNA 

interactions for the 3 validated circRNAs are listed in Supplementary Table 2. 
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Hypergeometric tests suggested that circArid1a and circHomer1 are predicted to 

significantly regulate 4 and 56 mRNAs, respectively (FDR < 0.05, common miRNAs 

predicted to interact with both the circRNA and target ≥ 4; Supplementary Tables 3 & 4). 

While there were significant predicted interactions for circMapkap1 (FDR < 0.05), the 

highest number of common miRNAs for any interaction was just 2 (Tomm34; miR-330-

5p and miR-421-3p). Predicted ceRNA networks are depicted for circHomer1 (Figure 5A) 

and circArid1a (Figure 5B). One limitation of hypergeometric tests is the simplified 

assumption that each circRNA is independent. However, our RT-qPCR data for 

circHomer1 and circMapkap1 suggest that multiple circRNAs are co-regulated in 

cocaine craving. Thus, we also noted a predicted ceRNA network for circArid1a, 

circHomer1, and circMapkap1 together, including mRNAs that are targeted by ≥ 7 

unique circRNA-miRNA interactions, regardless of the significance of any individual 

interaction (Figure 5C). 

 

Discussion 

 In this study, we identified several circRNAs of potential interest in cocaine-

seeking behavior utilizing RNA-seq data from a prior experiment (Powell, Vannan, et al., 

2020), and then further probed these candidate circRNAs in a set of both male and 

female rats. Two highly-conserved circRNAs (circHomer1 and circMapkap1) were also 

assessed using RT-qPCR for their role in incubation of cocaine craving. Using the 

miRanda and TargetScan algorithms to predict circRNA-miRNA and miRNA-mRNA 

interactions, respectively, we then constructed predicted ceRNA networks for 

circHomer1, circMapkap1, and another conserved circRNA, circArid1a. We found 
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miRNAs predicted to bind to all three (miR-330-5p) or two of the three circRNAs (miR-

760-3p), suggesting that circArid1a, circHomer1, and circMapkap1 may co-regulate 

gene expression in a model of cocaine-seeking behavior. 
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Chapter 4, Figure 5. ceRNA networks depicting predicted regulation of target genes  
by circRNAs through miRNA interactions. Networks for (A) circHomer1 and (B) 
circArid1a include only significant interactions (FDR < 0.05, hypergeometric test) with 
at least 4 common miRNAs between the circRNA and targets. (C) ceRNA network for all 
three circRNAs that were validated with RT-qPCR, showing all targets of at least 7 
unique circRNA-miRNA interactions, regardless of statistical significance in the 
hypergeometric tests. Note that circArid1a, circHomer1, and circMapkap1 are all 
predicted to bind to rno-miR-330-5p, and both circArid1a and circHomer1 are predicted 
to bind to rno-miR-760-3p. 
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 For the initial RNA-seq analysis, we found that circArid1a, circHomer1, and 

circMapkap1 showed lower expression in groups that demonstrated higher cocaine-

seeking behavior post-abstinence (Figure 2). In subsequent RT-qPCR analyses, we 

observed that circHomer1 is specifically downregulated after cocaine 21d abstinence 

relative to saline controls (Figure 4). However, this effect is specific to total RNA 

samples. In SYN fractions, circHomer1 shows a strong trend for a Group x Sex 

interaction in which circHomer1 is upregulated in cocaine 21d compared to saline 

controls, specifically in female rats. For circMapkap1, the RT-qPCR data suggest that 

circMapkap1 is specifically dysregulated at synapses, in contrast with the original RNA-

seq data which suggested differential expression in total RNA samples. For SYN 

fractions, we found that circMapkap1 had decreased expression in cocaine 1d animals 

compared to saline controls. While this does not directly replicate the RNA-seq findings, 

this does suggest circMapkap1 may play a role in cocaine-motivated behavior after short 

term abstinence. 

 Of the three candidate circRNAs identified in this study, only circHomer1 has 

been the subject of prior drug addiction research. circHomer1 was first described in 

detail by (You et al., 2015), who demonstrated that it localizes to dendrites during 

periods of neuronal activity. Based on this finding, it is believed that circHomer1 plays a 

role in synaptic plasticity akin to its host gene, Homer scaffold protein 1 (Homer1) (Luo 

et al., 2012; Szumlinski et al., 2006), which has been implicated in several models of 

cocaine addiction (Ary & Szumlinski, 2007; Ghasemzadeh et al., 2003; Ghasemzadeh, 

Vasudevan, et al., 2009; Ghasemzadeh, Windham, et al., 2009; Swanson et al., 2001; 

Szumlinski et al., 2004). Similarly, recent research suggests a role for circHomer1 in 
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learning, memory, and cognition (Dube et al., 2018, 2020; Hafez et al., 2022; 

Zimmerman et al., 2020), and in cocaine and methamphetamine reinforcement 

(Dell’Orco et al., 2020; J. Li et al., 2020). Additionally, we find that circHomer1 is 

predicted to bind to several miRNAs in the same family (miR-34a-5p, miR-449a-5p, and 

miR-449c-5p) that are broadly involved in brain development (Fededa et al., 2016; 

Nowakowski et al., 2018; J. Wu et al., 2014). This miRNA cluster targets many synaptic 

plasticity genes, including Adducin 2 (Add2), Rho GTPase activating protein 26 

(Arhgap26), Complexin 2 (Cplx2), Contactin 2 (Cntn2), Gamma-aminobutyric acid 

type A receptor subunit alpha 4 (Gabra4), Glutamate ionotropic receptor NMDA type 

subunit 2B (Grin2b), Potassium channel tetramerization domain containing 16 

(Kctd16), Mitogen activated protein kinase kinase 1 (Map2k1), Microtubule-associated 

protein tau (Mapt), Neuron navigator 3 (Nav3), Oxidative stress response kinase 1 

(Oxsr1), RAB43, member of RAS oncogene family (Rab43), Reticulon 4 receptor-like 1 

(Rtn4rl1), Solute carrier family 6 member 1 (Slc6a1; encodes for the GABA transporter), 

Striatin 3 (Strn3), Synaptotagmin 2 (Syt2), and Vesicle amine transport 1 (Vat1) 

(Figure 5, Supplementary Tables 2-4). In addition, circHomer1 may regulate 

neuroinflammatory pathways. In their recent methamphetamine study, (J. Li et al., 

2020) found that circHomer1 binds to multiple miRNAs that target Bcl2-binding 

component 3 (Bb3), which is also downregulated after circHomer1 knockdown in HT-22 

cells. Interestingly, Bb3 is a modulator of p53-induced apoptosis (Nakano & Vousden, 

2001) and is also a predicted target of miR-34a-5p, miR-449a-5p, miR-449c-5p, which 

themselves are implicated in this process (Chang et al., 2007; Lizé et al., 2009; Raver-

Shapira et al., 2007; Rokavec et al., 2014; Yamakuchi et al., 2008) (Supplementary 
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Tables 2-4). Thus, circHomer1 may impact motivation for cocaine through regulation of 

neuroplasticity and neuroinflammatory mechanisms. 

The other two candidate circRNAs, circArid1a and circMapkap1, may similarly 

regulate synaptic plasticity and neuroinflammatory networks. circArid1a is encoded by 

the gene AT-rich interaction domain 1A (Arid1a), which is involved in neurogenesis (J. 

Liu et al., 2020; X. Liu et al., 2021). In addition, a study using postmortem tissue from 

subjects with autism spectrum disorder (ASD) suggests that human circARID1A 

regulates the synaptic remodeling gene Neuroligin-1 (NGLN1) by binding and 

sequestering miR-204-3p. Though we also found that rat circArid1a is predicted to bind 

to miR-204-3p (Supplementary Table 2), this miRNA was excluded from the ceRNA 

network analysis because it did not pass our expression filter. However, our analyses 

indicate circArid1a targets other miRNAs that are involved in brain function. For 

example, circArid1a has 2 predicted binding sites each for miR-204-3p and miR-377-5p, 

which have been implicated in neurodegenerative and/or psychiatric disorders 

(Cammaerts et al., 2015; Garbett et al., 2015; Tao et al., 2021), as well as rodent models 

of cocaine craving and addiction vulnerability (Dell’Orco et al., 2021; Ni et al., 2019; 

Vannan et al., 2021). Our data also suggest that circArid1a regulates immune response 

genes, including Integrin subunit alpha 5 (Itga5), Protein phosphatase, Mg2+/Mn2+ 

dependent, 1F (Ppm1f), and RGP1 homolog, RAB6A GEF complex partner 1 (Rgp1) 

(Figure 5B, Supplementary Tables 3 & 4). Similarly, circMapkap1 is encoded by the gene 

MAPK associated protein 1, which is involved in immune response through stress-

activated MAPK signaling (Wilkinson et al., 1999). Though circMapkap1 had few 

significant targets (FDR < 0.05), and none with 4 common miRNAs, this may be due to 
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the limitations of hypergeometric tests, which only account for the impact of any single 

circRNA. However, circMapkap1 may regulate ceRNA networks and neuroinflammatory 

mechanisms in conjunction with circArid1a and circHomer1. 

By considering the candidate circRNAs together, we find evidence for co-

regulation of ceRNA networks. For example, all three circRNAs are predicted to bind to 

one common miRNA, miR-330-5p (Figure 5, Supplementary Tables 2-4). miR-330-5p is 

a brain-enriched miRNA that has also been linked to Parkinson’s disease, Alzheimer’s 

disease, and bipolar disorder (Cai et al., 2017; Maffioletti et al., 2016; Ravanidis, Bougea, 

Papagiannakis, Koros, et al., 2020; Ravanidis, Bougea, Papagiannakis, Maniati, et al., 

2020) and is predicted to suppress expression of several neural plasticity, synaptic 

vesicle, and actin cytoskeleton genes, including many that are also targeted by the miR-

34 cluster: Add2, Cplx2, Grin2b, Oxsr1, Rtn4rl1, and Syt2. Notably, miR-330-5p has also 

been shown to modulate microglial response to traumatic brain injury (Y. Li et al., 2020) 

and impact microglial differentiation (Feng et al., 2021), and is in the same family as 

miR-326-3p, which is also predicted to bind circArid1a. Though we did not validate the 

candidate cocaine-craving circRNA circAnkrd12 due to lower conservation with human 

compared to the other circRNAs, this circRNA is also predicted to bind to miR-330-5p 

using the miRanda algorithm (match score = 284, free energy = -43.47, 2 binding sites). 

We also find that both circArid1a and circHomer1 are predicted to bind to miR-760-3p. 

This miRNA targets several plasticity and neuronal development genes, including some 

regulated by the miR-34 cluster: Cntn2, Gabra4, Map2k1, Mapt, Rab43, and Slc6a1. 

Thus, our data suggest that circArid1a, circHomer1, and circMapkap1 may interact with 



 

121 

 

miR-326-3p/miR-330-5p and miR-760-3p to modulate synaptic plasticity and 

neuroinflammatory genes. 

Few studies have focused circRNA-miRNA-mRNA interactions in any model of 

SUDs (Dell’Orco et al., 2021, 2020; Floris et al., 2022; J. Li et al., 2020), and this is the 

first investigation of ceRNA networks in the NAc shell in a behavioral model of cocaine 

craving. Here, we find that three circRNAs, circArid1a, circHomer1, and circMapkap1, 

may underlie motivation for cocaine in the NAc shell of rats. While circHomer1 has been 

widely studied in neuroplasticity, cognition and psychiatric disease (Dube et al., 2018, 

2020; Hafez et al., 2022; You et al., 2015; Zimmerman et al., 2020), including addiction 

(Dell’Orco et al., 2021, 2020; J. Li et al., 2020), circArid1a and circMapkap1 are 

potentially novel circRNAs in drug abuse research. Together, these circRNAs may 

regulate synaptic plasticity and neuroinflammatory pathways that are often dysregulated 

in models of SUDs (Bachtell et al., 2017; Namba et al., 2021; Russo et al., 2010). 

However, more work needs to be done to investigate these and other circRNAs in 

addiction, with particular attention to how circRNAs vary across behavioral models and 

drugs of abuse. Further insight into these complex RNA interactions will help build a 

strong foundation for basic synaptic plasticity and translational SUDs research. 

 

Supplementary information 

Supplemental Tables 1-4 are provided on GitHub 

(https://github.com/SexChrLab/Vannan-Dissertation-Supplements). 
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CHAPTER 5 

CONCLUDING REMARKS 

 

Major Contributions of Dissertation 

Chapter 2. microRNA regulation related to the protective effects of 

environmental enrichment against cocaine-seeking behavior. Here, we 

collected samples from the NAc shell of 12 male rats that self-administered cocaine and 

underwent 21d abstinence in either EE or standard, isolated housing. Rats were split into 

high and low cocaine-seeking groups based on active lever presses in a post-abstinence 

cue reactivity test. Using a Nanostring array, we found 33 miRNAs that were 

differentially-expressed between these groups (p < 0.05), including miR-212 and miR-

495, which have previously been implicated in addiction, and novel miRNAs such as 

miR-377. Of the 33 miRNAs, 8 miRNAs are of particular interest because their 

expression correlates directly with cocaine-seeking behavior: miR-3557, miR-142-5p, 

miR-3573-5p, miR-346, miR-193a-3p, miR-107, let-7a, and miR-376c. Further, we find 

that some miRNAs (e.g. miR-107, miR-3557) are predicted to target a large number of 

addiction-related genes, on par with or higher than miRNAs previously implicated in 

SUDs models. As a whole, the predicted mRNA targets of the 33 differentially-expressed 

miRNAs are involved in synaptic plasticity pathways, including synaptogenesis and 

regulation of the actin cytoskeleton, that are dysregulated during cocaine abstinence. We 

also highlight candidate miRNAs, including several previously studied (e.g. miR-212, 

miR-495) and novel miRNAs (e.g. miR-107, miR-376c, miR-3557, miR-377), which may 

be exciting targets for future SUDs research. Raw data files are deposited in the Gene 
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Expression Omnibus (GEO), accession GSE153524. Code is available at: 

https://gitlab.com/neisewander_asu/vannan-powell-2020.  

Chapter 3. An approach for prioritizing candidate genes from RNA-

seq using preclinical cocaine craving datasets as a test case. Using a 

standardized workflow, we analyzed three publicly available RNA-seq datasets from 

rodent cocaine self-administration and abstinence studies to identify differentially-

expressed genes (DEGs) with multiple lines of evidence. Overall, we found that there 

were almost no DEGs in any dataset after multiple testing correction (FDR < 0.5 or FDR 

< 0.1), though there were many more DEGs when using a less stringent, nominal p-value 

threshold (p < 0.05). However, with the latter approach we saw very low overlap in these 

DEGs (p < 0.05) between datasets in contrast to our original assumptions. Both the lack 

of significant genes after FDR correction and low number of shared DEGs between 

datasets may be related to limited sample size and thus reduced ability to distinguish 

true positive DEGs. Still, we moved forward using the shared DEGs as a test case to 

apply a novel pipeline for narrowing candidate genes from RNA-seq. Using conservation 

data (dN/dS, sequence similarity, and developmental expression for rat, mouse, and 

human) along with expression data from the human GTEx database, we found that 

several of the shared DEGs are highly conserved and/or expressed preferentially in the 

brain. Thus, we promote our pipeline as a useful tool for narrowing down candidate 

genes and translational targets from RNA-seq analysis. We conclude by advocating for 

improved transparency and experimental design in RNA-seq studies to promote more 

replicable, and thus more translational, research. Raw data files are deposited in GEO 

with the following accession numbers: GSE141520 (Carpenter et al., 2020), GSE110344 
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(Walker et al., 2018), GSE144606 (Powell, Vannan, et al., 2020). Code is available at: 

https://github.com/SexChrLab/RodentAddiction  

Chapter 4. Alterations in circular RNA expression in the rat nucleus 

accumbens shell may regulate circRNA-miRNA-mRNA regulatory networks 

in a model of cocaine craving. In this project, circRNAs were initially quantified 

from a prior RNA-seq study of rats that underwent cocaine self-administration and 

abstinence. Several circRNAs, including circArid1a, circHomer1, circMapkap1, had 

expression patterns suggesting a role in cocaine craving. A separate set of male and 

female rats was then used to validate two of these highly conserved candidate circRNAs 

with RT-qPCR. These analyses revealed potential dysregulation of circHomer1 

expression after long term (21d) abstinence and of circMapkap1 after short-term (1d) 

abstinence. Theoretical competing endogenous (ceRNA) networks of circRNA-miRNA-

mRNA interactions were then constructed to understand how these circRNAs may 

regulate gene expression. Generally, the 3 candidate circRNAs appear to regulate genes 

involved in synaptic plasticity and neuroinflammation through interactions with 

miRNAs such as miR-760-5p and miR-760-3p. These results support a role for a 

previously-studied circRNA (circHomer1) and a novel circRNA (circMapkap1) in animal 

models of SUDs. Raw RNA-seq files were deposited in GEO previously (GSE144606). 

circRNA identification files will be deposited in GEO upon submission of the manuscript. 

Code is available at: https://github.com/SexChrLab/Craving-circRNAs  

 

Limitations of Bioinformatics Tools 
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Comparison of RNA expression analysis techniques. Throughout this 

dissertation, expression of coding and non-coding RNAs was quantified using 3 different 

methods: RT-qPCR (Chapters 2, 3, and 4), Nanostring array (Chapter 2), and RNA-seq 

(Chapters 3 and 4). Each technique has different strengths and pitfalls. While RT-qPCR 

can only be used to measure expression of one RNA at a time, Nanostring arrays and 

RNA-seq quantify hundreds or thousands of RNAs in just one experiment. Of these 

techniques, Nanostring arrays have superior accuracy, as they do not require cDNA 

synthesis, and therefore avoid bias introduced by amplification. While analysis of 

Nanostring arrays requires more background knowledge than RT-qPCR, it is not as 

intensive as RNA-seq. RNA-seq has the most potential of any other RNA analysis 

technique, as it can be used to quantify all known RNAs for a species in addition to novel 

or alternative splicing events (e.g. circRNAs). However, RNA-seq has the most difficult 

learning curve, with many steps to learn and a variety of analysis tools one can use, and it 

is by far the most costly. Often, RNA-seq or Nanostring arrays are used to assess a large 

number of RNAs, and then RT-qPCR is used to verify the results. In Chapters 2 and 4, we 

used RT-qPCR to specifically validate expression of a small subset of RNAs, either in the 

same samples or in samples from a new cohort. However, there is some disagreement 

among researchers about how to validate results with RT-qPCR and in what cases this is 

necessary (Dallas et al., 2005; Fang & Cui, 2011). Overall, choosing which RNA analysis 

technique to use is an imperfect process, and requires a balance of financial costs, study 

goals, and researcher knowledge. 

Tools for predicted RNA binding. We used the TargetScan (Chapters 2 and 

4) and miRanda (Chapter 4) algorithms to predict miRNA interactions with mRNAs and 
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circRNAs. These tools have become more accurate as current understanding of miRNA 

binding has improved, though they still have limitations. First, any algorithm will have 

false positives or negatives that cannot be accounted for without more experimental 

data. For this reason, prediction tools generally include binding scores or other 

estimations of accuracy for each predicted interaction. For example, TargetScan provides 

a cumulative weighted context++ score (CWCS) (Agarwal et al., 2015), which 

incorporates all possible binding interactions between a miRNA-mRNA pair to estimate 

how much a miRNA will suppress its target. Likewise, miRanda gives a match score, 

which describes how complementary two RNA sequences are, and the free energy, which 

estimates the thermodynamic probability of binding (Enright et al., 2003; John et al., 

2004). In Chapter 4, we increased confidence in our results by using TargetScan’s CWCS 

and miRanda’s match score and free energy to filter predicted miRNA-mRNA and 

circRNA-miRNA interactions. 

We also used the conservation data incorporated in TargetScan to improve 

accuracy. Prior work from the TargetScan researchers suggests most miRNA-mRNA 

interactions are likely to be conserved across mammals (Friedman et al., 2009). While 

TargetScan has no official rat database, it has versions for human and mouse which can 

also provide target predictions for miRNAs in other species based on homologous 3’UTR 

sequences of target mRNAs. In both Chapters 2 and 4, we filtered our results to miRNA 

target predictions with at least 1 conserved binding site. While using TargetScan for rat 

miRNAs has some limitations, target predictions are likely to be conserved across 

multiple species, which is an important consideration in translational research. 
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Identifying circRNAs from RNA-seq data. Various tools have been 

developed to identify circRNAs, including CIRI2 and CIRCExplorer2. Though there are 

some differences between tools, they broadly follow the same principles. As part of 

standard RNA-seq analysis, reads are aligned to a reference genome or transcriptome. 

However, not all reads will map to known sequences. For example, circHomer1 is formed 

by backsplicing of Homer1b linear mRNA at exons 2 and 5 (Zimmerman et al., 2020). If 

exon 2 had the sequence GGAA and exon 5 had the sequence ATAG, then the backsplice 

junction for circHomer1 would have the sequence GGAAGATA or ATAGAAGG, i.e. one 

exon would be reversed relative to the linear sequence. RNA-seq reads that contain this 

backsplice junction would not map to known features of the genome during alignment. 

circRNA identification tools take advantage of this to identify possible circRNAs from 

unmapped reads. 

circRNA identification tools can vary in accuracy based on factors such as the 

original RNA preparation. In Chapter 4, we utilized prior RNA-seq data to identify 

circRNAs in a model of cocaine craving. The previous experiment was originally 

designed to compare mRNA expression, and therefore the RNA samples were not treated 

with RNAse R to degrade linear RNAs prior to cDNA synthesis (Suzuki et al., 2006). 

Because linear mRNAs were not depleted from our dataset, there is some level of noise in 

our data as circRNAs can contain sequences that exactly match their linear counterparts, 

and thus the small cDNA fragments (~50-150 bp) that are sequenced may generate reads 

that appear to map to linear mRNAs during alignment. Additionally, circRNA detection 

tools vary in their precision and specificity (Zeng et al., 2017). Therefore, regardless of 

the RNA preparation, multiple tools should be utilized to improve accuracy of circRNA 
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detection. Accordingly, in Chapter 4 we utilized two tools and only analyzed circRNAs 

that were identified with both, as recommended by other researchers (Hansen et al., 

2016). We also followed up with RT-qPCR validation of candidate circRNAs in a separate 

set of animals. This approach allowed us to bolster confidence in our results in light of 

these known concerns with circRNA detection. 

Constructing ceRNA networks. In Chapter 4, multiple tools were used to 

construct ceRNA networks of interacting circRNAs, miRNAs, and mRNAs. We used 

miRanda to determine possible circRNA-miRNA interactions and TargetScan to 

understand predicted targets of miRNAs. As described above, we narrowed these 

interactions to those with high confidence based on miRanda and TargetScan scores. To 

understand how circRNAs may indirectly regulate mRNAs through miRNAs, we then 

performed hypergeometric tests on all theoretical circRNA-mRNA pairs. This led to the 

construction of potential circRNA-miRNA-mRNA interaction networks. This approach is 

similar to a proprietary workflow developed by Arraystar, Inc. (Rockville, MD, USA; 

https://www.arraystar.com) based on methodology from the creators of the Starbase 

ceRNA database (J.-H. Li et al., 2013); http://starbase.sysu.edu.cn/).  

There are several limitations to this ceRNA network analysis. As briefly described 

in Chapter 4, performing hypergeometric tests for theoretical circRNA-mRNA pairs 

ignores the potential for multiple circRNAs to influence the same mRNA. For example, 

miRanda predictions suggest that circArid1a, circHomer1, and circMapkap1 are all 

likely to interact with miR-330-5p. Therefore, all three of these circRNAs should 

influence expression of miR-330-5p’s target genes, such as Grin2b. However, because 

hypergeometric tests consider each circRNA-mRNA pair individually, only circHomer1, 
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which is predicted to interact with 4 total miRNAs that target Grin2b, showed a 

significant (FDR < 0.05) predicted relationship with Grin2b. By contrast, the other 

circRNAs interact with fewer miRNAs that are predicted to target Grin2b (circArid1a: 2 

miRNAs; circMapkap1: 1 miRNA), and thus the hypergeometric tests were not 

significant for the circArid1a-Grin2b or circMapkap1-Grin2b pairs. Still, this does not 

preclude the possibility that all three circRNAs influence Grin2b expression 

cooperatively. 

Creation of accurate ceRNA networks is also limited by the accuracy of the 

underlying tools, i.e. miRanda and TargetScan. As described above, we increased 

confidence in our results by applying thresholds to the miRanda and TargetScan 

predictions. However, using different parameters or tools can lead to different results. 

For example, (J. Li et al., 2020) developed a ceRNA network for circHomer1 using 

Starbase and TargetScan to inform their mouse model of METH reinforcement. This 

network included 6 miRNAs (miR-101b-3p, miR-138-5p, miR-143-3p, miR-217-5p, miR-

455-3p, miR-802-5p, and miR-883-3p) and 68 mRNAs. In our study, we found that rat 

circHomer1 is predicted to bind to most of these miRNAs (5/6; excluding miR-101b-3p), 

though all were filtered out of our analysis due to low match scores (< 150) and/or high 

free energy scores (> 20) except miR-143-3p. Unfortunately, (J. Li et al., 2020) do not 

specify the criteria they used to exclude or include miRNAs and mRNAs in their network, 

so it is not possible to directly compare our results. In any case, construction of 

theoretical ceRNA networks requires both specificity and precision. In other words, the 

RNA binding predictions that influence network construction must be narrowed to 

reduce false positives while retaining true positives. However, there is no scientific 
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consensus on what parameters and thresholds should be used to balance these two 

competing needs. We believe the thresholds we selected for miRanda, TargetScan, and 

the hypergeometric test significance are appropriately stringent, though further testing 

of our networks is necessary to determine this with certainty. 

Another important consideration in creating realistic networks is whether the 

RNAs that are predicted to bind to one another are located in the same tissues and parts 

of the cell. For this reason, we narrowed our testing to miRNAs that are known to be 

expressed in the cerebrum (Bushel et al., 2018, 2020), which contains the NAc, or are 

specifically expressed in the NAc shell according to our data from the Nanostring array 

in Chapter 2. Thus, our approach improves accuracy by considering actual potential of 

RNAs to interact based on tissue localization. As our understanding of circRNAs and 

miRNAs improves, we may be able to further hone ceRNA network analysis by only 

testing for RNAs that are present at the same cellular location, e.g. expressed together at 

the postsynaptic density.  

 

Considerations for Translational Research 

Sample size, power, and other statistical concerns. Low sample size 

limited the interpretations of the projects outlined in this dissertation. For example, in 

Chapter 2, a Nanostring array was used to quantify the expression of 423 of the 496 rat 

miRNAs known at the time. Just as with RNA-seq, robust analysis of array data requires 

correcting for multiple testing. However, with only 12 samples total (6/group), our study 

was not powered to detect differences after FDR correction. Instead, we utilized an 

uncorrected p-value (p < 0.05) for differential expression and the subsequent correlation 
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and predicted pathway analyses. We also looked at expression of three miRNAs (miR-

107, miR-212, and miR-376c) using RT-qPCR from the same samples. With this data, 

animals were split by quartile rather than by median, such that only the ¼ highest and 

lowest cocaine-seeking rats were included (i.e., 3 high and 3 low seekers). Using this 

approach, significant differences (p < 0.05) were seen for miR-376c and miR-107, with a 

trend for miR-212 (p = 0.0583). While we did not examine all 33 differentially-expressed 

miRNAs with RT-qPCR, this may not be necessary since Nanostring arrays measure 

expression more accurately. In either case, this project functions as an important 

exploratory examination of miRNAs in cocaine craving, though further experiments are 

needed to verify the results. 

Similarly, low sample size limited the detection of candidate circRNAs in Chapter 

4. For the initial circRNA identification, we had only 11 samples (2-3/group) after 

removing an outlier, and we had not treated the RNA with RNAse R. Because of this, we 

took a conservative approach for selecting candidate circRNAs to increase accuracy. Only 

those circRNAs that were identified by 2 tools and were additionally expressed in all 

samples or exclusively in a specific treatment group were considered potential 

candidates. Still, our subsequent ANOVAs and post-hoc Tukey’s tests may not have been 

fully powered to detect true differences in expression. Therefore, our additional 

experiment analyzing expression in a well-powered set of both male and female rats was 

important for increasing our confidence in the circRNA candidates. 

Chapter 3 explores in detail how an insufficient sample size can impact RNA-seq 

analysis and prevent researchers from making the most of this type of data. For example, 

researchers may erroneously use RNA-seq data that is underpowered to detect 
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differences using robust statistical methods, i.e. multiple testing corrections such as FDR 

(Benjamini & Hochberg, 1995). However, we did not delve further into some of the other 

statistical issues affecting RNA-seq analysis. RNA-seq counts follow a non-normal 

distribution that some have compared to a Poisson distribution, but there are 

disagreements on how to best model this type of data. Accordingly, differential 

expression analysis tools vary in their approach to analyzing RNA-seq data. For example, 

three of the most popular differential expression analysis software are DESeq2 (Love et 

al., 2014), edgeR (M. D. Robinson et al., 2010), and limma voom (Law et al., 2014; 

Ritchie et al., 2015) which are based on a negative binomial distribution, Poisson 

distribution, and linear model, respectively (see (Costa-Silva et al., 2017) for discussion 

of RNA-seq statistics and comparison of analysis tools). Of these, limma voom (utilized 

in Chapters 2 and 4) and DESeq2 are generally considered among the most accurate 

(Costa-Silva et al., 2017; Schurch et al., 2016). However, no one tool consistently 

outperforms all others, and it is likely that all tools perform poorly in some scenarios. 

For this reason, new differential expression tools are continuously being developed to 

address the full complexity of RNA-seq data. 

Conservation between rodents and humans. One of the most important 

considerations for preclinical research is whether the findings are applicable to humans. 

Though rodent models have provided strong insights into SUDs, not all findings 

translate well to clinical populations (Kalant, 2010; Venniro et al., 2020). One issue is 

that, while neural reward circuitry is shared across mammals, (Martínez-García & 

Lanuza, 2018; Panksepp et al., 2002; Scaplen & Kaun, 2016), there are still 

neurobiological and behavioral differences between species. However, where both 
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human and rodent data are available, researchers can use this information to increase 

the translational relevance of animal models. For example, in Chapters 2 and 4, we 

utilized the conservation data available with TargetScan to filter predicted targets of 

miRNAs. Likewise, in Chapter 4 candidate circRNAs in rat were assessed for sequence 

similarity in human. In Chapter 3, we went a step further and used conservation data as 

part of a pipeline for narrowing down candidate genes from RNA-seq data. To do so, we 

incorporated data from multiple sources, including sequence similarity and dN/dS data 

from Ensembl and biomaRt (Durinck et al., 2005) and data from (Cardoso-Moreira et 

al., 2020) on temporal expression of genes across mammalian development. Using this 

approach on a test set of genes, we saw that some genes are highly conserved and may 

make better candidate genes for future research. Though conservation is not often 

discussed in the preclinical literature, it is an essential component for translating animal 

data to the human condition. 

Utility of animal models. Though animal models have been critical to our 

understanding of SUDs, they are not without drawbacks. For example, the “gold-

standard” of preclinical addiction research is self-administration (SA), in which animals 

perform learned responses to receive infusions of drug. Because this corresponds well to 

human SUDs on a surface level, the SA model is considered to have high face validity, 

particularly when compared to procedures involving experimenter-delivered drug. 

However, many animal studies do not lead directly to therapeutic development, and 

those therapies that do get tested in human populations are often not effective. While 

genetic and biological differences between humans and model organisms may be one 

reason for this, there are other complicating factors. For one, behavioral experiments in 
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animals are often simple in their design, and thus they fail to recapitulate the complex 

symptomatology of human SUDs. For example, throughout this dissertation we 

performed rodent SA experiments with 1) a simple, though increasingly difficult, 

schedule of reinforcement, 2) abstinence for a set amount of time (1 or 21 days, nothing 

between or longer), and 3) a cue reactivity test for measuring animals’ post-abstinence 

response to cocaine-paired cues. We used this to model cocaine craving, though this 

design fails to capture other aspects of human SUDs, such as loss of control and 

escalated drug intake. Another drawback of animal models is communicate their 

emotional or psychological state. Throughout this dissertation we have referred to the 

cue reactivity test as measuring “craving”. While craving often leads to drug-seeking and 

relapse in humans, relapse can also occur without craving (e.g. (Miller & Gold, 1994)) 

However, we cannot ask rats about their subjective feeling of craving, and thus we are 

unable to fully understand this phenomenon using animal models alone.  

However, animal models have many strengths, which has led to their continued 

use, development, and refinement over the last few decades. To fully understand the 

neurological mechanisms of SUDs, researchers need to probe the brain directly and 

manipulate its biology. Most importantly, this needs to be coupled with measurements of 

behavior. For the most part, this is not possible in human subjects. While humans are 

likely the best models of human behavior, many of the most advanced tools and 

techniques in neuroscience require either brain extraction or direct neural manipulation. 

Post-mortem human brain tissue does not fully meet this need, as it is uncoupled from 

behavior. For this reason, animal models are likely to be a mainstay in SUDs research for 
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the foreseeable future. However, more work is needed to develop and refine animal 

models to better recapitulate symptoms of human SUDs. 

Transparency and reproducibility. In all areas of science, it is important 

that the methods, approaches, and results are clearly disseminated. If the methodology is 

not described with a sufficient level of detail, it can be difficult for others to replicate the 

work. In addition, it can lead to issues in interpreting research findings, and more 

importantly, determining whether there are any missteps or errors that may impact 

interpretation. However, for research projects involving bioinformatics and 

computation, transparency can be aided by providing access to any scripts involved in 

the analysis. While many journals have made efforts to increase transparency in other 

ways, e.g. by requiring that raw data files are deposited in a public database, making 

scripts publicly available is not yet a standard in neuroscience. Of course, this does 

require scientists to do the additional labor of making their data organized for public 

consumption. Moreover, many scientists may not want to invite this additional scrutiny 

on their work, even if their analyses have been performed accurately and ethically. This 

is unfortunate, because providing scripts will improve the translational value of 

neuroscience research by allowing others to both evaluate its accuracy and learn from 

prior work.  

Another hurdle for reproducibility is that many widely-used software are not 

available for all researchers. For example, in Chapter 2, we used Ingenuity Pathway 

Analysis (IPA; QIAGEN Inc.) to understand what pathways and biological mechanisms 

might be regulated by our miRNAs of interest. However, because IPA is proprietary, not 

all researchers have access to this software. Other pathway analysis tools can be used for 
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free, such as Reactome (G. Wu & Haw, 2017) or Gene Ontology (GO) (The Gene 

Ontology Consortium, 2019). Still, there are benefits to using IPA over other tools, as it 

includes additional features such as visualizations and analysis of predicted upstream 

regulators of the input genes. In Chapter 2, we provide a list of the genes input into IPA 

in the supplementary material. Yet while our pathway analysis process is transparent 

and described in detail, it is only reproducible by researchers with access to IPA. 

Importantly, many of the other software, algorithms, and databases used throughout this 

dissertation are freely available, including miRanda and TargetScan (Chapters 2 and 4), 

as well as GTEx (GTEx Consortium, 2013) (Chapter 3).  

 

Future Directions 

Using the proposed RNA-seq workflow. In Chapter 2, we proposed a new 

pipeline for narrowing candidate genes identified from RNA-seq data based on 

translational potential. In this workflow, we refine candidate gene lists by incorporating 

additional information on genetic conservation and tissue expression from publicly 

available databases. The scripts associated with this project are available online for 

researchers to use, and we hope that others will take advantage of this resource. 

Additionally, we look forward to continuing the dialogue on RNA-seq best practices and 

other improvements that can lead to more translational outcomes. 

Validation of candidate RNAs. A major next step for these works is to further 

validate candidate miRNAs (Chapters 2 and 4) and circRNAs (Chapter 4). For both 

projects, our data show that expression of non-coding RNAs is altered in the NAc shell in 

rats that display low or high cocaine-seeking behavior. For example, several RNAs, such 
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as miR-376c and miR-107-3p (Chapter 2) as well as circHomer1 (Chapter 4), show lower 

expression in rats with higher cocaine motivation. This suggests that increasing levels of 

these RNAs may be protective against drug-seeking behavior, though this has not yet 

been tested directly. Ideally, future experiments will specifically manipulate levels of 

these RNAs in the NAc shell. For example, an ongoing project in the Neisewander lab is 

to use a lentiviral vector designed to overexpress circHomer1 and test whether rats with 

increased circHomer1 show reduced cocaine-seeking behavior relative to controls. 

Similar experiments can be designed for any of the candidate miRNAs and circRNAs 

described in this dissertation. Moreover, further work needs to be done to determine 

whether these RNAs modulate behavior in other models of cocaine motivation and 

reinforcement, or across other drugs of abuse. 

In addition to validating candidate RNAs, a future goal is to verify their predicted 

targets. Algorithms such as TargetScan and miRanda are generally considered accurate, 

but their predictions are not perfect. Therefore, further experiments are needed to truly 

verify whether specific RNAs bind to one another. This could be achieved by 

manipulating levels of an RNA in vivo (e.g. circHomer1 in the NAc shell) and then 

measuring expression of predicted downstream targets (e.g. miR-330-5p, Homer1b), 

along with luciferase assays in cell culture to directly assess binding in vitro (see (Bastle 

et al., 2018) for an example with miR-495). In either case, fully elucidating these 

regulatory gene networks will advance knowledge in both the addiction field and non-

coding RNA research overall. 

 

Conclusions 
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 The major goal of this dissertation was to identify coding and non-coding RNAs 

involved in cocaine craving using rodent models, and a variety of tools, techniques, and 

resources. While our findings are partly limited by low sample size and other factors, we 

were able to hone in on several candidate RNAs of interest. Further research is necessary 

to fully understand these RNAs and their role in other cocaine- and drug-related 

behaviors. In future endeavors, it is important to continue striving for improved 

methodology and transparency in characterizing these and other RNAs. 
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Gene abbreviations 
Gene abbreviations are listed for human orthologs. 
 
Shared “Craving” genes 
AGK  Acylglycerol Kinase 
AMZ1  Archaelysin Family Metallopeptidase 1 
B2M  Beta-2-Microglobulin 
BCAS1  Brain Enriched Myelin Associated Protein 1 
BTG1  B-Cell Translocation Gene (BTG) Anti-Proliferation Factor 1 
CACYBP Calcyclin Binding Protein 
CARTPT Cocaine- And Amphetamine Regulated Transcript (CART) Prepropeptide 
CCDC88C Coiled-Coil Domain Containing 88C 
EGR2  Early Growth Response 2 
FABP7  Fatty Acid Binding Protein 7 
FKBP4  FKBP Prolyl Isomerase 4 
FTH1  Ferritin Heavy Chain 1 
GPD1  Glycerol-3-Phosphate Dehydrogenase 1 
GUCY1A3 Guanylate Cyclase 1 Soluble Subunit Alpha 1 
HAPLN2 Hyaluronan And Proteoglycan Link Protein 2 
HSPA8  Heat Shock Protein Family A (Hsp70) Member 8 
IRS2  Insulin Receptor Substrate 2 
KIF5A  Kinesin Family Member 5A 
LYPD1  LY6/PLAUR Domain Containing 1 
MBP  Myelin Basic Protein 
MOBP  Myelin Associated Oligodendrocyte Basic Protein 
NTS  Neurotensin 
PHLDA1 Pleckstrin Homology Like Domain Family A Member 1 
PITPNM3 Phosphatidylinositol Transfer Protein, Membrane Associated (PITPNM) 

Family Member 3 
RGS5  Regulator Of G Protein Signaling 5 
RPS6KA2 Ribosomal Protein S6 Kinase A2 
SOX17  Sex Determining Region Y (SRY)-Box Transcription Factor 17 
TIPARP TCDD Inducible Poly(ADP-Ribose) Polymerase 
TTLL1 Tubulin Tyrosine Ligase (TTL) Family Tubulin Polyglutamylase Complex 

Subunit L1 
USP46  Ubiquitin Specific Peptidase 46 
VIM  Vimentin 
 
Other genes 
ARC  Activity Regulated Cytoskeleton Associated Protein 
BDNF  Brain Derived Neurotrophic Factor 
C1QL2  Complement C1q Like 2 
CART  Cocaine- and Amphetamine-Related Transcript 
CREB1 cAMP Responsive Element Binding Protein 1 
DRD3  Dopamine receptor D3 
FAM53B Family With Sequence Similarity 53 Member B  
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Tissue abbreviations 
From Gene-Tissue Expression (GTEx) V8 database. Tissues with the prefix “BRN” 
(brain) are located in the central nervous system (CNS). 
 
ADP-SBC Adipose – subcutaneous 
ADP-VSO Adipose - visceral omentum 
ADRNLGL Adrenal gland 
ART-CRN Artery – coronary 
ART-TB Artery – tibial 
BLADDER Bladder 
BRN-AMY Amygdala 
BRN-ACC Anterior cingulate cortex (BA24) 
BRN-CAU Caudate, basal ganglia 
BRN-CB-a Cerebellar hemisphere 
BRN-CB-b Cerebellum 
BRN-CTX-a Frontal cortex (BA9) 
BRN-CTX-b Cortex 
BRN-HIPP Hippocampus 
BRN-HYP Hypothalamus 
BRN-NAC Nucleus accumbens, basal ganglia 
BRN-PTRY Pituitary gland 
BRN-PUT Putamen, basal ganglia 
BRN-SN Substantia nigra 
BRN-SPC Spinal cord (cervical C1) 
BREAST Breast 
CELL-FB Cells - cultured fibroblasts 
CELL-LYM Cells - EBV-transformed lymphocytes 
CVX-ECT Cervix - ectocervix 
CVX-END Cervix - endocervix 
CLN-SIG Colon - sigmoid 
CLN-TRN Colon - transverse 
ESP-GEJ Esophagus - gastroesophageal junction 
ESP-MCS Esophagus mucosa 
ESP-MSL Esophagus mucularis 
FLPTB  Fallopian tube 
HRT-AA Heart - atrial appendage 
HRT-LV Heart - left ventricle 
KDY-CTX Kidney - cortex 
KDY-MDL Kidney - medulla 
LIVER  Liver 
LUNG  Lung 
SALGL  Salivary gland 
MSC-SK Skeletal muscle 
NRV-TB Nerve - tibial 
OVARY Ovary 
PANCREAS Pancreas 
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PROSTATE Prostate 
SKN-NSP Skin - not sun exposed, subrapubic 
SKN-SLL Skin - sun exposed, lower leg 
SIN-TIL Small intestine - terminal ileum 
SPLEEN Spleen 
STOMACH Stomach 
TESTIS Testis 
THYROID Thyroid 
UTERUS Uterus 
VAGINA Vagina 
WHLBLD Whole blood 
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