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ABSTRACT

The ability to walk while completing a secondary task, dual-task walking (DTW), poses
notable challenges for individuals affected by neurological disorders, such as multiple
sclerosis (MS), who experience both cognitive and motor problems secondary to their
disease. However, DTW is an everyday activity that has putative importance for optimal
function. Although some research in the past decade has begun to examine changes in
DTW in MS, there is still limited work to understand the predictors of DTW, the factors
that might moderate relationships between baseline cognitive and motor function and
DTW ability, and its consequences (e.g., for quality of life [QoL] or fall risk). To
contribute to the understanding of these phenomena and their intersections, three
secondary data analyses of two relatively large data sets in the area were conducted to
address five major aims. The first step was to identify of the most relevant of these
inherently involved domains (cognitive [aim 1] and motor [aim 2] abilities). Lasso
regression for inference was performed to address this question for both cognitive (South
Shore Neurologic Associates, PC data) and motor (University of Kansas Medical Center
[KUMC] data) domains. Next, evaluations to explore the moderating role of the
psychological impacts that are common in MS (e.g., depression and falls self-efficacy)
were undertaken to determine whether the relationships between cognitive and motor
function and DTW ability are different for individuals with different levels of these
factors using regression with factor scores performed with each data set (aim 3). As a
final step, relationships between DTW and distal outcomes like QoL (cross-sectionally
using both data sets and factor score regression; aim 4) and falls (cross-sectionally and
longitudinally using KUMC data and negative binomial regression; aim 5). These studies
contribute to the corpus of knowledge about DTW in MS in needed ways.
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CHAPTER 1

Multiple sclerosis (MS) is a debilitating neurological disorder that affects over 2
million people worldwide, and around 1 million of those cases are in the United States
(Wallin et al., 2019). The prevalence of MS and the fact that it is usually diagnosed in
young adulthood make MS the leading cause of nontraumatic disability in young adults
worldwide (Tullman, 2013). MS results from lesions distributed throughout the central
nervous system caused by autoimmune attacks on myelin basic protein (Lutton et al.,
2004). This leads to myelin sheath loss (Lutton et al., 2004) and, eventually, axonal death
(Tallantyre et al., 2010). Not only does severity of damage at the cellular level increase
over time but lesion counts also increase over time in most cases (Lutton et al., 2004).
Further, symptoms accumulate over time (Kister et al., 2013). Both the damage to the
central nervous system (Lucchinetti et al., 2000; Metz et al., 2014) and the resultant
symptoms from them are rather heterogeneous (Morales et al., 2006; Weiner, 2009), but
factors such as early lesion proliferation levels (Brex et al., 2002) and global gray matter
atrophy (Nakamura, 2018) seem to be general indicators of disability. These symptoms
include, but may not be limited to, weakness, spasticity, fatigue, and undesirable changes
in sensation, cognition, vision, coordination, bladder function, sexual function, and mood
and psychological states (Crayton & Rossman, 2006).

MS has a few primary forms: primary progressive, secondary progressive, and
relapsing-remitting (RRMS; National Multiple Sclerosis Society [NMSS], 2020a).
Progressive-relapsing MS is a rare form of MS that involves disease progression with
flare-ups but not remission from the outset (Goldenberg, 2012). Most (=85%) of MS

cases begin as RRMS (NMSS, 2020a). SPMS is only diagnosed when the disease course



in RRMS moves from a recurrence of MS “attacks” (relapses) followed by period of
partially returned function (remissions) to a state of continual, gradual decline (NMSS,
2020a). As such, all SPMS cases begin with a disease course of relapse and remission
(NMSS, 2020a). There is no cure for MS (Goldenberg, 2012; NMSS, 2020b). Although
several disease-modifying drugs have been developed, the effects of such drugs are
limited, and not all persons with MS can benefit from them (Goldenberg, 2012; NMSS,
2020b). Given this, there is a need to understand the intersections of diverse symptom
experiences among those affected by MS not only for the purpose of characterization but
also for the purpose of disease management and intervention via rehabilitative efforts
(Crayton & Rossman, 2006).

Among the most common and important symptoms of MS is decreased lower
limb functioning and trouble walking (Heesen et al., 2008; Zwibel, 2009). In fact, the
importance of walking in MS is so patent that the gold standard for measuring MS
disability, the Expanded Disability Status Scale (EDSS), includes walking ability as a
central determinant of disease status (Kurtzke, 1983). Although this focus of the EDSS,
particularly in the 4.0 to 7.0 range of this 0-10 scale, has been criticized by some recently
(van Munster & Uitdehaag, 2017), the fact remains that it demonstrates the central role of
walking disability in MS evaluation and symptom progression. Not only is walking
prioritized clinically, reasonably given that 50-80% of those with MS have gait and
balance dysfunction (Cameron & Nilsagard, 2018), but difficulty walking and the loss of
independence that results from it are among the chief concerns cited by those affected by

MS (Heesen et al., 2008; LaRocca, 2011).



Problems with walking in MS can be mediated by a variety of individual and
environmental factors (Cameron & Nilsagard, 2018). For example, disease-related
alterations that can result in imbalance, gait dysfunction, and increased fall risk include
muscular weakness, motor discoordination, vestibular dysfunction, visual issues,
somatosensory impairments, and more (Cameron & Lord, 2010; Cameron & Nilsagard,
2018). Phenomenologically, these mechanistic pathways give rise to the experience of
having difficulty with walking and balance, albeit as the result of unique dysfunctions.
Given the frequency of these issues, falls are a common experience in MS (Gunn et al.,
2014; Nilsagard et al., 2015). Most people with MS will experience a fall (Gunn et al.,
2014; Nilsagard et al., 2015), and 37% of those with MS are considered “frequent fallers”
(Nilsagard et al., 2015). Falls in MS are also more likely to result in injury (Bazelier et
al., 2012; Peterson et al., 2008) and death (Brennum-Hansen et al., 2006) than falls
among matched controls.

Interrelated with the motor difficulties experienced in people with MS are
cognitive and psychological changes. These changes, which include changes in falls self-
efficacy (FSE; i.e., fear of falling), cognition, and depression, can have important
implications for fall risk and quality of life. Recent work has begun to outline the
connections between these characteristics and falls. However, their relationships with
walking function and falls remain incompletely understood. The following sections
outline current literature on FSE and depression on motor and cognitive function in
people with MS to establish their possible role in complex walking tasks in everyday
contexts and, therefore, possible implications for falls. Then, dual tasking (theories,

paradigms, and measures) in people with MS is discussed, as it is a task that sits at the



intersection of cognition, walking, and, possibly, fall risk. Finally, a model detailing the
hypothesized intersections of these phenomena is presented and methods to address
aspects of it are outlined.

Falls Self-Efficacy and Motor and Cognitive Function in MS

Perhaps understandably, fear of falling or low falls self-efficacy (FSE)—which
are often considered synonymously in measurement (Tinetti et al., 1990; Hill et al.,
1996)—are common among those with MS (Peterson et al., 2007). Fear of falling has
been found to occur in those with MS at rates of just over 60% generally (Peterson et al.,
2007) to as high as 92% of those who with MS who have fallen specifically (Comber et
al., 2017). This often leads to significant activity curtailment, reduced independence, and
lowered quality of life (QoL; Peterson et al., 2007). Comber et al. (2017) reported that
79% of participants with MS who have fallen report activity curtailment associated with
fear of falling.

It may be that fear of falling or low FSE may simply be a reasonable appraisal of
increased risk given symptomatic presentations; however, recent evidence indicates that
FSE may lead to unique consequences due to unnecessary activity curtailment and loss of
independence. First, a large study in individuals assessed correspondence of perceived
fall risk and physiological fall risk (Gunn et al., 2018). Their findings showed that most
individuals with MS have a notable disparity between perceived and physiological fall
risk and the most common discrepancy is that the perceived risk is greater than the
physiological risk (Gunn et al., 2018). Second, in older women at risk for falling, FSE
was found to independently correlate with total brain and grey matter volume (Davis et

al., 2012), and, as noted previously, studies have found that grey matter volume is an



important predictor of disability in MS (Nakamura, 2018). Third, a secondary analysis of
12-month longitudinal data from a randomized controlled trial found that improvements
in FSE were independently associated with increases in usual gait speed in older women
at risk for falling (Liu-Ambrose et al., 2010). Fourth, in neurotypical young adults, global
self-efficacy was found to correlate with mean diffusivity in the basal ganglia (putamen
and globus pallidus; Nakagawa et al., 2017). In older women at risk for falling, it
reasonably possible that overall health status confounds the relationship between
neurological health and greater efficacy; however, this seems less compelling as an
explanation for the association in a young, neurotypical population. It also would not
explain the longitudinal evidence that increases in FSE improve gait speed in older adults
at risk for falling. Of course, it is also possible that feedback loops exist wherein FSE is
both a consequence and antecedent of neuroplastic and functional changes, and it is
acknowledged that there are some patients who may have high FSE despite high
physiological fall risk—but this seems to be the minority of cases (Gunn et al., 2018). In
sum, although the causes of FSE remain incompletely understood, this evidence suggests
that low FSE likely leads to unnecessary curtailment of activities and decrements in
independent function as opposed to serving a protective role for the majority of those
with MS, as other researchers have also asserted (Peterson et al., 2007).

FSE also has clear predictive utility. FSE is a robust, independent predictor of
falls in those with MS when it is considered (Finlayson et al., 2006; Gunn et al., 2018;
Quinn et al., 2018; Peterson, 2009; Van Liew et al., 2020). In fact, in a recent meta-
analysis of clinical measures for predicting falls in MS, the Activities-specific of Balance

Confidence scale (ABC) and Falls Efficacy Scale-International (FES-1)—two highly



related, self-report measures of balance confidence and FSE—were two of three (the
third being the Berg Balance Scale [BBS]) measures that were indicated as potentially
useful, predictive measures of falls in MS (Quinn et al., 2018).

FSE is also highly related to spatiotemporal gait parameters in laboratory settings
(Kalron & Achiron, 2014) which could indicate that low FSE leads to alterations in gait.
Even in such a case where FSE is an appraisal of one’s risk of falling or conscious
assessment of sensorimotor feedback indicating one’s altered gait, it is still possible that
low FSE actually results in unnecessarily overprotective behavior, such as activity
curtailment and sacrifices of independence beyond the level necessary to adequately
mitigate risk of falling. Reasons that such a potential exists intersect with other common
issues in MS, such as changes to one’s psychological and cognitive states. For example,
objective measures of physical activity have been found to be predicted by self-efficacy
(high self-efficacy related to increased physical activity), but anxiety levels significantly
moderated this effect such that the effect was attenuated by increasing anxiety (Casey et
al., 2018). This highlights how worry or concern plays into FSE and suggests that other
psychological states—not just actual abilities—likely factor into FSE evaluations and
their implications for function. Further, avoiding physical activity is likely to lead to
reduced physical functioning which provides a putative path via which low FSE could
cause decreases in walking function via restricted activity. As such, FSE may affect the
way that actual abilities are manifested in activity or performance, and this may become

more important in the context of more demanding tasks that may heighten stress.



Depression and Motor and Cognitive Function in MS

Adverse psychological experiences—Iike anxiety and depression—are themselves
common issues in MS, too. One meta-analysis found that more than 1 in 3 people with
MS had clinically significant symptoms of depression or anxiety in an examination of
cross-sectional prevalence estimates (Boeschoten et al., 2017). Approximately 1 in 2
people with MS will have a diagnosis of depression during their lifetime (Siegert &
Abernethy, 2005), and just over 1 in 3 people with MS will have a clinical diagnosis of
anxiety in their lifetime (Korostil & Feinstein, 2007). Depression negatively affects QoL
and daily function (Lobentanz et al., 2004; Gottberg et al., 2007; Zwibel, 2009). Mitchell
and colleagues’ (2005) analysis of physical and psychological factors that predict QoL in
MS found that factors like self-efficacy and mood mattered more than physical factors
(e.g., weakness, lesion count), and they noted that cognitive impairment was also an
important factor for predicting QoL—even early in the disease.

Further, depression is known to lead to decrements in motor and cognitive
function. For example, depressive motor retardation or psychomotor symptoms refer to
the phenomenon wherein depression leads to slowed motor function putatively via
cognitive and motor sequelae of depression (Caligiuri & Ellwanger, 2000; Sabbe et al.,
1996). Evidence indicates that this may occur through the effects of depression on the
basal ganglia (Naismith et al., 2002)—a region which is critical not only for its role in
motivation but also for its role in the initiation and selection of motor programs (Purves
et al., 2018)—and via dopamine deficits (Schrijvers et al., 2008; Walther et al., 2012). In
older adults, walking speed has been found to relate to depression, anxiety, and cognition

(Biderman et al., 2002; Gage et al., 2003; Kimm et al., 2016; Marino et al., 2019; Van



Kan et al., 2009). Further, factors like anxiety have been found to heighten the attentional
demand of walking in older adults in dual-task paradigms (Gage et al., 2003)—again
highlighting how psychological and cognitive factors may intersect in important ways to
determine walking outcomes especially during complex walking tasks. In terms of
cognitive effects, data from the Longitudinal Aging Study Amsterdam that measured over
2,000 adults across 13 years indicated that depression and changes in depression predict
longitudinal decline in general cognitive function and information processing speed, but
the course of cognitive function was not significantly predictive of the course of
depression symptoms (van den Kommer et al., 2013). These findings highlight that mood
states may play important moderating roles in the context of ambulation particularly
under concurrent cognitive demands.

Relationships between depression and cognitive and motor function have also
been examined in those with MS with somewhat mixed results. For example, depression
in MS is related to impaired memory, slowed information processing, and executive
dysfunction (Arnett et al., 1999; Arnett et al., 2001; Diamond et al., 2008). Julian et al.
(2007) showed that depression related to subjective cognitive impairment. However,
depression was not related to neuropsychologically assessed impairment, but treating
depression resulted in more accurate subjective appraisal of cognitive ability (Julian et
al., 2007). This provides some evidence that attending to psychological factors may help
to ensure those with MS are evaluating themselves accurately and engaging in activities
commensurate with their actual capacity for independent living. Partially contrary to
these findings, Ensari and colleagues (2018) reported small but significant associations

between motor, but not cognitive, function and depression in a cross-sectional study of



131 people with MS. These lines of evidence, and the general nature of depression,
suggest that it is possible that depression affects function and independence directly and
via complex interactions with efficacy, cognition, and motor function. In fact, Lynch and
colleagues (2001) have averred that the relationship between disability and depression
may be characterized by reciprocal causality—not simply as depression being a
psychogenic response to disability.

Clearly, there is evidence for the intersections of these diverse symptoms and
experiences in MS. All these experiences are not only important to QoL in those with
MS, but they are reciprocally and complexly related. As noted, maintaining function in
life is paramount, and walking ability is central to physical function in MS (Cameron &
Nilsagard, 2018; Heesen et al., 2008). Although many measures of function or disability
in MS focus on walking distance, research has indicated that walking speed may be a
more reliable and important predictor of these states (Albrecht et al., 2001), and notable
decreases in gait speed are present in those with MS—even early in the disease course
(Langeskov-Christensen et al., 2017). Researchers have identified that factors like FSE
(Kalron, 2014; Kalron & Achiron, 2014), depression (Briggs et al., 2019), and cognition
(D’Orio et al., 2012; Kalron, 2014) are related to walking speed in those with MS, and as
noted previously, these factors relate to falls rates and risk as well. Such relationships
may be even more meaningfully assessed for real-world function by assessing in the
context of activities that require the phenomenological intersection of multiple domains
at once, such as dual-task walking (DTW), but research examining the relationships

among these factors in such paradigms is sparse and incomplete.



Dual Tasking: Intersecting Motor and Cognitive Function

DTW occurs when an individual must walk and engage in another task
simultaneously (Mirelman et al., 2018). In general, dual tasking (DT) is only considered
to occur if the two tasks have discrete functions or goals (Bayot et al., 2018). The general
DT paradigm is commonly employed in neuropsychology to compare individual
performance on a particular task (often cognitive) in isolation and under DT (which is
often a manual or motor task; Hanny, 1986; Mirelman et al., 2018). The paradigm is
based on a theoretically and empirically based tenet that notable performance decrements
do not occur when an automatic and an attentional task are performed concurrently, but
performance does decrease when two attentional tasks are performed concurrently
(Hanny, 1986; Mirelman et al., 2018). In the context of applications to neurological
populations, evidence indicates that the increased cognitive load required by dividing
attention is the underlying issue, and the effect may manifest irrespective of the
complexity or difficulty of the tasks in isolation (Beste et al., 2018; Hamilton et al.,
2009). This has been central to the promise and usefulness of evaluating dual-task
performance in a variety of contexts. In the context of gait, DTW was initially evaluated
to attempt to determine whether walking is an automatic or attentionally demanding
task—particularly in populations affected by neurological disease (Mirelman et al.,
2018). It is possible that tasks which may be automatic in neurotypical populations
require increased effortful attention in neurologically impaired populations. Such
differences may be particularly apparent in the context of neurodegenerative disorders

where compensation, rather than recovery, is often necessary at the neural level (Kleim,
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2012). In fact, there is evidence that the attentional costs of balance and movement are
both greater in those with MS than healthy controls (Wajda et al., 2019).
Theories of Dual-Task Inference

Historically, two primary theories have dominated the landscape in terms of
explaining the underlying causes of interference that occurs during DT. The first is
Attentional Capacity (or Capacity Sharing) Theory (Kahneman, 1973), and the second is
the Bottleneck Theory (e.g., see Tombu et al., 2011). However, Bayot et al. (2018), in
their review of DT interference in the context of posture and gait, note that there are other
theories, such as the Time-Sharing Hypothesis and Cross-Talk Model. Further, there are
divisions within these major theoretical perceptions (Bayot et al., 2018). Moreover,
researchers have noted that there may be a greater need to recognize the role of higher-
order processing in DT to explain the empirical evidence adequately (e.g., see Pashler,
1994 for a general consideration and Yogev-Seligmann et al., 2012; Wajda & Sosnoff,
2015; Wajda et al., 2016 for reviews and applications in DTW specifically).

Attentional capacity theory asserts that humans have limited attentional capacity,
and, when these resources are taxed by engaging in activities that require attentional
effort (i.e., are nonautomatic), performance on one or both tasks will degrade (either in
quality or rapidity) as attentional demands will be exceeded and attention must alternate
between tasks (or attention to one task must be sacrificed). Two major version of
attentional capacity theory exist: central capacity-sharing and multiple resource models
(Bayot et al., 2018). Central capacity sharing models assert that a central attentional

regulating process underlies the effects seen in DT, but multiple resource models note
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that many types of cognitive resources may be involved in the processing (Bayot et al.,
2018).

Structural bottleneck theory proposes that neural circuitry limits underlie DT
effects. Specific bottleneck theory versions propose that tasks that require pathways that
are shared between the neural networks regulating the tasks compete and cause a neural
bottleneck (Bayot et al., 2018). Unified (or central) bottleneck theory versions assert that
either encoding or response networks in the brain cause general bottleneck for attentional
tasks regardless of shared pathways in the networks that usually regulate the individual
tasks (Bayot et al., 2018; Tombu et al., 2011). Some bottleneck theory models even assert
that multiple neural bottlenecks may exist (e.g., encoding, task-specific neural overlap,
and/or response selection).

The cross-talk model is a bit of a third force in DT theory. It accounts for the
phenomenological and neural processes that may underlie DT effects, but it provides a
view that better accounts for DT facilitation (i.e., when one or more of the tasks is
improved under DT; Bayot et al., 2018). Essentially, if tasks share related processes or
neural networks, the activation of these processes for one task may facilitate the
activation for the related task. Facilitation has been observed in some studies in healthy
controls (Downer et al., 2016) and in some populations with neurological disorders (e.g.,
Huntington’s disease; Delval et al., 2008). Of note, although this approach may help
understand motor-motor facilitation (as observed in HD; Delval et al., 2008), it is less
adept at explaining cognitive-motor facilitation (e.g., Downer et al., 2016). Also, it does
not explain the heterogeneity of responses within individuals when the task-alignments

are the same. Within individuals, there are regularly some individuals who show

12



facilitation and some who show interference regardless of task congruence. This
heterogeneity was noted by Delval et al. (2016). Similarly, although people with MS on
average show cognitive-motor interference, even within MS a minority of persons show
cognitive-motor facilitation in DTW (Quinn et al., 2019).

A lesser-known theory of DT is the time-sharing hypothesis (Bayot et al., 2018;
Nijboer et al., 2014). This theory attempted to explain why research reports show lesser,
equal, and greater neural activation in different DT conditions. This perspective runs
contrary to cross-talk model in that it asserts that tasks that share neural networks will be
more likely to produce interference—not less. The key component is whether time is
shared for the neural processing of the tasks. If two tasks use different networks, those
networks will be accessed with some degree of alternation meaning they are less
frequently accessed (decreased activation). Thus, lesser activation of the region involved
when the task is performed in isolation is observed. However, if the tasks can be
synchronized and “share time,” activation can be maintained for both tasks because there
is no neural processing interference (equal activation). However, if the tasks share related
neural networks, those networks can have heightened activation that results in
interference (Nijboer et al., 2014). Additionally, Nijboer et al. (2014) proposed these
networks may also heighten activation as the result of adding another level of processing
that results from the attempt to evaluate errors arising during the DT overlap.

Although there are undoubtedly neural and cognitive processes that are
foundational to DT effects, there is no consensus regarding which theory best explains
the evidence in DT research and most fail to explain the pantheon of observations fully

(Bayot et al., 2018). Recently, there has been a move toward considering that these
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theories may not adequately explain DT interference in general (Pashler, 1994) and in
balance while walking specifically (Yogev-Seligmann et al., 2012). These models note
that higher order processing and other person-level factors—which undoubtedly still
involve neural and cognitive processes, but in different ways—mneed to be considered to
understand the heterogeneity of responses that can be observed across DT paradigms and
within persons within a given DT paradigm. A theory with the potential to be viewed as
complementary to many of those in existence, is self-awareness theory (SAT; Wajda &
Sosnoff, 2015; Wajda et al., 2019). Yogev-Seligmann et al. (2012) specifically note that
assessment of one’s abilities in the context of environmental demands may be a critical
person-specific factor to consider in understanding heterogeneity in DT. That is, self-
efficacy is a putative moderator in understanding how baseline abilities affect the DT
processes (Wajda et al., 2019). Thus, this model emphasizes that not just one’s objective
abilities but also one’s subjective evaluations and appraisals of these abilities are crucial
to understanding DT effects, and this may help to explain the great heterogeneity
observed in the corpus of literature.
Dual-Task Paradigms

DTW is often explored using a simple paradigm that requires a cognitive task
(e.g., serial subtractions, verbal fluency tasks, etc.) to be performed concurrently with
walking (Mirelman et al., 2018). Although motor-motor, cognitive-cognitive, and
cognitive-motor paradigms all exist, cognitive-motor paradigms are among the most
common and may be particularly useful in MS (e.g., Mofateh et al., 2017). However, it is
worth noting that these paradigms all have their place and permit exploration of various

processes and possible deficits. For example, there have also been calls for the use of
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cognitive-cognitive DT evaluations in the clinical assessment of MS (Beste & Ziemssen,
2020), as it may reveal cognitive deficits more sensitively than single task (ST) cognitive
processes alone (e.g., D’Esposito et al., 1996). Although such paradigms have their clear
use given 40-70% of those with MS have some form of cognitive dysfunction
(Chiaravolloti & DeLuc, 2008; Rocca et al., 2015) and executive function is a common
problem in MS that has been shown to be critical in DT paradigms (Beste et al., 2018),
the potential implications of DT producing cognitive-motor interference are particularly
notable and consequential (e.g., potential to impair function and increase risk of falling).
In fact, the seminal study to explore DTW was based on the premise that it increased fall
risk (Lundin-Olsson et al., 1997).

When considering cognitive-motor DT paradigms, there is no consensus
regarding the form DT takes, and great heterogeneity in studies leads to the need to
answer several outstanding questions (Bayot et al., 2018). It has been explored for a
variety of motor tasks—from fine motor tasks (e.g., D’Esposito et al., 1996; Wolkorte et
al., 2015; Goverover et al., 2018; Lemmens et al., 2018) and upper limb movement (e.g.,
Raats et al., 2019) to balance and gait tasks (e.g., see Wajda & Sosnoff, 2015; Learmonth
et al., 2017; Postigo-Alonso et al., 2018; Chamard Witkowski et al., 2019 for reviews).
Moreover, there is no agreement regarding the type of cognitive task to be used. Serial
subtractions (3s or 7s), verbal fluency tasks (i.e., word list generation; e.g., phonemic
[e.g., words that start with “D”] or semantic [e.g., animals]), and alternating alphabet
tasks are common (Postigo-Alonso et al., 2018). Digit span (Hamilton et al., 2009) and
Stroop Color-Word test, both visually (Kalron et al., 2011) and auditorily (Leone et al.,

2020), have also been used in MS DT studies. Leone et al. (2020) included eight
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cognitive tasks in the DT study in MS (serial subtraction with 3 and 7, digit span forward
and backward, auditory Stroop Color-Word test, clock task, and word list generation
phonemic and semantic). There is evidence that a dosing effect may be present in some
populations with more demanding cognitive tasks causing greater performance
decrements on the concurrent walking task (Kirkland et al., 2015; Mirelman et al., 2018;
Leone et al., 2020; cf. Hamilton et al., 2009). However, findings vary greatly within
specific operationalizations for cognitive tasks, and even studies that have attempted to
compare cognitive tasks in DTW in MS have come to different conclusions.

Leone et al. (2020) noted that digit span backwards and phonemic word list
generation produced the greatest cognitive-motor interference in MS and auditory Stroop
Color-Word test produced the least. The other tasks did not differ from one another.
However, Postigo-Alonso et al. (2018) reported in their review that serial subtractions by
7, but not 3, and alternating alphabet produced reliable cognitive-motor interference in
MS. They were unable to evaluate digit span given its rare use. The original DTW
assessment, the Stops Walking while Talking Test (Lundin-Olsson et al., 1997; see also
de Hoon et al., 2003), simply required patients to maintain a conversation while walking
from one room to another in their residential facility. The conversation (e.g., questions
asked by the experiments) can be more standardized (e.g., de Hoon et al., 2003), and this
test has given rise to the Walking while Talking test (Verghese et al., 2002) which
includes a 40 ft (= 12 m) walk and turn has two different levels of complexity (alphabet
recitation and alternating alphabet recitation). It has been used in people with MS (Fritz
et al., 2019). Verghese et al. (2002) concluded that the Walking while Talking Test was a

reliable and valid indicator for fall risk in older adults. Similarly, the Timed Up and Go-
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Cognitive test (TUG-C) can be administered by adding either serial subtractions or verbal
fluency tasks (Quinn et al., 2019) to the Timed Up and Go test (TUG) which is a
standardized mobility task that includes rising from seated, walking 10 ft (= 3 m),
turning, and returning to seated (Podsiadlo & Richardson, 1991). This test is a
recommended screening test for fall risk, too (Kenny et al., 2011).
Dual-Task Costs as a Measure of Interference

As stated, DT paradigms attempt to probe changes in performance—most
frequently and notably deficits—that arise from performing two tasks concurrently.
Although, as noted, DT can result in facilitation wherein one or both tasks experience
improved performance during DT relative to ST conditions (Bayot et al., 2018), DT costs
(DTC) is regularly used in lieu of a more general term like DT effect (Bayot et al., 2018).
In fact, Plummer et al. (2013) noted that there are nine possible results from cognitive-
motor DT studies: 1) no changes, 2) motor interference, 3) cognitive interference, 4)
cognitive and motor interference, 5) cognitive facilitation, 6) motor facilitation, 7)
cognitive and motor facilitation, 8) motor interference and cognitive facilitation, and 9)
cognitive facilitation and cognitive facilitation. Although DTC may not be the most
apropos to describe all these possible outcomes, the phrase DTC is commonly used. The
general form of DTC, which can be applied to cognitive, motor, or other performance
measures, is computed as the change between ST and DT performance as a ratio of ST
performance that is multiplied by 100 to convert to a percent change relative to baseline
(Learmonth et al., 2017; Leone et al., 2015; Postigo-Alonso et al., 2018; Wajda &
Sosnoff, 2015; see Baddeley et al., 1997 for original proposal of below equation).

prc = L= PT 100
Y
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This measure, introduced in Baddeley et al. (1997) in neuropsychological
assessment, has been used widely without much consideration regarding its performance
as a test for DTW in MS (e.qg., reliability). It is worth noting that in the seminal study
regarding DTW and falls conducted by Lundin-Olsson and colleagues (1997), DTC was
not used. Rather, it was simply based on observations made in a clinic that evaluated
whether residents stopped walking when conversing. Further, when considering the
usefulness of DTC versus other ways of operationalizing DT performance or interference,
recent evidence in people with MS suggests that it may not be as useful for repeated
testing evaluations as using ST and DT speeds (or other gait characteristics excluding
measures of gait variability) in isolation (Chen et al., 2020). It is worth noting that the
sample size used for Chen et al.’s (2020) study was quite small, and reliability was
assessed based on a weekly reevaluation that occurred at three times only. However, it is
possible to examine interference in DT by simply examining the difference in
performance between the two conditions or by including condition as a within-persons
factor, and DTW performance (e.g., speed, gait variability) alone could serve as useful
metrics.

It is worth noting that studies vary in whether they use absolute changes for speed
or time or DTC for speed or time. This could produce heterogeneity in results. Consider
the following demonstration. Imagine two subjects both experience a slowing of 0.1 m/s
under DT. One has a baseline speed of 1.4 m/s (subject 1) and the other a baseline speed
of 0.9 m/s (subject 2). This will lead to DTC for speed of 7.1% and 11.1%, respectively.
As such, the slower individual (subject 2) will appear to have 1.56 times the DTC than

the faster individual (subject 1). If these values were converted to DTC for time, the
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slower individual would appear to have a DTC 1.63 times greater than subject 1. As such,
DTC using speed and time will produce results that differ slightly. This difference alone
could produce heterogeneity even when DTC are used.

However, some studies simply consider the absolute change in time. Yet, fixed
differences in time will lead to different conclusions. If we evaluated these same people
but imagined the difference evaluated was the difference in time (s) not speed (m/s), we
would arrive at different conclusions. Imagine they experienced the identical absolute
changes in time and took 0.2 s more to complete the DT walk than the ST walk. As such,
these people would not appear to differ in the DT outcome for absolute change. However,
this would result in a DTC for time of 9.3% for subject 1 and a DTC for time of 6% for
subject 2. Thus, the faster individual would appear to have the greater DTC by a factor of
1.56 for time, and this would result in a DTC that is 1.51 times greater for subject 1
relative to subject 2 for speed (see Table 1).

Table 1

Hypothetical Data Comparing Dual-Task Cost Calculation based on Absolute Change
Comparisons using Speed and Time

Subj Distance (m) ST (m/s) A(ml/s) DTWCS ST (s) A(s) DTWCT

1 3 14 0.1 0.071 2.143 0.165 0.077
2 3 0.9 0.1 0.111 3.333 0.417 0.125
Proportional Change (subjl1/subj2) 1.556 1.625

Subj Distance (m) ST (m/s) A(ml/s) DTWCS ST (s) A(s) DTWCT

1 3 1.4 0.120 0.085 2.143 0.2 0.093
2 3 0.9 0.051 0.057 3.333 0.2 0.060
Proportional Change (subj1/subj2) 0.663 0.643

Note. Subj = Subject. ST = Single task. Delta is the difference between the single-task
and dual-task performances. DTWCS = Dual-Task Walking Costs for Speed. DTWCT =
Dual-Task Walking Costs for Time.
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As such, studies that examine ST and DT as within-persons conditions could have
notably different conclusions than those that use DTC, and this reminds that there are
reasons to consider treatment of ST and DT performance carefully. Throughout the DT
literature in MS, one finds studies that use Baddeley et al.’s (1997) formula, performance
in DT (without ST reference), and comparison of performance using within-persons
factor treatment. Future literature reviews should account for differences in findings
between studies using measures such as DTC versus gait characteristics or time
measurements in DT paradigms.

Dual-Task Walking in Multiple Sclerosis

Focusing specifically on DTW, DTW costs (DTWC; that is walking related
changes in DT) can and have been calculated for a variety of gait parameters, but the
most common and pronounced changes to gait in older adults or those affected by
neurological disorders seem to be decreased gait speed and increased stride-to-stride
variability (Mirelman et al., 2018). DTW has been assessed among those with MS
recently, with the first study occurring in 2009 (Hamilton et al., 2009), after research
findings that aging and neurological disease states, such as Alzheimer’s disease, stroke,
and Parkinson’s disease, cause decreases in DTW ability (e.g., Woollacott & Shumway-
Cook, 2002; Camicioli et al., 1997). (For later demonstrations of these effects, see also
Plummer et al., 2013; Kelly et al., 2012.) In MS, most studies examining DTWC
regularly report slowing during DT conditions, and Postigo-Alonso and colleagues’
(2018) systematic review reported gait speed to be the most sensitive of the DTWC
measures commonly assessed. Wajda and Sosnoff (2015) and Leone et al. (2015) in their

reviews focused on gait speed and noted that all studies showed DTWC for speed in
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those with MS. Coupled with Chen et al.’s (2020) finding that measures of variability
(e.g., stride-to-stride variability as noted by Mirelman et al., 2018) were highly unreliable
when evaluated for repeated measurements in both people with MS and healthy controls,
this provides good indication that the assessment of speed is appropriate for the purpose
of evaluating changes in gait during DT. Further, assessing speed is simple and
translatable. Clinicians can assess a patient’s speed by simply using a stopwatch while
patients walk a known distance (e.g., see Montero-Odasso et al., 2020). The rationale for
using speed as a primary measure is bolstered further by the aforementioned importance
of walking speed in MS generally. Changes in gait speed are widely used and reasonably
SO.

Although DTC for cognition (DTCC) can be calculated as well, they are rarely
included (for relevant reviews, see Chamard Witkowski et al., 2019; Leone et al., 2015;
Postigo-Alonso et al., 2018; Wajda & Sosnoff, 2015). The evidence regarding DTCC is
mixed. Some studies have reported that DTCC seem useful in MS (Hamilton et al., 2009;
Wajda et al., 2016; Wajda et al., 2019; Wajda et al., 2020) and others have indicated
otherwise (Leone et al., 2020; Postigo-Alonso et al., 2019). However, there is variability
in how DTCC are calculated (e.g., accuracy alone or time-based accuracy) in addition to
other variables in the study designs, too. With so few studies reporting DTCC, it is hard
to consolidate and interpret them adequately in MS. As stated, there are nine possible
profiles for DT effects, but these have not been explored fully or adequately in MS.
Interestingly, Quinn et al. (2019) recently assessed 100 participants with MS based on the
strategies they employed during DT. They identified six patterns of responders: those

who 1) performed well cognitively and motorically, 2) performed worse cognitively but
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not motorically, 3) performed worse cognitively and motorically, 4) would stop to
complete cognitive task and resume, 5) would synchronize their steps and cognitive task
responses, and 6) performed worse motorically but not cognitively. They noted that only
one pattern was associated with high risk of falling during a 3-month prospective
observation: those who exhibited DTWC but not DTCC. This is akin to the “posture-
second” strategy that has been discussed in other populations affected by neurological
disease (Bloem et al., 2006) and examined more recently in MS as a possible predictor of
disability progression (Castelli et al., 2020). Importantly, this was an exploratory analysis
and there was small sample size per cell for this 2 x 6 contingency table. Bearing this
limitation in mind, although this suggests that understanding both tasks is useful, it
provides further indication that altering gait may be what is of particular importance in
the context of fall risk, reiterating the importance of DTW effects.
Correlates of Dual-Task Walking in MS

The ability to dual-task may be an important functional process in its own right in
MS. Castelli and colleagues (2016) reported that DTWC were related to elements of the
54-item Multiple Sclerosis Quality of Life scale (MSQoL-54), specifically role
limitations related to physical problems and social function, in people with MS who had
low levels of disability (EDSS < 3). Other evidence also suggests that DTW problems
may occur early in the disease course (e.g., even in Clinically Isolated Syndrome; e.g.,
Kalron et al., 2010, 2011). It seems that DTW is a function that is important in MS, and it
manifests early in the disease course. It takes only a bit of mental consideration to
identify all the daily functional and social activities that require DT—from holding a

conversation while walking with a friend, to texting as we navigate through our
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environments, to recalling our grocery list while strolling through the grocery store, to
trying to remember where we parked as we walk through the lot, on and on the list of
DTW goes. Thus, it is reasonable to assume that DTW ability would matter to the
function and QoL of those affected by MS, particularly if the deficits are perceptible—
whether as the result of their novelty (e.g., early in the disease course) or severity (e.g.,
later in the disease course). Yet, there is a notable paucity of research that explores how
important patient reported outcomes (PROs) relate to DTW in those with MS (Leone et
al., 2015; Rooney et al., 2020).

In their 2015 review, Leone and colleagues noted that there is a clear neglect of
the “invisible symptoms” (p. 128) of MS in the context of DT research. Rooney et al.
(2020) found only nine DTW studies (and four DT balance [DTB] studies) that examined
correlations with other variables of importance in MS. They reported only two studies
that examined depression, two studies that examined FSE (or “balance confidence”), and
four studies that examined fatigue. No studies examining QoL were included in their
review. Further, in terms of objectively measured correlates, there is a surprising lack of
studies examining relationships with disability (e.g., EDSS, n = 9), cognition (variable
measures, n = 9), or balance (BBS, n = 1; postural sway, n = 1).

Although there are numerous studies evaluating DT in MS, most of them focus on
simply characterizing DTW in MS and comparing the performance of those with MS to
healthy controls. Although there is strong evidence for DTWC in MS—albeit the
evidence is less strong with respect to whether these costs differ from those of healthy
controls in magnitude—there is limited examination of the relationships between DTW

ability and DTWC and other important constructs in people with MS. (As a reference, 47
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studies that included DTW in some form and 17 studies that included DTB in some form
were identified during a thorough literature review. Current meta-analyses and reviews
[dated 2015 to 2020] in DT in MS included between 13 and 20 studies [see Leone et al.,
2015; Wajda & Sosnoff, 2015; Learmonth et al., 2017; Postigo-Alonso et al., 2018;
Chamard Witkowski et al., 2019; Rooney et al., 2020].) Thus, it is difficult to ascertain
whether and how DTW ability or DTWC relate to other important outcomes in MS. Even
the evidence regarding whether cognition relates to DTWC or DTC for balance in MS
remains unclear (e.g., Rooney et al. [2020] report 5 of 9 studies reporting correlations
between baseline cognition and DTC). One correlate that has been examined most
frequently and consistently, disability measured by the EDSS, does not seem to reliably
relate to DTWC (Rooney et al., 2020), suggesting that DTWC may capture something
distinct from general walking function (which particularly affect EDSS scores, especially
in the range of 4.0 to 7.0; van Munster & Uitdehaag, 2017). Clearly, more research is
needed to understand the correlates and predictors of DTW ability and DTWC in MS.
Consequences of Dual-Task Walking—Falls

Beyond the possible relevance to patients for DTW ability alone, its importance is
further bolstered by possibility that it is related to fall risk and falls. In fact, the seminal
study by Lundin-Olsson and colleagues (1997) is considered the first to identify the
inability to engage in DTW ability (not DTWC) as a predictor for falls. This study was a
small report based on observations in a long-term care facility in Sweden. It found that 12
of 58 residents would stop walking when talking, and 10 of these 12 “stops walking when
talking” residents fell in the next 6 months. Lundin-Olsson et al. (1997) also reported that

these individuals were assessed to have less safe gait in general and needed more
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assistance with activities of daily living. Thus, the idea that function and falls are
consequents of an inability to perform DTW is at the foundation of this line of research.
In fact, Lundin-Olsson and colleagues (1997) found that this simple identification of
individuals who stop walking to talk classified fallers with 95% specificity albeit with
only 48% sensitivity and had a positive predictive rate of 83%. Comparatively, Bogle
Thorbahn and Newton (1996) found that the BBS only had 96% specificity and 53%
sensitivity, but it has a much greater burden of administration than merely observing this
everyday activity of “walking and talking.” Thus, this demonstrated that a simple,
everyday ability to walk and talk may be a useful characteristic to evaluate when
considering whether someone is at risk for falling among older adults.

In MS, Quinn et al. (2019) found that individuals with MS who provided self-
reported indication of difficulty doing two things at once were twice as likely to
experience two or more falls during a 3-month prospective study. Finding that such a
simple question about an important everyday process was significantly related to
prospective fall risk in MS is insightful, as there is a clear need to have measures that
adequately predict fall risk and rates in MS. Studies exploring these issues have revealed
continued limited ability of available measures to adequately classify fallers and non-
fallers (Cattaneo et al., 2006; Nilsagard et al., 2009; Hoang et al., 2016). A recent meta-
analysis (Quinn et al., 2018) of predictors of fall risk in MS found that there is limited
work in the area permitting a full understanding of the best predictors of fall risk, but the
ABC and FES-1—two highly related, self-report measures of FSE (or “balance
confidence””)—were two of three (the third being the BBS) measures that were found to

be useful. However, it was noted that there is not sufficient evidence from prospective
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studies to adequately identify measures of fall risk in MS. Work has hinted that DTW
ability may predict fall risk in MS, as it does in older adults. One study (Wajda et al.,
2013) found that DTWC correlated with the Physiological Profile Approach, and
objective assessment of various domains that are putatively important for maintaining
balance and which performs decently in predicting falls in MS (Gunn et al., 2013; Hoang
et al., 2016). However, ST and DT speed alone did not. However, Rooney et al. (2020)
noted that only one of the two studies they identified that assessed DTWC and
Physiological Profile Approach correlations found such a relationship.

This inconsistency between the two studies examining DTWC and Physiological
Profile Approach scores is characteristics of the evidence regarding DTWC and fall risk
in MS generally—it is limited and conflicted. For example, one study that included
DTWC did not find DTWC to predict future falls (Gunn et al., 2013). Yet, another study
(Etemadi, 2017) found that both DTWC and DTCC predicted risk of being a recurrent
faller in a 6-month prospective study in 60 people with MS. Nilsagard et al. (2009) found
that TUG-C time (not DTWC), which has been reported to have 87% sensitivity and
specificity among older adults (Shumway-Cook et al., 2000), was a significant predictor
of being a faller albeit it did not perform as well as some of the other measures, such as
the BBS. Quinn et al. (2019) evaluated the ability of TUG and TUG-C performance to
discriminate both fallers (> 1 fall) and multiple fallers (> 2 falls) from non-fallers in a 3-
month prospective study of 101 people with MS. They found that both assessments
performed mediocrely at best (.71 < sensitivity < .82 and .26 < specificity < .34) using >

9s for TUG and >11s for TUG-C, and the TUG-C was no better than the TUG alone.
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It is notable that studies use different timeframes and classification practices (e.g.,
some use > 1 fall during a given period and some use > 2 falls during a given [and often
variable—e.g., 3 months or 6 months] period). They can also vary in the types of task
used (in terms of either the walking task [e.g., variable distance, turn inclusion or not,
etc.] or cognitive task) and in the operational definition of the DT variable (e.g., DTWC
or DTW gait characteristics or time alone). Further, they vary in their model construction
approaches. Etemadi (2017) focused on DTC predictors of fall risk whereas Gunn et al.
(2013) and Nilsagard et al. (2009) focused on a broader array of predictors of fall risk
including a single measure of DTW (with only one using DTWC). Lastly, Nilsagard et al.
(2009) and Quinn et al. (2019) both used only the time to complete TUG-C, not DTC
specifically, and only Quinn et al. (2019) examined TUG-C performance as a singular
test for classifying fallers (not just a predictor in a classification model). A final
important note in the context of fall risk and DTW is that recent evidence suggests that
DT training may outperform standard physical therapy (balance and gait exercises) based
on some small, randomized trials (Elwishy et al., 2020; Molhemi et al., 2017; Sosnoff et
al., 2017), including reducing risk of future falls over a 3-month follow-up period
(Molhemi et al., 2017). None of these studies explored the mediators or mechanisms—
likely due to the small sample sizes and preliminary nature of the work—so it is difficult
to ascertain the specific elements being altered by DT training that confer these benefits
for more distal outcomes. Clearly, more needs to be understood regarding the relationship
between DTW outcomes and fall risk and rates among those with MS (Leone et al., 2015;

Wajda & Sosnoff, 2015).
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Abilities and Appraisals: A Theory-Based Model

Researchers studying DT in MS have noted the clear need to understand the
correlates and consequences of DTW more fully in those with MS (Leone et al., 2015;
Rooney et al., 2020; Wajda & Sosnoff, 2015). With few studies—and fewer still
exploring the correlates and consequences of DT—heterogeneity in design and results,
and frequently, but not exclusively, small sample sizes, there is need to continue to
address these questions. If the intention is to affect the lives of those with MS for the
better, it is crucial to understand whether there are meaningful effects of DTW on
patients’ lives (e.g., by examining PRO correlates and predictors and health-related
risks). Further, if such relationships do reflect true processes in the population of those
affected by MS, there is a need to understand whether these processes work similarly for
patients with different clinical profiles.

In the context of a theory of DT that acknowledges the complexity of DT—Ilike
the complexity of balance, gait, and falls generally (e.g., see Cameron & Nilsagard, 2018;
Robinovitch, 2018)—it is reasonable to propose that person-level moderators—including
appraisals of self and one’s environmental context (Yogev-Seligmann et al., 2012)—may
be important. As noted, SAT (Wajda & Sosnoff, 2015; Wajda et al., 2019; Yogev-
Seligmann et al., 2012) proposes that risk evaluation—based on environment and
personal ability—operates to affect prioritization processes that occur during DTW (e.g.,
whether gait and balance or the other task [e.g., cognitive process] is prioritized). There is
research that suggests that within people with MS, personal ability or deficits (Lemmens
et al., 2018; Saleh et al., 2018), environmental demands (Veldkamp et al., 2019; Wajda et

al., 2020), and other factors may affect DT processes. This may indicate that appraisal
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based on personal ability or environmental hazards are relevant to DTW processes.
Further evidence of higher order process involvement comes from evidence that
prioritization instructions can affect DTW outcomes in people with MS (Postigo-Alonso
et al., 2019). This evidence hints that it is reasonable to hypothesize that higher-order
evaluative processes can impact DTW in people with MS and that more basic theories
(e.g., bottleneck theory or attentional capacity theory) may not be sufficient to understand
DT effects in MS in their entirety (Wajda et al., 2019).

In the context of FSE and depression, which are particularly relevant in MS, as
previously noted, and can be reasonably expected to affect motor and cognitive
processes, both also affect risk evaluation and personal assessments (Bandura, 1994;
Davey et al., 2017). Thus, it is possible that the effects of basic abilities and skills (e.qg.,
motor or cognitive abilities) not only relate to these states, but that their effects on
complex functional tasks (e.g., DTW) are moderated by these psychological states.
Assessments of abilities would be expected to differ for people with different levels of
FSE and depression.

By definition, self-efficacy is an appraisal of one’s ability to complete a particular
task (Bandura,1994), and the proposition of its relevance to DTW has been made by
others (Wajda et al., 2019; Yogev-Seligmann et al., 2012). Importantly, FSE, in true
adherence to the meaning of SE, is not an efficacy for falls (i.e., it is not confidence about
one’s ability to fall), but an efficacy to maintain balance while navigating various
environments. As such, two people with similar cognitive or motor skills may not
experience similar DTW outcomes as a function of differential appraisals of relevant

underlying abilities. A person with low FSE may believe their balance is poor even when
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itis not (e.g., Gunn et al., 2018) which could produce meaningful differences in how their
abilities relate to DTW effects compared to another person with similar motor abilities
but different levels of FSE. Further, although it may seem that FSE is only relevant as a
moderator of motor ability and DTW ability, research indicates it may be related to
DTCC (Wajda et al., 2020). This is reasonable given the two tasks are occurring
simultaneously and beliefs about one or both may affect the primacy given to one which
would also result in differences in the other. A person with low FSE and high levels of
cognition may not experience the same relationship between cognition and DTWC as a
person with high FSE and high levels of cognition. Low FSE may make one
hypervigilant with respect to walking (e.g., see Kalron & Achiron, 2014); thus, they may
be slower than their counterpart with high FSE which may alter the cognitive-motor
coupling often seen in those with MS (Benedict et al., 2011; Motl et al., 2013; Yozbatiran
et al., 2006). That is, in general, walking speed and cognitive ability appear to be highly
correlated in MS, but this correlation may be attenuated by the presence of low FSE due
to the perception of less competence and more risk leading to alterations in gait.
Similarly, depression could lead to heightened risk appraisal—in fact, research
suggests that depression may lead to more accurate (i.e., less optimistically biased)
assessments of risk for future events (Korn et al., 2014) in some interesting research
regarding optimism bias and health outcomes (e.g., Garrett & Sharot, 2014; Sharot,
2012). Although no researchers have considered depression as a moderator of the
relationships between cognition or motor function and DTW, it has been considered as a
moderator of cognitive-motor coupling more generally in MS (Ensari et al., 2018). Ensari

et al. (2018) did not find that depression moderated general cognitive-motor coupling in
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MS, but further evidence is needed, and it is possible that this role could become more
patent in more demanding contexts such as DTW paradigms. Yet, Serra-Blasco et al.
(2019) and Potvin et al. (2016) found that depression alters appraisal of one’s cognitive
ability. Further, Potvin et al. (2016) found that subjective cognitive ability was a better
predictor of function in individuals with depression than objective cognitive ability. This
highlights the power of subjective appraisal and evaluation in understanding the interplay
between cognition and function—albeit in a more general form.

Thus, it is reasonable to hypothesize that either depression or FSE could moderate
the relationships between cognition and mobility and DT effects. Although simply asking
whether depression and FSE are related to DTW ability or DTWC is also important, if the
relationships between cognitive ability or motor function and DTW effects are moderated
by person-level factors like FSE and depression, this could lead to masked relationships
(e.g., if a qualitative moderation exists the marginal effect could wash out). Also,
understanding whether these psychological states alter the appraisals made by individuals
with MS in a way that produces differential effects of DT may be relevant to
understanding the interference that FSE, depression, and DTW pose for those with MS in
daily life. It could suggest that different interventions are warranted for DTW problems
for individuals with different levels of FSE or depression. Finally, it provides a means to
test whether a theory like SAT may be needed—even if just complementarily—to explain
DTW effects in people with MS. If FSE or depression moderate the relationships between
motor function or cognition and DTW, it would provide some—albeit limited—

indication that SAT as an explanation for DTW processes in MS has merit.
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However, a necessary starting point given the mixed findings in the literature is
identifying which motor and cognitive factors may be related most to DTW and DTWC.
As noted, there is still limited understanding regarding which motor and cognitive
domains may be particularly relevant (Rooney et al., 2020). Thus, as a first step,
identifying the most relevant of these seemingly inherently important domains is
warranted. As a final step to explore and understand the implications of DTW in general,
it is imperative to understand whether DTW ability or DTWC affect distal outcomes like
QolL, disease impact, and falls. Although DTW ability may something that people with
MS view as important in and of itself, understanding its full import requires assessing its
relationship with distal outcomes that are subjectively important to those affected by MS
and objectively affect their health and wellbeing.

Project Aims
To evaluate the phenomena noted above, three thematically-organized, secondary
data analyses were completed to address the following aims:

1) Identify cognitive domains that relate to DTW measures in people with MS,

2) Identify motor domains that relate to DTW measures in people with MS,

3) Evaluate FSE and depression as moderators of the relationships between cognitive
and motor abilities and DTW measures,

4) Examine whether DTW measures relate to MS Impact and QoL, and

5) Examine whether DTW measures relate to falls both cross-sectionally and
longitudinally and whether they explain variance in falls above and beyond

baseline walking and cognitive abilities alone.
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As part of this process, PROs (e.g., FSE and depression) were evaluated in the
context of DTW in MS—something that is generally overlooked by research in the area
(Leone et al., 2015). This requires the use of scales that are commonly employed to
measure these PROs. Making assumptions that sum scale scores appropriately capture the
underlying constructs of interest may notably and detrimentally affect conclusions from
statistical models (McNeish & Wolf, 2020). As such, the addition of evaluating these
constructs psychometrically is also an important, novel addition to this area of research.

Unfortunately, limitations in available data make it infeasible to assess the entire
model in a singular fashion, but its elements can be assessed in discrete components to
provide some evidence for the hypothesized model (see Figures 1 and 2). It was
hypothesized that 1) cognition (specific domains to be addressed in an exploratory
manner) and 2) motor (specific domains to be addressed in an exploratory manner)
factors would relate to DTW ability and DTWC, that 3) FSE and depression would
moderate relationships between cognitive and motor factors and DTW ability and
DTWC, 4) that DTW ability would relate to MS Impact and QoL, and that 5) DTW
would relate to falls cross-sectionally and predict falls longitudinally above-and-beyond

baseline motor and cognitive abilities.
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Figure 1

Proposed Model using South Shore Data. PR = Patient-Reported
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Note. PR = Patient-Reported. Blue lines correspond to aims 1 and 2. Orange lines
correspond to aim 3. Green lines correspond to aim 4. Black lines are expected but not in
aims.

Figure 2

Proposed Model using University of Kansas Medical Center Data.
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Note. PR = Patient-Reported. Blue lines correspond to aims 1 and 2. Orange lines
correspond to aim 3. Green lines correspond to aim 4. Gold lines correspond to aim 5.
Black lines are expected but not in aims.
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Method

The proposed research performed secondary data analyses on two relatively large
data sets that contain the necessary measures to compute DTW ability and DTWC. One
set of data comes from South Shore Neurologic Associates, PC (SS) and the other comes
from the University of Kansas Medical Center (KUMC). The sample sizes of these data
sets are a clear strength. For example, they both fall on the upper end of the sample size
distribution compared to existing studies in the area with the SS data being at the 87.8th
percentile and the KUMC data being at the 98.2nd percentile—second in size to only one
study (see Figure 3). Both available data sets had other, unique strengths that suit them
for addressing the proposed research aims (e.g., inclusion of PROs in both, longitudinal
data collection for a period greater than any existing studies that include assessments of
DTW and falls for KUMC data, etc.).
Figure 3

Boxplot for Sample Size in Dual-Task Walking Studies in Multiple Sclerosis.
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Note. Only participants with Multiple Sclerosis are included. SS = South Shore
Neurologic Associates. KUMC = University of Kansas Medical Center.
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South Shore Neurologic Associates, PC Data

SS is a comprehensive neurological care practice that has multiple facilities in
New York (SS & MedNet Technologies, Inc., 2020). It was established in 1980, and it
has many specialty groups including a clinical research team involved in multiple
research studies and clinical trials. The clinical research team at SS has established a data
use agreement with Arizona State University (ASU) to allow for use and analysis of some
of its data collected from various neurological populations via clinical samples. The SS
data were used to address aims 1, 3, and 4 primarily.

Participants. The current data included 73 people with MS as part of a
deidentified data set. This is a convenience sample of clinical patients who agreed to have
their data used for research purposes. As such, there are no explicit inclusion or exclusion
criteria for the sampling approach. However, the sample is described fully in terms of
demographic and clinical features. A trained neurologist completed the EDSS to measure
disability levels which are also summarized. Some participants were measured multiple
times. Only the first administration of any measure was included to ensure independence
of observations between units of analysis and to minimize possible learning effects from
re-administration.

Materials.

Expanded Disability Status Scale. The EDSS (Kurtzke, 1983) is considered the
gold standard measure for disability due to MS (Bermel et al., 2014) despite some
limitations (Amato & Portaccio, 20007; Cohen et al., 2012). For example, the EDSS has
been criticized for heavy reliance on ambulation in the middle 4.0 — 7.0 range (van

Munster & Uitdehaag, 2017) and having limited reliability and sensitivity to change
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(Meyer-Moock et al., 2014; Noseworthy et al., 1990). Nevertheless, it remains an
important pillar in disability assessment in MS (Cohen et al., 2012). It assesses multiple
functional systems (pyramidal, cerebellar, brain stem, sensory, bowel & bladder, visual,
cerebral [mental], and other; Kurtzke, 1983). These systems are all evaluated by
neurologists and graded with set scoring systems specific to the domain (higher scores
indicating more dysfunction in the system), and the scores on these systems are used to
compute the final score of the EDSS—the “disability status scale step” (Kurtzke, 1983).
Scores for these steps range from 0 (normal neurological examination) to 10 (death due to
MS) and rise by half-point increments (Kurtzke, 1983).

Gait Parameters. Gait parameters (speed) were extracted by the original research
team using data from a Zeno™ Walkway gait analysis system measuring 2 ft (width) by
26 ft (Iength; Protokinetics Inc., Haverton, PA, USA). This mat records footfall data
digitally, and this data permits calculation of walking speed. The Zeno™ Walkway has
been shown to be a valid (e.g., concurrently) and reliable tool for evaluating gait
characteristics (Berg-Poppe et al., 2018; Hynes et al., 2019; Lynall et al., 2017;
Vallabhajosula et al., 2019) including for gait speed in clinical care settings (Abizanda et
al., 2020), and it has been evaluated for reliability in DTW designs (Montero-Odasso et
al., 2020). The walk distance was standardized for all participants to be ~ 8 m (walkway
length). To avoid including acceleration during gait initiation and termination,
participants begin walking before reaching the mat and are instructed to continue walking
after the mat ends (approximately 1.5 m each). Straight, unobstructed walks without
turns, rising from seated, or other elements were performed. Both the ST and DT walks

included three trials and the mean of these was used as the outcome variable.
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Dual-Task Walking Measures. Given the possible limitations of DTWC in
addition to the various approaches for assessing DTW in MS, multiple
operationalizations were used for DTW. Specifically, three operationalizations were
considered: 1) DTWS, DTWC, and DTWD. The purpose of this was to understand
whether these differences in operationalizations can account for disparate outcomes in
and of themselves. Further, it permits evaluation of the relative performance of these
measures in terms of their correlations with other important outcomes in two large
samples of people with MS. For example, two people could have identical DTWC but
different DTW ability (e.g., the speed or time in DT alone). Also, two people could have
identical DTW ability but very different DTWC. It may be that DTW ability alone relates
to outcomes (and perhaps even above-and-beyond ST walking speed [STWS]) but
DTWC do not. For example, this could arise from the fact that a relatively high baseline
performer with high DTWC may still be rather functional in daily life, but a relatively
low baseline performer might experience notable consequences for experiencing the same
level of DTWC. (As an additional layer, to be experiencing the same DTWC for these
two subjects, the absolute decrements would have to be greater for the higher performer
[i.e., faster walker].) As such, it seems reasonable to consider and contrast examinations
of DTW ability, DTW absolute differences, and DTWC.

Gait Speed. First, DTW ability was measured simply as gait speed during DTW
(i.e., DTWS). DTWD in speed was also used as a measure of raw differences between the
two conditions.

DTWD = STWS — DTWS
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For DTWD, positive values indicate faster STWS, and negative values indicate greater
DTWS.

DTWC for speed was computed and analyzed based on Baddeley et al.’s (1997) formula.

i STWS =DTWS
= sTWS -

DTWC are calculated in such a way that positive values indicate greater DTWC. That is,
more positive values would indicate more proportional slowing in DTWS compared to
STWS relative to STWS.

Cognitive Measures. Neurotrax™ Mindstreams® is a computerized cognitive
test battery with seven domains: 1) verbal and nonverbal memory, 2) executive function,
3) visual spatial processing, 4) verbal function, 5) attention, 6) information processing
speed, and 7) motor skills (Doninger, 2007, 2014a, 2014b). The test also produces a
measure of global cognition. The test uses computerized adaptive processes to gauge
cognitive function effectively for each participant, and it provides precise (ms) measures
for tests requiring reaction times (Doninger, 2007). It has been used in MS, including to
study relationships with self-reported walking, FSE, and gait speed (Kalron, 2014), but it
has not been used in any DTW studies in MS to-date. All measures are standardized
automatically by the Neurotrax™ program accounting for age and education (M = 100,
SD = 15; Doninger, 2014a). Over 20 studies contributed to the standardization, and the
battery has been validated externally (Doninger, 2014a). The normalized scores were
used to evaluate the reported cognitive domains.

Motor Measures. Mobility was assessed by the STWS and the Multiple Sclerosis
Walking Scale-12 (MSWS-12; Hobart et al., 2003). The MSWS-12 is a self-report

measure that assesses walking function and impairment based on a 2-week recall period.
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It asks participants to report the degree of limitation they have experienced across 12
domains during this 2-week period on 5-point scales (1 = Not at all; 5 = Extremely). The
measure has been found to be highly internally consistent (.94 < Cronbach’s o < .97,
Hobert et al., 2003; McGuigan & Hutchinson, 2004a) and to have excellent test-retest
reliability in short- (e.g., intraclass correlation coefficient [ICC] = .94 for 10 days; Hobart
et al., 2003) and long intervals (e.g., ICC = .86 and .87 for 6 and 12 months, respectively;
Motl et al., 2011). Item 12 on the MSWS-12 may be particularly relevant in DTW
studies, as it asks participants to evaluate the degree to which they had to “concentrate”
on their walking in the past 2 weeks. It also has been shown to have criterion validity
with established relationships concurrently or prospectively for daily step counts,
balance, walking ability, and FSE (Cavanaugh et al., 2011); EDSS, MS Impact, and QoL
(Hobart et al., 2003); walking speed (Motl et al., 2010); and fall risk (Nilsagard et al.,
2009).

Depression. Depression was measured using the Beck Depression Inventory-II
(BDI-11I; Beck et al., 1996). Importantly, although the BDI-I1 aligns well with diagnostic
measures for depression, it is a measure of depressive symptoms, not a diagnostic tool for
depression (Beck et al., 1996); however, psychometric meta-analytic evidence indicates
that it performs comparably with gold standards for diagnosing depression (Wang &
Gorenstein, 2013a). The BDI-II contains 21 items that ask about depressive symptoms
that have been experienced in the past 2 weeks using a 0 to 3 scale with higher scores
indicating higher levels of depressive symptoms (Beck et al., 1996). Suggested cut-offs
have been reported as 0-13 (minimal), 14-19 (mild), 20-28 (moderate), and 29-63

(severe; Beck et al., 1996 as cited in Wang & Gorenstein, 2013a). The BDI-11 has been
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used in a variety of samples and has demonstrated excellent internal validity, test-retest
reliability, and validity (e.g., construct, criterion) based on a review of 118 studies
conducted Wang & Gorenstein (2013b). There is evidence that the 21-item measure has
two factors, which the researchers have labeled as cognitive-affective and somatic-
vegetative (Wang & Gorenstein, 2013b). There is also evidence that although it performs
well in a variety of samples (e.g., general, medical, and psychiatric; Wang & Gorenstein,
2013b), cutoffs appear to vary across populations (e.g., medical versus general; Wang &
Gorenstein, 2013a)

Falls Self-Efficacy. FSE was measured using the Modified Falls Efficacy Scale
(MFES; Hill et al., 1996) which was developed as an expansion of Tinetti et al.’s (1990)
Falls Efficacy Scale (FES). The MFES consists of 14 items, and it expands on the FES by
adding 4 items that include more variety in activities (e.g., more challenging contexts
including outdoor activities; Hill et al., 1996). The MFES uses an 11-point scale with
verbal references provided at O (Not confident at all), 5 (Fairly confident), and 10
(Completely confident). The MFES has excellent internal consistency (Cronbach’s o =
.95) and weekly test-retest reliability (scale ICC = .93; Hill et al., 1996). Significant
differences between balance-compromised and healthy older adults were shown as a
demonstration of discriminant validity (Hill et al., 1996). Edwards and Lockett (2008) did
identify two factors in a sample of 551 community-dwelling older adults: one indicating
efficacy for basic activities of daily living (e.g., getting dressed or undressed) and one for
efficacy in more complex activities of daily living (e.g., using outdoor steps).

Multiple Sclerosis Impact (Quality of Life Proxy). The Multiple Sclerosis Impact

Scale-29 (MSIS-29) was used as a measure of MS disease impact (Hobart et al., 2001) as
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a proxy for QoL. It contains 29 questions answered using 5-point scales to measure how
impacted (1 = Not at all; 5 = Extremely) individuals feel they have been by their MS on a
variety of physical and mental health issues of importance in MS over the past 2 weeks
(Hobart et al., 2001). It was developed using a large sample of randomly selected
individuals from the NMSS membership database (Hobart et al., 2001). Originally 129
questions were evaluated, and these were reduced through factor analytic processes to a
final 29-item, 2-factor measure (20 items measuring physical impact and nine items
measuring psychological impact; Hobart et al., 2001). It demonstrates excellent internal
consistency (Cronbach’s as > .91), test-retest reliability (ICCs > .87), and criterion
validity (Hobart et al., 2001). Additional studies have confirmed that it has good internal
consistency and criterion and convergent validity (e.g., Costelloe et al., 2007;
Hoogervorst et al., 2004; McGuigan & Hutchinson, 2004b; Riazi et al., 2002). Further,
Hobart et al. (2005) reported that it was the most responsive measure of physical impact
from MS and second most response measure of psychological impact from MS (second
to the General Health Questionnaire-12) in a study of 245 people with MS.

Procedures. Participants completed gait analysis using the Zeno™ Walkway,
cognitive assessment using NeuroTrax™ cognitive battery, and provided PROs during
clinic visits at SS. ST and DT gait analyses were performed on the same day in the same
order for all participants. The MSWS-12 and MFES were collected on the same day that
the gait analysis was performed. The cognitive testing was not completed on the same
day as the other assessments for most participants, and the MSIS-29 and BDI-II were
collected on the same day as the cognitive testing. Some participants completed cognitive

testing before gait analysis, and some participants completed cognitive testing after gait
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analysis. The distance between measures ranged from the same day to slightly more than
10 months. Within the clinical context, there were 3 different DT paradigms applied—
each without any prioritization instructions. Most (n = 49) participants completed serial 3
subtractions starting at the number 50, but 23 completed serial 7 subtractions. Three
participants performed other cognitive tasks during DTW and were excluded from
analysis. Participants completing different serial subtractions were compared statistically
to determine whether it is reasonable to treat them collectively for further analyses. One
participant used a rollator during the gait testing. Cognitive performance in ST or DT
conditions was not recorded, so it is not possible to calculate DTCC.
University of Kansas Medical Center Data

KUMC is a research and clinical healthcare facility associated with the University
of Kansas with facilities located through Kansas (KUMC, 2020). A collaborator (JH)
who completed a large, grant-funded study in people with MS has authorized use of data
for secondary analyses. A data use agreement between KUMC and ASU was approved
by ASU and KUMC. The KUMC data were used primarily to address aims 2, 3, 4, and 5.

Participants. Participants included 122 people with MS recruited through the
MS Clinic at KUMC. The study also included 4 time points (baseline, 6 months, 12
months, and 18 months). There was high attrition (> 60%) with only 41, 39, and 34
participants completing the subsequent assessments, respectively. The study was intended
to evaluate the use of wearable inertial sensory (Opals, APDM, Portland, OR) for
evaluating gait and balance in people with MS, and it included a variety of gait and

balance measures (see, e.g., Craig et al., 2017). A trained staff neurologist specializing in
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MS evaluated all participants using the EDSS. Inclusion and exclusion criteria as
reported in the original research protocols are listed in Table 2.

Table 2

Inclusion and Exclusion Criteria for the KUMC Study

Inclusion Exclusion

Mini-Mental State Unable to give informed consent

Examination > 20

Not on Fampridine Expanded Disability Status Scale > 5.5
Unable to walk without assistive device
Pregnant, breastfeeding, or within 3 months post-partum
Non-MS disability that affects mobility or balance
Non-MS neurological/neurodegenerative disorder
Part of a vulnerable population
Primary Investigator-deemed unsuitability

Note. MS = Multiple Sclerosis.

Materials.

Expanded Disability Status Scale. The EDSS was used in this study. A summary
of it was provided in the SS study details. It is not reviewed here again for succinctness.

Gait Parameters. Gait parameters in the KUMC study were extracted using
MATLAB® (MathWorks, Inc.) from three-dimensional positional data from reflective
markers tracked by digital cameras (Raptor-E digital cameras, Motion Analysis, Inc.,
Santa Rosa, CA). Reflective markers were placed in 35 locations. A marker located on
the trunk (sacrum) was used to extract positional data in the X axis and to calculate gait
speed. Three-dimensional motion capture provides a valuable, objective means of
quantifying gait and balance during common clinical mobility and balance assessments
(Abu-Faraj et al., 1999; Rigby & Ray, 2018). They have been shown to produce highly
reliable results (Abu-Faraj et al., 1999). Marker-derived motion capture via camera

systems have been found to be highly consistent with walkway system gait analytic
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approaches (Stokic et al., 2009). The data for gait parameters was collected during four
walking trials consisting of fast, normal (aka, self-selected), and slow walking speeds. A
second self-selected trial was performed using serial subtractions by 3 from a three-digit
number; this is the DTW condition. These trials were randomized within subjects to
minimize order effects when the sample is analyzed in aggregate. Participants performed
five walk trials at baseline for each condition and three walk trials at follow-up visits for
each condition. To ensure that gait speed is a realistic measure of performance, visual
analysis was performed to identify the acceleration phases associated with gait initiation
and termination to truncate the trial data to ensure that participants’ gait speed is not
based on these phases of the test. The mean for the multiple trials within a given walk
condition were used as the outcome for analysis. The protocol included five trials per
condition at baseline and three trials per condition at follow-up assessments. In a few rare
exceptions, the number of trials was reduced to ease participant burden or for other
reasons. All available trials were used to compute a mean for each person at each visit.

Dual-Task Walking Parameters. The calculation of DTW measures mirrored the
approach discussed for the SS data. The extraction of DTW measures is not repeated here
for succinctness.

Cognitive Measures. As is common in gait studies in MS (e.g., see Leone et al.,
2015), a comprehensive neuropsychological assessment was not conducted for the
KUMC study. However, two cognitive measures were conducted via computerized
testing—a measure of executive function and a measure of information processing. To
evaluate executive function a computerized version of the Stroop test, including the

Stroop Color-Word test component (Stroop, 1935; see also, Scarpina & Tagini, 2017)
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was conducted. Participants completed an 8-item practice and proceeded to complete to
30 s trials. The performance on the Stroop Color-Word test (i.e., Stroop interference test)
is of particular importance as it measures cognitive inhibitory control as dimension of
executive function (Diamond, 2013) which may be relevant in DT contexts. It can detect
deficits in inhibitory control that result from aging (West & Allain, 2000) and neurologic
disease (Weintraub et al., 2005). Evidence does indicate that individuals with MS, on
average, perform worse on the Stroop tests (Denney et al., 2005), suggesting that this
measure may be sensitive to changes in MS. However, in MS, it seems that information
processing speed may be a more reliable measure of cognitive impact (Denney et al.,
2004; Denney & Lynch, 2009). To assess information processing, a computerized
reaction time test was administered. Participants are instructed to press the space bar on a
computer with their dominant hand when a target stimulus appears on the screen, and
performance across 15 trials is used for the final measure of processing speed. This was
performed in simple and choice paradigms. Computerized administration of the Stroop
tests and reaction time tests of information processing have been shown to be reliable and
valid (Gualtieri & Johnson, 2006).

Motor Measures. Given the focus of the original study, there are several measures
of mobility, balance, and self-reported walking that are available for inclusion.

Berg Balance Scale. The BBS is a widely used measured of static and dynamic
balance. It consists of 14 balance tasks and takes about 15 to 20 minutes to complete
(Berg, Wood-Dauphinee, et al., 1992). Trained raters evaluate the participants’
performance in each task and rate performance on a 5-point scale from 0 (unable to

perform) to 4 (performs independently/normally). The BBS score is the sum of the 14
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items with functional balance being indicated by a score of 56 and a score < 45 indicating
possible fall risk (Berg, Wood-Dauphinee, et al., 1992). In those affected by MS, the BBS
has been found to be reliable across raters (ICC = .96; Cattaneo et al., 2007) and repeated
measurements taken three days apart (ICC = .94, Cattaneo et al., 2007) as a measure of
balance. Berg, Wood-Dauphinee, et al. (1992) reported that it correlated strongly with
functional and motor performance in patients recovering from stroke, and it was
predictive of recurrent falls among elderly residents of a long-term care facility. It also
demonstrates at least acceptable predictive validity for falling in MS (Cattaneo et al.,
2006; Nilsagard et al., 2009; Quinn et al., 2018). However, it may be subject to ceiling
effects even within those affected by MS (Ross et al., 2016).

Multiple Sclerosis Walking Scale-12. The MSWS-12 was used in this study. Its
psychometric performance was reviewed in detail in the SS study details. It is not
reviewed here again for succinctness.

Timed Up and Go. The TUG test includes rising from a seated position with
one’s back against the chair, walking 3 m, turning 180°, walking 3 m back, and returning
to a seated position with one’s back against the chair (Berg, Maki, et al., 1992). The TUG
has excellent interrater and test-retest reliability for total time in elderly populations
(ICCs > .92; Steffen et al., 2002) and has been used in a variety of neurological diseases
demonstrating desirable psychometric properties and minimal detectable changes of
approximately 3 to 4 seconds (Huang, et al., 2011; Ries et al., 2009). In a previous study,
the TUG was not found to be predictive in falls in MS in the presence of other measures

of function and efficacy (Van Liew et al., 2020).
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Timed 25 Foot Walk Test. The Timed 25 Foot Walk Test (T25FWT) consists of
participants being instructed to walk to a 25 ft marker as quickly and safely as possible
(Fischer et al., 1999). They begin the task standing statically and walk an unobstructed
course. They are instructed to walk past the finish line to exclude gait termination
acceleration in the measure. Participants time to complete the task is measured, so total
time and gait speed for the trial can be determined. The standardized version includes the
task being completed twice with the average time for the two trials being used in the final
score (Fischer et al., 1999), but three trials were completed and averaged in this study.
The T25FWT has been found to be a valid measure in MS (Motl et al., 2017). It is
sensitive to changes in the disease course and treatment effects, and it correlates with
QoL measures (Cohen et al., 2014; Coleman et al., 2012; Goldman et al., 2013; Hobart et
al., 2013; Kragt et al., 2006; Motl et al., 2017). Changes of approximately 20% in gait
speed measured using the T25FWT indicate clinically meaningful differences in MS
(Cohen et al., 2014; Motl et al., 2017). However, the T25FWT may be subject to learning
effects over repeated administration in MS (Larson et al., 2013).

Falls Self-Efficacy. The ABC was used to evaluate participants’ balance
confidence (which can rightfully be considered a measure of efficacy within Bandura’s
theory; Talley et al., 2008). For example, both the ABC and the MFES probe similar
constructs—namely they both require participants to report confidence in their balance
and ability to avoid falling. This may be thought of as conceptually distinct from
measures that assess “worry” about falling which may probe anxiety constructs in
addition to efficacy (Talley et al., 2008), despite measures of FSE being considered

measures of “fear of falling” (e.g., Hill et al., 1996; Tinetti et al., 1990).
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The ABC is a 16-item measure that asks an individual to rate his or her
confidence that they can perform a variety of tasks without losing their balance or falling
using percent confidence from 0% (No confidence) to 100% (Completely confident). The
total score is the average confidence on all items. The ABC does require participants to
evaluate their confidence in more, and more demanding, contexts than the FES or MFES.

The ABC has been shown to have high test-retest reliability over two-week
intervals (r =.92; Powell & Myers, 1995), high internal consistency (Cronbach’s o> .95;
Huang & Wang, 2009; Talley et al., 2008), and to have concurrent validity with a variety
of psychological, balance, and mobility outcomes that would be expected to be related to
it theoretically (Talley et al., 2008). It has also been shown to be a reliable measure in MS
(e.g., test-retest reliability ICC = .92; Cattaneo et al., 2006). (The SS data includes the
ABC for some but not all participants. To maximize the usable data for analyses, the
MFES was selected as the measure of FSE in that context.)

The study also included the FES-I (Yardley et al., 2005). The FES-I, despite its
name, assesses concern about falling. Participants answer 16 questions using a 1 (Not at
all concerned) to 4 (Very concerned) scale, so scores range from 16 to 64 with higher
scores indicating greater concern about falling. Of course, as the name implies, the
creators still conceptualize of this measure as a measure of FSE despite it probably being
seen more reasonably as a measure of fear of falling. Importantly assessments that have
compared fear of falling measures to balance confidence (or FSE) surveys report
moderate-to-strong negative correlations (e.g., the Survey of Activities and Fear of
Falling and ABC, Talley et al., 2008). (As a reference, the Survey of Activities and Fear

of Falling is an 11-item measure that assesses “worry” about falling in a variety of
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contexts using a 0 [not at all worried] to 3 [very worried] scale.) Yet, when Bower et al.
(2015) accepted the conceptualization of FES-1 as a measure FSE (not fear of falling, or
“concern,” as worded in the FES-1), they evaluated the correlation between the Fear of
Falling Questionnaire-Revised and the FES-1 and only found moderate-to-strong
correlations, too. (For reference, the Fear of Falling Questionnaire-Revised contains 15
items on a 1 [strongly disagree] to 4 [strongly agree] scale regarding “fear of falling,” and
it differs from the other measures in that it focuses on consequences, probability, fear,
worry, uncontrollability, etc. related to falling as opposed to context-specific

29 ¢¢

“confidence,” “concern,” or “worry” as the other measures do.) Thus, many individuals
are using these various scales with similar intentions, but there may be differences that
exist across all of them (whether due to item-level differences, differences in

29 ¢¢

interpretations of words like “confidence,” “concern,” and “worry,” or other test artifacts
or construct differences). The FES-I has been found to be reliable and valid in older
adults (Delbaere et al., 2010; Figueiredo & Neves, 2018; Helbostad et al., 2010). Further,
in MS, the FES-I does seem to have desirable test properties. It has high internal
consistency (Cronbach’s o.=.94; van Vliet et al., 2013), good predictive validity for falls
(Van Liew et al., 2020; van Vliet et al., 2013), and evidence for convergent validity with
measures of fatigue, balance, fall history, cognition, and muscle strength (van Vliet et al.,
2013). For a comparison of items in the MFES, ABC, and FES-I, see Table 3.

Table 3

Comparison of Items in the Modified Falls Efficacy Scale (MFES), Activities-Specific
Balance Confidence Scale (ABC), and Falls Efficacy Scale-Intentional (FES-1)

Iltem MFES ABC FES-I
1 Get dressed and Walk around the house Cleaning the house
undressed
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10

11

12

13

14

15

16

Prepare a simple meal

Take a bath or shower

Get in/out of a chair

Get in/out of bet

Answer the door or
telephone

Walk around the inside
of your home

Reach into cabinets or
closets

Light house keeping

Simple Shopping

Using publish
transportation
Crossing roads

Light gardening or
hanging out the wash

Using front or rear steps

at home

Walk up or down stairs

Bend over and pick up a
slipper from the front of
a closet floor

Reach for a small can off

a shelf at eye level

Stand on your tiptoes and

reach for something
above your head
Stand on a chair and
reach for something
Sweep the floor

Walk outside the house
to a car parked in the
driveway

Get in or out of a car

Walk across a parking lot

to the mall
Walk up or down a ramp

Walk in a crowded mall
where people rapidly
walk past you

Bumped into by people
as you walk through the
mall

Step onto or off an
escalator while you are
holding onto a railing
Step onto or off an
escalator while holding
onto parcels such that
you cannot hold onto the
railing

Walk outside on icy
sidewalks

Getting dressed or
undressed
Preparing simple meals

Taking a bath or shower

Going to the shop

Getting in or out of a
chair
Going up or down stairs

Walking around in the
neighborhood

Reaching for something
above your head or on
the ground

Going to answer the
telephone before it stops
ringing

Walking on a slippery
surface (e.g., wet or icy)
Visiting a friend or
relative

Walking in a place with
crowds

Walking on an uneven
surface

Walking up or down a
slope

Going out to a social
event

Quiality of Life. Short Form-36 item survey (SF-36) was administered as a

measure of QoL (Brazier et al., 1992). It measures eight dimensions that are subsumed
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within the domains of functional status (physical functioning [10 questions], social
functioning [2 questions], role limitations from physical problems [4 questions], and role
limitations from emotional problems [2 questions]), wellbeing (mental health [5
questions], vitality [3 questions], and pain [2 questions]), and overall health evaluation
(general health perception [5 questions] and health change [1 question]; Brazier et al.,
1992). The SF-36 has been shown to have high internal reliability—even across disparate
populations (Jenkinson et al., 1994). This measure has been used in MS. Although it
relates to some disease characteristics (e.g., EDSS, time since last relapse) which
provides some evidence of convergent validity with MS-specific measures, it was also
found to be related to age and sex because it does not assess QoL specific to MS
(Fernandez et al., 2017). This means that one must be careful not to interpret SF-36 as a
measure of QoL that unilaterally captures disease status elements. Further, although some
of its psychometric qualities are strong in MS, there is some evidence for floor and
ceiling effects on some of the scales within it (Hobart et al., 2001), and it may not be as
responsive as other measures of QoL in MS (Hobart et al., 2005). Lastly, its factor
structure in MS may not align with the scale domains or the general population structures
(Hobart et al., 2001).

Falls. At baseline, participants reported retrospective falls over the past six
months. Falls are defined as a loss of balance (e.g., trip or slip) that causes an individual
to come to rest on a lower surface (e.g., floor, ground, furniture, etc.; e.g., see Yoshida,
2007). Importantly, in MS, retrospective falls are correlated with prospective falls, but
even in periods as short as three months people with MS have difficulty accurately

recalling fall counts and the relationships between these metrics are not as high as one
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might expect (Nilsagard et al., 2009). However, the evidence suggests that retrospective
fall reporting may underestimate the true rate of falls (Mackenzie et al., 2006). In
previous studies, retrospective reporting (from intervals from 3 to 12 months) indicates
that 31-63% of people with MS are fallers (Cattaneo et al., 2002; Einarsson et al., 2003;
Finlayson et al., 2006; Matsuda et al., 2011; Nilsagard et al., 2009; Stolze et al., 2004).
For the remainder of the study, participants reported the number of falls they experienced
during the 6-month period between visits, but this was also done retrospectively.

Procedures. Participants completed all assessments in one-day visits at each time.
Given the number of balance and mobility tasks included, the study protocol allowed for
breaks—including completing paper-and-pencil tests between physically demanding
tasks—to manage fatigue. The DTW paradigm consisted of serial subtractions by 3 from
a 3-digit number for all participants. Seated serial 3 subtractions were performed as a
measure of ST cognitive ability with the total number of subtractions performed and the
number of errors made being recorded. However, subtraction performance during the
DTW task was not recorded to permit a comparison of performance in these conditions or
to calculate DTCC. Four conditions for walking trials were completed by participants in
randomized order: slow, normal (aka, self-selected), fast, and normal with subtractions.
Analytic Method by Aim

The study required many statistical processes to perform psychometric and
inferential tasks. Some analyses took advantage of the relatively large, cross-sectional
sample sizes available in both studies, and others tested for longitudinal relationships
despite the high levels of attrition. No power analyses were performed because the study

utilizes archival data and has fixed sample sizes. However, it is notable that although
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power in multilevel models (MLM) tends to be high, it has been recommended that
sample sizes of at least 100 be used to avoid biased estimation (Maas & Hox, 2005).
Although over 100 people are present at baseline, the high level of attrition requires that
effects from longitudinal models be interpreted sagaciously. Most outcomes are expected
to be able to be treated reasonably as interval-ratio in nature with the expectation of
approximately normal distributions based on previous studies with the notable exception
of falls. Falls, as a count outcome, are discrete and are expected to be characterized by a
Poisson or negative binomial distribution. Based on previous evaluations of this fall data
(Van Liew et al., 2020), negative binomial approaches were employed to handle this data.
The moments of the data were explored and summarized using descriptive statistics and
visual analyses for all data. For a summary of the conceptual variables and their

operationalizations, see Table 4.
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Table 4

Conceptual and Operational Variables Included in Analyses

Aim(s) Conceptual Variable Operationalization Study
1-5 Dual-Task Walking Straight Walk, No Prioritization ~ SS
Instructions, Serial 3 or 7
Subtractions from 2-digit Number
1-5 Dual-Task Walking Straight Walk, No Prioritization KUMC
Instructions, Serial 3 Subtractions
from 3-digit Number
1-5 Cognition Neurotrax™ Mindstreams© SS
Memory
Executive Function
Information Processing

Motor Skills
Visuospatial Ability
Verbal Ability
Attention
Global Cognition
2-5 Cognition KUMC
Executive Function Stroop Interference Test
Information Processing  Reaction Time Tests
2-5 Motor Abilities SS
Self-Reported Walking MSWS-12
1-5 Motor Abilities KUMC
Self-Reported Walking MSWS-12
Mobility TUG
Walking T25FWT
Balance BBS
3 Falls Self-Efficacy MFES SS
3 Falls Self-Efficacy ABC KUMC
FES-I
3 Depression BDI-II SS
4 Quality of Life MSIS-29 SS
4 Quality of Life SF-36 KUMC
5 Retrospective Falls Self-Reported Recollection for KUMC

Previous 6-month Periods
Note. SS = South Shore Neurologic Associates, PC; KUMC = University of Kansas
Medical Center; MSWS-12 = Multiple Sclerosis Walk Scale-12; TUG = Timed Up and
Go; T25FWT = Timed 25 Foot Walk Test; BBS = Berg Balance Scale; MFES =
Modified Falls Efficacy Scale; ABC = Activities-specific Balance Confidence scale;
FES-1 = Falls Efficacy Scale-International; BDI-Il = Beck Depression Inventory-1lI;
MSIS-29 = Multiple Sclerosis Impact Scale-29; SF-36 = Short Form-36.
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For data coming from the SS study, analyses were performed to compare
performance for those who completed serial 3 (n = 49) and those who completed serial 7
(n = 21) subtractions using independent samples t-tests for DTWC and DTWD including
a Levene’s test to check homogeneity of variance. A two-level MLM with random
intercepts and slopes was performed to assess the effect of subtraction type (3 or 7; coded
0 and 1, respectively, for analytic purposes) treating task type as a within-person factor
(ST and DT, coded 0 and 1, respectively, for analytic purposes), too. Of interest in this
model was the effect of subtraction type on the slope of gait speed (i.e., change from
STWS to DTWS). If this effect were significant, it would indicate that the changes
experienced between STWS and DTWS in gait speed differ as a function of subtraction
type. The results of these analyses informed the decision regarding pooling data from
these different DTW paradigms.

MLM here is similar to a mixed, 2 (subtraction type) x 2 (task type) Analysis of
Variance (ANOVA). In fact, an ANOVA with a repeated or within-persons factor is a
very specific, rigid version of MLM. Using MLM allows for a relaxation of the rigid,
often unmet assumptions of ANOVA that includes repeated measures—including the use
of various covariance structures (e.g., unstructured, autoregressive, etc.), in addition to
other benefits that are less relevant in the current context (e.g., handling missing data,
complex time structures, etc.; Gueorguieva & Krystal, 2004; Hoffman & Rovine, 2007).
Although the simple structure, complete data, and question form (e.qg., difference between
only two repeated measures as opposed to growth trajectories) in this case would likely

mean a mixed ANOVA would be reasonable, given there are no advantages to mixed
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ANOVA over MLM, and, in fact, MLM can be constrained to provide results identical in
mixed ANOVA, MLM was used (see equations below).

Level 1: Yt = Poi + P1iXuti + €

Level 2: Boi = Yoo + Uoi

B1i = y10 + y11X2i + Uyj
Aims 1 and 2: Identify Cognitive and Motor Domains that Relate to DTW Measures

Aims 1 (SS data) and 2 (KUMC data) were approached using baseline, cross-
sectional data only. Stata 16.1 I/C (StataCorp, LLC, College Station, TX) and R 4.0.3 for
Windows (The R Foundation) were used to perform the analyses. First, as a note, to abet
comparison to other studies in the literature, the scale scores were used for the purpose of
estimating relationships bivariate relationships with DTWS, DTWD, and DTWC. The
psychometric properties of the scales used to relate to DTW outcomes were assessed
using classical test theory methods that are likely to be familiar to a broad readership
(e.g., Cronbach’s o). However, because Cronbach’s a has notable limitations and may
underestimate the true internal consistency of a scale (McNeish, 2018; Sijtsma, 2009),
additional metrics (e.g., Revelle’s @; McNeish, 2018) were also considered.

Next, throughout the analyses, models were performed separately using these
three different operational definitions of DT for speed. Although the inclusion of multiple
operationalizations does inflate the number of tests, the purpose is to compare different
operationalizations to determine whether a particular metric for DT ability in MS relates
most aptly to other important outcomes in MS—not to dredge for significant findings.

Although no corrections for Type | error are proposed and a conventional a = 0.05 was
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used for inferential purposes where relevant, all reports clearly state both that multiple
operational definitions of the outcome were included and the purpose for doing so.

Further, to assess dimensionality of scales, exploratory factor analyses were
performed using iterative principal factoring (IPF). Oblique oblimin rotated solutions
were evaluated for comparison for fit with unrotated solutions where appropriate.
Loadings, Eigenvalues, and scree plots were evaluated, and a parallel analysis (n = 100)
were performed to establish Eigenvalue cutoffs based on the 95 percentile (Hayton et
al., 2004) for each measure based on its construction and sample size at each point of
measurement.

Next, scatter plots were constructed, and bivariate (zero-order) correlations were
computed for all variables. Median splines were fitted to visualize trends in the data.
Also, a full multiple regression model was performed to compute partial and semi-partial
(aka, part) correlations (Abdi, 2007) for all variables with DTWS, DTWD, and DTWC.
(The relationships among these DTW outcomes were also evaluated.) The advantage of
including partial and semi-partial correlations is that it permits evaluations of the
relationships between a given predictor and the criterion controlling for the presence of
all other variables (Judd et al., 2009). The partial correlation partials the shared variance
with the covariates out of both the variance in the predictor and the criterion, but the
semi-partial only partials the shared variance from the covariates out of the predictor (i.e.,
the unique variance explained by X out of all the variance of Y controlling for X,
Xs...Xk). These analyses provide insight into the bivariate relationships that exist among
cognitive and motor domains and DTW outcomes, as well as the unique contributions of

each of the predictors accounting for the presence of the others.
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SS Full Model for Cognitive Domains:
Yi= Bo + pMemory; + B2Executive Function; + BzVisuosptial Ability; + BsVerbal Ability;
+ BsInformationProcessingi + BsMotorSKills; + BzAttention; + e
KUMC Full Model for Motor Domains:
Yi=Po + B1EDSS; + B2MSWS-12; + BsT25FWT; + B4BBS; + €

However, more importantly, the underlying question is an issue of variable
selection; that is, which of the variables most efficiently and effectively explains the
variance in the criterion. To address this question, lasso (Tibshirani, 1996) for inference
was performed. Lasso is a variable selection approach that is preferable to alternatives
like forward and backward stepwise regression given its ability to minimize overfitting
(StataCorp LLC, 2019). Lasso uses a shrinkage function, like ridge regression, but unlike
ridge regression, lasso can shrink 3 coefficients to zero (i.e., it performs shrinkage and
selection). As such, lasso will yield a sparse model that involves only a subset of the
original predictors in the final model. Lasso uses an {1 penalty (| ,Bj|) instead of the L2
penalty (,sz) used in ridge regression (see equation), and this allows some coefficients to
be shrunk to zero when A is sufficiently large. Increasing the value of A reduces the

magnitudes of the coefficients. Lasso coefficients, £+, minimize the quantity:

n p 2 14 14

2 }’i—ﬁo—Zﬁjxij +AZ|ﬁj|=RSS+AZ|/3]‘|
i=1 j=1 j=1 j=1
Note. RSS = Residual sum of squares.

(James et al., 2013).

In lasso, it is important to select an optimal value for A as it directly affects the

shrinkage and selection process. To select an ideal value for A, cross-validation has been
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recommended (James et al., 2013). The least angle regression (LARS) solution is another
expedient algorithmic means of arriving at a solution (Efron et al., 2004). Although
historically lasso was used for prediction and not inference as a result of not providing
the standard errors necessary for inference (James et al., 2013), techniques have recently
been developed to use lasso for inference—not just prediction and model selection (Wang
& Michoel, 2017). The “lassopv” function in the lars package in R was used to obtain
lasso-based p values (Wang & Michoel, 2017) in addition to performing 10-fold cross-
validated lasso and LARS models in Stata (StataCorp LLC, 2019).
Aim 3: Psychological Moderators of the Effects of Abilities on DTW Measures

As noted in the above section, for aims 1 and 2, the sum scores were used to
enhance interpretability and transferability across researchers in the area. However,
factors scores have clear advantages over sum scores (McNeish & Wolf, 2020). For aim 3
(both SS and KUMC data), psychometric scales are central to the hypotheses being
tested; therefore, approaches that avoid the assumptions imposed by sum scores were
employed. Classical test theory methods and factor analysis were performed on these
items for basic evaluation and reporting.

For directly testing the hypotheses, structural equation modeling (SEM) would be
a reasonable approach for the purpose of combing measurement and structural models
into a single process (Acock, 2013). Although SEM has great utility, it relies on large
samples (e.g., several hundred) to provide unbiased estimates (Devlieger & Rosseel,
2017). Devlieger and Rosseel (2017) developed a two-stage method that performs the
factoring and regression modeling processes in a stage-wise fashion, factor score path

analysis (Devlieger & Rosseel, 2017), or factor score regression (Devlieger et al., 2019).
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This approach appears to confer benefits in the context of smaller sample sizes
(Devlieger & Rosseel, 2017). For reference in the context of the importance of sample
size, their simulation study sample sizes ranged in size from 50 to 2000 (Devlieger &
Rosseel, 2017). Devlieger and Rosseel’s (2017) method applies Croon’s correction to
avoid inducing bias in the regression coefficient estimates that can occur from naive FSR.
The R command “fsr”” (in lavaan package) developed by Rosseel (2012, 2018) allows for
the implementation of Croon’s correction as well as the use of Bartlett or regression
factor score estimation methods. Regression factor scoring methods are preferable for
predictors and moderators (Skrondal & Laake, 2001). Models were specified with
observed criteria (DTWS, DTWD, and DTWC, separately). A priori cognitive predictors
to test for interactions include response inhibition (executive function; Leone et al., 2015)
and information processing (Denney et al., 2004; Denney & Lynch, 2009). These have
been selected based on research regarding the impacts of psychological states on
cognitive function, the impact of MS on cognitive function, and theorized cognitive
domains that are important for DT. They were also treated as observed variables. They
are available in both data sets to permit conceptual replication. The predictors from the
motor domain included the T25FWT and BBS (KUMC only) and MSWS-12 and STWS
(both data sets). Each of these were treated as an observed variable except the MSWS-12
was treated using regression factor estimation (regression method) as mentioned for the
moderators (FSE and depression). Moderation was evaluated by interacting (creating a
multiplicative term) from the factor score and relevant predictor. The cognitive and motor
models were performed separately, and the KUMC and SS data were analyzed separately.

As a note, although FSR performs well in terms of convergence (Devlieger & Rosseel,
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2017), FSR models can be attempted in SEM or using factor scores as observed variables
in regression as alternatives. In cases where FSR limitations (e.g., inability to interact
latent variables or achieve convergence), multiple linear regression (aka path analysis)
with factor scored predicted from exploratory factor analyses were used.
Aim 4: Examine Relationships between DTW Measures and Quality of Life

To assess the relationship between DTWS, DTWD, and DTWC and QoL, FSR
was used. This was addressed in the SS data using the MSIS-29 and in the KUMC data
using the SF-36. In this context, the variable that requires factor treatment is the outcome,
as such Bartlett’s method for factor scoring was considered (Skrondal & Laake, 2001) in
addition to regression scoring given that some predictors were also latent variables. No
inferential decisions were altered using these different scoring methods. Disability (EDSS
step), depression (BDI-II), self-reported walking ability (MSWS-12), and FSE (ABC or
FES-I [KRUMC] or MFES [SS]) were included as covariates. The EDSS step was treated
as an observed variable, but factor scoring methods were applied to the depression, self-
reported walking ability, and FSE constructs using the items from the measures listed
above.
Aim 5: Examine Relationships between DTW Measures and Falls

Finally, to evaluate whether DTWS, DTWD, or DTWC relate to self-reported
falls at baseline and across visits, negative binomial regression (nbreg Stata command)
and a MLM negative binomial regression (Hox, 2010; menbreg Stata command) were
performed in Stata 16.1 I/C, respectively. These models used the KUMC data only, as SS
did not collect fall data. Analyses to evaluate predictors of attrition were performed using

attrition (0 — No, 1 — Yes) at any point in the study as a binary outcome in a logistic
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regression model given the large level of attrition. ICC for repeated measures were
estimated for all predictors in the longitudinal model using one-way random effects
models.

Both models included mobility (T25FWT) and executive function (Stroop
interference test and information processing [reaction time tests]) as covariates. The
MLM negative binomial regression included random effects estimates and person-mean-
centered state and trait predictors (all covariates are time variant). Using person-mean-
centering permits separation of trait (person-mean) and state (time-based deviations from
person-mean) effects for time variant variables in MLM (Curran & Bauer, 2011). This
allows a researcher to determine whether the average value on a variable across all times
(“between-persons”) or the change in that variable over time (“within-persons”) is related
to the criterion. Incidence rate ratios were calculated from both the retrospective and
prospective models to assess the effects of the variables on fall rates. The negative
binomial regression MLM is an extension of the Poisson form of MLM where: Yij|Aij =
Poisson (mij, Aij) with a log link function for A, nij = log(Aij). This link function inverse
would be Aij = exp(n;j), but this equation adds an error term in negative binomial
regression MLM: Ajj = exp(nij + €ij) = exp(nij)exp(eij) to allow of inequality of the mean
and variance (Hox, 2010). The two-level model then takes the form:

Level 1: Nt = Poi + PriTimes + Bai(Xati — X2i) + Bai(Xati — Xai) + Pai(Kati — Xai)

+ Bsi(Xsti — Xsi)

Level 2: Boi = Yoo + Yo1 Xai + Yoo X3i + o3 Xai + Yoa Xsi + Uoi
B1i = y10 + Uai
B2i = v20
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B3i = v30
Bai = ya0

Bsi = ys0
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CHAPTER 2

Although DTW has been examined in MS, there is still a dearth of information
regarding correlates of DTW measures in MS (Leone et al., 2015; Rooney et al., 2020).
Although there is some utility in simply knowing whether DTW effects exist, to truly
understand the import or usefulness of measuring DTW measures, it is imperative to
understand how they relate to the constellation of other symptoms experienced. For
example, understanding which physical and cognitive domains predict DTW measures
could assist researchers and clinicians in understanding possible targets for optimizing
DTW abilities. Similarly, examining correlates can permit a determination of the degree
to which DTW measures relate to other outcomes of importance, and could provide a
deeper understanding of causes of DTW deficits in people with MS.

In order to address this question, Aims 1 and 2 included analyses to explore the
relationships between DTW effects and various cognitive and physical variables. Aim 1
used the data from SS to explore the relationships between cognitive domains measured
via a comprehensive, computerized neuropsychological examination (Neurotrax™
Mindstreams®) and DTW measures. Aim 2 used data from KUMC to assess
relationships between DTW measures and computerized cognitive (e.g., Stroop and
reaction time tests) and physical (e.g., balance, self-reported physical domains, disability)
measures.

Assumption Checks

Before assessing correlates and predictors of DTW effects, tests to check

assumptions to ensure reasonable treatment of data were undertaken. All participants in

the SS data set who did not complete serial subtractions as part of the DTW paradigm
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were excluded and only first administrations were included. This left 70 participants in
the sample. The tests to compare the use of serial 3 and 7 subtractions in the SS data
revealed no significant differences in mean DTWC, t(68) =-0.012, p = 0.991 between the
serial 3 (M =13.83%, SD = 14.04%) and serial 7 (M = 13.88%, SD = 13.57%). The
variances between these conditions did not differ significantly either, F(48, 20) = 1.07, p
=0.900.

A MLM with speed (m/s) as the outcome walk condition (STW =0 or DTW = 1)
as the within-persons factor and subtraction type (3s = 0 or 7s = 1) as the between-
persons factor was also performed to test for differences between these manipulation
conditions. Random intercepts and slopes (i.e., change from STW to DTW condition)
were included. An unstructured covariance matrix was compared to an independent
structure assuming correlations between random effects are zero. Including the
correlation between the person and walk condition random effects did not significantly
improve the random-effects model, Ay?(1) = 1.71, p = 0.192. An identity matrix with
only random intercepts was not significantly worse than the independent inclusion of
intercept and slope random effects, ¥%(1) = 0.00, p = 1.00. The random-effects portion of
the model was significant, ¥%(2) = 119.03, p < 0.001. The person-level SD was 0.260,
95% Cl1[0.218, 0.310].

The fixed effects portion of the model was significant, Wald ¥*(3) = 70.66, p <
0.001. There was a significant effect of walk condition, B = -.123, 95% CI[-.157, -.090], z
=-7.20, p <0.001. This indicates that there was a significant slowing observed (by about

.12 m/s) in the DTW condition relative to the STW condition in the serial 3 subtraction
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group (see Table 5 for table of cell and marginal predictions). As such, a DTW effect was
present in this study.

Table 5
Marginal Predictions by Walk Condition and Subtraction Type

Walk Condition —

Subtraction Type |  STW DTW Marginal
Serial 3s 0.863 0.739 0.801
Serial 7s 0.810 0.698 0.754
Marginal 0.847 0.727 0.787

Note: STW = Single-Task Walk; DTW = Dual-Task Walk. All values in m/s.

The marginal change in speed in the serial 7 condition was 0.112 m/s. There was
no effect of subtraction type on STW speed, B = -0.052, 95% CI[-0.192, 0.088], z = -
0.73, p = 0.464. Most importantly, the effect of subtraction type on the slope (i.e., change
between STW and DTW) was not significant, B = 0.011, 95% CI[-0.050, 0.721],z =
0.35, p = 0.727. Thus, there were not significant differences in the effect of subtraction
type on the change in speed that resulted from DTW (see Figure 4), which corresponds to
the finding for DTWC. Given these findings, the serial subtraction types were aggregated
for further analysis in the SS data.

Figure 4
The Effects of Walk Condition and Subtraction Type on Gait Speed for SS
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The KUMC study randomized four walk conditions—slow, fast, normal (ST), and
normal with counting (DT; see Figure 5 for comparisons of speeds in these conditions).
To determine whether the order of randomization affected the DT effect estimates, a
MLM was performed using the baseline data that tested for an interaction of the
randomized order difference (calculated as ST order minus DT order such that -3 = ST
was first and DT was last and 3 = DT was first and ST was last) as the between-persons
factor by walk condition (STW =0 or DTW = 1) as the within-persons factor on speed
(m/s) to test for order effects in the baseline testing. Random intercepts and slopes (i.e.,
change from STW to DTW condition) were included. An unstructured covariance matrix
was compared to an independent structure assuming correlations between random effects
are zero. Including the correlation between the person and walk condition random effects
did not significantly improve the random-effects model, Ay?(1) = 0.00, p = 1.00, so the
independent random-effects model was used. The random-effects portion of the model
was significant, ¥%(2) = 116.12, p < 0.001. The person-level SD was 0.224, 95%
CI[0.194, 0.259], and the order condition SD was 0.129, 95% CI1[0.083, 0.202].

The fixed effects portion of the model was significant, Wald ¥*(3) = 81.74, p <
0.001. There was a significant effect of walk condition, B = -0.141, 95% CI[-0.176, -
0.106], z =-7.90, p < 0.001. This indicates that there was a significant slowing observed
(0.141 m/s) in the DTW condition relative to the STW predicted if ST and DT walks
were able to be performed simultaneously. (This is based on the value being at the
impossible intercept of O for difference in walk order. For predictions of change in speed

at each observed condition, see Table 6)
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Figure 5

Walk Speeds by Condition for KUMC

Walk Speed in Each Condition by Visit
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Table 6

Predictions for Dual Task Effect by Order Difference

95% Confidence Interval

Walk Condition —
Order Difference | DT Effect (ASpeed) z p LB UB
ST First, DT Last -0.142  -6.030 <0.001 -0.188 -0.096
ST 2 Before DT -0.142  -7.830 <0.001 -0.177 -0.106
ST 1 Before DT -0.141  -8.950 <0.001 -0.172 -0.110
DT 1 Before ST -0.141  -7.900 <0.001 -0.176 -0.106
DT 2 Before ST -0.141  -6.090 <0.001 -0.187 -0.096
DT First, ST Last -0.141  -4.700 <0.001 -0.200 -0.082

Note. ST = Single Task; DT = Dual Task; LB = Lower Bound; UB = Upper Bound.
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There was no main effect of order operationalized as linear, B = 0.015, 95% CI[-
0.008, 0.039], z=1.29, p = 0.199, or if treated categorically which produced a joint
contrast for the effect of ¥*(5) = 4.03, p = 0.545. (No pairwise differences between order
differences were significant either, ps > 0.17. Most importantly, there was no interaction
of walk condition and order difference, B = 0.0001, 95% CI[-0.017, 0.017],z=0.01, p =
0.989 (see Figure 6). This indicates that randomized order did not have a significant
effect on differences in speed as a function of walk condition. Using the same modeling
approach, the randomization order effect and the interaction of randomization order and
condition were not statistically significant in any visit (see Table 7).

Figure 6

The Effects of Walk Condition and Randomization Order on Gait Speed for KUMC at
Baseline

The Effects of Walk Condition and Randomization Order on Gait Speed at Baseline
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Table 7

Fixed Effects for Multilevel to Check for Randomization of Walk Order Effects across
Visits

Visit n Walk Condition (B, p) Randomization (B, p) Interaction (B, p)
Baseline 122 -0.141, <0.001 0.015, 0.199 .0001, 0.989
Follow-Up1 42 -0.152,<0.001 -0.147,0.343 0.020, 0.237
Follow-Up2 38 -0.118,<0.001 0.007, 0.661 0.013, 0.389
Follow-Up3 37 -0.156,<0.001 -0.002, 0.917 -0.004, 0.744

Note. Walk condition compares single task (0) to dual task (1). Randomization compares
order of randomization for four walks based on distance of single and dual task
conditions from one another.

Once determining that the samples would be aggregated across these variables,
exploratory data analysis and descriptive statistics were performed. For the SS sample,
there were a variety of visits that took place but in no particular order. Gait assessment
with the Zeno™ Walkway was accompanied by some self-report outcome assessments,
but cognitive examination with Neurotrax™ Mindstreams® occurred on a different visit
date and was also accompanied by some self-report outcomes assessments (some
duplicates of those done during the gait analysis visit). Some participants also had
multiple measures for gait assessment or self-reported outcomes (ranging from 1to 5
assessment points) as these visits were conducted in a clinical setting. To keep measures
temporally contiguous to the greatest degree and to minimize learning effects from re-
assessment, first measurements for all measures were used for all participants. A check
was done to determine whether span of time between gait and cognitive analysis
produced a reliable effect, but the bulk of findings indicated that span (in months; M =
2.70, SD = 2.36), which ranged from the same day for one participant to as great as 10
months, was not a reliable moderator of the relationships between cognitive domains and

DTW effects (see Table 8).
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Table 8

Interaction Effect of Span Between Cognitive and Gait Measures on Dual-Task Walk
Effects

DTW Outcome — Speed (m/s) Difference (m/s) Costs (%)
Cognitive Domain | p (interaction effect)

Memory 0.252 0.653 0.995
Executive Function 0.908 0.845 0.465
Visuospatial 0.047 0.225 0.162
Verbal 0.205 0.977 0.470
Attention 0.590 0.932 0.726
Information Processing  0.769 0.338 0.308
Motor Skills 0.561 0.937 0.991

Note. DTW = Dual-Task Walking.

Only one interaction was significant at oo = 0.05 comparison-wise, Visuospatial
Ability on DTWS, p = 0.047, out of the 21 unplanned comparisons. The interaction
would indicate that the relationship between Visuospatial Ability and DTWS decreased
as the time between assessments increased (see Figure 7), such the strongest positive
relationship observed was between Visuospatial Ability and DTWS when there was less
than a month span between cognitive and gait assessments. At the greatest levels of span
(>6 months) the relationship between Visuospatial Ability and DTWS become negative.
The marginal effect of Visuospatial Ability on DTWS was positive and significant, B =
0.010, t(66) = 3.11, p = 0.003, as 57% (n = 40) of participants had 2 months or less
between their visits. There were 28 participants who had spans from 3 to 6 months, but
only 4 participants had spans of 7 months or more (7-month: n = 1; 9-month: n =2; 10-
month: n = 1). As such, although there may be a diminishing relationship, the evidence
that a true qualitative interaction exists is very sparse. Overall, with only one of 21
interactions yielding a significant effect at p = 0.047 and the additional evidence found in

probing this effect, it was deemed reasonable to aggregate across span in further analyses.
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Figure 7
The Effect of Visuospatial Ability on Dual Task Walking Speed Moderated by Span

The Effect of Visuospatial Ability on Dual Task Speed Moderated by Span
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Aim 1 Results: Cognitive Correlates of Dual-Task Walk Outcomes (SS)

A total of 70 participants remained viable as the full analysis sample for SS. This
sample is described in Table 9. Visualizations of cognitive and gait ability are in Figures
8 and 9. Scale internal consistency measures were very high (Cronbach’s o> 0.93) for all
scales. The sample was mild-to-moderately disabled and middle-aged on average. Most

participants were taking some form of disease modifying therapy and most were female.
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Table 9

Demographic and Clinical Characteristics for South Shore Sample

Variable (scale) n Mean SD Min Median Max «a
Age (Years) 64 5386 1196 26 56 79
EDSS (0 - 10) 70 3.55 1.90 1 3 6.5
MSWS-12 (1 -5) 69 3.02 1.21 1 3.25 5 0.97
MFIS (0 - 4) 65 2.03 0.99 0 2.05 390 0.97
MSIS-29 (1 -5) 65 2.48 0.88 1 2.41 429 0.96
MFES (0 - 10) 70 7.44 2.56 0 8.07 10 0.97
BDI-II (0 - 63) 59 1469 1049 O 13 41 0.93
DMT n (%)

Tysabri 30 (43)

Ocrevus 12 (17)

Other 18 (26)

None 10 (14)
Female 45 (70)

Note. a = Cronbach’s a; EDSS = Expanded Disability Status Scale Step; MSWS-12 =
Multiple Sclerosis Walk Scale-12; MFIS = Modified Fatigue Impact Scale; MSIS-29 =
Multiple Sclerosis Impact Scale-29; MFES = Modified Falls Efficacy Scale; BDI-II =
Beck Depression Inventory-11; DMT = Disease Modifying Therapy. Scale means are used
for summary purposes except for the BDI which is a scale sum.

Figure 8

Means and Standard Error Bars for Cognitive Domains on Neurotrax™ Cognitive
Battery

Means and Standard Errors for Cognitive Domains on Neurotrax Cognitive
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Figure 9

Boxplots for Walk Outcomes for SS

Boxplot for Walk Outcomes
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To address Aim 1, lasso regression was performed. Before doing so,
visualizations were evaluated, and correlations (zero order, partial, and semi-partial) were
estimated. The bivariate correlations for the cognitive and walk outcomes can be seen in
Figure 10. Of note, some participants were missing Information Processing outcomes
which reduced the sample size to 66 participants whenever this variable was included in

the model.
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Figure 10

Zero-Order Correlation Heatmap for SS
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Note. IP = Information Processing; DTWS = Dual Task Walking Speed; STWS = Single
Task Walking Speed; DTWD = Dual Task Walking Difference; DTWC = Dual Task
Walking Costs. All cognitive domains are from Neurotrax™ Mindstreams©
computerized cognitive assessment. Walk outcomes from Zeno™ Walkway.

Significant bivariate correlations included DTWC and Visuospatial Ability, p =
0.017, DTWD and Visuopatial Ability, p = 0.033, and Verbal Function, p = 0.042. STWS
was significantly correlated with Global Cognition, p = 0.049, Executive Function, p =
0.002, and Attention, p = 0.002. DTWS was also correlated with each of these three
cognitive domains, ps = 0.006, 0.004, 0.001, respectively, as well as being correlated

with Visuospatial Ability, p = 0.020, and Information Processing, p = 0.022. As such,
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these bivariate relationships indicate that DTWS captures both the variables related to
STWS and DTWC.

In addition to estimating bivariate correlations, partial correlations were estimated
for all walk outcomes with modeling including all cognitive variables to assess the
relative contributions of each cognitive domain in the presence of all others. The partial
correlations revealed interesting patterns that provide insight into the dynamic
relationships between cognitive domains and walk outcomes in MS (see Figure 11). For
example, when partial correlations were performed, the only cognitive predictor that was
statistically significant was Memory, and this was true for DTWS, p = 0.020, DTWD, p =
0.019, and DTWC, p = 0.018. No cognitive predictors remained significant when
controlling for all others for STWS. These patterns of relationship for the DTW measures
indicated that Memory was acting as a suppressor variable—that is, Memory is
contributing significantly to the full model despite not having a significant bivariate
correlation with the DTW measures. This generally arises because the suppressor variable
accounts for residual variance in the other predictors, and it can indicate that the
suppressor is inconsistently mediated by the variables it suppresses. For example, the
relationships were in opposite directions of what might be expected. For example, better
Memory predicted slower DTWS, rotws(memory.ally = -0.2684, controlling for all other
variables, and better Memory predicted greater DTWD, rprwsmemory.an = 0.285, and
DTWC, rotwsvemory.any = 0.293. This pattern, coupled with the previously significant
bivariate correlations with these outcomes becoming not statistically significant,
indicated the possibility that Memory was part of an inconsistently mediated model with

other cognitive domains. Correlations between walk outcomes and all cognitive domains
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other than Memory were computed after residualizing 1) the cognitive domains by
Memory, 2) the walk outcomes by Memory, and 3) both the cognitive domains and walk
outcomes by Memory (see Figure 10).

Figure 11
Zero-Order, Partial, and Semi-Partial Correlations between Cognitive and Walk
Variables

Correlations between Cognitive and Walk Variables
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Note. Mem = Memory; Exec = Executive Function; Vis = Visuospatial Ability; Verb =
Verbal Ability; Att = Attention; IP = Information Processing; Mtr = Motor Skills.
Gradient from lightest to darkest for bars: 1) Semi-partial all cognitive variables, 2)
Partial all cognitive variables, 3) Zero-order, 4) Walk outcome residualized by Memory,
5) Cognitive predictor residualized by Memory, 6) Walk outcome and cognitive predictor
residualized by Memory. Results indicate the Memory operates as a suppressor variable
for other cognitive domains. All graphs based on n = 66 sample to ensure equality across
full partials and other correlations.

To identify models that may optimize prediction of DTW measures, selection
models using lasso with a 10-fold cross-validation approach to select the value of A
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(James et al., 2013) and LARS (Efron et al., 2004) were used (see Table 10). For the 10-
fold lasso model, out-of-sample prediction performance is used for model selection. For
the LARS solution, minimization of Mallows’s C, was used (Mallows, 1973) as the
metric to balance model prediction and parsimony. Finally, to obtain inferential values
for the lasso predictors, lassopv in the R package lars was used to obtain p values based
on the lasso model (Wang & Michoel, 2017). For DTWS, Executive Function, Attention,
Visuospatial Ability, and Memory were selected. For DTWD, Visuospatial Ability,
Verbal Function, Memory, and Information Processing were selected. For DTWC, the
lasso and LARS solutions diverged. Based on all three metrics, it is difficult to say there
are any reliable cognitive predictors of DTWC found, but the LARS solution selected
Visuospatial Ability, Memory, Verbal Function, Information Processing, and Attention.
On the whole, there is evidence that there are cognitive predictors of DTW, but the
operationalization of the outcome may lead to differences in which are identified.
Visuospatial Ability and Memory were among the most robust predictors across all
operationalizations of DTW. Of note, it seems that DTWS likely captures cognitive

processes that relate to both STWS and DTWD or DTWC.
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Table 10

Lasso Models for SS Data

k-fold CV Lasso LARS
Outcome Predictor Step MPE B Cp RZ B p
DTWS
Executive 1 0.0716  0.003 13.23 0.06 0.003 0.002
Attention 2 0.0700 0.004 9.66 0.13 0.005 0.012
VS 3 0.0674  0.002 11.62 0.13 0.002 0.195
Memory 4 0.0673* -0.005 5.48* 0.23 -0.006 0.199
Motor 5 0.0633 7.03 0.24 0.600
Verbal 6 0.0634 6.08 0.27 0.628
IP 7 8.00 0.27 0.935
DTWD
VS 1 0.0157 -0.002 939 0.01 -0.002 0.038
Verbal 2 0.0157 -0.001 8.02 0.05 -0.001 0.051
Memory 3 0.0155  0.003 418 0.14 0.003 0.175
IP 4 0.0146* -0.0003 3.38* 0.17 -0.0005 0.435
Executive 5 0.0144 519 0.18 0.724
Motor 6 0.0144 6.06 0.19 0.746
Attention 7 8.00 0.19 0.961
DTWC
VS 1 194.763 442 004 -0.192 0.051
Memory 2 6.38 0.04 0.427 0.227
Verbal 3 5,73 0.08 -0.090 0.229
IP 4 550 0.11 -0.072 0.346
Attention 5 437 0.15 -0.085 0.470
Executive 6 6.37 0.15 0.905
Motor 7 8.00 0.16 0.906

Note. DTWS = Dual-Task Walking Speed; DTWD = Dual-Task Walking Difference;
DTWC = Dual-Task Walking Costs; VS = Visuospatial; IP = Information Processing;
MPE = Cross-validated mean prediction error for 10-fold cross-validated A selection
process. Selected A from 10-fold cross-validated models = 0.019, 0.007, and 3.28,
respectively and producing out-of-sample R? of 0.09, 0.05, and -0.05, respectively.
Mallow’s Cp and R? values are in-sample values from least angle regression (LARS)
algorithmic solution. P values obtained using lassopv function in lars package in R.
*Indicates model selected based on criterion.

Next, based on the observed complexity of relationships among cognitive

predictors and walk outcomes, post hoc checks for inconsistent mediation were tested in

variables showing suppressor type relationships with memory and motor skills
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specifically for DTWS. Path analysis with bootstrapped (200 replications), bias-corrected
confidence intervals (BC CI) were used for inferential purposes given the bias incurred
by using normal theory estimates for mediated effects (MacKinnon, 2012). Using BC CI
has also shown superior statistical power for detecting mediation (Fritz & MacKinnon,
2007).

A multiple mediation model was found for Memory via Attention and Executive
Function on DTWS (see Figure 12). The effect of Memory on Executive Function is
significantly mediated by Attention, B = 0.704, 95% BC CI[0.489, 0.9029]. The effect of
Memory on DTWS is significantly mediated via Attention and Attention via Executive
Function, B =0.008, 95% BC CI[0.004, 0.012]. The total effects Memory on Executive
Function, B = 0.704, 95% BC CI[0.489, 0.902], and Attention on DTWS, B = 0.010, 95%
BC CI[0.005, 0.014] were statistically significant. The total effect of Memory on DTWS
was not statistically significant, B = 0.002, 95% BC CI[-0.005, 0.007], as the direct effect
of Memory on DTWS is antagonistic to the mediated effect (i.e., inconsistent mediation)
albeit not statistically significant in its own right, B = -0.006, 95% BC CI[-0.0125,
0.0003]. Importantly, these relationships are all cross-sectional, so an inference about a
causal sequence cannot be inferred. Nevertheless, consistent with the suppressor patterns
noted previously, these findings demonstrate that understanding the relationships between
cognitive abilities and DTW outcomes may be more complex and nuanced than can be

revealed by bivariate relationships alone.
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Figure 12

Multiple Mediation Model for Memory, Attention, Executive Function, and Dual-Task
Speed
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Note. Direct effects are depicted. *95% bias-corrected confidence interval from 200
bootstrap replications does not contain 0. DTWS = Dual Task Walking Speed.

A mediation model was also tested for Motor Skills via Information Processing on
DTWS (see Figure 13). Importantly, the Motor Skills assessment requires rapid finger
tapping on the left mouse button. The Information Processing assessment requires
tapping one’s finger on the left mouse as quickly as possible in response to a particular
stimulus. As such, it is reasonable that basic reaction time assessed by Motor Skills
would predict complex reaction times assessed by Information Processing. In fact, this
was observed. The direct effect of Information Processing on DTWS was statistically
significant, B = 0.004, 95% BC CI[0.0001, 0.0081]. The direct effect of Motor on
Information Processing was statistically significant, B = 0.789, 95% BC CI[0.571, 1.083].
Neither the direct effect of Motor on DTWS, B = 0.0001, 95% BC CI[-0.006, 0.006], nor
the total effect of Motor of DTWS, B = 0.003, 95% BC CI [-0.001, 0.009], was
statistically significant, but the indirect (i.e., mediated) effect was, B = 0.003, 95% BC ClI

[0.0003, 0.0067].
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Figure 13

Mediation Model for Motor Skills, Information Processing, and Dual-Task Speed
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Note. Direct effects are depicted. *95% bias-corrected confidence interval from 200
bootstrap replications does not contain 0. DTWS = Dual Task Walking Speed.

Aim 2 Results: Physical, Cognitive, and Self-Report Correlates of Dual-Task Walk
Outcomes (KUMC)

The KUMC study recruited 122 people with MS to evaluate whether wearable
sensors could detect changes in gait and balance sensitively. The participants were
relatively functional in terms of disease status and measured balance and gait. Yet, over
one-third of participants still reported having fallen in the past 6 months at baseline. For a
description of the sample at baseline, see Table 11.

Table 11

Demographic and Clinical Characteristics for KUMC Sample across Visits

Variable n Mean SD Min Median Max
Age (Years) 122 45,53 9.02 21.67 47.5 60.92
EDSS (0-10) 121 2.23 1.14 0 2 55
YSD (Years) 121 10.98 7.66 0 10 38
ABC (0-100) 122 80.25 17.46 27.5 85.94 100
Falls 119 2.14 8.21 0 0 72

n (%)
Female 96 (79)
Faller 41 (34)

Note. EDSS = Expanded Disability Status Scale Step; YSD = Years since Diagnosis;
ABC = Activities-specific Balance Confidence.
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In addition to concurrent measurements and a large sample size, the study
included many measures across a variety of domains that provides a unique opportunity
to further the exploration of predictors of DTW measures. Importantly, the samples do
differ in terms of functional outcomes. For example, comparing the two samples at
baseline for walk outcomes revealed significant differences in the speed outcomes but not
the differences and costs associated with DTW. Both samples exhibited significant
DTWD and DTWC (see Table 12).

Table 12

Comparison of KUMC and SS Walk Outcomes

Variable n Mean SD t p
STWS 10.20 <0.001
KUMC 122 1.246 0.245
SS 70 0.847 0.286
DTWS 9.24 <0.001
KUMC 122 1.104 0.275
SS 70 0.727 0.270
DTWDS 0.91 0.362
KUMC 122 0.141*  0.016
SS 70 0.120*  0.014
DTWC -1.20 0.231
KUMC 122 11.411* 13.377
SS 70 13.847* 13.803

Note. STWS = Single Task Walking Speed; DTWS = Dual-Task Walking Speed; DTWD
= Dual-Task Walking Difference in Speed; DTWC = Dual-Task Walking Costs; KUMC
= University of Kansas Medical Center sample; SS = South Shore Neurologic
Associated, PC sample. All t tests are independent samples tests with 190 degrees of
freedom. *Value is different (p < 0.001) from 0 using one-sample t-test indicating
presence of DTW effect.

As such, extending to the KUMC sample allows for a sort of conceptual
replication with extension, but the sample does represent a different, less-affected subset
of the MS population. As was done for SS, the first step was the perform exploratory data

analysis including computing bivariate correlations across outcomes. A heatmap of the
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relationships in the KUMC sample can be found in Figure 14. Of note is the general lack
of relationships that exist between the DTWD and DTWC outcomes with all others in the
data set. Other clusters demonstrate expected moderate-to-strong correlations across
various domains. For example, subscales of the SF-36 clearly cluster together, so do
walk, disability, and cognitive measures. Further these two clusters tend to have negative
relationships with the variables from the other cluster.

Figure 14

Zero-Order Correlation Heatmaps for KUMC
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Note. STWS = Single Task Walking Speed; DTWS = Dual-Task Walking Speed; DTWD
= Dual-Task Walking Difference; DTWC = Dual-Task Walking Costs; EDSS =
Expanded Disability Status Scale Disease Step; TUG = Timed Up and Go; T25FWT =
Timed 25-Foot Walk Test; React = Reaction Time; CR = Choice Reaction Time; CRC =
Choice Reaction Time for Correct Responses; Stroop = Stroop Interference Test;
PhysFunc = Short Form-36 Physical Function subscale; PhysLimit = Short Form-36
Physical Limitations subscale; EmoLimit = Short Form-36 Emotional Limitations
subscale; SocFunc = Short Form-36 Social Function subscale; Pain = Short Form-36 Pain
subscale; Fatigue = Short Form-36 Fatigue/Energy subscale; Berg = Berg Balance Scale;
MSWS = Multiple Sclerosis Walk Scale-12.
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Model selection was undertaken in the same fashion as was done in the SS
analyses. The TUG and T25FWT were intentionally omitted from models because the
desire to determine how other domains relate to DTW measures and the strong
correlations between “walk speed” in all the different ways it was measured could mask
other relationships. Similar to what was observed in the SS sample, DTWS seems to
relate to more and more strongly to various other outcomes. Five predictors were selected
by both approaches including, SF-36 Pain, EDSS, BBS, Stroop Interference, and Choice
Reaction Time for Correct Responses. Of note, Stroop Interference and a Go-NoGo Task
are central to measuring Executive Function and Attention in the Neurotrax™
Mindstreams® battery, so the selection of the Stroop task and Choice Reaction Time for
Correct Responses here are conceptual replications of these findings. Similarly, the basic
Reaction Time task that was not selected for DTWS mirrors the non-selection of the
Motor Skills variable in SS. Beyond these conceptual replications, self-reported Pain on
the SF-36, disability on the EDSS, and objectively assessed balance on the BBS were
selected as DTWS predictors. No predictors were selected for DTWD, and only the
Stroop task as a measure of executive function was selected as a predictor of DTWC (see
Table 13). These findings corroborate the importance of executive function and attention
for predicting DTWS, and they add three unique physical constructs of importance. Of

note, the MSWS-12 was not selected even for DTWS.
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Table 13

Selection Decisions from Lasso Models for KUMC Data

Outcome Predictor Step MPE B Cp RZ B p
DTWS
Pain 1 0.0720 0.003 45.00 0.06 0.003 <0.001
EDSS 2 0.0697 -0.040 4180 0.09 -0.043 <0.001
Berg 3 0.0669 0.006 1521 0.26 0.006 <0.001
Stroop 4 0.0057 0.004 796 032 0.005 0.011
CRC 5 0.0534* -0.023 6.39* 0.34 -0.042 0.127
PhysLimits 6 0.0533 714 0.35 0.414
Fatigue 7 9.13 0.35 0.492
EmoLimits 8 9.78 0.36 0.492
SocFunc 9 850 0.38 0.562
PhysFunc 10 10.11 0.38 0.829
MSWS 11 11.90 0.38 0.899
CR 12 13.79 0.38 0.985
React 13 14.00 0.39 0.985
DTWD
PhysFunc 1 0.031 162 0.01 0.063
MSWS 2 330 0.01 0.136
Stroop 3 3.10 0.03 0.166
EmoLimits 4 506 0.03 0.289
SocFunc 5 2.75 0.07 0.291
Fatigue 6 395 0.08 0.543
Pain 7 540 0.08 0.606
Berg 8 595 0.10 0.646
CR 9 7.60 0.10 0.767
React 10 9.20 0.10 0.804
PhysLimits 11 10.60 0.11 0.838
EDSS 12 12.15 0.11 0.898
CRC 13 14.00 0.12 0.996
DTWC
Stroop 1 176.685* -0.158 2.69* 0.02 -0.183 0.042
EmoLimits 2 370 0.03 0.189
SocFunc 3 566 0.03 0.296
PhysFunc 4 6.84 0.04 0.302
Pain 5 7.79  0.05 0.338
MSWS 6 9.37  0.05 0.379
Fatigue 7 557 0.10 0.395
PhysLimits 8 742  0.10 0.686
React 9 896 0.11 0.697
Berg 10 10.74 0.11 0.733
EDSS 11 1161 0.12 0.750
CR 12 12.40 0.13 0.835
CRC 13 14.00 0.13 0.993
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Note. STS = Single Task Walking Speed; DTS = Dual-Task Walking Speed; DTD =
Dual-Task Walking Difference; DTC = Dual-Task Walking Costs; EDSS = Expanded
Disability Status Scale Disease Step; React = Reaction Time; CR = Choice Reaction
Time; CRC = Choice Reaction Time for Correct Selections; Stroop = Stroop Interference
Test; PhysFunc = Short Form-36 Physical Function subscale; PhysLimit = Short Form-36
Physical Limitations subscale; EmoLimit = Short Form-36 Emotional Limitations
subscale; SocFunc = Short Form-36 Social Function subscale; Pain = Short Form-36 Pain
subscale; Fatigue = Short Form-36 Fatigue/Energy subscale; Berg = Berg Balance Scale;
MSWS = Multiple Sclerosis Walk Scale-12; CV MPE = Cross-validated mean prediction
error for 10-fold cross-validated A selection process. Selected A from 10-fold cross-
validated models = 0.024, 0.030, and 1.745, respectively and producing out-of-sample R?
of 0.27, -0.02, and -0.01, respectively. Mallow’s C, and R? values are in-sample values
from least angle regression (LARS) algorithmic solution. P values obtained using lassopv
function in lars package in R. *Indicates model selected based on criterion.
Discussion

The current analyses were performed in some of the largest samples used to-date
to evaluate relationships between other putatively relevant domains and DTW measures.
The findings are informative and provide novel insights into correlates of DTW. First,
among these is that DTWD and DTWC may not relate to other outcomes as reliably as
DTWS. Although Baddeley et al.’s (1997) formula has been applied commonly in the
study of DTW in MS (Learmonth et al., 2017; Leone et al., 2015; Postigo-Alonso et al.,
2018; Wajda & Sosnoff, 2015), it is worth giving careful consideration to the information
it actually provides. Although normalizing the change in speed between ST and DT
conditions by the STWS makes sense simply as a means to quantify whether DTW
produces substantive alterations to gait under DT, it may not be the most useful measure
in the context of understanding how DTW is related to other facets in the corpus of MS
symptoms.

Walking speed has been found to be related to a variety of important outcomes in

MS (Albrecht et al., 2001; Briggs et al., 2019; D’Orio et al., 2012; Kalron, 2014; Kalron

& Achiron, 2014), so removing the information about speed may be undesirable if
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researchers are interested in understanding how DTW fits into the constellation of MS
symptoms. Further, the normalizing equation may obfuscate many relationships of
importance in DT research when used in isolation because its calculation means that two
people with very different walking abilities who experience different absolute amounts of
change can have the same DTWC. Removing the information about the base rates—that
is, understanding that these two people with the same DTWC are very different in raw
performance of the DTW or general walking ability—may gloss over important
relationships between DTWC and other outcomes. Researchers should consider whether
DTWC have similar relationships to other outcomes across the spectrum of DTWS. That
is, it may be that a person with slow DTWS and high DTWC experiences different
outcomes than a person with high DTWS and high DTWC. As such, DTWC seems to be
a good way to operationalize simply whether there is an effect of DTW, but DTWS may
be a better single variable to use for examining how DTW fits into the constellation of
MS symptoms. When predictors of DTWD and DTWC emerged, DTWS tended to
capture these relationships, too. DTWS also related to more domains that STWS alone.
This indicates that DTWS may be a worthwhile construct to consider in understanding
symptom overlap in MS.

In terms of cognition, executive function and attention seem to be particularly
relevant predictors of DTW, as these domains emerged in both studies as variables
selected early in the models. Further, the SS study suggests that visuospatial ability,
information processing, and memory may also relate that DTW outcomes. In particularly,
memory was found to play a unique, suppressing role—being the only cognitive domains

that related to DTW outcomes in full models—and to be inconsistently mediated by the
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attention and executive function domains that were so reliably selected in the SS study.
Unfortunately, no measures of memory, objective or subjective, were available to
determine whether it performed a similar suppressor role in the KUMC data.

Horst and colleagues (1941) originally defined suppressor variables as predictors
that have zero correlation with the outcome while improving the predictive ability of the
overall model. Suppression relationships are great reminders that bivariate relationships
can often be entirely inadequate to understand the processes that give rise to the true
model dynamics (Lancaster, 1999). Originally, it was believed that suppression was a
rare occurrence, but decades after Horst introduced the concept, researchers began to
realize it occurred more often than initially thought (Lancaster, 1999; Thompson &
Levine, 1997). The same can be said for inconsistent mediation (MacKinnon, 2012).
There is a relevant classic example in the literature of suppression regarding using
cognitive test batteries to predict performance on a cognitively and physically demanding
task provided by Horst (1966) regarding fighter pilot performance during WWII. Verbal
ability had a near-zero correlation with pilot performance but was highly correlated with
other predictors considered—mechanical, numerical, and spatial ability. When verbal
ability was included in the model for predicting pilot success the overall model improved
significantly. This example has been noted to be an example of introduction of
measurement artifact variance—that is, verbal ability was required to perform well on the
other tasks because pilots had to read instructions on the paper-pencil tests (Lancaster,
1999).

Similarly, the dynamics seen in the SS data could reasonably be measurement

artifacts of test construction, as several domains have overlapping measures that are
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included in the computation of the standardized scores for domains. For example, the
Stroop is used for both Attention and Executive Function, as is a Go-NoGo task.
Similarly, the ‘Catch’ Game (a pong-like task) is used in computing both Executive
Function and Motor Skills. Further, rapid response of finger tapping is inherently
involved in many of these tasks—as many are timed and all require responding via a
mouse on a computer—Dbut rapid finger tapping on a mouse is the primary measure for
Motor Skills (Doninger, 2007, 2014b). Moreover, being able to remember instructions is
obviously key to successful completion of computerized cognitive tests and how quickly
one can click the mouse button is similarly relevant to performance across assessments.
As such, the patterns observed for Memory and Motor Skills in the full model for
predicting DTW measures may simply reveal that these domains are essential to task
completion across domains—even when they are not intended to be measured explicitly.
As such, the suppressor dynamics could be related to measurement variance artifacts.
Lastly, the KUMC analyses not only confirmed the importance of executive
function and attention via conceptual replication, but also indicated that DTWS was
predicted by other important physical domains such as EDSS step, BBS (balance), and
self-reported pain on the SF-36. However, consistent with previous studies looking at
EDSS and BBS predicting DTWC (Rooney et al., 2020), these constructs were unrelated
to DTWC. The only variable that related to either DTWD or DTWC in the KUMC study
was the Stroop interference task for DTWC, but this measure was also related to the
DTWS. Further, the out-of-sample performance for the DTWC model was poor which
limits confidence in this conclusion. Again, the findings confirm that DTWS may be a

better way to capture how DTW relates to the constellation of MS symptoms in that it is
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predicted by both the predictors of STWS and DTWC. It seems that little if anything is
lost in understanding how DTW fits into the constellation of MS symptoms by using
DTWS and much is gained. In terms of implications in clinical contexts, this evidence
indicates that ways to improve DTW ability may include enhancing executive function,
attention, and balance, as well as reducing pain—which research in other populations
indicates may cause interference in both the cognition (Berryman et al., 2013; Low, 2013;
Moriarty & Finn, 2014) and walking (Bendall, 1989). Further research is needed to
determine the importance of memory to evaluate the possibility that measurement artifact
variance alone accounts for its unique relationships with DTWS in the SS study. It is
possible that memory may be a key component to ensure executive function and attention
can be improved through training, or it may just be that memory needs to be accounted
for in models given its role in measuring other cognitive performance (i.e., one must
remember the instructions). Either way, researchers attempting to intervene in the
cognitive domains to improve DTW performance may want to include memory as part of

the predictive model to explain DTW outcomes.
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CHAPTER 3

Dual tasking is a phenomenon that occurs in many forms. Originally, a great deal
of the research regarding dual tasking was performed in neuropsychology (e.g., Baddeley
etal., 1997). It involves performing two tasks with distinct functions concurrently (Bayot
et al., 2018). Dual tasking was initially intended to help understand the degree to which a
task required effortful attention (cf. a task that can be performed “automatically”; Bayot
et al., 2018; Hanny, 1986; Mirelman et al., 2018). Dual task research quickly began in a
variety of contexts. In the realm of neurological disease and geriatric research, dual task
researchers began to examine cognitive-motor coupling in dual task research to determine
whether there was interference that may pose additional risk of injury to those affected by
neurological disease when performing motor tasks assumed to be automatic (e.g.,
walking) while engaging in a cognitive task simultaneously (e.g., holding a
conversation). For example, a classic dual task study was conducted by Lundin-Olsson
and colleagues (1997) that indicated that older adults in a residential facility who stopped
walking to talk were at a greater risk of falling that those who did not. They also found
that arresting one’s gait to hold a conversation correlated with objectively poorer gait
qualities, and this simple metric performed nearly as well from a classification standpoint
as the clinical measures used at the time for assessing fall risk (e.g., the BBS). The notion
that DTWC exist are rather well established (e.g., Mirelman et al., 2018). However, there
is no resolution regarding which of several theories might be explain the presence of
DTWC (Bayot et al., 2018).

Theories such as the Attentional Capacity (or Capacity Sharing) Theory

(Kahneman, 1973) and Bottleneck Theory (e.g., see Tombu et al., 2011) are two major
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theories of DT intereference. However, Bayot et al. (2018), note that there are other
theories, such as the Time-Sharing Hypothesis and Cross-Talk Model. Further, there are
divisions within these major theoretical perceptions (Bayot et al., 2018). However, most
of these theories discuss how either cognitive limits or neural activity patterns explain
DTC. Yet, researchers have noted that there may be a greater need to recognize the role
of higher-order processing in DT to explain the empirical evidence adequately (e.g., see
Pashler, 1994 for a general consideration and Yogev-Seligmann et al., 2012; Wajda &
Sosnoff, 2015; Wajda et al., 2016 for reviews and applications in DTW specifically).
Although there are undoubtedly neural and cognitive processes that may apply
generally in DT, there is no consensus regarding which theory best explains the evidence
in DT research and most fail to explain the pantheon of observations fully (Bayot et al.,
2018). Recently, there has been a move toward considering that these theories may not
adequately explain DT interference in general (Pashler, 1994) and in balance while
walking specifically (Yogev-Seligmann et al., 2012). These models note that higher-order
processing and other person-level factors—which undoubtedly still involve neural and
cognitive processes, but in different ways—need to be considered to understand the
heterogeneity of responses that can be observed across DT paradigms and within persons
within a given DT paradigm. A theory with the potential to be viewed as complementary
to many of those in existence is SAT (Wajda & Sosnoff, 2015; Wajda et al., 2019).
Yogev-Seligmann et al. (2012) note that a central tenet of SAT is that assessment of
one’s abilities in the context of environmental demands may be a critical person-specific
factor to consider in understanding heterogeneity in DT. That is, self-evaluative processes

(e.q., self-efficacy) are putative moderators of the effects of basic abilities on DTW
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outcomes (Wajda et al., 2019). Thus, this model emphasizes that not just one’s objective
abilities but also one’s subjective evaluations and appraisals of these abilities are crucial
to understanding DTW outcomes, and this may help to explain the great heterogeneity
observed in the corpus of literature. Lupien et al. (2007) in their review summarized
evidence that demonstrates how stressors and reactivity to environmental stressors affects
neuroendocrinological processes that relate to task performance in cognitive domains
which reminds of the possible mechanisms by which appraisals of self and environment
may cause alterations in the lower-level neurophysiological processes.

Aim 3 examines whether FSE and depression (and emotional role limitations as a
surrogate in KUMC data) act as moderators of the relationships between measures of
objective ability (i.e., cognitive and physical abilities) and performance under the more
trying DTW conditions. In such cases where task complexity increases, the effects of
efficacy beliefs and emotional appraisals are likely to be more important, as efficacy can
act as a moderator of the relationship between task complexity and task performance
(e.g., Beattie et al., 2014). For example, the Yerkes Dodson (1908) law stipulates that
more challenging tasks exhibit inverse-parabolic relationships between arousal and
performance for difficult tasks but an s-shaped relationship for simple tasks. Efficacy
beliefs could be expected to shift the inverse-parabolic curve along the “Arousal” axis or
could even cause a discrete shift such that a task that is “difficult” to one person is
“simple” to another based on their appraisals of their abilities and the task. As such,
performance outcomes could reasonably be expected to be a function not only of ability

but appraisals of ability and emotional dispositions that affect these appraisals.
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Depression and FSE are not only theoretically-reasonable moderators in this
context, but they are also common issues in MS—which makes understanding their role
in the dynamics of ability and performance in DTW even more important. One meta-
analysis found that more than 1 in 3 people with MS had clinically significant symptoms
of depression or anxiety in an examination of cross-sectional prevalence estimates
(Boeschoten et al., 2017). Approximately 1 in 2 people with MS will have a diagnosis of
depression during their lifetime (Siegert & Abernethy, 2005). Even more, fear of falling
has been found to occur in those with MS at rates of just over 60% of individuals with
MS (Peterson et al., 2007) to as high as 92% of those who with MS who have fallen
(Comber et al., 2017). This often leads to significant activity curtailment, reduced
independence, and lowered QoL (Peterson et al., 2007). Comber et al. (2017) reported
that 79% of participants with MS who have fallen report activity curtailment associated
with fear of falling. It may be that fear of falling or low FSE may simply be a reasonable
appraisal of increased risk given symptomatic presentations; however, recent evidence
indicates that FSE may lead to unique consequences due to unnecessary activity
curtailment and loss of independence. A large study in individuals assessed
correspondence of perceived fall risk and physiological fall risk (Gunn et al., 2018). Their
findings showed that most individuals with MS have a notable disparity between
perceived and physiological fall risk and the most common discrepancy is that the
perceived risk is greater than the physiological risk (Gunn et al., 2018). This evidence
highlights the potential use of understanding whether the effect of physical ability of

performance is moderated by FSE because the two measures do not necessarily align and
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different beliefs about one’s abilities or risks may affect the way that their actual abilities
manifest—particularly in challenging contexts.

This is one example of that fact that FSE and depression affect risk evaluation and
personal assessments (Bandura, 1994; Davey et al., 2017). It is possible that the effects of
basic abilities and skills (e.g., motor or cognitive abilities) not only relate to these states,
but that their effects on complex functional tasks (e.g., DTW) are moderated by these
psychological states. Assessments of abilities would be expected to differ for people with
different levels of FSE and depression. For example, a person with low FSE may believe
their balance is poor even when it is not (e.g., Gunn et al., 2018) which could produce
meaningful differences in how their abilities relate to DTW outcomes compared to
another person with similar motor abilities but different levels of FSE.

Similarly, depression could lead to heightened risk appraisal—in fact, research
suggests that depression may lead to more accurate (i.e., less optimistically biased)
assessments of risk for future events (Korn et al., 2014) in some interesting research
regarding optimism bias and health outcomes (e.g., Garrett & Sharot, 2014; Sharot,
2012). In the context of the already elevated perceived risk that has been shown to be
present for people with MS regarding falling (Comber et al., 2017; Peterson et al., 2007),
depression could plausibly result in a further inaccurate elevation of fall risk in this
population, leading to additional activity curtailment. Although no researchers have
considered depression as a moderator of the relationships between cognition or motor
function and DTW, it has been considered as a moderator of cognitive-motor coupling
more generally in MS (Ensari et al., 2018). Ensari et al. (2018) did not find that

depression moderated general cognitive-motor coupling in MS, but further evidence is
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needed, and it is possible that this role could become more patent in more demanding
contexts such as DTW paradigms. Yet, Serra-Blasco et al. (2019) and Potvin et al. (2016)
found that depression alters appraisal of one’s cognitive ability. Further, Potvin et al.
(2016) found that subjective cognitive ability was a better predictor of function in
individuals with depression than objective cognitive ability. This highlights the power of
subjective appraisal and evaluation in understanding the interplay between cognition and
function—albeit in a more general form.

Thus, it is reasonable to hypothesize that either depression or FSE could moderate
the relationships between cognition and mobility and DTW measures. It seems most
likely that depression may moderate cognitive effects and FSE may moderate physical
effects, but both are possible given the entanglement of processes in DTW. Although
simply asking whether physical states, cognitive abilities, depression, and FSE are related
to DTWS or DTWC is also important, if the relationships between cognitive or physical
ability and DTW measures are moderated by person-level factors like FSE and
depression, this could lead to masked or incompletely understood relationships (e.g., if a
qualitative moderation exists the marginal effect could wash out). This could also have
repercussions for clinical considerations regarding which type of approaches or
interventions may help most to promote function or performance of complex everyday
tasks—for which DTW acts as a measure. If the limitations lie in physical abilities alone,
then solely assessing and addressing them is sufficient, but if there is a complex interplay
between these abilities and individuals’ personal appraisals—their efficacy or emotional

states—then it may indicate that interventions will be more successful to consider these
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domains as intervention targets in tandem with the physical or cognitive abilities they
affect.
Aim 3: Psychological Moderators of the Effects of Ability and Dual-Task Outcomes
South Shore Neurologic Associates, PC Analyses

The first study in Aim 3 uses the data from SS. A key first step to evaluating these
moderation questions was to perform psychometric evaluations on the scales used for the
constructs of FSE and depression. To do this, exploratory factor analysis was performed
using IPF. To determine the number of factors measured, parallel analyses were
performed by constructing 100 random samples of size n and using the Eigenvalue at the
95t percentile from these analyses as the threshold for a factor being present (Hayton et
al., 2004). This was coupled with visual analysis using scree plots (see Figure 15). The
results of the exploratory factor analysis revealed strong, one-factor solutions for all the
PROs except depression measured by the BDI-II.
Figure 15

Scree Plots for Factor Extraction for Patient-Reported Outcomes in SS

Modified Falls Efficacy Scale Factor Extraction Multiple Sclerosis Impact Scale-29 Factor Extraction
n=66

15
i

v <
™ n=>55

10

Eigenvalues

5

0

T T T T T T T T
) 5 10 15 0 10 20 30

Multiple Sclerosis Walk Scale-12 Factor Extraction Beck Depression Inventory-II Factor Extraction
— n=065 — n =60
4= 2
',_‘2
S
=} (=]
T T T T T T T T T
0 4 8 12 0 5 10 15 20
Number Number

—95th-ile EV from Parallel Analysis

99



Consistent with previous research (Wang & Gorenstein, 2013b), the BDI-II had
two factors with the first factor capturing affective states and the second capturing
somatic states (Wang & Gorenstein, 2013b). Factor scores were predicted from analyses
to be used as the moderating variables in analyses predicting DTWS and DTWC. A
single factor was extracted for the MFES and MSWS-12, and two factors were extracted
for the BDI-II (Factor 1: Affective and Factor 2: Somatic-Vegetative are reasonable
monikers for these consistent with Wang & Gorenstein, 2013b). There were several
multivocal items; however, all but “Agitation” had a clear dominating factor onto which
they loaded. For the loadings of items onto factors for the BDI-1I following oblique
oblimin rotation to allow for correlated factors, r = 0.403, see Table 14,

Table 14

Factor Loadings for the Beck Depression Inventory-1i

Item Factor 1 Loading  Factor 2 Loading
1. Sadness 0.669

2. Pessimism 0.513

3. Past Failures 0.772

4. Loss of Pleasure 0.395 0.493*
5. Guilt 0.690

6. Punishment 0.885

7. Self-Dislike 0.780

8. Self-Criticalness 0.636

9. Suicide 0.670

10. Crying 0.340 0.458*
11. Agitation 0.357* 0.356
12. Loss of Interest 0.374 0.565*
13. Indecisiveness 0.371 0.518*
14. Worthlessness 0.606* 0.307
15. Loss of Energy 0.814
16. Changes in Sleep 0.649
17. Irritability 0.749
18. Changes in Appetite 0.352 0.458*
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19. Concentration 0.633

20. Tiredness 0.814

21. Loss of Interest in Sex 0.467

Note. Factor loadings are from oblimin obligue rotated iterative principal axis factoring.
Only loadings > 0.30 are shown. *Stronger loading for multivocal item.

The sample has been summarized previously. Table 9 contains the demographic
and clinical information for the sample. Additionally, given the use of self-report
outcomes here, Figure 16 depicts these outcomes in box plots. These show that there was
a fair amount of variability in the distribution of these outcomes, so ceiling and floor
effects were not significant concerns. However, it is worth nothing that FSE, measured by
the MFES, was relatively high albeit still with appreciable variability.

Figure 16

Box Plots for Patient Reported Outcomes from SS
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were tested for moderation by depression and FSE. Also, STWS was used a measure of
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basic physical ability and it was also tested for moderation by depression and FSE for its
relationship with DTW outcomes. Lastly, MSWS-12 was used as a measure of physical
ability. Importantly, this is a subjective appraisal—Ilike the moderators in the analysis—
not an objective assessment. However, the psychometric distinction between efficacy and
the MSWS-12 is important. The MSWS-12 asks participants to report how much their
abilities have been limited in the past two weeks not how confident they are in particular
abilities or how concerned they are about particular outcomes given their abilities. So,
although it is a subjective, recollective measure of walking ability, it is still conceptually
a measure of walking ability—not efficacy.

DTWS was the primary outcome of interest as it is a measure of performance in
the context of a complex task. However, given its regular use in the literature DTWC
(Learmonth et al., 2017; Leone et al., 2015; Postigo-Alonso et al., 2018; Wajda &
Sosnoff, 2015), including the few considerations of SAT that have been made (Wajda &
Sosnoff, 2015; Wajda et al., 2019), it was also included as an outcome. However, it is
worth noting that DTWC is a measure of the change in speed between ST and DT
conditions as a percentage of STWS. As such, it actually captures a cognitive effect. That
is, it removes the “speed” metric and becomes a “percent change” where change is
caused by the presence of a concurrent cognitive task. Thus, it is not an ideal
operationalization for testing SAT to determine whether self-appraisals alter physical
performance in a complex task, as it is not a measure of physical performance under DT
but a measure of change that removes the physical measure of performance (which is
speed in this case). For example, it would not be expected the STWS predicts DTWC in

the same way that it would be expected that STWS would predict DTWS. As such,
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moderation of basic, objective abilities on physical performance is best modeled using
DTWS, not DTWC.

Similarly, it is more reasonable to expect that DTWC actually captures a cognitive
construct by “removing” the physical performance metric and becoming a “percent
change” that cognitive demand causes. This is exemplified by the fact that two people
who perform very differently in terms of DTWS as a measure of physical performance
(e.g., 0.5 m/s and 1.3 m/s) could have identical DTWC (e.g., 20%). Similarly, two people
who perform identically on the physical task (e.g., 1.2 m/s) could have very different
DTWC (e.g., 0% and 30%). As such, DTWC tells us little about physical performance
under DT conditions; instead, it tells us about the change that occurs in the presence of
cognitive load—clearly a cognitive construct. In fact, Chapter 2 revealed that physical
performance metrics do not relate to DTWC, which is generally consistent with past
research (Leone et al., 2015; Rooney et al., 2020). However, executive function was
related to DTWC. Again, for a full description, both outcomes are considered. Table 15
contains a summary of the multiple regression models tested using factor scores using
regression scoring methods to evaluate whether FSE or depression moderate the effect of

physical and cognitive ability on DTWS and DTWC.
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Table 15

Regression Models Evaluating Falls Self-Efficacy and Depression as Moderators of the Effects of Walking Speed and Cognition on
Dual Task Walking Outcomes

v0T

Outcome Effect 1 Effect 2 Interaction Covariate
Predictor n B,p B,p B,p B, p

DTWS
STWS, MFES 64 0.81,<0.001 -0.03,0.454 0.09, 0.032 -
STWS, BDI-II* 58 0.85,<0.001 0.06,0.197 -0.09, 0.083 -0.04, 0.014
STWS, BDI-II? 58 0.83,<0.001 -0.001,0.974 -0.04,0.472 -0.02, 0.301
MSWS-12, MFES 59  -0.14,<0.001 0.07,0.032 0.03, 0.207 -
MSWS-12, BDI-II' 42  -0.17,<0.001 -0.07,0.145 -0.03, 0.354 0.06, 0.234
MSWS-12, BDI-II> 42  -0.19,<0.001 0.07,0.188 -0.06, 0.291 -0.05, 0.242
EF, MFES 64  0.01,0.002 0.08, 0.663 0.0003,0.852 -
EF, BDI-II* 58 0.01, 0.001 0.01, 0.964 0.0004, 0.890 -0.06, 0.160
EF, BDI-II? 58 0.01,0.001 0.37,0.146 -0.004,0.092  0.06, 0.147
IP, MFES 61 0.002,0.221 0.11, 0.556 0.0003,0.880 -
IP, BDI-1I* 54  0.004, 0.043 -0.07,0.774  0.002, 0.654 -0.07, 0.146
IP, BDI-11? 54 0.004, 0.052 -0.10, 0.668  0.0003,0.889 0.04, 0.385

DTWC
STWS, MFES 64 6.72,0.301 3.21, 0.505 -8.40, 0.505 -
STWS, BDI-1I* 58 3.92,0.521 -2.21,0.709  4.26, 0.502 5.24,0.016
STWS, BDI-1I? 58  4.09, 0.519 4.42,0.499 0.71, 0.923 1.55, 0.460
MSWS-12, MFES 59 -2.74,0.175 -6.42, 0.007 -1.86, 0.298 -
MSWS-12, BDI-II' 42 -0.77,0.699 2.40,0.314 1.51, 0.369 4.99, 0.055
MSWS-12, BDI-II? 42 0.71, 0.745 3.78, 0.165 4,00, 0.141 1.43, 0.498
EF, MFES 64  -0.09, 0.467 6.38, 0.572 -0.09, 0.405 -
EF, BDI-II* 58 -0.04,0.717 -8.00, 0.605 0.10, 0.536 4.76, 0.027
EF, BDI-II? 58 -0.06, 0.634 -4.15,0.762  0.09, 0.506 1.40, 0.507
IP, MFES 61 -0.03,0.747 -0.93,0.935 -0.03, 0.825 -



SoT

IP, BDI-II 54  -0.09, 0.350 24.47,0.026  -0.23,0.034 5.36, 0.015
IP, BDI-II? 54 -0.10,0.313 21.27,0.060 -0.20, 0.153 1.98, 0.337

Note. DTWS = Dual Task Walking Speed; DTWC = Dual Task Walking Costs; STWS = Single Task Walking Speed; MFES =
Modified Falls Efficacy Scale (Factor Score); BDI-11 = Beck-Depression Inventory-11 (Factor Scores); MSWS-12 = Multiple Sclerosis
Walking Scale-12; EF= Executive Function; IP = Information Processing. 'Factor 1, Affective, is tested as a moderator. Factor 2,
Somatic, is tested as a moderator. Cognitive domains are from Neurotrax™ cognitive battery. Covariates are included for the models
using the BDI-I1I to control for the correlated BDI-11 factors. Effects 1 and 2 are in the order listed in the predictor statement in column
1. Bold font indicates p < 0.05.



A few patterns emerge from these analyses worth noting. As reported in Chapter
2, DTWS relates more robustly to both physical (e.g., STWS and MSWS-12) and
cognitive (e.g., Executive Function and Information Processing) predictors than DTWC.
For DTWC, the most reliable predictor was the main effect of BDI-11 Somatic factor.
This factor includes items like lack of energy, problems with concentration, sleep
problems, tiredness, etc. It emerged as a significant covariate in the models that examined
STWS, executive function, and information processing as primary predictors—despite
these primary predictors themselves not relating significantly to DTWC.

More interestingly and in support of SAT, when modeling information processing
as a primary predictor, the effects of both BDI-11 factors and the interaction between the
Affective factor and information processing were statistically significant predictors of
DTWC within the model specified as such (see Figure 17). These findings are
particularly intriguing considering the mixed evidence regarding depression (which
hitherto has been treated simply as a total scale score in the literature) and its
relationships with DTW measures (Butchard et al., 2018; Hamilton et al., 2009; Motl et
al., 2014; Postigo-Alonso et al., 2018), as well as the lack of established correlates of
DTWC themselves (Leone et al., 2015; Rooney et al., 2020). The findings indicate that
increases in depression (on both factors) predict increases in DTWC. However, the effect
of the Affective factor is moderated qualitatively by information processing ability such
that the effect of the Affective factor on DTWC inverts around 105 on the Information
Processing domain. As such, those with lower information processing abilities experience
greater DTWC at higher levels of negative affect, but those with greater information

processing abilities experience greater DTWC at lower levels of negative affect. Thus,
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those experiencing the greatest DTWC have high negative affect and low information
processing according to this model, but those experiencing the least DTWC are those
who have high negative affect and high information processing. Those around the mean
of negative affect have similar DTWC regardless of information processing ability which
can explain the lack of relationship when the moderator is ignored.

Figure 17

Affective Factor from Beck Depression Inventory-11 Moderates the Effect of Information
Processing on Dual Task Walking Costs

Depression Moderates the Effect of Information Processing on Dual Task Costs
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Note. The BDI-11 = Beck Depression Inventory-11. Dual Task Costs are calculated as the

difference between Single Task and Dual Task Walk Speeds divided by Single Task
Walk Speed and multiplied by 100. Higher values indicate greater “costs” associated with
dual tasking.

Examining the findings regarding DTWS, there are three notable findings beyond
the domination of walking ability (STWS and MSWS-12) and executive function as main

effect predictors of DTWS. The first finding of note is that information processing
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becomes a significant predictor of DTWS when both BDI-11 factors and the interaction
between information processing and BDI-11 Affective factor are included. Controlling for
both depression factors, higher information processing abilities predict faster DTWS in
this model. Connecting with both the DTWC interaction model and the findings in
Chapter 2, this again highlights the importance of considering the intersections—by
modeling covariates, mediators, and moderators—of the multiple symptomatic
presentation that occur in MS. Once the effect of depression, and the interaction
identified in the DTWC maodel, are controlled in this sample, information processing does
become a significant predictor of DTWS despite not being identified as such at a
bivariate level. This is important as depression (Boeschoten et al., 2017; Siegert &
Abernethy, 2005) and information processing (Arnett et al., 1999; Arnett et al., 2001,
Diamond et al., 2008) have both been highlighted as important constructs in MS
symptomatology.

It is also worth note that the MFES and MSWS-12, which were intended as
measures of distinct constructs, both uniquely predicted DTWS when modeled
together—despite there being no interaction. Less limited walking ability (MSWS-12)
and greater balance confidence (MFES) predicted greater DTWS when modeled
simultaneously. Although both were correlated at the bivariate level, rs = -0.60 and -0.49,
ps < 0.001, respectively, it is interesting to note that they accounted for unique variance
in DTWS.

More interestingly and supporting the SAT, the objective measure of baseline
physical ability—STWS—was significantly moderated by FSE measured by the MFES

factor. Unsurprisingly, there is a strong, positive relationship between STWS and DTWS.
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However, that effect is quantitatively moderated by FSE such that the strength of the
relationship is attenuated as FSE decreases (see Figure 18). That is, having higher
balance confidence makes it such that participants are more likely to maintain more
similar walking speed under DT as ST consistent with the SAT and general self-efficacy
theory.

Figure 18

Falls Self-Efficacy Moderates the Relationship between Single and Dual Task Walk

Speeds

Falls Self-Efficacy Moderates Relationship between Single and Dual Task Walk Speeds
]
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Note. FSE = Falls Self-Efficacy measured by the factor score from the Modified Falls
Efficacy Scale; DTS = Dual-Task Speed; STS = Single Task Speed.
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University of Kansas Medical Center Analyses

The second study in Aim 3 uses the data from KUMC. Psychometric evaluations
on the scales were performed. As was the case in the SS study, the MSWS-12 was
available as a subjective evaluation of walking ability. Two measures that are related to
FSE were administered: the FES-1 and the ABC. Importantly, the FES-I asks about
concern regarding falling and the ABC asks about confidence in one’s ability to maintain
balance. Unfortunately, in this case, a measure of depression was not available. As a
surrogate, it was decided in advance to use the SF-36 which was available. Exploratory
factor analysis was performed using IPF. To determine the number of factors measured,
parallel analyses were performed by constructing 100 random samples of size n based on
the n at each visit in this 4-visit longitudinal study and using the Eigenvalue at the 95"
percentile from these analyses as the threshold for a factor being present (Hayton et al.,

2004). This was coupled with visual analysis using scree plots (see Figures 19-22).
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Figure 19

Scree Plots for Factor Extraction for Falls Efficacy Scale-International across Visits

Falls Efficacy Scale-International Factor Extraction across Visits
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Note. EV = Eigenvalue. Parallel analyses performed with 100 samples of size n for each
visit. All item loadings > 0.38 across all visits. A one-factor solution fits the data across
Visits.

Figure 20

Scree Plots for Factor Extraction for Multiple Sclerosis Walk Scale-12 across Visits

Multiple Sclerosis Walking Scale-12 Factor Extraction across Visits
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Note. EV = Eigenvalue. Parallel analyses performed with 100 samples of size n for each
visit. All item loadings > 0.52 across all visits. A one-factor solution fits the data across
Visits.
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Figure 21

Scree Plots for Factor Extraction for Activities-specific Balance Confidence scale across
Visits

Activities-specific Balance Confidence Scale Factor Extraction across Visits
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Note. EV = Eigenvalue. Parallel analyses performed with 100 samples of size n for each
visit. All item loadings > 0.41 for first factor across all visits. A one-factor solution fits
the data across visits, but a two-factor solution was selected for the baseline assessment.

Figure 22
Scree Plots for Factor Extraction for 36-item Short Form Questionnaire across Visits

36-item Short Form Questionnaire Factor Extraction across Visits
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Note. EV = Eigenvalue. Parallel analyses performed with 100 samples of size n for each
visit. A two-factor solution emerged with correlation between the factors using oblique
oblimin rotation of 0.413, 0.231, 0.240, and 0.305 at visits baseline through final follow-
up, respectively.
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The results of the exploratory factor analysis revealed strong, one-factor solutions
for the MSWS-12 and FES-I at all time points. The ABC had two factors at baseline, but
only one factor following. The two factors were: ABC-Hard and ABC-Easy (see Table
16) which were moderately-to-strongly correlated, r = 0.57. The SF-36 had a two-factor
solution at all times. Although the loading patterns were not identical across all visits, the
pattern was generally consistent that factor 1 was an Emotion factor and factor 2 was a
Physical factor (see Table 17). At baseline, the factors were correlated, r = 0.41, and the
Emotion factor was correlated with the Emotional Wellbeing scale from the standardized

scoring for the SF-36, r = 0.86.
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Table 16

Factor Loadings for the Activities-specific Balance Confidence Scale at Baseline

Factor 1 Factor 2
Item Loading Loading

1. Walk around the house 0.353 0.399*
2. Walk up or down stairs 0.669
3. Bend over and pick up a slipper from the front of a 0.438 0.466*

closet floor
4. Reach for a small can off a shelf at eye level 0.559
5. Stand on your tiptoes and reach for something above 0.937

your head
6. Stand on a chair and reach for something 0.866
7. Sweep the floor 0.706
8. Walk outside the house to a car parked in the driveway 0.974
9. Getinoroutof acar 1.021
10. Walk across a parking lot to the mall 0.822
11. Walk up or down a ramp 0.727
12. Walk in a crowded mall where people rapidly walk 0.411 0.491*

past you
13. Bumped into by people as you walk through the mall 0.616* 0.343
14. Step onto or off an escalator while you are holding onto 0.677

arailing
15. Step onto or off an escalator while holding onto parcels 0.818

such that you cannot hold onto the railing
16. Walk outside on icy sidewalks 0.912

Note. Factor loadings are from oblimin oblique rotated iterative principal axis factoring.
Only loadings > 0.30 are shown. *Stronger loading for multivocal item. Factor 1 is

“Hard” tasks. Factor 2 is “Easy” tasks.
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Table 17

Factor Loadings for the Short Form-36 at Baseline

Factor 1 Factor 2
Item Loading Loading

1. Your general health is (higher = poorer) -0.503
2. Getsick a little easier (higher = falser) 0.466
3. Am as healthy as anybody (higher = falser) -0.506
4. Expect health to get worse (higher = falser)
5. Health is excellent (higher = falser) -0.560
6. Compared to a year ago health is... (higher = worse)
7. Vigorous activity limited (higher = less) 0.605
8. Moderate activity limited (higher = less) 0.775
9. Lifting/carrying groceries limited (higher = less) 0.716
10. Climbing flights of stairs limited (higher = less) 0.670
11. Climbing a flight of stairs limited (higher = less) 0.695
12. Bending, kneeling, or stooping limited (higher = less) 0.643
13. Walking more than a mile limited (higher = less) 0.873
14. Walking several blocks limited (higher = less) 0.921
15. Walking one block limited (higher = less) 0.801
16. Bathing and dressing limited (higher = less) 0.495
17. Cut down on time doing work/activities (higher = no) 0.359* 0.339
18. Accomplished less than would like (higher = no) 0.436* 0.308
19. Limited in kind of work or activities (higher = no) 0.442
20. Difficulty performing work or activities (higher =no)  0.402 0.404*
21. Bodily pain (higher = more severe) -0.362 -0.375*
22. Pain interferes with normal work (higher = more) -0.345 -0.417*
23. Cut down on time doing work/activities (emo; higher =

no) 0.704
24. Accomplished less than would like (emo; higher =no)  0.765
25. Did work/activities less carefully (emo; higher = no) 0.678
26. Extent interfered with social activity (phys/emo; higher

= more) -0.571*  -0.349
27. Full of pep (higher = less often) -0.617
28. Been very nervous (higher = less often) 0.632
29. Felt so down nothing could cheer (higher = less often)  0.802
30. Felt calm and peaceful (higher = less often) -0.813
31. Have a lot of energy (higher = less often) -0.670
32. Felt down hearted and blue (higher = less often) 0.724
33. Felt worn out (higher = less often) 0.504
34. Been a happy person (higher = less often) -0.707
35. Felt tired (higher = less often) 0.613
36. How much of the time interfered with social activity

(phys/emo; higher = less often) 0.544* 0.358
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Note. Phys = Physical; Emo = Emotional. Factor loadings are from oblimin oblique
rotated iterative principal axis factoring. Loadings > 0.30 shown. *Stronger loading for
multivocal item.

The sample at baseline has been summarized previously. Table 11 contains the
demographic and clinical information for the sample at baseline. Additionally, given the
use of self-report outcomes here, Figure 23 depicts these outcomes in box plots. These
show that there was some variability in the measures at baseline, but participants were

generally high in FSE and low in walking limitations.

Figure 23

Box Plots for Patient-Reported Outcomes at Baseline

Box Plots for Patient-Reported Outcomes at Baseline
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Note. The scale means are used for descriptive purposes for the Falls Efficacy Scale-
International (1-4), Multiple Sclerosis Walk Scale-12 (1-5), and Activities-specific
Balance Confidence scale (0-100). The Emotional Wellbeing subscale from the Short
Form-36 is used as a summary for emotional state. It includes items 24-26, 28, and 30
from Table 17 rescaled (0 - 100). Higher scores reflect greater concern about falling,
greater limitations in walking ability, greater balance confidence, and greater emotional
wellbeing, respectively.
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Based on a priori hypotheses, executive function (measured by the Stroop
interference task) and information processing (measured by choice reaction time tasks)
were tested for moderation by emotional wellbeing and FSE. Also, T25FWT and STWS
were used as measures of basic physical ability to be tested for moderation by depression
and FSE for its relationship with DTW outcomes. MSWS-12 was used as a measure of
physical ability—albeit subjectively evaluated. Lastly, given the identification of EDSS
step and BBS as physical predictors of DTWS in Chapter 2, they were tested as well per
the process detailed before analyses began. As was true in the SS study, DTWS was the
primary outcome of interest as it is a measure of physical performance in the context of a
complex task, and DTWC was included given its prevalence in the literature (Learmonth
etal., 2017; Leone et al., 2015; Postigo-Alonso et al., 2018; Wajda & Sosnoff, 2015) and
as a performance measure that captures a more cognitive construct. For a summary of the

effects for DTWS and DTWC, see Tables 18 and 19, respectively.
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Table 18

Regression Models Evaluating Falls Self-Efficacy and Depression as Moderators of the

Effects of Physical and Cognition Ability on Dual Task Walking Speed at Baseline

Predictor Effect 1 Effect 2 Interaction
Moderator n B,p B, p B,p
STWS (m/s)
FES-I 119 0.89,<0.001 -0.03,0.790 0.03,0.740
ABC (Hard) 119 0.87,<0.001 0.07,0.406 -0.06, 0.421
SF-36 Emotional 111 0.84,<0.001 0.02,0.789 0.003, 0.967
T25FWT (s)
FES-I 119 -0.11,<0.001 -0.09,0.252 0.01, 0.236
ABC (Hard) 119 -0.11,<0.001 0.05,0.503 -0.01, 0.607
SF-36 Emotional 111 -0.12,<0.001 0.19,0.011 -0.03, 0.031
MSWS-12
FES-I 117 -0.10, 0.012 -0.04,0.423 0.02,0.373
ABC (Hard) 118 -0.07, 0.045 0.07,0.043 -0.02, 0.386
SF-36 Emotional 109 -0.09,<0.001 0.04,0.070 -0.01, 0.662
BBS (0-56)
FES-I 109 0.04,<0.001 0.92,0.002 -0.02, 0.001
ABC (Hard) 112 0.03,<0.001 -0.73,0.071 0.01, 0.047
SF-36 Emotional 101 0.03, 0.001 -0.68, 0.083  0.01, 0.059
EDSS Step (0-10)
FES-I 117 -0.09,<0.001 -0.09,0.217 0.02, 0.465
ABC (Hard) 117 -0.08, 0.003 0.02,0.736 0.02, 0.487
SF-36 Emotional 109 -0.08, 0.001 0.04, 0.466 0.01, 0.728
Stroop Interference (30 s)
FES-I 117 0.01, 0.01 -0.12,0.310 0.002, 0.733
ABC (Hard) 117 0.27,0.020 0.01, 0.013 -0.01,0.114
SF-36 Emotional 109 0.01, 0.016 0.03, 0.804 0.002, 0.729
CRC Time (s)
FES-I 116 -0.69, 0.001 -0.21,0.016  0.30, 0.095
ABC (Hard) 116 -0.49, 0.012 0.07, 0.486 0.04, 0.827
SF-36 Emotional 108 -0.59, 0.002 0.18, 0.056 -0.26, 0.203

Note. STWS = Single Task Walking Speed; FES-I = Fall-Efficacy Scale-International;

ABC = Activities-specific Balance Confidence; SF-36 = Short Form-36; T25FWT =

Timed 25-Foot Walk Test; MSWS-12 = Multiple Sclerosis Walk Scale-12. BBS = Berg
Balance Scale; EDSS = Expanded Disability Status Scale; CRC = Choice Reaction for
Correct responses. Factor scores were used for FES-I, ABC (using the “hard” factor to
increase variability in scores), and the SF-36 Emotional variables, as well as MSWS-12.

Effects 1 is for predictor. Effect 2 is for moderator. Bold font indicates p < 0.05.
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Table 19

Regression Models Evaluating Falls Self-Efficacy and Depression as Moderators of the

Effects of Physical and Cognition Ability on Dual Task Walking Costs at Baseline

Predictors Effect 1 Effect 2 Interaction
Moderator n B,p B, p B,p
STWS (m/s)
FES-I 119 -2.52,0.661 -0.20,0.979  -0.56, 0.932
ABC (Hard) 119 -1.52,0.798 -4.73,0.476  3.85,0.485
SF-36 Emotional 111 2.68,0.638 -2.72,0.683  0.52,0.921
T25FWT (s)
FES-I 119 1.83,0.030 3.15,0.538 -0.86, 0.287
ABC (Hard) 119 1.88,0.049 -1.33,0.784  0.45,0.594
SF-36 Emotional 111 0.47,0.620 -3.32,0.498  0.31,0.739
MSWS-12
FES-I 117 -0.52, 0.804 1.63, 0.498 -1.89, 0.190
ABC (Hard) 118 -0.54,0.772 -1.69, 0.353  2.44,0.103
SF-36 Emotional 109 -1.27,0.366 -2.50,0.062  1.13,0.387
BBS (0-56)
FES-I 109 -0.744,0.086 -29.61,0.066 0.54,0.073
ABC (Hard) 112 -0.433,0.384  16.66, 0.457 -0.30, 0.464
SF-36 Emotional 101 -0.2,0.662 13.77,0.519 -0.29, 0.461
EDSS Step (0-10)
FES-I 117 1.26,0.319 5.25,0.167 -2.46, 0.059
ABC (Hard) 117 1.36,0.328 -2.29,0.503 1.16, 0.382
SF-36 Emotional 109 -0.74, 0.550 -3.09,0.316  0.53,0.700
Stroop Interference (30 s)
FES-I 117 -0.59, 0.029 -4.81,0.422  0.16, 0.537
ABC (Hard) 117 -0.59, 0.025 -0.36,0.954  0.03,0.918
SF-36 Emotional 109 -0.27,0.320 -0.17,0.978 -0.06, 0.796
CRC Time (s)
FES-I 116 12.70,0.251 2.06, 0.661 -6.61, 0.485
ABC (Hard) 116  6.29, 0.546 3.09, 0.559 -6.28, 0.563
SF-36 Emotional 108 7.52,0.452 -2.42,0.631 2.13,0.843

Note. STWS = Single Task Walking Speed; FES-I = Fall-Efficacy Scale-International;
ABC = Activities-specific Balance Confidence; SF-36 = Short Form-36; T25FWT =
Timed 25-Foot Walk Test; MSWS-12 = Multiple Sclerosis Walk Scale-12. BBS = Berg
Balance Scale; EDSS = Expanded Disability Status Scale; CRC = Choice Reaction for
Correct responses. Factor scores were used for FES-I, ABC (using the “hard” factor to
increase variability in scores), and the SF-36 Emotional variables, as well as MSWS-12.

Effects 1 is for predictor. Effect 2 is for moderator. Bold font indicates p < 0.05.
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These results provide some interesting corroboration and conceptual replication of
the SS findings. As reported in Chapter 2 and the first study in Chapter 3, DTWS relates
more robustly to both physical and cognitive predictors than DTWC. In fact, all the
physical and cognitive predictors were significant in all the models when controlling for
FSE or emotional wellbeing. For DTWC, the only significant effects at baseline were the
T25FWT and executive function measured by Stroop interference controlling for FSE.
Emotional wellbeing did not emerge as a significant predictor of DTWC in the KUMC
study as depression did in the SS study; however, these are conceptually distinct
constructs.

There were several models in which FSE or emotional wellbeing were significant
predictors of DTWS. These included ABC-Hard controlling for MSWS-12, FES-I
controlling for BBS, ABC-Hard controlling for Stroop interference (a measure of
executive function), FES-I controlling for choice reaction time for correct answers
response time (a measure of information processing), and emotional wellbeing
controlling for T25FWT. It is worth noting that the SS study also found that FSE
(measured by the MFES) was a significant predictor of DTWS controlling for MSWS-12
and that it contributed to the model with STWS as a predictor as a significant moderator.
Both these analyses concur that including a basic measure of physical performance and a
measure of self-appraised ability (e.g., FSE) is likely to improve prediction of DTWS.
They also hint that including both forms of predictors may improve prediction of DTWC.
In the SS findings, MFES was a significant predictor of DTWC controlling for MSWS-
12, and in the KUMC findings, the T25FWT was only a significant predictor when

controlling for FSE in the form of the ABC-Hard or FES-I. Although these differ in terms
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of whether the subjective appraisal or basic physical measure emerges as significant, they
both indicate that the covariation of these two types of measure may be worthwhile to
consider when attempting to model DTW outcomes. It is possible that the differences in
functional ability between the two samples may explain this slight disparity (see Table 12
for direct comparisons of STWS and DTWS and see Tables 9 and 11 for clinical and
demographic summaries for comparison).

Finally, conceptually corroborating the SS findings in support of SAT, self-
appraisals were significant moderators in several predictive models for DTWS. First, not
only were T25FWT and Emotion both significant as main effect terms, but the interaction
between them was also statistically significant. Faster T25FWT time predicted faster
DTWS (relationship sign is negative given T25FWT is measured in s and DTWS is in
m/s), and more positive Emotion predicted faster DTWS; however, a qualitative
interaction emerged around the time of 6 s on the T25FWT, such that less positive
Emotion predicted faster DTWS than more positive Emotion (see Figure 24). However, it
is worth noting that most observations occurred in the span of the interaction being
quantitative—that is, that the relationship between positive Emotion and DTWS was
attenuated as T25FWT times increased (i.e., for those who were less physically able).
This may indicate that being characterized by things like “being full of pep” and “having
a lot of energy” and not “feeling down” or being “blue” have the potential to invigorate
one to an extent that allows them to maintain high levels of performance under more
complex conditions (e.g., DT), given they have generally high levels of basic physical

ability. However, the potential for this to occur wanes as basic physical ability decreases
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because there may not be the same capacity for maintaining performance under complex
tasks for such persons.
Figure 24

Emotional State Moderates the Effect of Timed 25-Foot Walk Test on Dual-Task Walking
Speed

Short Form-36 Emotional Factor and Timed 25 Foot Walk Test on Dual Task Speed
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Note. Thick black line indicates lower limit for Dual Task Walking Speed. As
observation marks indicate, no actual observations were made below this threshold, but
the predict model was created to extend to capture observations across Timed 25-Foot
Walk times which takes the model predictions into unobserved and unobservable
territory.

However, it is worth noting that this effect did not quite persist when modeled as
a between-persons effect (interaction of person means) in MLMs with random intercepts
and slopes across visits despite the patterns of effects remaining. The between-persons
effect of T25FWT remained, B = -0.12, p < 0.001, but the between-persons effect of

Emotion, B =.16, p = 0.058, and the interaction, B = -0.03, p = 0.086, were not quite
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statistically significant. This may be a result of the fact that those who dropped out of the
study were both less physically able in terms of T25FWT times, OR = 4.00, p < 0.001
(see Figure 25) and had less positive Emotion, OR =0.72, p = 0.122, albeit not
significantly for the latter. DTWS was also a significant predictor of attrition from the
study, OR =0.06, p = 0.001. As such, the weighting of the effect becomes more affected
by those who are more able when modeled longitudinally which may explain the
difference.

Figure 25

Timed 25-Foot Walk Test Performance across Visits
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Note. Markers are weighted by sample size. Standard error of the mean represented by
error bars.
Inversely, although the effect of information processing (choice reaction time [s]
for correct responses) was not quite significantly moderated by FES-1 scores in the

baseline only model despite both main effects being significant, the effect was significant

when modeled as a between-persons difference in a longitudinal model using MLM (see
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Figure 26). The main effect of choice reaction time was such that slower average
response rates for correct responses predicted slower DTWS, B =-1.01, p < 0.001. The
main effect of FSE (measured by FES-I) was such that greater concern about falling
predicted slower DTWS, B = -0.28, p = 0.001. The interaction was qualitative with the
effect of high concern about falling predicting slower speed when information processing
was rapid but greater DTWS when information processing was slow, B = 0.47, p = 0.008.
This suggests that the more quickly the information can be processed the more slowing
occurs as a result of low FSE which suggests a processing of risk is occurring and that the
faster that can occur the more likely it is to affect DTWS. This further corroborates how
self-appraisals, cognition, and physical performance on complex tasks like DTW intersect
in a manner that is consistent with SAT.

Figure 26

Falls Self-Efficacy Moderates the Effect of Choice Reaction Time for Correct Responses
on Dual Task Speed as a Between-Persons Effect in Longitudinal Model

Falls Efficacy Moderates the Effect of Choice Reaction Time on Dual Task Speed across Visits
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Further, both FES-1 and ABC-Hard were found to significantly moderate the
effect of objective balance (measured by the BBS) on DTWS. So, although the
interaction in the SS study of STWS and FSE did not directly replicate, the hypothesis
that self-appraisals of physical abilities moderate the effect of objective ability on
physical performance in a complex, DT task did replicate. Controlling for FES-I, better
balance on the BBS predicted faster DTWS. Controlling for BBS, greater concern about
falling predicted faster DTWS. However, the interaction was such that around BBS = 49
a qualitative shift occurred (see Figure 27). For those with BBS scores above this point,
higher concern about falling predicted slower DTWS, but for those with balance worse
than this, higher concern about falling predicted faster DTWS. It is also interesting to
note, especially given past research regarding the lack of relationship between the BBS
and DTW outcomes (Rooney et al., 2020), that at the mean FES-I factor score there was
no relationship between BBS and DTWS. That is, if one has average levels of concern
about falling their objective balance is not predictive of their DTWS. Objective balance
measured by the BBS only emerges as related to DTWS when you move away from the
mean of concern about falling. It is worth noting that although BBS scores ranged from
25 to 56, the mean was 53.4 and the median was 55 at baseline. The 10" percentile was a
BBS of 48. As such, most participants were in the realm of the interaction being
quantitative in nature; that is, as concern about falling increased, the relationship between

objective balance and DTWS waned.
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Figure 27

Falls Self-Efficacy Moderates the Relationship between Objective Balance and Dual Task

Speed

Falls Self-Efficacy Moderates Relationship between Objective Balance of Dual Task Speed
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This effect was replicated as a between-persons effect modeled longitudinally
using MLM. The effects were in the same directions. Controlling for FES-I factor scores,
higher BBS predicted faster DTWS, B = 0.04, p < 0.001. Controlling for BBS scores,
concern about falling predicted faster DTWS, B = 0.95, p = 0.001. The interaction was

identical in form and statistically significant, B =-0.19, p < 0.001 (see Figure 28).
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Figure 28

Falls Self-Efficacy Moderates the Relationship between Objective Balance and Dual Task
Speed as a Between-Persons Effect in Longitudinal Model

Falls Efficacy Moderates the Effect of Objective Balance on Dual Task Speed across Visits
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These same patterns were found when the ABC-Hard was included as the
moderator. Interestingly, the main effect of ABC-Hard was not quite significant—unlike
the main effect of FES-1—which suggests that “concern” or “fear” of falling may be
slightly yet importantly nuanced constructs compared to “confidence” in one’s balance
and that “concern” may be capturing something unique and important in this interactive
dynamic. Controlling for ABC-Hard, higher BBS predicted faster DTWS. Controlling for
BBS, higher ABC-Hard scores (greater confidence) predicted slower DTWS albeit not
quite significantly as a main effect. However, the interaction was significant (see Figure

29). Again, around a BBS score of 49, a qualitative interaction occurs. Higher confidence
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predicted faster DTWS for those above BBS = 49, but it predicted slower DTWS for

those below BBS = 49. Again, however, most participants had BBS above this inflection
point, so the quantitative interaction characterizes that pattern observed in most the data.
That is, the effect of objective balance on DTWS wanes as balance confidence decreases.

These findings are entirely consistent with SAT.

Figure 29

Falls Self-Efficacy Moderates the Effect of Objective Balance on Dual Task Speed

Falls Self-Efficacy Moderates the Effect of Objective Balance on Dual Task Speed
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This effect also replicated as a between-persons effect in a longitudinal MLM. In
fact, in this model, the “not quite significant” main effect of ABC-Hard is statistically

significant controlling for BBS, B = -0.81, p = 0.001. The main effect of BBS controlling
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for ABC-Hard remains significant, B = 0.04, p < 0.001. The interaction is also significant
and takes the same form, B = 0.02, p = 0.001 (see Figure 30).

Figure 30

Falls Self-Efficacy Moderates the Relationship between Objective Balance and Dual Task
Speed as a Between-Persons Effect in Longitudinal Model

Falls Efficacy Moderates the Effect of Objective Balance on Dual Task Speed across Visits
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Consistent with findings reported thus far, there was very little found that
predicted DTWC—unlike DTWS. The two predictors that emerged as significant main
effects were already noted—T25FWT controlling for FSE and Stroop inteference
controlling for FSE (in both cases using either operationalization). There were three
models with FSE that had patterns that warranted further exploration using all available

data in longitudinal models. These were the interactions of self-reported walking ability
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(MSWS-12) by FSE (ABC-Hard), objective balance (BBS) by FSE (FES-I), and
neurologist-rated disability (EDSS Step) by FSE (FES-I).

The model including BBS and FES-I had effects that remained only on the cusp
of statistical significance. The main effects of BBS, B =-0.76, p = 0.074, FES-1, B = -
30.22, p = 0.056, and the interaction, B = 0.54, p = 0.064 were not quite statistically
significant. However, the patterns are in the expected directions based on the DTWS
model. Both the interaction of ABC-Hard and MSWS-12 and EDSS Step and FES-I were
statistically significant modeled as between-persons effects in MLM. For walking ability
and balance confidence, neither main effect was significant in the presence of the other
and the interaction, MSWS-12: B = -0.09, p = 0.960; ABC-Hard: B =-2.58, p = 0.137.
However, the interaction was significant, B = 2.72, p = 0.023 (see Figure 31). The
interaction was such that greater balance confidence predicted greater DTWC for those
with higher self-reported walking limitations; however, greater balance confidence
predicted lesser DTWC for those with lower self-reported walking limitations. Not only
does this suggest that self-reported walking limitations and measures of FSE are
capturing distinct constructs in the context of DTW outcomes—as also evidenced in the
SS analyses—but it suggests that those with lower subjective walking limitations
experience the greatest DTWC as a function of having low balance confidence (FSE).
Again, this highlights the importance of understanding one’s subjective appraisal to
identifying the type of sacrifices they make or priorities they have during complex DTW
tasks. For those at the mean ABC-Hard, subjective walking-ability was not related to

DTWC; the relationship only emerges as a person’s score moves away from the mean.
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Figure 31

Falls Efficacy Moderates the Effect of Subjective Walking Ability on Dual Task Costs

Falls Efficacy Moderates the Effect of Walking Ability on Dual Task Costs
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from the two-factor solution found at baseline.

Lastly, FSE measured by the FES-I as “concern” about falling acted as a
moderator of disability (time invariant) as a between-persons effect in the MLM. Neither
the main effect of EDSS step, B = 1.48, p = 0.207, nor the main effect of FES-I, B = 5.20,
p = 0.136, was significant in the presence of the other factors. However, the interaction

was, B =-2.59, p = 0.035 (see Figure 32).
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Figure 32

Falls Efficacy Moderates the Effect of Disability on Dual Task Walking Costs

Falls Efficacy Moderates the Effect of Disability on Dual Task Costs
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The interaction is such that for those with higher levels of “concern” about falling,
greater DTWC are predicted for those with lesser disability, but higher “concern” about
falling predicts lesser DTWC for those with greater disability. Of note, the inflection
point is at the median level of disability (EDSS Step = 2) in this sample. So, for those
above median disability, higher costs occurred as a result of lesser “concern” about
falling; however, for those below the median disability, higher costs occur as a result of
greater “concern” about falling. This sort of moderated effect may also help to understand
the lack of relationship often reported between the EDSS and DTWC (Rooney et al.,

2020).
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Discussion

The findings from these analyses rather robustly support the SAT of DTW
(Yogev-Seligmann et al., 2012). Specifically, the interactions observed are consistent
with the a priori hypotheses based in SAT that individual appraisals of abilities and risks
within a given context are important for understanding outcomes in complex contexts like
DTW. These findings are supported in the literature given the great deal of evidence that
subjective appraisals and emotional states act as important moderators of the relationship
between basic abilities (e.g., objective measures of balance, disability, and cognition and
self-reported walking ability) and performance under more complex, DT conditions.

In the SS analyses, those who are experiencing affective symptoms of depression
experienced lesser DTWC if they had high information processing ability. Presented with
a cognitive challenge—like DTW—it is not surprising that those with the highest levels
of information processing ability would work hard to demonstrate their competence at the
task and preserve what is likely an important part of their self-concept, but feelings of
“worthlessness” and “self-criticalness” captured in the Affective construct of the BDI-11
may spur them on to prove their abilities even more. As some research has indicated,
depression may not directly impair one’s cognitive abilities (Julian et al., 2007) despite
predicting one’s subjective evaluations about cognitive abilities (Potvin et al., 2016;
Serra-Blasco et al., 2019). The incongruence between actual ability and subjective
appraisal of ability may lead to greater motivation for ego protection under challenging
circumstances.

It is important to note that in our study, using conventional cutoffs for the BDI-II,

31, 10, 14, and 4 participants had “minimal,” “mild,” “moderate,” and “severe” levels of
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depression, respectively. Further, both the main effects of the BDI-11 factors were
significant and positive—indicating that controlling for information processing and each
other, both Affective and Somatic-Vegetative factors of the BDI-II predicted greater
DTWC. The interaction only existed for the Affective component controlling for the
Somatic-Vegetative. The notion that any level of depressive symptoms would inherently
result in “less effort” may not be reasonable—especially in the context of a two-factor
solution with the latter being the Somatic-Vegetative factor that would capture the
minimization of effort while the Affective factor captures negativity about self (Wang &
Gorenstein, 2013b). For example, two meta-analyses—one examining longitudinal
relationships between perfectionism and depression controlling for neuroticism (Smith et
al., 2016) and one examining perfectionism as a predictor of various forms of
psychopathology—noted that perfectionism is positively related to depression. The
studies reported in their meta-analysis showed that perfectionism and depressiveness are,
in fact, positively correlated above-and-beyond the relationship between depression and
neuroticism (Limburg et al., 2016). Similarly, recent research has shown that narcissism
(Twenge et al., 2014), perfectionism (Curran & Hill, 2017), and depression (Twenge,
2014; Twenge, 2015; Twenge et al., 2018) are all concurrently increasing in U.S. society.
Thus, it is clearly unreasonable to assume that higher levels of Affective symptoms of
depression would not result in greater effort to demonstrate one’s ability and protect
one’s ego. Those not experiencing such high levels of negative affect may be less
compelled to work to demonstrate their abilities. However, for those with lower levels of

information processing ability, negative affect predicts worst performance, which may
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reflect a basic cognitive inability to overcome the task complexity to maintain high
performance during the DTW paradigm.

Similarly, the notion that FSE moderates the relationship between STWS and
DTWS is entirely consistent with SAT (Yogev-Seligmann et al., 2012) and with previous
studies that began to consider how FSE may factor into DTW research in MS (Wajda et
al., 2016; Wajda et al., 2020). Yet, no research has examined FSE as a moderator of the
dynamics between basic abilities and DTW outcomes—which is precisely what SAT
would predict should occur. In the SS study, for those who have high efficacy for
balance, the added challenge is perceived as less threatening—even “less difficult”. As
such, performance decrements do not occur in the same way that they do for those with
low levels of FSE. Although DTWS was predicted to be slowed for lower STWS for all,
the extent of slowing was predicted by FSE as SAT would predict.

The findings from the SS study were greatly, at least in conceptual form,
replicated in the KUMC analyses which indicated the presence of moderating effects of
Emotion (an emotional wellbeing factor from the SF-36) and FSE (measured by both the
ABC-Hard and FES-I factors). These effects were also reliably in forms that SAT would
predict demonstrated that individuals with equal basic abilities are predicted to have
different outcomes under complex DTW conditions as a function of their differing levels
of self-appraisal. The fact that multiple analyses demonstrated that at mean levels of FSE
no or minimal relationships are observed between predictors like disability (EDSS Step)
and objective balance (BBS) is consistent with the mixed or null findings commonly
reported between these measures and DTW outcomes (Leone et al., 2015; Postigo-

Alonso et al., 2018; Rooney et al., 2020). Perhaps ironically, mixed and null findings are
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precisely what would be expected when a moderated relationship exists but is neglected.
Of course, it is also noteworthy that the use of DTWS and DTWC—not surprisingly—is
critical. Basic metrics of physical ability, like the BBS score and MSWS-12 were
moderated by measures of FSE when predicting DTWS with the most robust effect being
the interactions between the measures of FSE and objective balance which is also,
arguably, the most consistent and truest model in terms of aligning objective ability and
subjective appraisal of that ability.

Consistent with Chapter 2, it seems that DTWS is a much more reliable
contributor to the nexus of symptoms and factors in MS, and it has the potential to
capture important aspects related to both walking and increased challenges resultant from
cognitive demand. There were a couple effects that were intriguing for DTWC when
modeling as between-persons factors in MLMs, including FES-1 moderating the effect of
disability (EDSS Step) and ABC-Hard moderating the effect of self-reported walking
limitations (MSWS-12) on DTWC. As noted, DTWC, as it removes the physical
performance metric via standardization by STWS, becomes an outcome that is best
conceptualized as cognitive. It is the percent change caused by concurrent cognitive task
performance—it measures a “cognitive effect” or an “effect of concurrent cognition”
without any actual reference in physical performance. This means that DTWS (as a
measure of physical performance under DT) and DTWC need not be related. In fact,
because the nature of the calculation, walking speeds are reliably unrelated to DTWC in
these studies.

Unfortunately, we did not have a direct measure of cognitive performance during

DT. We also did not have a self-appraisal of cognitive ability (e.g., a cognitive self-
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efficacy measure). It would be very informative to take a similar approach in examining
how performance on the cognitive task under DT fits into the nexus of symptoms in MS
and whether efficacy for cognition may act as a moderator. It may be that “costs” are not
as useful as the regular reliance on them suggests. Even in the classic study (Lundin-
Olsson et al., 1997), which established the importance of DTW in the context of fall risk
and brought it into purview of mobility researchers in geriatric and neurological
populations, simply looked at changes in performance. They even did it in a very coarse
way by asking whether people stopped walking to hold a conversation. It may be that
adding more refined measures of gait (speed and stride-to-stride variability have been
found to be reliably affected by DT; Mirelman et al., 2018) will add even greater insight
into the role DTW plays in predicting adverse outcomes—and what predicts the
manifestation of DTW problems—in these populations. Yet, it may be that “costs”
calculations add less to this understanding. However, it may also be that DTWC as a
more “cognitive” outcome would be understood better by considering whether efficacy
for cognition plays a moderating role in predicting DTWC that has been masked by
glossing over such a factor in the extant literature. It also may be that carefully measuring
performance in walking and performance in cognition and retaining the original units of
measure (e.g., speed in the case of DTWS) is simply more useful for understanding how
DT abilities factor into and are predicted by the experiences and symptoms of those with
MS. For example, it is well-established that walking speed is a very important factor in
MS (Albrecht et al., 2001; Briggs et al., 2019; D’Orio et al., 2012; Kalron, 2014; Kalron
& Achrion, 2014; Langeskov-Christensen et al., 2017), so it is awkward that walking

speed would be intentionally removed in much of the DTW research. There is reason
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neither to presume that DTWS cannot tell us more than STWS alone nor to neglect
DTWS as a primary outcome in such studies. In fact, in studies where “condition” (ST or
DT) is used as a within-subjects factor, the speed metric is retained which may explain
some of the discrepant findings in the literature.

Admittedly, although a limited number of constructs are included (i.e., physical
ability, cognitive ability, FSE, and depressive symptoms), there are multiple
measurements of these constructs. As such, there are many tests performed. Although the
decision was made to report all results using a = 0.05 per comparison, the findings should
be considered given the multiple comparisons. However, the unique opportunity to
evaluate models in two, independent, relatively large samples and findings corroboration
of basic conceptual models across them provides additional confidence in the support
provided for SAT by these analyses.

These findings greatly indicate that it is important to understand how the myriad
symptoms and constructs that are relevant in MS interact to understand how and for
whom certain outcomes manifest in more challenging DTW conditions. This
understanding may help to design interventions that are tailored to meet the needs of
given individuals to maximize their function—including under complex conditions—at a
level commensurate to their basic, physical abilities. For some, it seems that improving
their FSE would be the most effective route to improve daily function. For others, it
seems that working directly on their balance or gait would be most useful. As SAT
purports, we must understand an individual’s appraisals of their abilities and risks to
understand what they prioritize in complex walking situations (Yogev-Seligmann et al.,

2012). The potential to amplify the effects of interventions that seek to improve DTW as
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a basic, everyday ability by tailoring them based on understanding both patients’ basic
levels of cognitive and physical ability and psychological states like FSE, Affective

symptoms of depression, and emotional wellbeing.
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CHAPTER 4

Understanding factors that predict DTW may be useful for identifying targets to
improve this ability or identifying individuals who may be at-risk for complications when
performing this everyday task. The ability to DTW may be an important functional
process in its own right in MS. However, the importance of understanding the dynamics
that may give rise to DTW would be bolstered more by determining whether DTW ability
predicts other outcomes of importance to those affected by MS.

It takes only a bit of mental consideration to identify all the daily functional and
social activities that require DT—from holding a conversation while walking with a
friend, to texting as we navigate through our environments, to recalling our grocery list
while strolling through the grocery store, to trying to remember where we parked as we
walk through the lot, on and on the list of DTW goes. Thus, it is reasonable to assume
that DTW ability would matter to the function and QoL of those affected by MS,
particularly if the deficits are perceptible—whether as the result of their novelty (e.g.,
early in the disease course) or severity (e.g., later in the disease course). Yet, there is a
notable paucity of research that explores how DTW predicts—or even relates to—
important PROs in those with MS (Leone et al., 2015; Rooney et al., 2020).

In their 2015 review, Leone and colleagues noted that there is a clear neglect of
the “invisible symptoms” (p. 128) of MS in the context of DT research. Rooney et al.
(2020) found only nine DTW studies (and four DT balance [DTB] studies) that examined
correlations with other variables of importance in MS. No studies examining QoL were
identified in their review. One study that was identified was completed by Castelli and

colleagues (2016). They reported that DTWC were related to elements of the MSQoL-54,
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specifically role limitations related to physical problems and social function, in people
with MS who had low levels of disability (EDSS < 3). Although there are numerous
studies evaluating DT in MS, most of them focus on simply characterizing DTW in MS
and comparing the performance of those with MS to healthy controls. Although there is
strong evidence for DTWC in MS—albeit the evidence is less strong with respect to
whether these costs differ from those of healthy controls in magnitude—there is limited
examination of the relationships between DTW and other important constructs in people
with MS.

Beyond the possible relevance to patients’ appraisals of their function and QoL,
the importance of DTW in MS is further bolstered by the possibility that it is related to
fall risk and falls. In fact, the seminal study by Lundin-Olsson and colleagues (1997) is
considered the first to identify the inability to engage in DTW ability (not DTWC) as a
predictor for falls. This study was a small report based on observations in a long-term
care facility in Sweden. It found that 12 of 58 residents would stop walking when talking,
and 10 of these 12 “stops walking when talking” residents fell in the next 6 months.
Lundin-Olsson et al. (1997) also reported that these individuals were assessed to have
less safe gait in general and needed more assistance with activities of daily living. Thus,
the idea that function and falls are consequents of an inability to perform DTW is at the
foundation of this line of research. In fact, Lundin-Olsson and colleagues (1997) found
that this simple identification of individuals who stop walking to talk classified fallers
with 95% specificity albeit with only 48% sensitivity and had a positive predictive rate of
83%. Comparatively, Bogle Thorbahn and Newton (1996) found that the BBS only had

96% specificity and 53% sensitivity, but it has a much greater burden of administration
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than merely observing this everyday activity of “walking and talking.” Thus, this
demonstrated that a simple, everyday ability to walk and talk may be a useful
characteristic to evaluate when considering whether someone is at risk for falling among
older adults.

In MS, Quinn et al. (2019) found that individuals with MS who provided self-
reported indication of difficulty doing two things at once were twice as likely to
experience two or more falls during a 3-month prospective study. Finding that such a
simple question about an important everyday process was significantly related to
prospective fall risk in MS is insightful, as there is a clear need to have measures that
adequately predict fall risk and rates in MS. Studies exploring these issues have revealed
continued limited ability of available measures to adequately classify fallers and non-
fallers (Cattaneo et al., 2006; Nilsagard et al., 2009; Hoang et al., 2016). A recent meta-
analysis (Quinn et al., 2018) of predictors of fall risk in MS found that there is limited
work in the area permitting a full understanding of the best predictors of fall risk, but the
ABC and FES-I—two highly related, self-report measures of FSE (or “balance
confidence”)—were two of three (the third being the BBS) measures that were found to
be useful. However, it was noted that there is not sufficient evidence from prospective
studies to adequately identify measures of fall risk in MS.

Work has hinted that DTW outcomes may predict fall risk in MS, but the
evidence is mixed. One study (Wajda et al., 2013) found that DTWC correlated with the
Physiological Profile Approach, and objective assessment of various domains that are
putatively important for maintaining balance and which performs decently in predicting

falls in MS (Gunn et al., 2013; Hoang et al., 2016). However, STWS and DTWS alone
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did not. However, Rooney et al. (2020) noted that only one of the two studies they
identified that assessed DTWC and Physiological Profile Approach correlations found
such a relationship.

The limited evidence regarding DTWC and fall risk in MS is conflicted. One
study examining DTWC did not find DTWC to predict future falls (Gunn et al., 2013).
Yet, another study (Etemadi, 2017) found that both DTWC and DTCC predicted risk of
being a recurrent faller in a 6-month prospective study in 60 people with MS. Quinn et al.
(2019) evaluated the ability of TUG and TUG-C performance to discriminate both fallers
(> 1 fall) and multiple fallers (> 2 falls) from non-fallers in a 3-month prospective study
of 101 people with MS. The TUG-C, which uses a DTW paradigm, has been reported to
have 87% sensitivity and specificity among older adults (Shumway-Cook et al., 2000).
They found that both assessments performed mediocrely at best (.71 < sensitivity < .82
and .26 < specificity <.34) using > 9s for TUG and >11s for TUG-C, and the TUG-C was
no better than the TUG alone. Nilsagard et al. (2009) also found that TUG-C time (not
DTWC) was a significant predictor of being a faller albeit it did not perform as well as
some of the other measures such as the BBS.

It is notable that studies use different timeframes and classification practices (e.g.,
some use > 1 fall during a given period and some use > 2 falls during a given [and often
variable—e.g., 3 months or 6 months] period). They can also vary in the types of task
used (in terms of either the walking task [e.g., variable distance, turn inclusion or not,
etc.] or cognitive task) and in the operational definition of the DT variable (e.g., DTWC
or DTW gait characteristics or time alone). Further, they vary in their model construction

approaches. Etemadi (2017) focused on DTC predictors of fall risk whereas Gunn et al.
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(2013) and Nilsagard et al. (2009) focused on a broader array of predictors of fall risk
including a single measure of DTW (with only one using DTWC). Lastly, Nilsagard et al.
(2009) and Quinn et al. (2019) both used only the time to complete TUG-C, not DTWC
specifically, and only Quinn et al. (2019) examined TUG-C performance as a singular
test for classifying fallers (not just a predictor in a classification model). A final
important note in the context of fall risk and DTW is that recent evidence suggests that
DT training may outperform standard physical therapy (balance and gait exercises) based
on some small, randomized trials (Elwishy et al., 2020; Molhemi et al., 2017; Sosnoff et
al., 2017), including reducing risk of future falls over a 3-month follow-up period
(Molhemi et al., 2017).

Of note, none of these studies consider the interaction of DTWC and DTWS in
predicting falls. Including both DTWS and DTWC in a single model with an interaction
term allows for a fuller picture of participants’ performance under DT. The reason is that
DTWS alone provides information about walking performance under DT and DTWC
provides information about relative effect of cognitive load on walking performance. As
noted previously, two people with very different walking abilities (or performance) can
have identical DTWC because the costs are not a measure of walking ability but of the
change that occurs under cognitive load. It is entirely reasonable to posit that DTWC
have different consequences for individuals who have different levels of walking ability
under DT. That is, for someone who is a capable walker with a fast pace, it is possible
that relative changes in speed under cognitive load matter differently than for someone
who is a less capable walker. The need for relative slowing of gait speed under cognitive

demand may very well depend on one’s basic walking ability under DT. As such,
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modeling the interaction of DTWS and DTWC allows for a more complete picture of
DTW measures as a predictor of falls rates.

Clearly, more needs to be understood regarding the relationship between DTWC
and fall risk and rates among those with MS (Leone et al., 2015; Wajda & Sosnoff,
2015). The analyses performed to address Aim 4 explores how DTW outcomes relate to
QoL. The analyses for Aim 5 assesses whether DTW outcomes—including the
interaction of DTWC and DTWS—predict falls in people with MS using cross-sectional
and longitudinal analyses.

Aim 4: Dual-Talk Walking as a Predictor of Quality of Life
South Shore Neurologic Associates, PC Analyses

In the SS data, the analysis examining how DTW outcomes relate to QoL in MS
was completed using the MSIS-29—a measure of disease impact used as a proxy for
QoL. The MSIS-29 contains 29 questions answered using 5-point scales to measure how
impacted (1 = Not at all; 5 = Extremely) individuals feel they have been by their MS on a
variety of physical and mental health issues of importance in MS over the past 2 weeks
(Hobart et al., 2001). First, the scale, and other scales intended as covariates in models,
were assessed psychometrically (see Chapter 3 for details and Figure 15 for scree plots).
The MSIS-29 was found to have one factor using Eigenvalue cutoffs based on 100

sample parallel analysis. See Table 20 for the item loadings for the one-factor solution.
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Table 20

Multiple Sclerosis Impact Scale-29 Item Loadings for One-Factor Solution

Item Loading
In past 2 weeks, how much has MS limited your abilities ...
1. Do physically demanding tasks 0.617
2. Grip things tightly 0.679
3. Carry things 0.761
In past 2 weeks, how much have you been bothered by...
4. Problems with your balance 0.751
5. Difficulties moving about indoors 0.715
6. Being clumsy 0.743
7. Stiffness 0.614
8. Heavy arms and/or legs 0.696
9. Tremor of your arms or legs 0.467
10. Spasms in your limbs 0.624
11. Your body not doing what you want it to do 0.810
12. Having to depend on others to do things for you 0.691
13. Limitations in your social and leisure activities at home 0.804
14. Being stuck at home more than you would like to be 0.770
15. Difficulties using your hands in everyday tasks 0.597
16. Having to cut down amount of time you spent on work or other

daily activities 0.754
17. Problems using transport 0.470
18. Taking longer to do things 0.805
19. Difficulty doing things spontaneously 0.693
20. Needing to do to the toilet urgently 0.548
21. Feeling unwell 0.730
22. Problems sleeping 0.686
23. Feeling mentally fatigued 0.708
24. Worries related to your MS 0.614
25. Feeling anxious or tense 0.534
26. Feeling irritable, impatient, or short tempered 0.545
27. Problems concentrating 0.626
28. Lack of confidence 0.712
29. Feeling depressed 0.475

The factor scores for the MSIS-29 were used as the measure of QoL. Examining
bivariate correlations, it was found that DTWS, r = -0.53, p < 0.001, but not DTWC, r =

0.08, p = 0.555, was significantly related to QoL. As a reference, the correlation between

146



STWS and QoL was also significant, r = -0.50, p < 0.001. Testing DTWS and STWS
simultaneously in a regression model to test whether their relationships with QoL differ
revealed no significant difference between the coefficients, F(1, 51) = 0.55, p = 0.462,
with the total variance explained in QoL being 28%.

The correlations between the MSWS-12, r = 0.75, and MFES, r = -0.73, and QoL
were very large. The correlation with the Affective aspect of depression was smaller, r =
0.26, but the Somatic-Vegetative factor of the BDI-II had a strong correlation with QoL, r
= 0.55. See Figure 33 for bivariate correlations between other PROs and walk outcomes
with QoL.

Figure 33

Bivariate Correlations of Walk and Patient Reported Outcomes with Multiple Sclerosis
Impact Scale-29

Bivariate Correlations with Multiple Sclerosis Impact Scale-29

Correlation

Measure

Note. DTS = Dual Task Speed; STS = Single Task Speed; DTC = Dual Task Costs; BDI-
Il = Beck Depression Inventory-11; MFES = Modified Falls Efficacy Scale; MSWS-12 =
Multiple Sclerosis Walk Scale-12. Factor scores used for all patient-reported outcomes.
£p <0.001.
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Of the cognitive domains measured, only Attention was significantly related with
QoL, r =-0.31, p = 0.023. See Figure 34 for all correlations between cognitive measures
and QoL.
Figure 34

Bivariate Correlations of Cognitive Measures with Multiple Sclerosis Impact Scale-29
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Note. All cognitive domains are measures from Neurotrax™ cognitive battery. *p < 0.05.

To determine whether DTW measures, particularly DTWS, predicted QoL
beyond other self-report measures, factor score regressions were performed (Devlieger &
Rosseel, 2017; Devlieger et al., 2019). The MFES, MSWS-12, BDI-Il Somatic-
Vegetative factor, and EDSS step were included as covariates. The EDSS step and DTW
measure (DTWC in one model and DTWS in the other) were observed variables, and all
others were latent variables that were estimated in the two-step process of FSR

(Devlieger et al., 2019). Croon’s correction and Bartlett scoring methods were
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implemented. Based on the alignment of all measures using only complete data, 42
observations were included in the full models. Tables 21 and 22 contain the estimates
from the DTWS and DTWC maodels, respectively.

Table 21

Factor Score Regression Estimates for Predicting Quality of Life: Dual Task Walking

Speed
Outcome
Predictor Estimate SE z p
MSIS-29
BDI-Il Somatic  0.496 0.193 2.563 0.010
MFES -0.109 0.052 -2.112 0.035
MSWS-12 0.550 0.189 2.903 0.004
EDSS 0.056 0.061 0.917 0.359
DTWS -0.276 0.394 -0.707 0.480
Covariances
BDI-11 Somatic
MFES -0.524 0.220 -2.388 0.017
MSWS-12 0.041 0.056 0.739 0.460
MFES
MSWS-12 -0.611 0.245 -2.493 0.013
EDSS -0.810 0.439 -1.844 0.065
MSWS-12
EDSS 0.842 0.259 3.247 0.001
DTWS -0.094 0.033 -2.822 0.005
EDSS
DTWS -0.260 0.078 -3.330 0.001

Note. MSIS = Multiple Sclerosis Impact Scale-29; BDI-Il1 Somatic = Beck Depression
Inventory-Il Somatic-Vegetative factor; MFES = Modified Falls Efficacy Scale; EDSS =
Expanded Disability Status Scale Step; DTWS = Dual Task Walking Speed. Model fit:
¥?(3) = 18.239, p < 0.001.
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Table 22

Factor Score Regression Estimates for Predicting Quality of Life: Dual Task Walking

Costs
Outcome
Predictor Estimate SE z p
MSIS-29
BDI-Il Somatic 0.471 0.194 2.431 0.015
MFES -0.117 0.060 -1.950 0.051
MSWS-12 0.574 0.190 3.017 0.003
EDSS 0.070 0.058 1.200 0.230
DTWC 0.099 0.580 0.170 0.865
Covariances
BDI-1l Somatic
MFES -0.494 0.199 -2.482 0.013
MSWS-12 0.047 0.058 0.798 0.425
MFES
MSWS-12 -1.020 0.332 -3.074 0.002
EDSS -1.929 0.637 -3.027 0.002
MSWS-12
EDSS 1.120 0.334 3.349 0.001
DTWC -0.016 0.014 -1.132 0.257
EDSS
DTWC -0.037 0.034 -1.098 0.272

Note. MSIS = Multiple Sclerosis Impact Scale-29; BDI-11 Somatic = Beck Depression
Inventory-1l1 Somatic-Vegetative factor; MFES = Modified Falls Efficacy Scale; EDSS =
Expanded Disability Status Scale Step; DTWC = Dual Task Walking Costs. Model fit:
¥%(3) = 5.544, p = 0.136.

In general, these models both indicate that FSE, walking limitations, and somatic
symptoms of depression are related to QoL in MS in expected ways, and each of these
contributes uniquely to predicting QoL in MS. The findings indicate that higher QoL
(lower MS disease impact) is predicted by lower somatic depression levels, greater FSE,
and lower walking limitations controlling for the presence of the other factors. Neither
EDSS step nor DTW outcomes (speed or costs) predicted QoL above these factors.

Although DTWS does relate to MFES, MSWS-12, and EDSS in these models, DTWC

does not.
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University of Kansas Medical Center Analyses

In the KUMC data, the analysis examining how DTW outcomes relate to QoL in
MS was completed using the SF-36—a measure for QoL used in various populations
(Brazier et al., 1992; Jenkinson et al., 1994). The SF-36 contains 36 questions that are
considered to fall into eight domains (Brazier et al., 1992). Although some of its
psychometric qualities are strong in MS—which was corroborated by analyses here—it
may not be as responsive as other measures of QoL in MS (Hobart et al., 2005), and its
factor structure in MS may not align with the scale domains or the general population
structures (Hobart et al., 2001). In fact, the SF-36 was found to contain two, related
factors—an emotional and physical factor (see Chapter 3, especially Figure 22 and Table
17)—using parallel analysis with 100 samples to determine minimum Eigenvalues for
factor extraction. These factors were used as measures of emotional and physical QoL.

First, bivariate correlations were assessed for relationships between self-report,
walk, and cognitive measures and the QoL factors. Figure 35 depicts the correlations with
the Emotional QoL factor and Figure 36 depicts the correlations with the Physical QoL
factor. In general, the MSWS-12 and FES-I were the strongest predictors of QoL
followed by walking speeds. DTWC correlated with neither Emotional nor Physical QoL.
The cognitive predictors had generally small, but sometimes significant, relationships
with QoL—yparticularly the Physical factor. The relationships between STWS and DTWS
and the Emotional QoL factor did not differ significantly when the slopes were tested in a
regression model, F(1, 108) = 0.16, p = 0.686. However, the relationship between STWS
and the Physical QoL factor was significantly stronger than the relationship between

DTWS and the Physical QoL factor, F(1, 108) = 11.93, p = 0.001. Both walking speeds
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accounted for only 10% of the variance in Emotional QoL, but they accounted for 32% of
the variance in Physical QoL. This could be considered a suggestion that the Physical
QoL factor is more consistent with the MSIS-29 used in the SS study. A consideration of
the item loadings (see Table 17) also suggests this could be the case, as the MSIS-29

focuses more on physical interference (22 items) than emotional interference (7 items).

Figure 35

Bivariate Correlations with Short Form-36 Emotional Factor

Bivariate Correlations with Short Form-36 Emotional Factor

Measure

Note. MSWS-12 = Multiple Sclerosis Walk Scale-12; FES-I = Falls Efficacy Scale-International;
STS = Single Task Speed; DTS = Dual Task Speed; DTC = Dual Task Costs; Stroop = Stroop
Interference task; R Time = Reaction Time; CR Time = Choice Reaction Time; CRC Time =
Choice Reaction for Correct responses Time. *0.01 < p <0.05. 10.001 <p <0.01. p <0.001.
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Figure 36

Bivariate Correlations with Short Form-36 Physical Factor

Bivariate Correlations with Short Form-36 Physical Factor

Correlation
0
1

Measure

Note. MSWS-12 = Multiple Sclerosis Walk Scale-12; FES-I = Falls Efficacy Scale-International;
STS = Single Task Speed; DTS = Dual Task Speed; DTC = Dual Task Costs; Stroop = Stroop
Interference task; R Time = Reaction Time; CR Time = Choice Reaction Time; CRC Time =
Choice Reaction for Correct responses Time. *0.01 < p <0.05. 10.001 <p <0.01. {p <0.001.

To determine whether DTW measures, particularly DTWS, predicted QoL
beyond other self-report measures, factor score regressions were performed (Devlieger &
Rosseel, 2017; Devlieger et al., 2019). The FES-I, MSWS-12, and EDSS step were
included as covariates. A measure of depression was not available in the study and the
Emotional factor of the SF-36 was one of the QoL outcomes, so items from it could not
be included as predictors. Items with negative loadings for the SF-36 factors in the EFA
solutions were reversed scored to abet fitting. The EDSS step and DTW measure were

observed variables, and all others were latent variables that were estimated in the two-
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step process of FSR (Devlieger et al., 2019). Croon’s correction and Bartlett scoring
methods were implemented. A total of 99 observations were included in the full models.
Tables 23 and 24 contain the estimates from the DTWS and DTWC models, respectively.

Table 23

Factor Score Regression Estimates for Predicting Quality of Life: Dual Task Walking

Speed
Outcome
Predictor B SE z p
SF-36 Emotional
FES-I -0.825 0.332 -2.489 0.013
MSWS-12 -0.19 0.161 -1.179 0.238
EDSS 0.045 0.067 0.672 0.502
DTS 0.214 0.21 1.016 0.310
SF-36 Physical
FES-I -0.552 0.197 -2.806 0.005
MSWS-12 -0.394 0.105 -3.733 <0.001
EDSS 0.028 0.039 0.708 0.479
DTS 0.047 0.122 0.386 0.699
Covariances
FES-I
MSWS-12 0.218 0.045 4.806 <0.001
EDSS 0.205 0.048 4.296 <0.001
DTS -0.035 0.011 -3.293 0.010
MSWS-12
EDSS 0.501 0.099 5.067 <0.001
DTS -0.076 0.022 -3.499 <0.001
EDSS
DTS -0.079 0.028 -2.87 0.004

Residual Covariances
e.SF36 Emotional
e.SF36 Physical 0.076 0.020 3.882 <0.001

Note. SE = Standard Error; SF36 = Short Form-36; FES-I = Falls Efficacy Scale-
International; EDSS = Expanded Disability Status Scale Step; DTS = Dual Task Speed.
Model just identified. No fit statistics are provided.
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Table 24

Factor Score Regression Estimates for Predicting Quality of Life: Dual Task Walking

Costs
Outcome
Predictor Estimate SE z p
SF-36 Emotional
FES-I -0.842 0.331 -2.539 0.011
MSWS-12 -0.214 0.162 -1.322 0.186
EDSS 0.042 0.067 0.62 0.535
DTC -0.004 0.004 -1.044 0.296
SF-36 Physical
FES-I -0.561 0.197 -2.852 0.004
MSWS-12 -0.395 0.105 -3.75 <0.001
EDSS 0.027 0.039 0.692 0.489
DTC 0.001 0.002 0.326 0.745
Covariances
FES-I
MSWS-12 0.218 0.045 4.806 <0.001
EDSS 0.205 0.048 4.296 <0.001
DTC -0.06 0.476 -0.126 0.900
MSWS-12
EDSS 0.501 0.099 5.067 < 0.001
DTC -0.437 0.983 -0.444 0.657
EDSS
DTC -0.453 1.332 -0.34 0.734

Residual Covariances
e.SF36 Emotional
e.SF36 Physical 0.077 0.020 3.904 <0.001
Note. SE = Standard Error; SF36 = Short Form-36; FES-1 = Falls Efficacy Scale-
International; EDSS = Expanded Disability Status Scale Step; DTC = Dual Task Costs.
Model just identified. No fit statistics are provided.

In general, these models both confirm the importance of FSE and walking
limitations for QoL in MS in expected ways. However, only the FES-I, not the MSWS-
12, related to both Emotional and Physical QoL factors. The findings indicate that higher
QoL is predicted by less concern about falling (i.e., greater FSE) and less walking

limitations controlling for the presence of the other factors. Neither EDSS step nor DTW
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outcomes (speed or costs) predicted QoL above these factors. Although DTWS does
relate to FES-I, MSWS-12, and EDSS in these models, DTWC does not.

Aim 5: Dual-Task Walking as a Predictor of Falls Reported Longitudinally
(KUMC)

Although self-reported QoL is clearly an important outcome, it is not the only
outcome of consequence in the context of MS generally or DTW research specifically.
Another very important distal outcome is falling. Falls are common experience in MS
(Gunn et al., 2014; Nilsagard et al., 2015). Most people with MS will experience a fall
(Gunn et al., 2014; Nilsagard et al., 2015), and 37% of those with MS are considered
“frequent fallers” (Nilsagard et al., 2015). Falls in MS are also more likely to result in
injury (Bazelier et al., 2012; Peterson et al., 2008) and death (Brgnnum-Hansen et al.,
2006) than falls among matched controls. In our study, although the sample was highly
functional in general (e.g., STWS: M = 1.25, SD = 0.25), over one-third of participants
had experienced a fall in the past six months when the study began (see Table 11 for
more). Given the focality of fall risk in the nexus of DTW issues in its historical
conceptualization (e.g., Lundin-Olsson, 1997), it seems worthwhile to examine whether
falling is predicted by DTW measures. Although there is a handful of studies that have
explored this relationship, the findings remain mixed. Using the data collected over 6-
month intervals for an 18-month period at KUMC, longitudinal, negative binomial
regression models were performed to assess whether DTW outcomes predict fall rates
above-and-beyond basic physical ability (e.g., T25FWT time). This is a key consideration

because DTW paradigms can be administered almost as easily and readily as STW
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paradigms, so if DTW outcomes can predict fall rates better than basic walking ability
measured in ST conditions, their use may be warranted more regularly in MS evaluation.
Assumption Checks

Given these models were assessed longitudinally and there was a great deal of
attrition across visits, predictors of attrition were evaluated. Given nearly all the attrition
occurred after the baseline visit, attrition was binarized (0 = Completed All Visits; 1 =
Did Not Complete All Visits). Logistic regression models were performed to test whether
a variety of factors of importance predicted attrition. DTWC was not a predictor of
attrition throughout the study, OR = 1.006, ¥*(1, n = 122) = 0.19, p = 0.667. However,
DTWS, OR =0.06, y*(1, n = 122) = 11.90, p < 0.001, McFadden’s R? = 0.09, and STWS,
OR =0.01, ¥2(1, n = 122) = 20.38, p < 0.001, McFadden’s R? = 0.14, were both
significant predictors of attrition. The odds ratios show that the likelihood of dropping out
of the study decreased for those who had faster walk speeds in DT and ST conditions.
Similarly, other measures of function indicate that more functional participants were
more likely to complete all visits, see Table 25. Of note, falls reported at baseline was not
a significant predictor of attrition. For visualizations of DTWS, EDSS, and other

functional measures across visits, see Figures 37-39, respectively.
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Table 25

Predictors of Attrition in KUMC Study

Predictor n OR SE z p
DTWC 122 1.01 0.015 0.43 0.667
DTWS 122 0.06 0.049 -3.39 0.001
STWS 122 0.01 0.014 -3.92 <0.001
T25FWT 122 4.00 1.317 4.22 <0.001
BBS 112 0.77 0.084 -2.40 0.016
Stroop 120 0.89 0.040 -2.61 0.009
React 121 40.90 89.443 1.70 0.090
FES-I 119 2.48 0.739 3.05 0.002
MSWS-12 120 2.75 0.817 3.41 0.001
ABC-Hard 119 0.422 0.113 -3.22 0.001
EDSS 120 1.57 0.312 2.26 0.024
Falls 119 1.28 0.186 1.70 0.090

Note. OR = Odds Ratio; SE = Standard Error; DTWC = Dual Task Walking Costs (%);
DTWS = Dual Task Walking Speed (m/s); STWS = Single Task Walking Speed (m/s);
T25FWT = Timed 25 Foot Walk Test (s); BBS = Berg Balance Scale; Stroop = Stroop
Interference task; React = Reaction Time (s); FES-I = Falls Efficacy Scale-International;
MSWS-12; Multiple Sclerosis Walk Scale-12; ABC = Activities-specific Balance
Confidence scale; EDSS = Expanded Disability Status Scale Step. Factor scores used for
scales.

Figure 37

Boxplots for Expanded Disability Status Scale Step by Visit for KUMC
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Figure 38

Boxplots for Dual Task Walking Speed by Visit for KUMC

Dual Task Walk Speed across Visits
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Figure 39

Measures of Function across Visits in KUMC Study

Means for Functional and Disease Measures by Visit
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Further, estimates of repeated administration reliability were computed using ICC
with random intercepts in the full information maximum likelihood model. Both STWS,
ICC =0.841, 95% CI[0.778, 0.888], and DTWS, ICC =0.776, 95% CI[0.694, 0.842],
were rather reliable across visits. As comparisons given the presence of four walk
conditions in the testing, fast walk speed was the most reliable across visits, ICC = 0.875,
95% CI[0.825, 0.913], and slow walk speed was the least—Dbut still reasonably—reliable
across visits, ICC = 0.605, 95% CI[0.493, 0.717]. These patterns of reliability are
reasonable with the order of ICC magnitudes being fast, single, dual, and slow indicating
that participants had the most consistent walk speeds for fast and regular walking, but
reliability decreased some with DT and even more when trying to walk as slow as
possible.

Results

To test whether DTW measures predicted falls cross-sectionally, negative
binomial regression models were performed with the count of falls reported at baseline
serving as the outcome. Basic abilities—physical and cognitive—were considered as
covariates to determine whether DTW measures predicted falls above-and-beyond such
measures. These measures were selected a priori and included the T25FWT, Reaction
Time, and performance on the Stroop interference task. DTWS and DTWC were
considered separately and interactively.

The results indicate that the overdispersion model was significantly better than
assuming Poisson distributional characteristics (i.e., o = 0) for all models: DTWS Only,
2%(1) =603.12, p < 0.001; DTWC Only, 5%(1) = 728.24, p < 0.001; Interaction Model,

2%(1) = 361.74, p < 0.001. At baseline only, DTWS was the only significant predictor of
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falls rates in the full model when included. If DTWC alone was included with the
covariates, only T25FWT time significantly predicted falls rates. However, when both
DTWS and DTWC were included, the effect of DTWS, DTWC, and the interaction
between them were statistically significant predictors above-and-beyond the covariates
(which were not significant in the presence of DTW measures; see Table 26). These
models were followed-up with mixed effects negative binomial regression models to
determine whether these relationships persisted when modeled across visits with person
as a random factor. These models used person-centered means and deviations (Curran &
Bauer, 2011) and included the interaction the person-means for DTWS and DTWC.
Models again confirmed the appropriateness of overdispersion, DTWS Only, 4*(1) =
22.88, p < 0.001; DTWC Only, ¥%(1) = 24.43, p < 0.001; Interaction Model, 5%(1) =
21.31, p < 0.001. The substantive findings also corroborate those of the baseline only,
cross-sectional models (see Table 27). The only notable difference was the between-
persons effect of DTWS was not quite statistically significant in the longitudinal model in
the DTWS only model.

Table 26

Negative Binomial Regressions to Predict Falls Rates at Baseline Only

Predictor IRR SE z p
Model with DTWS Only

T25FWT (s) 1.14 0.322 0.47 0.635

Reaction Time (s) 0.56 1.440 -0.22 0.822

Stroop Interference 0.98 0.055 -0.33 0.741

DTWS 0.02 0.027 -3.10 0.002*
Model with DTWC Only

T25FWT (s) 2.13 0.618 2.61 0.009*

Reaction Time (s) 0.16 0.458 -0.65 0.518

Stroop Interference 0.94 0.055 -1.01 0.312

DTWC 1.00 0.025 -0.18 0.859
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Model with Interaction

T25FWT (s) 0.93 0.226 -0.30 0.762
Reaction Time (S) 0.498 1.177 -0.29 0.768
Stroop Interference 0.98 0.047 -0.33 0.741
DTWS 0.001 0.001 -4.39 <0.001*
DTWC 0.77 0.068 -2.99 0.003*
DTWS*DTWC 1.20 0.097 2.30 0.021*

Note. IRR = Incidence Rate Ratio; SE = Standard Error; T25FWT = Timed 25 Foot Walk
Test (s); DTWS = Dual Task Walking Speed (m/s); DTWC = Dual Task Walking Costs
(%). DTWS Model: ¥?(4, n = 117) = 20.89, p < 0.001, McFadden’s R? = 0.06, Cragg &
Uhler’s R? = 0.172. DTWC Model: ¥%(4, n = 117) = 11.86, p = 0.018, McFadden’s R? =
0.03, Cragg & Uhler’s R? = 0.101. Interaction Model: ¥?(6, n = 117) = 31.46, p < 0.001,
McFadden’s R? = 0.09, Cragg & Uhler’s R? = 0.248. *p < 0.05.
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Table 27

Mixed Effects Negative Binomial Regressions to Predict Falls Rates across Visits

Predictor IRR SE z p
Model with DTWS Only
Visit 0.882 0.166 -0.670 0.504
T25FWT (s) - PM 1.302 0.268 1.280 0.199
T25FWT (s) — PD 0.730 0.456 -0.500 0.614
Reaction Time (s) — PM 0.736 1.680 -0.130 0.893
Reaction Time (s) — PD 0.083 0.434 -0.480 0.633
Stroop Interference —PM  0.906 0.052 -1.710 0.088
Stroop Interference —PD  1.056 0.083 0.690 0.489
DTWS - PM 0.107 0.133 -1.800 0.071
DTWS -PD 0.583 1.014 -0.310 0.756
Model with DTWC Only
Visit 0.895 0.164 -0.610 0.542
T25FWT (s) - PM 1.623 0.280 2.810 0.005*
T25FWT (s) - PD 0.753 0.482 -0.440 0.658

Reaction Time (s) — PM 0.814 1.889 -0.090 0.929
Reaction Time (s) — PD 0.100 0.517 -0.450 0.656
Stroop Interference - PM  0.884 0.053 -2.050 0.040*
Stroop Interference —PD  1.049 0.084 0.590 0.553

DTWC - PM 0.989 0.021 -0.530 0.594

DTWC - PD 0.995 0.026 -0.200 0.841
Model with Interaction

Visit 0.894 0.161 -0.620 0.534

T25FWT (s) - PM 1.132 0.256 0.550 0.581

T25FWT (s) - PD 0.772 0.469 -0.430 0.670

Reaction Time (s) - PM 0.230 0.501 -0.670 0.500
Reaction Time (s) — PD 0.071 0.353 -0.530 0.596
Stroop Interference —PM  0.912 0.049 -1.740 0.083
Stroop Interference —PD  1.044 0.077 0.580 0.559

DTWS -PM 0.001 0.002 -3.860 <0.001*
DTWS -PD 0.168 0.432 -0.690 0.488
DTWC - PM 0.735 0.068 -3.330 0.001*
DTWC -PD 0.977 0.037 -0.610 0.540
DTWS*DTWC - PM 1.264 0.109 2.710 0.007*

Note. IRR = Incidence Rate Ratio; SE = Standard Error; PM = Person Mean; PD =
Person Deviation; T25FWT = Timed 25 Foot Walk Test (s); DTWS = Dual Task
Walking Speed (m/s); DTWC = Dual Task Walking Costs (%). DTWS Model: ¥*(9, nj =
120, ni = 227) = 28.41, p < 0.001, AIC = 489.60. DTWC Model: ¥*(9, n; = 120, nj = 227)
= 25.37, p = 0.003, AIC = 492.62. Interaction Model: ¥?(12, nj = 120, ni = 227) = 42.81, p
<0.001, AIC =480.34. *p < 0.05.
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Examining the substantive nature of the interaction reveals that controlling for all
other factors, faster DTWS predicts fewer falls between persons, higher DTWC predicts
fewer falls between persons, but the effect of DTWC is moderated by DTWS such that as
DTWS increases lesser DTWC predicts fewer falls (see Figure 40). Basically, for those
who are capable walkers under DT conditions (i.e., can maintain a fast speed), it appears
to be desirable to have minimal DTWC (or even experience cognitive-motor facilitation).
However, for those who are not capable walkers under DT conditions (i.e., cannot
maintain a fast speed), the model prediction is such that greater DTWC are protective
against falls. Essentially, those who are most affected in terms of their DTWS (i.e.,
slower) are benefitted by a greater relative slowing under DT compared to ST (i.e., higher
DTWC). This suggests that the added demands of a cognitive task while walking should
be approached cautiously by those who are less capable walkers but do not merit a
particular alteration in walking speed for those who are more capable walkers. Of note,
the inflection point for the interaction comes around a DTWS of 1.4 m/s — a fast pace

under DT.
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Figure 40

Interaction of Dual-Task Costs and Dual-Task Speed on Fall Rates

Interaction of Dual Task Costs and Speed on Falls Rates
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Discussion

These findings help to fill the gap in understanding how DTW measures fit into
the nexus of constructs that are important in MS (Leone et al., 2015; Rooney et al., 2020).
Although both the SS and KUMC analyses found that DTW measures are not
significantly related to QoL above-and-beyond other PROs, bivariate relationships
between DTWS, but not DTWC, and QoL measures did exist in both analyses. These
findings are both useful as the most recent meta-analysis of correlates of DTW measures
conducted by Rooney et al. (2020) did not report any estimates of the relationship

between DTW measures and QoL. Castelli et al. (2016) did report that some items on the
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MSQoL-54 correlated with DTWC, but only specific items and in a sample with low
levels of disability (EDSS < 3).

The finding that DTWS, but not DTWC, relates to other variables of important in
MS is consistent with findings in Chapters 3 and 4. DTWS, but not DTWC, is regularly
the measure that relates to other important domains in MS. Yet, DTWS did not relate to
QoL more strongly than STWS when the coefficients were tested against one another, so
it does not seem that DTWS adds more to the prediction of QoL than STWS alone. In
fact, for the Physical QoL factor from the SF-36 in the KUMC analyses, STWS was a
significantly better predictor than DTWS. The analyses indicate that predicting QoL in
MS was done best by using other self-reported outcomes, such as measures of FSE or
walking limitations. This is consistent with past research in MS (Mitchell et al., 2005).
This may be a function of the true dependence of the constructs evaluated by these
measures, but it also may be a partial artifact of the measurement of these constructs.
That is, it is possible that these self-reported outcomes simply correlated based on
participants’ tendencies to respond in particular ways when completing the assessments
(e.g., optimistic or pessimistic assessments). DTW outcomes were variably and modestly
related to QoL outcomes, with walking speed under ST and DT conditions being a
predictor of QoL but not DTWC. The relationship between walking speed and QoL—
especially physical aspects of it—has been shown in other populations affected by
neurological disorders (Khanittanuphong & Tipchatyotin, 2017; Paker et al., 2015) and
MS previously (Kohn et al., 2014). For example, T25FWT have been found to be
correlated with QoL measures in various MS studies (Cohen et al., 2014; Coleman et al.,

2012; Goldman et al., 2013; Hobart et al., 2013; Kragt et al., 2006; Motl et al., 2017). In
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fact, it has been called the “6™ vital sign” because of its robust relationships with
measures of health and wellbeing (Middleton et al., 2014).

Perhaps more importantly, the analyses of falls in the KUMC study suggests that
DTW measures do add to the prediction of falls rates above-and-beyond basic physical
and cognitive measures. As was true in all past analyses, DTWS is the single DTW
measure that seems to be useful in predicting falls when DTWS and DTWC are treated
separately. However, it was found that DTWC does add significantly to a falls prediction
model when it is considered within the context of DTWS. Moreover, it was found that
these two measures interacted in predicting falls rates. Consistent with the repeated
assertion about the limitations of DTWC treated as an isolated measure in DTW
paradigms, these results indicate that DTWC alone is not particularly useful because it
must be understood in the context of the individuals’ actual abilities. The fact that DTWC
is standardized by STWS actually removes valuable information regarding a participants’
actual walking abilities. Considering it in the context of DTW abilities as measured by
DTWS allows for a greater understanding of the possible importance of DTWC. In fact,
when considered in the context of DTWS, DTWC becomes a useful measure for
predicting falls. The fact that it is moderated by DTWS also can explain the mixed
findings regarding the relationship between DTWC and falls in the extant literature (e.g.,
Cattaneo et al., 2006; Gunn et al., 2013; Hoang et al., 2016; Nilsagard et al., 2009; Quinn
etal., 2018, 2019; Wajda et al., 2013). This analysis reveals that high DTWC may be
advantageous for the least capable DT walkers but disadvantageous for the most capable
DT walkers. This suggests that one must know about a participant’s abilities when

engaging in DTW to understand the effect of DTWC. Future analyses should consider
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whether similar interactive relationships exist between DTWS and DTWC for other
putative outcomes.

There are several important limitations for these analyses. First, the sample sizes
are rather small for the analyses performed. Although factor score regression has been
studied in small samples (e.g., n = 50; Devlieger et al., 2019), with only 42 and 99
participants in the SS and KUMC studies, respectively, this limitation should still be
noted. Further, negative binomial regression—and particularly mixed effects forms—are
best for large samples. The KUMC sample, albeit relatively large for research in this
area, is small in the context of such models, and there was also a high level of attrition
which poses an additional, noteworthy limitation for the longitudinal models. Also, the
falls reports were collected every six months, but they were retrospective at each visit. As
such, the limits of recollection for reporting falls should be acknowledged even though
retrospective and prospective falls do tend to correlate (Nilsagard et al., 2009) with
underestimation indicated for retrospective reports of falls (Mackenzie et al., 2006).

Nevertheless, these findings provide novel insights into the role of DTW
measures for predicting critical outcomes in MS. These findings indicate that improving
DTW may not directly affect self-reported QoL above-and-beyond other, more predictive
measures of QoL. However, the findings indicate that unique strategies may be most
beneficial in helping those with MS to avoid falling when engaging in the everyday
phenomenon on DTW. It may be advantageous for those who have more limited walking
abilities to slow down more in the face of DT—which is not a particularly surprising
finding. However, those with MS who are still not very limited in their walking abilities

should be encouraged to tackle these complex DTW conditions when they manifest in
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life by just trying to maintain a normal walking speed. Additional caution in the face of

DTW demands may not be desirable for all persons with MS.
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CHAPTER 5

Multiple sclerosis is a disease with manifold symptoms that affects approximately
1 million people in the United States (Wallin et al., 2019). It usually onsets in young
adulthood and can result in many years of disability (Tullman et al., 2013) with
symptoms that often increase over time (Kister et al., 2013), including weakness,
spasticity, fatigue, and undesirable changes in sensation, cognition, vision, coordination,
bladder function, sexual function, and mood and psychological states (Crayton &
Rossman, 2006). Mood (Siegert & Abernethy, 2005; Siegert & Abernethy, 2005),
cognitive (Chiaravolloti & DelLuc, 2008; Rocca et al., 2015), and walking and balance
(Cameron & Nilsagard, 2018) problems are common, and decreased function and
independence resultant from trouble walking is a central concern to those affected by MS
(Heesen et al., 2008; LaRocca, 2011; Zwibel, 2009). Those with MS also have high rates
of fear of falling given the issues with balance and walking that occur (Comber et al.,
2017; Peterson et al., 2007), and this can result in even greater losses of independence,
activity curtailment, and decreases in QoL (Peterson et al., 2007). These alterations may
even extend beyond what is necessary—as falling is certainly a greater risk for this with
MS (Gunn et al., 2014; Nilsagard et al., 2015)—given that FSE may be low despite
relatively intact physical ability (Gunn et al., 2018). This is just one of several examples
regarding how these multifarious symptoms intersect to affect important distal outcomes
like independence, falls, and QoL.

Not only may these diverse symptoms interact in MS, but many activities in daily
life are affected by the intersection of psychological, cognitive, and physical functions.

DTW is a paradigm that allows some exploration of these intersections as they may occur
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in real-world contexts where one engages in a social or cognitive task concurrently with
walking (Bayot et al., 2018; Mirelman et al., 2018). Not only is DTW ubiquitous in daily
life, but the fact that it impacts walking generally (Mirelman et al., 2018) and in MS
specifically (Leone et al., 2015; Postigo-Alonso et al., 2018) is well-established. DTW is
reasonably believed to be associated with falls, and although evidence is mixed, classic
work (Lundin-Olsson et al., 1997) and more recent work in MS (Etemadi, 2017; Quinn et
al., 2019) does suggest that it may relate to fall risk. Of course, DTW also occurs at the
intersection of multiple functional abilities that may be affected by MS which makes
considering how other psychological and cognitive states may factor into a full
understanding of DTW in MS. Despite the importance of DTW performance and its
presumed interaction with other affective and cognitive participant characteristics, these
relationships have not been well described in the literature. The aims of these analyses
were to explore the intersections of psychological, cognitive, and physical variables in the
context of DTW in those affected by MS in order to understand: 1) correlates of DTW
outcomes across various domains, 2) moderating effects of psychological states in
predicting DTW outcomes as a function of cognitive and physical abilities, and 3)
understanding how DTW outcomes relate to and predict distal outcomes like QoL and
falls in those affected by MS.

These aims attempted to address gaps in the current corpus of scientific
knowledge regarding understanding the correlates and consequences of DTW ability
(Leone et al., 2015; Rooney et al., 2020)—particularly how the “invisible symptoms”
(Leone et al., 2015, p. 128) that are important in MS fit into our understanding of DTW.

Current DTW analyses include a variety of means of operationalization DT effects. As
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such, the current research included a few operationalizations of DTW to evaluate which
may be most robustly related to other outcomes of importance in MS. This included
examining DTWS alone—as walking speed is a valuable measure in MS (Albrecht et al.,
2001; Briggs et al., 2019; D’Orio et al., 2012; Kalron, 2014; Kalron & Achrion, 2014;
Langeskov-Christensen et al., 2017) and given that change in speed is one of, if not the,
most robust and reliable gait parameters affected by DTW (Chen et al., 2020; Leone et
al., 2015; Mirelman et al., 2018; Postigo-Alonso et al., 2018; Wajda & Sosnoff, 2015). It
also included use of both a commonly calculated DTW outcome, DTWC, based on
Baddeley et al.’s (1997) formula, and the use of other metrics that are often used, too—
such as raw differences in DTWS (as is done when condition [ST or DT] is treated as a
within-subjects factor) and DTWS itself, because these metrics contain different
information and likely have unique limitations.

Further, the SAT (Self-Awareness Theory; Wajda & Sosnoff, 2015; Wajda et al.,
2019; Yogev-Seligmann et al., 2012) was tested as an explanatory model that may
enhance our understanding of DTW outcomes. This theory purports that appraisals of
one’s abilities and environmental hazards affect the prioritizations and performances of
individuals in DTW contexts (Yogev-Seligmann et al., 2012). This could be
conceptualized as a specific extension of reciprocal determinism which posits that a
person’s beliefs about their abilities—self-efficacy—is one important person-level factor
that affects the dynamic interplay of environment-behavior relationships (Bandura, 1978,
1994). As such, person-level psychological states—Ilike FSE and depression—were
evaluated as moderators of the relationships between basic physical and cognitive

abilities and performance under more complex environmental demands in DTW.
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The findings of the present analyses, therefore, add to the understanding of DTW
in MS in numerous ways. The ability to add to the corpus of literature on the topic was
furthered by the availability of two, relatively large, independent samples of people with
MS completing DTW—a research sample from KUMC and a clinical sample from SS.
This permitted both unique evaluations and conceptual replications.

First, across all analyses, the evidence indicates that measuring DTWS—perhaps
unsurprisingly—is a more reliable contributor to understanding relationships among
DTW ability and other variables of importance in MS than measuring DTWC. Walking
speed is known to be an important variable in MS (Albrecht et al., 2001; Briggs et al.,
2019; D’Orio et al., 2012; Kalron, 2014; Kalron & Achiron, 2014). It may even be a
better measure of disease progression than the ability to walk certain distances (Albrecht
et al., 2001), which is focal in the most common means of assessing disability in MS, the
EDSS (van Munster & Uitdehaag, 2017). Although DTWC, in the form of DTC proposed
by Baddeley et al. (1997), is a reasonable means of assessing the impact of DT, it may
not be the best means by which DTW can be understood in the nexus of MS
symptomatology. DTWC, because it standardizes the difference in speed by STWS,
actually removes information about walking performance. As such, two individuals with
very different walking abilities can have identical DTWC—whether they be large or
small. DTWC actually captures a cognitive construct; that is, it measures the percentage
change caused by concurrent cognitive demand. It is reasonable that DTC captures a
cognitive construct given their historical roots in neuropsychology (Baddeley et al., 1997;
Hanny, 1986) and the intention to determine the degree to which an action is automatic or

effortful. This, again, is a cognitive—or at least computational—question, not a physical
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one. This is also why the dominant theories involved in DT literature (Bayot et al., 2018)
have been, first, cognitive (e.g., attentional capacity), and then neural (e.g., bottleneck
theory). Although often unmeasured (for relevant reviews, see Chamard Witkowski et al.,
2019; Leone et al., 2015; Postigo-Alonso et al., 2018; Wajda & Sosnoff, 2015), DTCC
may be a better “motor’” measure (¢.g., to measure the attentional demand of walking in
MS) as it quantifies the impact of concurrent ambulation on cognition.

Although it is worthwhile to ask, as most have done (for reviews, see Leone et al.,
2015; Postigo-Alonso et al., 2018), whether DTWC exist in MS and whether the effects
differ from those in neurotypical populations, it also seems worthwhile to understand
how DTW ability fits into the tapestry of MS symptoms and risks (e.g., Leone et al.,
2015; Rooney et al., 2020; Wajda & Sosnoff, 2015). The research clearly shows that
DTWC exist in MS (Leone et al., 2015; Postigo-Alonso et al., 2018), but the findings are
mixed regarding whether these costs are greater than in neurotypical populations.
Consistent with past research, these analyses confirmed the presence of DTWC in both
samples—and in degrees that would be expected. They also found that DTWC do not
tend to be a particularly strong correlate of other variables often measured in MS.
However, DTWS was found to be related to many variables—including cognitive
domains like executive function and attention and physical domains like self-reported
pain, balance, and disability. DTWS also seems to relate to variables that are found to
relate to both STWS and DTWC (when the latter did exhibit any relationships). As such,
it seems that DTWS may provide more information that STWS alone—not just related to

more variables than DTWC.
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These analyses also help to reveal how DTW outcomes relate to various cognitive
measures—something that has been notably absent from the DTW literature in MS
(Leone et al., 2015; Rooney et al., 2020). The analyses suggest that DTWS is rather more
reliably and robustly predicted by cognitive abilities and physical factors (with pain,
balance, and disability emerging as particularly relevant) than DTWC. Not only were
various cognitive domains related to DTWS, most notably executive function and
attention, but these analyses were the first to consider multiple cognitive predictors of
DTW outcomes in singular models. These models revealed unique patterns of
relationships that highlight the need to consider the intersections and interactions of
different cognitive abilities when attempting to understand their relationships with DTW
outcomes. They also emphasize a need to consider the possible overlap in measurement
that may lead to measurement variance artifacts (e.g., see Lancaster, 1999). However,
although DTWS, but not DTWC, did relate to QoL at a bivariate level—consistent with
past research indicating that walking speed relates to QoL in MS (Kohn et al., 2014),
DTW outcomes did not predict QoL above-and-beyond self-report measures of walking
interference, FSE, or depression—although these covariates did predict QoL as in past
research (Mitchell et al., 2005).

The primacy of DTWS—as conceptualized a priori and manifested throughout the
analyses—makes it worth noting that there is no reason to assume that walking speed
should always be measured in ST contexts. There are innumerable cases in which
“walking and” occurs in daily life, so performance in such contexts is reasonable to
assess. Similarly, there is no inherent reason that DTW ability must be measured by

referencing STWS. DTWS, both theoretically and based on these empirical findings, is a
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construct that seems valuable to measure in MS. This was not only evidenced by the
models that examined predictors of DTWS and DTWC, but it is also clear when daily
experiences are considered that performance measures (e.g., actual gait parameters) will
be critical to understanding the consequences of DTW, too. That is, whether one slows
substantially or not relative to one’s “normal” walking speed may not be as important as
the actual speed at which one is walking under DT conditions. And it is entirely possible,
and indicated throughout these analyses, that DTWS may be more informative than
STWS in many ways. Although it is possible that relative slowing, or even relative
slowing standardized by STWS, would matter on its own, the evidence in the literature
(Leone et al., 2015; Rooney et al., 2020; Wajda & Sosnoff, 2015) and from these studies
indicates that DTWC is not a strong or reliable correlate of other variables in MS when
considered in isolation. However, the current analyses indicated that it may add to our
ability to understand consequences of DTW such as fall rates. Although the findings
regarding DTW and fall risk in MS have been mixed (Etemadi, 2017; Gunn et al., 2013;
Nilsagard et al., 2009; Quinn et al., 2019; Wajda et al., 2013), and, notably, have used
different operationalizations of DTW (e.g., DTWC versus DTWS), the present analyses
may help shed light on these mixed findings.

First, if considered in isolation, DTWS emerged as a better predictor of fall rates
than STWS (measured by the T25FWT). Second, although DTWC was not a significant
predictor of fall rates when considered in isolation, both DTWS and DTWC, as well as
the interaction, all emerged as significant—with basic cognitive and walking measures
not contributing significantly to the model. The findings indicate that DTWC would not

always be expected to relate to fall rates, and the way in which it relates is dependent on
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the basic DTW ability (i.e., DTWS) of the individual. Those with fast DTWS benefit
from no DTWC, or even cognitive-motor facilitation, in terms of fall rate predictions, but
those with slow DTWS benefit from greater DTWC. These findings indicate both that
DTWS may be more information as an isolated measure than STWS and that DTWC
may strengthen prediction of fall rates further. It is worth noting that in the longitudinal
analyses performed over 4 measurements across 18 months, only the between-person
(i.e., “trait”) effects were significant—changes within person did not emerge as
significant for any predictors considered. This may be in part due to the fact that the
sample was relatively functional to begin and that those who were most functional were
those who continued in the study. It is possible that if disease progression were occurring
more reliably or rapidly, or if sample retention or size were greater throughout, that
within-persons effects could be detected. However, these findings indicate that it is the
differences that exist between persons (e.g., a “fast” or “slow” walker or someone with
“high” or “low” DTWC), not the differences within persons (i.e., having speed slow over
time or DTWC increase), that mattered.

Considering these findings in the context of past research regarding DTW and
falls in MS, a few notes are important. First, this model was longitudinal—not just
prospective (i.e., all measures were taken repeatedly over time, it was not only a single
baseline measure of ability to predict future fall reports). It also employed full-
information maximum likelihood which allows for all available data to be used in the
model—that is, even if someone withdrew at some point in the study, the measures they
had completed could still be used in the model. Second, it used fall rates—a count

measure—not classification (i.e., “faller” or “multiple faller”). Although classification
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approaches have their use, dichotomization sacrifices information and reduces statistical
sensitivity (Fedorov et al., 2009; MacCallum et al., 2002). Lastly, it controlled for
cognitive ability (executive function [Stroop test]) and walking ability (T2FWT time),
and it is the first evaluation to consider both DTWS and DTWC—as well as their
interaction.

Lastly, beyond the clear additions made by these analyses with respect to the
correlates and consequences of DTW ability in MS, several important findings emerged
across both samples to indicate that SAT (Yogev-Seligmann et al., 2012), as an
instantiation of Bandura’s (1978, 1994) reciprocal determinism theory and the role of
self-efficacy as a person-level factor in the model, may enhance our understanding and
prediction of DTW outcomes in MS. This theory leads avers that subjective appraisals of
one’s abilities—as well as how these factor into the context of the current environment
and its hazards—will improve prediction of performance in DTW. As such, it was
predicted that psychological states that could be expected to affect appraisals of self and
environmental risk, such as FSE and depression, would moderate the relationships
between basic (i.e., cognitive and walking ability in ST contexts) abilities and
performance in the context of greater demands (i.e., under DT). In support of this general
hypothesis, several of the tested moderation effects determined by a priori considerations
were found to be significant.

Two patterns of effect seem most notable. First, although DTWC were notably
less related to basic cognitive and physical abilities, depressive symptoms and FSE did
seem to improve these models. In the SS analyses, only depression and FSE (measured

by MFES) emerged as significant predictors of DTWC in any of the analyses. Depressive
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symptoms were the most robust predictor with Somatic depressive symptoms being a
significant predictor in models that controlled for Affective depressive symptoms and
STWS, executive function, and information processing abilities. This hints at a form of
appraisal processing and self-monitoring in which people’s psychological states and self-
appraisals are important to the degree to which they alter their speed under more complex
DTW contexts. Further, Affective aspects of depression moderated the effect of
information processing on DTWC in the SS study controlling for the significant effect of
Somatic depressive symptoms. (It is also possible that a shared, lower-level effect or
cause of depression affects both depressive symptoms and DTWC in conjunction with or
in lieu of depressive symptoms leading to alterations in appraisals that affect DTWC.)
Unfortunately, a specific measure of depression was not available for consideration in the
KUMC analyses. A measure of emotional wellbeing—factored from the SF-36—was
considered in the stead of depressive symptoms, but the same relationships did not
emerge with this distinct, but related, construct. (Of note, the measure of information
processing was similar but distinct in both studies, too.) Future research should explore
how depression, as a common (Boeschoten et al., 2017; Siegert & Abernethy, 2005)
“invisible symptom” (Leone et al., p. 128) in MS, relates to DTW outcomes at a variety
of levels of analysis.

Next, both the SS and KUMC analyses revealed that FSE moderated the
relationship between basic physical abilities and DTWS—which is the most apropos
measure of performance under increased demand (i.e., “speed” is the measure of
performance and ST and DT are the contexts in which it manifests). In the SS study,

STWS was moderated by FSE (measured by the MFES) such that as FSE decreased the
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relationship between STWS and DTWS was attenuated. The same type of pattern was
observed in the KUMC study with the BBS being moderated by both the ABC-Hard
factor and the FES-I. For those with greater FSE, objective balance related more strongly
to DTWS. Although a qualitative interaction was technically observed, most observations
were in the area of the quantitative interaction. These findings indicate that there may be
more involved in how DT contexts affect performance than fundamental, universal
attentional capacities or neural limits—even though these may be important to
understanding the fact that DTC exist at all. Otherwise, they indicate that these
psychological states, or the mechanistic processes that underlie them, are able to modify
these lower-level processes (i.e., attention capacity or neural processes). To understand
DTW, the evidence indicates that considering the whole person—physically, cognitively,
and psychologically—in the context will enhance prediction of DTW abilities which is
consistent with Bandura’s reciprocal determinism (1978) and SAT (Wajda et al., 2016;
Yogev-Seligmann et al., 2012), as well as some previous DT literature in MS in other
areas of motor control (e.g., Lemmens et al., 2018). It is worth noting that other
moderating effects of psychological states and physical or cognitive abilities were
observed, including the interaction of emotional wellbeing and T25FWT time and the
interaction of FES-I and information processing (Choice Reaction Time for Correct
Responses) for DTWS, as well as the interaction of ABC-Hard and MSWS-12 and the
interaction of FES-1 and EDSS step for DTWC in the KUMC analyses. On the whole, the
evidence indicates that, at minimum, further consideration of how SAT enhances our

understanding of DTW in MS—which has been riddled by notably heterogeneous results
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consistent with the presence of moderating effects (Leone et al., 2015; Rooney et al.,
2020).

Although these analyses provide many valuable insights, they are not without
their limitations. First, although these analyses do allow for some conceptual replications
and come from two, independent samples, there are still only two samples that have been
used throughout all analyses, and the analyses are retrospective, secondary data analyses.
Further extension and replication are necessary. Only serial subtractions were used as the
cognitive dual task, and there were no measures of cognitive performance under DT.

Also, although the samples are rather large within the context of DTW research in
MS, the samples are not particularly large in the context of analyses performed and
missing data and attrition further limit some the sample sizes for the various models. Yet,
even for the longitudinal models using count data and affected by attrition, it seems worth
employing these methods that provide additional insights. For example, there is evidence
that even with sample sizes as small as 25 in count MLM, the trustworthiness of
estimates is reasonable (McNeish, 2019). Not all conceptual variables had strong
operationalizations in both studies (e.g., depression in SS analyses versus emotional
wellbeing in KUMC). Also, the use of a more disabled, clinical sample and a less
disabled, research sample enhances the degree of confidence in findings that replicated
across studies, but some analyses (e.g., falls models) were performed only in one sample
and should be examined in more diverse samples—perhaps particularly in terms of
disease state. It is also possible that demand characteristics of the experimental
procedures are involved in the effects observed. Examining DTW in more mundane

environments may provide further insights regarding how these relationships manifest in
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real-world contexts and abet greater understanding of the consequences of DTW ability
in MS. Also, falls were reported over time but recalled retrospectively. Understanding the
real-world importance of DTW for falls would benefit from longitudinal modeling of
prospectively reported falls in the future.

Several analyses were performed. Although they were specified a priori, as was
the decision to use comparison-wise a control, this should be considered when
interpreting the findings and considering the need for replication to arrive at confident
conclusions about these relationships and dynamics. Further, attempts to more singularly
and directly test full conceptual models presented with large samples would be desirable
to get a better picture of the dynamic interplay of variables involved in producing DTW
outcomes and in determining the consequences of DTW abilities. As these analyses
indicated, the dynamics that may need to be considered to fully understand the models
that give rise to these outcomes may be more complex than often, or herein, considered.

Nevertheless, these analyses provide many novel insights. They fill gaps in the
literature regarding the understanding of how DTW outcomes fit into the nexus of
symptoms in MS (Leone et al., 2015, Rooney et al., 2020; Wajda & Sosnoff, 2015). They
emphasize the importance of considering DTWS as a measure when the desire is to
understand how DTW fits into the broader context of MS—not just whether DTWC exist.
They also provide evidence that may help to understand the mixed findings that have
often emerged—including around the relationship between DTW abilities and falls in MS
(Etemadi, 2017; Gunn et al., 2013; Nilsagard et al., 2009; Quinn et al., 2019; Wajda et
al., 2013). They also provide evidence in support of SAT and indicate that considering

physical, cognitive, and psychological processes together may enhance our understanding

182



of DTW outcomes—and help to explain some of the heterogeneity that has been
observed previously. The analyses remind that approaches to improving DTW abilities,
or decreasing possible risks associated with DTW which often occurs in daily life, may

require tailored approaches based on more holistic assessments of the individual.
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