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ABSTRACT

Visual Odometry is one of the key aspects of robotic localization and mapping. Vi-

sual Odometry consists of many geometric-based approaches that convert visual data

(images) into pose estimates of where the robot is in space. The classical geometric

methods have shown promising results; they are carefully crafted and built explicitly

for these tasks. However, such geometric methods require extreme fine-tuning and

extensive prior knowledge to set up these systems for different scenarios. Classical

Geometric approaches also require significant post-processing and optimization to

minimize the error between the estimated pose and the global truth.

In this body of work, the deep learning model was formed by combining SuperPoint

and SuperGlue. The resulting model does not require any prior fine-tuning. It has

been trained to enable both outdoor and indoor settings. The proposed deep learning

model is applied to the Karlsruhe Institute of Technology and Toyota Technological

Institute dataset along with other classical geometric visual odometry models. The

proposed deep learning model has not been trained on the Karlsruhe Institute of Tech-

nology and Toyota Technological Institute dataset. It is only during experimentation

that the deep learning model is first introduced to the Karlsruhe Institute of Tech-

nology and Toyota Technological Institute dataset. Using the monocular grayscale

images from the visual odometer files of the Karlsruhe Institute of Technology and

Toyota Technological Institute dataset, through the experiment to test the viability

of the models for different sequences. The experiment has been performed on eight

different sequences and has obtained the Absolute Trajectory Error and the time

taken for each sequence to finish the computation. From the obtained results, there

are inferences drawn from the classical and deep learning approaches.
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Chapter 1

INTRODUCTION

Visual Odometry can be defined as incrementally estimating a robot’s pose by

examining the changes that motion induces on the images captured by the onboard

cameras[5]. The prominence of Visual Odometry began to rise when compared to

Wheel Odometry; it was shown to be unaffected by wheel slip in uneven terrain and

adverse conditions. With respect to trajectory estimates, Visual Odometry only pro-

duces a relative error of 0.1 percent to 2 percent compared to Wheel Odometry. Apart

from its robust standalone qualities, it also compliments other pose estimation meth-

ods. These methods include Wheel Odometry, Global Position Systems(GPS), Iner-

tial Measurement Units(IMU), and Laser Odometry. Visual Odometry truly shines

in robotic localization and mapping because it can solely be used in GPS denied

environments such as aerial and underwater mapping.

One of the main distinctions that need to be drawn is the distinctness between

Visual Odometry and Visual SLAM. In fact, Visual Odometry serves as what is known

as the front end of Visual SLAM. The primary goal of Visual Odometry is to ensure

that the change in camera poses are recorded and extracted to draw the current

position of the robot in time, or it can be stated that Visual Odometry is concerned

more with local consistency. Visual SLAM, on the other hand, is a larger subset that

contains Visual Odometry. It is imperative to not only maintain the local consistency

but also to optimize the local consistency. Apart from wanting an optimized local

consistency of the robot, Visual SLAM also addresses the problem of loop closure.

Loop closure is a process in which the robot is able to identify that the robot has

already passed through a point in the world. This point is not treated as a new point
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but is able to identify, and the loop is detected and updated on the map. Thus it can

be stated that Visual SLAM is more concerned with an optimized local consistency

accompanied by the ability to perform loop closure.

In this body of work, the aim is to analyze two significant Visual Odometry

methods. The first one is the classical geometric approach, and the second one is

the deep learning approach. Over the last three decades, classical-geometric has

seen a great deal of progress. Nevertheless, when dealing with the robustness of

the world, they still suffer in areas such as settings in which there is a change of

illumination and places where there is little distinction in the texture, to name but a

few. Apart from these challenges, the classical geometric approaches require a great

deal of personalization on their low-level features, making it difficult to adapt to robust

real-world applications. Also, a great deal of prior knowledge is required to fine-tune

these systems for real-world applications. One of the fundamental assumptions in

which a wrench can be thrown in the classical geometric approach is that it assumes

the world to be predominantly static.

These are the issues that deep learning Visual Odometer hopes to address. The

deep learning approach to Visual Odometry is based on learning from high-level

appearance present in the environment. Deep learning models can be trained on

large, diverse, and robust datasets, and these models can learn and make inferences

with significantly less low-level design.

1.1 Problem Formulation

The proecess of defining the Visual Odometry problem by beginning with an

agent which moves through an environment capturing images from a rigidly attached

camera at discrete times k [29]. When there is the use of a monocular system the
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sequence of images can be represented as,

I0:n = (I0, ..., In). (1.1)

In the above equation, the term I0:n encapsulate all the images present in a particular

sequence of images. The camera coordinates through the temporal instance of k

can be related with the previous instance k − 1 using the rigid body transformation

formula of the following form:

Tk,k−1 =

Rk,k−1 tk,k−1

0 1

 . (1.2)

In the above equation, the term Tk,k−1 is known as the essential matrix, the term

k and k-1 denote the current image and previous image from which this relation is

obtained. R is termed as the rotation matrix of the rigid body camera and t is defined

as the transnational vector. Another important term is the set of camera poses which

can be defined as the set of camera poses given by C0:n = C0, ..., Cn. C9:n is the

position of the camera beginning from the global reference to the latest image present

in the sequence. The global reference is nothing but the camera’s coordinates for the

first image present in the sequence. All subsequent camera positions are calculated

in reference to the translational and rotational changes of the camera with respect to

the global reference.

These camera poses contain the set of transformation of the camera with respect

to the starting coordinate frame of the camera in the beginning of the sequence. If the

agent is in motion, then the current pose at a temporal instance k of the camera can

be calculated from concatenating all the transformation the camera has undergone

until the previous temporal instance of k-1, and can be expressed in the following

manner:

Ck = Ck−1 ∗ Tn (1.3)
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In the above equation, Ck is defined as the current camera coordinate. It is

calculated as a result of the product of the coordinate of the camera from the previous

image frame denoted by Ck−1 and the essential matrix denoted by Tn. The primary

goal of Visual Odometry is that we are able to discern the relative transformation of

the images present in a temporal manner and that we are able to concatenate all the

trajectories of the camera to estimate the full trajectory that the camera has taken

from k=0 to n.

1.2 Assumptions

A few assumptions that Visual Odometry makes which need to be elaborated.

These are:

• There is sufficient illumination in the environment. This to ensure that distinct

features can be descended from one sequence to another.

• There is a dominance of static scenes over moving objects.

• The texture of the images present in the sequence are well defined. This is to

ensure that the apparent motion between sequences is extracted.

• There is a sufficient overlap between consecutive sequences.

1.3 Organization of the Thesis

The first chapter gives an introduction to Visual Odometry, the process by which

the problem is formulated and the assumptions that Visual Odometry makes. The

second chapter goes into the classical Visual Odometry primarily focusing on the

feature extractors and the feature matchers. The feature extraction methods we

will be looking into will be ORB and SIFT, and the feature matching methods we
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will be looking into will be will the Brute Force Matcher and the Fast Library for

Approximate Nearest Neighbors.

The third chapter delves into a novel deep learning model released by the company

Magic Leap which is the combination of the feature extractor SuperPoint and the

feature matched SuperGlue. In the fourth chapter we will look into the Karlsruhe

Institute of Technology and Toyota Technological Institute dataset in detail, and

explain the experimental setup in which we prove using monocular grey scale images

that the deep learning model is able to perfume better than the classical geometric

methods. In the fifth chapter make inferences about the results obtained and also

chalk up the future work that is possible.

1.4 Contributions

The following contributions have been made in this body of work:

• An inferential analysis has been performed on the SuperPoint [10] model to

obtain the throughput and the latency.

• Extensive analysis is performed on the Optimal Transport problem and the

log-based Sinkhorn algorithm to showcase why the deep learning model takes

significantly more compute time compared to the classical geometric models.
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Chapter 2

CLASSICAL METHODS FOR VISUAL ODOMETRY

The classical geometric approach is a structured pipeline that begins with the

input data. In this body of work, this will be the monocular sequences of grayscale

images. The input images are first fed to the feature detector when the features of

interest are detected and extracted. These points are then passed on to the feature

matchers, which give us the number of matching features between two images. Finally,

we feed the change in features to a pose estimation method that gives us the robot’s

position in space.

Figure 2.1: The above pipeline gives the classical geometric approach. The latter
pipeline gives us the formulation of the deep learning approach to visual odometry.The
Feature Detection, Feature Matching and Feature Matching are all performed by the
deep learning model. Figure Source [33].

.

It begins with defining a feature; a feature is a token of data that can be used to
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solve a specific computational task. Features in images are primarily two types known

as key point features and edges. Key point features are localized points of interest

or a group of pixels surrounding a point of primary interest. Edges may be defined

as images’ features that can be matched based on their orientation and edge profile.

Edges enable us to distinguish the distinctness of boundaries in objects present in an

image.

Figure 2.2: Figure showcases the monocular visual odometry process. Images are
concatenated to obtain the essential matrix, which provides rotational and transna-
tional information for the agent. Figure source [34].

Feature detection is the ability of an algorithm to extract key points of interest.

A key point of interest is a point in an image that possesses a unique texture. For a

point in an image to be a key point of interest, it must be well localized in the image.

The key point of interest must also be stable under local and global perturbations.

This means that even if there is a change in illumination in the image domain, the

key point of interest must still possess the ability to be reliably computed with a high

degree of repeatability. Another significant output of feature detection is the feature

7



descriptors. Feature descriptors help store unique and interesting information about

an image in the form of a vector. Feature descriptors are essential because even if

the image were to undergo a transformation, the information contained within the

feature is invariant to transformations. Therefore we can find a specific feature in an

image even after an image has been transformed. This body of work analyzes two

classical geometric feature matchers, SIFT(Scale Invariant Feature Transform) and

ORB(Orient Fast Rotate Brief).

Feature matching is the ability of an algorithm to establish a relationship be-

tween two images that either contains the same object or scene. The process involves

matching the key point of interest between images in conjunction with information

from the respective image descriptors. The feature matchers we have chosen for our

experimental analysis are the Brute Force Matcher and FLANN (Fast Library for

Approximate Nearest Neighbors).

2.1 Scale Invariant Feature Transform

The Scale Invariant Feature Transform or SIFT [18] is a proprietary algorithm in-

vented by David Lowe in 1999. The SIFT algorithm is a feature matching algorithm

that enables the detection of, describe and match local features in an image. The fea-

tures extracted by SIFT are not affected by any changes made by scaling and rotating

an image. It is also partially able to handle changes in illumination. The features

extracted do not contain much noise and occlusion and are well distributed in the

image domain. The features extracted by SIFT fall under four levels of computation.

2.1.1 Scale Space Extrema Detection

Scale Space Extreme Detection involves the identification of well-defined key

points.The process of scale-space detection begins with the definition of the scale-
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Figure 2.3: The scale space images which are present on the left are obtained by
convoluting images using Gaussian process. The Gaussian space which are next to
each are taken and their difference is how we obtain the Difference of Gaussian(DoG).
Figure Source [19].

space of an image denoted by L(x, y, σ).The scale space is obtained by convoluting

the input image with a variable-scale Gaussian by the following equation:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y). (2.1)

The variable Gaussian can be further be defined as:

G(x, y, σ) =
1

2πσ2
e−(x2+y2/2σ2). (2.2)

After this, the image is convoluted or warped using Gaussian filters, and the differ-

ence of successive Gaussian-image blurs is calculated. This process is known as the

Difference of Gaussians(DoG). The following formula defines the DoG of an image:

D(x, y, σ) = L(x, y, kiσ) − L(x, y, kjσ). (2.3)
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The Gaussian blurred is applied to an image at different scales. After the DoG

images are obtained, the key points are gathered by taking the maxima and minima

of the DoG images across different scales. A candidate set of key points are finally

extracted at the end of this step. A candidate key point has defined a keypoint whose

pixel value is either equal to the minimum or the maximum of all the pixels present

in that image.

2.1.2 Keypoint Localization

Figure 2.4: The value which pertain to the maxima and minima of the difference
of gaussian’s is obtained by taking a 3x3 region in which 26 neighbors are compared
around the selected key point.Figure Source [19].

In the previous step, we were able to find the candidate key points in a group of

pixels. In this step, we would like to precisely fit the nearby data to obtain the scale,
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ratio of principal curvatures, and location. This process helps us reject key points

which are poorly localized or are sensitive to noise.

Interpolation is done upon each candidate keypoint by using the nearby data to

accurately localize the keypoint. The interpolation is performed by using a quadratic

Taylor expression of the DoG, keeping the origin the same as the candidate keypoint.

The Taylor expansion is as follows:

D(x) = D +
∂DT

∂X
+

1

2
XT ∂

2D

∂X2
X. (2.4)

Key points with low contrast are discarded, this is done if the value of the second-

order Taylor’s series expansion of is computed at the extremum. If the contrast value

falls below the threshold of 0.03, the candidate key point is no longer considered.

Although rejection of low contrast does improve stability, further improvements

can be made to improve the stability. The Difference of Gaussian tends to pick up

on edges that are not well defined, leading to an introduction of a small amount of

noise. This noise can be explained due to the nature of the Difference of Gaussian to

have a high degree of affinity for edges. This leads the Difference of Gaussian to have

a degree of curvature along a poorly defined edge. This large principal curvature for

the poorly defined edge can be defined with the help of a Hessian Matrix as follows:

H =

Dxx Dxy

Dxy Dyy

 . (2.5)

In the above equation D represents the principal curvature of an undefined edge.

In the above equation, the eigenvalues of the matrix are proportional to the value of

D. To determine the trace and determinant of the matrix; we choose an arbitrary

value that is assumed to be the largest and smallest value in the matrix. The largest

value is assigned a variable L and the smallest value S; it is also arbitrarily taken

11



that Dyy is the largest value and Dxx is the smallest value. Then the trace and the

determinant are calculated as follows:

det(H) = Dxx ∗Dyy −D2
xy = L ∗ S, (2.6)

Tr(H) = Dxx + Dyy = L + S. (2.7)

To ensure efficient computation we ensure that the ratio of principal curvature

is less than a defined threshold. If the threshold were to be defined by t. Then the

condition to ensure that efficient computation occurs is as follows:

Tr(H)2

Det(H)
<

(r + 1)2

r
. (2.8)

2.1.3 Orientation Assignment

In this step of the algorithm, the key points that remain are given an orientation

depending on local image gradient directions. This is where the key point descriptor

can be given in relation to its relative orientation; by doing so, the feature descriptor

is mutually exclusive to any rotation of the image. The computation begins in a

scale-invariant manner by taking the Gaussian smoothed image defined as L(x,y,σ).

The magnituxde of the gradient and the orientation are found using the following

formulas:

m(x, y) =
√

(L(x + 1, y) − L(x− 1, y))2 + (L(x, y + 1) − L(x, y − 1))2, (2.9)

θ(x, y) = tan−1((L(x, y + 1) − L(x, y − 1)/L(x + 1, y) − L(x− 1, y)). (2.10)

The above operations of magnitude and direction of the gradient are performed on

every pixel, which is considered as a neighbor to the key point in consideration. These

calculations lead to constructing an orientation histogram consisting of 36 bins, where

each bin denotes a 10-degree angle. The more dominant an orientation, the higher

the corresponding peak of that angle bin is.
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Each peak in the histogram is symbolic of one specific direction the local gradient

can take. Once the selection of the highest peak is made, all other peaks which are in

the range of 80 percent of the highest are given the same orientation as the orientation

of the highest peak. If there is more than one peak with the same magnitude as the

highest peak, then more than one key point is generated with different orientations.

About 3/20th of the points are provided with more than one orientation. This is to

ensure stability during the feature matching process. The final step in the orientation

assignment is to fit a parabola. The parabola is fitted onto the top three highest

values of the histogram to ensure the peak position is assessed with the best possible

accuracy.

2.1.4 Keypoint Descriptor

In the final step of the algorithm, it is ensured that each key point is computed so

that it maintains a high degree of distinctiveness and, to a certain degree, is mutually

exclusive to changes in illumination. This procedure is carried out to the image

nearest in scale to the selected key point.

Figure 2.5: Formation of a keypoint descriptor in the SIFT algorithm. Figure Source
[19].
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The operations are performed on the 4x4 neighborhood of the key point. These

neighboring points can be further classified into eight bins given their respective ori-

entation histograms. The histogram is generated by obtaining the orientation samples

of the neighboring 16x16 pixels of the key point. The magnitudes of the histogram

are further weighted by a Gaussian function with σ equal to one-half the width of

the descriptor window. The combined values of these histograms are obtained, and a

final descriptor vector is obtained.

The final step in generating the keypoint descriptor is to reduce any effects which

might be brought about by changes in illumination. The process begins with the

normalization of the feature vector to a unit length. The normalization of the feature

vector helps in preventing changes that may occur when the contrast of an image

changes. The contrast of an image changes when the value of a group of pixels

is changed when the group of pixels is multiplied by a constant. It also helps the

feature change when brightness changes occur. Brightness change occurs when a

group of pixels has a constant added to them.There is another kind of illumination

change known as non-linear illumination change; this occurs during camera saturation

n or when there is a change to the 3-D surface. To combat the effects of non-linear

illumination change, the feature vector is normalized to no more than 20 percent the

length of the normalized unit length.

2.2 Oriented Fast and Rotated Brief

Oriented FAST and Rotated BRIEF or popularly known as ORB[27], was created

by Ethan et al.; at OpenCV labs. ORB was conceived as an open-source alterna-

tive, as SIFT is a patented algorithm. The ORB algorithm can be segmented into

three different methods: feature extraction, generating feature point descriptors, and

feature point matching.
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Figure 2.6: Visualization of ORB matching process when there is a change in orien-
tation to the image.The green lines represent correct matches and the red spots are
keypoints extracted which are matched. Figure Source [20].

2.2.1 Keypoint Extraction

The ORB algorithm employs the FAST algorithm or features from accelerated

segment test algorithm to detect key points. The fundamental idea behind this al-

gorithm is that if a selected pixel showcases different properties from its neighboring

pixels, then that selected pixel may be considered a corner point. The process of

Figure 2.7: ORB pipeline. Figure Source [20].

detecting a key point begins by selecting a single pixel on an image. Let us name

the selected pixel as m, the brightness of the image may be defined by Im and the

brightness threshold of the image is defined by a value T . We then consider the

selected pixel m as the center and go on to the select the neighboring 16 pixels to

the center m.The criteria for selecting these pixels is that we consider the pixel m
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as the center and draw a circle around it encapsulating the neighboring 16 pixels.

Then these surrounding 16 pixels would be encapsulated within this circle. After this

process we compare the gray-scale value of the center pixel m and the neighboring

pixels present within the circle. If the brightness of the selected 16 pixels is greater

than the value of Im + T or less than the value of Im − T , the selected pixel m is

considered as a key point.

Figure 2.8: Corner detection performed using the FAST algorithm on the key point
p.The pixels around the point p have a brightness greater than or less than by a
certain threshold.Figure Source [26].

In the previous step the FAST[32] algorithm provides a large number of key points

and there is no directional information which provided by the FAST algorithm. There-

fore an improvement is made to the FAST algorithm by calculating the Harris response

values which sorts the key point according to their gray-scale values and select only

the first-N sorted points. The Harris response value is calculated using the following

formula:

R = det(M) − k(trace(M))2, (2.11)

M = Σw(x, y)

 I2x IxIy

IxIy I2y

 . (2.12)
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In the above equations R is the Harris response values, w(x, y) is the image window

function and M is a 2x2 matrix. The variable Ix gives us the horizontal component

of the key point and Iy gives us the vertical direction of the key point.

The next step is to construct image scale pyramids and are sampled on each layer

to extract FAST feature key points and ensure an addition of scale invariant to these

key points. After the identification of the primary key point we would like to add the

component of direction to the key points. The direction component is introduced to

the key point with the help of the Intensity Centroid Method. The process begins

with the selection of a small block in an image.

Let us name this image block as X. The moment the image block is defined using

the following equation:

mpq =
∑

(x,y)∈B

xpyqI(x, y); p, q = 0, 1. (2.13)

In the above equation x and y are pixel coordinates in the image I(x, y). I(x, y)

is nothing but the gray scale value corresponding to the selected pixel. The centroid

of the image block X is chosen as,

C =

(
m10

m00

m01

m00

)
. (2.14)

The term m00 is the first instance of the image block and the first moment of the

centroid of the image block is given by (m10,m01). In the final step the geometric

center of the block O is connected to the centroid X and we obtain a vector O⃗X, and

the direction of the key point is defined by:

θ = arctan

(
m01

m10

)
. (2.15)

By obtaining the values of C and θ the keypoints extracted by ORB have become

scale invariant and rotational invariant in nature.
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2.2.2 Generating Keypoint Descriptors

Once the keypoints are obtained from the FAST algorithm, we employ an improved

version of BRIEF[21] to assign a descriptor to each keypoint. The BRIEF algorithm

is a binary vector descriptor, and is of the following form:

τ(p;x, y) =


1 p(x) < p(y)

0 otherwise

. (2.16)

In the above equation p(x) signifies the gray scale value along the x-axis of the

keypoint and p(y) is the gray scale value along the y-axis of the keypoint. To minimize

the effect of any noise, the image is run through a Gaussian filter. Now if we were

to take the chosen keypoint as the center m, and we take a neighborhood window

of pixels of size MxM. From this neighborhood window we select a random number

of pixels N(the default value of N is usually 256). After the selection of the N

keypoints are made we check the brightness value according to the following equation

and perform the binary assignment:

θ = arctan

(
m01

m10

)
. (2.17)

In the end the algorithm by obtaining an N-dimensional vector consisting of N-

binary strings and is as follows:

fN(p) = Σ1≤i≤N2i−1τ(p;xiyi). (2.18)

One of the crucial issues with the above problem is that the above output is not

rotation invariant. This will lead to loss in information if the rotated. We now employ

an improved version known as Steer BRIEF to obtain a directional dimension to each

key point. This is done by introducing a rotation matrix Rθ:
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Rθ =

 cosθ sinθ

−sinθ cosθ

 . (2.19)

Matrix Rθ for each set of keypoints gives us a new matrix Q:

Q =

x1, x2, ..., xN

y1, y2, ..., yN

 . (2.20)

The final directional descriptor is obtained in the following form:

gN(p,θ) = fN(p)|(xi, yi) ∈ Qθ. (2.21)

2.3 Feature Matching

The two matchers considered for ORB and SIFT are the Brute-Force matcher[15]

and Fast Library Approximation for Nearest Neighbors[23]. The Brute-Force Matcher

pairs well with ORB as it is a feature extractor that produces binary descriptors.

Moreover, the reason to pair FLANN with SIFT is similar lines in reasoning as

FLANN handles floating-point descriptors more easily. The Brute-Force matcher

is straightforward in its approach, such that it takes the feature descriptor from one

image and tries to match it to all the possible feature descriptors in the concurrent

image. The Brute-Force Matcher uses what is known as the Hamming distance for

string-based feature descriptors. There are two kinds of Brute-Force Matchers: the

regular match and the k-nearest neighbor match. The advantage of the k-nearest

neighbor variant of the brute-force matcher is the number of matches specified by

the user, and the k-nearest neighbor has been used in this body of work. Fast Li-

brary Approximation for Nearest Neighbor is also popularly known by its popular

acronym FLANN. FLANN, unlike Brute-Force matcher, is not a single algorithm but

is a collection of algorithms to perform a fast search on the nearest neighbors. The
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advantage of FLANN over Brute-Force matcher is that it performs well on features

that have high dimensionality and large datasets. FLANN has two parameters that

need to be specified to get a specific algorithm from the FLANN package. The first

parameter is a dictionary IndexParams which specifies the algorithm used in the fea-

ture matching process from the FLANN library. A second parameter is a dictionary

known as SearchParams. The parameter SearchParams indicates to the algorithm the

number of traversals that need to be made recursively. The higher the value assigned

to SearchParams, the higher degree of precision is obtained, but this is achieved at

the cost of an increase in computational time.

20



Chapter 3

DEEP LEARNING APPROACH FOR VISUAL ODOMETRY

Deep learning employed in Visual Odometry has shown a great deal of promise in

the last few years. It is able to infer high-level representations in a more robust and

dynamic manner, with very little fine-tuning. Most deep learning models are trained

on large datasets with a lot of visual information, enabling them to be readily em-

ployed in diverse environments. The model presented in this body of work combines

two models, Super point and SuperPoint and SuperGlue. The SuperPoint[10] model

helps in keypoint detection, and the SuperGlue[28] model enables us to match these

key points over consecutive sequences.

3.1 Superpoint

The primary step of any Visual odometry task is the extraction of keypoint. It

has been shown repeatedly that convolutional neural networks are inherently better

than the hand-tuned classical geometric methods. The SuperPoint algorithm is con-

structed such that there is no human supervision and is a completely self-supervised

solution with the help of self-training. The self-supervised model is trained on a large

synthetically generated ground truth interest point dataset rather than using a con-

ventional dataset which is human annotated. The self-supervised training begins by

letting the initial untrained detector be trained on a dataset of synthetic 2d-images.

The task of the untrained detector is to locate key points in simple 2D images. The

resulting trained detector after this task is called the MagicPoint detector. When the

MagicPoint detector is tested for real-world images, it suffers from domain adaptation

problems. To bridge the gap, a multi transform technique is applied, which is known
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as homographic adaptation.

3.1.1 Homographic Adaptation

Figure 3.1: Process of homographic adaption.Figure Source [10].

Homographies are applied to images to provide a slight rotational variance to an

image. Such a transformation helps the model view an image from different viewpoints

just from a single image. The significant advantage of applying homographies is that

they do not require any spatial information and can almost be applied to any image.

This is why homographies form the core of self-supervised learning. The selection of

the homography matrix needs to be carefully done. A well-selected homography must

represent a plausible camera orientation in the real world.

To improve the ability of SuperPoint to work well on 3D objects, more than one

homographic warp is required. The number of homographic warps for an image is con-

sidered a hyperparameter which can be denoted by the term Nh.The first homographic

warp performed is not considered as performing any homographic adaptation and is

considered as the zeroth point of the homographic adaptation process. To determine

the optimal number of homographic adaptations, an experiment was conducted with

small, medium, and large numbers of homographic warps applied. A small number

of homographic warps equal to 10, medium equal to 100, and high which is equal to

1000.It was observed that 100 was the optimal number of homographic warps needed
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to obtain optimal results. Above 100 warps, it was observed that it was diminishing

in returns.

Figure 3.2: The figure shows improvement in keypoint detection with iterative ho-
mographic adaptation.The first row is before any homographic adaptation, the mid-
dle and last row shows an improvement with iterative homographic adaptation.Figure
Source [10].

3.1.2 Problem Formulation

Figure 3.3: Figure represents SuperPoint self-supervised learning. a) MagicPoint
training b) Homographic adaptation performed on MagicPoint to obtain SuperPoint
c) Training of SuperPoint.Figure Source [10].
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We define the keypoint of interest as fθ(), I as the input image, x the resulting

keypoints and H a random photography such that:

x = fθ(I). (3.1)

An idea keypoint in an image should be one unaffected by any homographic trans-

formations. The function fθ() must be covariant to as H follows:

Hx = fθ(H(I)). (3.2)

The primary idea of homographic adaptation is to perform an empirical sum that is

over a sufficiently large sample of random H. The resulting aggregation is what we

improved with as the new and improved SuperPoint detector:

F̂ (I, fθ) =
1

Nh

Nh∑
i=1

H−1
i fθ(Hi(I)). (3.3)

3.1.3 Architecture

The SuperPoint algorithm was designed to take images of full size and produce

crucial key points and descriptors of fixed length in a single forward pass. The model

has one shared encoder and two decoders. Each decoder is responsible for performing

one function. One of the decoders is responsible for finding the key points and the

other for producing the respective descriptor for the generated key point. This parallel

process is quite different from the traditional approach as; first, the key points are

detected, and then the descriptor is defined.

The functionality of the shared encoder is to reduce the dimensionality of the input

image, which is passed into the model completely. The shared encoder comprises of

spatial downsampling, convolutional layers and non-linear activation functions. The

shared encoder reduces the dimensionality of the image of the dimensions of HxW

as Hc = H/8 and Wc = W/8. The pixels we obtain from the resulting output are
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Figure 3.4: Architecture of the SuperPoint Algorithm. The model consists of one
shared encoder, The two descriptors present are the keypoint descriptor and feature
descriptor.Figure Source [10].

known as cells. The encoded images I ∈ RH×W to a tensor B ∈ RHc×Wc×F off a

smaller dimension and greater channel depth which implies that Hc < H, Wc < W

and F > 1.

The Key Point decoder was designed with the intent to keep the computational

cost at a minimum. To reduce the computational cost, to mitigate this an explicit

decoder is constructed and it also avoids any unsmiling of layers. The detector is

constructed such that it computes X ∈ RHc×Wc×65 to give us an output tensor of the

form RH×W .The number 65 corresponds to the number of channels. These channels

correspond to an 8x8 grid which is non-overlapping in nature, and it also contains a

dustbin dimensions where the points not considered keypoints are discarded. After

each channel has a softmax performed on it, the dustbin dimension is discarded. The

final reshaping is of the formRHc×Wc×64 =⇒ RH×W .

The descriptor decoder computers a vector V ∈ RHc×Wc×D. These vectors under-

goes two important processes before it is outputted the first one is bi-cubic interpo-

lation and the second is L2-normalization. Bi-cubic interpolation is a mathematical

operations which assists in the interpolation of data points in a matrix. The purpose
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of the bi-cubic interpolation is to perform image scaling to obtain difference scales

of the same image. The L2-normalization is performed as a normalization technique

that transforms the matrix such that sum of the squares of the row is equal to 1.

The SuperPoint algorithm is trained on two datasets. Initially a base detector

is trained on the Synthetic shape dataset to obtain the MagicPoint algorithm. The

MagicPoint algorithm is further trained on the MS-COCO [17] dataset with homo-

graphic adaptations to the images to obtain the SuperPoint algorithm. The difference

between the MagicPoint and the SuperPoint algorithms is only the descriptor decoder

head which is present in SuperPoint and not in MagicPoint.

3.1.4 Model Loss

The loss of the SuperPoint model is the combination of the key point detector and

the key point descriptor head losses. The loss of the key point detector is denoted by

Lp. The loss of the key point descriptor is denoted by Ld. The final loss is defined as

follows:

L(X,X ′, D,D′;Y, Y ′, S) = Lp(X, Y ) + Lp(X
′, Y ′) + λLd(D,D′, S). (3.4)

In order to understand the above equation two images A and B can be taken. This

is because the model is able to take an input of two images. The X,Y correspond to

the coordinates of a key point in image A. The notation D represents the descriptor

of that key point in image A. Similarly the X’ and Y’ are the coordinates of the key

point in image B and the notation D’ represents the descriptor information for the

chosen key point in image B. The value λ multiplied to Ld is nothing but a constant

factor present to balance out the final loss.

The loss of the key point detector can be calculated using the following equation
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:

Lp(X, Y ) =
1

HcWc

HcWc∑
h=1;w=1

lp(xhw, yhw). (3.5)

In the above equation Hc and Wc are the modified dimensions of the image when

they are passed through the shared encoder. The term xhw belongs to X. The yhw

belongs to Y which is the ground truth. The term lp can be further be calcualted as

follows:

lp(xhw, y) = −log
exp(xhwy)∑65
k=1 exp(xhw)

. (3.6)

The descriptor loss is given by the following equation:

L(D,D′, S) =
1

(HcWc)
2

Hc,Wc∑
h=1;w=1

Hc,Wc∑
h′=1;w′=1

ld(dhw, d
′
h′w′ ; shwh′w′). (3.7)

In the above equation, the terms dhw and d′h′w′ are the descriptor loss for the images

A and B taken by the algorithm. The term S signifies the complete sequence of

images that will pass through the algorithm. The term ld in the above equation can

be further be expanded as follows:

ld(d, d
′, s) = λd.s.max(0,mp − dTd′) + (1 − s).max(0, dTd′ −mn). (3.8)

3.2 Superglue

Similar to how the classical geometric methods consisted of a keypoint detector

and a key point, the keypoint matcher for the proposed deep learning model is Super-

Glue created by the company Magic Leap. SuperGlue is essential to the localization

and mapping approach for keypoint matching. There is a key point detector in the

usual localization and mapping methodology that encompasses the front end. There

is a backend that involves using an optimization methodology like bundle adjustment.

The algorithm is currently designed to work with a set of image pairs and strives to

take a learning-based approach to the features of the pair of images.
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Figure 3.5: SuperGlue acts as middle end.It provides a multi-headed graph based
attention mechanism and an optimal matching layer.Figure Source [28].

To formally define the problem, let us take two images, X and Y ; the input infor-

mation we would obtain from these two images are the key points and the descriptors.

We can define the key points as k and the descriptor as m; these two values form

the local features (k,m). The key points contain three main sources of information

the x coordinate and y coordinate of the image and the level of confidence defined

by c. The confidence provides us with information regarding the chosen key point.

All this information put together represents the keypoint k, k = (x, y, c). If the re-

projection error is stated to be less than 1 pixel, the keypoint is considered stable. If

the reprojection error is greater than 1 pixel but less than 5 pixels, it is said to be

considered unstable. The algorithm is split into two modules, the Attentional Graph

Neural Network and the optimal matching layer.
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Figure 3.6: First block is the Attentional Graph Neural Network and the second
block is the Optimal Matching Layer. The feature descriptors obtained from the
Attentional Graph Neural Network is conveted to a soft partial matrix by the Optimal
Matching Layer.Figure Source [28].

3.2.1 Attentional Graph Neural Network

The output of the SuperPoint is taken as the input for the SuperGlue network.

The information that is obtained from the SuperPoint algorithm is the key point

information and the key point descriptor information. The first block of the Super-

Glue network, which is the Attentional Graph Neural network attempts to extract

the degree of similarity between local descriptors.

Each key point is given a preliminary representation in the form of p0i . The key

point is then passed through a key point encoder module. This key point encoder

module is nothing but a Multi-Layer Perceptron (MLP). This multi-layer perceptron

encodes this initial key point into a high-dimensional vector and the initial vector

representation we obtain is as follows:

v0i = di + MLPencoder(p
0
i ). (3.9)

3.2.2 Multiplex Graph Neural Network

A multiplex graph[22, 24] is a graph in which the nodes of the graph are repre-

sented in different layers, and each layer consists of an unweighted connection between

itself and other nodes. The nodes present in this graph are the key points that are
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Figure 3.7: An illustrative example of self and cross attention.Figure Source [28].

common in both the input images. The multiplex graph generated has two kinds of

unweighted edges. The first one is a self-directed edge Eself which connects a selected

keypoint in an image to the respective edges continued within that image. The other

type of edge is the cross-directed edge Ecross. These connect a specific key point to

key points present in another image. The information between the two kinds of edges

is connected with the help of a message-passing formula[7, 14]. Using this message

passing formula, the initial states of these key points are updated as more and more

key points are added from subsequent layers. The message passing formula(mpg) is

key component in traversing between layers for a select image(img). If the layer is in

an odd sequential layer then the edges of that layer are considered self and if even

they are considered to be cross edges. The formula is as follows:
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layer+1ximg
i =layer ximg

i +

([
|layerximg

i ||mpfϵ→i|
])

. (3.10)

The message passing formula is computed with the help of an attention mecha-

nism. The attention mechanism for Eself is self-attention [31] and for the Ecross it is

cross-attention. The term αij is the attentional weight. The message passing formula

is the sum of the weighted average as follows:

mpfϵ→i =
∑

j:(i,j)∈Edge

αijvj. (3.11)

In the above equation αij is considered as the weight of the attention mechanism.

The weight factor αij is calculated with the use of a softmax function.The three main

values to calcualte are the key, query and value. The inputs of the softmax function

can be considered as a key and query. It is calculated as follows:

αij = Softmaxj(q
T
i kj). (3.12)

A linear porjection of the feautres of the graph network helps in calulating the

three main values. Each layer present in the graph network has its own unique set of

key, value and query values. The following methods are the way in which the query,

key and value are calculated:

qi = W
(l)
1 xQ

i + b1. (3.13)kj
vj

 =

W2

W3


(l)

+ xS
j +

b2
b3

 . (3.14)

The above process softmax databse retrival helps in improving the expressivity of

the network. This process also aids the network in learning specific features from a

group of key points. Information can be retrieved based on either the features or key

point locations which have embedded into xi by the multi-layer perceptron. It also
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helps in retrieving information from nearby key points or the relative positions of the

nearby key points. The final descriptor vector for the selected image is represented

in the form of a linear projection as follows:

fA
i = W.(L)ximg

i + b. (3.15)

The above calculation is perfumed for all key point of the selected image and is

done for all the images present in the sequence.

3.2.3 Optimal Matching Problem

After obtaining the final feature descriptors, it is converted into a score matrix.

The new score matrix is from the combination of the feature descriptors and is sparse

in nature. The Sij is obtained by taking the Frobenius inner product of the obtained

final feature descriptor:

∑
i,j

SijCij, C ∈ [0, 1]M×N , (3.16)

C1N ≤ 1M , (3.17)

CT1M ≤ 1N . (3.18)

After the formulation of the score matrix, we would like to distill some key points

out of it to prevent any occlusion. This is by a process where the rows and columns

of the score matrix are augmented. Occlusion is when one key point in an image

matches more than one key point in the subsequent image. Key points that do not

have a match are also put into the dustbin. This augmented portion of the matrix

is known as the dustbin to take into key point values that are not of use. The score

matrix after the dustbin augmentation is as follows:
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S̄i,N+1 = S̄M+1,j = S̄M+1,N+1. (3.19)

The final step is the optimization of the above equation. The formulation of the

optimization problem is similar to the optimal transport problem[25]. The method

used in solving this is an entropic regularization algorithm known as the Sinkhorn

algorithm[8]. The entropic regularization process converts the sparse matrix with low

entropy into a soft partial matrix of high entropy.

3.2.4 Model Loss

The loss of the superglue model is as follows:

L = −
∑

(i,j)∈M

logP̄(i,j) −
∑

logP̄i,N+1 −
∑

logP̄M+1,j. (3.20)

In the above equation the first term is the normal coupling matrix. The second

term is when the column is augmented and the third term is when the row is aug-

mented by the dustbin augmentation.The matching of key point is performed in the

image domains. The minimization of the log-likelihood helps achieve an optimal value

for the loss function, in a convex optimization sense. If there are key points which are

not able to be matched then they are removed. The matching process is done using a

re-projection method of key point present in the locality. The SuperGlue algorithm is

a trained in a supervised manner to ensure there is a high degree of precision and re-

call. The supervised training process is done by using the ground truth. The primary

aim of this loss function is to reduce the negative log value of P .
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Chapter 4

EXPERIMENT

4.1 Karlsruhe Institute of Technology and Toyota Technological Institute Dataset

Figure 4.1: There are four cameras present. Camera 0 and Camera 1 gray scale
images. Camera 1 and Camera 2 color images. Velodyne laser present on the center.
The GPS is present on the rear side of the car.Figure Source [13].

The Karlsruhe Institute of Technology and Toyota Technological Institute dataset[13]

is one of the most prolific benchmarks for Visual Odometry and SLAM. The dataset

was created by capturing Visual Odometry data from the city of Karlsruhe in Ger-

many. The curation of the dataset has been done using a Volkswagen Passat station

wagon. This car has been fitted with many crucial sensors that give rich sensor data

about some regions of the city of Karlsruhe in Germany. The car is fitted with four

cameras—two cameras to capture grayscale video and two cameras to capture the

RGB-graded images. The car is fitted with a Velodyne Laser. This laser helps us

create point cloud images and give us a more 3-dimensional perspective of the cars

surrounding. There is also a Global Positioning System on the car to give accurate
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results of where the car is present. The dataset has been created to ensure diversity

in data, and the sequences created have been from roadways, residential areas, cities,

campuses, and even first-person data.

Figure 4.2: Regions in the city of Karlsruhe added in the dataset in red, black and
blue. The colors represent GPS strength. Red for highest accuracy, blue having no
corrections. The parts not considered are in black.Figure Source [13].

The visual odometry section of the data is the data is that will be used in the
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experiment. This section consists of the two main files, namely sequence and poses.

The sequence folder consists of various sequence folders present in it. Each sequence

is a video that has been sliced into images. It is from these images that the motion is

extracted. The second folder is the poses folder; this folder provides what is known

as the ground truth information. The ground truth information helps give the true

position of the car. It also gives a reference value to which the estimated path of our

methods can be compared to the real value using the ground truth value.

4.2 Formulation

The experiments were performed on a system with a GTX1080 card and an intel

i7 processor. The system also contained 8GB of Visual Random Access Memory

capacity and 32GB of system Random Access Memory capacity. The performance

metrics obtained are for this system configuration. The number of Sinkhorn iterations

were kept at 400, for the SuperGlue algorithm.

Each pair of images in a sequence folder are first passed through the keypoint

detector. After the key points have been extracted for both the images, they are

then passed on to the key-pint matcher, which extracts the similarity and differences

in the image. After this, we obtain the essential matrix. The essential matrix con-

sists of both the estimated rotational and translational motion of the camera. This

information is used to plot the estimated pose by the respective keypoint detector

and matcher. The average deviation distance obtained between the estimated pose

and ground truth pose is what we obtain as the Absolute Trajectory Error[30]. The

Absolute Trajectory Error is an essential metric for comparing how different models

stack up in performance to one another.

For testing, the models have been tested on eight different sequences. These

sequences are divided into three types based on the nature of the track. The three
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Absolute Trajectory Error

Sequence

Number

Seq Length Sequence

Type

ORB+BFM SIFT+FNN SP+SG

00 4540 DB 252.0834m 30.4049m 6.9047m

02 4660 UDB 407.8469m 37.966m 16.1529m

03 800 S 28.857m 2.2497m 2.8293m

04 270 S 23.2341m 1.0637m 1.0090m

05 2760 DB 125.2752m 12.3997m 10.7522m

06 1100 S 213.7643m 3.6854m 7.3692m

07 1100 UDB 77.3247m 11.9247m 12.2798m

08 4070 DB 243.1933m 17.5910m 11.8398m

Table 4.1: The Absolute Trajectory is a measure of how much the estimated pose
of the agent has defined from the actual ground truth.

different types are straight(ST), defined bend (DB), and undefined bend (UDB).

Straight sequences are those which have little to no angular bends to them. Defined

bends are those sequences that have bends to them at a defined angle. Undefined

bends are those sequences that do not seem to have any well-defined geometric pattern

and are very skewed in their orientation.

From the results obtained, it can be observed that the difference between classical

geometric methods and the deep learning models in the straight sequence is very

minimal, and in some sequences, classical geometric models perform slightly better

than the deep learning model. In defined bends, the deep learning model tends to

be better than the classical geometric models. It is a similar case in undefined bends

where the deep learning model performs better than the classical geometric model.

From the Absolute Trajectory Error table [3], it can be inferred that the Super-

Point and SuperGlue model can perform better than the classical geometric methods.
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The model time log table

Sequence

Number

Seq Length Sequence

Type

ORB+BFM SIFT+FNN SP+SG

00 4540 DB 382.210s 784.340s 1321.062s

02 4660 UDB 423.637s 728.681s 1361.031s

03 800 S 69.522s 138.859s 233.532s

04 270 S 21.592s 46.176s 79.990s

05 2760 DB 229.439s 428.060s 801.014s

06 1100 S 95s 187.676s 321.219s

07 1100 UDB 89.824s 170.539s 363.146s

08 4070 DB 351.255s 651.527s 1210.541s

Table 4.2: The Model Time Log table provides the amount of time a specific model
takes to run a sequence and is measured in seconds.

However, in sequences that are straight in nature, the difference between SIFT and

the deep learning model is relatively minimal. In a specific instance, particularly in

straight tracks, the classical geometric model performs better than the deep learning

model.

The time taken for each model to compute a sequence has also been calculated.

This gives the run-time efficiency of the model. From the table obtained, it is quite

evident that the deep learning model has a substantially higher run time for every

sequence in comparison to the classical geometric approaches. There is also a clear

explanation as to why the deep learning model takes more time which is analyzed

in-depth in the next section.
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Figure 4.3: Workflow of OpenVINO toolkit. [1]

4.3 Superpoint Analysis

Inferential analysis is performed on the SuperPoint algorithm with the aid of

the OpenVINO toolkit. OpenVINO is a toolkit that aids in the optimization and

deployment of an Artificial Intelligence model onto various intel devices. The process

of inferential analysis of the SuperPoint algorithm begins with obtaining the ONNX

version of the algorithm. ONNX stands for Open Neural Network Exchange. The

ONNX framework provides a computational graph model of the algorithm, which is

embedded with the appropriate representation of the operations present in the model

and the kind of data the model performs computation.

After obtaining the ONNX representation, it is passed through the first module of

the OpenVINO toolkit, the model optimizer. The model optimizer is a multi-platform

transition tool. It ensures the model is optimally converted to a format that can be

easily deployed into multiple kinds of hardware. Once the model is passed through the

model optimizer, the output we obtain is known as the Intermediate Representation.

The intermediate representation provides two kinds of output files: the .xml file and

a .bin file. The XML files provide the topology of the processed model, and the bin

file provides the weights of the model. The model optimizer cuts certain parts of the

model to optimize it for the target intel hardware. The model optimizer also provides

the option to give a custom input shape that could be different from the original
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model.

Figure 4.4: Pictorial representation of latency and throughput of a neural network
model. [2]

The Intermediate Representation of the model is an input to the inference engine.

The role of the inference engine is to provide the appropriate plug-in for different

intel hardware such as CPU, GPU, and VPU. The plug-in used for the inferential

analysis of this experiment is the Intel-Xeon CPU. Inferential performance for the

Xeon processor can be obtained using the benchmark app. The two critical metrics

for a neural network model are latency and throughput. Latency can be defined as

the time it takes for a single image to pass through a model. Throughput can be

defined as the time a model takes to infer a sequence of images.

4.4 Optimal Transport Overview

The optimal has become a significant cornerstone in the field of machine learning.

It is a method that provides the ability to transmute one probability distribution to

another. In the field of machine learning in domain adaptation, color transfer, and

feature matching, to name a few of the tremendous applications of Optimal transport

problems. Optimal transport also has two very desirable qualities, which are adept to

machine learning problems. The first is the triangle inequality property which states
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Inferential Results of SuperPoint

Parameter Output

Model Read Time 14.96ms

Model Compile Time 48.92ms

Average Latency 15.79ms

Minimum Latency 14.14ms

Maximum Latency 45.82ms

Throughput 252.56fps

Table 4.3: The above table provides the latency and throughput of the SuperPoint
model.

that the sum of two sides of a triangle must be greater than that of the third side.

The second property is that it provides symmetric functions; a function is said to be

symmetric if the order of its argument does not affect the output of the function.

One of the first distance functions for the optimal transport problem is known as

the Kullback-Leibler divergence. It was one of the first equations to give the notion

of distance between two probability distributions. The Kullback-Leibler divergence

can be mathematically expressed as follows:

DKL(P ||Q) =

∫
p(x)log

p(x)

q(x)
dx. (4.1)

But the drwaback with the Kullback-Leibler divergence there are certain distributions

which when mapped are close to one another, but according to the Kullback-Leibler

divergence it equates the distance of the two probability distributions to be infinitely

distant form one another. This clearly violates the triangle inequality property. To

overcome this, another distance function was considered known as the Wasserstein

distance. The Wasserstein distance can be calculated with a simple example if there

is a certain amount of soil, which is an analogy to the first probability distribution.

Then the cost to transfer this mass of soil to another pile at a distance is known as
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the transportation matrix. There might be multiple transportation matrices that can

fit the need, but there are constraints to finding the optimal transport matrix. The

constraints for the optimal transport matrix are that the rows of the transport matrix

must equate to the original soil mass, and the sum of the columns of the transport

matrix must equal the cost of the target soil mass, this is where the alternative name

of the Wasserstein distance is also known as the earht moving distance.

4.5 Superglue Sinkhorn Analysis

When the different modules of the SuperGlue module were analyzed, the mod-

ule that took the most execution time and computational resources was the optimal

matching module. The primary algorithm present in the optimal matching module

is the Sinkhorn algorithm, specifically the log-based Sinkhorn algorithm.The analy-

sis of the Sinkhorn algorithm begins with the formulation of the Optimal Transport

Problem. The optimal transport problem involves moving one probability distribu-

tion to another. The optimal transport to be concerned with for this case is discrete

in nature. The amount of mass of one probability distribution is moved to another

probability distribution is defined as the transport matrix or, in the case of the Super-

Glue model, the score matrix. The amount of effort needed to move this mass from

one probability distribution to another. A parallel can be drawn here between prob-

ability distribution and the final feature descriptors, which are input to the optimal

matching module in SuperGlue.

As stated, the goal of the Optimal transport problem is to find the most optimal

form of transportation or the score matrix. The problem can be formulated in the

following form:

Lc = min < S, P >, (4.2)
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Figure 4.5: A visual representation of the Optimal Transport Problem. The discrete
probability distribution p(x) is converted into another discrete probability distribution
q(x)

P1N = a, (4.3)

P T1M = b. (4.4)

The problem to be solved now takes the form of a convex optimization problem.

The problem is formulated such that we maximize the transport matrix while keeping

the costs minimum using what is known as the Wasserstein distance. The constraints

for the optimal score matrix are that the rows of the matrix must sum up to the

original probability distribution, and the columns of the matrix must sum up to the

goal probability distribution. The above formulation is similar to how the optimal

matching layer module optimizes the score matrix. Linear Programming can solve

this, but as the size of the score matrix increases, the computational cost also drasti-

cally increases. This can be mitigated with the help of approximation methods which

provide an answer which is very close to the optimal score matrix. The approxima-

tion method used in the optimization process is entropic regularization. Entropic
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regularization ensures that a matrix either has a low entropy or a high entropy. A

low entropy matrix is one that is sparse in nature, and a matrix with high entropy

is said to have a matrix with an evenly distributed matrix. The Sinkhorn-Knopp,

which was the first version of the Sinkhorn, is as follows:

Figure 4.6: Psudo-Algorithm of the Sinkhorn Algorithm.Figure Source[8]

The inputs to the Sinkhorn-Knopp algorithm are the desired Score matrix upon

which the transformations need to be performed. λ also known as the entropic reg-

ularization factor; the lower the value of λ, the sparser the matrix is, the higher

the value of λ the more evenly distributed the value of the score matrix. r and c

are the original probability distribution and the target probability distribution. The

algorithm normalizes the rows and columns in an iterative fashion. In the above

algorithm the term K refers to the kernel of the cost matrix. The kernel of a matrix

gives us a map of the null vector. It can be calcualted using the following equation:

Kij = exp
(
− Cij

ϵ

)
. (4.5)

Although the above algorithm provided great strides in the efficient computation

of the optimal score matrix, there are some disadvantages to the Sinkhorn-Knopp

algorithm. One disadvantage is for higher values of λ, the values for initializing

the initial score matrix become very small. This cause two known issues which are

numerical overflow and underflow. The overflow problem occurs when the matrix
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requires more memory than the stack can provide. The underflow problem occurs

when the values of the matrix are smaller than the smallest value the computer is

designated to computationally handle.

The SuperGlue algorithm employs a variation of it known as the log-based Sinkhorn.

The log-domain Sinkhorn converts the values to the log domain where large values of λ

can be used and provide numerical stability. After the operations are performed sim-

ilarly to Sinkhorn-Knopp, the values are converted back from the log-based domain.

The disadvantage of the log-based Sinkhorn is that it consumes a lot of computational

resources due to the log() and exp() function used, which causes a dramatic increase

in computation time.
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Chapter 5

CONCLUSION

5.1 Conclusion

In comparison to classical geometric methods, the proposed deep learning model

can perform much better in almost all tracks of the KITTI dataset. The deep learning

model can perform better than the classical geometric models for tracks that contain

tracks with defined angular bends and tracks with undefined bends. A critical point to

note is that the deep learning model has not been trained on the KITTI dataset. The

SuperPoint model was trained on the Synthetic Shapes and MS-COCO datasets. The

SuperGlue algorithm was trained on the ScanNet dataset [9], a relatively large dataset

of indoor monocular sequences to obtain the indoor weights, and the PhotoTourism

dataset [6] to obtain the outdoor weights. This clearly shows the ability of the model

to learn high-level interpretations from large and diverse datasets and apply them

to specific applications. From the Absolute Trajectory Error, it is evident that the

deep learning model requires much less post-process optimization than the classical

geometric models to get an estimated path closer to the ground truth.

But the proposed deep learning model also has some observed limitations. In

tracks that are straight in nature, the classical geometric models tend to have slightly

better accuracy than the proposed deep learning model. The proposed deep learning

model also takes significant computation time, almost taking twice the time of the

classical geometric model. The proposed deep learning model requires significant

computational resources. Most of the computations performed by the deep learning

model run on the GPU, making it unsuitable for edge devices such as robots that
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have limited computational power.

5.2 Future Work

There are a number of avenues for future work. There are a plethora of optimal

matching techniques present in the current literature. One of the methods which

can prove to give a faster convergence rate to the optimal solution is the Adaptive

Primal Dual Accelerated Gradient Descent [11]. There are also other versions of the

Sinkhorn Algorithm which can be further looked into such as the Greenkhorn [16]

and Screening Sinkhorn [4].

When it comes to the computational cost of deep learning models, it can be very

high. More pertinent work can be done to make the models lightweight in order to be

able to deploy them on edge devices. The current deep learning models can work on

mitigating high computational costs incurred due to heavy matrix operations, which

require significant parallel processing power. Since this body of work focuses on an

outdoor dataset, future work may include the study to be conducted on an indoor

dataset. One of the datasets known for its good monocular visual data is the TUM

monocular visual odometry dataset [12].
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