
Attacking Computer Security

from the Perspective of Educators, Users, and Analysts

by

Erik Trickel

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2023 by the
Graduate Supervisory Committee:

Adam Doupé, Co-Chair
Yan Shoshitaishvili, Co-Chair

Tiffany Bao
Ruoyu Wang

ARIZONA STATE UNIVERSITY

May 2023

©2023 Erik Trickel

All Rights Reserved

ABSTRACT

As computers and the Internet have become integral to daily life, the potential

gains from exploiting these resources have increased significantly. The global landscape

is now rife with highly skilled wrongdoers seeking to steal from and disrupt society.

In order to safeguard society and its infrastructure, a comprehensive approach to

research is essential.

This work aims to enhance security from three unique viewpoints by expanding

the resources available to educators, users, and analysts. For educators, a capture

the flag as-a-service was developed to support cybersecurity education. This service

minimizes the skill and time needed to establish the infrastructure for hands-on

hacking experiences for cybersecurity students.

For users, a tool called CloakX was created to improve online anonymity. CloakX

prevents the identification of browser extensions by employing both static and dynamic

rewriting techniques, thwarting contemporary methods of detecting installed extensions

and thus protecting user identity.

Lastly, for cybersecurity analysts, a tool named Witcher was developed to auto-

mate the process of crawling and exercising web applications while identifying web

injection vulnerabilities. Overall, these contributions serve to strengthen security

education, bolster privacy protection for users, and facilitate vulnerability discovery

for cybersecurity analysts.

i

DEDICATION

I dedicate this dissertation to Robin Trickel, my best friend and wife, with gratitude

and love. Without your unwavering support, encouragement, and strength, this

dissertation would not have been possible. Your patience, understanding, and sacrifices

throughout this journey have been my driving force, and I cannot express how grateful

I am to have you by my side.

Thank you for being my best friend and for always being there for me.

I love you more than words can express.

ii

ACKNOWLEDGMENTS

Completing this dissertation has been an enriching and challenging experience,

and I am humbled and grateful for the support and guidance of so many individuals.

To start, none of this would have been possible without Adam Doupé and Yan

Shoshitaishvili. Their invaluable guidance has been instrumental in shaping my

research and my life over the past seven years. I would also like to thank the

other members of my dissertation committee Fish Wang and Tiffany Bao for their

contributions to this work and for being an essential part of my journey.

I am grateful to my colleagues and peers who offered their friendship, support,

and expertise, which has provided me an amazing place to learn and grow.

To my family and friends, thank you for your encouragement and support through-

out this journey. Your belief in me has been my driving force and I am thankful for

your presence in my life.

Finally, I would like to express my gratitude to Robin Trickel for supporting and

encouraging me through this process. Your strength and understanding have been

invaluable. Without you, I never could have reached this milestone.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Educators . 2

1.2 Users . 3

1.3 Developers . 5

2 CTFS AS A SERVICE . 7

2.1 Introduction . 7

2.2 Background and Motivation . 9

2.3 Design of the CTF-as-a-Service . 12

2.3.1 The Games Controller . 13

2.3.2 The CTF Instance Components . 14

2.3.3 Network Configuration . 18

2.3.4 Intelligent Component Recreation . 19

2.4 Validation . 20

2.4.1 Load Testing, Round One . 21

2.4.2 The Second Load Test—iCTF 2017 . 22

2.5 Lessons Learned . 24

2.6 Related Work . 28

2.7 Conclusion . 30

2.8 References . 30

3 CLOAKING EXTENSIONS . 35

iv

CHAPTER Page

3.1 Introduction . 36

3.2 Background . 37

3.2.1 Browser Extensions Explained . 38

3.2.2 Extension Fingerprinting and Detection 42

3.2.3 Threat Model . 45

3.3 CloakX . 46

3.3.1 XHound Analysis . 47

3.3.2 Diversification of Web-Accessible Resources (WARs) 48

3.3.3 Droxy . 49

3.3.4 Static Droplet Rewriting . 53

3.3.4.1 TAJS for Extensions . 55

3.3.4.2 Static Analysis Results . 56

3.3.5 Cloaked Extension . 57

3.3.6 Deployment . 59

3.4 Evaluation . 59

3.4.1 Functionality Experiments . 60

3.4.1.1 Low-fidelity Functionality Experiments 61

3.4.1.2 High-fidelity Functionality Experiments 63

3.4.2 Detectability Experiments . 65

3.4.2.1 Detectability Experiment Using Anchorprints 66

3.4.2.2 Detectability Experiment Using Structureprints 68

3.4.2.3 Detectability Experiment Using Behaviorprints 70

3.4.3 Detectability of CloakX . 72

3.4.4 Performance Experiments . 74

v

CHAPTER Page

3.5 References . 74

4 FAULT ESCALATION AND FUZZING WEB APPLICATIONS 78

4.1 Introduction . 79

4.2 Background . 84

4.2.1 Web Applications and Vulnerabilities . 84

4.2.2 Motivating Example . 85

4.2.3 Automated Application Testing. 88

4.2.4 Coverage-Guided Fuzzing . 89

4.3 Challenges . 90

4.3.1 Enabling Fuzzing of Web Applications . 90

4.3.2 Augmenting Fuzzing for Web Injection Vulnerabilities 91

4.4 Witcher’s Design . 92

4.4.1 Enabling Fuzzing for SQL and Command Injection Vulner-

abilities . 94

4.4.1.1 Fault Escalator . 94

4.4.1.2 Request Crawler . 97

4.4.1.3 Request Harnesses . 98

4.4.2 Augmenting Fuzzing for Web Injection Vulnerabilities 100

4.4.2.1 Coverage Accountant . 100

4.4.2.2 HTTP-specific Input Mutations . 102

4.5 Evaluation . 103

4.5.1 Witcher Augmentation Techniques Evaluation 103

4.5.1.1 Microtest Evaluations . 104

4.5.1.2 OpenEMR Evaluations . 108

vi

CHAPTER Page

4.5.2 Witcher Evaluation . 110

4.5.3 Grey-box and black-box comparison . 115

4.6 Discussion . 123

4.6.1 Limitations . 124

4.6.2 Future Work . 125

4.7 Related Work . 125

4.8 Conclusion . 129

4.9 References . 129

5 CONCLUSION . 140

REFERENCES . 141

APPENDIX

A CO-AUTHOR PERMISSION . 155

vii

LIST OF TABLES

Table Page

1. Automated Test Results. 62

2. Manual Test Results. 64

3. Structureprint Detection Test Results. 69

4. Microtest Comparative Evaluation Results . 108

5. OpenEMR Results . 109

6. Web Applications Used in the Evaluation. 111

7. Known Vulnerabilities in Each Web Application . 112

8. Known Vulnerabilities and Results from Witcher’s Evaluation. 113

9. Results of Vulnerabilities Discovered Burp and Witcher 116

10. Code Coverage Versus WebFuzz and BurpPlus . 117

11. Code Coverage Versus Burp, BurpPlus, Black Widow, and WebFuzz 118

12. Code Coverage Versus Black Widow and WebFuzz . 120

13. Code Coverage Versus Black Widow and BurpPlus . 121

14. Performance Results . 122

viii

LIST OF FIGURES

Figure Page

1. CTF-As-A-Service Overview. 12

2. Scriptbot, Router, and Team VM Connectivity. 20

3. Browser Extension Architecture . 38

4. Overview of the CloakX Process. 47

5. Diversified CloakX Rewritten Extension. 53

6. Original Versus Cloaked Extension . 58

7. Overview of Witcher . 93

8. Witcher Code Coverage Chart . 119

ix

Chapter 1

INTRODUCTION

Over the last forty years, the world of hacking has morphed from an idealistic

place populated by young and curious explorers who only wanted to hack the planet

and keep the world of electrons free for all1 into a world-wide battlefield in which

nation-states and criminal organizations launch attacks to access and control the

flow of information. As a result, modern attackers have gone from a chaotic group

seeking to explore their digital world to highly sophisticated and coordinated actors

that patiently wait for the optimal moment to engage their enemies. Modern hackers

leverage vulnerabilities on one system to compromise another, and then, as stealthily

as possible, they slowly exfiltrate the data they seek and eliminate any evidence of their

activity. This metamorphosis of the hacking world demands an equal rise in the skills

and tools available to educators, users, and analysts. To meet these threats, I assert

that we can simplify the incorporation of problem-based learning and gamification

into an educator’s cybersecurity courses, we can cloak browser extensions from website

detection without modifying the web browser, and we can use randomness to improve

the automated exploration and vulnerability detection in web applications.

1See Loyd Blankenship’s essay The Conscience of a Hacker, aka The Hacker’s Manifesto, which
he said he wrote to describe the essence of “what [hackers] were doing and why we were doing it” [27],
[135].

1

1.1 Educators

Society faces a computer security crisis because the demand for security analysts

is outpacing the creation of qualified professionals [2]. Despite the global computer

security workforce growing to 4.7 million this year, an additional 3.4 million computer

security workers are still required worldwide [80]. The shortage of qualified cybersecu-

rity professionals in the workforce contributes to the occurrence of high-profile security

incidents, such as T-Mobile’s data breach, where hackers accessed the personal data

of 37 million current customers [60]. In addition, attacks against the nation’s critical

infrastructure could have devastating effects that go well beyond the financial losses

we are witnessing today [81].

Teaching computer security is a challenging problem because the knowledge and

skills are a complex and constantly moving target. Solving security problems requires

strong objective critical thinking skills [39], [102], [146]. In other words, analysts

must learn to think like the attackers and then learn to defend against those attacks

and exploits. Although listening to lectures and studying vulnerabilities provides

a theoretical start, it is not enough—hands-on practice is crucial for mastering the

highly-complex theoretical concepts involved in cybersecurity [143].

Incorporating live cybersecurity competitions (CTFs) in the curricula of cybersecu-

rity courses improves the student’s learning outcomes. First, students participating in

CTFs receive hands-on experience applying security principles in an active manner [120].

Moreover, CTFs, played in teams, offer the highest level of student engagement because

it facilitates an interactive dialog between the participants where they synthesize

the security concepts [32]. As a result, CTFs offer a much higher rate of learning

than simply reading materials or listening to a lecture, which are passive forms of

2

engagement. Second, as a form of problem based learning, CTFs offer a more effective

method of building critical thinking skills as opposed to a lecture based format [138].

Third, using CTFs gamifies the learning experience. In contrast to the lecture format,

gamification has been shown to increase student performance and participation in

voluntary activities and attempting challenging assignments [71], [79]. Thus, it is not

surprising that live cybersecurity competitions, which take advantage of those ideas,

are on the rise.

Unfortunately, not all educators have the time or skills necessary to run a CTF

competition. To address this need, I describe a CTF-as-a-service solution in Chapter 2

that quickly creates an infrastructure for running custom CTF events. The system is

capable of scaling from a few competitors to 100s of teams.

1.2 Users

As the web expands and continues being the platform of choice for delivering

applications to users, the browser has become a core component of a user’s interactions

with the web. Modern browsers advertise a wide range of features, from cloud-

syncing and notifications to password management and peer-to-peer video and audio

communications. An important feature of modern browsers is their ability to be

extended by users, as they see fit, by installing browser extensions. Namely, Google

Chrome and Mozilla Firefox, the browsers with the largest market share, offer dedicated

browser extension stores that house hundreds of thousands of extensions [64]. In turn,

these extensions advertise a wide range of additional features, such as enabling the

browser to store passwords with online password managers, blocking ads, and saving

articles for later reading.

3

From a security perspective, the ability to load third-party code into the browser

comes at a cost, even though extensions rely on web technologies such as HTML,

JavaScript, and CSS. Browsers afford extensions significantly more privileges than

they do to a webpage. For example, the same origin policy restricts webpages from

accessing content, such as a cookie, that does not originate from the same domain.

For a webpage to bypass this restriction, it must implement cross-origin resource

sharing, whereas extensions may not only access resources of any domain but may also

alter the content. Historically, malicious extensions abuse these privileges to perform

advertising fraud and to steal private and financial user data [83], [92], [137], [147].

Next to security issues, using browser extensions can also lead to the loss of privacy.

Given that users choose the extensions to install, it is possible to make inferences

about a user’s thoughts and beliefs based solely on the extensions she keeps. For

example, the detection of a coupon-finding extension [61] reveals information about

the user’s income-level. Additionally, an extension that hides articles about certain

political figures [62], [63] reveals the user’s political leanings. Lastly, the use of browser

extensions may provide a means for websites to persistently identify a user over the

course of distinct browser sessions.

Although browser vendors do not offer any programmatic methods for a webpage’s

JavaScript to detect the extensions currently installed in a user’s browser, researchers

recently discovered side-channel techniques for fingerprinting many extensions. Sjösten

et al. were the first to demonstrate a new method for detecting browser extensions

that exploited the public nature of web-accessible resources (WARs) [128]. A WAR

is any resource (e.g., JavaScript or image) within an extension that the extension

identifies as externally accessible. As a result, a webpage can determine whether

a visitor uses an extension by requesting one of the exposed WARs. Sjösten et al.

4

showed that more than 50% of the top 1,000 browser extensions use WARs, which any

webpage might use to detect extensions. Later, Starov and Nikiforakis demonstrated

another technique for fingerprinting extensions that uses an extension’s modifications

to the document-object-model (DOM) to detect their presence [131]. The authors

developed XHound, a system that automatically discovers the DOM side-effects of

extensions. Through their experiments, they showed that more than 10% of the top

50K extensions were fingerprintable.

Users need a tool that will protect their anonymity from websites even though

they have fingerprintable extensions installed. The Internet needs a system will put

privacy protection back into the hands of the users, so that, if they desire, then they

have tools available to enhance their privacy.

In Chapter 3, I introduce CloakX as a means for users to safeguard their privacy by

countering the current state-of-the-art in extension fingerprinting. CloakX modifies,

randomizes, and supplements the fingerprintable attributes of extensions without

requiring any alterations to the web browser or any intervention from the extension’s

creator.

1.3 Developers

Web application vulnerabilities are showing no signs of waning as the number

of web application keeps increasing and the supported frameworks keep diversifying.

These web vulnerabilities, such as SQL injections, can be catastrophic to the developers

of the web application, the companies running the web application, and the end-users

who visit and store their data on the website application.

Although improving the education of developers has helped curb the number

5

of web application vulnerabilities, historically, developers—and web developers in

particular—ignore even well-known security concerns. For example, even after nearly

20 years, SQL injection vulnerabilities are still the 3rd most common web vulnerability

with 1162 SQL injection vulnerabilities found in 2022 [17], [133]. Therefore, it is

unlikely that developer education alone will eliminate web vulnerabilities.

Due to the number and diversity of web applications, it is critical to create auto-

matic techniques that discover web vulnerabilities. Prior work has proposed different

crawling and detection techniques, which utilizes one of the following approaches:

white-box [52], [77], [91], [98], black-box [3], [78], [110], [119], and grey-box [56],

[124]. However, these approaches are limited in their applicability to web application

language, vulnerability type, or application inputs.

In Chapter 4, I introduce Witcher, an innovative framework for discovering web

vulnerabilities that takes inspiration from grey-box coverage-guided fuzzing. Witcher’s

approach involves exploring the input space of web applications using execution

coverage data to direct the creation of random inputs, rather than relying solely on

fixed heuristics. This allows for efficient and effective vulnerability detection that

exceeds the current state-of-the-art in web vulnerability scanning.

6

Chapter 2

CTFS AS A SERVICE

Abstract

Although we are facing a shortage of cybersecurity professionals, the shortage

can be reduced by using technology to empower all security educators to efficiently

and effectively educate the professionals of tomorrow. One powerful tool in

some educators’ toolboxes are Capture the Flag (CTF) competitions. Although

participants in all the different types of CTF competitions learn and grow their

security skills, Attack/Defense CTF competitions offer a more engaging and

interactive environment where participants learn both offensive and defensive

skills, and, as a result, they develop their skills even faster. However, the

substantial time and skills required to host a CTF, especially an Attack/Defense

CTF, is a huge barrier for anyone wanting to organize one. Therefore, we created

an on-demand Attack/Defense tool via an easy-to-use website that makes the

creation of an Attack/Defense CTF as simple as clicking a few buttons. In this

paper, we describe the design and implementation of our system, along with

lessons learned from using the system to host a 24-hour 317 team Attack/Defense

CTF.

2.1 Introduction

Attack/Defense Capture the Flag events (ADCTFs) are a type of live cybersecurity

competition that attempts to maximize the learning for the competitors. In an

ADCTF, the participants practice finding vulnerabilities, developing exploits, and

7

defending against exploits. Additionally, the competitors are often in teams, which

further increases their learning [84], [120]. Beyond the learning that takes place during

the competition, many competitors also experience significant learning in preparing

for the competition and creating write-ups after it concludes [33].

Although organizing and running challenge-based competitions is relatively simple2,

organizing and running an ADCTF competition requires a significant amount of time

and a broad range of skills. An ADCTF organizer must spend a large amount of

time to meticulously build a secure infrastructure for hosting the game. Moreover,

the organizer must develop some type of application that securely controls the game

and scores the participants’ activities. All of this means that an organizer must be

an expert in operating systems, networking, application development, and server

administration to successfully organize and host an ADCTF.

To address this pressing need, we relied on our experience gained over the last

fourteen years hosting ADCTFs and created a CTF-as-a-Service platform, which is

now available at https://ShellWePlayAGame.org (SWPAG) and the source code is

available on GitHub [136]. On SWPAG, anyone can organize and host their own

ADCTF. After filling out the proper information, a completely configured and stable

ADCTF is created in a cloud environment, thus relieving the organizer of the operating

system, networking, and server administration burden. Our goal is that SWPAG will

empower all security educators, even those with limited network or administrative

skills, to easily host their own ADCTF for educational purposes.

2In fact, there are only a handful of ADCTFs, while most available competitions are challenge-
based [37].

8

https://ShellWePlayAGame.org

2.2 Background and Motivation

Live cybersecurity exercises benefit the security community in several ways. First,

the exercises allow the participants to practice the theory and concepts they have

acquired from books and articles [141]. Second, the real-time aspect of a finite event

that occurs for a limited amount of time and the competitive-drive of the participants

improves learning [72]. Third, live cybersecurity exercises provide a deeper engagement

and increase academic learning time, which results in faster learning and mastery

of the concepts [55], [57], [139]. Fourth, the participants learn how to operate in a

dynamic setting, having to react to attacks by developing, on the spot, defenses and

countermeasures. Last, the events allow participants to showcase their skills.

Collectively, we have been organizing, running, and competing in cybersecurity

competitions for many years. From this unique vantage point, we have seen first-

hand the effect that live cybersecurity competitions have on the participants, who

are driven to invest a substantial amount of resources in preparing, executing, and

post-evaluating. Preparation includes classroom learning, peer teaching, independent

study, and the creation of novel tools. Execution requires them to think critically

and generalize their theoretical knowledge while having to react, in real time, to

unexpected circumstances. The post-evaluating entails objectively evaluating their

performance, discussing the effectiveness of their attack and defense mechanisms, and

studying solutions to the problems they could not solve. Many participants learn even

more by taking the time to write blog posts that discuss their lessons learned, the

details of how they found and eventually exploited the vulnerability, and their strategy

and approach to the competition. As a result, these participants have a tendency to

grow and improve after every event.

9

The first cybersecurity competition was held in 1996 at DEF CON [73]. The early

DEF CON competitions were in what is now considered a challenge style using a

single host with custom-written vulnerable services. The participants would discover

vulnerabilities in each service and then prove it by crafting an exploit. Even though

this style of event focuses purely on offensive skills, it is still an excellent way for

participants to practice and refine their security skills.

The next iteration of CTF competitions allowed participants to refine both their

offensive and defensive skills: Attack/Defense Capture the Flag events. This type of

event is an interactive competition in which each team receives an identical machine

that is running vulnerable services. The competitors then use their security skills to

protect their own services while simultaneously trying to break into the same services

on their opponents’ machine. Once successful, the competitors must obtain proof that

they succeeded at exploiting an opponent’s service by gaining access to a unique piece

of data referred to as a flag. With this flag in their virtual hand, they must then turn

it in to a scorekeeper for points. ADCTFs are a fun and exciting way for security

researchers to showcase, enhance, and refine their security skills while also competing

with one another for fame and glory.

Since 2003, we have hosted the international Capture the Flag (iCTF) competition,

which was not only one of the first ADCTFs but is now one of the largest [143]. We

have continued to host the iCTF every year since then (the most recent edition was

in March of 2017). Each year, we experiment with various designs and approaches to

the game [33], [47], [126], [140], [142].

After running the competition for fourteen years, we recognized that many of the

game infrastructure components were reused year after year [143]. Therefore, in August

2014, the UCSB SecLab released an open-source framework for hosting interactive

10

CTF competitions with the hopes of easing the burden on other ADCTF organizers

and to give educators access to an ADCTF competition for their classroom [136]. By

abstracting the common infrastructure (starting services, scoring, service checking,

VM creation) and by defining a common interface to create services, the authors

enabled anyone, with significant manual effort, to create and host an ADCTF-like

competition. Even though the iCTF framework provides the components necessary to

run an ADCTF event, their setup and configuration is far from trivial. An organizer

must still spend a significant amount of time understanding how the components

work. After that, she must create the network, take the time to deploy the machines,

and create and install vulnerable services. In addition, an organizer must debug any

components that fail to work properly, which can involve investigating the database,

finding the various log files on each of the machines, and even patching bugs. Thus, the

technical barrier to adoption is still substantial because the would-be organizers must

understand a great deal about networking, server administration, network security,

application development, and application security.

This led us to realize that the community would benefit greatly from a turn-key

solution. To validate this conclusion, we surveyed the teams that participated in our

competition in 2015. We asked them “If you could press a button on a website to

automatically host your own CTF competition, with no technical setup on your part,

would you or your group use it?” 31 out of the 36 responders answered that they

would.

All of this pushed us toward taking the open source platform to the next level

and offer it as an easy-to-use service; thus, now we are proud to present our CTF-as-

a-Service solution, which is available at https://ShellWePlayAGame.org (SWPAG).

SWPAG offers the capability to launch an ADCTF that leverages the computing

11

https://ShellWePlayAGame.org

Figure 1. CTF-as-a-Service Overview.

resources of the cloud. After entering some information and clicking a few buttons,

an organizer launches a CTF instance, which is created and configured within a few

minutes on Amazon’s Web Services platform (AWS).

2.3 Design of the CTF-as-a-Service

While the SWPAG website acts as the front-end for users to configure an ADCTF,

behind the SWPAG website the CTF-as-a-Service platform has one master controller

called the Games Controller (GC), which is responsible for managing all of the CTF

instances (see Figure 1). A CTF instance is the logical space containing all the virtual

machines (VMs) necessary to run a single ADCTF event. In this section, we describe

the GC and the CTF instance components.

12

2.3.1 The Games Controller

The SWPAG website is the web front-end that organizers use to manage events. An

organizer can be anyone—including students, educators, CTF teams, or organizations.

Initially, an organizer must create an account. After creating an account, she may

create a new CTF instance and modify any of the settings. The organizer may

choose to select intentionally-vulnerable services from a library of existing services and

eventually may write and upload her own vulnerable services, which will then become

a part of the library and available to other educators3. In addition, the organizer

chooses various parameters for the competition, such as the number of teams, the

members of the teams, the game start time and duration, and so on. Next, the

organizer provides credentials for a valid account on Amazon Web Services (AWS),

which is currently the only cloud service provider that is compatible with the platform.

Once setup is complete, the teams wishing to participate in an event can register for

it. When the organizer is ready, she clicks a button to launch the CTF instance and

the GC takes care of the rest.

The GC is responsible for creating, managing, and terminating all the CTF

instances. Using the supplied credentials, the GC accesses the AWS account and

creates a Virtual Private Cloud (VPC) for each CTF instance. VPCs are a networking

feature of AWS that enable the provisioning of a logically isolated section of AWS’s

cloud [10]. Within the VPC, the GC has full control of the IP addresses of the servers

and the network routing between them. The VPC is configured to keep all network

3Much like a riddle, the difficulty of exploiting a vulnerable service is in its novelty, as such, the
services stored in the library will be easier because the prior contestants will often post their analysis
and solutions. However, even with leaked solutions, it is often still difficult for less experienced
students to successfully implement an exploit.

13

traffic within it, and, as a result, the attacks launched during the competition cannot

affect external hosts. After the GC configures the VPC, it creates the Game Master

(GM).

2.3.2 The CTF Instance Components

The GM automates many of the difficult and time consuming tasks. It is responsible

for communicating with the GC and for orchestrating the creation and management

of the game. After the GM’s creation is complete, it starts by configuring the CTF

instance and then creating the Database, Router, Gamebot, Scriptbot, Team Interface,

Scoreboard and the team VMs.

The first component the GM instantiates is the Database. The Database is the

central component of the game’s operation—stores all the information associated

with the competition (e.g., the flags submitted, the status of the services for each

round, and the team’s information). Being the central component of the game, all

the other components access the database, except for the vulnerable team VMs. The

components access the Database over a private subnet that is different from the one

used by the team VMs. As a result, the Database is inaccessible from the team VMs

or from the Internet. We limited access to the Database to reduce the attack surface

area of the game infrastructure. We also designed it this way so that the unencrypted

database communications were protected because they only travel over the private

subnet.

The second component created by the GM is the Router. The main purpose of

the Router is to masquerade transmissions to the team VMs, to capture the traffic,

and to act as a single entry point for the teams. First, it forwards all team-to-team

14

transmissions and official service verification transmissions that verify each team’s

service is running properly. While forwarding these transmissions, it anonymizes

the packets by masquerading all the traffic as itself. Thus, when a team receives a

packet it has the source IP of the Router. We designed it this way to prevent teams

from dropping traffic from their competitors while allowing the service checks to get

through. One interesting development note is that this was not as straight forward to

setup as we thought because the AWS network prevents masquerading by default [22].

To bypass this restriction, the source/destination checking must be disabled.

The Router captures, stores, and potentially limits all the traffic that it forwards

(i.e., team-to-team and Scriptbot-to-team traffic). Even limiting to only team-to-team

and Scriptbot-to-team traffic, the logs (in raw pcap format) grow rather quickly. For

example, for our most recent competition the compressed traffic logs were more than

100GB. However, this competition was for 24 hours with 317 teams, so we expect

SWPAG CTFs to have much less traffic. Next, it limits the number of connections

per second each team may initiate to another team; however, it does not limit the

maximum number of connections a team may have open concurrently. Once the

Router creation completes, the GM instantiates the Gamebot, Scriptbot, Scoreboard,

Team Interface, and the Teams’ VMs in parallel.

The Router is created with a static external IP, and it serves as a single entry

point for teams to access their VMs. It does this by forwarding ports 1337 and higher

to each team’s SSH port. We chose to design the team’s access this way because we

found that stopped and started, recreated, or upgraded team VMs would receive a

different public IP address [6]. We could have designed it so that every team received

a static IP address, however (1) Amazon limits the number that can be used per

account and (2) we were unsure of how many needed to be requested. The chosen

15

port forwarding method allows us to have 1,000 teams without needing to request an

increase in the number of static IP addresses.

The Gamebot is the heartbeat of the game. The game duration is divided in ticks.

A tick does not occur after a fixed and constant amount of time, instead, it occurs

after a fixed amount of time plus a random adjustment. After each tick, the prior

round ends and a new round begins. At end of a round, the Gamebot calculates the

score for each team based on their performance during the prior round.

The next component is Scriptbot. Prior to a game starting, Scriptbot sits and waits

for Gamebot to create the first tick of the game. Once Scriptbot sees the first tick, it

will tirelessly test the teams’ services and update the flags on each team’s VM every

round. The test and update processes execute in parallel, but to obfuscate itself and

to spread out the load the Scriptbot generates a randomized delay for every process it

must execute in a round. The maximum delay is set so that Scriptbot will complete

all the processes before the end of the current round. In addition to the randomized

delay, Scriptbot accesses the team’s services via the Router, which masquerades all

the traffic, so that Scriptbot’s requests look the same as the team-to-team traffic.

After it executes each process, Scriptbot updates the database with the results.

The Team Interface is both the keymaster and gatekeeper. Using the Team

Interface, the teams retrieve their private SSH keys so that they can access their

team’s VMs. The Team Interface also allows them to retrieve a flag identifier for

the round. The flag identifier is a value that will help them find the flag on their

opponent’s machine. For example, it might be name of the file they must look inside

once they exploit the associated service. In addition, the Team Interface will provide

each team with a unique flag token so that they can submit a flag without needing

to use their username and password. Next, the Team Interface accepts any flags

16

that teams submit. To access the Team Interface, the teams must retrieve a login

access token and a flag submission token from SWPAG. For more information on the

flag mechanisms, see the article Ten Years of iCTF: The Good, The Bad, and The

Ugly [143].

The last system component is the Scoreboard. The Scoreboard provides feedback

to the teams on their performance. On the leaderboard section of the Scoreboard,

it displays each team’s score and a graph showing the historical performance of the

top teams. On the service list of the Scoreboard, the status of the team services are

shown, so that the teams can evaluate if their security mechanisms are affecting the

functionality and availability of their services.

Next, GM creates a virtual machine on AWS for each team. Although GM creates

the instances in parallel, it limits the number of concurrent requests to avoid receiving

a request rate limit exceeded error from AWS [5]. To keep their system available for

all their users, AWS has a fluctuating request rate limit and if an account exceeds the

limit they receive the error4.

During the team VM creation process, the GM installs and starts the vulnerable

services chosen by the organizer. It also configures the VMs with a static route that

forces the team-to-team traffic through the Router. If a team decides to change or

remove this static route (which they can do because each team has root access to

their own VM), then they will be unable to communicate to the other teams because

direct team-to-team traffic is blocked by an AWS security group (see Section 2.3.3 for

additional details). Once the GM completes instantiating and configuring a team’s

VM, GM tests the VM’s vulnerable services.

4Through trial and error we have found it is unlikely we will receive the error if we limit the
number of concurrent requests to ten.

17

2.3.3 Network Configuration

Each CTF instance must have several network configuration steps completed before

a game can start. As mentioned previously, the GC creates a VPC. The new VPC

is assigned an IP address range of 172.31.0.0/16. Within the VPC, the GC creates

two subnets. The first subnet is the Game Components subnet, which is limited to

172.31.64.0/20. The Game Components subnet contains all the game servers, GM,

Database, Gamebot, Scriptbot, Team Interface, and Scoreboard. The second subnet

created by GC is called the War Range subnet. The GC defines the War Range

subnet as 172.31.128.0/17. The War Range contains the teams’ VMs. However, the

GM limits team IP addresses to 172.31.129.0/19, which means it can currently only

handle 8,190 machines, however the largest ADCTF ever held had only 317 machines

it should be sufficient for the foreseeable future.

The Scriptbot is the only machine in the network that is dual homed to both the

Game Components and War Range private subnets. The Scriptbot is dual homed

so that it can create a static route to the Router, which obfuscates its origin while

running its service tests on the team VMs.

For a virtual machine to be accessible, it must be associated with an AWS security

group. An AWS security group is a virtual firewall that permits inbound and outbound

traffic based on the rules assigned to it [7]. The security groups reside on the network

and are inaccessible to the VMs—in fact, unlike a firewall running on a VM, packets

not permitted by a security group are dropped before ever reaching the VM.

The GM associates every virtual machine in a CTF instance with one of four AWS

security groups. The first group protects the servers that are only internal. This group

only permits connections on ports 80 and 22 so long as the connections originate

18

from the Game Components subnet. Similarly, the web security group has the same

restrictions except that it allows Internet traffic to connect using ports 80 and 443.

The next security group protects the Router. The first rule permits access to all

addresses connecting to ports 1024-2352, which are the ports used for the SSH port

forwarding (see the connection from the user to her VM in Figure 2). The Router

security group also allows connections to the ports between 1024 and 65535 if the

connection originates from the War Range, which is represented by an arc between

the teams in Figure 2. The fourth security group is for the teams. The only rule

in this group permits access to ports 1024-65535 if the connection originates from

the Router, which means the only way to connect to another team is by sending

packets through the Router. Referring to Figure 2, notice the arcing connection

through the Router and the connection from Scriptbot are permitted on port 20000,

whereas, the direct connection from team three is prevented by the AWS security

group. This was designed like this because we wanted to give each team root access

to their VM, and, as a result, each team’s VM must be considered hostile and outside

of our control. However, the VM-independent nature of the security groups provides

a simple mechanism to achieve the desired effect.

2.3.4 Intelligent Component Recreation

As anyone who has created a machine from scratch knows, it is not uncommon for

some small part of the install process to fail, and, unfortunately, this happens when

creating VMs in the cloud as well. Thus, GM has a robust and extensible set of tests

that it runs to verify the VMs are operating correctly. For the game components, the

tests verify that the machine is accessible, the proper ports are open and responding

19

Team 1

AWS Security Grp

Team 2

AWS Security Grp

ScriptBot Team 3

AWS Security Grp

SSH Port 1338 SSH Port 22

Port 20000 Port 20000

Port 20000

Port 20000

Origin Router

Origin Team 3

Port 20000

Origin Team 3

X

Router

Figure 2. Scriptbot, Router, and Team VM Connectivity.

appropriately, and the internal services are up and running. For the team VMs, it

checks each of the vulnerable services by running the same scripts that will be used to

verify service operation during the competition. If any of the tests fail for a machine,

the GM automatically destroys the machine and recreates a new one from scratch.

2.4 Validation

We expected that the CTF-as-a-Service platform would scale to handle large-scale

events, however we would not know for certain unless we tested it. Thus, after

20

completing the development, we ran a load test with 250 teams to uncover any latent

defects and evaluate its ability to manage a large-scale event. After fixing the issues,

we torture tested it and the AWS network by hosting the 2017 international Capture

the Flag event (iCTF) in which 317 teams competed for fame, glory, and an entry

into the 2017 DEF CON CTF.

2.4.1 Load Testing, Round One

To understand the performance characteristics of the CTF-as-a-service framework

in a large-scale environment, we ran a three phased load test. In phase one, we wanted

to verify the components would work with a large number of teams. In the second

phase, we tested the infrastructure with random team-to-team traffic and team flag

submissions. In the third phase, we focused all the team-to-team traffic on one team

VM. For the tests, we created 250 team VMs with ten vulnerable services running on

each machine. Each team VM was configured with four processors and 16GB of RAM.

Once all the machines were running, the infrastructure reported that most of the

team’s services were down even though all of the machines passed the GM’s verification

tests. After some investigation, we realized that the Scriptbot was not able to execute

all its tests within a single round. In a round, it needed to run about 8,800 scripts

(each one running in a separate process), which required far more processing power

and memory than we expected. After increasing it from 8-processors to 32-processors,

it was completing most the time. However, we realized that the number of Scriptbots

would need to be increased for large scale events to ensure that all the teams’ services

were properly validated each round.

Fortunately, the other infrastructure components operated as expected while the

21

game was idle and we were able to start the second phase. For this phase, we started

simulating traffic between the teams and performing flag submissions to the Team

Interface by each of the teams. All the components performed exceptionally well. We

had zero issues while this was running. Moreover, we ran this test for several hours

and during the entire test the Scriptbot successfully verified the services on all the

machines.

For the third phase, we had 249 of the team VMs connect repeatedly to a single

team VM to see how the victim would handle the directed attack. During the test,

the victim VM, surprisingly was able to respond to requests, and we were also able to

SSH to the box, however the response time for both were exceptionally slow. During

all the phases, the Router handled the load well even though it was only using a two

processor instance.

2.4.2 The Second Load Test—iCTF 2017

We successfully tested the scalability of our CTF-as-a-service framework by using

it to host the iCTF event on March 3rd, 2017. This edition of the competition was

different from previous years in that it (1) was open to the public, (2) lasted 24 hours,

and (3) was a DEF CON CTF 2017 qualifier; whereas, in prior years we have limited

it to academic teams, only eight hours, and was not a qualifier. For this competition,

we developed ten vulnerable services, and 317 teams registered.

To reduce our risk of infrastructure failure, we decided to over-provision the CTF

instance. First, based on the load tests discussed in Section 2.4.1, we choose to create

four Scriptbots that were each responsible for testing a particular subset of the teams.

Next, we choose to configure the Database and all four Scriptbots with a VM that

22

had 36 processors and 60GB of RAM. We configured the Gamebot, Scoreboard, Team

Interface, and Router with a VM that had 16 processors with 64GB of RAM. Last,

we configured the teams’ VMs to use a 4-processor machine with 16GB of RAM.

When we started the competition, the infrastructure withstood 317 teams pounding

each other and did not suffer from any infrastructure problems for the first 18 hours.

However, just after the 18th hour of the competition, the infrastructure started to

crumble. Specifically, the Router stopped allowing connections between the teams.

During the competition, we tried to fix the issue, and, although we suspected it was a

DOS attack, we could not convince the offending team to stop. So, unfortunately, we

had to end the competition early.

After an in-depth forensic investigation [134], we discovered that a team cheated5

and used their custom-developed in-game botnet (running on nearly all 317 teams

VMs) to launch a DDoS attack against another team. In this attack, the bots opened

a connection to the victim machine and then terminated it, however, it never sent a

FIN packet. This caused the Router to hold each connection open until it timed out.

As the number of connections grew, the Router reached a point where it was unable

to accept new connections.

With the over-provisioned configuration, the cost of the 1,504 processor infrastruc-

ture for twenty-four hours was approximately 3,500 USD, which Amazon covered with

a generous sponsorship. Fortunately, smaller and shorter competitions should cost a

fraction of that amount. For example, a six-hour competition with one hour for setup

and twenty teams should cost less than 50 USD6.

5The iCTF, as a hacking competition, does not have many rules, however DoS attacks are
explicitly against the iCTF rules.

6For example, creating a six-hour game that uses two t2.2xlarge instances for Database and

23

Despite the challenges, the 2017 iCTF load test proved that it is possible to

leverage the cloud to support large-scale ADCTF competitions.

2.5 Lessons Learned

While developing and running the CTF-as-a-Service framework we ran into several

issues that we will discuss in this section. Fortunately, most of the problems we

uncovered are solvable, and while we have addressed many of them, we believe that

they will serve as useful lessons learned to those developing complicated distributed

systems.

While trying to create a large game, we found that we could not have more than

ten components starting up at the same time (see Section 2.3.2). This limitation

is from a request limit imposed by AWS, and it forced us to limit the number of

simultaneous instantiations to ten. As a result, bringing up 326 VMs takes over three

hours. However, we found that we could cut the process by one-third of the time by

using a custom Amazon machine image [8]. To create the image, we first create a

team VM with all the services installed and running properly and then have AWS

make a private image of the VM.

Another interesting issue related to instantiating a large game, is that sometimes

AWS may not have enough available resources to create the machines as fast as we

are requesting. For example, while trying to instantiate the 317 team VMs, with four

processors each, AWS stopped allowing new instances and reported that it had run out

of resources for the configuration we were using within the availability zone being used.

Scriptbot, four t2.large instances for the remaining components, and twenty t2.medium instances for
the teams, is estimated to cost 25 USD.

24

AWS has several geographically dispersed regions that are designed to be completely

isolated from each other [9], called availability zones. Within each region, a VM can

be assigned to a particular availability zone. However, each subnet of the VPC must

reside entirely within one availability zone. As a result, the obvious work-around failed

because we could not simply start bringing up machines in a different availability zone

and the design would not support spanning multiple subnets. So, to bring up the

boxes, we would have to wait a few minutes after receiving the error and restart the

process.

As discussed in Section 2.4.2, we experienced a DDoS attack during the 2017 iCTF

competition where nearly all the teams bombarded a single victim. Even though we

load tested an attack from 249 machines to a single machine, and found that it could

withstand the attack, we did not test what would happen if the attacking machines

did something closer to a SYN-flood DDoS attack. In the near future, we plan to

research what happened by creating a game and recreating the attack. We will use

this environment to understand exactly what went wrong and to devise a solution.

In addition, we will use this test to explore the possibility of using a monitoring

application to notify us when the network is starting to experience connectivity issues.

While running the iCTF competition, we found that the GM’s component testing

and recreation process is too smart and made debugging difficult. The retry logic is

absolutely necessary for the automated CTF-as-a-Service environment. In a production

environment, if something fails, it is probably an issue with the instantiation so often

destroying and recreating the component will solve the issue. Therefore, it is no

surprise that this works great in a production environment with a stable code base.

However, this approach is not applicable in an environment with unstable code, like the

iCTF event. For example, if a mistake is made while making changes to a vulnerable

25

service and it no longer works, the developer needs the machine to continue running

so that she can debug the problems. However, the GM, not realizing this, will destroy

the VM and attempt to recreate it until it runs out of retries and then it will simply

destroy the component. As a result, with the component destroyed, the developer

cannot view the logs or otherwise investigate what was actually causing the error.

Shortly after the competition began, we realized that many of the teams were

given access credentials to two team VMs instead of one. To understand how this

occurred it is necessary to explain how the Team Interface worked for the registration

phase and the execution phase. The CTF-as-a-Service platform was designed to run as

a single unit. However, for the iCTF, we needed to have a registration server up and

running several weeks prior to the event starting (SWPAG will handle all registration

for the CTF-as-a-Service). To do this, we created a CTF instance and left only the

Database and Team Interface components running because team registration and

verification was handled by those components. Once we closed registration a few day

prior to the start of the competition, we exported all the teams from the Database

and loaded them into the production iCTF instance. During the loading process,

each team’s identifier was regenerated by the process, so a team had an identifier

in the old system that was different from the new one, but everything else was the

same. Just before the competition started, we switched the DNS from the old Team

Interface to the production instance. Within a short period of time, we realized that

since the DNS was the same and the team’s sessions did not expire they could see

the login credentials of the team that received their old identifier (because the Team

Interface stored the session information in a client-side cookie). For example, the

team zero_cool with the identifier of 117 on the registration server could retrieve the

private key for crash_override, which was team 117 on the production server.

26

The only true solution to this we could devise during the event was to create a

completely new production CTF instance. Fortunately, we were able to bring up the

second CTF instance in a different availability zone while the participants played

on the first. So, with not much more than the push of a button, we had two CTF

instances running concurrently using nearly 650 VMs. After the first eight hours of the

competition, we instituted a break during the break we disabled the first production

instance and pointed players to the new game, which ensured that each team only had

access to a single machine unless they found some other way to compromise them7.

The iCTF-specific issues highlight the requirement differences between a general

CTF-as-a-Service versus what is required when hosting an iCTF event. First, the

iCTF is often closer to a development environment because we are constantly trying

to push the envelope and find new and interesting ways to execute an ADCTF. So,

for the iCTF we need less of an automated black box and more direct access to the

components and configuration. Second, the iCTF competition is also the largest

ADCTF, and we expect most organizers using SWPAG will host events with less than

50 teams—in fact, we will limit the size of events that SWPAG will host automatically.

Third, the iCTF has open registration for its events whereas for CTF-as-a-Service

SWPAG will handle registration.

7For example, we do not advise participants to post the email address and password for their
team to the public chat channel.

27

2.6 Related Work

Although they have been around for many years the difficulty and time constraints

have resulted in only a few online ADCTFs being held each year. In the United States,

the two largest being our iCTF event and RuCTF.

Buena Vista University’s ADCTF is a cloud-based infrastructure that is geared

towards giving participants a gentle introduction to an ADCTF competition [23].

The goal of the organizers is to keep the event small so that the complexity of

successfully competing is reduced. As a result, the environment relies on a single

administration VM that takes care of managing the services, flags, and scoring. While

some similarities exist to our CTF-as-a-Service framework, the stated goal of their

system and its subsequent design are significantly different.

Another group working in a similar area is the joint team working on the Build

It, Break It, Fix It (BIBIFI) contests [125]. In these contests, the participants first

build a system according to the specifications published by the organizers. The teams

submit their solutions and are scored based on their conformance to the specifications.

Next, the teams enter the break it phase. When the breakers believe they have found

a defect, they submit the flaw with an explanation. Their submission is automatically

scored and more points are awarded for security vulnerabilities. In the fix-it phase,

the build teams receive the bug reports and must fix the discovered flaws. This type

of contest is similar to an ADCTF and provides an exciting learning opportunity for

the teams. However, it is not currently offered in a framework that could be easily

implemented by those that might wish to host their own BIBIFI event.

The Cyber Range Instantiation System (CyRIS) enables educators to automatically

deploy and manage cyber ranges for cybersecurity education [115]. Similar to ADCTFs,

28

a cyber range is a controlled virtual environment that is used to give participants

hands-on security experience. While this work is interesting, this research takes a

different approach to education and lacks the game aspect of ADCTFs, which pushes

students to go beyond the call of duty. Moreover, the cyber range still requires the

organizer to possess a certain level of sophistication, our expectation is that we will

empower even less savvy organizers than CyRIS.

PicoCTF is designed to increase interest in computer science among high school

students [28]. PicoCTF is an attack-focused style of competition. Participants interact

with it using a web-based graphical user interface, which is designed as an interactive

game. The game even features cut-scenes, sound effects, four levels, and 57 challenges.

PicoCTF is different from our CTF-as-a-Service because its target audience is different,

and it does not offer any defense exercises.

For the last ten years, the Zero Day Initiative has hosted the Pwn2Own event at

CanSecWest [68]. In the Pwn2Own hacking challenge, participants try to compromise

the security of various up-to-date computer devices and if they do, they win the device

or money. This event differs from the CTF-as-a-Service because it is an attack-only

style and its goal its goal is to help vendors find 0-day vulnerabilities and not helping

to educate the participants.

Another style of competitions focus on network defense. In these competitions,

participants protect their networks by reacting to intrusions from external attackers [35],

[107]. This style of competition features only network defense, and, unlike ADCTFs,

they do not have an attack component for the competitors.

29

2.7 Conclusion

SWPAG is a powerful educational tool that empowers anyone to launch their

own ADCTF leveraging an easy-to-use interface. Although ADCTFs provide several

benefits to teaching security professionals, until now, the creation of an event was a

substantial undertaking that required a broad range of networking and administration

skills. SWPAG leverages AWS and UCSB’s open source iCTF framework to provide

a secure environment for teaching the security professionals of tomorrow. While it

is still in the early stages of its development, the platform has already survived a

317-competitor ADCTF event and is ready to support future online ADCTF events.

2.8 References

[5] Amazon API Error Codes, http://docs.aws.amazon.com/AWSEC2/latest/

APIReference/errors-overview.html, 2017.

[6] Amazon EC2 Instance IP Addressing, http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/using-instance-addressing.html, 2017.

[7] Amazon EC2 Security Groups for Linux Instances, http://docs.aws.amazon.com

/AWSEC2/latest/UserGuide/using-network-security.html, 2017.

[8] Amazon Machine Images (AMI), http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/AMIs.html, 2017.

[9] Amazon Regions and Availability Zones, http : / /docs . aws . amazon . com/

AWSEC2/latest/UserGuide/using-regions-availability-zones.html, 2017.

30

http://docs.aws.amazon.com/AWSEC2/latest/APIReference/errors-overview.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/errors-overview.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html

[10] Amazon VPC FAQs, https://aws.amazon.com/vpc/faqs/, 2017.

[22] AWS NAT Instances, http://docs.aws.amazon.com/AmazonVPC/latest/

UserGuide/VPC_NAT_Instance.html, 2017.

[23] N. Backman, “Facilitating a battle between hackers: Computer security outside

of the classroom,” in Proceedings of the 47th ACM Technical Symposium on

Computing Science Education, ser. SIGCSE ’16, Memphis, Tennessee, USA:

ACM, 2016, pp. 603–608, isbn: 978-1-4503-3685-7. doi: 10.1145/2839509.

2844648. [Online]. Available: http://doi.acm.org/10.1145/2839509.2844648.

[28] P. Chapman, J. Burket, and D. Brumley, “Picoctf: A game-based computer

security competition for high school students,” in 2014 USENIX Summit on

Gaming, Games, and Gamification in Security Education (3GSE 14), San Diego,

CA: USENIX Association, 2014. [Online]. Available: https://www.usenix.org/

conference/3gse14/summit-program/presentation/chapman.

[33] N. Childers, B. Boe, L. Cavallaro, L. Cavedon, M. Cova, M. Egele, and G.

Vigna, “Organizing Large Scale Hacking Competitions,” in Proceedings of

the Conference on Detection of Intrusions and Malware and Vulnerability

Assessment (DIMVA), Bonn, Germany, Jul. 2010.

[35] A. Conklin, “The use of a collegiate cyber defense competition in information

security education,” in Proceedings of the 2Nd Annual Conference on Informa-

tion Security Curriculum Development, ser. InfoSecCD ’05, Kennesaw, Georgia:

ACM, 2005, pp. 16–18, isbn: 1-59593-261-5. doi: 10.1145/1107622.1107627.

[Online]. Available: http://doi.acm.org/10.1145/1107622.1107627.

31

https://aws.amazon.com/vpc/faqs/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html
https://doi.org/10.1145/2839509.2844648
https://doi.org/10.1145/2839509.2844648
http://doi.acm.org/10.1145/2839509.2844648
https://www.usenix.org/conference/3gse14/summit-program/presentation/chapman
https://www.usenix.org/conference/3gse14/summit-program/presentation/chapman
https://doi.org/10.1145/1107622.1107627
http://doi.acm.org/10.1145/1107622.1107627

[37] CTF Time, https://ctftime.org, 2017.

[47] A. Doupé, M. Egele, B. Caillat, G. Stringhini, G. Yakin, A. Zand, L. Cave-

don, and G. Vigna, “Hit ’em Where it Hurts: A Live Security Exercise on

Cyber Situational Awareness,” in Proceedings of the Annual Computer Security

Applications Conference (ACSAC), Orlando, FL, Dec. 2011.

[55] J. A. Fredricks, P. C. Blumenfeld, and A. H. Paris, “School engagement:

Potential of the concept, state of the evidence,” Review of educational research,

vol. 74, no. 1, pp. 59–109, 2004.

[57] M. Gettinger and J. K. Seibert, “Best practices in increasing academic learning

time,” Best practices in school psychology IV, vol. 1, pp. 773–787, 2002.

[68] B. Gorenc, Pwn2own 2017 at cansecwest, https://www.zerodayinitiative.com/

blog/2017/3/23/pwn2own-2017-an-event-for-the-ages, Mar. 2017.

[72] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work?–a literature

review of empirical studies on gamification.,” in 47th Hawaii International

Conference on System Sciences (HICSS), Hawaii, 2014.

[73] T. Harmon, Cyber Security Capture The Flag (CTF): What Is It? https :

//blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-

it, 2016.

[84] S. Jariwala, M. Champion, P. Rajivan, and N. J. Cooke, “Influence of Team

Communication and Coordination on the Performance of Teams at the iCTF

Competition,” in Proceedings of the Human Factors and Ergonomics Society

Annual Meeting, 2012.

32

https://ctftime.org
https://www.zerodayinitiative.com/blog/2017/3/23/pwn2own-2017-an-event-for-the-ages
https://www.zerodayinitiative.com/blog/2017/3/23/pwn2own-2017-an-event-for-the-ages
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it

[107] B. E. Mullins, T. H. Lacey, R. F. Mills, J. E. Trechter, and S. D. Bass, “How

the cyber defense exercise shaped an information-assurance curriculum,” IEEE

Security Privacy, vol. 5, no. 5, pp. 40–49, Sep. 2007, issn: 1540-7993. doi:

10.1109/MSP.2007.111.

[115] C. Pham, D. Tang, K.-i. Chinen, and R. Beuran, “Cyris: A cyber range

instantiation system for facilitating security training,” in Proceedings of the

Seventh Symposium on Information and Communication Technology, ser. SoICT

’16, Ho Chi Minh City, Viet Nam: ACM, 2016, pp. 251–258, isbn: 978-1-4503-

4815-7. doi: 10.1145/3011077.3011087. [Online]. Available: http://doi.acm.org/

10.1145/3011077.3011087.

[120] M. Prince, “Does active learning work? a review of the research,” Journal of

engineering education, vol. 93, no. 3, pp. 223–231, 2004.

[125] A. Ruef, M. W. Hicks, J. Parker, D. Levin, M. L. Mazurek, and P. Mardziel,

“Build It, Break It, Fix It: Contesting Secure Development,” in Proceedings

of the ACM SIGSAC Conference on Computer and Communications Security

(CCS), 2016. [Online]. Available: http://arxiv.org/abs/1606.01881.

[126] Y. Shoshitaishvili, L. Invernizzi, A. Doupé, and G. Vigna, “Do You Feel Lucky?

A Large-Scale Analysis of Risk-Rewards Trade-Offs in Cyber Security,” ACM

Symposium on Applied Computing, Mar. 2014.

[134] The 2016-2017 iCTF DDoS, https://ictf.cs.ucsb.edu/pages/the-2016-2017-

ictf-ddos.html.

[136] The iCTF Framework, https://github.com/ucsb-seclab/ictf-framework.

33

https://doi.org/10.1109/MSP.2007.111
https://doi.org/10.1145/3011077.3011087
http://doi.acm.org/10.1145/3011077.3011087
http://doi.acm.org/10.1145/3011077.3011087
http://arxiv.org/abs/1606.01881
https://ictf.cs.ucsb.edu/pages/the-2016-2017-ictf-ddos.html
https://ictf.cs.ucsb.edu/pages/the-2016-2017-ictf-ddos.html
https://github.com/ucsb-seclab/ictf-framework

[139] L. VaBlasco-Arcas, I. Buil, B. Hernandez-Orteg, and F. J. Sese, “Using Clickers

in Class. the Role of Interactivity, Active Collaborative Learning and En-

gagement in Learning Performance,” in Computers and Education, vol. 62,

Pergamon Press, Mar. 2013, pp. 102–110.

[140] K. Vamvoudakis, J. Hespanha, R. Kemmerer, and G. Vigna, “Formulating

Cyber-Security as Convex Optimization Problems,” in Control of Cyber-Physical

Systems, ser. Lecture Notes in Control and Information Sciences, vol. 449,

Springer, Jul. 2013, pp. 85–100.

[141] G. Vigna, “Teaching Hands-On Network Security: Testbeds and Live Exercises,”

Journal of Information Warfare, vol. 3, no. 2, pp. 8–25, Feb. 2003.

[142] ——, “Teaching Network Security Through Live Exercises,” in Proceedings

of the Third Annual World Conference on Information Security Education

(WISE), C. Irvine and H. Armstrong, Eds., Monterey, CA: Kluwer Academic

Publishers, Jun. 2003, pp. 3–18.

[143] G. Vigna, K. Borgolte, J. Corbetta, A. Doupé, Y. Fratantonio, L. Invernizzi,

D. Kirat, and Y. Shoshitaishvili, “Ten Years of iCTF: The Good, The Bad,

and The Ugly,” in Proceedings of the USENIX Summit on Gaming, Games

and Gamification in Security Education (3GSE), San Diego, CA, Aug. 2014.

34

Chapter 3

CLOAKING EXTENSIONS

Abstract

Browser fingerprinting refers to the extraction of attributes from a user’s

browser which can be combined into a near-unique fingerprint. These finger-

prints can be used to re-identify users without requiring the use of cookies or

other stateful identifiers. Browser extensions enhance the client-side browser

experience; however, prior work has shown that their website modifications are

fingerprintable and can be used to infer sensitive information about users.

In this paper we present CloakX, the first client-side anti-fingerprinting

countermeasure that works without requiring browser modification or requiring

extension developers to modify their code. CloakX uses client-side diversification

to prevent extension detection using anchorprints (fingerprints comprised of

artifacts directly accessible to any webpage) and to reduce the accuracy of

extension detection using structureprints (fingerprints built from an extension’s

behavior). Despite the complexity of browser extensions, CloakX automatically

incorporates client-side diversification into the extensions and maintains equiva-

lent functionality through the use of static and dynamic program analysis. We

evaluate the efficacy of CloakX on 18,937 extensions using large-scale automated

analysis and in-depth manual testing. We conducted experiments to test the

functionality equivalence, the detectability, and the performance of CloakX-

enabled extensions. Beyond extension detection, we demonstrate that client-side

modification of extensions is a viable method for the late-stage customization of

browser extensions.

35

3.1 Introduction

To empower users to protect their own privacy, in this chapter we propose CloakX, a

client-side countermeasure against extension fingerprinting. Instead of trying to remove

the fingerprintable attributes of extensions, our approach is to automatically alter,

randomize, and add to these attributes without requiring web browser modifications

or any involvement from the extension’s developer. Through these modifications,

CloakX diversifies the extension’s anchorprints, which are fingerprints consisting of

items that can be accessed directly from a webpage, and structureprints, which are

fingerprints that embody the structural changes an extension makes to a webpage

(for more details refer to Section 3.2.2). On the surface, client-side diversification of

the fingerprintable attributes seems straightforward; however, the dynamic nature of

JavaScript and the complexity of the browser extension’s architecture necessitated a

complex approach that relies on both static and dynamic program analysis.

CloakX uses static and dynamic analysis techniques to automatically diversify

the extension’s fingerprint without modifying the browser, without requiring any

changes by the extension’s author, and without altering the extension’s functionality.

To diversify the extension’s anchorprint, CloakX automatically renames WARs, IDs,

and class names and corrects any references to them in the extension’s code, which

severs the link between the published extension and the currently installed version.

In addition to static changes, the diversification is also performed by our dynamic

DOM proxy (Droxy), which intercepts DOM modifications from the extension’s code

and makes the changes on-the-fly. To diversify the extension’s structureprint, Droxy

also injects random tags, attributes, and custom attributes into each webpage, which

obfuscates the extension’s structureprint. As a result, an extension cloaked by CloakX

36

is undetectable by a webpage using anchorprints and is obfuscated from a webpage

using structureprints; however, from the user’s point of view, the extension operates

the same.

In summary, we make the following contributions:

• We present the design of a novel system that automatically identifies and ran-

domizes browser extension fingerprints to defend against existing extension

fingerprinting techniques without requiring any browser changes or any involve-

ment from the extension’s developer.
• We describe the implementation of our design into a prototype, CloakX, that

uses a combination of: (1) static rewriting of extension JavaScript code and (2)

a dynamic DOM proxy, Droxy, that intercepts and rewrites extension requests

on-the-fly.
• We use a combination of high-fidelity testing (extensive manual testing) and

low-fidelity testing (broad automated testing) on the extensions rewritten by

CloakX to quantify the breakage caused by our system, demonstrating that

client-side modification of extensions introduces minimal defects.
• We also evaluate the detectability of cloaked extensions and show that some

cloaked extensions are undetectable while others are more difficult to detect.

3.2 Background

In this section, we provide insights into the complexity of modern browser extension

frameworks that must be taken into account when designing a client-side counter-

measure against extension fingerprinting. We start by describing the architecture of

browser extensions, focusing on the details that pertain to their fingerprintability. Next,

we discuss fingerprinting and detecting extensions using anchorprints (fingerprints

37

Figure 3. Extension architecture. A high-level overview of Chrome’s extension
architecture with the static content of the extension on the left side and the multiple
execution environments on the right. Background pages can 1) inject content scripts
dynamically using the executeScript() method in Chrome’s extension API and 2) send
and receive messages from the content scripts.

that are comprised of items directly accessible from a tracking webpage’s JavaScript)

and structureprints (fingerprints built from the extension’s behavior). Last, we finish

this section by presenting the threat model that CloakX can defend against.

3.2.1 Browser Extensions Explained

While modern web browsers provide an ever-increasing range of functionality to

users and webpages, an off-the-shelf browser cannot possibly provide a sufficiently

large set of features to satisfy every user’s browsing needs. To improve the user’s

browsing experience, browsers enable users to enhance their functionality through

extensions. Users add extensions to their browsers to change the browser’s look, to

add helpful toolbars, to block ads, and to enhance popular webpages [51].

Although extensions utilize web technologies such as HTML, CSS, and JavaScript,

they also have access to powerful extension-only APIs that enable them to, among

38

others, access and modify cross-origin content and a browser’s client-side storage.

However, before an extension can access broader privileges or interact with a webpage,

it must request this access from the browser. As Figure 3 depicts, the modern extension

architecture implements a layered security approach within the browser that creates

multiple execution environments with varying levels of persistence and privileges for

each extension and webpage.

The left-hand side of Figure 3 depicts the static parts of an extension, including

items such as the manifest, JavaScript, HTML, and image files. For the browser to

parse and install an extension, it must have a manifest file which defines the extension’s

properties. Similar to the manifest shown in Figure 3, extensions commonly rely on

three properties, which describe background pages, content scripts, and web accessible

resources [51].

When the background property is included in the extension’s manifest, the browser

automatically constructs a hidden background page for the extension. The background

page contains HTML, a DOM, and a separate JavaScript execution environment

(labeled as “Background Page” in Figure 3). The JavaScript executed in the background

page often contains the main logic of the extension, maintains long-term state, and

operates independently from the life-cycle of the webpages [92].

Content scripts bridge the gap between the background page and the current

webpage. An extension uses content scripts to modify the current webpage and

communicate with the background page. These content scripts are either statically

declared by an extension in the manifest file or programmatically injected into the

current webpage. For example, on the left-hand side of Figure 3, the manifest declares

the two content scripts content_a.js and content_b.js. To programmatically inject

39

a content script, an extension must call executeScript() from a background page

(see 1 in Figure 3).

To modify a webpage, a content script uses the webpage’s DOM [144]. DOM APIs

provide a systematic way for interacting with a webpage. In this chapter, we call the

content script’s interaction with the DOM APIs DOM requests.

Notice in Figure 3 that the background page, content scripts, and webpage each run

their own JavaScript execution environment. The separate execution environments

prevent the JavaScript variables and functions from directly interacting. Google

Chrome’s documentation states that content scripts “live in an isolated world, allowing

a content script to make changes to its JavaScript environment without conflicting with

the page or additional content scripts” [36] (emphasis added). This statement, however,

is misleading because we experimentally discovered that content scripts loaded from

the same extension share variables and can call functions from other content scripts.

Thus, an extension’s content scripts share a single execution environment; however,

they do not share an environment with the background page, webpage, or other

extensions (depicted in Figure 3).

Using DOM requests, a content script has significant control over the rendered

webpage. Content scripts can inject HTML into the webpage (using DOM element

properties such as innerHTML or DOM methods such as appendChild()). We call this

injected HTML droplets (the extension drops them onto the webpage). Among other

elements, droplets may contain <script> tags where the extension includes either

inline or remote JavaScript. By injecting JavaScript, the content script purposefully

bypasses the isolation between the content scripts and the webpage’s execution

environments.

The Chrome Extension API provides privileged functionality available only to

40

extensions. Chrome grants background scripts broad access to the API’s capabilities.

However, Chrome grants content scripts limited access to the API while making

the API inaccessible to webpages. For example, only an extension’s background

page can access network resources, view platform information, and communicate

with native applications. However, both content scripts and background scripts

may use the API to initiate and listen for communications from one another via

the appropriate Chrome APIs (as shown by the double lines towards the bottom

of Figure 3). Background scripts cannot directly interact with a webpage, however

they can indirectly send messages to it via the extension API using the method

chrome.runtime.sendMessage() [34]. Part of the reason for this layered security

model, including the separate execution environments, is to isolate the components

and prevent webpages from unauthorized access to the extension API’s more sensitive

functions.

Another important property in the manifest is the web-accessible-resources prop-

erty [99]. Prior to January 2014, Chrome permitted external access to all of an

extension’s resources, i.e., a webpage could reference resources belonging to installed

extensions. In more modern versions of Google Chrome, an extension must explicitly

whitelist a resource before a webpage may retrieve it [100]. An extension whitelists its

resources by adding them to the web-accessible-resources property in the manifest.

Once added, a resource becomes accessible to any webpage or any installed extension.

To access a web accessible resource (WAR) from the context of a web page, a

webpage developer uses a URL of the format:

chrome-extension://[extId]/[path-to-resource]

The extId in the URL is a unique identifier generated by the Google Web Store upon

publication of an extension which does not change when extensions are updated.

41

3.2.2 Extension Fingerprinting and Detection

In 2017, Sjösten et al. demonstrated that, with WAR fingerprinting, any extension

using WARs is trivially detectable by a webpage [128] by creating a database of which

WARs are utilized by each extension available in the Google Store. Given that an

extension’s ID is globally unique and permanent, a tracker can detect an extension by

requesting any one of its previously identified WARs. If the request is successful, then

the corresponding extension is installed on the user’s browser. Next to its simplicity

and the 16,479 (28%) of extensions that utilize WARs (and are thus fingerprintable),

WAR fingerprinting works in the browser’s private mode.

Orthogonally to WAR fingerprinting, Starov et al.’s Extension Hound

(XHound) [131] creates a DOM fingerprint based on the extension’s DOM modifi-

cations. XHound uses dynamic analysis to exercise extensions and detect changes

introduced to the DOM through the extension’s operation. By loading a set of

webpages with and without a given extension, XHound can compare the two resulting

DOMs and isolate the DOM changes that were performed by the given extension.

These changes can straightforwardly be converted into fingerprints which trackers can

use to detect the presence of any DOM-modifying extension.

When using WAR and DOM fingerprints for detection of extensions, we reclassify

all such fingerprints into anchorprints and structureprints to describe the method and

accuracy of the detection techniques. Anchorprints rely on an anchor between the

webpage’s JavaScript and the extension. An anchor is a unique identifier formed to

facilitate access and communication between webpages and extensions. An anchor pro-

vides a way to directly access elements and resources available to the webpage. Some

examples of anchors include WARs, IDs, class names, and custom attributes. For exam-

42

ple, the Chrome extension Grammarly adds a unique class to the root <html> element

on each webpage. Thus, if a webpage uses document.getElementsByClassName()

and receives the <html> element, it is likely the user has Grammarly installed.

An anchorprint is comprised of all the WARs, IDs, class names, and custom

attributes made available by an extension. With the items in an anchorprint, a

webpage need only to query the DOM or send an XMLHttpRequest to detect an

extension. WARs are the most powerful of the anchorprint elements because, due to

the unique extension identifier, an anchorprint with even one WAR is always 100%

accurate. Although IDs, class names, and custom attributes might be 100% accurate,

they often have a much lower per element accuracy than WARs because webpages

and extensions alike often use some of the same names. Despite this limitation,

the accuracy of the anchorprint improves dramatically with each additional element

included in it.

Structureprints are less precise (in terms of fingerprinting) but are formed based

on the structure of the changes the extension makes to the underlying webpage.

Structureprints effectively create a DOM fingerprint that uses the extension’s unique

and intended behavior to identify the extension. The idea of a structureprint is that

it can be used to detect a specific extension because the extension always behaves

in a predictable manner and alters a webpage consistently, thus creating a structure

that is unique among extensions. For instance, consider a popular Google Calendar

extension that is the only extension with a structureprint that contains the tags a and

img with the following attribute names href, location, target, blank, width,

height, src, alt and style Surprisingly, we found during our experiments that

a tracking webpage can reliably detect 28.93% (1,511) of extensions using only the

tagName of the DOM elements added or deleted from a webpage by an extension.

43

Adding attribute names, attribute values, and the text of the DOM elements to the

structureprint increases the number of detectable extensions to 73.65% (3,847).

An important subset of structureprints that target an extension’s behavior are

called behaviorprints. For example, Grammarly creates a green button inside a text

area. With manual analysis, it is possible to identify whether the green button

has been added to the webpage without relying on the IDs or class names injected

by Grammarly. Another example of using behaviorprints are in the detection of

ad-blocking extensions, such as Detect AdBlock [42]. However, no recent research

has shown how to create a behaviorprint in an automated way at scale. As a result,

current behaviorprints are limited to targeted attacks against specific extensions or

narrowly constrained categories of extensions (e.g., ad-blocking extensions).

Beyond the obvious implementation differences between anchorprints and struc-

tureprints, the fingerprint classes differ in their accuracy and their destructibility.

For most anchorprints, matching the WAR, ID, class name, and custom attributes

of a published extension often provides a (unique) one-to-one match. However, for

structureprints, finding a match is often less certain because many extensions have

similar behavior, which results in the same structureprint. Another key difference

between anchorprints and structureprints is the permanence of their link between the

published extension and the user’s installed version. For anchorprints using WARs,

IDs, and class names, CloakX completely renames the values. By renaming the values,

CloakX completely destroys the link between the published extension and the user’s

installed version. Without that link, it is impossible for a tracking webpage to use

the anchorprint to identify the installed extension because the anchorprint no longer

matches the published extension. Whereas with structureprints, the destruction of the

link between the published extension and the user’s installed version is difficult. This

44

difficulty occurs because of the requirement that a cloaked extension retain the same

behavior (i.e., user experience). By maintaining the same behavior, the structureprint

of a cloaked extension is only being obfuscated, which means that with enough effort

a tracker can eventually deobfuscate the cloaked structureprint and, thus, detect the

cloaked extension.

3.2.3 Threat Model

In our threat model, attackers use a database of fingerprints to detect the extensions

installed by a visitor to the site. However, we limit the attackers to the information

and privileges afforded to the webpage’s JavaScript execution environment. In essence,

we assume that there are no zero-day vulnerabilities that would allow webpages to

bypass the layered-security architecture depicted in Figure 3. Therefore, the attackers

cannot access the content of an extension installed on a visitor’s device.

In this chapter, we explore two different types of attackers. The automated

attacker uses automated extension detection techniques. Specifically, we limit the

automated attacker to anchorprints and structureprints. To detect an extension, the

automated attacker must find either an exact or fuzzy match to an entry in their

fingerprint database. The targeted attacker is permitted to manually generate targeted

structureprints using portions of the structureprint (i.e., behaviorprints) for extension

detection. While we focus on defending against the automated attacker because

automated large-scale detection is a feasible attack, we also include the targeted

attacker to explore how CloakX can defend against the targeted attacks.

45

3.3 CloakX

The core idea behind CloakX is to diversify each extension’s fingerprint from the

client-side while maintaining equivalent functionality without making any changes to

the browser and without requiring the developers to alter their extensions. Client-side

diversification of the anchorprints (fingerprints comprised of items directly accessible

from a tracking webpage’s JavaScript) and structureprints (fingerprints built from the

extension’s behavior) reduces the extension’s detectability by breaking a webpage’s

ability to link together a published extension and the one installed on the user’s

machine. CloakX defeats detection using an anchorprint by randomizing the names of

the WARs, IDs, and classes. However, CloakX does not completely defeat anchorprint

detection using custom attributes. CloakX’s approaches combat custom attribute-

based detection by randomly injecting more unique custom attributes into each

webpage. CloakX reduces the efficacy of structureprints by introducing random

attributes and tags into the webpage. Although CloakX does not completely prevent

detection using custom attributes or structureprints, it is a step beyond current

solutions and CloakX achieves these protections without any changes to the browser

and without requiring the intervention of extension developers.

Figure 4 shows the overall process of CloakX, a multiphase tool that leverages

static- and dynamic-analysis techniques to achieve extension diversification while

maintaining functional equivalence. In the first phase, CloakX analyzes the extension

for the DOM fingerprints and CloakX identifies the droplets that must be statically

analyzed. In the second phase, CloakX renames each WAR within the extension to

a unique random value, finds all the references to the original name, and replaces

them with their randomized counterpart. In the third phase, CloakX adds a dynamic

46

Figure 4. Overview of the CloakX process.

proxy (Droxy) to the extension’s content and background scripts. Droxy dynamically

intercepts DOM and WAR requests and substitutes the original ID, class names, and

WAR names with their random counterparts. In the last phase, CloakX statically

analyzes and rewrites the DOM IDs and class names inside droplets that cannot be

dynamically intercepted by Droxy.

3.3.1 XHound Analysis

CloakX uses XHound (we obtained a copy of the XHound prototype by contacting

the paper’s authors [131]) to generate a DOM fingerprint for the extension and to

identify the droplets injected into the webpage. Each DOM fingerprint consists of

four types of artifacts: (1) adding a new DOM element, (2) deleting a DOM element,

(3) setting or altering an element’s attribute, and (4) changing text on the page.

Of the four types, DOM additions are the most common type of detectable artifacts

according to XHound [131]. This is because DOM additions are generic operations

that often rely on loose coupling with a webpage for them to be triggered. Whereas

most DOM modifications or deletions require a tighter coupling between the extension

and the webpage, which limits their applicability to the problems often solved by

developers. For instance, consider a password manager extension that injects a stylized

element into every password form field (so that the user can invoke the password

manager interface). The extension adds the element to the webpage and gives it a

47

unique ID and a custom class name. It requires the ID to communicate with the

element once it’s placed on the webpage. Using the added ID and class name (i.e.,

the extension’s anchorprint), a webpage can detect the extension by checking for the

presence of either the unique ID or class name on the webpage.

Next, CloakX uses XHound to identify any droplets the extension injects into

the webpage’s execution environment so that CloakX can preprocess the droplets to

identify the ID and class names within them. As discussed in Section 3.2.1, droplets

(purple-colored boxes in Figure 3) are JavaScript strings that an extension injects

directly into a rendered webpage. Droplets can include any text literal such as HTML,

JavaScript, or base64-encoded images; however, the preprocessing is only performed

on droplets containing inline JavaScript and those <script> elements that reference

WARs.

Finally, during this phase, CloakX creates a map from the original ID and class

names used to fingerprint the extension to the new randomized values.

3.3.2 Diversification of Web-Accessible Resources (WARs)

The principle behind the diversification of Web-Accessible Resources (WARs) is

straightforward: if each installation of an extension has different filenames for the

same WARs, then a tracker can no longer create a global database of WARs and,

therefore, can no longer detect the presence or absence of any given extension based

on its WAR anchorprint.

In the first stage of the WAR diversification process, CloakX identifies all the

resources declared as WARs in the manifest file of each extension. Although many

extensions explicitly list the resources they wish to make accessible, it is also possible

48

to use a * wildcard [108]. With wildcards, an entire folder, its contents, and all its

subfolders can be designated as web-accessible—this includes using a single *, which

designates every file in the extension as web-accessible. Even though making every

file in the extension web-accessible is likely an implementation error, we discovered

419 extensions that made all of their resources web-accessible, out of 59K analyzed

extensions. In the second stage, CloakX computes the shortest unique file path to

facilitate the search-and-replace in the final stage. Specifically, CloakX reduces the full

path of each WAR to the minimum length necessary to uniquely identify the resource

(compared to all the other resources in the extension). This operation reduces the

number of resource references missed (i.e., false negatives) associated with dynamic

string concatenation (often a directory path).

In the final stage of the WAR diversification process, CloakX uses the shortest

unique path to find every use of the WAR within the extension’s files and to replace

that with the appropriate random value, maintaining the correctness of WAR references

for each extension.

In addition to the static alterations described above, CloakX relies on Droxy,

discussed in the Section 3.3.3, to dynamically translates any WAR requests missed by

the static replacement method.

3.3.3 Droxy

The next step in the CloakX process adds Droxy to the extension. Droxy is

a content script that injects random attributes and tags into the DOM to further

obfuscate the extension’s DOM fingerprint while also translating any uncloaked WAR

requests and the IDs and class names used in DOM requests into their cloaked versions.

49

CloakX patches Droxy into the extension and configures Droxy to execute before any

of the extension’s content scripts.

Droxy adds random attributes and tags to the DOM to reduce the accuracy of

detection using structureprints. As each webpage is loaded, Droxy adds a random

number of randomly generated tags to the DOM to make extension detection less

accurate. To further frustrate detection using structureprint matching, Droxy adds

random attributes to the DOM elements added by each extension.

Droxy also uses cross injection of custom attributes to frustrate anchorprint

detection. For trackers using custom attributes to detect extensions, cross injection

allows the user to impersonate other extensions, which increases a tracker’s false

positives when using anchorprint detection. This is done by adding custom attributes

that are randomly selected from a list of the 244 unique custom attributes used by

other extensions with a DOM fingerprint.

Droxy also dynamically catches any WAR requests made using the resource’s

original filename, which serves as a backup for the static replacement method

described in Section 3.3.2. Droxy achieves this by watching for changes to the

DOM using a MutationObserver() that checks for uncloaked WAR requests in-

side the DOM elements altered by the extension. In addition, Droxy overrides the

XMLHttpRequest.open() method and adds functionality to translate any WAR re-

quests for the original filename to the new, randomized filename.

Droxy translates the ID and class names used to create a DOM anchorprint. As

the first content script to load, Droxy overrides DOM accessor and mutator methods

before the extension uses them to interact with the DOM, which effectively wraps all

DOM requests in a translation layer (blue area in Figure 5). Each of the overridden

methods are augmented to intercept and translate ID and class names used to create

50

the DOM fingerprint. Droxy determines which ID and class names to translate by

checking the ID and class names against the cloaking map, created in Section 3.3.1.

The cloaking map contains name–value pairs where each XHound-discovered ID and

class name is paired with a randomized version. If it finds a match in the cloaking map,

it translates the original value on-the-fly into the randomized version. By intercepting

and translating the fingerprintable ID and class names to randomized values, Droxy

alters the extension’s DOM fingerprint from the perspective of a tracker’s execution

context breaking the link between the user’s installed extension and the publicly

available version.

To prevent the use of anchorprint detection, Droxy translates IDs and class

names into random values according to the map created in Section 3.3.1. For ID

and class name translation, Droxy also tracks DOM queries and DOM mutations.

Droxy intercepts and inspects the extension’s queries that use IDs, element names,

class names, and query selectors, which include the methods getElementById(),

getElementsByName(), getElementsByTagName(), getElementsByClassName(),

querySelector(), and querySelectorAll(). To handle more complex query

selectors, Droxy parses the selectors using the open-source Sizzle engine to accurately

identify the ID and class names [127].

For DOM mutations performed via JavaScript, Droxy intercepts all the ways in

which an ID or class name can be introduced to the DOM. This dynamic interception of

ID and class names is done by overriding setAttribute() and getAttribute() meth-

ods and redefining id and className properties to use the overridden setAttribute()

and getAttribute(). In addition, Droxy overrides the classList property. Because

classList is an object, Droxy overrides the add(), contains(), and remove() meth-

51

ods of the classList. As a result, Droxy translates the extension’s use of IDs and

class names whether it is done when a DOM element is created or modified.

For DOM mutations performed via the injection of raw HTML, Droxy uses static

and dynamic analysis to make the translation of ID and class names straight-forward

and precise. Droxy overrides the methods used to inject raw HTML, such as the

innerHTML property and insertAdjacentHTML() method. Droxy uses the browser to

parse the HTML by creating a mock container and adding the HTML to it without

attaching the mocked container to the DOM. Droxy queries the mock container to

identify and transform the ID and class names into their randomized versions. Droxy

then exports the string representation from the mock container’s DOM and then calls

the original method to apply the modified string to the webpage’s DOM.

In addition to DOM queries and mutations, Droxy intercepts styles and trans-

lates on-the-fly. An extension can include styles via text content inside <style> or

CSSStyleSheet’s methods such as addRule() or insertRule(). Once intercepted,

Droxy uses CSS parsing to locate the IDs and class names. If found, Droxy replaces

the ID or class name with its randomized counterpart.

Droxy replaces an extension’s droplets with the statically rewritten version

(content_a.js and Dynamic JS in Figure 5). As a part of the droplet rewriting

process described in Section 3.3.4, Droxy receives a hash value of the original droplet

and modified version of the code for each droplet used by the extension. Droxy

then matches the current droplet’s hash to the ones provided and replaces it with its

cloaked counterpart. Droxy performs the matching and replacement by customizing

the properties textContent, innerText, and HTMLScriptElement’s and the methods

append() and appendChild() This process is depicted by the dashed arrow near

52

Figure 5. Diversified CloakX rewritten extension.CloakX hides fingerprints by rewriting
the droplets, content styles, and renaming of web-accessible resources (WARs) and
through Droxy’s on-the-fly substitution. As a result, a tracking webpage cannot access
the original identifiers; however, the internal logic of the extension still can because
Droxy translates those requests.

1 in Figure 5. Droxy relies on the preprocessed JavaScript because rewriting the

code on-the-fly in the browser efficiently is currently infeasible.

3.3.4 Static Droplet Rewriting

As discussed previously and shown in Figure 3, Droxy cannot intercept a droplet

with dynamically inserted JavaScript because when the inserted code is executed in the

webpage’s JavaScript execution environment. Unfortunately, Droxy is also unable to

cloak the droplet before inserting it because the heavy-weight static analysis necessary

would significantly degrade the extension’s performance. Therefore, CloakX statically

analyzes the droplets offline, identifies where the extension adds the fingerprintable ID

and class names to the DOM, rewrites the JavaScript code, and Droxy dynamically

substitutes the original code with its rewritten counterpart.

Extensions commonly use generic values for IDs and class names, which often

overlap with JavaScript keywords or JavaScript code constructs that refer to the

53

class names and IDs dynamically. In addition, the expressiveness of JavaScript

means that the ID and class names usage are context-sensitive. For example, if the

fingerprintable class name is content, CloakX should only replace the instance of

#content and ignore element.content, content.maximizer, and content-shaper,

as each have a different semantic meaning. Developers often construct ID and class

names dynamically in the code, which necessitates a more sophisticated form of static

analysis. For example, an extension might attempt to access an element with the ID

content by using getElementById(“con” + “tent”), which would be missed by a

regular expression searching for the full word.

CloakX statically rewrites droplets offline (i.e., before an extension is installed)

using static analysis to identify the appropriate locations in the JavaScript. CloakX

limits its rewrites to the ID and class names that occur in the JavaScript and are

added to the webpage via the DOM. By identifying and only altering these DOM

altering instances, CloakX limits the possibility of breaking the extension with the

alterations. In essence, the static rewriting requires a tool that performs taint analysis

where it labels DOM interactions as sinks and then analyzes the backward slices of

the control flow graph (CFG) until it finds the fingerprintable IDs and class names as

sources.

We decided to use TAJS—a state-of-the-art and feature rich JavaScript analyzer—

as the program analysis core of the CloakX static rewriting. We chose TAJS because

it (1) performs type analysis on JavaScript, (2) supports most of the ECMAScript

5 standard and DOM functionality, (3) is under active development, (4) is open

source [59], and (5) is the product of recent research [12]–[14], [85]–[87], [89].

TAJS performs dataflow analysis by using techniques that examine the flow of

data along program execution paths. As TAJS iterates over the CFG, it creates a

54

semilattice of program states that are unique for each basic block in the CFG [88].

For each variable represented in the lattice at a given basic block, TAJS assigns a set

of possible values. The dataflow analysis completes when the values inside the lattice

reach a fixed point and no longer change with each iteration. Using these values, it is

possible to follow data both forwards and backwards through the CFG [88].

3.3.4.1 TAJS for Extensions

We enhanced TAJS to support static rewriting of the droplets by adding support

for Chrome extensions, adding DOM taint analysis, and maximizing its exploration

of the CFG. In addition, we plan to make our changes to TAJS publicly available

because there are currently no other program analysis tools for browser extensions.

We added extension support to TAJS by creating stubs for Chrome’s extension API

and implementing support for necessary methods such as sendMessage(), getURL(),

executeScript(), onMessage.addListener() .

We implemented taint analysis within TAJS that tracks data through an application

until it reaches a sink, where a sink is a location of interest within the CFG [18]. For

the purposes of this analysis, TAJS tracks string literals matching the fingerprintable

IDs and class names through the CFG until they are used to interact with the DOM.

As a part of the taint tracking, we added functionality that maintains an audit trail

of the changes to each variable while traversing the CFG so that upon reaching a sink

CloakX can trace the values of interest to their origins.

We increased TAJS’s code coverage by adding edges to the end of the CFG that

force a call to every named and anonymous function defined within the code. For the

purposes of extension rewriting, it is necessary that TAJS analyzes all the JavaScript

55

within a droplet because some functions appear unreachable without complete semantic

understanding of Chrome’s extension execution environment. However, the dynamic

aspects used by TAJS itself to strike a balance between soundness and precision came

at the cost of code coverage [14]. For example, TAJS does not analyze functions unless

they are called by the JavaScript and the call is also reachable from the beginning of

the CFG. Because extension rewriting requires TAJS to analyze all of the JavaScript

within a droplet, we added edges to the end of the CFG that simulates a call to every

named and anonymous function in the droplet. The potential downside to adding the

edges is the decreased precision of our analysis (i.e., we are adding behavior to the

application that does not exist at run-time), however for the purposes of identifying

DOM fingerprints the trade-off is acceptable.

3.3.4.2 Static Analysis Results

Automated analysis of real-world JavaScript code is a difficult problem and despite

all the advances made by TAJS, it, as well as similar tools, cannot analyze some

JavaScript programs. As a JavaScript program increases in complexity and size, it

becomes increasingly less likely TAJS will complete the analysis due to the explosion

of dataflows (i.e., the classic state space explosion problem). As acknowledged by

the authors, TAJS initially targeted hand-written JavaScript applications of a “few

thousand lines of code” [88]. Plus, the addition of the fake edges dramatically increased

the complexity of the CFG and the number of states, which decreased the code TAJS

could successfully analyze to about 1,000 lines of code.

Fortunately, CloakX only needs TAJS analysis for the 197 extensions using droplets,

which is only 3.2% of the extensions identifiable by XHound, because Droxy handles

56

the rest of the extensions. Out of those 197 extensions, TAJS analyzed 212 total

scripts of which 94 were JavaScript files that were designated as a WAR (and thus

accessed via a src attribute, see Figure 5) and 118 were inline JavaScript. TAJS

successfully completed analysis of 134 scripts (63.2%) finding 19,380 basic blocks

and analyzing 18,497 (95.44%). However, TAJS was unable to analyze 78 (36.8%)

of the inline JavaScript and WARs because the analysis for 34 scripts timed out, 6

scripts failed with an analysis exception, 6 scripts failed due to syntax errors in the

JavaScript, and 32 scripts failed when TAJS crashed.

After manually analyzing the results we found the following reasons for why TAJS

failed.

Exceeded timeout threshold. Most of the JavaScript code that caused TAJS to

timeout were large JavaScript files that varied in size from 75 kilobytes to over a

megabyte. In other cases, TAJS failed to finish analyzing smaller JavaScript code

because of a bug in the forced path exploration code.

Analysis exceptions. TAJS failed to complete the analysis because it was missing

support for the ECMAScript standard.

Syntax errors. TAJS was unable to analyze scripts with error in the JavaScript

syntax.

Crashed. Some of the scripts triggered a bug in TAJS, causing it to crash with null

pointer, stack overflow, or other miscellaneous exceptions.

3.3.5 Cloaked Extension

Once CloakX completes its modifications to the extension, the extension is cloaked

and it appears to a webpage using anchorprint or structureprint detection techniques

57

Figure 6. Original code of SEOquake extension (left) and SEOQuake extension when
patched by CloakX (right).

as though the user no longer has that particular extension installed. Architecturally,

the resulting extension is similar to Figure 5 with Droxy surrounding the content

scripts and translating the extension’s DOM requests and droplet injections. To a

webpage, the results look similar to the HTML source shown in Figure 6.

The permanence of the cloaked anchorprint and structureprint depends on whether

the extension is subject to static rewriting. For cloaked extensions that rely on purely

dynamic mutations, the structureprint changes each time the cloaked extension is

loaded. Droxy alters the structureprint by injecting new randomly generated noise into

the DOM and re-randomizing the cloaked ID and class names. However, CloakX must

statically alter extensions with WARs or droplets. As a result, the cloaked fingerprint

of extensions requiring static rewriting remains the same until a new version of the

extension is reprocessed by CloakX. Although guessing the name of a cloaked WAR is

unlikely because CloakX generates a random alphanumeric value that is at least ten

characters in length for each WAR; even if an adversary guesses the name of a WAR,

the detectability would cease when a new version of the extension was released.

58

3.3.6 Deployment

Although we describe CloakX as a client-side mechanism (as this is where the

fingerprint rewriting is done), to reduce end-user friction, we envision CloakX as the

final step in an extension’s release and update process, all of which can be performed by

the extension store and would require no intervention by the users. Prior to releasing

the extension to users, the store sends the extension to CloakX for preprocessing.

During CloakX’s preprocessing, CloakX installs Droxy and generates a cloaking-

template for the extension. The cloaking-template contains a configuration file that

identifies the static variable replacements necessary for WARs, IDs, and class names.

When a user requests a preprocessed extension, CloakX uses the cloaking-template to

quickly generate and implement random WAR, IDs, and class names for the current

user.

3.4 Evaluation

Altering extensions without modifying the browser or relying on extension devel-

opers to make changes is a complex process, and while CloakX is a prototype and

does not cover every possible scenario, we wanted to evaluate its current effectiveness.

Thus, in this section we evaluate the efficacy of CloakX by (1) testing the breakage

introduced by its use (2) the detectability of the cloaked extensions and (3) the

performance of the cloaked extensions.

In November 2017, we extracted 59,255 extensions from the Chrome Store. Of

those, we identified 13,693 extensions with only WAR fingerprints; however, 67 of the

extensions had errors that prevented them from loading. Next, we identified 2,537

59

extensions having only DOM fingerprints, but Chrome could not load nine of the

extensions. The last set of 2,786 extensions had both WAR and DOM fingerprints,

one of which would not load in Chrome.

3.4.1 Functionality Experiments

Testing the functionality of a large set of applications is subject to two problems.

First, the tests must explore all the relevant execution paths in the application.

Second, the tests should test the entire set of applications. Furthermore, any testing

approach will leave code unexplored and applications uncovered, and thus the results

form an estimation of functionality breakage. In this work, we perform two different

experiments to address both of these challenges: a low-fidelity and a high-fidelity

experiment.

The low-fidelity experiment tested the entire population and the high-fidelity

experiment randomly sampled from the population. The low-fidelity experiment

automatically exercised the original and cloaked extensions and compared the error

messages generated by each. The low-fidelity experiment provides a lower bound

on the breakage across the entire population. The high-fidelity experiment involved

manually—and extensively—exercising the extension, which provided deeper coverage

of the extension’s functionality. Due to the time-consuming nature of each high-fidelity

run, we used a random sample of the extensions from each population.

60

3.4.1.1 Low-fidelity Functionality Experiments

To measure functionality breakage introduced by CloakX broadly across all ex-

tensions, we performed automated experiments that measured the change in errors

from the original extension to the cloaked extension. To execute the experiment, we

created a headless browser session using Selenium’s ChromeDriver with full logging

enabled, which includes errors from the extension’s content scripts. Next, we visited

a triggering web page, which is similar to the webpage used by XHound to activate

the extension’s functionality. In addition, for those extensions with DOM fingerprints

identified by XHound, the triggering webpage also included dynamically generated

triggers. After the page loaded, the browser waited 30 seconds for any delayed actions

to execute. Other than the static and dynamic triggers, the automated experiments

do not simulate additional user actions, which might be necessary to execute all the

extension’s functionality. These steps comprise a run, which is completed once for the

original extension and once for the cloaked extension.

After both runs finish, we compared the severe JavaScript error messages between

the two runs. If the cloaked extension generated the same errors, then the extension

passed. Otherwise, if the cloaked extension generated any new or different errors, then

the extension failed. Because the automated tests exercise limited functionality and

only compare errors, this experiment represents the best case scenario (i.e., the lower

bound) on the errors introduced by CloakX. However, the automation allowed us to

run the experiment across the entire population.

Table 1 shows the results for WAR and DOM cloaking separately. Note that at

the time we ran the experiments, which took place several months after collecting the

extensions, some of the original versions stopped working because of Chrome browser

61

Table 1. Automated Test Results.

Extension set Total Tested Passed Results
Pass Fail

WAR Fingerprintable 13,693 13,626 13,493 99.02% .98%
DOM Fingerprintable 2,537 2,526 2,493 98.69% 1.31%

WAR & DOM Fingerprintable 2,786 2,785 2,727 97.92% 2.08%
Totals 19,016 18,937 18,713 98.82% 1.18%

updates, obsolete back-end servers, etc. As a result, we only tested working extensions

and, therefore, the results only contain errors introduced by CloakX.

In the low-fidelity experiments, CloakX retained equivalent functionality for 99.02%

(13,493) of the WAR fingerprintable extensions, 98.69% (2,493) of DOM fingerprintable

extensions, and 97.92% (2,727) of WAR and DOM fingerprintable extensions. For

the WAR fingerprintable extensions, we found that the most frequent cause of the

failures was the loading of WARs from remote websites. For the DOM fingerprintable

extensions, most of the new error messages generated by the cloaked extensions were

severe JavaScript errors caused by (1) extensions loading remote content or (2) missing

functionality in Droxy. For the WAR and DOM fingerprintable extensions, we found

the same errors as seen in the WAR and DOM only tests. To verify the WAR and

DOM cloaking did not interfere with one another, we also ran this group using only

one of the modifications at a time. The total number of errors was the same for the

joint run as it was for the two additional runs with the single modifications, which

indicates the modifications did not interfere with one another.

62

3.4.1.2 High-fidelity Functionality Experiments

The high-fidelity experiments consisted of manually exercising and evaluating the

operation of the cloaked extensions. The high-fidelity evaluation was inspired by the

methodology used by Snyder et al. [130]. This methodology focuses on the extension’s

operation from the perspective of the user. If the cloaking process introduces an error,

but the user does not perceive a difference in the extension’s operations, then we

deem the extension passes. This method of evaluation exercises much more of the

extension’s code than the automated tests and it provides an additional metric that

evaluates the actual operation of each extension. The high-fidelity experiments were

performed by the authors using the testing framework detailed next.

We built a custom framework to methodically follow a four-phase evaluation of

each extension and advise the tester on the current step in the process. In phase

one, the framework loads the original extension and gives the user five minutes to

understand its basic operation (including the time necessary to read the extension’s

description in the Chrome Store). In phase two, the framework reloads the original

extension and the user exercises its functionality for five minutes. In phase three, the

framework loads the modified extension and the user spends five minutes completing

operations similar to the ones completed in phase two to verify it is still operational.

In the last phase, the user records any notes on the evaluation and chooses whether

the extension passed or failed.

Similar to the automated tests, we divided the extensions into three groups based

on the type of fingerprints they emitted. As a result, the populations for each of the

high-fidelity tests were as follows: 13,626 WAR fingerprintable extensions, 2,526 DOM

fingerprintable extensions, and 2,727 WAR and DOM fingerprintable extensions.

63

Table 2. Manual Test Results.

Extension set Random Top 25 Overall
Pass/Fail Pass/Fail Pass/Fail

WAR Fingerprintable 25 / 0 25 / 0 50 / 0
DOM Fingerprintable 24 / 1 24 / 1 48 / 2

WAR & DOM Fingerprintable 24 / 1 24 / 2 47 / 3

To create samples for these groups, we created both random and systematic

samples containing 25 extensions each. We created the first sample by randomly

selecting 25 extensions from the population. We formed the systematic sample by

selecting the top 25 most popular extensions based on the number of downloads

listed on the Chrome Web Store. Throughout the manual tests, if we could not

test an extension because the original version was broken or it was only available

in a foreign language, then it was discarded and another one was selected according

to the associated sampling method. The resulting samples contained quite a bit of

diversity between the extensions. Although we found a few instances of overlapping

functionality, we kept these extensions in the samples. However, when we found a

duplicate extension, we discarded the duplicate and tested a different extension. Some

example extensions included in the test samples included a utility for those who are

color blind, a search bar tool, a product search by image, a data extraction tool, and

a gesture utility for navigation.

Out of all 150 experiments, 145 of the cloaked extensions retained equivalent

functionality (see Table 2). All of the WAR fingerprintable extensions retained their

functionality. 96% (48 out of 50 extensions) of the DOM fingerprintable extensions

and 94% (47 out of 50 extensions) of the WAR and DOM fingerprintable extensions

retained their functionality.

64

After analyzing the broken extensions, we found three different causes for the

broken extensions.

Remote source code using original resource name. The extension loads remote

Facebook SDK, which looks for obfuscated ID and class values.

Extension relies on hardcoded values that Droxy alters. An extension relies

on hardcoded logic that expects its content scripts to appear in a specific order.

However, Droxy must be the first content script, which changes the position of all of

the extension’s original content scripts, and in one case, it broke the extension.

Droxy implementation limitation. Droxy does not currently support recursive

iframe sourcing, cloneNode, and some advanced CSS rules that the cssutils Python

library fails to properly parse.

With engineering improvements to Droxy, we can remediate each of the errors listed

above and increase the success rate. For the remote source code, Droxy could intercept

the remote source code request and parse it before it is executed. This, of course,

would add additional performance overhead. The hardcoded logic could be rectified

by overriding the methods that accesses the content scripts. The implementation

limitations can be addressed by adding logic to support them into Droxy.

3.4.2 Detectability Experiments

The detectability experiments evaluated the efficacy of the cloaking against an

extension tracking webpage. In the first experiment, the tracker used anchorprints to

detect extensions with either WAR or DOM fingerprints. In the second experiment,

the tracker used structureprints to detect the extensions with DOM fingerprints. In

the third experiment, we investigated the use of behaviorprints to detect cloaked

65

extensions. Last, we explored different methods for detecting the use of CloakX on an

extension.

For the first three experiments, we set the fingerprint matching threshold to three.

To meet the matching threshold, the tracker must be able to match the extension’s

fingerprint to three or fewer extensions in its repository. When the tracker meets the

matching threshold, it has successfully detected the extension.

We chose a threshold of three because thresholds higher than three showed a sharp

decrease in the tracking benefit gained from an extension detection. The matching

threshold represents the number of extensions that match a structureprint. The best

threshold depends on the requirements of the web tracker and the resources available.

The main purpose of the threshold for our experiments was to balance the search

time complexity of the fuzzy searches with the increase in the matching of cloaked

extensions. For example, by raising the threshold to 20, the web tracker matches three

additional cloaked structureprints (one of which matches 18 extensions).

3.4.2.1 Detectability Experiment Using Anchorprints

The anchorprint detectability experiments focused on detection using WARs, IDs,

and class names. In the first phase of the experiment, we harvested the anchorprints

of the extensions. Next, we loaded each of the original extensions and used a tracking

webpage to verify that the extensions were detectable using the anchorprint. Finally,

we loaded each of the cloaked extensions and used a tracking webpage to evaluate

the detectability of the cloaked extensions using its anchorprint. For a successful

detection, the tracker must meet the matching threshold.

In our experiment, we found that none of the cloaked extensions were detectable

66

using their WARs, IDs, and class names after cloaking. In the first phase, we harvested

17,833 anchorprints, which includes 16,411 extensions with WAR fingerprints and

1,422 that have DOM fingerprints with IDs and classes. However, we chose to limit

the testing to the 17,678 extensions that could be executed after being cloaked and

assumed that the 155 broken extensions were detectable (thus providing a lower bound

on detectability).

In the second phase, we matched 17,534 of the 17,678 original extensions. The ID

and class name functionality of the tracker failed to match 144 extensions because

it either failed to trigger the extension’s anchorprint or it found too many matching

extensions. The ID and class name tracker did not find matches for 26 extensions

because those extensions required dynamic triggering and the tracker could not use

dynamic triggering and still extract the anchorprint; thus, the extensions did not inject

their anchorprint into the webpage. The remaining 118 extensions did not count as a

detection because the IDs and class names matched more than three other extensions,

which exceeded our threshold for a detection.

Initially, the WAR functionality of the tracker failed to find 956 of the WAR

fingerprinted extensions using XMLHttpRequest because none of the WAR declarations

in the manifest file existed in the extension. However, we discovered we could reliably

match these extensions by timing how long it took for three WAR requests to return.

The first request is for the declared but missing resources of the extension. The second

request was for the extension’s manifest.json, which was not declared as a WAR.

The third request was for a randomly generated resource that does not exist in the

extension and is not a WAR. If the missing request (i.e., the first) takes the longest to

return, then the extension has the resource defined as a WAR but the resource does

not exist in the extension. Thus, we improved the tracker such that if the tracker

67

failed to match an extension using any of the WARs, then it performs these three

requests for each of the WARs in the 956 extensions and if the first request takes the

longest it has detected the extension.

In the third phase, we were able to detect 96 of the cloaked extensions using their

anchorprints. After investigating several extensions that were detected, we found

that matches occurred because CloakX was not translating the ID and classes for the

extensions due to errors introduced through the cloaking process. In other words, the

experiment found 96 additional cloaked extensions that did not maintain functionality

equivalent to their original versions. Thus, with the additional errors but no actual

matches, we found that 98.55% (17,582) of the extensions were undetectable using

anchorprints.

3.4.2.2 Detectability Experiment Using Structureprints

The structureprint experiment tested the detectability of cloaked extensions using

exact and fuzzy matching to detect the extensions. In the first phase, we ran each

of the 5,311 DOM fingerprintable and WAR and DOM fingerprintable extensions

through XHound to gather the structureprints. In the next phase, we ran each of

the 5,223 cloaked extensions through XHound to gather cloaked fingerprints. We

considered the extensions that failed the automated tests as detectable. Similar to the

WAR detection experiments, we did not test the broken extensions, but we assume

that they were detectable. In the last phase, we used the structureprints generated in

phase one to match the cloaked fingerprints.

The accuracy and precision of detecting structureprints varies depending on both

(1) the DOM elements used to build the structureprint and (2) the matching technique

68

Table 3. Structureprint Detection Test Results.

Structureprint Key Type Exact Matching Fuzzy Matching
Original Cloaked Cloaked

Tags, Attributes, Text 3,756 (71.91%) 91 (1.74%) 217 (4.15%)
Tags and Attribute Values 2,092 (40.05%) 91 (1.74%) 95 (1.82%)

Tags 1,420 (27.19%) 91 (1.74%) 91 (1.74%)

used to identify the extension. Therefore, to explore how CloakX can prevent the

detection of various types of structureprints, we ran the last phase several times using

three different structureprints (each one representing less information used in the

structureprint) and two different matching techniques (one on exact matching and

one on fuzzy matching) to ensure CloakX reduced detection for each of them.

The structureprints varied based on the contents used to build the fingerprint.

The first type used all the XHound data, in other words, each fingerprint included

added and changed tags, attribute names, attribute values, and text data. While

these are the most accurate, they are also the most brittle; as a result, it is likely

that the accuracy will degrade considerably in a real-world environment with dynamic

HTML content and visitors that have several extensions installed. The second type of

structureprint used only the tags and attribute names, which means the fingerprint

did not use the attributes values or text. The third type of structureprint used only

the tags.

For detection, the experiment extracted an extension’s structureprint and then used

exact and fuzzy matching against the structureprint database to identify the extension.

Exact matching worked well for detecting uncloaked extensions; however, due to the

preciseness required for an exact match, cloaked extensions evaded exact matching.

Thus, we also tested using fuzzy matching with a 90% level of confidence. Fuzzy

matching was successful when the match was made with a 90% level of confidence.

69

Using either matching technique, if the tracker met the matching threshold (three or

fewer matches) using the extension’s structureprint then we counted the extension as

detected.

Overall, we found that cloaking significantly limited the number of extensions

detectable using structureprints. With the full structureprints (tags, attribute names,

attribute values, and text) and exact matching, we were able to detect 3,756 of the 5,311

original extensions. The reason that 1,555 extensions were undetectable is because the

number of matches made using the extension’s structureprint exceeded the matching

threshold for a detection (a structureprint must match three or fewer extensions for a

successful detection). Using the full structureprints on cloaked extensions, none of

the cloaked extensions were detected using exact matching and only 126 extensions

were detected using fuzzy matching. Using partial structureprints (attributes and

tags), we were able to detect 2,092 of the original extensions; however, the cloaked

extensions were undetectable using exact matching and only four were detectable

using fuzzy matching. Using the tag only structureprints, we detected 1,420 of the

original extensions; however, we were unable to detect any of the cloaked extensions

using either matching technique.

3.4.2.3 Detectability Experiment Using Behaviorprints

To understand the limitations of CloakX, we performed an experiment to test the

detectability of cloaked extensions using behaviorprints. We chose ten of the most

popular extensions with structureprints and to avoid duplication we excluded all ad-

blocking extensions except AdBlock. In addition, we examined ten extensions that we

randomly selected from those with structureprints. By analyzing their structureprints,

70

we manually created their behaviorprints from portions of the structureprint that

remain constant after cloaking.

For the popular extension sample, six of the extensions added elements to the

DOM that made them uniquely identifiable. The extensions LastPass, Pinterest Save

Button, and Grammarly all add a base64 encoded image to the DOM that makes them

uniquely identifiable. The extensions Ghostery, Evernote, and Skype add a style tag

to the head element with features that made them uniquely identifiable. The extension

Turn Off the Lights adds a data-video attribute. Although the data-video attribute

is detectable when the extension is cloaked, CloakX randomly includes this attribute

even when the extension is not installed, which increases the attacker’s false positive

rate and makes it more difficult to correctly detect when the extension is truly installed.

Even though the cloaked version of AdBlock was detectable, its behaviorprint was

not distinguishable from other popular ad-blocking extensions (e.g., AdBlock Plus,

uBlock Origin, and AdGuard AdBlocker) because they all perform the same behavior

by deleting ads from the DOM and not injecting any other elements into the DOM.

Thus, the detection of ad-blocking extensions exceeds the matching threshold for the

identification of a user. Ace Script and Honey added div tags with an ID, which

means CloakX obfuscated the behaviorprint, and the extensions were not detectable.

For the random sample of ten extensions, five extensions were detectable using

behaviorprints and five were undetectable. Similar to popular extensions, five of the

ten extensions added elements to the DOM that made them uniquely identifiable. For

example, two of them added custom text to the web page. Two of the undetectable

extensions performed actions on the DOM, which were duplicated by a number of

other extensions. Thus, those extensions exceeded the matching threshold and were

71

undetectable. Finally, the three remaining undetectable extensions only added class

names, IDs, and common tags to the DOM, which are obfuscated by CloakX.

3.4.3 Detectability of CloakX

For our last set of experiments, we evaluated three different techniques meant

to determine whether an extension was cloaked by CloakX, thus detecting CloakX.

These detection experiments were limited to the 2,447 extensions with structureprints

that contained at least one ID or class name.

In the first experiment, we created a method for detecting CloakX after analyzing

the lengths of the IDs and class names in cloaked and uncloaked extensions. The

IDs and class names generated by CloakX were initially six characters in length and

comprised of random alphanumeric characters. However, the IDs and class names in

uncloaked extensions averaged 15.1 characters for IDs and 15.9 characters for class

names. In addition, we discovered that only 62 uncloaked extensions met the criteria

of having all their IDs and class names with a length of six (most of which had only

one ID or class name). As a result, we created a method for detecting CloakX that

marked an extension as CloakX-enabled if all the IDs and class names injected by

the extension were six characters in length. Next, we ran the CloakX detector on

2,447 uncloaked extensions and cloaked extensions, thus evaluating 4,894 extensions.

The CloakX detector reported 2,509 cloaked extensions, which means we had 62 false

positives, 2,447 true positives, and 2,385 true negatives with an accuracy of 98.7%.

As a result, we modified CloakX to randomize the length of the IDs and class names

it renames. After making this change, we were no longer able to accurately detect the

existence of CloakX based on the length of IDs and class names.

72

As a follow up, the second experiment attempted to identify cloaked extensions

by measuring the entropy of the injected ID and class names. Our hypothesis was

that the entropy of randomly generated IDs and class names would be measurably

different from those chosen by extension developers. We found that the uncloaked ID

and class names exhibited nearly the same amount of entropy as their randomized

counterparts. As a result, we could not accurately identify the existence of CloakX

using the entropy of ID and class names even though the cloaked values contained

randomly generated characters.

In the last CloakX detection experiment, we identified the use of CloakX by

exploiting popular extensions that both exhibited a behaviorprint and injected an ID

or class name into the webpage. In particular, we found Evernote and Grammarly

offered a strong behaviorprint and a related ID. Once we identified the existence of

the extension’s behaviorprint we looked for the ID or class name, if it did not exist

then we determined CloakX was likely installed. For instance, Evernote injects a

style tag with unique elements and it uses an ID for the same style tag. When

a style tag is found that contains Evernote’s elements and the style’s ID is not

style-1-cropbar-clipper, then the tracker records that it found a cloaked version

of Evernote. Similarly, when Grammarly’s green icon is detected and the top level

html tag does not contain a class starting with gr, the tracker records that it found a

cloaked version of Grammarly. We tested this by running the tracker against all 2,447

uncloaked extensions and the two cloaked versions of Evernote and Grammarly. The

tracker accurately identified the cloaked versions of both extensions with zero false

positives.

73

3.4.4 Performance Experiments

CloakX minimally impacts the performance of Chrome in our automated tests.

We tested CloakX’s performance by randomly selecting 500 extensions that contain

structureprints because their cloaking requires more resources. Each individual test

loaded Chrome, loaded the extension, and ran a triggering webpage from the local

machine, which either triggered a page load event or timed out. We executed the tests

ten times on both the original and modified extensions. The tests were performed

across 16 cores with each core running at 2.2 Ghz. On average, the original extensions

took 12.3128 seconds and used 66,790 KB of memory whereas the modified extensions

took 12.3221 seconds and used 67,123 KB of memory. Thus, the average increase in

overhead for the cloaked extensions was a .07% increase in execution time (0.0093

seconds per extension) and a .49% increase in memory use (333 KB per extension).

3.5 References

[12] E. Andreasen, A. Feldthaus, S. H. Jensen, C. S. Jensen, P. A. Jonsson, M.

Madsen, and A. Moller, “Improving tools for javascript programmers,” in Proc.

of International Workshop on Scripts to Programs. Beijing, China:[sn], 2012,

pp. 67–82.

[13] E. Andreasen and A. Moller, “Determinacy in static analysis for jQuery,”

ACM SIGPLAN Notices, vol. 49, no. 10, pp. 17–31, 2014, issn: 03621340. doi:

10.1145/2714064.2660214. [Online]. Available: http://dl.acm.org/citation.cfm?

doid=2714064.2660214.

74

https://doi.org/10.1145/2714064.2660214
http://dl.acm.org/citation.cfm?doid=2714064.2660214
http://dl.acm.org/citation.cfm?doid=2714064.2660214

[14] E. S. Andreasen, A. Moller, and B. B. Nielsen, “Systematic Approaches for

Increasing Soundness and Precision of Static Analyzers,” ACM SIGPLAN

Conference on Programming Language Design and Implementation, no. June,

2017. doi: 10.1145/3088515.3088521.

[18] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,

D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field, object-

sensitive and lifecycle-aware taint analysis for android apps,” Acm Sigplan

Notices, vol. 49, no. 6, pp. 259–269, 2014.

[34] Chrome.runtime - getbackgroundpage(). [Online]. Available: https://developer.

chrome.com/extensions/runtime#method-getBackgroundPage.

[36] Content scripts. [Online]. Available: https://developer.chrome.com/extensions/

content_scripts.

[42] Detect adblock – most effective way to detect ad blockers. [Online]. Available:

https://www.detectadblock.com/.

[51] Extension overview. [Online]. Available: https : / / developer . chrome . com/

extensions/overview.

[59] Github - tajs, http : //nicolas . golubovic . net / thesis /master . pdf. [Online].

Available: \url{https://github.com/cs-au-dk/TAJSh}.

[85] S. H. Jensen, P. A. Jonsson, and A. Moller, “Remedying the eval that men

do,” in Proceedings of the 2012 International Symposium on Software Testing

and Analysis, ACM, 2012, pp. 34–44.

75

https://doi.org/10.1145/3088515.3088521
https://developer.chrome.com/extensions/runtime#method-getBackgroundPage
https://developer.chrome.com/extensions/runtime#method-getBackgroundPage
https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/content_scripts
https://www.detectadblock.com/
https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/overview
http://nicolas.golubovic.net/thesis/master.pdf
\url{https://github.com/cs-au-dk/TAJSh}

[86] S. H. Jensen, P. a. Jonsson, and A. Moller, “Remedying the Eval That Men

Do,” Proceedings of the 2012 International Symposium on Software Testing and

Analysis, pp. 34–44, 2012. doi: 10.1145/2338965.2336758. [Online]. Available:

http://doi.acm.org/10.1145/2338965.2336758.

[87] S. H. Jensen, M. Madsen, and A. Moller, “Modeling the html dom and browser

api in static analysis of javascript web applications,” in Proceedings of the 19th

ACM SIGSOFT symposium and the 13th European conference on Foundations

of software engineering, ACM, 2011, pp. 59–69.

[88] S. H. Jensen, A. Moller, and P. Thiemann, “Type analysis for javascript,” in

International Static Analysis Symposium, Springer, 2009, pp. 238–255.

[89] ——, “Interprocedural analysis with lazy propagation,” in International Static

Analysis Symposium, Springer, 2010, pp. 320–339.

[92] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson,

“Hulk: Eliciting malicious behavior in browser extensions,” in 23rd USENIX Se-

curity Symposium (USENIX Security 14), San Diego, CA: USENIX Association,

Aug. 2014, pp. 641–654, isbn: 978-1-931971-15-7.

[99] Manifest - web accessible resources. [Online]. Available: https://developer.

chrome.com/extensions/manifest/web_accessible_resources.

[100] Manifest version. [Online]. Available: https://developer.chrome.com/extension

s/manifestVersion.

[108] Nicolas Golubovic, Attacking Browser Extensions, MS Thesis, Ruhr-University

Bochum, http://nicolas.golubovic.net/thesis/master.pdf, 2016.

76

https://doi.org/10.1145/2338965.2336758
http://doi.acm.org/10.1145/2338965.2336758
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifestVersion
https://developer.chrome.com/extensions/manifestVersion
http://nicolas.golubovic.net/thesis/master.pdf

[127] Sizzle javascript selector. [Online]. Available: https://sizzlejs.com/.

[128] A. Sjösten, S. Van Acker, and A. Sabelfeld, “Discovering browser extensions via

web accessible resources,” in Proceedings of the Seventh ACM on Conference

on Data and Application Security and Privacy, ACM, 2017, pp. 329–336.

[130] P. Snyder, C. Taylor, and C. Kanich, “Most websites don’t need to vibrate:

A cost-benefit approach to improving browser security,” in Proceedings of the

2017 ACM SIGSAC Conference on Computer and Communications Security,

ACM, 2017, pp. 179–194.

[131] O. Starov and N. Nikiforakis, “XHOUND: Quantifying the fingerprintability of

browser extensions,” in Security and Privacy (SP), 2017 IEEE Symposium on,

IEEE, 2017, pp. 941–956.

[144] W3 dom overview. [Online]. Available: https://www.w3.org/TR/DOM-Level-

2-Core/introduction.html.

77

https://sizzlejs.com/
https://www.w3.org/TR/DOM-Level-2-Core/introduction.html
https://www.w3.org/TR/DOM-Level-2-Core/introduction.html

Chapter 4

FAULT ESCALATION AND FUZZING WEB APPLICATIONS

Abstract

Black-box web application vulnerability scanners attempt to automatically

identify vulnerabilities in web applications without access to the source code.

However, they do so by using a manually curated list of vulnerability-inducing

inputs, which significantly reduces the ability of a black-box scanner to explore

the web application’s input space and which can cause false negatives. In

addition, black-box scanners must attempt to infer that a vulnerability was

triggered, which causes false positives.

To overcome these limitations, we propose Witcher, a novel web vulnerabil-

ity discovery framework that is inspired by grey-box coverage-guided fuzzing.

Witcher implements the concept of fault escalation to detect both SQL and

command injection vulnerabilities. Additionally, Witcher captures coverage

information and creates output-derived input guidance to focus the input genera-

tion and, therefore, to increase the state-space exploration of the web application.

On a dataset of 18 web applications written in PHP, Python, Node.js, Java,

Ruby, and C, 13 of which had known vulnerabilities, Witcher was able to find

23 of the 36 known vulnerabilities (64%), and additionally found 67 previously

unknown vulnerabilities, 4 of which received CVE numbers. In our experiments,

Witcher outperformed state of the art scanners both in terms of number of

vulnerabilities found, but also in terms of coverage of web applications.

78

4.1 Introduction

In this Chapter, we propose Witcher, a novel web vulnerability discovery framework

that is inspired by grey-box coverage-guided fuzzing. Our idea is to explore the web

application’s input space (without solely relying on hard-coded heuristics) by using

execution coverage information to efficiently guide the generation of random inputs.

White-box static analysis tools [52], [77], [91], [98] rely on analyzing the web

application’s source code which is not always available. Moreover, white-box tools

typically model the semantics of the specific language, which makes them language-

specific, and thus applying those tools to new languages or frameworks require

significant effort.

Black-box web application vulnerability scanners [3], [78], [110], [119] do not require

source code and can analyze any web application—regardless of the web application’s

programming language. These tools generate legitimate web application inputs to

explore the application and then attempt to infer the existence of vulnerabilities

by sending input designed to trigger a vulnerability to the web application. The

vulnerability-inducing inputs, however, are significantly constrained as they originate

from manually curated strings or templates based on expert heuristics for vulnerability

types [25]. As a consequence, black-box scanners will miss vulnerabilities triggered by

inputs that are outside the pre-configured strings and templates. In essence, using

hard-code vulnerability inducing inputs significantly reduces the ability of a black-box

scanner to explore the web application’s input space, thus introducing false negatives.

Even worse, black-box scanners can only infer vulnerabilities based on the output

of the web application. Such inference can be error-prone. For example, consider a

web application that returns an HTTP 500 status code (which denotes an internal

79

server error). Existing black-box scanners such as Burp [119] use this error code to

decide if their vulnerability-inducing input successfully triggered a vulnerability—in

the case of a black-box scanner looking for a SQL Injection vulnerability, an HTTP

500 error can indicate that the input caused an SQL error. However, such an error

can be caused by other, unrelated issues, such as an implementation bug rather than a

security vulnerability. Therefore, inferring a vulnerability from the outside introduces

false positives.

Some recent work has introduced the concept of grey-box fuzzers for automatically

testing web applications [56], [124]. These tools use coverage information to guide the

generation of inputs. These tools have had some success; however, the approaches

target only a single language, do not detect SQL or command injection vulnerabilities,

and are closed source [56], and are relatively slow [124].

The application of grey-box coverage-guided fuzzing to web vulnerabilities faces a

number of challenges. On a high level, the challenges to web fuzzing arise because

the web application code—the target under test that contains the vulnerabilities of

interest—is not the entire execution object but is instead a small subcomponent. When

fuzzing a binary, the entire binary is both the execution object and the target under

test (i.e., the security analyst is analyzing whether a vulnerability exists anywhere in

binary). However, when fuzzing web applications the execution object contains three

components: the web server, which parses the HTTP request; the web application

runtime environment, which uses the input from the web server to generate a response;

and the data storage and local executor, which the web application’s logic uses

to complete the request. For most web applications, the web application runtime

environment breaks down into two subcomponents: the web application code and the

code’s execution environment (e.g., the interpreter or virtual environment). The web

80

application code, a subcomponent of the web application runtime environment, is the

target under test that contains the web application’s logic and the vulnerabilities. The

multi-component aspect and the other non-target components create several of the

challenges that impede the use of grey-box coverage guided fuzzing to discover web

vulnerabilities.

Detecting the input that triggers a web application vulnerability. Detecting

whether an input triggers a vulnerability requires a tool to reason about the system

being in a vulnerable program state. When detecting memory corruption vulnerabili-

ties, traditional binary fuzzing uses a segmentation fault as an indication that input

sent to the binary transitioned the system into a vulnerable program state. Current

black-box scanner approaches use heuristics to infer that a given input triggers a

vulnerable program state. Therefore, a key challenge is to create an approach that

can identify when input to a web application leads the web application in a vulnerable

program state.

Generating feasible inputs for end-to-end execution. As the execution object

is composed of a web server and web application code, a successful input must satisfy

both components (i.e., be a valid HTTP request for the web server and also include

the necessary input parameters for the web application logic). While, in theory, a

random input generation scheme will eventually produce feasible inputs, it is critical to

design an approach that generates inputs that are both syntactically and semantically

valid for the target web application, thus fuzzing effectively.

Collecting effective web application coverage. A strength of grey-box coverage-

guided fuzzing for binary applications is that the fuzzer only keeps randomly generated

inputs that exercise new code of the application and collecting this coverage information

is a critical part of modern fuzzing [96], [101]. One possible approach for collecting

81

coverage for web applications is to insert instrumentation into the web application.

However, such an approach is not generally applicable to all web application, does not

scale, and requires source code, which is not always available. A scalable and web

application-independent approach is necessary to address web application coverage

accounting.

Mutating inputs effectively. Similar to binary fuzzing, the mutation strategy

of a grey-box coverage-guided fuzzer is also important to fuzz web applications

effectively. However, little research has been done to study the mutation strategy for

web applications. Therefore, we need to create mutation strategies that can generate

high-quality new inputs and increase the fuzzing effectiveness.

Witcher is designed to tackle the prior four challenges. It does not require the

source code of individual web applications, and we show that effective code coverage is

possible with only 1–5 lines of changes to the language’s interpreter. This change can

then be used for any web application that runs on the interpreter. To demonstrate

our approach, we implement Witcher support for web applications written in PHP,

Python, Node.js, Java, Ruby, and C. For each of these languages, Witcher is able to

detect both SQL injection and command injection vulnerabilities.

To demonstrate Witcher’s advantages over the current state-of-the-art, we perform a

multi-faceted evaluation. We compare different configurations of Witcher, enabling and

disabling different features to demonstrate the features’ efficacy. We evaluate Witcher

on 13 web application with known vulnerabilities and five modern web applications

with no known vulnerabilities. Overall, Witcher found 90 vulnerabilities in total,

67 of which were previously unknown. We then compare Witcher’s code coverage

and vulnerability discovery to Burp [119], a commercial black-box web vulnerability

scanner, on nine of the PHP web applications. Last, we compare Witcher’s code

82

coverage to the recently published black-box vulnerabilty scanner Black Widow [49]

and the grey-box scanner WebFuzz [124].

In summary, we make the following contributions:

• We create a set of techniques that address the challenges of applying grey-box

coverage-guided fuzzing to web applications, and we propose a new framework

that enables coverage-guided fuzzing on web applications.

• We develop Witcher, a grey-box web application vulnerability fuzzer that can

discover multiple types of vulnerabilities from different web applications. Witcher

automatically analyzes server-side binary and interpreted web applications

written in PHP, JavaScript, Python, Java, Ruby, and C and detects SQL

injection, command injection, and memory corruption vulnerabilities (only in

C-based CGI binaries).

• We evaluate Witcher to understand the specific impacts achieved by our various

techniques, the effectiveness of the approach on real-world web applications, and

its applicability to the analysis of non-traditional targets such as IoT devices.

In our evaluation, Witcher identified 23 out of 36 known vulnerabilities, which

outperforms the state-of-the-art web vulnerability discovery tool. Moreover,

in all but one web application, Witcher reached more lines of code than the

state-of-the-art scanners Black Widow and WebFuzz. Witcher also identified 67

previously unknown vulnerabilities, which we are in the process of disclosing to

the relevant parties.

To support open science and future researchers in the field, we have open sourced our

Witcher prototype, our dataset of web applications, and the results of our experiments.

83

4.2 Background

Before we discuss the details of Witcher, we first introduce web application

and injection vulnerabilities, and then provide a high-level overview of automated

application testing and coverage-guided fuzzing.

4.2.1 Web Applications and Vulnerabilities

Typically, a web application runs on a web server and interacts with its clients

over a network. A client accesses the web application by sending an HTTP request

to the web server, which parses and routes the request to the web application. The

web application takes the input, performs the appropriate actions, and responds

to the request. In this architecture, the web server acts as a gateway to the web

application and a web application can be written in any language. Witcher accesses

web application resources using either HTTP requests or direct Custom Gateway

Interface (CGI) requests.

HTTP Requests. HTTP is a stateless client–server protocol used by web servers [76].

An HTTP request consists of a request line, zero or more header fields, and an optional

message body.

Although they are not limited to it8, web applications typically accept user input

through the Cookie header (used for establishing stateful-requests), URL query

parameters (ampersand-delimited list of name=value pairs), and the HTTP body

(ampersand-delimited list of name=value pairs). For simplicity, we refer to all of the

8A web application may parse any aspect of the HTTP request for user input.

84

methods for transmitting user input (the headers, the URL query string, and the

HTTP body) as HTTP parameters or simply parameters.

CGI Requests. The Custom Gateway Interface (CGI) enables a web server to

directly invoke executable programs by translating an HTTP request into a CGI

request (where aspects of the HTTP request are accessible via environment variables

and standard input) [75]. Although many web applications replaced CGI with FastCGI,

Apache Modules, and NSAPI plugins [1], CGI applications are still extensively used

in embedded devices, such as routers and web cameras [29].

Injection Vulnerabilities. Injection vulnerabilities are an instance of code and data

mixing [46], and they occur when a web application sends unsanitized user data to an

external parser, such as the shell to execute commands or a database to execute a

SQL query. A malicious adversary can exploit such a vulnerability by supplying user

input that tricks the external parser into mis-interpreting the user-supplied data as

code, thus altering the semantics of the parsing.

In a SQL injection vulnerability, an attacker sends a properly formatted payload

with SQL code in their input, which is sent to the database as an SQL query. When

the database executes the query, it also executes the attacker’s injected SQL code.

Similarly, in a command injection vulnerability, an attacker creates a payload that

causes additional shell commands to execute.

4.2.2 Motivating Example

Consider the PHP web application in Listing 4.1 in the Appendix, which we created

based on patterns that exist in real-world web applications and CVEs (described in

§ 4.5.2). Depending on the page’s purpose, it offers the user different form fields. For

85

Listing 4.1. Example PHP code with three SQL injections that the commercial
black-box scanner Burp does not find.

1 ...
2 <? $pid = $_GET['pid']; $act = $_GET["act"]; ?>
3 <input name="pid" value=" <?= $pid ?>">
4 <input name="pname" value=" <?=get_name($pid)?>">
5 <select name="ptype">
6 <option value="dog_red">Red Dog </option >
7 <option value="dog_grey">Grey Dog </option >
8 </select >
9 <input type="hidden" name="act" value="a"/>

10 <?php
11 $pname = $_GET["pname"];
12 $inp = explode('_', $_GET["ptype"]);
13 $tab=$inp [0]; $c = $inp [1];
14 $pid = isset($pid) ? $pid : uniqid ();
15 if (count($inp) >= 2 && $act == "a") {
16 $pid = $conn ->real_escape_string($pid);
17 $pname = $conn ->real_escape_string($pname);
18 $c = $conn ->real_escape_string($c);
19 $sql = "INSERT into {$tab} (id, pname , color)";
20 $sql .= " VALUES ('{$pid}','{$pname}','{$c}')";
21 $ret = mysqli_query($conn , $sql);
22 } else if (count($inp) >= 2 && $act == "u"){ //TBD
23 if (get_name($pid) != null){
24 $sql = "UPDATE dog SET color= '{$c}' ";
25 $sql .= "WHERE id = '{$pid}'";
26 $ret = mysqli_query($conn , $sql);
27 ...

additions to the database, it includes pname and ptype. For updates to the database,

it includes pid and ptype. However, in this example, the update functionality was

removed from the web application front-end but was left in the server side PHP. As

a result, the client interface does not give any hint about the update functionality,

which makes it unlikely for a black-box vulnerability scanner to trigger the latent

PHP update code.

The code in Listing 4.1 contains three SQL injection vulnerabilities that the com-

mercial black-box vulnerability scanner, Burp, does not detect. The first vulnerability

exists in the add functionality. A successful attack requires a change to occur in

the first half of the ptype field, which is used in the SQL statement without being

sanitized. The second vulnerability occurs in the latent PHP update code. For an

86

attacker to exercise the vulnerability, they must discover the update action and use

the color portion of the ptype field to exploit the vulnerability. The last vulnerability

requires the use of the add and update functionality because the update code requires

the pid to exist in the database but does not enforce any limitations on the format of

the pid. Thus, an attacker inserts the payload into the pid field in the database and

then triggers an update to exploit the third vulnerability.

A black-box vulnerability scanner will most likely not find any of the three

vulnerabilities. It is unlikely to find the first vulnerability because to reach it the

ptype variable must contain an underscore, which does not exist in the scanner’s

predefined list of payloads. Next, black-box scanners are unlikely to find the other

vulnerabilities because the client interface does not include the value necessary to

trigger the update.

Nevertheless, Witcher finds all three of the vulnerabilities automatically. Witcher

finds the first vulnerability by mutating valid input to include the underscore and

values that will result in a malformed SQL statement. On parsing the malformed SQL,

Witcher detects the vulnerability. Witcher finds the other two vulnerabilities because

during the fuzzing process it will mutate act’s value to ’u’ and mark the input as

interesting because act=u resulted in a previously unseen program state. Witcher then

concentrates on the interesting input, which will cause Witcher to trigger the second

vulnerability by adding a malformed version of ptype and the third vulnerability

by using a malformed pid value that was stored into the pid column using the ’a’

action. Although the third vulnerability requires the application to enter a particular

87

state, Witcher does not analyze the application state; instead, Witcher triggers the

vulnerability because the database maintains the proper state between requests.9

4.2.3 Automated Application Testing

Automated application testing falls into one of three categories, which vary de-

pending on how much access the testing technique has to the application: black-box,

white-box, and grey-box. In black-box testing, the testing runs without access to

the internals of the target application [101]. As a result, black-box testing focuses

only on the inputs and outputs of the application [43]. For example, a black-box web

vulnerability scanner, such as Burp or Skipfish, works from outside a web application

to find new inputs [45].

On the other end of the spectrum, white-box tools generate inputs by analyzing the

source code of the application with the goal of better understanding the application’s

semantics [101]. Some examples of white-box analysis include symbolic execution and

taint tracking [26], [38], [132]. White-box tools have access to the target application’s

source. Thus, white-box tools can reason about the internal structure as well as the

operation of the application and can evaluate operation without being limited to

paths that can be reached during execution; however, they are focused on a particular

programming language and often suffer from false positives.

Grey-box testing blurs the line between white- and black-box testing as it runs

with limited access to the application. The testing application uses a less-intensive

form of either static or dynamic analysis. For example, coverage-guided mutational

9Unlike most binary fuzzing targets where each execution is a blank slate, the database preserves
state between executions.

88

fuzzing uses either static or dynamic instrumentation to gather coverage information,

which is used to identify input that exercises new execution paths in a program (thus

breaking the purely black-box approach).

4.2.4 Coverage-Guided Fuzzing

Fuzzers automatically test applications by inputting test cases and causing the

target application to enter different program states. When the fuzzer starts, it receives

a set of input seeds that it places into a test case queue. The fuzzer then derives new

test cases from those in the queue.

To derive a test case from those in the queue, the fuzzer mutates the test case

using a variety of mutation strategies. For example, American Fuzzy Lop (AFL)

uses deterministic mutation strategies such as bit flipping, integer arithmetic, and

dictionary insertion [11]. In addition, AFL uses random strategies such as random

splicing and insertion of data from a user-supplied dictionary. After mutating the

input, the fuzzer sends the altered input to the target application.

For coverage-guided fuzzing, the fuzzer captures coverage data that approximates

the program states to guide test case selection. The fuzzer captures coverage data that

approximates the program states that is far less complete than an execution trace. The

instrumentation approximates the program states because it is too processing intensive

for a fuzzer to capture and analyze a complete execution trace for each execution.

The fuzzer obtains coverage data through either static or dynamic instrumentation.

For static instrumentation, an analyst compiles the target application’s source code

with a modified compiler. For dynamic instrumentation, a dynamic instrumentation

89

tool (e.g., Pin) or a emulator modified to provide coverage data (e.g., QEMU-user)

produces coverage information during execution [74], [118].

A coverage guided fuzzer saves a test case when it deems the test case as interesting.

The fuzzer tags a test case as interesting when it causes the program to reach a new

location or causes the application to emit a fatal signal, such as a segmentation fault,

which often means the application entered a vulnerable state.

4.3 Challenges

Inherent challenges exist in creating a grey-box coverage-guided web application

vulnerability fuzzer. We group these challenges into those that enable automated

analysis and those that augment the exploration of the input space.

4.3.1 Enabling Fuzzing of Web Applications

Enabling the automated analysis of web applications requires the fuzzer to generate

input that will reach the target application and to detect the existence of a vulnerability.

1. How to detect web injection vulnerabilities? A fuzzer’s goal is to identify

when a test case causes the program to enter a vulnerable program state. Typically,

the types of faults generated by SQL and command injection vulnerabilities do

not culminate in an error signal that a fuzzer can detect and they often occur in

a separate process (e.g., the data storage layer). Therefore, we must develop a

new approach that will enable the fuzzer to detect SQL and command injection

vulnerabilities.

2. How does the system generate a test case that will exercise an end-to-end

90

execution of the web application? Web applications require the test cases to

match a semi-structured format to pass both the syntax checks of the web server

and the semantics of the web application. In contrast, mutational fuzzers generate

high-entropy random data that does not effectively explore the input space of

applications.

Without enforcing some structure on the test cases, the fuzzer will not be able

to explore the state space of the web application. First, if the test case fails to

meet the HTTP request format, then the test case will not reach the target web

application because the web server will reject it. (see § 4.2.1). Second, the test

case must include the parameters expected by the target application. Without the

parameter variable names, a reasonable exploration of the target’s input space is

impossible because a fuzzer would generate billions of test cases to randomly guess

a single variable name of only a few characters.

4.3.2 Augmenting Fuzzing for Web Injection Vulnerabilities

Even if a fuzzer meets the prior challenges to enable fuzzing for web applications,

adding those features is not sufficient to efficiently explore the target’s input space

and discover the vulnerabilities. Analysis of applications using a coverage-guided

mutational fuzzer is a computationally intensive task and despite numerous resources

its use often results in only a portion of the input space being explored. For web

applications, this problem is even worse because fuzzers do not receive execution trace

information from the targeted web application code and the fuzzer does not effectively

mutate the parameter and values.

1. How to effectively collect coverage of the web application? Coverage-

91

guided fuzzers require instrumentation of the target application to gather coverage

information. However, in the case of fuzzing applications written in interpreted

languages, limited tools exist that allow instrumentation of the target web appli-

cation. Instead, the fuzzer instruments the interpreter’s runtime binary—not the

target web application code. As a result, the coverage information reflects the

interpreter’s code and not the target web application, thus causing the fuzzer to

focus on exploring the runtime interpreter’s code instead of the web application’s

code. Although coverage of the interpreter will change with alterations to the web

application’s execution, a large portion of the coverage data is irrelevant noise

that obfuscates the target web application’s coverage information. Therefore, to

facilitate exploration of a web application the instrumentation must only report

the target web application’s execution.

2. How to effectively mutate test cases? Although efficient for generating test

cases for binary application input, the mutation strategies used by fuzzers focus on

the creation of test cases with high-entropy that require no context. However, these

high-entropy test cases are less effective for the exploration of web application’s

input state space. Even if the high-entropy test cases are properly formed HTTP

requests, the test cases lack efficacy in testing web applications because they fail

to take advantage of the contextual information available to the client (e.g., the

variable names found in the HTML form fields). Therefore, it is necessary to

create new mutation strategies that incorporate the proper format and exploits the

context offered by the web application’s client interface.

4.4 Witcher’s Design

Witcher is a grey-box web vulnerability scanner that uses a coverage-guided

92

Execution Object
Web Application Runtime

Environment

Interpreter / VM

Data Storage and
Local Execution

Mutators

Deterministic

Havoc

HTTP Mutator

HTTP Harness

Input Queue

Request Crawler

Fault Escalator
Di ct i onar y

I nput Seeds

I nput

Web Server

Coverage Accountant

Vul ner abi l i t y
Tr i gger i ng I nput

Er r or Al ar m

Cover age FeedbackInput PrioritizationPr i or i t i zed
I nput

Mut at ed I nput

Mut at ed I nput Har nessed
CGI / HTTP Request Web Application Code

(Vulnerability Host)

Figure 7. Overview of Witcher. Witcher’s components with a blue border are enabling
(i.e., necessary to fuzz a web application). Witcher’s components with a green border
are augmenting and enhance the fuzzer’s performance on web applications.

mutation fuzzer to drive the automated exploration of web applications. Witcher is

categorized as a grey-box fuzzer because, similar to traditional coverage-guided fuzzing,

it relies on coverage data to identify interesting test cases. Other than instrumenting

an interpreter for coverage data, Witcher does not perform any analysis on the source

code; thus, Witcher can operate without any access to the source because it can run

a byte-code version of a web application. As much of the binary fuzzing research

uses AFL as a starting point, we chose to use AFL as the base for demonstrating the

efficacy of the Witcher framework.

Witcher solves the challenges impeding the use of coverage-guided mutation

fuzzing (described in § 4.3) using five additional components. To enable fuzzing for

web injection vulnerabilities, Witcher implements the Fault Escalator, the HTTP

Harness, and the Request Crawler (the blue components in Figure 7). To augment

fuzzing for web injection vulnerabilities, Witcher implements the Coverage Accountant

and the HTTP Mutator (the green components in Figure 7).

93

4.4.1 Enabling Fuzzing for SQL and Command Injection Vulnerabilities

4.4.1.1 Fault Escalator

For a program to be free of vulnerabilities it must be impossible for user-supplied

input to transition the program to a vulnerable program state, thus by identifying

when this vulnerable program state occurs a scanner can detect a vulnerability in

the target application. In traditional binary fuzzing, the vulnerable state results

from a memory corruption vulnerability and binary fuzzers detect the transition to a

vulnerable state by detecting a segmentation fault signal [101].

We leverage this insight and expand the concept to allow the fuzzer to detect when

a program transitions to a vulnerable program state resulting from a SQL or command

injection vulnerability. SQL and command injection vulnerabilities occur when user

input causes an external parser (shell command parsing for command injection and

SQL parsing for SQL injection) to interpret the user input data as code. For example,

a SQL injection vulnerability occurs when attacker-controlled input alters the syntax

of a SQL query. In a well-formed SQL query, user-controlled input cannot alter the

syntax of a SQL query. As a result, we can view a syntax error thrown by an external

parser as analogous to the segmentation fault signal that results from a memory

corruption vulnerability. This correlation forms the basis behind Fault Escalator: if

attacker controlled input causes a syntax error in the external parser, then an attacker

can alter the command, and it is more likely than not that an exploitable vulnerability

exists. Thus, when the parsing error occurs, Fault Escalator escalates the error to

a segmentation fault, which notifies the fuzzer that the current test case caused a

vulnerable program state. For example, imagine a PHP application that executes

94

mysqli_query($con,“SELECT ID from tbl where ID=”. $_GET[’id’]) and the

fuzzer sets id=1’, which results in a malformed SQL statement due to the single quote.

When the page executes the SQL statement, the SQL parser will return a parsing

error, which is intercepted by Fault Escalator and escalated to a segmentation fault

that is detected by the fuzzer.

If an application uses unsanitized input to create a SQL statement or a shell

command, then the stochastic input generated by the fuzzer is likely to result in a

parsing error. 2Although not every input generated by a fuzzer will cause a SQL

syntax error in a vulnerable query, given the stochastic nature of the fuzzer, it is

unlikely that an vulnerable query will fail to result in a SQL parsing error during a

fuzzing session. This is also confirmed by our experiments: none of the vulnerabilities

that Witcher missed are related to false negatives in Fault Escalator.

Command Injection Escalation. For command injection, Witcher implements fault

escalation using dash’s command parser. The program dash is the Debian Almquist

shell, which is designed to be POSIX-compliant and as small as possible. Dash replaces

/bin/sh on most Linux systems [58]. Linux uses /bin/sh, and its smaller replacement

dash, when an application executes a shell command. For example, a PHP script

using exec(), system(), or passthru(), or a Node.js script using exec()10 send

their command to /bin/sh, which means that dash parses and runs the command.

Witcher’s version of dash (3 lines of code difference from the original) escalates a

parsing error to a segmentation fault. Thus, if the application uses unsanitized user

input to create a SQL or shell command, then the random data input by the fuzzer

into the web application will result in a parsing error and trigger a segmentation fault.

SQL Injection Escalation. Witcher’s Fault Escalator implements SQL injection

10Node.js’s spawn() method does not use /bin/sh.

95

escalation for MySQL and PostgreSQL using a technique similar to command injection

escalation. To catch the syntax error, Witcher uses LD_PRELOAD to hook the libc

function recv(), which is used to communicate with the database. Whenever any

response from the database contains a SQL syntax error message, Witcher triggers a

segmentation fault.

Fault Escalation is not Limited to Syntax Errors. Although the fault escalation

techniques for SQL and command injection detection rely on the existence of a syntax

error, the concept of fault escalation applies any type of warning, error, or pattern.

For example, Witcher might handle file inclusion by overriding libc’s open function

and escalating an error when the filename parameter contains non-ascii values.

Memory Corruption Vulnerabilities. Witcher detects memory corruption vul-

nerabilities in CGI binary applications without the aid of fault escalation. This

occurs because the fuzzer inherently detects memory corruption vulnerabilities when

executing a binary application due to the segmentation fault triggered by the input.

Bugs and Vulnerabilities. Similar to a segmentation fault, the occurrence of a

syntax error in a SQL statement or shell command resulting from user input signifies a

bug that should be fixed and is highly likely to be vulnerable. In our evaluations, the

occurrence of a syntax error signified a problem with the validation or sanitization of

user input, which often meant the existence of SQL or command injection vulnerability.

However, it is possible that, due to constraints on user input, an attacker is unable

to leverage the syntax error to exploit the SQL injection or command injection. For

example, a web application that restricts an unsanitized parameter to be only one

character, might not represent an exploitable vulnerability, but rather a bug. For this

reason, we will label any escalated fault as either a vulnerability or a bug, depending

on whether we confirmed the vulnerability was exploitable or not.

96

Cross-site Scripting Vulnerabilities. The fault escalation technique leverages the

randomness generated by the fuzzer to identify critical vulnerabilities in the server

environment. Unfortunately, cross-site scripting vulnerabilities do not readily fall into

this category (browsers are very forgiving in their parsing of HTML and therefore

it can be difficult to reliably and quickly detect an cross-site scripting in HTML).

As a result, we choose to focus on command injection and SQL injection. Moreover,

SQL and command injection vulnerabilities represent a class of vulnerabilities that

mutation-based fuzzers could not readily detect prior to our work.

4.4.1.2 Request Crawler

The Request Crawler (Reqr) operates as a black-box crawler that automatically

discovers HTTP requests and parameters. Reqr extracts HTTP requests from all

types of web applications including web applications that rely heavily on client-side

JavaScript to render the web application’s interface, links, forms, submissions, and

requests (e.g., Rconfig, Juice Shop, and WebGoat in § 4.5).

Reqr operates similar to black-box vulnerability scanners: it is given an entry

point URL and optionally valid login credentials and the login URL. Reqr uses the

Node.js library Puppeteer (an API used to control Chromium) to simulate user actions

and capture requests [121]. After Reqr starts, it will login to the web application (if

required) and load the entry point. Once a page is loaded, Reqr statically analyzes

the rendered HTML to identify the HTML elements that create HTTP requests or

HTTP parameters, such as a, form, input, select, and textarea. Next, Reqr listens

for HTTP requests while simulating user events (e.g., mouse clicks, entering values

into form fields, and scrolling the page) both systematically and randomly. Reqr

97

systematically fires the events by targeting every HTML element that accepts user

events. In addition, Reqr randomly fires user input events (e.g., clicks, form fills,

scrolling, and typing) using the Gremlins testing tool [69].

When Reqr completes, it creates a file containing all the request information.

Witcher uses the request information to create the fuzzer’s seeds and to build the

fuzzer’s dictionary.

4.4.1.3 Request Harnesses

Witcher’s HTTP harnesses translates fuzzer generated inputs into valid requests.

Due to the different execution models, Witcher has a different harness design for PHP

and CGI binaries than it does for Python, Node.js, Java, and QEMU-based binaries.

For PHP and CGI web applications, Witcher translates from the fuzzer input format

into a CGI request. For Python, Node.js, Java, and QEMU-based binaries Witcher

translates fuzzer’s input into an HTTP request (see § 4.2.1).

CGI Harness. PHP (via php-cgi) and CGI binaries use the same harness because

both rely on a CGI request and the invoked endpoint runs to completion once invoked.

For PHP and CGI binaries, the HTTP harness uses LD_PRELOAD to create a fork server

that starts the interpreter or the binary just before it processes the input. The harness

receives each new input from the fuzzer, translates the input into a CGI request, and

then transmits the request into a newly forked process.

HTTP Request Harness. Witcher fuzzes the other interpreted languages and the

QEMU-based web applications through their associated web server by leveraging an

HTTP request harness. The HTTP request harness decouples the fuzzer from the

targeted platform and enables the fuzzer to work on applications that it does not

98

automatically support. For example, AFL cannot fuzz a Node.js web application that

uses Express because the application runs indefinitely waiting for new requests and

is multi-threaded.

The HTTP request harness creates a bridge between AFL and the web server

to leverage the web server’s interface to the web application. The HTTP harness

includes its own fork server that increases the request submission throughput. The

harness receives input from the fuzzer, it translates this input into a well-formed

HTTP request, and sends the HTTP request to the web server. Last, when Fault

Escalator detects a SQL statement or shell command that causes a syntax error, Fault

Escalator sends a segmentation fault to the HTTP harness process, which the fuzzer

automatically detects.

Translating Fuzzing Input into a Request. Both the CGI Harness and the HTTP

Request Harness act as translators between the fuzzer and the web application. Witcher

automatically creates seeds for the fuzzer that follow a null-terminator delimited format.

The seeds include fields for cookies, query parameters, post variables, and other header

values. As a result, the fuzzer creates test cases based on the format, which the

harness then translates into the appropriate request type.

In addition to handling the fuzzer’s input, the harness sets a few other parameters

for the output request. The harness keeps the request path static for each instance

of the fuzzer, which means Witcher fuzzes a single URL at a time. In addition, the

harness adds any session cookies, query variables, or post variables that are necessary

for the web application to operate correctly. For example, most of the endpoints in

the OpenEMR web application require a valid login session. As a result, prior to

invoking the fuzzer, Witcher inputs valid login credentials to generate a valid session

cookie, which the harness includes in every request.

99

4.4.2 Augmenting Fuzzing for Web Injection Vulnerabilities

4.4.2.1 Coverage Accountant

Witcher’s Coverage Accountant (inside the Interpreter block on the right-side of

Figure 7) provides byte-code execution coverage information to the fuzzer for the

interpreted languages PHP, JavaScript, Python, and Java as well as web applications

that can be executed using QEMU-user or QEMU-system. Witcher uses the Coverage

Account because trying to fuzz a web application by instrumenting the interpreter

results in a significant amount of noise. For example, when we used AFL’s standard

approach of instrumenting the interpreter for a simple web page that had six unique

paths the fuzzer reported that it found over a thousand unique paths. The discrepancy

occurs because by instrumenting the interpreter the fuzzer focuses on test cases that

alter the interpreter’s execution paths; however, changing the interpreter’s execution

path does not usually translate to the target web application. Even though many

of the paths identified by the fuzzer do not provide additional coverage of the web

application code, the fuzzer stores and attempts to mutate each of the test cases

because they changed the execution of the interpreter. The increased number of

equivalent test cases prevents the fuzzer from making meaningful progress exploring

the target web application. Therefore, Witcher created the Coverage Accountant to

more accurately capture the web application’s execution paths.

Interpreter Instrumentation. Despite the different interpreter architectures, the

instrumentation of the byte-code is similar between them. The interpreter reads the

source file and translates the code into byte-code instructions. Next, the interpreter

executes the instruction.

100

During the execution of an instruction, the augmented interpreter calls Witcher’s

code coverage library function. Witcher’s library function receives the line number,

opcode, and parameters of the current byte-code instruction. Witcher then updates

the fuzzer’s coverage information using the line number and opcode of the current

and prior instructions.

Witcher’s interpreter instrumentation targets the web application. In Listing 4.1,

the code has six visible paths plus several latent paths that occur within the functions

$_GET(), mysqli_query(), and uniqid(). Thus, with Witcher’s PHP instrumenta-

tion the fuzzer will find six paths it deems unique.

CGI Binaries. In addition to interpreted languages, Witcher supports fuzzing

CGI binaries. For CGI binaries, Witcher uses AFL’s instrumentation when the

binary’s source code is available. When its source code is unavailable, Witcher’s

fuzzer uses dynamic instrumentation via QEMU [123]. Although the QEMU-user

modifications for instrumentation are already included with AFL, Witcher makes

additional modifications to QEMU-user to enable fault escalation. For QEMU-system,

Witcher’s modifications target the data structures used to store QEMU’s intermediate

language, which is processed similarly to the byte-code used by the interpreted

languages.

Beyond AFL. Witcher uses AFL as the coverage guided mutational fuzzer; however,

the Witcher framework can incorporate more advanced fuzzers. If a new fuzzer uses

an improved technique for instrumentation, such as PTrix [30], or mutation, such as

Tfuzz [114] or AFL++ [53], then Witcher can incorporate the fuzzing tool while still

employing the web crawling and fault escalation to detect a wider set of vulnerabilities

than either of those tools could do alone.

101

4.4.2.2 HTTP-specific Input Mutations

We modified AFL by adding two new mutation stages that focus on manipulating

HTTP parameters. The purpose of these mutations is to inject parameters into the

inputs more quickly than standard AFL and to share/swap values at the variable level

instead of treating the parameters as a mere sequence of unstructured bytes. In effect,

the mutators reduce and modulate AFL’s entropy in a way that is more consistent

with the syntax and semantics of web applications.

HTTP Parameter Mutator. The HTTP Parameter Mutator cross-pollinates unique

parameter name and values between the interesting test cases stored in the fuzzer’s

queue. Witcher fuzzes one URL endpoint at a time; however, an interdependency

often exists between the variables of different test cases. By cross-pollinating the

parameters, the fuzzer provides targeted test cases that are more likely to trigger new

execution paths than random byte mutations. For example, in Listing 4.1 if a test

case contains act=a and another contains ptype=dog_red, then by combining them,

the fuzzer would reach the vulnerable code.

HTTP Dictionary Mutator. The HTTP dictionary mutator decreases the number

of executions necessary to pair the current input with the variables in the dictionary.

Many endpoints serve multiple purposes, as a result, an endpoint may have several

requests that use different HTTP variables. For a given endpoint, Witcher places

all the HTTP variables discovered by Reqr into the fuzzing dictionary. The HTTP

dictionary mutator takes advantage of the contextually similar variables by mixing

and matching them with the current request. The HTTP dictionary mutator does

this by randomly selecting one to ten variables from the dictionary and adds them to

the current test case.

102

4.5 Evaluation

In this section, we aim to answer the following research questions through the

evaluation of Witcher:

RQ1. How effective are Witcher’s augmentation techniques at exploring the web

application and identifying vulnerabilities? Do both augmentation techniques

contribute to fuzzing (§ 4.5.1)?

RQ2. How effective is Witcher at identifying vulnerabilities in web applications

(§ 4.5.2)?

RQ3. How does Witcher’s code coverage and vulnerability discovery compare to

a commercial black-box vulnerability scanner and cutting-edge vulnerability

scanners (§ 4.5.3)?

4.5.1 Witcher Augmentation Techniques Evaluation

To better understand the impact of Witcher’s augmentation features on web

application fuzzing, we evaluate Witcher with different configurations and test them

on two data samples. The first is a microtest using 10 self-created PHP scripts, and

the second is OpenEMR, a real-world web application.

Recall that we designed two fuzzing augmentation techniques: coverage accoun-

tant and HTTP mutator. In this experiment, we used Witcher with four different

configurations:

AFLR does not have coverage accountant or HTTP mutator. This configuration is

meant to be a baseline against Witcher with fuzzing augmentation.

AFLHR has HTTP mutation yet does not have coverage accountant.

103

WiCR has coverage accountant yet does not have HTTP mutator.

WiCHR has both coverage accountant and HTTP mutator.

4.5.1.1 Microtest Evaluations

In the microtest evaluation, we ran each configuration on a set of ten PHP scripts

designed to test the capabilities of Witcher. Each of the scripts includes a single path

that reaches an injection vulnerability. The evaluation of a script with a particular

configuration ran until either the target injection was reached or four hours elapsed,

whichever occurred first.

The dictionary simulated the output generated by Reqr and it included the

parameters used by each of the scripts, plus 100 unrelated parameters to simulate

unused variables. Each script and configuration were run five times to stabilize the

results.

Each of the microtests targeted the functionality of Witcher’s components or added

additional difficulty.

Listing 4.2. Excerpt from Post-2 in the microtest. The code is simliar for Post-5,

Post-10, Cookie-5, and Get-5 scripts.

1 ...

2 if(isset($_POST['nv1'])) {

3 if(isset($_POST['nv2'])) {

4 $ret=mysqli_query($con ,"SELECT * FROM tbl

5 WHERE ID='$_GET['vul ']'");

6 ...

104

Listing 4.3. Excerpt from Equals-1 microtest.

1 ...

2 if($_GET['nv1'] == "YYYY") {

3 $ret=mysqli_query($con ,"SELECT * FROM tbl

4 WHERE ID='$_GET['vul ']'");

5 ...

The first set of scripts (post-2, post-5, post-10, get-5, and cookie-5) follow the

same general format that tests Witcher’s ability to input the type of variable under

test. For example, post-2 (Listing 4.2 in the Appendix) executes a SQL statement

that directly concatenates the value returned by $_GET[’vul’] (i.e., an unsanitized

value) when the functions isset($_POST[’nv1’]) and isset($_POST[’nv2’]) both

return true. As a result to pass the test, the fuzzer must provide the post variables

nv1 and nv2 and the URL parameter vul that contains a value that will trigger a

SQL parsing error.

105

Listing 4.4. Excerpt from Loop microtest.

1 ...

2 for($i=0; $i < strlen($teststr); $i++){

3 if ($i < $nv1_len){

4 if ($teststr[$i] == $nv1[$i]){

5 } else {

6 $all_match = FALSE;

7 break;

8 }

9 } else {

10 $all_match = FALSE;

11 break;

12 }

13 }

14 if ($all_match){

15 $ret=mysqli_query($con ,"SELECT * FROM tbl

16 WHERE ID='$_GET['vul ']'");

17 } ...

Listing 4.5. Excerpt from FindVar microtest.

1 ...

2 if(isset($_POST['ao3'])) {

3 if($_POST['ao3'] == "add") {

4 $ret=mysqli_query($con ,"SELECT * FROM tbl

5 WHERE ID='$_GET['vul ']'");

6 ...

The next set of scripts test Witcher’s ability to provide specific variable and values.

To reach the vulnerable SQL statement in select-3, the variables and values were

provided in the dictionary (as though they were harvested by the crawler) because they

were provided in the user interface via the <select> tags. equals-1, equals-3, and

loop-10 tests, the values necessary to reach the vulnerable SQL are not provided in the

user interface; thus, the fuzzer, must discover the values. equals-1 (Listing 4.3 in the

106

Appendix) executes the vulnerable SQL statement that concatenates the unsanitized

input variable $_GET[’vul’] when $_GET[’nv1’] == “YYYY”, the necessary value

YYYY was not provided in the dictionary. Similarly, in equals-3, the fuzzer must

discover three unknown values to reach the vulnerable statement. loop-10 (Listing 4.4

in the Appendix) evaluates the input using a for loop to perform a byte-by-byte

comparison instead of using == to compare the entire string, which provides the fuzzer

some breadcrumbs to discover the unknown value and reach the vulnerable statement.

The last test is similar to equals-1 except the fuzzer is provided the necessary value

but not the variable name. findvar-1 (Listing 4.5 in the Appendix) executes the

vulnerable statement when isset($_POST[’ao3’]); however, a03 is not provided in

the seeds or dictionary. Excerpts from some of the microtest scripts are available in

the appendix.

Table 4 shows the overall results for the microtests. Based on the result, we see

that AFLR failed to find any of vulnerabilities. It performed poorly because the

additional noise from placing the instrumentation in the interpreter greatly reduced

the number of cycles through all inputs, which limited the number of dictionary values

it explored.

On the other hand, WiCHR performed the best. WiCHR reached the vulnerability

a total of 34 times. However, WiCHR was unable to find the vulnerability in 3 of the

looping tests because AFL gives less precedence to coverage that contains repeated

instructions. Therefore, both augmentation techniques are helpful to increase the

effectiveness of web vulnerability discovery, and thus Witcher will include the two

techniques in subsequent evaluations.

We used the Mann Whitney U-test to verify that the differences between the

configurations were statistically significant [94]. Because we opted to run until first

107

Table 4. Microtest Comparative Evaluation Results. The values represent the number
of crashes reached after five trials that were up to four-hours in duration.

Microtest AFLR AFLHR WiCR WiCHR

post-2 0 5 5 5
post-5 0 5 5 5
post-10 0 2 5 5
get-5 0 4 5 5

cookie-5 0 4 5 5
equal-1 0 0 1 2
equal-3 0 0 0 0
findvar-1 0 0 0 0
loop-10 0 0 0 2
select-3 0 4 5 5

crash or timeout, we used the sum of elapsed time per trial to calculate the differences

between the configurations. The WiCHR configuration took the least amount of

time to run on every trial and the improvement versus the other configurations was

statistically significant under the Mann Whitney U-test.

4.5.1.2 OpenEMR Evaluations

To evaluate the performance of Witcher’s configurations on a real-world web

application, we performed a second comparative evaluation using OpenEMR version

5.0.1.7. We used Reqr to identify the application’s URLs and input variables.

Next, Witcher fuzzed each of the URLs in five independent trials using each

configuration. We excluded AFLR because of its poor performance in the microtest

evaluation; thus, we evaluated the remaining 3 configurations AFLHR, WiCR, and

WiCHR. We initialized the database and sessions at the start of each trial to aid

consistency from run-to-run.

108

To perform the evaluation, we gathered PHP code coverage data to use in the

Mann-Whitney test. We used Xdebug, a PHP extension, to extract PHP code coverage

information [41]. Next, we calculated the total lines visited for all scripts using a

particular configuration and trial. With the total lines visited, we then compared the

configurations using the results from each trial.

Table 5. OpenEMR Results. This table shows the lines of code covered and the
vulnerabilities discovered for each of the five trials.

AFLHR WiCR WiCHR

Lines Vulns Lines Vulns Lines Vulns

Trial 1 23,113 2 29,723 7 30,714 8
Trial 2 23,142 2 29,082 5 30,777 8
Trial 3 23,011 1 29,543 6 30,935 9
Trial 4 23,111 2 29,105 6 30,833 8
Trial 5 23,220 3 29,160 6 30,800 8

Table 5 in the Appendix shows the results: the total lines of code reached using each

of the different configurations in each trial. WiCHR consistently executed the most

lines of code followed by WiCR and then AFLHR. The differences in performance

between the feature sets was statistically significant: the Mann-Whitney U-Test

resulted in a p-value of 0.01208.

Table 5 also shows the vulnerabilities discovered for each trial and configuration.

All the feature sets found vulnerabilities on each trial; however, both WiCR and

WiCHR performed significantly better than AFLHR. WiCHR identified the most

vulnerabilities on each trial.

109

4.5.2 Witcher Evaluation

Based on the results of the feature comparison shown in § 4.5.1, we selected the

WiCHR configuration to compare Witcher with other web scanning tools. We used as

an evaluation dataset a diverse set of web applications written in different languages

and running on different platforms: some that have known vulnerabilities and some

that were up-to-date with no known injection vulnerabilities. In this evaluation, we

manually confirmed each vulnerability by verifying whether the vulnerability was

exploitable or not. Excluding the interesting bugs, all the remaining command and

SQL injection vulnerabilities were severe because they give an attacker the capability

to destroy, alter, and exfiltrate data [109]. For the command injection vulnerabilities,

we verified the application executed an arbitrary shell command. For SQL injections,

we automatically exploited the vulnerabilities by providing the crash information from

Witcher to SQLMap, which gained full control over the database or could execute

arbitrary SQL functions.

For the known vulnerable applications we used a set of eight PHP applications,

five firmware images (binaries where the source is likely written in C, and the platform

is ARM, MIPSEL, and MIPSEB), one Java, one Python, and one Node.js application

with a combined total of 36 known vulnerabilities. We searched for public CVEs of

SQL injection and command injection vulnerabilities that had working exploits (so

that we could verify the existence of the vulnerability), and this resulted in: Doctor

Appointment, Login Management, Hospital Management, and rConfig. We selected

WackoPicko, OpenEMR, and Juice Shop because of their known vulnerabilities and

110

Table 6. Web applications used in the evaluation.

Application Lang. or
Platform

Release
Date Ver. GitHub

Stars
Google
Results

Lines
of Code

Prior
Research

OpenEMR PHP 7 2018 5.0.1.7 1.6k ? 9,443 [4], [103]

WackoPicko PHP 5 2018 1.0 265 ? 2,510 [40], [44], [49], [50], [93], [97]

Doctor Appt. Sys. PHP 7 2020 1.0 n/a ≈10 [66] 3,981 -

User Login Mgmt. Sys. PHP 7 2020 2.1 n/a ≈3 [67] 1,490 -

rConfig PHP 7 2018 3.9.2 80 ? 48,405 -

Hospital Mgmt. Sys. PHP 7 2019 4.0 n/a ≈100 [65] 9,443 -

D-Link DIR-823G C/MIPSEL 2018 1.0.3.B3 n/a 1,585,157 -

D-Link DIR-823G C/MIPSEL 2018 1.0.2.B5 n/a 1,569,829 -

D-Link DIR-645 C/ARM 2014 1.0.4.B12 n/a 465,324 -

D-Link DIR-825 C/MIPSEB 2015 1.2.10.B1 n/a 542,992 -

Tenda AC9 C/ARM 2018 15.03.05.19 n/a 982,880 -

WebGoat Java 2020 8.10 3.9k ? 14,761 [48]

FlaskBB Python 2018 2.0.2 2.0k ? 14,534 [105]

Juice Shop Node.js 2020 8.1.0 242 ? 26,221 [50], [82]

Thredded Ruby/Rails 2021 16.16 1.3k ? 4,426 -

phpBB PHP 7 2021 3.3.3 1.4k ? 318,104 [44], [48], [49], [113]

osCommerce PHP 7 2017 2.3.4.1 272 ? 44,355 [40], [49], [70], [97], [112]

Wordpress PHP 7 2021 5.7.1 15k ? 253,183 [24], [44], [48], [49], [113]

use in prior research (see Table 6 in the appendix for prior work that used the same

web applications for their evaluation).

We also selected five firmware targets to demonstrate Witcher’s ability to fuzz

on non-interpreted web applications. We chose D-Link’s 825, 823G version 1.0.2B03,

823G version 1.0.2B05, and 645 as well as the Tenda AC9 because the firmware’s web

server runs in the QEMU emulator, they each have known CVEs, and their CVEs

included working exploit scripts. Table 8 shows the known vulnerabilities in all the

applications, along with the CVE number (if known) and the vulnerability type.

We also selected up to date versions of web applications used in the evaluation of

prior work to ensure that Witcher would fuzz the latest versions of web applications.

In particular, we choose phpBB, osCommerce, and Wordpress, each of which were

111

Table 7. The known vulnerabilities in each web application, the amount that
Witcher found, missed, and previously unknown vulnerabilities that Witcher dis-
covered. ∗Witcher found one input where the user controls a parameter to execve,
however we could not determine if it was exploitable so we consider this a bug rather
than a vulnerability.

Application
Description

Known Vulnerabilities Unknown Vulnerabilities
Existing Found Missed Found

Doctor Appt. Sys. 1 1 0 3
Hosp. Mgmt. 5 5 0 43
Login Mgmt. 1 1 0 5
OpenEMR 5 1 4 5
rConfig 2 0 2 11
WackoPicko 3 2 1 0
D-Link 645 1 0 1 0∗
D-Link 823G 1 1 0 0
D-Link 823G 1 1 0 0
D-Link 825 1 0 1 0
Tenda AC9 1 0 1 0
FlaskBB 0 0 0 0
Juice Shop 2 2 0 0
osCommerce 0 0 0 0
phpBB 0 0 0 0
Threadded 0 0 0 0
WebGoat 12 9 3 0

Total 36 23 13 67

evaluated in four or more prior publications, and we also added Thredded, a Ruby on

Rails web application.

The name of the 18 web applications used in this evaluation are summarized in

Table 6 in the Appendix, along with the language or platform of the web application,

the release date of the version of the web application tested if known (the oldest was

released in 2014), the version, the number of stars on GitHub for the web application

(as an estimate of the popularity of the web application), the number of Google results

for a custom Google Dork (link to dork given in reference) if the web application’s

112

Table 8. Known vulnerabilities and results from Witcher’s evaluation.

Application
Description Name Type Results Reason

Missed

OpenEMR
CVE-2019-17197 SQL Missed Crawler Missed
CVE-2019-14529 SQL Missed Crawler Missed
CVE-2019-16404 SQL Missed Crawler Missed
CVE-2018-17181 SQL Missed Crawler Missed
CVE-2018-17179 SQL Missed Crawler Missed

WackoPicko
login.php SQL Found
passcheck.php Command Found
similar.php Stored SQL Missed Failed to Recall

Doctor Appt. CVE-2020-29283 SQL Found

Login Mgmt. CVE-2020-25952 SQL Found

rConfig CVE-2019-16662 Command Missed
CVE-2019-16663 Command Missed Crawler Missed

Hosp. Mgmt. CVE-2020-5192 SQL Found

D-Link 825 CVE-2020-10213 Command Missed Crawler Missed

D-Link 823G CVE-2018-17787 Command Found

D-Link 823G CVE-2019-15530 Command Missed Did not trigger

D-Link 645 CVE-2015-2051 Command Missed Did not trigger

Tenda AC9 CVE-2018-16334 Command Missed Crawler Missed

Juice Shop login SQL Found
search SQL Found

WebGoat attack2 SQL Found
attack3 SQL Found
attack4 SQL Found
attack5a SQL Found
attack5b SQL Missed Java Inst Bug
attack8 SQL Found
attack9 SQL Found
attack10 SQL Missed Java Inst Bug
Adv/attack6a SQL Found
Adv/challenge SQL Missed PUT not Supported

113

source is not on GitHub (as another way to estimate real-world usage), the lines of

code of the web application, and if this web application was used in prior research.

To run this evaluation, we created Docker containers for each of the web applica-

tions, started the web application, and ran Witcher. Witcher’s configuration included

the entry URL, identification of the login page, the associated credentials, and a

selector for the form field. We limited Witcher’s crawler to run for four hours, while

we fuzzed each URL with two or more input variables for 20 minutes, As a result, the

total run time varied depending on the number of endpoints identified by the crawler.

The overview of the results for this evaluation are shown in Table 7. Witcher

successfully crawled and fuzzed all of the web applications, ultimately finding a total

of 90 unique vulnerabilities of which 67 were previously unknown. All discovered

vulnerabilities were from web applications that had known vulnerabilities (i.e., Witcher

did not discover previously unknown vulnerabilities in the latest versions of Thredded,

phpBB, osCommerce, or Wordpress).

Witcher discovered 23 of the 36 (63.9%) known vulnerabilities; however, Witcher

missed 13 (36.1%) vulnerabilities. Table 8 shows the detailed results of exactly which

known vulnerabilities were found or missed, along with a brief description of why. In

particular, eight vulnerabilities were missed because the crawler was unable to find

the URL. Some URLs were not discovered by the crawler because the application

required a specific series of steps, such as selecting a patient in OpenEMR (this is

the known problem of exploring stateful web application [43], [49]). The crawler also

missed URLs when the URL was not included in the web application’s user interface,

such as in the case of a backdoor URL in the Tenda AC9 firmware. In the WebGoat

application, the crawler missed two vulnerabilities due to a bug in the implementation

that caused the webserver to unexpectedly crash and another because the HTTP

114

harness does not currently support the HTTP PUT method. It is common for dynamic

analysis tools to have a higher false negative rate; nevertheless Witcher’s false negative

rate of 36.1% is lower than the rates reported in other publications with 47% [106] and

60% [45]. Although Witcher did not find any memory corruption vulnerabilities during

the evaluation, Witcher can detect them because a memory corruption vulnerability

will often result in a segmentation fault.

As shown in Table 7, Witcher found 67 previously unknown vulnerabilities (65

SQL and 2 command injections). While we plan to responsibly disclosing the unique

vulnerabilities that are still relevant and undiscovered, we have already received

unpublished CVEs for the OpenEMR SQL vulnerabilities: CVE-2020-11754, CVE-

2020-11755, CVE-2020-11756, and CVE-2020-11757.

In addition to the vulnerabilities that Witcher reported, Witcher reported two false

positives and three bugs. However, the bugs were interesting because they demonstrate

the potential of using high-entropy input for testing web applications.

4.5.3 Grey-box and black-box comparison

Now that we evaluated the effectiveness of Witcher at identifying vulnerabilities

in web application in § 4.5.2, we compare Witcher, a grey-box web application

vulnerability fuzzer, against the state-of-the-art commercial black-box web application

vulnerability scanner Burp [119], the data-driven web application crawler Black

Widow [49], and the recently published grey-box crawler and fuzzer WebFuzz [124].

We choose the Black Widow and WebFuzz scanners because of their recency and

performance. For example, Black Widow outperformed six other open-source web-

vulnerability scanners (Arachni [16], Enemy of the State [44], Skipfish [129], jÄk [113],

115

Table 9. Results of vulnerabilities discovered Burp and Witcher: the number of
vulnerabilities found by Burp (solo), BurpPlus Witcher, and Witcher. Number in ()
indicates the unique vulnerabilities found by this configuration.

Application Burp (solo) BurpPlus Witcher Witcher

Doctor Appt. Sys. 2 (0) 3 (0) 3 (0)
Hosp. Mgmt. 13 (0) 13 (0) 43 (30)
Login Mgmt. 1 (0) 1 (0) 6 (5)
OpenEMR 0 (0) 0 (0) 5 (5)
osCommerce 0 (0) 0 (0) 0 (0)
phpBB 0 (0) 0 (0) 0 (0)
rConfig 0 (0) 0 (0) 11 (11)
WackoPicko 1 (0) 1 (0) 2 (1)
Wordpress 0 (0) 0 (0) 0 (0)

17 (0) 18 (0) 70 (52)

w3af [145], and ZAP [110]). Although we had hoped to compare Witcher’s NodeJS

fuzzing against BackREST, the authors were unable to share the tool due to proprietary

concerns [56]. We limited the evaluations to nine of the applications (shown in Table 6)

that were written in PHP, so that we could collect code coverage using the method

described in § 4.5.1.2.

Burp Evaluation. To compare our approach with Burp, we evaluate how much

code of the target web application is executed and how many vulnerabilities are

discovered. Because Burp has its own crawling components, we compare against Burp

in two different configurations: (1) Burp (solo) with no changes, where Burp crawls

the web application itself, and (2) BurpPlus Witcher, where we provide Burp with

the requests derived from Witcher’s crawler. Therefore, the comparison of the results

between BurpPlus Witcher and Witcher will not be related to the differences between

the crawlers, but to the differences in input generated for the applications.

We configured Burp’s scan in the same way for both Burp (solo) and BurpPlus

116

Witcher. When we configured each scan, we chose the built-in configuration for the

most complete crawl and the maximum audit coverage, and the most complete crawl

was limited to five hours by default. Burp’s audit (i.e., finding vulnerabilities) did not

have a timeout option and ran until completion.

One of the differences between Burp and Witcher is that Burp rotates URLs and

does not focus on a single target URL at a time, instead, it moves through all the

URLs multiple times, which increases the likelihood of discovering new parts of a

web application due to the state changes caused by another page. However, Witcher

focuses on a single page at a time, which means it is less likely to trigger multi-page

states.

Table 10. This table shows the difference between code triggered by Witcher and
WebFuzz + BurpPlus (with SQL auditing enabled). Although it did change the results
by as much as 4,000 lines of code, the change did not change the outcome of the
comparison.

Application W \ (WF+) W ∩ (WF+) (WF+) \W Inc. % Inc.

Doctor Appt. Sys. 74 1067 10 0 0.0%
Hosp Mgmt. 71 3,255 60 6 0.2%
Login Mgmt. 3 516 0 0 0.0%
OpenEMR 22,473 109,511 19,915 2,063 1.4%
OSCommerce 3,833 22,608 3,622 0 0.0%
phpBB 15,133 35,730 7,508 964 1.7%
rConfig 104 2,456 62 32 1.2%
WackoPicko 50 2,415 407 15 0.5%
Wordpress 37,401 87,610 10,365 4,430 3.3%

We summarized the results of this experiment in in Table 11 and Figure 8. In the

code coverage results, Witcher executed more lines of code in every application over

Burp (solo) and BurpPlus Witcher. Witcher increased code coverage by more than

100% for four of the applications. One surprising result is the phpBB testcase, where

117

Table 11. Results of PHP lines of code coverage between Witcher, Burp, BurpPlus,
Black Widow, and WebFuzz. Each scanner is compared against Witcher. The W \B
column shows the unique lines discovered by Witcher. The W ∩ B shows the lines
found by Witcher and the other scanner. The B \W column shows the unique lines
found by the other tool. If Witcher has the most unique lines, the value is green. If
the other tool has the most unique lines then the value is in orange.

Burp (solo) BurpPlus Witcher Black Widow WebFuzz
Application W \B W ∩B B \W W \B W ∩B B \W W \B W ∩B B \W W \B W ∩B B \W

Doctor Appt. Sys. 34 386 6 34 386 13 209 211 43 74 1,067 10
Hospital Mgmt 971 471 8 1,021 421 8 92 1,350 24 164 3,162 54
Login Mgmt 104 64 0 53 115 3 37 131 4 27 492 0
OpenEMR 32,878 7,859 7 31,428 9,309 40 25,273 15,464 2583 25,237 107,917 17,852
osCommerce 5,733 4,024 90 3,890 5,867 277 2,657 7,100 798 4,147 22,635 3,622
phpBB 3,148 22,183 851 14,482 10,849 1001 3,210 22,121 879 15,483 35,480 6,544
rConfig 2,960 592 15 2,263 1,289 15 458 3,094 239 301 2,259 30
WackoPicko 343 399 10 258 484 10 72 670 283 50 2,415 392
Wordpress 37,308 15,987 50 27,823 25,472 1723 7,036 46,259 6482 41,239 109,076 5,935

the code coverage for BurpPlus Witcher was 52.3% worse than Burp (solo). This was

the only experiment where BurpPlus Witcher reached the crawling timeout threshold.

As a result, BurpPlus Witcher had fewer end points to investigate, which resulted in

fewer lines covered.

As shown in the vulnerability results in Table 9, Witcher discovered 70 vulnerabil-

ities of which 52 were unique between the three configurations. Witcher found the

most vulnerabilities for six of the nine applications.

Black Widow and WebFuzz Evaluation. For the Black Widow and WebFuzz

evaluations, we only compare the unique lines of code executed because Black Widow

and WebFuzz target XSS vulnerabilities while Witcher targets SQL and command

injection vulnerabilities. We seeded WebFuzz with the HTTP requests discovered

by Witcher in the crawling stage to focus the evaluation on the fuzzers. Due to the

nature of Black Widow’s crawler, we were unable to seed Black Widow with the same

118

Figure 8. Each column in the stacked bar chart compares the lines found to another
tool in an application. Each bar shows a percentage of the total lines found for the
tool.

seeds. However, we did add a username and password parameter so that Black Widow

would use an existing account.

Black Widow and WebFuzz interweave the execution of different pages while

testing a web application. By interweaving execution, the tools may trigger and fuzz

new application states that rely on the interdependence between two web pages. For

example, the tool may add an item to a cart on the the product page and checkout

on the shopping cart page. Currently, Witcher focuses on a single page at a time and

is less likely trigger these interdependent states. In addition, Black Widow uses state

monitoring to discover new application states.

Witcher’s speed and mutation strategy outperformed the other scanners’ URL

119

Table 12. This table compares the increase in code coverage introduced by combining
BurpPlus’s code coverage data to Black Widow’s and WebFuzz’s code coverage. It
shows the unique lines found by Witcher and the scanner in the first two columns. In
the third column, it shows the increase in the scanner’s coverage over the results.

Witcher v. Black Widow Witcher v. WebFuzz
Application W \BW+ (BW+) \W Inc. W \WF+ (WF+) \W Inc.

Doctor Appt. 206 43 0 74 10 0
Hosp. Mgmt. 88 24 0 71 60 6
Login 19 7 3 3 0 0
OpenEMR 25,117 2,606 23 22,473 19,915 2,063
OSCommerce 2,497 863 65 3,833 3,622 0
phpBB 2,967 1,159 280 15,133 7,508 964
rConfig 426 254 15 104 62 32
WackoPicko 66 285 2 50 407 15
Wordpress 6,966 6,733 251 37,401 10,365 4,430

interleaving and state monitoring. As shown in Table 11 and Figure 8, Witcher

outperformed Black Widow and WebFuzz by finding more unique lines of code on

all the applications except WackoPicko. On WackoPicko, the tools found additional

lines of code in the shopping cart functionality. By interweaving the crawling and

fuzzing, the tools were able to induce a new state in the shopping cart that exposed

an otherwise hidden URL.

Vulnerability Target Bias. In the next evaluation, we tested whether different

vulnerability targets may introduce result altering bias into the evaluation that unfairly

benefited Witcher in the prior code coverage evaluation. Black Widow and WebFuzz

target XSS vulnerabilities; whereas, Witcher targets SQL and command injection

vulnerabilities. Black Widow and WebFuzz form valid pre-defined XSS payloads

to detect an XSS vulnerability. Although Witcher does not generate an exploit

payload—it inputs random bytes and swaps variables that will likely trigger a fault

120

Table 13. This table shows the difference between the code triggered by Witcher and
Black Widow + BurpPlus (with SQL auditing enabled). Although it did change the
results by as much as 280 lines of code, none of the additions changed the outcome of
the comparison.

Witcher v. Black Widow Witcher v. WebFuzz
Application W \BW+ W ∩BW+ (BW+) \W Inc. % Inc. W \WF+ W ∩BW+ (WF+) \W Inc. % Inc.

Doctor Appt. 206 258 43 0 0.00% 74 1,067 10 0 0.00%
Hosp. Mgmt. 88 1,386 24 0 0.00% 71 3,255 60 6 0.18%
Login 19 149 7 3 1.71% 3 516 0 0 0.00%
OpenEMR 25,117 77,499 2606 23 0.02% 22,473 109,511 19915 2063 1.36%
OSCommerce 2,497 8,947 863 65 0.53% 3,833 22,608 3622 0 0.00%
phpBB 2,967 38,529 1159 280 0.66% 15,133 35,730 7508 964 1.65%
rConfig 426 6,206 254 15 0.22% 104 2,456 62 32 1.22%
WackoPicko 66 676 285 2 0.19% 50 2,415 407 15 0.52%
Wordpress 6,966 71,927 6733 251 0.29% 37,401 87,610 10365 4430 3.27%

escalation—we cannot guarantee that implicit command and SQL injection driven

assumptions did not influence Witcher. As a result, these different payloads and

assumptions may introduce coverage bias, which makes the comparison between the

tools less equivalent.

To evaluate the bias, we took an approach inspired by the comparison in Enemy

of the State [43] where they added the w3af testing component to the state-aware-

crawler to control for the vulnerability detection. In our evaluation, we simulated the

same control by combining Black Widow’s and WebFuzz’s code coverage with the

code coverage generated by BurpPlus (with only SQL auditing enabled and loading

Burp with Witcher’s URLs). Combining BurpPlus’s SQL only results with Black

Widow and WebFuzz did not alter the outcome of any comparison to Witcher making

it less likely that the different vulnerability targets unfairly benefited Witcher. In

Table 12, BurpPlus added lines covered to most of the web applications for both

scanners. However, the additional lines did not change the outcome of the comparisons;

moreover, the percent increase (amount of change / total lines covered) was less than

3.3% for all the applications (see Table 13). Thus, for the chosen web applications, it

is unlikely that a vulnerability target bias impacted the results.

121

Performance. To understand the cost in terms of requests per second, we

compared the number of requests per second made by Witcher, WebFuzz, Black

Widow, and Burp. In the evaluation, we executed Witcher (one core), Burp (max of

ten concurrent requests), WebFuzz (a single worker), and Black Widow (one core) for

eight hours on each of the PHP web applications.

Table 14. The requests per second of Witcher and WebFuzz on the PHP applications
used in the evaluation.

Applications Witcher WebFuzz Black Widow Burp
Req/s Req/s Req/s Req/s

Doctor Appt. Sys. 539.4 43.4 3.4 7.3
Hosp. Mgmt. Sys. 327.4 26.6 3.0 5.0
Login Mgmt. 180.9 112.2 0.9 13.3
OpenEMR 15.3 1.5 1.7 5.1
osCommerce 22.2 4.7 0.7 2.4
phpBB 14.7 1.5 0.7 1.1
rConfig 52.7 10.1 3.3 3.3
WackoPicko 101.9 2.2 0.2 23.5
Wordpress 24.4 0.1 0.5 0.1

Average 142.1 22.5 1.6 6.8

Table 14 in the Appendix shows that Witcher sent the most requests per second

for every web application. Witcher averaged 142.1 requests per second while WebFuzz

averaged 22.5 req/s, Black Widow averaged 1.6 req/s, and Burp averaged 6.8 req/s.

Although Witcher outperformed the other tools in code coverage, it issued six times

the requests made by the next fastest tool; however, the coverage was not six times

better. Thus, by applying a hybrid approach Witcher would likely improve coverage

despite the potential cost to the requests per second.

122

4.6 Discussion

Witcher’s use of fault escalation, dynamic request crawling, request harnessing,

direct instrumentation, and HTTP-specific input mutations provides a framework for

the effective application of coverage-guided mutational fuzzing to web applications.

Our evaluation showed the effectiveness of the Witcher components, the ability to

identify known and previously unknown vulnerabilities. In addition, we compared

Witcher with Burp, Black Widow, and WebFuzz. Witcher outperformed the other

tools, finding more vulnerabilities than Burp and covering more of the web applications

than Burp, Black Widow, and WebFuzz.

Grey-box versus White-box versus Black-box Scanners. The implementation

of grey-box fuzzing for web applications requires less effort to implement than its

white-box counterparts. Witcher requires inserting a few lines of code into the target

runtime for the language. However, a white-box tool models the semantics of the

language. The semantics differ for each language; thus, significant effort is required to

initially implement a semantic-driven white-box approach to a different language. For

instance, Pixy [90] did not support object-oriented features of PHP, which limits its

applicability to modern PHP. Moreover, white-box tools often fail when analyzing

real-world code. However, we tested Witcher and grey-box fuzzing using multiple

real-world targets, languages, and architectures. Although black-box vulnerability

scanners are typically language agnostic, grey-box fuzzers out-performed a commercial

black-box tool and two state-of-the-art vulnerability scanners.

123

4.6.1 Limitations

The current Witcher prototype is limited to discovering SQL injection and command

injection vulnerabilities. While these two vulnerability classes represent high-severity

vulnerabilities, there are other web vulnerabilities such as cross-site scripting, path

traversal, local file inclusion, or remote code evaluation that Witcher does not currently

detect.

Another limitation of Witcher is that it can only detect reflected injection

vulnerabilities—that is, injection vulnerabilities where the untrusted user input flows

unsanitized to a sensitive sink during one HTTP request. This is in contrast to second-

order vulnerabilities, such as stored SQL injection, where the untrusted user input

is safely stored by the web application on the initial HTTP request, where it finally

flows unsanitized to a sensitive sink while processing a subsequent HTTP request.

Although Witcher might be able to detect the vulnerability using Fault Escalator, it

would not be able to reason about what input actually caused the vulnerability.

A related limitation is that Witcher does not reason about web application state. A

key limitation of the Witcher prototype is that it fuzzes one URL at a time, which does

not allow it to reason about or understand multi-state actions in the web application.

However, Witcher is able to induce some application states between requests because

the web application’s database maintains state. Perhaps the techniques proposed in

prior work to understand web application state [43], [49] could be applied to Witcher.

124

4.6.2 Future Work

While Witcher worked well in the evaluations, we see several potential improve-

ments. Witcher could benefit more automation of the initial setup and configuration.

Witcher would also benefit from simultaneous crawling and fuzzing that shares results

and interweaves the execution of different URLs.

Witcher can be improved to detect other types of vulnerabilities. Witcher could

be augmented to detect local file inclusion and path traversal vulnerabilities by

(1) creating a honeypot directory (witchers-honey/) in each directory of the web

application and (2) adding a detector that escalates when a new file is detected in the

honeypot directory. Witcher could include XSS vulnerability detection likely at the

cost of performance by using a JavaScript engine to render and detect the XSS using

WebFuzz’s technique.

4.7 Related Work

Recently, three grey-box fuzzing tools have emerged in the literature BackREST [56],

WebFuzz [124], and Cefuzz [148]. Witcher is distinguishable from the tools because

Witcher supports multiple languages, while BackREST only supports Node.js and

WebFuzz and Cefuzz only support PHP. With respect to BackREST, Witcher is more

robust because Witcher handles full web applications whereas BackREST focuses on

exercising REST APIs. In addition, Witcher is open source; however, BackREST

and Cefuzz are closed source and BackREST is unavailable for testing or evaluation.

Witcher also differs from WebFuzz because Witcher uses a compiled fuzzer to generate

inputs whereas WebFuzz’s fuzzer is written in Python, which improves the requests

125

per second Witcher can make. Next, Witcher tracks execution by adding the instru-

mentation to the interpreter; whereas, WebFuzz directly modifies the web application’s

scripts and nearly doubles the size of the scripts. Lastly, Witcher targets command

and SQL injection vulnerabilities whereas BackREST and WebFuzz target Cross-site

Scripting vulnerabilities and Cefuzz targets remote code execution vulnerabilities.

Several black-box fuzzers exists for fuzzing web applications such as Burp [119],

Acunetix Web Vulnerability Scanner [3], IBM AppScan [78], OWASP Zap [110],

and Skipfish [129] Arachni [16], Enemy of the State [44], jÄk [113], w3af [145], and

Black Widow [49]. Each the the scanners detect injection and other common web

vulnerabilities [122]. Most of the tools “fuzz” using predefined heuristics or user-

defined rules [21]. However, unlike the black-box tools, Witcher relies execution

instrumentation to guide the input generation and fault escalation to detect an

injection vulnerability.

AFL CGI Wrapper enables the fuzzing of CGI binaries by receiving input via

standard input and translating it into a CGI request [54]. Although the initial

inspiration of Witcher’s CGI harness came from the AFL CGI Wrapper, it only

detects memory corruption vulnerabilities does not identify injection vulnerabilities

and it lacks the input generation capabilities of Witcher.

The tool µ4SQLi automatically produces inputs that lead to harmful SQL state-

ments and bypasses application firewalls [15]. µ4SQLi starts with legitimate input

and mutates the values using a predefined group of mutation operators that are meant

to build new types of SQL injection payloads. Similar to Witcher, µ4SQLi uses a

database proxy to monitor the network traffic between the database and the web

server so that it detects whether the SQL statement is harmful. µ4SQLi differs from

126

Witcher because it does not rely on any execution instrumentation to guide input

generation and it does not detect command injection vulnerabilities.

KameleonFuzz is a black-box web application fuzzer that detects XSS vulnerabili-

ties [48]. KameleonFuzz attempts to uses an attack grammar and variable mutations

to generate XSS payloads along with valid input, which it then submits to the site, and

then detects whether the payload landed. It guides the mutations based on a fit score,

which is calculated after the input is submitted. KamelonFuzz differs from Witcher

because it does not use any execution information to guide the input generation phase

and it does not use detect SQL or command injection vulnerabilities.

RESTler and Pythia automatically test REST APIs that have interfaces defined

using Sparrow. RESTler uses grammar-based fuzzing and static analysis of API

specifications to automatically test REST APIs [21]. Pythia, which builds on RESTler,

adds coverage-guided fuzzing and learning-based mutations [20]. However, these tools

focus bugs instead of vulnerabilities and only work on Sparrow documented REST

apis, unlike Witcher, which works on web applications and detects SQL and command

injection vulnerabilities.

Another recent tool, HYDRA, uses user weighting and output monitoring to guide

the targeted generation of injection payloads [95]. HYDRA uses context changes to

detect the injection vulnerabilities. However, Witcher uses fault escalation to detect

injection vulnerabilities. In addition, HYDRA requires more interaction with the user

for initialization of inputs and context weighting.

SRFuzzer fuzzes the web interface of router-based IoT devices to detect memory

corruption and command injection vulnerabilities. SRFuzzer uses a browser-based

crawler to gather the HTTP variables. SRFuzzer then fuzzes the variables and monitors

127

by testing the device’s responsiveness and listening for reverse connections made by

crafted command injection payloads.

Although not the primary contribution of Witcher, its device fuzzing offers features

not included in SRFuzzer. SRFuzzer and Witcher use similar techniques to identify

the HTTP variables. However, Witcher detects the vulnerability from inside the

device (which means that the vulnerability trigger does not need to be a syntactically

correct command injection). Moreover, SRFuzzer’s scaling is limited by the use of the

physical device; while Witcher uses an emulated version of the firmware and scales to

fuzz in parallel. Finally, Witcher uses instrumentation of the binary to guide fuzzing,

while SRFuzzer does not.

Rampart detects denial-of-service attacks using a PHP plugin to measure the

execution time of user-created functions to detect anomalous execution performance,

which indicates a denial-of-service attack [104]. Witcher’s instruction instrumentation

is more fine-grained than user-created functions because user-created functions often

contain multiple lines of code. Thus, Witcher provides the fuzzer with additional

information to guide its analysis than produced by Rampart.

Eriksson et al. created the vulnerability scanner Black Widow [49]. Black Widow

uses navigation modeling, traversing, and inter-state dependencies to scan web applica-

tions. Witcher uses fault escalation to find SQL and command injection vulnerabilities,

but Black Widow is limited to XSS vulnerabilities. Based on the evaluation results, the

two approach while producing similar results also seem to activate different portions

of the code. Thus, integrating the Witcher and Black Widow approaches will likely

result in a more effective tool.

Several fuzzers exist that propose different methods for mutating context-free

128

grammars or other types of structured data [19], [31], [111], [116], [117]. We plan to

investigate their performance on web applications in future work.

4.8 Conclusion

In this chapter, we propose Witcher, a novel web application vulnerability discovery

platform that is generalizable to web languages without hard-coded heuristics for test-

ing inputs. Witcher is inspired by coverage-guided mutational fuzzing. To bridge the

gap between coverage-guided mutational fuzzing and web application vulnerabilities,

we design multiple techniques in Witcher that generate both syntactically-valid and

semantically-correct inputs and detect injection vulnerabilities. In our evaluation, we

observed that Witcher is able to find both known and unknown web vulnerabilities

effectively. Witcher is the first step toward the development of a web application fuzzer,

as opposed to vulnerability scanners, and we believe this approach is a promising path

forward to automatically identifying vulnerabilities in web applications.

4.9 References

[1] [Online]. Available: https://en.wikipedia.org/wiki/Common_Gateway_

Interface.

[3] Acunetix Web Vulnerability Scanner, 2020. [Online]. Available: https://www.

acunetix.com/.

[4] F. Akowuah, J. Lake, X. Yuan, E. Nuakoh, and H. Yu, “Testing the security

vulnerabilities of openemr 4.1. 1: A case study,” Journal of Computing Sciences

in Colleges, vol. 30, no. 3, pp. 26–35, 2015.

129

https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://www.acunetix.com/
https://www.acunetix.com/

[11] American Fuzzy Lop, 2020. [Online]. Available: https://github.com/google/

AFL.

[15] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan, “Automated testing

for sql injection vulnerabilities: An input mutation approach,” in Proceedings

of the 2014 International Symposium on Software Testing and Analysis, 2014,

pp. 259–269.

[16] Arachni - Web Application Security Scanner Framework, 2021. [Online]. Avail-

able: https://www.arachni-scanner.com/.

[19] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D.

Teuchert, “Nautilus: Fishing for deep bugs with grammars.,” in NDSS, 2019.

[20] V. Atlidakis, R. Geambasu, P. Godefroid, M. Polishchuk, and B. Ray, “Pythia:

Grammar-based fuzzing of rest apis with coverage-guided feedback and learning-

based mutations,” arXiv preprint arXiv:2005.11498, 2020.

[21] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Rest-ler: Automatic intelligent

rest api fuzzing,” arXiv preprint arXiv:1806.09739, 2018.

[24] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art: Automated

black-box web application vulnerability testing,” in 2010 IEEE symposium on

security and privacy, IEEE, 2010, pp. 332–345.

[25] E. Bazzoli, C. Criscione, F. Maggi, and S. Zanero, “XSS PEEKER: Dissecting

the XSS exploitation techniques and fuzzing mechanisms of blackbox web ap-

plication scanners,” in IFIP International Conference on ICT Systems Security

and Privacy Protection, Springer, 2016.

130

https://github.com/google/AFL
https://github.com/google/AFL
https://www.arachni-scanner.com/

[26] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, “A taint based approach

for smart fuzzing,” in 2012 IEEE Fifth International Conference on Software

Testing, Verification and Validation, IEEE, 2012, pp. 818–825.

[29] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated dynamic

analysis for linux-based embedded firmware.,” in NDSS, vol. 16, 2016, pp. 1–16.

[30] Y. Chen, D. Mu, J. Xu, Z. Sun, W. Shen, X. Xing, L. Lu, and B. Mao,

“Ptrix: Efficient hardware-assisted fuzzing for cots binary,” in Proceedings of

the 2019 ACM Asia Conference on Computer and Communications Security,

2019, pp. 633–645.

[31] Y. Chen, R. Zhong, H. Hu, H. Zhang, Y. Yang, D. Wu, and W. Lee, “One engine

to fuzz’em all: Generic language processor testing with semantic validation,” in

Proceedings of the 42nd IEEE Symposium on Security and Privacy (Oakland),

2021.

[38] B. Cui, F. Wang, Y. Hao, and X. Chen, “Whirlingfuzzwork: A taint-analysis-

based api in-memory fuzzing framework,” Soft Computing, vol. 21, no. 12,

pp. 3401–3414, 2017.

[40] G Deepa, P. S. Thilagam, A. Praseed, and A. R. Pais, “Detlogic: A black-box

approach for detecting logic vulnerabilities in web applications,” Journal of

Network and Computer Applications, vol. 109, pp. 89–109, 2018.

[41] Derick Rethans, Xdebug: A Debugger and Profiling Tool for PHP, 2020. [Online].

Available: https://xdebug.org.

131

https://xdebug.org

[43] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the State: A State-

Aware Black-Box Vulnerability Scanner,” in Proceedings of the 21st Symposium

on USENIX Security, Bellevue, WA, Aug. 2012.

[44] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state: A

state-aware black-box web vulnerability scanner,” in 21st {USENIX} Security

Symposium ({USENIX} Security 12), 2012, pp. 523–538.

[45] A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest: An analysis of

black-box web vulnerability scanners,” in International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment, Springer, 2010,

pp. 111–131.

[46] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel, and G. Vigna,

“deDacota: Toward Preventing Server-Side XSS via Automatic Code and

Data Separation,” in Proceedings of the ACM Conference on Computer and

Communications Security (CCS), Berlin, Germany, Nov. 2013.

[48] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “Kameleonfuzz: Evolutionary

fuzzing for black-box xss detection,” in Proceedings of the 4th ACM conference

on Data and application security and privacy, 2014, pp. 37–48.

[49] B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black widow: Blackbox data-

driven web scanning,” proceedings of IEEE SSP 2021, 2021.

[50] D. Esposito, M. Rennhard, L. Ruf, and A. Wagner, “Exploiting the potential

of web application vulnerability scanning,” in ICIMP 2018 the Thirteenth

132

International Conference on Internet Monitoring and Protection, Barcelona,

Spain, 22-26 July 2018, IARIA, 2018, pp. 22–29.

[52] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, “Toward Automated

Detection of Logic Vulnerabilities in Web Applications,” in Proceedings of the

19th USENIX Security Symposium, 2010, pp. 143–160, isbn: 9781931971775.

[53] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining in-

cremental steps of fuzzing research,” in 14th USENIX Workshop on Offensive

Technologies (WOOT 20), USENIX Association, Aug. 2020.

[54] Floyd Fuh, AFL CGI Wrapper, 2020. [Online]. Available: https://github.com/

floyd-fuh/afl-cgi-wrapper.

[56] F. Gauthier, B. Hassanshahi, B. Selwyn-Smith, T. N. Mai, M. Schlüter, and

M. Williams, “Backrest: A model-based feedback-driven greybox fuzzer for web

applications,” arXiv preprint arXiv:2108.08455, 2021.

[58] V. Gite, What is Dash (/bin/dash) Shell? 2020. [Online]. Available: https:

//www.cyberciti .biz/ faq/debian- ubuntu- linux- binbash- vs - bindash- vs -

binshshell/.

[65] Google Search for Uses of Hospital Management System, 2021. [Online]. Avail-

able: https://tinyurl.com/hospitalmanagementsystemuses.

[66] Google Search for Uses of Login System, 2021. [Online]. Available: https :

//tinyurl.com/doctorappointmentsystem.

133

https://github.com/floyd-fuh/afl-cgi-wrapper
https://github.com/floyd-fuh/afl-cgi-wrapper
https://www.cyberciti.biz/faq/debian-ubuntu-linux-binbash-vs-bindash-vs-binshshell/
https://www.cyberciti.biz/faq/debian-ubuntu-linux-binbash-vs-bindash-vs-binshshell/
https://www.cyberciti.biz/faq/debian-ubuntu-linux-binbash-vs-bindash-vs-binshshell/
https://tinyurl.com/hospitalmanagementsystemuses
https://tinyurl.com/doctorappointmentsystem
https://tinyurl.com/doctorappointmentsystem

[67] Google Search for Uses of Login System, 2021. [Online]. Available: https :

//tinyurl.com/usermanagementsystem.

[69] Gremlins - Monkey Testing Library for Web Apps and Node.js, 2020. [Online].

Available: https://github.com/marmelab/gremlins.js.

[70] S. Gupta and B. B. Gupta, “Php-sensor: A prototype method to discover work-

flow violation and xss vulnerabilities in php web applications,” in Proceedings of

the 12th ACM International Conference on Computing Frontiers, 2015, pp. 1–8.

[74] High-performance binary-only instrumentation for afl-fuzz, 2020. [Online]. Avail-

able: https://github.com/google/AFL/blob/master/qemu_mode/README.

qemu.

[75] HTTP State Management Mechanism, 2020. [Online]. Available: https://tools.

ietf.org/html/rfc3875.

[76] HTTP/1.1 Message Syntax and Routing, 2020. [Online]. Available: https :

//tools.ietf.org/html/rfc7230.

[77] Y. W. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S.-Y. Kuo, “Securing

Web Application Code by Static Analysis and Runtime Protection,” in Thir-

teenth International World Wide Web Conference Proceedings, 2004, pp. 40–52,

isbn: 158113844X. doi: 10.1145/988672.988679.

[78] IBM/HCL AppScan, 2020. [Online]. Available: https://www.hcltechsw.com/

appscan.

134

https://tinyurl.com/usermanagementsystem
https://tinyurl.com/usermanagementsystem
https://github.com/marmelab/gremlins.js
https://github.com/google/AFL/blob/master/qemu_mode/README.qemu
https://github.com/google/AFL/blob/master/qemu_mode/README.qemu
https://tools.ietf.org/html/rfc3875
https://tools.ietf.org/html/rfc3875
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://doi.org/10.1145/988672.988679
https://www.hcltechsw.com/appscan
https://www.hcltechsw.com/appscan

[82] B. Jabiyev, O. Mirzaei, A. Kharraz, and E. Kirda, “Preventing server-side

request forgery attacks,” in Proceedings of the 36th Annual ACM Symposium

on Applied Computing, 2021, pp. 1626–1635.

[90] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for

detecting web application vulnerabilities,” in 2006 IEEE Symposium on Security

and Privacy (S&P’06), IEEE, 2006, 6–pp.

[91] ——, “Static Analysis for Detecting Taint-style Vulnerabilities in Web Applica-

tions,” Journal of Computer Security, vol. 18, no. 5, pp. 861–907, 2010, issn:

0926227X. doi: 10.3233/JCS-2009-0385.

[93] N. Khoury, P. Zavarsky, D. Lindskog, and R. Ruhl, “Testing and assessing web

vulnerability scanners for persistent sql injection attacks,” in proceedings of the

first international workshop on security and privacy preserving in e-societies,

2011, pp. 12–18.

[94] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz test-

ing,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, 2018, pp. 2123–2138.

[95] M. Leithner, B. Garn, and D. E. Simos, “Hydra: Feedback-driven black-box

exploitation of injection vulnerabilities,” Information and Software Technology,

p. 106 703, 2021.

[96] J. Li, B. Zhao, and C. Zhang, “Fuzzing: A survey,” Cybersecurity, vol. 1, no. 1,

pp. 1–13, 2018.

135

https://doi.org/10.3233/JCS-2009-0385

[97] X. Li and Y. Xue, “Block: A black-box approach for detection of state violation

attacks towards web applications,” in Proceedings of the 27th Annual Computer

Security Applications Conference, 2011, pp. 247–256.

[98] X. Li, W. Yan, and Y. Xue, “SENTINEL: Securing Database from Logic Flaws

in Web Applications,” in Proceedings of the second ACM conference on Data

and Application Security and Privacy, 2012, pp. 25–36, isbn: 9781450310918.

doi: 10.1145/2133601.2133605.

[101] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M.

Woo, “Fuzzing: Art, science, and engineering,” arXiv preprint arXiv:1812.00140,

2018.

[103] Z. McGee and S. Acharya, “Security analysis of openemr,” in 2019 IEEE

International Conference on Bioinformatics and Biomedicine (BIBM), IEEE,

2019, pp. 2655–2660.

[104] W. Meng, C. Qian, S. Hao, K. Borgolte, G. Vigna, C. Kruegel, and W. Lee,

“Rampart: Protecting web applications from cpu-exhaustion denial-of-service

attacks,” in 27th {USENIX} Security Symposium ({USENIX} Security 18),

2018, pp. 393–410.

[105] S. Micheelsen and B. Thalmann, A static analysis tool for detecting security

vulnerabilities in python web applications, 2016.

[106] R. Mohammed, “Assessment of web scanner tools,” International Journal of

Computer Applications, vol. 133, no. 5, pp. 1–4, 2016.

136

https://doi.org/10.1145/2133601.2133605

[109] OWASP, SQL Injection, 2022. [Online]. Available: https://owasp.org/www-

community/attacks/SQL_Injection#:~:text=TheseverityofSQLInjection,

Injectionahighimpactseverity.

[110] OWASP Zed Attack Proxy, 2020. [Online]. Available: https://www.zaproxy.

org/.

[111] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon, “Semantic

fuzzing with zest,” in Proceedings of the 28th ACM SIGSOFT International

Symposium on Software Testing and Analysis, 2019, pp. 329–340.

[112] G. Pellegrino and D. Balzarotti, “Toward black-box detection of logic flaws in

web applications.,” in NDSS, 2014.

[113] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, “Jäk: Using dynamic

analysis to crawl and test modern web applications,” in International Sym-

posium on Recent Advances in Intrusion Detection, Springer, 2015, pp. 295–

316.

[114] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: Fuzzing by program trans-

formation,” in 2018 IEEE Symposium on Security and Privacy (SP), IEEE,

2018, pp. 697–710.

[116] V. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu, and A. Roychoudhury,

“Smart greybox fuzzing,” IEEE Transactions on Software Engineering, 2019.

doi: 10.1109/TSE.2019.2941681.

137

https://owasp.org/www-community/attacks/SQL_Injection#:~:text=The severity of SQL Injection,Injection a high impact severity
https://owasp.org/www-community/attacks/SQL_Injection#:~:text=The severity of SQL Injection,Injection a high impact severity
https://owasp.org/www-community/attacks/SQL_Injection#:~:text=The severity of SQL Injection,Injection a high impact severity
https://www.zaproxy.org/
https://www.zaproxy.org/
https://doi.org/10.1109/TSE.2019.2941681

[117] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Aflnet: A greybox fuzzer for

network protocols,” in 2020 IEEE 13th International Conference on Software

Testing, Validation and Verification (ICST), IEEE, 2020, pp. 460–465.

[118] Pin - A Dynamic Binary Instrumentation Tool, 2020. [Online]. Available:

https://software.intel.com/content/www/us/en/develop/articles/pin-a-

dynamic-binary-instrumentation-tool.html.

[119] PortSwigger, Burp Suite. Application Security Testing, 2020. [Online]. Available:

https://portswigger.net/burp.

[121] Puppeteer - Node.js library that provides high-level API access to Chrome and

Chromium, 2021. [Online]. Available: https://github.com/puppeteer/puppeteer.

[122] M. Qasaimeh, A. Shamlawi, and T. Khairallah, “Black box evaluation of web

application scanners: Standards mapping approach,” Journal of Theoretical

and Applied Information Technology, vol. 22, Jul. 2018.

[123] QEMU, 2020. [Online]. Available: https://qemu.org.

[124] O. v. Rooij, M. A. Charalambous, D. Kaizer, M. Papaevripides, and E. Athana-

sopoulos, “Webfuzz: Grey-box fuzzing for web applications,” in European Sym-

posium on Research in Computer Security, Springer, 2021, pp. 152–172.

[129] Skipfish: Web Application Security Scanner, 2020. [Online]. Available: https:

//github.com/spinkham/skipfish.

138

https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://portswigger.net/burp
https://github.com/puppeteer/puppeteer
https://qemu.org
https://github.com/spinkham/skipfish
https://github.com/spinkham/skipfish

[132] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-

taishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through

selective symbolic execution.,” in NDSS, vol. 16, 2016, pp. 1–16.

[145] w3af - Open Source Web Application Security Scanner, 2021. [Online]. Available:

http://w3af.org/.

[148] J. Zhao, Y. Lu, K. Zhu, Z. Chen, and H. Huang, “Cefuzz: An directed fuzzing

framework for php rce vulnerability,” Electronics, vol. 11, no. 5, p. 758, 2022.

139

http://w3af.org/

Chapter 5

CONCLUSION

In conclusion, the transformation of the hacking landscape from an idealistic pursuit

to a global battlefield has necessitated an evolution in the skills and tools employed by

educators, users, and developers. To address the shortage of qualified cybersecurity

professionals, this dissertation proposes integrating live cybersecurity competitions

into educational curricula, offering a CTF-as-a-service solution for educators who may

lack the necessary resources. For users, CloakX is introduced as a tool to safeguard

privacy by countering extension fingerprinting techniques, empowering individuals to

enhance their privacy on the Internet. Finally, for analysts, Witcher is presented as a

novel framework for discovering web vulnerabilities using grey-box coverage-guided

fuzzing, enabling more efficient and effective vulnerability detection. By embracing

these innovative approaches, we can better equip ourselves to navigate the complex

and ever-evolving world of cybersecurity.

140

REFERENCES

[1] [Online]. Available: https://en.wikipedia.org/wiki/Common_Gateway_
Interface.

[2] 2015 Global Cybersecurity Status Report, https ://www. isaca .org/cyber/
documents/Cybersecurity-Status-Report_ifg_Eng_0115.pptx, 2017.

[3] Acunetix Web Vulnerability Scanner, 2020. [Online]. Available: https://www.
acunetix.com/.

[4] F. Akowuah, J. Lake, X. Yuan, E. Nuakoh, and H. Yu, “Testing the security
vulnerabilities of openemr 4.1. 1: A case study,” Journal of Computing Sciences
in Colleges, vol. 30, no. 3, pp. 26–35, 2015.

[5] Amazon API Error Codes, http://docs.aws.amazon.com/AWSEC2/latest/
APIReference/errors-overview.html, 2017.

[6] Amazon EC2 Instance IP Addressing, http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/using-instance-addressing.html, 2017.

[7] Amazon EC2 Security Groups for Linux Instances, http://docs.aws.amazon.com
/AWSEC2/latest/UserGuide/using-network-security.html, 2017.

[8] Amazon Machine Images (AMI), http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/AMIs.html, 2017.

[9] Amazon Regions and Availability Zones, http : / /docs . aws . amazon . com/
AWSEC2/latest/UserGuide/using-regions-availability-zones.html, 2017.

[10] Amazon VPC FAQs, https://aws.amazon.com/vpc/faqs/, 2017.

[11] American Fuzzy Lop, 2020. [Online]. Available: https://github.com/google/
AFL.

[12] E. Andreasen, A. Feldthaus, S. H. Jensen, C. S. Jensen, P. A. Jonsson, M.
Madsen, and A. Moller, “Improving tools for javascript programmers,” in Proc.
of International Workshop on Scripts to Programs. Beijing, China:[sn], 2012,
pp. 67–82.

[13] E. Andreasen and A. Moller, “Determinacy in static analysis for jQuery,”
ACM SIGPLAN Notices, vol. 49, no. 10, pp. 17–31, 2014, issn: 03621340. doi:

141

https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://en.wikipedia.org/wiki/Common_Gateway_Interface
https://www.isaca.org/cyber/documents/Cybersecurity-Status-Report_ifg_Eng_0115.pptx
https://www.isaca.org/cyber/documents/Cybersecurity-Status-Report_ifg_Eng_0115.pptx
https://www.acunetix.com/
https://www.acunetix.com/
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/errors-overview.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/errors-overview.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-instance-addressing.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://aws.amazon.com/vpc/faqs/
https://github.com/google/AFL
https://github.com/google/AFL

10.1145/2714064.2660214. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2714064.2660214.

[14] E. S. Andreasen, A. Moller, and B. B. Nielsen, “Systematic Approaches for
Increasing Soundness and Precision of Static Analyzers,” ACM SIGPLAN
Conference on Programming Language Design and Implementation, no. June,
2017. doi: 10.1145/3088515.3088521.

[15] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan, “Automated testing
for sql injection vulnerabilities: An input mutation approach,” in Proceedings
of the 2014 International Symposium on Software Testing and Analysis, 2014,
pp. 259–269.

[16] Arachni - Web Application Security Scanner Framework, 2021. [Online]. Avail-
able: https://www.arachni-scanner.com/.

[17] Are SQL Injections Still A Thing? 2023. [Online]. Available: https://www.code-
intelligence.com/blog/sql-injections.

[18] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps,” Acm Sigplan
Notices, vol. 49, no. 6, pp. 259–269, 2014.

[19] C. Aschermann, T. Frassetto, T. Holz, P. Jauernig, A.-R. Sadeghi, and D.
Teuchert, “Nautilus: Fishing for deep bugs with grammars.,” in NDSS, 2019.

[20] V. Atlidakis, R. Geambasu, P. Godefroid, M. Polishchuk, and B. Ray, “Pythia:
Grammar-based fuzzing of rest apis with coverage-guided feedback and learning-
based mutations,” arXiv preprint arXiv:2005.11498, 2020.

[21] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Rest-ler: Automatic intelligent
rest api fuzzing,” arXiv preprint arXiv:1806.09739, 2018.

[22] AWS NAT Instances, http://docs.aws.amazon.com/AmazonVPC/latest/
UserGuide/VPC_NAT_Instance.html, 2017.

[23] N. Backman, “Facilitating a battle between hackers: Computer security outside
of the classroom,” in Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, ser. SIGCSE ’16, Memphis, Tennessee, USA:
ACM, 2016, pp. 603–608, isbn: 978-1-4503-3685-7. doi: 10.1145/2839509.
2844648. [Online]. Available: http://doi.acm.org/10.1145/2839509.2844648.

142

https://doi.org/10.1145/2714064.2660214
http://dl.acm.org/citation.cfm?doid=2714064.2660214
http://dl.acm.org/citation.cfm?doid=2714064.2660214
https://doi.org/10.1145/3088515.3088521
https://www.arachni-scanner.com/
https://www.code-intelligence.com/blog/sql-injections
https://www.code-intelligence.com/blog/sql-injections
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_NAT_Instance.html
https://doi.org/10.1145/2839509.2844648
https://doi.org/10.1145/2839509.2844648
http://doi.acm.org/10.1145/2839509.2844648

[24] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art: Automated
black-box web application vulnerability testing,” in 2010 IEEE symposium on
security and privacy, IEEE, 2010, pp. 332–345.

[25] E. Bazzoli, C. Criscione, F. Maggi, and S. Zanero, “XSS PEEKER: Dissecting
the XSS exploitation techniques and fuzzing mechanisms of blackbox web ap-
plication scanners,” in IFIP International Conference on ICT Systems Security
and Privacy Protection, Springer, 2016.

[26] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, “A taint based approach
for smart fuzzing,” in 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, IEEE, 2012, pp. 818–825.

[27] L. Blankenship, The Conscience of a Hacker, http://phrack.org/issues/7/3.
html, 1986.

[28] P. Chapman, J. Burket, and D. Brumley, “Picoctf: A game-based computer
security competition for high school students,” in 2014 USENIX Summit on
Gaming, Games, and Gamification in Security Education (3GSE 14), San Diego,
CA: USENIX Association, 2014. [Online]. Available: https://www.usenix.org/
conference/3gse14/summit-program/presentation/chapman.

[29] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated dynamic
analysis for linux-based embedded firmware.,” in NDSS, vol. 16, 2016, pp. 1–16.

[30] Y. Chen, D. Mu, J. Xu, Z. Sun, W. Shen, X. Xing, L. Lu, and B. Mao,
“Ptrix: Efficient hardware-assisted fuzzing for cots binary,” in Proceedings of
the 2019 ACM Asia Conference on Computer and Communications Security,
2019, pp. 633–645.

[31] Y. Chen, R. Zhong, H. Hu, H. Zhang, Y. Yang, D. Wu, and W. Lee, “One engine
to fuzz’em all: Generic language processor testing with semantic validation,” in
Proceedings of the 42nd IEEE Symposium on Security and Privacy (Oakland),
2021.

[32] M. T. Chi and R. Wylie, “The icap framework: Linking cognitive engagement to
active learning outcomes,” Educational psychologist, vol. 49, no. 4, pp. 219–243,
2014.

[33] N. Childers, B. Boe, L. Cavallaro, L. Cavedon, M. Cova, M. Egele, and G.
Vigna, “Organizing Large Scale Hacking Competitions,” in Proceedings of
the Conference on Detection of Intrusions and Malware and Vulnerability
Assessment (DIMVA), Bonn, Germany, Jul. 2010.

143

http://phrack.org/issues/7/3.html
http://phrack.org/issues/7/3.html
https://www.usenix.org/conference/3gse14/summit-program/presentation/chapman
https://www.usenix.org/conference/3gse14/summit-program/presentation/chapman

[34] Chrome.runtime - getbackgroundpage(). [Online]. Available: https://developer.
chrome.com/extensions/runtime#method-getBackgroundPage.

[35] A. Conklin, “The use of a collegiate cyber defense competition in information
security education,” in Proceedings of the 2Nd Annual Conference on Informa-
tion Security Curriculum Development, ser. InfoSecCD ’05, Kennesaw, Georgia:
ACM, 2005, pp. 16–18, isbn: 1-59593-261-5. doi: 10.1145/1107622.1107627.
[Online]. Available: http://doi.acm.org/10.1145/1107622.1107627.

[36] Content scripts. [Online]. Available: https://developer.chrome.com/extensions/
content_scripts.

[37] CTF Time, https://ctftime.org, 2017.

[38] B. Cui, F. Wang, Y. Hao, and X. Chen, “Whirlingfuzzwork: A taint-analysis-
based api in-memory fuzzing framework,” Soft Computing, vol. 21, no. 12,
pp. 3401–3414, 2017.

[39] D. Dasgupta, D. M. Ferebee, and Z. Michalewicz, “Applying puzzle-based
learning to cyber-security education,” in Proceedings of the 2013 on InfoSecCD
’13: Information Security Curriculum Development Conference, ser. InfoSecCD
’13, Kennesaw GA, USA: ACM, 2013, 20:20–20:26, isbn: 978-1-4503-2547-9.
doi: 10.1145/2528908.2528910. [Online]. Available: http://doi.acm.org/10.
1145/2528908.2528910.

[40] G Deepa, P. S. Thilagam, A. Praseed, and A. R. Pais, “Detlogic: A black-box
approach for detecting logic vulnerabilities in web applications,” Journal of
Network and Computer Applications, vol. 109, pp. 89–109, 2018.

[41] Derick Rethans, Xdebug: A Debugger and Profiling Tool for PHP, 2020. [Online].
Available: https://xdebug.org.

[42] Detect adblock – most effective way to detect ad blockers. [Online]. Available:
https://www.detectadblock.com/.

[43] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the State: A State-
Aware Black-Box Vulnerability Scanner,” in Proceedings of the 21st Symposium
on USENIX Security, Bellevue, WA, Aug. 2012.

[44] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state: A
state-aware black-box web vulnerability scanner,” in 21st {USENIX} Security
Symposium ({USENIX} Security 12), 2012, pp. 523–538.

144

https://developer.chrome.com/extensions/runtime#method-getBackgroundPage
https://developer.chrome.com/extensions/runtime#method-getBackgroundPage
https://doi.org/10.1145/1107622.1107627
http://doi.acm.org/10.1145/1107622.1107627
https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/content_scripts
https://ctftime.org
https://doi.org/10.1145/2528908.2528910
http://doi.acm.org/10.1145/2528908.2528910
http://doi.acm.org/10.1145/2528908.2528910
https://xdebug.org
https://www.detectadblock.com/

[45] A. Doupé, M. Cova, and G. Vigna, “Why johnny can’t pentest: An analysis of
black-box web vulnerability scanners,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, Springer, 2010,
pp. 111–131.

[46] A. Doupé, W. Cui, M. H. Jakubowski, M. Peinado, C. Kruegel, and G. Vigna,
“deDacota: Toward Preventing Server-Side XSS via Automatic Code and
Data Separation,” in Proceedings of the ACM Conference on Computer and
Communications Security (CCS), Berlin, Germany, Nov. 2013.

[47] A. Doupé, M. Egele, B. Caillat, G. Stringhini, G. Yakin, A. Zand, L. Cave-
don, and G. Vigna, “Hit ’em Where it Hurts: A Live Security Exercise on
Cyber Situational Awareness,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC), Orlando, FL, Dec. 2011.

[48] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “Kameleonfuzz: Evolutionary
fuzzing for black-box xss detection,” in Proceedings of the 4th ACM conference
on Data and application security and privacy, 2014, pp. 37–48.

[49] B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black widow: Blackbox data-
driven web scanning,” proceedings of IEEE SSP 2021, 2021.

[50] D. Esposito, M. Rennhard, L. Ruf, and A. Wagner, “Exploiting the potential
of web application vulnerability scanning,” in ICIMP 2018 the Thirteenth
International Conference on Internet Monitoring and Protection, Barcelona,
Spain, 22-26 July 2018, IARIA, 2018, pp. 22–29.

[51] Extension overview. [Online]. Available: https : / / developer . chrome . com/
extensions/overview.

[52] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, “Toward Automated
Detection of Logic Vulnerabilities in Web Applications,” in Proceedings of the
19th USENIX Security Symposium, 2010, pp. 143–160, isbn: 9781931971775.

[53] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining in-
cremental steps of fuzzing research,” in 14th USENIX Workshop on Offensive
Technologies (WOOT 20), USENIX Association, Aug. 2020.

[54] Floyd Fuh, AFL CGI Wrapper, 2020. [Online]. Available: https://github.com/
floyd-fuh/afl-cgi-wrapper.

145

https://developer.chrome.com/extensions/overview
https://developer.chrome.com/extensions/overview
https://github.com/floyd-fuh/afl-cgi-wrapper
https://github.com/floyd-fuh/afl-cgi-wrapper

[55] J. A. Fredricks, P. C. Blumenfeld, and A. H. Paris, “School engagement:
Potential of the concept, state of the evidence,” Review of educational research,
vol. 74, no. 1, pp. 59–109, 2004.

[56] F. Gauthier, B. Hassanshahi, B. Selwyn-Smith, T. N. Mai, M. Schlüter, and
M. Williams, “Backrest: A model-based feedback-driven greybox fuzzer for web
applications,” arXiv preprint arXiv:2108.08455, 2021.

[57] M. Gettinger and J. K. Seibert, “Best practices in increasing academic learning
time,” Best practices in school psychology IV, vol. 1, pp. 773–787, 2002.

[58] V. Gite, What is Dash (/bin/dash) Shell? 2020. [Online]. Available: https:
//www.cyberciti .biz/ faq/debian- ubuntu- linux- binbash- vs - bindash- vs -
binshshell/.

[59] Github - tajs, http : //nicolas . golubovic . net / thesis /master . pdf. [Online].
Available: \url{https://github.com/cs-au-dk/TAJSh}.

[60] D. Goldman, “37 million T-Mobile customers were hacked,” CNN, Feb. 2023.

[61] Google Chrome Extension, Automatically find and apply coupons, https://
chrome.google.com/webstore/detail/honey/bmnlcjabgnpnenekpadlanbbkooi
mhnj.

[62] ——, Trump Filter, https://chrome.google.com/webstore/detail/trump-
filter/lhondapiaknegjpellpodegmeonigjic.

[63] Google Chrome Extensioon, Hillary Blocker, https://chrome.google.com/
webstore/detail/hillary-blocker/kiblhkcoiojbdhhnjaekompfecgelfja.

[64] Google Chrome Statistics, 2023. [Online]. Available: https://truelist.co/blog/
google-chrome-statistics.

[65] Google Search for Uses of Hospital Management System, 2021. [Online]. Avail-
able: https://tinyurl.com/hospitalmanagementsystemuses.

[66] Google Search for Uses of Login System, 2021. [Online]. Available: https :
//tinyurl.com/doctorappointmentsystem.

[67] Google Search for Uses of Login System, 2021. [Online]. Available: https :
//tinyurl.com/usermanagementsystem.

[68] B. Gorenc, Pwn2own 2017 at cansecwest, https://www.zerodayinitiative.com/
blog/2017/3/23/pwn2own-2017-an-event-for-the-ages, Mar. 2017.

146

https://www.cyberciti.biz/faq/debian-ubuntu-linux-binbash-vs-bindash-vs-binshshell/
https://www.cyberciti.biz/faq/debian-ubuntu-linux-binbash-vs-bindash-vs-binshshell/
https://www.cyberciti.biz/faq/debian-ubuntu-linux-binbash-vs-bindash-vs-binshshell/
http://nicolas.golubovic.net/thesis/master.pdf
\url{https://github.com/cs-au-dk/TAJSh}
https://chrome.google.com/webstore/detail/honey/bmnlcjabgnpnenekpadlanbbkooimhnj
https://chrome.google.com/webstore/detail/honey/bmnlcjabgnpnenekpadlanbbkooimhnj
https://chrome.google.com/webstore/detail/honey/bmnlcjabgnpnenekpadlanbbkooimhnj
https://chrome.google.com/webstore/detail/trump-filter/lhondapiaknegjpellpodegmeonigjic
https://chrome.google.com/webstore/detail/trump-filter/lhondapiaknegjpellpodegmeonigjic
https://chrome.google.com/webstore/detail/hillary-blocker/kiblhkcoiojbdhhnjaekompfecgelfja
https://chrome.google.com/webstore/detail/hillary-blocker/kiblhkcoiojbdhhnjaekompfecgelfja
https://truelist.co/blog/google-chrome-statistics
https://truelist.co/blog/google-chrome-statistics
https://tinyurl.com/hospitalmanagementsystemuses
https://tinyurl.com/doctorappointmentsystem
https://tinyurl.com/doctorappointmentsystem
https://tinyurl.com/usermanagementsystem
https://tinyurl.com/usermanagementsystem
https://www.zerodayinitiative.com/blog/2017/3/23/pwn2own-2017-an-event-for-the-ages
https://www.zerodayinitiative.com/blog/2017/3/23/pwn2own-2017-an-event-for-the-ages

[69] Gremlins - Monkey Testing Library for Web Apps and Node.js, 2020. [Online].
Available: https://github.com/marmelab/gremlins.js.

[70] S. Gupta and B. B. Gupta, “Php-sensor: A prototype method to discover work-
flow violation and xss vulnerabilities in php web applications,” in Proceedings of
the 12th ACM International Conference on Computing Frontiers, 2015, pp. 1–8.

[71] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work?–a literature
review of empirical studies on gamification,” in 2014 47th Hawaii international
conference on system sciences, Ieee, 2014, pp. 3025–3034.

[72] ——, “Does gamification work?–a literature review of empirical studies on
gamification.,” in 47th Hawaii International Conference on System Sciences
(HICSS), Hawaii, 2014.

[73] T. Harmon, Cyber Security Capture The Flag (CTF): What Is It? https :
//blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-
it, 2016.

[74] High-performance binary-only instrumentation for afl-fuzz, 2020. [Online]. Avail-
able: https://github.com/google/AFL/blob/master/qemu_mode/README.
qemu.

[75] HTTP State Management Mechanism, 2020. [Online]. Available: https://tools.
ietf.org/html/rfc3875.

[76] HTTP/1.1 Message Syntax and Routing, 2020. [Online]. Available: https :
//tools.ietf.org/html/rfc7230.

[77] Y. W. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S.-Y. Kuo, “Securing
Web Application Code by Static Analysis and Runtime Protection,” in Thir-
teenth International World Wide Web Conference Proceedings, 2004, pp. 40–52,
isbn: 158113844X. doi: 10.1145/988672.988679.

[78] IBM/HCL AppScan, 2020. [Online]. Available: https://www.hcltechsw.com/
appscan.

[79] A. Iosup and D. Epema, “An experience report on using gamification in technical
higher education,” in Proceedings of the 45th ACM technical symposium on
Computer science education, 2014, pp. 27–32.

[80] ISC, “The 2022 (isc) 2 global information security workforce study,” 2022.

147

https://github.com/marmelab/gremlins.js
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it
https://blogs.cisco.com/perspectives/cyber-security-capture-the-flag-ctf-what-is-it
https://github.com/google/AFL/blob/master/qemu_mode/README.qemu
https://github.com/google/AFL/blob/master/qemu_mode/README.qemu
https://tools.ietf.org/html/rfc3875
https://tools.ietf.org/html/rfc3875
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://doi.org/10.1145/988672.988679
https://www.hcltechsw.com/appscan
https://www.hcltechsw.com/appscan

[81] J. Iwuozor, “The Biggest Threats to the US Critical National Infrastructure,”
Itegriti, May 2022.

[82] B. Jabiyev, O. Mirzaei, A. Kharraz, and E. Kirda, “Preventing server-side
request forgery attacks,” in Proceedings of the 36th Annual ACM Symposium
on Applied Computing, 2021, pp. 1626–1635.

[83] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab,
and K. Thomas, “Trends and lessons from three years fighting malicious
extensions,” in 24th USENIX Security Symposium, 2015.

[84] S. Jariwala, M. Champion, P. Rajivan, and N. J. Cooke, “Influence of Team
Communication and Coordination on the Performance of Teams at the iCTF
Competition,” in Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, 2012.

[85] S. H. Jensen, P. A. Jonsson, and A. Moller, “Remedying the eval that men
do,” in Proceedings of the 2012 International Symposium on Software Testing
and Analysis, ACM, 2012, pp. 34–44.

[86] S. H. Jensen, P. a. Jonsson, and A. Moller, “Remedying the Eval That Men
Do,” Proceedings of the 2012 International Symposium on Software Testing and
Analysis, pp. 34–44, 2012. doi: 10.1145/2338965.2336758. [Online]. Available:
http://doi.acm.org/10.1145/2338965.2336758.

[87] S. H. Jensen, M. Madsen, and A. Moller, “Modeling the html dom and browser
api in static analysis of javascript web applications,” in Proceedings of the 19th
ACM SIGSOFT symposium and the 13th European conference on Foundations
of software engineering, ACM, 2011, pp. 59–69.

[88] S. H. Jensen, A. Moller, and P. Thiemann, “Type analysis for javascript,” in
International Static Analysis Symposium, Springer, 2009, pp. 238–255.

[89] ——, “Interprocedural analysis with lazy propagation,” in International Static
Analysis Symposium, Springer, 2010, pp. 320–339.

[90] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for
detecting web application vulnerabilities,” in 2006 IEEE Symposium on Security
and Privacy (S&P’06), IEEE, 2006, 6–pp.

[91] ——, “Static Analysis for Detecting Taint-style Vulnerabilities in Web Applica-
tions,” Journal of Computer Security, vol. 18, no. 5, pp. 861–907, 2010, issn:
0926227X. doi: 10.3233/JCS-2009-0385.

148

https://doi.org/10.1145/2338965.2336758
http://doi.acm.org/10.1145/2338965.2336758
https://doi.org/10.3233/JCS-2009-0385

[92] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson,
“Hulk: Eliciting malicious behavior in browser extensions,” in 23rd USENIX Se-
curity Symposium (USENIX Security 14), San Diego, CA: USENIX Association,
Aug. 2014, pp. 641–654, isbn: 978-1-931971-15-7.

[93] N. Khoury, P. Zavarsky, D. Lindskog, and R. Ruhl, “Testing and assessing web
vulnerability scanners for persistent sql injection attacks,” in proceedings of the
first international workshop on security and privacy preserving in e-societies,
2011, pp. 12–18.

[94] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz test-
ing,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 2123–2138.

[95] M. Leithner, B. Garn, and D. E. Simos, “Hydra: Feedback-driven black-box
exploitation of injection vulnerabilities,” Information and Software Technology,
p. 106 703, 2021.

[96] J. Li, B. Zhao, and C. Zhang, “Fuzzing: A survey,” Cybersecurity, vol. 1, no. 1,
pp. 1–13, 2018.

[97] X. Li and Y. Xue, “Block: A black-box approach for detection of state violation
attacks towards web applications,” in Proceedings of the 27th Annual Computer
Security Applications Conference, 2011, pp. 247–256.

[98] X. Li, W. Yan, and Y. Xue, “SENTINEL: Securing Database from Logic Flaws
in Web Applications,” in Proceedings of the second ACM conference on Data
and Application Security and Privacy, 2012, pp. 25–36, isbn: 9781450310918.
doi: 10.1145/2133601.2133605.

[99] Manifest - web accessible resources. [Online]. Available: https://developer.
chrome.com/extensions/manifest/web_accessible_resources.

[100] Manifest version. [Online]. Available: https://developer.chrome.com/extension
s/manifestVersion.

[101] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and M.
Woo, “Fuzzing: Art, science, and engineering,” arXiv preprint arXiv:1812.00140,
2018.

[102] B. Martini and K.-K. R. Choo, “Building the next generation of cyber security
professionals,” in 22nd European Conference on Information Systems (ECIS
2014), Tel Aviv, Israel, May 2014.

149

https://doi.org/10.1145/2133601.2133605
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifestVersion
https://developer.chrome.com/extensions/manifestVersion

[103] Z. McGee and S. Acharya, “Security analysis of openemr,” in 2019 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), IEEE,
2019, pp. 2655–2660.

[104] W. Meng, C. Qian, S. Hao, K. Borgolte, G. Vigna, C. Kruegel, and W. Lee,
“Rampart: Protecting web applications from cpu-exhaustion denial-of-service
attacks,” in 27th {USENIX} Security Symposium ({USENIX} Security 18),
2018, pp. 393–410.

[105] S. Micheelsen and B. Thalmann, A static analysis tool for detecting security
vulnerabilities in python web applications, 2016.

[106] R. Mohammed, “Assessment of web scanner tools,” International Journal of
Computer Applications, vol. 133, no. 5, pp. 1–4, 2016.

[107] B. E. Mullins, T. H. Lacey, R. F. Mills, J. E. Trechter, and S. D. Bass, “How
the cyber defense exercise shaped an information-assurance curriculum,” IEEE
Security Privacy, vol. 5, no. 5, pp. 40–49, Sep. 2007, issn: 1540-7993. doi:
10.1109/MSP.2007.111.

[108] Nicolas Golubovic, Attacking Browser Extensions, MS Thesis, Ruhr-University
Bochum, http://nicolas.golubovic.net/thesis/master.pdf, 2016.

[109] OWASP, SQL Injection, 2022. [Online]. Available: https://owasp.org/www-
community/attacks/SQL_Injection#:~:text=TheseverityofSQLInjection,
Injectionahighimpactseverity.

[110] OWASP Zed Attack Proxy, 2020. [Online]. Available: https://www.zaproxy.
org/.

[111] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon, “Semantic
fuzzing with zest,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2019, pp. 329–340.

[112] G. Pellegrino and D. Balzarotti, “Toward black-box detection of logic flaws in
web applications.,” in NDSS, 2014.

[113] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, “Jäk: Using dynamic
analysis to crawl and test modern web applications,” in International Sym-
posium on Recent Advances in Intrusion Detection, Springer, 2015, pp. 295–
316.

150

https://doi.org/10.1109/MSP.2007.111
http://nicolas.golubovic.net/thesis/master.pdf
https://owasp.org/www-community/attacks/SQL_Injection#:~:text=The severity of SQL Injection,Injection a high impact severity
https://owasp.org/www-community/attacks/SQL_Injection#:~:text=The severity of SQL Injection,Injection a high impact severity
https://owasp.org/www-community/attacks/SQL_Injection#:~:text=The severity of SQL Injection,Injection a high impact severity
https://www.zaproxy.org/
https://www.zaproxy.org/

[114] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: Fuzzing by program trans-
formation,” in 2018 IEEE Symposium on Security and Privacy (SP), IEEE,
2018, pp. 697–710.

[115] C. Pham, D. Tang, K.-i. Chinen, and R. Beuran, “Cyris: A cyber range
instantiation system for facilitating security training,” in Proceedings of the
Seventh Symposium on Information and Communication Technology, ser. SoICT
’16, Ho Chi Minh City, Viet Nam: ACM, 2016, pp. 251–258, isbn: 978-1-4503-
4815-7. doi: 10.1145/3011077.3011087. [Online]. Available: http://doi.acm.org/
10.1145/3011077.3011087.

[116] V. Pham, M. Böhme, A. E. Santosa, A. R. Caciulescu, and A. Roychoudhury,
“Smart greybox fuzzing,” IEEE Transactions on Software Engineering, 2019.
doi: 10.1109/TSE.2019.2941681.

[117] V.-T. Pham, M. Böhme, and A. Roychoudhury, “Aflnet: A greybox fuzzer for
network protocols,” in 2020 IEEE 13th International Conference on Software
Testing, Validation and Verification (ICST), IEEE, 2020, pp. 460–465.

[118] Pin - A Dynamic Binary Instrumentation Tool, 2020. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/articles/pin-a-
dynamic-binary-instrumentation-tool.html.

[119] PortSwigger, Burp Suite. Application Security Testing, 2020. [Online]. Available:
https://portswigger.net/burp.

[120] M. Prince, “Does active learning work? a review of the research,” Journal of
engineering education, vol. 93, no. 3, pp. 223–231, 2004.

[121] Puppeteer - Node.js library that provides high-level API access to Chrome and
Chromium, 2021. [Online]. Available: https://github.com/puppeteer/puppeteer.

[122] M. Qasaimeh, A. Shamlawi, and T. Khairallah, “Black box evaluation of web
application scanners: Standards mapping approach,” Journal of Theoretical
and Applied Information Technology, vol. 22, Jul. 2018.

[123] QEMU, 2020. [Online]. Available: https://qemu.org.

[124] O. v. Rooij, M. A. Charalambous, D. Kaizer, M. Papaevripides, and E. Athana-
sopoulos, “Webfuzz: Grey-box fuzzing for web applications,” in European Sym-
posium on Research in Computer Security, Springer, 2021, pp. 152–172.

151

https://doi.org/10.1145/3011077.3011087
http://doi.acm.org/10.1145/3011077.3011087
http://doi.acm.org/10.1145/3011077.3011087
https://doi.org/10.1109/TSE.2019.2941681
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://software.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://portswigger.net/burp
https://github.com/puppeteer/puppeteer
https://qemu.org

[125] A. Ruef, M. W. Hicks, J. Parker, D. Levin, M. L. Mazurek, and P. Mardziel,
“Build It, Break It, Fix It: Contesting Secure Development,” in Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2016. [Online]. Available: http://arxiv.org/abs/1606.01881.

[126] Y. Shoshitaishvili, L. Invernizzi, A. Doupé, and G. Vigna, “Do You Feel Lucky?
A Large-Scale Analysis of Risk-Rewards Trade-Offs in Cyber Security,” ACM
Symposium on Applied Computing, Mar. 2014.

[127] Sizzle javascript selector. [Online]. Available: https://sizzlejs.com/.

[128] A. Sjösten, S. Van Acker, and A. Sabelfeld, “Discovering browser extensions via
web accessible resources,” in Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, ACM, 2017, pp. 329–336.

[129] Skipfish: Web Application Security Scanner, 2020. [Online]. Available: https:
//github.com/spinkham/skipfish.

[130] P. Snyder, C. Taylor, and C. Kanich, “Most websites don’t need to vibrate:
A cost-benefit approach to improving browser security,” in Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security,
ACM, 2017, pp. 179–194.

[131] O. Starov and N. Nikiforakis, “XHOUND: Quantifying the fingerprintability of
browser extensions,” in Security and Privacy (SP), 2017 IEEE Symposium on,
IEEE, 2017, pp. 941–956.

[132] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting fuzzing through
selective symbolic execution.,” in NDSS, vol. 16, 2016, pp. 1–16.

[133] M. Stockley, The web attacks that refuse to die, https://nakedsecurity.sophos.
com/2016/06/15/the-web-attacks-that-refuse-to-die/.

[134] The 2016-2017 iCTF DDoS, https://ictf.cs.ucsb.edu/pages/the-2016-2017-
ictf-ddos.html.

[135] The Conscience of a Hacker, https://en.wikipedia.org/wiki/Hacker_Manifesto,
2017.

[136] The iCTF Framework, https://github.com/ucsb-seclab/ictf-framework.

[137] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D. McCoy,
A. Nappa, V. Paxson, P. Pearce, et al., “Ad injection at scale: Assessing

152

http://arxiv.org/abs/1606.01881
https://sizzlejs.com/
https://github.com/spinkham/skipfish
https://github.com/spinkham/skipfish
https://nakedsecurity.sophos.com/2016/06/15/the-web-attacks-that-refuse-to-die/
https://nakedsecurity.sophos.com/2016/06/15/the-web-attacks-that-refuse-to-die/
https://ictf.cs.ucsb.edu/pages/the-2016-2017-ictf-ddos.html
https://ictf.cs.ucsb.edu/pages/the-2016-2017-ictf-ddos.html
https://en.wikipedia.org/wiki/Hacker_Manifesto
https://github.com/ucsb-seclab/ictf-framework

deceptive advertisement modifications,” in IEEE Symposium on Security and
Privacy (SP), 2015.

[138] A. Tiwari, P. Lai, M. So, and K. Yuen, “A comparison of the effects of problem-
based learning and lecturing on the development of students’ critical thinking,”
Medical education, vol. 40, no. 6, pp. 547–554, 2006.

[139] L. VaBlasco-Arcas, I. Buil, B. Hernandez-Orteg, and F. J. Sese, “Using Clickers
in Class. the Role of Interactivity, Active Collaborative Learning and En-
gagement in Learning Performance,” in Computers and Education, vol. 62,
Pergamon Press, Mar. 2013, pp. 102–110.

[140] K. Vamvoudakis, J. Hespanha, R. Kemmerer, and G. Vigna, “Formulating
Cyber-Security as Convex Optimization Problems,” in Control of Cyber-Physical
Systems, ser. Lecture Notes in Control and Information Sciences, vol. 449,
Springer, Jul. 2013, pp. 85–100.

[141] G. Vigna, “Teaching Hands-On Network Security: Testbeds and Live Exercises,”
Journal of Information Warfare, vol. 3, no. 2, pp. 8–25, Feb. 2003.

[142] ——, “Teaching Network Security Through Live Exercises,” in Proceedings
of the Third Annual World Conference on Information Security Education
(WISE), C. Irvine and H. Armstrong, Eds., Monterey, CA: Kluwer Academic
Publishers, Jun. 2003, pp. 3–18.

[143] G. Vigna, K. Borgolte, J. Corbetta, A. Doupé, Y. Fratantonio, L. Invernizzi,
D. Kirat, and Y. Shoshitaishvili, “Ten Years of iCTF: The Good, The Bad,
and The Ugly,” in Proceedings of the USENIX Summit on Gaming, Games
and Gamification in Security Education (3GSE), San Diego, CA, Aug. 2014.

[144] W3 dom overview. [Online]. Available: https://www.w3.org/TR/DOM-Level-
2-Core/introduction.html.

[145] w3af - Open Source Web Application Security Scanner, 2021. [Online]. Available:
http://w3af.org/.

[146] D. T. Willingham, “Critical thinking: Why is it so hard to teach?” Arts
Education Policy Review, vol. 109, no. 4, pp. 21–32, 2008.

[147] X. Xing, W. Meng, B. Lee, U. Weinsberg, A. Sheth, R. Perdisci, and W.
Lee, “Understanding malvertising through ad-injecting browser extensions,”
in Proceedings of the 24th International Conference on World Wide Web,
ser. WWW ’15, 2015, pp. 1286–1295.

153

https://www.w3.org/TR/DOM-Level-2-Core/introduction.html
https://www.w3.org/TR/DOM-Level-2-Core/introduction.html
http://w3af.org/

[148] J. Zhao, Y. Lu, K. Zhu, Z. Chen, and H. Huang, “Cefuzz: An directed fuzzing
framework for php rce vulnerability,” Electronics, vol. 11, no. 5, p. 758, 2022.

154

APPENDIX A

CO-AUTHOR PERMISSION

155

I, Erik Trickel, affirm that all the co-authors of the following works

1. Shell We Play A Game? CTF-as-a-service for Security Education. The paper
was co-written with Francesco Disperati, Eric Gustafson, Faezeh Kalantari, Mike
Mabey, Naveen Tiwari, Yeganeh Safaei, Adam Doupé, and Giovanni Vigna.

2. Everyone is Different: Client-side Diversification for Defending Against Ex-
tension Fingerprinting. The paper was co-written Oleksii Starov, Alexandros
Kapravelos, Nick Nikiforakis, and Adam Doupé.

3. Toss a fault to your witcher: Applying grey-box coverage-guided mutational
fuzzing to detect sql and command injection vulnerabilities. The paper was co-
written with Fabio Pagani, Chang Zhu, Lukas Dresel, Giovanni Vigna, Christo-
pher Kruegel, Ruoyu Wang, Tiffany Bao, Yan Shoshitaishvili, Adam Doupé

have granted their permission for the use of the works listed above in the disser-
tation, Attacking Computer Security from the Perspective of Educators, Users, and
Analysts. This permission extends to all forms of reproduction, distribution, and
display of the work.

156

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 CTFs as a Service
	3 Cloaking Extensions
	4 Fault Escalation and Fuzzing Web Applications
	5 Conclusion

	References
	Appendix
	A CO-AUTHOR PERMISSION

