
Computational Imaging for Energy-Efficient Cameras:

Adaptive ROI-based Object Tracking and Optically Defocused Event-based Sensing.

by

Victor Isaac Torres Muro

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2022 by the
Graduate Supervisory Committee:

Suren Jayasuriya, Chair
Andreas Spanias

Jae-sun Seo

ARIZONA STATE UNIVERSITY

May 2022

ABSTRACT

Computer vision is becoming an essential component of embedded system appli-

cations such as smartphones, wearables, autonomous systems and internet-of-things

(IoT). These applications are generally deployed into environments with limited energy,

memory bandwidth and computational resources. This trend is driving the develop-

ment of energy-efficient image processing solutions from sensing to computation. In

this thesis, different alternatives are explored to implement energy-efficient computer

vision systems.

First, I present a field programmable gate array (FPGA) implementation of an

adaptive subsampling algorithm for region-of-interest (ROI) -based object tracking.

By implementing the computationally intensive sections of this algorithm on an FPGA,

I aim to offload computing resources from energy-inefficient graphics processing units

(GPUs) and/or general-purpose central processing units (CPUs). I also present a

working system executing this algorithm in near real-time latency implemented on a

standalone embedded device.

Secondly, I present a neural network-based pipeline to improve the performance of

event-based cameras in non-ideal optical conditions. Event-based cameras or dynamic

vision sensors (DVS) are bio-inspired sensors that measure logarithmic per-pixel

brightness changes in a scene. Their advantages include high dynamic range, low

latency and ultra-low power when compared to standard frame-based cameras. Several

tasks have been proposed to take advantage of these novel sensors but they rely on

perfectly calibrated optical lenses that are in-focus. In this work I propose a method

to reconstruct events captured with an out-of-focus event-camera so they can be fed

into an intensity reconstruction task. The network is trained with a dataset generated

by simulating defocus blur in sequences from object tracking datasets such as LaSOT

i

and OTB100. I also test the generalization performance of this network in scenes

captured with a DAVIS event-based sensor equipped with an out-of-focus lens.

ii

DEDICATION

To my parents.

iii

ACKNOWLEDGMENTS

I would first like to extend sincere thanks to my advisor Dr. Suren Jayasuriya for

his constant support and encouragement in the pursuit of my academic degree and

research goals. His advice and motivation have been critical in my development as

a student and scholar. I am filled with gratitude for the opportunity he gave me to

work in his computer vision lab.

I owe a great debt of gratitude to Odrika Iqbal for her leadership and guidance on

our Adaptive Subsampling journal paper. Chapter 3 is a revision of the work we did

for over a year. She designed the algorithm and ran the software experiments (AUC

scores, keyframing, memoization and CMOS power consumption) that paved the way

for the hardware implementation on an FPGA.

I would also like to thank Joshua Rego for his introduction to lensless imaging

systems and hardware experiments. To him I owe the point-spread-function and data

captured with an event camera that I used in my experiments.

Additionally, I wish to thank the Astrobotic team: Andrew Horchler, Chris Owens,

Michael Bloom and Colman Glagovich for the knowledge and discussion shared about

event-based cameras and FPGAs.

I would like to thank all the members of the Imaging Lyceum team including

Albert Reed, Gregory Vetaw, Ripon Kumar, Olivia Christie and Ali Almuallem for

their ecouragement, constructive conversations and friendship.

The US-Mexico Commission for Educational & Cultural Exchange (Fulbright-

Comexus) and the Graduate College generously funded me through the course of my

graduate degree at Arizona State University, and I am immensely grateful for the

opportunities they offered me that allowed me to achieve my dream.

Finally I would like to thank my parents whose unconditional love, inspiration and

iv

support enabled me to be the person I am today. From them I’ve learned the values

of honesty and hard work. They have always supported my sister, brother and me in

whatever academic undertaking we chose to pursue. I am forever indebted to them.

This thesis is dedicated to them.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Contributions . 4

1.2 Outline . 5

2 BACKGROUND . 6

2.1 Embedded computer vision. 6

2.2 Software-defined imaging. 7

2.3 Region of interest. 7

2.4 Field Programmable Gate Arrays . 9

2.5 Event Cameras . 11

3 FPGA IMPLEMENTATION OF ADAPTIVE SUBSAMPLING FOR

ROI-BASED OBJECT TRACKING . 16

3.1 Introduction . 16

3.2 Approach and Algorithm Description . 20

3.2.1 Video Subsampling and ROI Prediction 20

3.2.2 Object Detectors . 24

3.3 Algorithm Implementation and Results . 26

3.4 Hardware Implementation. 31

3.5 Hardware Results . 36

3.6 Programmable ROI camera system. 41

3.7 Discussion . 42

vi

CHAPTER Page

4 OPTICALLY DEFOCUSED RECONSTRUCTION FOR EVENT-

BASED VISION SENSORS . 45

4.1 Motivation . 45

4.2 Approach and implementation . 51

4.3 Simulation results . 55

4.4 Real-data results . 60

4.5 Discussion . 63

5 CONCLUSION . 64

5.1 Limitations and future directions. 65

REFERENCES . 67

vii

LIST OF TABLES

Table Page

1. AUC Scores on OTB100 and LaSOT Datasets. 25

2. Performance of Our Algorithm in Hardware. 37

3. Used and Available Resources on the ZCU9EG FPGA. 40

viii

LIST OF FIGURES

Figure Page

1. Edge Computing Paradigm. 3

2. Comparison of the Output from an Standard Camera and an Event-Based

Camera. 3

3. Efficiency and Flexibility Comparison of Diverse Hardware Platforms 9

4. Zynq UltraScale+ EG MPSoC ZCU102 Block Diagram 11

5. Event Camera Functionality Diagram. 13

6. ROI-Based Object Detection Pipeline. 17

7. How Image Sensor Reads out an ROI Image Using a Programmable Rolling

Shutter. 21

8. Mean Average Precision Results at Different IoU Thresholds. 27

9. Object Tracking and Subsampling with the Various Methods. 28

10. Vitis AI Flow. 32

11. Hardware Setup. 34

12. System Diagram. 35

13. Breakdown of Algorithm Performance on Hardware. 38

14. ROI Simulation Qualitative Results. 39

15. Resource Utilization (%). 40

16. IDS Camera Hardware Setup. 42

17. IDS Camera Functional Diagram. 42

18. E2VID . 47

19. Intensity Reconstruction Comparison: Basketball Sequence. 49

20. Intensity Reconstruction Comparison: Dog Sequence. 50

21. Reconstruction Pipeline . 51

ix

Figure Page

22. Gaussian PSF Used to Simulate an Out-Of-Focus Scene. 53

23. Voxel Grid Generation . 54

24. Voxel Reconstruction . 56

25. Result from MSE as Only Loss . 57

26. Refocusing Results: Hippo . 58

27. Refocusing Results: Basketball . 59

28. DAVIS 346 Event-Based Camera . 60

29. Real PSF vs Simulated Gaussian PSF . 61

30. Results from Real Data . 62

x

Chapter 1

INTRODUCTION

The field of computer vision has attained significant advances in recent years.

With the help of machine learning tools, several state-of-the-art algorithms have been

developed in order to aid computational systems to make decisions relying only on

visual data. At the same time, strong emphasis is being placed on the deployment of

these algorithms in day-to-day settings such as mobile systems and Internet of Things

(IoT) applications.

Image sensing is the first stage of any computer vision application. And although

most modern mobile systems employ CMOS image sensors due to their low power and

low cost, it is power hungry. Hundreds of milliWatts are consumed due to narrowly

defined hardware and software interfaces and even reducing the image quality does

not provide significant power reduction [44].

After sensing, computer vision algorithms rely on general-purpose computational

devices such as multicore CPUs or graphic processing units (GPUs) to execute image

processing tasks. Extensive work has shown that these devices are not the most

energy-efficient solution for complex computer tasks [62]. Given the battery and

computational constraints of such devices, there is a strong focus on the pursuit

of energy-efficient computational techniques and low-power sensing to achieve the

deployment of modern computer vision innovations under these limitations.

The central idea of this thesis is to present different approaches for low power

computer vision. The first is based on implementing an adaptive subsampling object

tracking algorithm on a field programmable gate array (FPGA). Adaptive subsampling

1

can reduce power consumption by leveraginga camera’s of region-of-interest (ROI).

The ROI is defined by a bounding box enclosing the area of an image frame in which

the target object exists. ROI-based energy optimization entails the discarding of

pixels outside of the ROI and selectively reading out only the pixels comprising the

moving object resulting in faster bandwidth and improved energy efficiency [73, 87].

As mentioned, we implement this algorithm on an FPGA given that they are

becoming a popular energy-efficient embedded platform for IoT applications when

used at the edge computing paradigm. This new paradigm aims to substitute a portion

of the computation typically performed in remote, cloud-based, energy-demanding

servers by performing computation near the end device. Typically, these servers

rely on CPUs and GPUs to process batches of time-insensitive data in a centralized

environment. Using FPGAs at the edge aids in the reduction of power consumption,

increased energy efficiency and better thermal stability compared to general purpose

devices [8]. They offer opportunities to improve algorithm performance by exploiting

low-level fine-grained parallelism by customizing data paths to the requirements of a

specific application [62].

2

Figure 1. Edge computing paradigm.[63]

Our second approach takes advantage of a low-power sensors known as event-based

cameras. These sensors change the paradigm of visual information by capturing

changes in logarithmic light intensity at an asynchronous rate instead of synchronously

storing frames, even if there are no changes in the scene. Apart from the low-power

sensing, these sensors provide other advantages such as high dynamic range, low data

bandwidth consumption and high temporal resolution [22].

Figure 2. Comparison of the output from an standard camera (left) and an event-based
camera (right).

3

Given the nature of their asynchronous output, a pre-processing step is required to

reconstruct events into intensity information before modern computer vision algorithms

can be used. There are several intensity reconstruction algorithm from event data in

the literature [67][75][10]. However, they rely on near-perfect optical focus in order to

reconstruct high-quality frames. Whenever optical imperfections such as blur from

an out-of-focus lens occur, these algorithms are not able to successfully reconstruct

intensity information from events. We aim to improve the robustness of these dynamic

vision sensors by adding a neural network that reconstructs out-of-focus event voxels

into high-quality voxels to improve intensity reconstruction.

This work paves the way to reconstruct out-of-focus events that can be used

in a multiple variety of tasks such as optical flow and object detection, not only

intensity reconstruction. Also, given that reconstruction from out-of-focus information

is essentially a point-spread function (PSF) deconvolution problem, we aim to make

our approach applicable to other PSF deconvolution problems such as scenes captured

with a lensless event-based camera.

1.1 Contributions

The main contributions in this thesis are the following:

• FPGA implementation of adaptive subsampling for ROI-based object tracking

taking advantage of state-of-the-art high-level synthesis (HLS) tools.

• A robust intensity reconstruction pipeline from events captured by an out-of-

focus event-based camera.

4

1.2 Outline

In Chapter 2, an introductory background on concepts related to this thesis is

presented. In Chapter 3, we introduce the FPGA implementation of an adaptive

subsampling pipeline for ROI-based object tracking algorithm. We talk about the

algorithm development and the high-level synthesis (HLS) tools employed to implement

this algorithm on an embedded device. In Chapter 4, we present a machine learning-

based pipeline employed on the reconstruction of scenes captured from an out-of-focus

event camera. Chapter 5 concludes the work in this thesis. Each chapter consists of a

background, approach, implementation, and results section; presented in chronological

order of when the work was performed.

5

Chapter 2

BACKGROUND

This chapter introduces the background topics that can enable embedded computer

vision. This section will initially cover the subjects of embedded computer vision,

software-defined imaging and region of interest (ROI) to help the reader familiarize

with the concepts discussed through this thesis. Afterwards, we will delve into the

two specific hardware platforms we focused on for this work. The first are the

re-configurable computational devices known as Field Programmable Gate Arrays

(FPGAs). Finally, we will introduce the function and applications of event-based

cameras or dynamic vision sensors.

2.1 Embedded computer vision.

Computer vision is becoming an essential component of embedded system appli-

cations such as smartphones, autonomous systems and internet-of-things. Currently,

these systems rely on traditional computer vision techniques which follow compute in-

tensive brute-force approaches. This trend is driving a development of energy-efficient

image processing solutions that can be deployed on environments with limited power,

bandwidth and computational resources.

Discussion of vision based systems and approaches, and how they have been

implemented on embedded devices is covered in [7]. This work also covers advantages

and disadvantages of various embedded implementations and an overview of the

challenges in the field as well as future research trends.

6

In [62], the authors evaluate the different approaches that industry and academia

have explored in order to accelerate computer vision tasks in embedded applications.

They compare multi-core central processing units (CPUs), graphic processing units

(GPUs) and FPGAs, evaluating their performance characteristics depending on the

complexity of the task.

2.2 Software-defined imaging.

Huge advancements have been made over the years in terms of image sensing

hardware and vision data processing algorithms. However, there exists a gap between

hardware and software design in an imaging system. Bridging this gap is key to

achieving improved energy efficiency as well as latency.

In [33] the authors explore the existing works in the vision literature which can be

leveraged to replace conventional hardware components in an imaging system with

software such that it enables reconfigurability. They refer to this as software-defined

imaging (SDI), where image sensor behaviour can be altered by the system software

depending on the user needs. SDI centers around the idea of the traditional hardware

components and mechanisms of image sensors being replaced or augmented by software

alternatives.

2.3 Region of interest.

One method of achieving favorable tradeoffs between energy-efficiency and task

performance is to only read the set of pixels within an image frame which describe the

7

target object. The term region of interest or ROI can be considered as any continuous

set of pixels that can be read from an image sensor.

Since the development of the ROI, many ROI-based solutions have generated a

lot of interest from the early 2000s. These applications include ROI-based object

tracking and detection for computer vision and foveated imaging. An integration

of these algorithm with ROI camera sensors implies tremendous power savings for

both the camera readout as well as the downstream image processing due to data

reduction and latency improvements. Works such as [28, 46] show the early advances

of ROI extraction during this years. Early ROI selection algorithms also utilized the

Kalman filter, which adapts its internal matrices and state vector according to external

measurements [9, 50, 41, 36]. More recently, Zhang et al. showed how to use frequency

and space domain features for localizing regions of interest [97]. With growing interest

in neural network solutions, several deep learning-based object detection/tracking

methods have been developed which offer state-of-the-art ROI-ing capability [86, 55,

18, 79].

For energy-efficient region-of-interest (ROI) algorithms, recent research has intro-

duced the concept of adaptive subsampling where image sensors can powergate or turn

off pixels outside of the ROI during readout to save power. Adaptive subsampling

works by defining and ROI that localizes part of the frame the user is interested in,

and the pixels outside of the ROI are deemed redundant and discarded [53]. Recent

work leveraged a YOLO detector and Kalman filter coupled together for predictive

ROI tracking [31] in order to facilitate adaptive subsampling, the end goal being

energy optimization via preemptive pixel inactivation outside of the region of interest.

The work demonstrated how adaptive image sampling has tremendous potential in

reducing computational complexity and processing speed.

8

2.4 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are semiconductor devices that are

based around a matrix of configurable logic blocks (CLBs) connected via programmable

interconnects [88].

Compared to Application Specific Integrated Circuits (ASICs), FPGAs main

advantage is that their hardware resources are re-programmable. This means that

FPGAs can change the majority of the electrical functionality inside the device, even

after it is manufactured, assembled or shipped. This flexibility allows a single FPGA

device to be used for a wide variety of applications which in turn results in a reduced

time to market when compared to ASICs. [89].

Figure 3. Efficiency and flexibility comparison of diverse hardware platforms. [70]

9

Another advantage of FPGAs is that by re-configuring into a specific hardware

architecture, algorithms can be offloaded from general-purpose computing devices. By

taking advantage of temporal and spatial parallelism, this "acceleration" allows the

entire system to improve its performance and energy efficiency when compared to

CPUs or GPUs.

FPGAs are also becoming popular on the edge-computing paradigm for Internet of

Things (IoT) applications. They provide consistent throughput invariant to the size

of application work-load, spatial and temporal parallelism and 3-4 times lower power

consumption and up to 30.7 times better energy efficiency when compared to GPUs

[8]. This makes them an ideal candidate to offload computation from centralized and

energy-demanding cloud servers.

In order to take full advantage of FPGAs reprogrammability, the user requires

proficiency in Hardware Description Languages (HDL). These programming languages

are used to describe the structure and behaviour of digital logic circuits. This

knowledge however, represented an enormous barrier for algorithm developers in order

to accelerate algorithms using FPGA technology. Recently, High-Level Synthesis tools

(HLS) have been developed in order to bridge the gap between software and hardware.

These tools allow the developer to synthesize accelerated applications that can run

on FPGAs without the knowledge of any specific HDL. Several manufacturers now

provide HLS tools for their FPGA families [56] that have allowed algorithm developers

to take advantage of this technology.

10

Figure 4. Zynq UltraScale+ EG MPSoC ZCU102 Block Diagram: The processing
system contains an ARM Cortex A53 CPU along with DDR4 memory and several
high-speed connectivity standards. The programmable logic contains the configurable
memory, signal processing, connectivity and I/O resources [106].

2.5 Event Cameras

The past few decades of computer vision research have been devoted predominantly

to standard frame-based cameras. However, the information captured by traditional

cameras is designed for the use of humans, not machines. Images are synchronously

generated with fixed exposure times and measure the absolute intensity of light in

a scene. Given these properties they suffer from a limited dynamic range, meaning

that they lack the ability to capture information in extreme lighting conditions, and

they are also susceptible to motion blur on highly dynamic scenes. Another drawback

11

of conventional cameras is that they capture information regardless of the scene

properties. Even if there are no changes in the scene, frame-based cameras capture

redundant information that consumes power and bandwidth.

Event-based cameras are novel vision sensors that aim to improve upon standard

imaging systems. Also called Dynamic Vision Sensors (DVS) or Silicon Retinas, these

sensors are asynchronous, bio-inspired and measure per-pixel logarithmic brightness

changes in a scene. Instead of frames, an event camera outputs a stream of events that

encodes time, location and polarity of the logarithmic intensity change at a certain

pixel.

An event ei on pixel (xi, yi):

ei = {xi, yi, ti, pi} (2.1)

is fired when the logarithmic change from time ti−1 and ti is above the threshold θ:

|log(Iti(x, y)− log(Iti−1
(x, y)| > θ (2.2)

In contrast with the conventional frame-based cameras, event cameras have superior

properties such as very high temporal resolution and low latency (in the order of

microseconds), very high dynamic range (140 dB vs 60 dB of standard cameras),

and low power consumption (1mW vs 1W)[22][43]. Hence, event cameras have large

potential for computer vision applications that demand low-power consumption, such

as robotics and wearable devices or in challenging scenarios for standard cameras such

as high speed and high dynamic range.

12

Figure 5. Event camera functionality: Whenever there is motion in the scene, an event
camera outputs a stream of low-latency events that map logarithmic intensity changes
in a scene (Top). Whenever there is no motion, no events are generated (Middle).
Whenever there is a highly dynamic scene, standard cameras tend to produce motion
blur at their output. Thanks to their high temporal resolution, event cameras do not
show this negative effect (Bottom). Figure adapted from [54].

However, traditional vision algorithms cannot be directly used on an event stream

13

because of their asynchronous and binary nature. Therefore, a paradigm shift is to

process an event-camera output in order to take advantage of the properties of this

novel sensor.

Given their recent success in computer vision, one of the most important challenges

is to find an effective method to apply neural networks originally designed for conven-

tional cameras to the output from event cameras. In other words, how do we convert

an event stream into an acceptable input for a neural network? Several methods have

been proposed, the most trivial being simple accumulation of events into a frame-like

object for a fixed amount of time, or a fixed number of events [64]. Nonetheless, by

applying this method we lose all the temporal information and sparse nature of events.

Other methods that preserve some temporal information are low-pass filter [74] and

the leaky-surface [11]. Currently, the most efficient way to approach this is to convert

the event stream into a discretized volume of event in (x, y, t) or voxel grid [104, 24].

Each voxel contains the sum of the polarities that fall into it. Other methods that

aim to provide a neural network-compatible input representation include area-count

[47] and Time-Ordered-Recent-Events [4].

There is active research in traditional computer vision tasks adapted to work

directly from an event stream. Some of these tasks include feature detection and

tracking [23], optical flow estimation [104], SLAM [83], visual inertial odometry [66,

64], recognition [11, 61] among others.

Another approach is to reconstruct intensity information from the event stream

and then rely on traditional computer vision algorithms to perform the required

task. E2VID [67] proposes a recurrent neural network that reconstructs intensity

frames directly from the data. The events are first transformed into a fixed-time

or fixed-number voxel grid [104] before going into the network. Although this is

14

considered state of the art in intensity image reconstruction, its performance is not

real-time. FireNet [75] builds on this by proposing a light-weight GRU-based neural

network that achieves similar reconstruction results with faster inference time.

An important reason for why computer vision has had enormous advances in recent

years is due to the abundance of publicly available datasets. Due to the novelty of

dynamic vision sensors, there is vast deficiency of event-based data. As a consequence,

several event simulation tools have been developed to help with the increase the

demand of event data. In [17], Hu et al. propose v2e, a toolbox that that produces

synthetic DVS event streams from intensity frames. This simulator is tested in object

recognition and object detection tasks. In this work, we leverage the use of v2e to

generate an event camera dataset that will serve as input data for training and testing

a neural network.

Further avenues of research include the use of bio-inspired spiking neural networks

(SNNs) to further take advantage of the sparse and asynchronous nature of events.

However, research in this area is still in early stages and results are not yet comparable

with those of standard neural network algorithms.

15

Chapter 3

FPGA IMPLEMENTATION OF ADAPTIVE SUBSAMPLING FOR ROI-BASED

OBJECT TRACKING

In this chapter, I present the FPGA implementation of an adaptive subsampling

ROI-based tracking algorithm. The aim of this work is to accelerate said computer

vision algorithm on an embedded device in order to develop an energy-efficient

standalone system. I introduce relevant work, the approach and algorithm description

as well as its implementation and software results. I also present the details on the

hardware implementation and hardware results. Finally I talk about our attempt

of adding an actual ROI-capable image sensor to our system and the difficulties we

encountered during the process 1.

3.1 Introduction

There is a wide array of computer vision applications that feature object detection

and tracking at their core [52, 12, 13, 16, 3, 60].

Surveillance, autonomous driving, drone navigation are among a myriad of appli-

cations that demand low-latency and high-precision tracking. Recent developments

in the deep learning domain has inspired researchers to exploit neural networks for

these tracking applications [57, 80, 95, 105, 26, 76, 94]. However, algorithm latency is

often compromised for the sake of accuracy when it comes to real-world deployment

1This material was originally presented in a paper submitted to an IEEE journal and available
on Arxiv at https://arxiv.org/abs/2112.09775

16

Figure 6. An object detector identifies the ROI and this information is fed as external
measurements during the Kalman filter’s update phase. The Kalman filter then makes
predictions while the non-keyframes are read out from the image sensor.

of neural network driven trackers. For instance, the FCNT tracker [86] achieves a

remarkable AUC score of 0.599 post-deployment but is bottlenecked by its latency

performance - it only manages to go up to 3 FPS. In a similar vein, the MDNet

tracker [55] also achieves an excellent AUC score of 0.678 on the OTB100 dataset, but

is let down by its latency performance (it only manages to attain a speed of 1 FPS).

To overcome this problem, researchers are now shifting their focus to energy and

resource-efficient tracking solutions. Embedded systems are fast becoming popular

platforms for deploying such real-time neural network-based tracking frameworks.

These embedded vision systems not only ensure energy efficiency, but also preserve

task accuracy. Case in point, the recently proposed SkyNet [99] achieves an impressive

IoU score of 0.716 while operating at 25.05 frames per second and 7.26 W power

on an Ultra96 embedded FPGA. Embedded systems forsake generality and thus,

ensure high task fidelity and efficiency via hardware customization attuned to task

17

needs. As such, embedded computer vision is gaining traction for low-power, real-

time vision applications like tracking [92, 96, 58]. However, visual data processing

comes with a set of complications posed by system constraints. Typical image

sensor readout architectures are notoriously power-hungry [44, 45] and this is a huge

bottleneck for developing energy-efficient vision algorithms for real-world applications.

To address this issue, there has been increasing research efforts geared towards joint

optimization of embedded systems and image sensors for reducing overall system

power consumption [100, 27, 59, 29].

Opting for embedded computing environments provides us with the freedom and

flexibility to develop and implement highly custom mechanisms targeted towards

energy conservation. One such mechanism is based on the notion of region-of-interest

(ROI). The ROI is defined by a bounding box enclosing the area of an image frame in

which the target object exists. ROI-based energy optimization entails the discarding

of pixels outside of the ROI and selectively reading out only the pixels comprising the

moving object. The resulting benefits are two-fold: faster bandwidth and improved

energy efficiency (owing to selective readout) [73, 87].

Further, the reduction in pixels also has implications in the post-processing stage,

where fewer pixels imply fewer clock cycles in the ISP pipeline and in the end vision

task. Fewer pixels also alleviates the computational burden and frees up on-board

memory and resources to be used up for other tasks. ROI technology can also

potentially increase the frame rate of the camera. However, the key challenge now is

to adapt existing tracking algorithms for ROI-capable image sensors. We refer to this

new class of tracking algorithms as adaptive subsampling algorithms.

In this work, we present an extensive study on adaptive subsampling algorithms

featuring various object detectors (both classical and machine learning-based) and we

18

evaluate their performance in an adaptive subsampling setup. We also evaluate the

deployment of a Kalman filter as an ROI predictor to help improve the subsampling

performance of these detectors by correctly predicting the future object trajectories

and making decisions accordingly.

Further, we aim to accelerate these algorithms on FPGAs and study their per-

formance. FPGAs are widely used for low-power and high-latency applications and

therefore, are the perfect candidates for implementing energy-efficient adaptive sub-

sampling. Comparing FPGAs to GPUs, we must consider the high power consumption

of the latter and the reconfigurability of the former. The obvious choice then becomes

FPGA acceleration for our particular use case. In order to implement our algorithms,

we leverage Xilinx’s Vitis AI tools for mapping our neural network-based subsampling

algorithms onto the FPGA. We opt for high level synthesis (HLS) over RTL mapping

because of the former’s ease of use. Our experimental results show the HLS mapping

in no way diminishes the expected performance of our algorithms, that is, we manage

to achieve real-time performance without having to resort to RTL mapping.

In this work, we show how we can couple off-the-shelf object detectors with a

Kalman filter to jointly perform predictive object tracking and adaptive subsampling.

This chapter builds on initial work presented in [31], and we extend that work by

introducing several new types of object detectors to the adaptive subsampling pipeline,

and evaluating these algorithms on more comprehensive test datasets. In addition,

we also identify a suitable candidate for hardware acceleration, and map the neural

network-based approach (Efficient Convolution Operators for Tracking (ECO) plus

Kalman filter) onto an FPGA. We also show hardware acceleration results with the

YOLO plus Kalman filter-based method for comparative evaluation of the ECO-

based approach. Averaged across our two benchmarking datasets, the YOLO-based

19

algorithm achieves an AUC score of 0.2721 while the ECO-based approach results in

an AUC score of 0.4020. This, coupled with the fact that the we get higher power

savings with the ECO method, makes the ECO+KF framework the ideal backbone

of our adaptive subsampling algorithm. As per our power consumption model, the

YOLO-driven approach requires approximately 6 W while the ECO method requires

only 4 W. Additionally, the ECO+KF method operates at 19.23 FPS, which is nearly

real-time. Although the YOLO-based method is faster, it is also less accurate. In

terms of accuracy-latency tradeoff, the ECO-driven approach is the clear winner.

3.2 Approach and Algorithm Description

3.2.1 Video Subsampling and ROI Prediction

Configuring the image sensor on-the-fly such that the pixels outside the ROI

are not read out is referred to as adaptive subsampling [31]. Adaptive subsampling

when applied in the context of sequential frame capture is referred to as video

subsampling. In video subsampling, ROI is read out for one image frame I(x, y, t),

and this information is utilized to determine where the object might move in the

following frame I(x, y, t+ 1) at the next time step. To preserve energy, sensor pixels

are switched off by employing an algorithmically determined ROI mask M̂(x, y, t).

The mask M̂(x, y, t) is of the same shape as the image frame, and it is all ’1’s inside

of the region of interest and all ’0’s outside of the ROI. The scene at time step t+ 1

undergoes a Hadamard product operation with the ROI mask determined at time step

t and the resulting image is referred to as a subsampled image. That is, subsampled

image Isubsampled(x, y, t + 1) = M̂(x, y, t) ⊙ I(x, y, t + 1). Thus, ROI localization is

20

Figure 7. How image sensor reads out an ROI image using a programmable rolling
shutter. The rolling shutter mechanism helps capture and integrate temporal and
spatial data by adapting the readout timing and exposure length of each pixel row.
Here, an ROI image has been obtained using the windowing technique - where pixels
outside of the object of interest have been switched off. Energy efficiency can also
be improved by skipping (skip every other pixel row or column and thereby read out
fewer pixels) and binning (group adjacent pixels together and represent them by a
single value, thus resulting in fewer pixels to be read out).

achieved via predictive tracking. It is possible to create ROIs with various geometric

shapes like circles/ellipses or even arbitrary shapes. In this work, all our ROIs are

rectangular since that is most commonly supported by existing image sensor hardware.

In our video subsampling pipeline, we use a Kalman filter (KF) [34] for making

these predictions. It is a recursive estimator that needs only the estimated state from

the previous time step and the current measurement to compute the estimate for the

current state. It consists of two distinct phases: “Predict” and “Update”.

21

In the update phase, the difference between the current prediction and the current

observation information is multiplied by the optimal Kalman gain and combined with

the previous state estimate to refine the state estimate. When this phase requires

external measurements to update its state estimate vector, we invoke an object detector

D(·) which operates on a fully sampled image frame to localize the ROI. The detector

output D(I(x, y, t)) = bt is a vector containing the bounding box coordinates of the

current frame, and this vector b is used as the external measurements in the update

phase of the Kalman filter.

The predict phase uses the state estimate from the previous timestep to produce

an estimate of the state at the current timestep. Here the Kalman filter solely relies

on its own state space matrix and perceptual capabilities to identify the location of

the target object. [34] and [32] provide a detailed explanation of how the covariance,

observation noise and Kalman gain parameters are computed to update the state

space.

Granted, extended Kalman filters, particle filters, etc. might prove to be more

accurate and better-suited to our goal of ROI prediction. However, we must also

take into account the accompanying resource utilization and on-board clock cycles

requirement associated with FPGA acceleration. The Kalman filter is an FPGA

compatible and lightweight tracker and, therefore, is ideal for addressing problems

relating to latency and computational efficiency. This is why we have chosen the

Kalman filter as our prime candidate for ROI prediction.

Notice how the interval between the update and prediction steps of the Kalman

filter is programmable. We can delay or prolong the activity of the object detector for

as long as we like. We refer to the tracking intervals during which prediction takes

place as keyframing intervals. For the Kalman filter-based methods, the keyframing

22

interval would be the interim in which the Kalman filter is made to predict future

ROIs without any input from the object detector. If the keyframing interval is defined

by k number of frames, then the prediction phase of the Kalman filter will last from

time step t till t + k. Subsequently, the previously dormant D(·) operator will be

activated at time step t+ k + 1, and a fully sampled image frame I(x, y, t+ k + 1)

will be fed through it as follows:

D(I(x, y, t+ k + 1)) = bt+k+1. (3.1)

The frames which are readout in their entirety are referred to as key frames and these

are the image frames that are sent to the object detector D(·) for processing. In this

instance, I(x, y, t+ k + 1) is a keyframe.

At the same time step t, the Kalman filter will use the correctional signal from the

detector bt+k+1, and undergo the update phase. Thereafter, the prediction phase of

the filter will again kick into gear from time step t+ k + 2 till (t+ k + 2) + k - and in

the process it will assist in generating subsampled images Isubsampled(t+k+2) through

to Isubsampled((t+ k + 2) + k). Thus, the process will continue till the last frame.

The keyframing interval is a primary way to tradeoff between detection and

predictive capability of the Kalman filter. The longer the interval, the higher the

optimization of the energy and computational efficiency. However, the worse will be

the tracking precision as the Kalman filter provides only a simplistic object trajectory

model. Hence, it is a matter of the demands of the end task how the precision

and energy requirement are to be prioritized. The keyframing interval can be tuned

accordingly.

23

3.2.2 Object Detectors

In our search for a FPGA-compatible object detector that forms the backbone of

our adaptive subsampling algorithm, we have studied various off-the-shelf detectors

ranging from classical to deep learning-based.

Mean Shift Tracking (MS). The mean shift algorithm leverages the color

histogram of an image to keep track of the ROI as a cluster of color histogram

values [21]. Note that the notion of coupling the Kalman filter with a mean shift

tracker is not a novel concept as evidenced by [71]. However, our algorithm is different

in that we set it up as an adaptive subsampling algorithm as in [31]. Also, we conduct

a comparative study with other FPGA compatible algorithms and present better

methods that outperform this technique.

YOLO and Tiny-YOLO CNN. The YOLO neural network architecture pro-

posed by Redmon et al. [68] is a real-time object detector and is a good candidate for

tracking applications. We evaluate both the pre-trained YOLO and the pre-trained

tiny-YOLO convolutional neural networks in the measurement phase of the Kalman

filter. These networks can optimize the size of their ROI by changing the width and

height of the bounding box frame to frame. Additionally, the tiny YOLO’s lightweight

architecture and its end-to-end optimization framework make it an attractive object

detector for mobile and real-time applications.

Accurate Tracking by Overlap Maximization (ATOM). ATOM utilizes high-

level target information for offline learning and then employs a dedicated classification

component for online learning of object trajectories [14].

Learning Discriminative Model Prediction for Tracking (DiMP). DiMP

24

specializes in leveraging both foreground and background information for ROI estima-

tion [6].

Both ATOM and DiMP demonstrate remarkable tracking capability. However,

in our experimental results they do not sustain their performance for adaptively

subsampled images. Some adaptations are done to these methods for operating in an

adaptive subsampling setup that can be seen at [32].

Efficient Convolution Operators for Tracking (ECO). ECO-based tracking

was proposed as a solution for the endlessly increasing complexity of discriminative

correlation filter-based trackers [15]. ECO incorporates a factorized convolution

operator for reducing the number of filter parameters, a generative model for better

characterizing the input data samples and a model update strategy which updates the

model parameters after every few frames. We reformulate the aforementioned model

update strategy to introduce our Kalman filter in the pipeline for predictive tracking.

OTB100 LaSOT
MS+KF 0.2051 0.1928
YOLO [68]+KF 0.2709 0.2733
ECO [15]+KF 0.4568 0.3471
ATOM [14] 0.2859 0.2425
DiMP [6] 0.3398 0.2942
Tiny-YOLO+KF 0.0809 0.1103
ATOM+KF 0.4625 0.4282
DiMP+KF 0.4817 0.4702

Table 1. We report the AUC scores with IoU@[0:0.05:1] and keyframing interval of 11
on the two benchmarking datasets - OTB100 and LaSOT.

25

3.3 Algorithm Implementation and Results

We conduct a set of extensive experiments to evaluate the performance of our

adaptive subsampling algorithms in software. These experiments reveal the best

candidates for hardware acceleration efforts.

Datasets. We evaluated our joint adaptive subsampling and tracking algorithms

on two benchmarking datasets- the OTB100 [90] and the LaSOT [19]. The OTB100

dataset is comprised of 100 test video sequences of varying difficulty. Example tasks

include tracking a coupon across a table (easy), a basketball player in a sea of similarly

attired sportspeople (medium), and a musician on stage in low-light conditions (hard).

On the other hand, the LaSOT dataset constitutes a training set and a test set and

has a grand total of 1400 videos. Since we employ pre-trained networks for all of our

methods, we only use the test dataset from LaSOT which comprises of 280 video

sequences to evaluate our algorithms. Example videos from this dataset include a car

moving in a low-traffic road in daylight (easy for a tracking task), an airplane zooming

in towards the camera from some distance (medium), and a small drone being flown

in random patterns in a park featuring vehicles and other distractors (hard). The

frame rates of all videos in our test datasets are 30 FPS.

Metrics. Tracking performance of our algorithms has been evaluated in terms of

mean average precision (mAP) and area under the curve (auc) scores. We compute

the mAP by counting the number of frames wherein the algorithm prediction and

ground truth bounding box have an intersection over union (IoU) greater than some

pre-determined threshold. If we perform a sweep over the threshold and plot the

corresponding mAPs, we obtain a performance curve referred to as a success plot.

26

Figure 8. Mean average precision results at different IoU thresholds (success plots).
We have swept the IoU thresholds from 0 to 1 with a step size of 0.05 for all the
adaptive subsampling algorithms on the (a) OTB100 and (b) LaSOT datasets. It
is evident that the methods degrade in performance as the constraint on the IoU
threshold is increased.

The area under this curve is the AUC score, and a larger auc score indicates better

tracking performance.

Results. In Table 1, we report the AUC scores for the adaptive subsampling

algorithms. The DiMP+KF method outperforms the other methods on both the

datasets - on OTB100 it attains an AUC score of 0.4817 and on LaSOT it achieves

a score of 0.4702. However, the ATOM+KF and ECO+KF can be considered close

contenders. As we will later show that the ECO+KF method is best suited for FPGA

acceleration and this will be our selected candidate, notice its AUC score on the

OTB100 dataset - 0.4568. This is comparable to what the ATOM+KF achieves

(0.4625) and is quite close to what we get with DiMP+KF (0.4817). On LaSOT, the

ECO+KF demonstrates a little less efficacy (0.3471) but it is still better than other

FPGA compatible methods like the YOLO+KF and Tiny-YOLO+KF algorithms.

The discrepancy in results for the two datasets may be because of the nature of the

captured scenes. Since our focus has been on developing and implementing adaptive

27

(a) Fully Sampled (b) Ground-truth Sampling (c) YOLO+KF (IoU=0.0)

(d) ECO+KF (IoU=0.76) (e) ATOM (IoU=0.26) (f) ATOM+KF (IoU=0.83)

(g) DiMP (IoU=0.0) (h) DiMP+KF (IoU=0.46) (i) MS+KF (IoU=0.74)

Figure 9. Object tracking and subsampling with the various methods. We select the
same frame in a video sequence and display the sensor mask generated subsampled
image obtained with our selected approaches. The frame generated by the ECO
tracker is visually very close to the ground truth and indicates a good mAP score.
Further, the ECO tracker has generated a compact bounding box around the object
of interest - indicating that only a few of the pixels in the frame will remain activated
during frame readout, thus reducing the power consumption.

subsampling-based tracking algorithms, we simply made use of the pre-trained networks

forming the backbone of the object detectors. Training these networks on the training

subset of the LaSOT dataset may have mitigated the discrepancies we are seeing from

dataset to dataset.

28

The ATOM and DiMP methods, although considered to be state-of-the-art in

the field of tracking, do not perform well in the adaptive subsampling setup without

the Kalman filter. Notice how the OTB100 score drops down to 0.2859 from 0.4625

for ATOM when we remove the Kalman filter. In a similar vein, the DiMP score

for OTB100 drops down to 0.3398 from 0.4817 - quite a steep degradation. The

same is true for the LaSOT dataset as well. This may be attributed to the fact

that ATOM and DiMP heavily rely on target-specific information and scene details.

When we enforce adaptive subsampling on the input data received by these trackers,

there is a distinct dearth of information for the ATOM and DiMP networks to

work with and they tend to make erroneous ROI predictions. Compare these to the

algorithms where we use the same detectors but in combination with the Kalman

filter. In the absence of fully sampled frames at every single time step, the Kalman

filter provides tremendous assistance in keeping the trackers within the confines of

the correct trajectory. Withdrawing this additional support from the filter makes

it very difficult for the ATOM and DiMP methods to sustain their performance.

Figure 8 demonstrates the success plots obtained for the various adaptive subsampling

algorithms over a range of IoU thresholds. As expected, the greater the constraint

on the IoU threshold, the worse the results obtained with the trackers. The tracking

performance of these various methods can also be visualized in Figure 9, where the

subsampling performance of the algorithms have been compared to the ground truth

subsampling mask. The ECO+KF method does an excellent job of honing in on the

object of interest while making sure to output a compact bounding box, implying

large energy savings for the frame being shown in the figure.

CMOS sensor power analysis. To analyze the power savings that can be

achieved with our selected approaches, we conduct a study were we characterize the

29

energy requirements of several CMOS image sensors based on the analysis done in

[44]. The algorithm generated bounding boxes are utilized to prompt the image sensor

to skip columns not associated with the ROI during frame read out. The idea is to

mitigate power consumption by reading out fewer pixels. The power analysis model

equations reveal that the average power consumption is proportional to the image

resolution [44]. Our study concludes that ECO-based approach manages to attain

comparable tracking performance to the best candidates - ATOM+KF and DiMP+KF

- while retaining similar power consumption levels as the more energy-efficient trackers.

[32] provides details, figures and results regarding this study.

Keyframing, memoization and training on subsampled images. Additional

experiments were made to complement the results. An ablation study on keyframing

confirmed that a longer interval will have repercussions for tracking performance but

will guarantee higher energy savings and faster computation. Memoization is a known

strategy in system wherein the results of computationally expensive operations are

cached for later use in the event that the same input signals are received in the future.

An ablation study on memoization shows that ECO tracker outperforms the other

methods on both the OTB100 and LaSOT datasets. It also shows that withdrawing

the support of the Kalman filter shows a decline in performance which highlights

the necessity of leveraging the Kalman filter to ensure greater tracking fidelity as

well as lower latency and higher energy savings. Another study was done to evaluate

the performance of these trackers after training them on subsampled images. The

study concluded that reducing scene information at training time reduces the learning

capabilities of the networks and they fail to predict correct object trajectories at test

time. Ref. [32] provides further details on these studies.

30

3.4 Hardware Implementation

The previous section focused on the analysis and performance evaluation of our

adaptive subsampling algorithm in software. The purpose of this section is to discuss

the hardware implementation of these algorithms, specifically targeting an embedded

device such as a field programmable gate array (FPGA).

Deep learning tasks are usually performed on general purpose computation devices

such as microprocessors and graphic processing units (GPUs) which provide a high

degree of flexibility but have high energy consumption. On the other hand, application

specific integrated circuits (ASICs) are devices dedicated to a single specific purpose

that provide ultimate area and energy efficiency at the cost of losing all flexibility [39].

A FPGA is a set of 2D reconfigurable resources that allow mapping of custom

hardware architectures. Given their reconfigurable nature, they provide the flexibility

of general purpose devices while granting the ability to apply spatial and temporal

parallelism, retaining some of the area and energy efficiency of ASICs [20]. FPGAs are

also a popular alternative to move IoT applications from centralized cloud-computing

environments towards geographically located edge-computing servers [8].

In the past, the implementation of algorithms on FPGAs required the knowledge

of Hardware Description Languages (HDL) as Verilog or VHDL. This prerequisite

prevented software and algorithm developers from taking advantage of this technology.

However, in recent years several open-source (OpenCL) and proprietary tools

(Xilinx Vivado HLS and Vitis, Intel HLS Compiler) have been developed that allow

high-level synthesis of applications from high-level programming languages like C++

and Python. In a recent survey [56], an exhaustive list of current and abandoned

FPGA HLS tools is presented which is useful reference for the reader.

31

To accelerate the deep learning component of the object trackers in our adaptive

subsampling algorithms we used Xilinx’s HLS environment Vitis AI [84]. This is a

stack of development tools that allow AI inference on Xilinx FPGAs. It supports

mainstream frameworks such as PyTorch and TensorFlow which allow the development

of deep learning applications.

Xilinx Ultrascale+ MPSoC edge devices include a processing system (ARM core)

and programmable logic (PL) on the same chip. Xilinx provides a synthesized deep

learning processing unit (DPU) that maps onto the FPGA, along with a PetaLinux

environment that allows the execution of Python scripts and open-source libraries

directly on the embedded system. It also supports I/O peripherals like USB and UART.

Vitis AI provides Python APIs that allow communication between the programmable

logic and processing system. To further accelerate other non-deep-learning components

of our algorithm, other tools like the Vitis software platform or Vitis libraries are

needed. However, these tools require writing and synthesis of C++ kernels along with

the DPU, adding complexity to the system. Given the complexity of this approach,

we chose to only accelerate the deep learning section of our algorithm using Vitis AI,

while running the rest of our code using standard Python libraries.

Figure 10. Vitis AI flow.

Figure 10 shows how a deep learning application is deployed on an Edge FPGA

32

using Vitis AI. First, the model is defined and trained offline using one of the supported

deep learning frameworks. Next, VAI Quantizer converts weights and activations from

32-bit floating-point to 8-bit fixed point. This reduces computation complexity and

memory bandwidth of the model. The quantized model is then passed into the VAI

Compiler which maps the network model into a graph-based optimized instruction

sequence based on the DPU architecture. The output is a compiled .xmodel which

will be invoked to run in the programmable logic by VAI Python APIs [91]. One

disadvantage of this method is that the input and output size of the compiled models

are fixed, therefore we must pre-process our input before sending it for processing to

the DPU.

Our hardware setup consists of a Xilinx ZCU102 evaluation board, and a Logitech

C920 HD camera connected by USB. The PetaLinux environment is loaded via an

SD card, which contains the hardware bitstream, software libraries and application

scripts to run the experiments. Figure 12 and Figure 11 display a system diagram

and our hardware setup respectively. Within our application, we used OpenCV to

capture frames from the camera. Our script also pre-processes the captured frames to

fit the model’s required input size. We also explored the use of ROI-capable cameras

to complete our system. However, we were not able to find a camera that was able

to dynamically adjust its ROI while being compatible with our FPGA evaluation

board. Given this, we chose to digitally simulate ROI for demonstration purposes as

performed in other papers in the literature [38]. The image capture, preprocessing,

digital ROI, Kalman filter update and prediction steps, and any other postprocessing

required by each specific tracker is done in the processing system of the FPGA board.

33

Figure 11. Our hardware setup: A sequence is displayed on an Acer LCD monitor.
A Logitech C920 webcam connected to a ZCU102 board captures an image on every
keyframe to perform object detection. Our system emulates ROI capture by predicting
the bounding box every subsequent frame. This information would be sent to an ROI
camera to perform adaptive subsampling.

34

Figure 12. System diagram: The webcam is connected via USB to the board. Our
application runs on the processing system while the DPU is mapped on the pro-
grammable logic. Vitis AI APIs allow communication between both of them.

As discussed previously, ATOM+KF and DIMP+KF trackers performed slightly

better than ECO+KF tracker. However, they made use of custom layers to perform

feature extraction. These layers are not compatible with Vitis AI and would require

major efforts and HDL knowledge to accelerate and deploy on our system. ECO

tracker uses VGG [77] (a classical convolutional neural network architecture) to

perform feature extraction. Given its similar performance and layer compatibility

we chose to accelerate the ECO + KF algorithm. To implement this algorithm on

our system, we accelerated the feature extraction module of ECO following the flow

previously described and displayed in Figure 10. This allowed us to run the deep

learning component of our algorithm in the programmable logic. The PetaLinux

environment of our system allowed us to install and take advantage of popular Python

libraries like PyTorch and OpenCV to perform several pre- and post-processing steps

on the processing system. It is worth mentioning that some of the libraries used by

the original implementation of ECO were not compatible with the ARM core of our

35

board. This forced us to find alternative libraries and perform substitutions to be

able to run this tracker. We also chose to accelerate YOLOv3 + KF given that VAI

model zoo [85] already provides a pre-trained YOLOv3 model (yolov3_tf_voc) and

a post-processing library [93]. We incorporated this code into our application and

added required camera capture, pre-processing and post-processing steps, as well as

the Kalman filter implementation and digital ROI simulation. In our previous work

we also accelerated the MS+KF algorithm using SDSoC and xfOpenCV accelerated

libraries [31].

3.5 Hardware Results

In Table 2 we show the performance of our algorithm and system. Our algorithm

performance takes into consideration the delay of capturing an image, performing

pre-processing, detection, post-processing and updating the Kalman filter on every

keyframe. While only executing the kalman prediction step on subsequent frames.

YOLO + KF achieves a performance of 65.39 frames per second, while ECO reaches a

speed of 19.23 frames per second. Although ECO + KF is slower, from the experiments

in Table 1 we know that it has a better tracking performance than YOLO + KF. We

can therefore conclude that there is a tradeoff between speed and tracking performance

of these two algorithms.

Our system performance adds the image capture delay on each subsequent frame.

In our current system, this capture delay is identical to the capture delay during

keyframes. In a real ROI system, the capture delay of the subsequent frames would

be reduced given that we would only need to capture a reduced set of pixels. In this

36

metric, YOLO + KF achieves a performance of 24 frames per second while ECO

reaches a speed of 13 frames per second.

In Figure 13 we show a breakdown of the latency at each step for both algorithms.

We can see how the image capture, dpu detection and kalman filter steps have a

similar latency in both algorithms. However, the preprocessing and postprocessing

latency of the ECO tracker is significantly higher than the one from ECO. This is due

to the transforms and optimizations that ECO requires to do in its processing steps.

These operations are not trivial to implement on an FPGA using the known HLS

tools. But since these steps are only done every keyframe, their effect is diminished

by using the Kalman Filter to predict the bounding box on subsequent frames.

Algorithm Algorithm FPS System FPS Keyframe
ECO [15]+KF 19.23 13.42 10
YOLO [68]+KF 65.39 24.6 10

Table 2. Performance of our algorithm in hardware.

37

Figure 13. Breakdown of algorithm performance on hardware. Image capture, pre-
procesing, detection and postprocessing only occur every keyframe. On subsequent
frames the Kalman Filter predicts the next bounding box.

The performance of the object detectors can be further increased by multithreading

techniques. However, this is only achieved by pre-capturing images so the DPU can

work on multiple frames at the same time. For comparison, the YOLOv3 model

provided by Xilinx can achieve 34.5 FPS (albeit without taking into account camera

capture, pre and post-processing)[85]. To increase our throughput we would need to

multithread the camera capture pre- and post-processing, which is not compatible

with our algorithm.

38

Figure 14. ROI simulation: We simulate adaptive subsampling by masking the area
outside the computed ROI. The ROI is obtained by performing object detection every
keyframe and Kalman filter prediction every subsequent frame.

As previously mentioned, the DPU is a highly optimized module that performs

neural network computations. It is designed to be resource-efficient while performing

neural network inference. The DPU has several configuration parameters that can

be customized for any specific application. For both of our algorithms, we elected to

use the same single-core, 4096-architecture DPU. This configuration uses the fewest

possible resources without sacrificing performance on a single-thread. As shown in

Figure 15 and Table 3, the DPU uses fewer than 30% of every category of resources.

This allows room for other accelerated kernels to be mapped simultaneously on the

programmable logic of our system. In our experiments, we found out that increasing

the number of DPU cores and therefore the amount of resource utilization, only

improved performance when multi-threading the neural network object detection.

Since we only do object detection only once every keyframing interval, there were not

direct advantages on increasing the number of DPU cores in this algorithm.

39

Figure 15. Resource Utilization (%) of a single core DPU architecture.

Resource Utilization Available
LUT 58,734 274,080
LUTRAM 6,226 144,000
FF 106,294 548,160
BRAM 261 912
DSP 704 2,520
BUFG 3 404
PLL 1 8

Table 3. Used and available resources on the ZCU9EG FPGA from our ZCU102
evaluation board.

In terms of power, the Vivado post-implementation estimate returns a 9.467 W

and 0.779 W of on-chip dynamic and static power respectively for the single-core

DPU architecture (including processing system). However, a more fine-grained power

analysis is required to compare the savings against a general-purpose CPU or GPU.

40

3.6 Programmable ROI camera system.

Previously we have shown ROI simulation achieved by masking the area outside

the computer ROI as a post-processing step. We also explored performing this

masking on an actual image sensor. Several candidates were considered including

Avnet’s PYTHON-1300 [1], Leopard Imaging’s LI-IMX274MIPI-FMC [42] and IDS’s

UI-3250CP [81].

For PYTHON-1300, we encountered hardware interface difficulties given that the

hardware was supported on older Xilinx evaluation boards and Avnet had not developed

firmware that allowed connection to our newer ZCU102 board. With Leopard camera,

we were able to connect and run provided examples. However, the ROI capabilities

could not be exploited due to lack of APIs to access this configurability.

Finally, we decided to use IDS UI-3250CP given that they provide Python APIs

and examples for ROI capture. The drawback is that IDS only provides dynamic

ROI capabilities in a pre-recorded sequencer mode, meaning that we could only set a

limited and pre-configured number of bounding boxes in order to dynamically adjust

the sensor readout. The alternative was to re-initialize the camera every predicted or

detected bounding box, with the disadvantage of high latency (1.38s) per frame. To

run these APIs, we installed Ubuntu 20.04 LTS version on our ZCU102 [25].

41

Figure 16. IDS camera hardware setup: IDS image sensor connects via USB3.0
interface. PyuEye [82] provides Python APIs to initialize and control ROI on IDS
cameras.

Figure 17. IDS camera functional diagram: Camera initialization is required each
time the ROI changes, increasing latency to impractical levels.

3.7 Discussion

This work paves the way for future research in adaptive subsampling-based tracking

which has tremendous potential for energy optimization of image sensors. Coupling

off-the-shelf object detectors with a Kalman filter results in an efficient mechanism for

reconfiguring image sensors on the fly by reasoning about future object trajectories.

42

We identify an ideal candidate out of these adaptive subsampling algorithms and map

it onto an FPGA to demonstrate the feasibility of implementing such methods with a

goal to maximizing the energy efficiency.

There is a lot of scope for expanding this work given the current limitations of

the proposed approach. Firstly, the predictor in our current framework is a simple

Kalman filter. Switching this out with a powerful, state-of-the-art predictor may

help improve the tracking precision by leaps and bounds. In addition, the Kalman

filter being a classical state estimator requires frequent correctional measurements

from an external source (the object detectors in our case). Alternatively, the power

of neural networks can be leveraged here to attain superior tracking performance

with a network-based predictor. Our intuition is that we may be able to operate at

high keyframing intervals with a neural network without compromising the tracking

fidelity. Another limitation of our current work has to do with the novelty of the

technology. Xilinx has only recently come out with their Vitis AI toolflow and it is

still very much in its early stages. We were bottlenecked by the limitations of the Vitis

software in implementing the ATOM and DiMP-based approaches. Programming

in the ARM core and DPU and transferring data back and forth between the two

processing units was also challenging for our particular use case. It required piece-by

-piece investigation and restructuring of the modules in the ECO tracker.

Another potential area of improvement for this work is the addition of a performance

metric that allows direct comparison with other methods. This metric would have to

take into account the system performance, accuracy and energy-efficiency.

Finally, adaptive subsampling and ROI technology are exciting new areas of

research with tremendous potential. In this work, we have shown FPGA acceleration

as a mode of implementing adaptive subsampling. There is potential to explore ASICs

43

in this area as well in lieu of FPGAs in order to attain better latency and optimized

performance. The final step in this avenue of research would be integrate such custom

adaptive subsampling algorithms with a real ROI-capable camera sensor, and study

the real life performance in terms of latency and precision.

44

Chapter 4

OPTICALLY DEFOCUSED RECONSTRUCTION FOR EVENT-BASED VISION

SENSORS

In this chapter I present a neural network-based pipeline that aims to enhance

intensity reconstruction from scenes captured by an event-based image sensor subjected

to optical imperfections. The goal of this work is to improve the robustness of these

novel sensors, allowing them to be deployed in a wider variety of conditions, including

scenes where objects could be present at different focal lengths. First, I introduce

the motivation for this work, along with an introduction to the characteristics and

applications of event-based cameras. Next, I present the approach and implementation

details of our pipeline. Subsequently, I compare results achieved from simulated

data against results obtained by capturing data with an actual event-based image

sensor. Finally, I present future avenues of work including the potential for lensless

event-based sensing.

4.1 Motivation

Event cameras are asynchronous, bio-inspired sensors that measure logarithmic

per-pixel brightness changes in a scene. Instead of frames, an event camera outputs a

stream of events that encodes time, location and polarity of the logarithmic intensity

change at a certain pixel. In contrast with the conventional frame-based cameras,

they have superior properties such as high temporal resolution, high dynamic range

and ultra-low power consumption [22]. These advantages make them ideal candidates

45

for computer vision applications that demand low-power consumption and latency

such as autonomous robotics or always-on sensing.

However, conventional frame-based algorithms cannot be directly used on an event

stream. A paradigm shift is needed for the development of novel methods that are

able to process their output in order to take advantage of the properties of this novel

sensor.

One of the main avenues of research is finding a suitable method of representation

that can leverage event-based data as well as decades of previous computer vision

research. As previously mentioned in Chapter 2 of this work, several techniques have

emerged that try to solve this problem, the most trivial being simple accumulation of

events into a frame-like object for a fixed amount of time, or a fixed number of events

[64]. Nonetheless, by applying this method we lose all the temporal information and

sparse nature of events. Other more advanced methods that preserve some temporal

information are low-pass filter [74] and the leaky-surface [11].

Currently, the most efficient way to approach this problem is to convert the

event stream into a discretized volume of events in (x, y, t) or voxel grid [104, 24].

Each voxel contains the sum of the polarities that fall into it. Voxel grids have

been the intermediate representation of choice for several state-of-the-art event-based

algorithms. Tasks such as optical flow [104], intensity reconstruction [67, 75, 10], event

simulation [17, 103] and object detection [61]. Other recent methods that aim to

provide a neural network-compatible input representation include area-count [47] and

Time-Ordered-Recent-Events [4].

Intensity reconstruction pipelines enable us to apply the already existing, mature

computer vision techniques to videos reconstructed form a stream of events. Applying

46

this strategy outperforms algorithms that were specifically designed for event data as

shown in [65].

Several event integration methods exist in the literature. Some integrate events

on the image plane [66, 48, 49] while others integrate them as time surfaces [40, 78,

101, 102]. However, neither method produces natural images, meaning that much of

the existing computer vision toolbox, especially deep networks trained on real image

data, cannot be applied effectively. Other methods [5, 69, 74] rely on embedding

handcrafted smoothness priors to their frameworks. E2VID [67] proposes a network

that learns how to reconstruct natural videos from a stream of events. This work

achieves reconstructed images that share statistics of natural images through the use

of a perceptual loss that operates on mid-level image features [98].

Figure 18. From [65]. E2VID converts a spatio-temporal stream of events into
high-quality video. This enables direct application of off-the-shelf computer vision
algorithms such as object classification and visual-intertial odometry.

Cameras use lenses to redirect the light rays of a point in the scene to a focused

47

point on the image plane. This carries the advantage of allowing more rays from a

single point in the scene being captured by the image sensor. A drawback however, is

that only one plane in the scene is perfectly focused onto the image plane.

Current intensity reconstruction models rely on the scene captured with near-perfect

focus. Objects outside of the focal plane generate events in an area analogous to the

blur circle, instead of a single point which in turn causes the intensity reconstruction

model to output sub-optimal natural images. This has a negative effect on the overall

performance of the computer vision algorithms relying on them. Figures 19 and 20

show examples on how E2VID fails to properly reconstruct intensity frames from

out-of-focus events. Being able to reconstruct intensity frames from defocused events

is an important problem that must be solved in order to allow these novel image

sensors to be employed in a wider range of conditions.

Event-based cameras have high-dynamic range, meaning they can be used in

low-light conditions. Increasing aperture size allows more light rays to come into the

sensor, with the drawback of reducing the depth of field (DoF). A smaller depth of

field causes a wider segment of the scene to be out-of-focus. In order to further take

advantage of low-light capabilities of event-based sensors, events should be refocused

before being used to perform another task.

To make these sensors more robust, we implement a neural network-based pipeline

that learns a mapping to refocus out-of-focus events from an event volume. These

refocused event volumes are tested on the existing intensity reconstruction model

E2VID. We further improve our pipeline by fine-tuning E2VID.

48

Groundtruth scene.

a) Groundtruth voxel (left). Reconstruction from groundtruth voxel (right)

b) Defocused voxel (left). Reconstruction from defocused voxel (right)

Figure 19. Intensity reconstruction comparison: Basketball sequence.

49

Groundtruth scene.

a) Groundtruth voxel (left). Reconstruction from groundtruth voxel (right)

b) Defocused voxel (left). Reconstruction from defocused voxel (right)

Figure 20. Intensity reconstruction comparison: Dog sequence.

50

4.2 Approach and implementation

Figure 21. Reconstruction pipeline

Out of focus objects. Out-of-focus events can be approximated as the convolution

of a Gaussian point-spread function (PSF) with an object in the scene such that

i(x, y) = o(x, y) ∗ psf(x, y) (4.1)

where the image i is the result of the convolution of the object o and PSF denoted

as functions of position (x, y) in the spatial domain. Since convolution in the spatial

domain corresponds to multiplication in the frequency domain, the Fourier transform

can be used to convert the space variant function to a frequency variant function as

an easier method of implementing the convolution:

F{i(x, y)} = F{o(x, y)} ∗ F{psf(x, y)}

I(u, v) = O(u, v)× PSF (u, v)

(4.2)

51

where the capitalized notation represents the Fourier transform of the corresponding

lower-case function and (u, v) represents the position in the frequency domain. The

resulting image in the frequency domain, I(u, v), gives us the frequency and amplitude

relationship of the object and PSF, and the spatial-domain image can be recovered by

taking its inverse Fourier transform

i(x, y) = F−1{I(u, v)} (4.3)

Attempting image restoration on degraded images typically means that we’re attempt-

ing to estimate the true object or scene before any degradation caused by the camera

system. This is called the inverse problem of the forward model 4.1 and is typically

solved using deconvolution methods such Pseudo-Inverse filtering, Wiener filtering or

other classical algorithms suchs as alternating direction method of multipliers (ADMM).

We chose to employ a neural network based approach to solve the PSF deconvolution

problem, as done previously in lensless imaging works such as [35].

Event generation. In order to train a neural network however, a large amount of

defocused and ground truth event data is required. To generate standard event data as

our groundtruth, we passed different video sequences through v2e event simulator [17].

We generated simulation datasets employing scenes from object tracking datasets such

as LaSOT [19] (1400 sequences) and OTB100 [90] (100 sequences). Before passing the

scenes we preprocess them to match the characteristics of an intensity scene captured

with the DAVIS camera. This parameters include width (346), height (260) and

grayscale conversion. The tool outputs a .txt file that records the events generated by

the scene dynamics.

52

Figure 22. Gaussian PSF used to simulate an out-of-focus scene.

These groundtruth scenes will also be used to generate out-of-focus event data

by convolving them with a Gaussian PSF. The convolution is performed by doing a

product of the frame by the PSF in the Fourier domain. Finally this scene will be

passed to the same event simulator v2e to generate a defocused event .txt file.

Event representation. The generated event .txt file contains a list of events

that encode the location (x⃗), time (t) and polarity (p) of each event. To train a

convolutional neural network, we need a 3D tensor that contains the information in

this data. Different representation alternatives were explored.

Event accumulation consists of accumulating a fixed or variable number of events

on a frame-like container. It is possible to accumulate in fixed-event windows or

fixed-time windows. For our purposes, fixed-time windows made more sense given that

we need to pair groundtruth events with the out-of-focus events. This representation

allows training a neural network, but it discards the rich temporal information in the

events and is susceptible to motion blur.

53

Figure 23. Voxel grid generation: Events are inserted into discretized 3D volumes
(x, y, t) or 4D tensor (x, y, t, p) enabling event data to be used as the input to convolu-
tional neural networks [104].

Another alternative is to use a voxel-grid [104] representation. Similar to event

accumulation, it takes events during a time-window and inserts them into a fixed

number of bins(N). To improve the resolution along the temporal domain, events are

inserted using a linearly weighted accumulation similar to bilinear interpolation. This

method gives a frame-like 3D representation with the number of bins (N) as the channel

dimension that can be used to train a neural network. Another advantage of this

representation is that E2VID also uses a voxel grid as the input of its reconstruction

neural network. Given this, we chose N = 5 to be consistent with E2VID.

Neural Network Architecture. The initial network architecture selected for

this project is a U-Net [72] which consists in a decoder and an encoder section along

with skip connections between some of its layers, giving it an appearance of a “U”. The

decoder consists of four downsampling stages. Each stage has two convolutional layers

with 3x3 filters and ReLU activations, batch normalization and maxpooling layer

that downsamples the input while increasing the number of channels. The encoder

consists in four upsampling stages. On each upsampling stage, the input dimensions

54

are doubled by using bilinear interpolation or a convtranspose2D layer, and then does

a double convolution to reduce the number of output channels. This architecture

has the same shape as the input as in the output. The U-Net used is adapted from

open-source Pytorch implementation [51]. We train this network with defocused event

voxels as input and event voxels of the same time-window as groundtruth using a

Mean Square Error loss and Adam optimizer [37].

Image reconstruction. The output of our network is an N -channels voxel grid.

This is the input representation of many different event camera applications like optical

flow [104] and image reconstruction [67, 75]. We test our refocusing reconstruction by

passing our output and groundtruth through E2VID reconstruction and qualitatively

comparing both reconstructions.

After the input voxel is processed through the U-Net based CNN, we added an

intensity reconstruction loss that will train the voxel reconstruction network as well as

finetuning the intensity reconstruction network (E2VID). The loss used is LPIPS [98],

which is measures the perceptual similarity of deep features between two images. This

joint training provided the best overall results as will be demonstrated in the next

section. Our final pipeline is shown in Figure 21.

4.3 Simulation results

Our model was trained with a set of 1330 simulated sequences from LaSOT dataset

[19]. Another set of 70 sequences was selected for testing the generalization ability of

the network.

The aim of our refocusing network is to recover the edge information from the

55

out-of-focus event stream. In Figure 24 we can observe how our voxel refocusing

network makes the event volume edges sharper.

Figure 24. Voxel reconstruction: The first stage of our pipeline refocuses the out-
of-focus event voxels (left). The refocused voxels (right) are passed to E2VID for
intensity reconstruction.

During our experiments, we discovered that computing and back-propagating the

loss from only the refocused event volumes did not result in voxels with optimal

statistics for intensity reconstruction. In Figure 25 we can see an example of how

the voxels reconstructed by this network do not produce events suitable for intensity

reconstruction. Therefore, we decided to add the perceptual similarity loss LPIPS

[98] at the end of the intensity reconstruction and back-propagate it through both the

intensity reconstruction and refocusing networks.

56

Figure 25. Using MSE as the only loss helped in recovering edge information from the
defocused events. However, this did not produced natural image statistics, affecting
the intensity reconstruction results.

In Figures 26 and 27 we can see how E2VID is not able to correctly reconstruct

intensity information from out-of-focus events (middle). Our event reconstruction

network is able to refocus the events and recover edge information (top right). This in

turn aids the intensity reconstruction network (E2VID) to recover a clearer intensity

frame (bottom right). However, fine-grained and small details are lost after the events

are defocused, these details cannot be fully recovered by the event reconstruction

network and the intensity reconstruction suffers because of it.

57

Figure 26. Refocusing results: Without first refocusing the events with our network,
E2VID cannot correctly reconstruct the intensity to show the scene (middle). When
we refocus events with our network (right), E2VID is able to recover most of the
information on the scene.

58

Figure 27. Refocusing results: When the scene has high amount of features and
movement, E2VID reconstruction on out-of-focus events is worse (middle). Our
method allows most of the high-level information to be recovered (right).

The network runs at 61ms latency on an Nvidia GeForce GTX 1060 mobile GPU,

59

meaning that it can achieve up to 16 fps on a mobile GPU without taking into account

event capture and representation.

4.4 Real-data results

To test our framework, we captured dynamic scenes with an actual event-based

sensor. We utilized the DAVIS 346 event camera from Inivation. This image sensor has

the capability to capture both intensity frames and events. We used this advantage to

capture different blur point spread functions (PSF) in order to best approximate our

simulated PSF. To capture frames we used DV GUI [30], a software for the Inivation

Dynamic Vision Sensors that allows capture, visualization and processing of events

directly from our camera.

Figure 28. DAVIS 346 Event-based camera: a 346 x 260 resolution image sensor. Has
the capability to capture both intensity frames and events.

Figure 29 shows the difference between a real and a simulated PSF. The close up

60

shows that the real PSF does not have exactly a Gaussian shape, meaning the real

and simulated do not have the same blur statistics.

Figure 29. Real PSF (left) vs simulated Gaussian PSF (right) and a close-up to
appreciate their differences (bottom).

We generated another dataset from the same sequences (LaSOT, OTB100) but

this time using the captured real PSF. We used this dataset to finetune our networks

in order to improve the real-data results.

The results on real testing data are shown in figure 30. Here we can observe

how our network is in fact refocusing the blurred events to form edges on the event

space (top right). This results in better contrast between objects after intensity

reconstruction (bottom right).

61

Figure 30. Results from real data: Our network is in fact refocusing the blurred events
to form edges on the event space (top right). This results in better contrast between
objects after intensity reconstruction (bottom right).

62

4.5 Discussion

In this work we have shown a pipeline that makes event-based sensing more

robust. By deploying a computational algorithm that deals with optical imperfections,

event cameras can be used in non-ideal conditions. With improved robustness, more

applications can employ this novel sensors and take advantage of their high dynamic

range, low latency and ultra-low power characteristics.

We have also shown how our refocusing pipeline can improve the intensity recon-

struction task. However, other tasks such as optical flow and object detection also rely

on the voxel grid representation as the input for their methods. In future work, we

aim to improve our refocusing network by leveraging different tasks in the literature.

Given that the out-of-focus problem is in essence a PSF deconvolution problem,

there is a lot of scope for expanding the current work and taking it to more challenging

scenarios. Lensless cameras substitute standard optical elements with thin diffuser

materials that multiplex light and form a PSF composed of a caustic pattern [2]

instead of a 2D Gaussian. In the future, we aim to expand this work to be able to

reconstruct events captured with a lensless event camera.

63

Chapter 5

CONCLUSION

In this thesis, I presented two different approaches that enable energy-efficient

computer vision: offloading computationally heavy algorithms into an FPGA and the

usage of low-power event-based image sensors.

In the first approach, we leveraged the use of high-level synthesis tools to accelerate

the computationally demanding section of an adaptive subsampling ROI-based tracking

algorithm into the programmable logic of a ZCU102 FPGA. This takes advantage of

the capability that FPGAs have of enabling temporal and spatial parallelism when

mapping custom hardware architectures. We also introduced a working system that

implements and executes said algorithm on a standalone embedded device, taking

advantage of off-the-shelf hardware, software and libraries.

On the second approach we proposed a pipeline to improve the performance while

facing optical imperfections of a novel, low-power image sensor: event-based cameras.

By developing an algorithm that can handle imperfections in the optical elements of

these sensors, we pave the way for a more robust sensing device that can be deployed

in challenging environments. We also generated a dataset to train and test our method

by using simulation tools from the literature. In addition, data is captured with an

event-based sensor (DAVIS 346) in order to test the performance of our method in

real settings.

64

5.1 Limitations and future directions.

Several opportunities for improvement exist on our FPGA implementation of

an adaptive subsampling algorithm. First, only deep learning-based sections of

the algorithm were accelerated. In some cases, implementing on hardware non-

computationally heavy sections of the algorithm would not bring notable performance

increases. Processes such as Kalman filter update and predictions are already very

efficient even when executed on the general-purpose processing system. However,

ECO+KF implementation uses a Gauss Newton optimization procedure to improve

its performance. This algorithm was not accelerated due to the enormous amount of

effort required to implement this algorithm in a hardware description language. To

further improve the performance of our algorithm, future research could look into

accelerating every single section of the algorithm.

Another area of improvement would be that of using a camera that has dynamic

ROI capabilities to further improve our system. As mentioned in Chapter 3, we

tested several image sensors but none of them allowed to dynamically change the ROI

without incurring in long timing delays.

Our event-based refocusing pipeline work intends to be an initial stepping stone

in the pursuit of making dynamic vision sensors more robust. While our results on

simulated data are promising, once tested on real data our method performance is

not comparable to the simulated data. We believe this is because the PSF used to

simulate our training data has a different structure than the real PSF. An additional

limitation of our method, is that it bases the reconstruction on a single PSF, meaning

that objects further out of focus or in focus may not be captured correctly.

Potential avenues of research include improving the refocusing performance of our

65

model by attaching attention mechanisms to our network architecture. Another way

to improve our method would be that the network estimates the out-of-focus PSF so

the method works independently from the amount of blur in a scene. Finally, a route

that was explored without much success but with enormous potential is the prospect

of lensless event cameras: removing the standard optical elements and substituting

them for a diffusion layer.

66

REFERENCES

[1] AES-CAM-ON-P1300C-G. url: https://www.avnet.com/shop/emea/product
s/avnet-engineering-services/aes-cam-on-p1300c-g-3074457345629544173/.

[2] Nick Antipa et al. “DiffuserCam: lensless single-exposure 3D imaging”. In:
Optica 5.1 (Jan. 2018), pp. 1–9. doi: 10 . 1364 /OPTICA . 5 . 000001. url:
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-5-1-1.

[3] Eduardo Arnold et al. “A survey on 3d object detection methods for autonomous
driving applications”. In: IEEE Transactions on Intelligent Transportation
Systems 20.10 (2019), pp. 3782–3795.

[4] R. Wes Baldwin et al. “Time-Ordered Recent Event (TORE) Volumes for
Event Cameras”. In: CoRR abs/2103.06108 (2021). arXiv: 2103.06108. url:
https://arxiv.org/abs/2103.06108.

[5] Patrick Bardow, Andrew J. Davison, and Stefan Leutenegger. “Simultaneous
Optical Flow and Intensity Estimation from an Event Camera”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016,
pp. 884–892. doi: 10.1109/CVPR.2016.102.

[6] Goutam Bhat et al. “Learning discriminative model prediction for tracking”. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision
(2019), pp. 6182–6191.

[7] Deepayan Bhowmik and Kofi Appiah. “Embedded vision systems: A review of
the literature”. In: International Symposium on Applied Reconfigurable Com-
puting. Springer. 2018, pp. 204–216.

[8] Saman Biookaghazadeh, Ming Zhao, and Fengbo Ren. “Are FPGAs Suitable
for Edge Computing?” In: BOSTON, MA, July 2018.

[9] James Black, Tim Ellis, and Paul Rosin. “Multi view image surveillance and
tracking”. In: Workshop on Motion and Video Computing, 2002. Proceedings.
IEEE. 2002, pp. 169–174.

[10] Pablo Rodrigo Gantier Cadena et al. “SPADE-E2VID: Spatially-Adaptive
Denormalization for Event-Based Video Reconstruction”. In: IEEE Transactions
on Image Processing 30 (2021), pp. 2488–2500. doi: 10.1109/TIP.2021.3052070.

67

https://www.avnet.com/shop/emea/products/avnet-engineering-services/aes-cam-on-p1300c-g-3074457345629544173/
https://www.avnet.com/shop/emea/products/avnet-engineering-services/aes-cam-on-p1300c-g-3074457345629544173/
https://doi.org/10.1364/OPTICA.5.000001
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-5-1-1
https://arxiv.org/abs/2103.06108
https://arxiv.org/abs/2103.06108
https://doi.org/10.1109/CVPR.2016.102
https://doi.org/10.1109/TIP.2021.3052070

[11] Marco Cannici et al. “Event-based Convolutional Networks for Object Detection
in Neuromorphic Cameras”. In: CoRR abs/1805.07931 (2018). arXiv: 1805.
07931. url: http://arxiv.org/abs/1805.07931.

[12] Zhihao Chen et al. “Real time object detection, tracking, and distance and
motion estimation based on deep learning: Application to smart mobility”.
In: 2019 Eighth International Conference on Emerging Security Technologies
(EST). IEEE. 2019, pp. 1–6.

[13] Rita Cucchiara et al. “The sakbot system for moving object detection and
tracking”. In: Video-based surveillance systems. Springer, 2002, pp. 145–157.

[14] Martin Danelljan et al. “Atom: Accurate tracking by overlap maximization”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2019), pp. 4660–4669.

[15] Martin Danelljan et al. “Eco: Efficient convolution operators for tracking”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2017), pp. 6638–6646.

[16] Yiğithan Dedeoğlu. “Moving object detection, tracking and classification for
smart video surveillance”. PhD thesis. bilkent university, 2004.

[17] Tobi Delbrück, Yuhuang Hu, and Zhe He. “V2E: From video frames to realistic
DVS event camera streams”. In: CoRR abs/2006.07722 (2020). arXiv: 2006.
07722. url: https://arxiv.org/abs/2006.07722.

[18] Heng Fan and Haibin Ling. “Sanet: Structure-aware network for visual track-
ing”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition workshops. 2017, pp. 42–49.

[19] Heng Fan et al. “Lasot: A high-quality benchmark for large-scale single object
tracking”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2019), pp. 5374–5383.

[20] Jeremy Fowers et al. “A Performance and Energy Comparison of FPGAs,
GPUs, and Multicores for Sliding-Window Applications”. In: Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays.
FPGA ’12. Monterey, California, USA: Association for Computing Machinery,
2012, pp. 47–56. doi: 10.1145/2145694.2145704. url: https://doi.org/10.1145/
2145694.2145704.

68

https://arxiv.org/abs/1805.07931
https://arxiv.org/abs/1805.07931
http://arxiv.org/abs/1805.07931
https://arxiv.org/abs/2006.07722
https://arxiv.org/abs/2006.07722
https://arxiv.org/abs/2006.07722
https://doi.org/10.1145/2145694.2145704
https://doi.org/10.1145/2145694.2145704
https://doi.org/10.1145/2145694.2145704

[21] Keinosuke Fukunaga and Larry Hostetler. “The estimation of the gradient
of a density function, with applications in pattern recognition”. In: IEEE
Transactions on Information Theory 21.1 (1975), pp. 32–40.

[22] Guillermo Gallego et al. “Event-based Vision: A Survey”. In: CoRR
abs/1904.08405 (2019). arXiv: 1904 . 08405. url: http : / / arxiv . org / abs /
1904.08405.

[23] Daniel Gehrig et al. “Asynchronous, Photometric Feature Tracking using Events
and Frames”. In: CoRR abs/1807.09713 (2018). arXiv: 1807.09713. url: http:
//arxiv.org/abs/1807.09713.

[24] Daniel Gehrig et al. “End-to-End Learning of Representations for Asynchronous
Event-Based Data”. In: CoRR abs/1904.08245 (2019). arXiv: 1904.08245. url:
http://arxiv.org/abs/1904.08245.

[25] Getting Started with Certified Ubuntu 20.04 LTS for Xilinx Devices. url:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2037317633/Getting+
Started+with+Certified+Ubuntu+20.04+LTS+for+Xilinx+Devices.

[26] Qing Guo et al. “Learning dynamic siamese network for visual object tracking”.
In: Proceedings of the IEEE International Conference on Computer Vision.
2017, pp. 1763–1771.

[27] Sabir Hossain and Deok-jin Lee. “Deep learning-based real-time multiple-object
detection and tracking from aerial imagery via a flying robot with GPU-based
embedded devices”. In: Sensors 19.15 (2019), p. 3371.

[28] Tai-Chiu Hsung and Daniel PK Lun. “New sampling scheme for region-of-
interest tomography”. In: IEEE transactions on signal processing 48.4 (2000),
pp. 1154–1163.

[29] Syed Mudassir Hussain et al. “CMOS image sensor design and image process-
ing algorithm implementation for total hip arthroplasty surgery”. In: IEEE
Transactions on Biomedical Circuits and Systems 13.6 (2019), pp. 1383–1392.

[30] Inivation. Inivation DV. https://inivation.gitlab.io/dv/dv-docs/docs/getting-
started.html. Accessed on 2022-04-01.

[31] O. Iqbal et al. “Design and FPGA Implementation of an Adaptive video
Subsampling Algorithm for Energy-Efficient Single Object Tracking”. In: 2020
IEEE International Conference on Image Processing (ICIP) (2020), pp. 3065–
3069. doi: 10.1109/ICIP40778.2020.9191146.

69

https://arxiv.org/abs/1904.08405
http://arxiv.org/abs/1904.08405
http://arxiv.org/abs/1904.08405
https://arxiv.org/abs/1807.09713
http://arxiv.org/abs/1807.09713
http://arxiv.org/abs/1807.09713
https://arxiv.org/abs/1904.08245
http://arxiv.org/abs/1904.08245
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2037317633/Getting+Started+with+Certified+Ubuntu+20.04+LTS+for+Xilinx+Devices
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/2037317633/Getting+Started+with+Certified+Ubuntu+20.04+LTS+for+Xilinx+Devices
https://inivation.gitlab.io/dv/dv-docs/docs/getting-started.html
https://inivation.gitlab.io/dv/dv-docs/docs/getting-started.html
https://doi.org/10.1109/ICIP40778.2020.9191146

[32] Odrika Iqbal et al. “Adaptive Subsampling for ROI-based Visual Tracking:
Algorithms and FPGA Implementation”. In: CoRR abs/2112.09775 (2021).
arXiv: 2112.09775. url: https://arxiv.org/abs/2112.09775.

[33] Suren Jayasuriya et al. “Software-Defined Imaging: A Survey”. In: (2021).

[34] Rudolph Emil Kalman. “A new approach to linear filtering and prediction
problems”. In: Journal of Basic Engineering 82 (1960), pp. 32–45.

[35] Salman Siddique Khan et al. “FlatNet: Towards Photorealistic Scene Reconstruc-
tion from Lensless Measurements”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence (2020), pp. 1–1. doi: 10.1109/tpami.2020.3033882.
url: http://dx.doi.org/10.1109/TPAMI.2020.3033882.

[36] Du Yong Kim and Moongu Jeon. “Data fusion of radar and image measurements
for multi-object tracking via Kalman filtering”. In: Information Sciences 278
(2014), pp. 641–652.

[37] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[38] Venkatesh Kodukula et al. “Rhythmic Pixel Regions: Multi-Resolution Visual
Sensing System towards High-Precision Visual Computing at Low Power”.
In: Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. ASPLOS 2021.
Virtual, USA: Association for Computing Machinery, 2021, pp. 573–586. doi:
10.1145/3445814.3446737. url: https://doi.org/10.1145/3445814.3446737.

[39] Griffin Lacey, Graham W. Taylor, and Shawki Areibi. “Deep Learning on
FPGAs: Past, Present, and Future”. In: ArXiv abs/1602.04283 (2016).

[40] Xavier Lagorce et al. “HOTS: A Hierarchy of Event-Based Time-Surfaces for
Pattern Recognition”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 39.7 (2017), pp. 1346–1359. doi: 10.1109/TPAMI.2016.2574707.

[41] Xin Li et al. “A multiple object tracking method using Kalman filter”. In: The
2010 IEEE International Conference on Information and Automation. IEEE.
2010, pp. 1862–1866.

[42] LI-IMX274MIPI-FMC. url: https://www.leopardimaging.com/product/csi-2-
mipi-modules-i-pex/li-imx274mipi-fmc/.

70

https://arxiv.org/abs/2112.09775
https://arxiv.org/abs/2112.09775
https://doi.org/10.1109/tpami.2020.3033882
http://dx.doi.org/10.1109/TPAMI.2020.3033882
https://doi.org/10.1145/3445814.3446737
https://doi.org/10.1145/3445814.3446737
https://doi.org/10.1109/TPAMI.2016.2574707
https://www.leopardimaging.com/product/csi-2-mipi-modules-i-pex/li-imx274mipi-fmc/
https://www.leopardimaging.com/product/csi-2-mipi-modules-i-pex/li-imx274mipi-fmc/

[43] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. “A 128×128 120
dB 15 µs Latency Asynchronous Temporal Contrast Vision Sensor”. In: IEEE
Journal of Solid-State Circuits 43.2 (2008), pp. 566–576. doi: 10.1109/JSSC.
2007.914337.

[44] Robert LiKamWa et al. “Energy characterization and optimization of image
sensing toward continuous mobile vision”. In: Proceeding of the 11th annual
international conference on Mobile systems, applications, and services. 2013,
pp. 69–82.

[45] Robert LiKamWa et al. “Redeye: analog convnet image sensor architecture for
continuous mobile vision”. In: ACM SIGARCH Computer Architecture News
44.3 (2016), pp. 255–266.

[46] Huibao Lin, Jennie Si, and Glen P Abousleman. “Knowledge-based hierarchi-
cal region-of-interest detection”. In: 2002 IEEE International Conference on
Acoustics, Speech, and Signal Processing. Vol. 4. IEEE. 2002, pp. IV–3628.

[47] Min Liu and Tobi Delbrück. “ABMOF: A Novel Optical Flow Algorithm for
Dynamic Vision Sensors”. In: CoRR abs/1805.03988 (2018). arXiv: 1805.03988.
url: http://arxiv.org/abs/1805.03988.

[48] Min Liu and Tobi Delbrück. “ABMOF: A Novel Optical Flow Algorithm for
Dynamic Vision Sensors”. In: CoRR abs/1805.03988 (2018). arXiv: 1805.03988.
url: http://arxiv.org/abs/1805.03988.

[49] Ana I. Maqueda et al. “Event-based Vision meets Deep Learning on Steering
Prediction for Self-driving Cars”. In: CoRR abs/1804.01310 (2018). arXiv:
1804.01310. url: http://arxiv.org/abs/1804.01310.

[50] L Marcenaro et al. “Multiple object tracking under heavy occlusions by us-
ing kalman filters based on shape matching”. In: Proceedings. International
Conference on Image Processing. Vol. 3. IEEE. 2002, pp. III–III.

[51] Milesial. Pytorch-UNet. https://github.com/milesial/Pytorch-UNet. Accessed
on 2021-09-22. Aug. 2021.

[52] Bogdan Mocanu, Ruxandra Tapu, and Titus Zaharia. “Deep-see face: A mobile
face recognition system dedicated to visually impaired people”. In: IEEE Access
6 (2018), pp. 51975–51985.

71

https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1109/JSSC.2007.914337
https://arxiv.org/abs/1805.03988
http://arxiv.org/abs/1805.03988
https://arxiv.org/abs/1805.03988
http://arxiv.org/abs/1805.03988
https://arxiv.org/abs/1804.01310
http://arxiv.org/abs/1804.01310
https://github.com/milesial/Pytorch-UNet

[53] Divya Mohan et al. “Adaptive video subsampling for energy-efficient object
detection”. In: 2019 53rd Asilomar Conference on Signals, Systems, and Com-
puters. IEEE. 2019, pp. 103–107.

[54] Elias Mueggler, Basil Huber, and Davide Scaramuzza. “Event-based, 6-DOF
pose tracking for high-speed maneuvers”. In: 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2014, pp. 2761–2768. doi: 10.
1109/IROS.2014.6942940.

[55] Hyeonseob Nam and Bohyung Han. “Learning multi-domain convolutional
neural networks for visual tracking”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2016, pp. 4293–4302.

[56] Razvan Nane et al. “A Survey and Evaluation of FPGA High-Level Synthesis
Tools”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 35.10 (2016), pp. 1591–1604. doi: 10.1109/TCAD.2015.2513673.

[57] Guanghan Ning et al. “Spatially supervised recurrent convolutional neural
networks for visual object tracking”. In: 2017 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE. 2017, pp. 1–4.

[58] Paraskevi Nousi et al. “Embedded UAV real-time visual object detection and
tracking”. In: 2019 IEEE International Conference on Real-time Computing
and Robotics (RCAR). IEEE. 2019, pp. 708–713.

[59] Daniele Palossi et al. “A 64-mW DNN-based visual navigation engine for
autonomous nano-drones”. In: IEEE Internet of Things Journal 6.5 (2019),
pp. 8357–8371.

[60] Youngmin Park, Vincent Lepetit, and Woontack Woo. “Multiple 3d object track-
ing for augmented reality”. In: 2008 7th IEEE/ACM International Symposium
on Mixed and Augmented Reality. IEEE. 2008, pp. 117–120.

[61] Etienne Perot et al. “Learning to Detect Objects with a 1 Megapixel Event
Camera”. In: CoRR abs/2009.13436 (2020). arXiv: 2009.13436. url: https:
//arxiv.org/abs/2009.13436.

[62] Murad Qasaimeh et al. “Comparing Energy Efficiency of CPU, GPU and
FPGA Implementations for Vision Kernels”. In: 2019 IEEE International
Conference on Embedded Software and Systems (ICESS). 2019, pp. 1–8. doi:
10.1109/ICESS.2019.8782524.

72

https://doi.org/10.1109/IROS.2014.6942940
https://doi.org/10.1109/IROS.2014.6942940
https://doi.org/10.1109/TCAD.2015.2513673
https://arxiv.org/abs/2009.13436
https://arxiv.org/abs/2009.13436
https://arxiv.org/abs/2009.13436
https://doi.org/10.1109/ICESS.2019.8782524

[63] Real-Life Use Cases for Edge Computing. url: https://innovationatwork.ieee.
org/real-life-edge-computing-use-cases/.

[64] Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza. “Real-time visual-
inertial odometry for event cameras using keyframe-based nonlinear optimiza-
tion”. In: (2017).

[65] Henri Rebecq et al. “Events-To-Video: Bringing Modern Computer Vision to
Event Cameras”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). June 2019.

[66] Henri Rebecq et al. “EVO: A Geometric Approach to Event-Based 6-DOF Par-
allel Tracking and Mapping in Real Time”. In: IEEE Robotics and Automation
Letters 2.2 (2017), pp. 593–600. doi: 10.1109/LRA.2016.2645143.

[67] Henri Rebecq et al. “High Speed and High Dynamic Range Video with an
Event Camera”. In: CoRR abs/1906.07165 (2019). arXiv: 1906.07165. url:
http://arxiv.org/abs/1906.07165.

[68] Joseph Redmon et al. “You only look once: Unified, real-time object detection”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2016), pp. 779–788.

[69] Christian Reinbacher, Gottfried Graber, and Thomas Pock. “Real-Time
Intensity-Image Reconstruction for Event Cameras Using Manifold Regular-
isation”. In: CoRR abs/1607.06283 (2016). arXiv: 1607 . 06283. url: http :
//arxiv.org/abs/1607.06283.

[70] Fengbo Ren. Energy and area efficiency comparison between different computa-
tional devices. From CEN571: Hardware Acceleration and FPGA Computing
Spring 2021 slides.

[71] Jing Ren and Jie Hao. “Mean shift tracking algorithm combined with Kalman
Filter”. In: 2012 5th International Congress on Image and Signal Processing.
IEEE. 2012, pp. 727–730.

[72] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: CoRR abs/1505.04597
(2015). arXiv: 1505.04597. url: http://arxiv.org/abs/1505.04597.

[73] Priyabrata Saha, Burhan A Mudassar, and Saibal Mukhopadhyay. “Adaptive
control of camera modality with deep neural network-based feedback for efficient

73

https://innovationatwork.ieee.org/real-life-edge-computing-use-cases/
https://innovationatwork.ieee.org/real-life-edge-computing-use-cases/
https://doi.org/10.1109/LRA.2016.2645143
https://arxiv.org/abs/1906.07165
http://arxiv.org/abs/1906.07165
https://arxiv.org/abs/1607.06283
http://arxiv.org/abs/1607.06283
http://arxiv.org/abs/1607.06283
https://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597

object tracking”. In: 2018 15th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS). IEEE. 2018, pp. 1–6.

[74] Cedric Scheerlinck, Nick Barnes, and Robert E. Mahony. “Continuous-time
Intensity Estimation Using Event Cameras”. In: CoRR abs/1811.00386 (2018).
arXiv: 1811.00386. url: http://arxiv.org/abs/1811.00386.

[75] Cedric Scheerlinck et al. “Fast Image Reconstruction with an Event Camera”. In:
2020 IEEE Winter Conference on Applications of Computer Vision (WACV).
2020, pp. 156–163. doi: 10.1109/WACV45572.2020.9093366.

[76] Jianbing Shen et al. “Visual object tracking by hierarchical attention siamese
network”. In: IEEE Transactions on Cybernetics 50.7 (2019), pp. 3068–3080.

[77] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. In: International Conference on Learning
Representations. 2015.

[78] Amos Sironi et al. “HATS: Histograms of Averaged Time Surfaces for Robust
Event-based Object Classification”. In: CoRR abs/1803.07913 (2018). arXiv:
1803.07913. url: http://arxiv.org/abs/1803.07913.

[79] Yibing Song et al. “Vital: Visual tracking via adversarial learning”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 8990–8999.

[80] ShiJie Sun et al. “Deep affinity network for multiple object tracking”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 43.1 (2019),
pp. 104–119.

[81] UI-3250CP Rev. 2. url: https://www.ids-imaging.us/store_us/ui-3250cp-rev-
2.html.

[82] Using PyuEye. url: https://www.ids-imaging.us/programming-examples-
details/simple- live- image-acquisition-with- the-python- interface-pyueye.
html.

[83] Antoni Rosinol Vidal et al. “Hybrid, Frame and Event based Visual Inertial
Odometry for Robust, Autonomous Navigation of Quadrotors”. In: CoRR
abs/1709.06310 (2017). arXiv: 1709.06310. url: http://arxiv.org/abs/1709.
06310.

74

https://arxiv.org/abs/1811.00386
http://arxiv.org/abs/1811.00386
https://doi.org/10.1109/WACV45572.2020.9093366
https://arxiv.org/abs/1803.07913
http://arxiv.org/abs/1803.07913
https://www.ids-imaging.us/store_us/ui-3250cp-rev-2.html
https://www.ids-imaging.us/store_us/ui-3250cp-rev-2.html
https://www.ids-imaging.us/programming-examples-details/simple-live-image-acquisition-with-the-python-interface-pyueye.html
https://www.ids-imaging.us/programming-examples-details/simple-live-image-acquisition-with-the-python-interface-pyueye.html
https://www.ids-imaging.us/programming-examples-details/simple-live-image-acquisition-with-the-python-interface-pyueye.html
https://arxiv.org/abs/1709.06310
http://arxiv.org/abs/1709.06310
http://arxiv.org/abs/1709.06310

[84] Vitis AI. url: https://www.xilinx.com/products/design-tools/vitis/vitis-
ai.html.

[85] Vitis AI Model Zoo. url: https://github.com/Xilinx/Vitis-AI/tree/master/
models/AI-Model-Zoo.

[86] Lijun Wang et al. “Visual tracking with fully convolutional networks”. In:
Proceedings of the IEEE international conference on computer vision. 2015,
pp. 3119–3127.

[87] Yong Wang et al. “Energy-efficient image compressive transmission for wireless
camera networks”. In: IEEE Sensors Journal 16.10 (2016), pp. 3875–3886.

[88] What is an FPGA? url: https://www.xilinx.com/products/silicon-devices/
fpga/what- is-an-fpga.html#:~:text=Field%5C%20Programmable%5C%
20Gate%5C%20Arrays%5C%20(FPGAs, or%5C%20functionality%5C%
20requirements%5C%20after%5C%20manufacturing..

[89] What is an FPGA? url: https://www.intel.com/content/www/us/en/
products/details/fpga/resources/overview.html.

[90] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. “Online Object Tracking: A
Benchmark”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2013).

[91] Xilinx. Vitis AI User Guide. English. Version Version 1,4. Xilinx. July 22, 2021.

[92] Wei Yang et al. “An Embedded Tracking System with Neural Network Acceler-
ator”. In: 2018 International Joint Conference on Neural Networks (IJCNN).
IEEE. 2018, pp. 1–7.

[93] YOLOv3 DNNDK. url: https://github.com/Xilinx/Vitis-AI/tree/1.3.2/
demo/DNNDK/tf_yolov3_voc_py.

[94] Yuechen Yu et al. “Deformable siamese attention networks for visual object
tracking”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2020, pp. 6728–6737.

[95] Mengyao Zhai et al. “Deep learning of appearance models for online object
tracking”. In: Proceedings of the European Conference on Computer Vision
(ECCV) Workshops. 2018.

75

https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo
https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html#:~:text=Field%5C%20Programmable%5C%20Gate%5C%20Arrays%5C%20(FPGAs,or%5C%20functionality%5C%20requirements%5C%20after%5C%20manufacturing.
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html#:~:text=Field%5C%20Programmable%5C%20Gate%5C%20Arrays%5C%20(FPGAs,or%5C%20functionality%5C%20requirements%5C%20after%5C%20manufacturing.
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html#:~:text=Field%5C%20Programmable%5C%20Gate%5C%20Arrays%5C%20(FPGAs,or%5C%20functionality%5C%20requirements%5C%20after%5C%20manufacturing.
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html#:~:text=Field%5C%20Programmable%5C%20Gate%5C%20Arrays%5C%20(FPGAs,or%5C%20functionality%5C%20requirements%5C%20after%5C%20manufacturing.
https://www.intel.com/content/www/us/en/products/details/fpga/resources/overview.html
https://www.intel.com/content/www/us/en/products/details/fpga/resources/overview.html
https://github.com/Xilinx/Vitis-AI/tree/1.3.2/demo/DNNDK/tf_yolov3_voc_py
https://github.com/Xilinx/Vitis-AI/tree/1.3.2/demo/DNNDK/tf_yolov3_voc_py

[96] Bingyi Zhang et al. “MiniTracker: a lightweight CNN-based system for vi-
sual object tracking on embedded device”. In: 2018 IEEE 23rd International
Conference on Digital Signal Processing (DSP). IEEE. 2018, pp. 1–5.

[97] Libao Zhang et al. “Multi-scale hybrid saliency analysis for region of interest
detection in very high resolution remote sensing images”. In: Image and Vision
Computing 35 (2015), pp. 1–13.

[98] Richard Zhang et al. “The Unreasonable Effectiveness of Deep Features as a
Perceptual Metric”. In: CoRR abs/1801.03924 (2018). arXiv: 1801.03924. url:
http://arxiv.org/abs/1801.03924.

[99] Xiaofan Zhang et al. “SkyNet: a hardware-efficient method for object detection
and tracking on embedded systems”. In: Proceedings of Machine Learning and
Systems 2 (2020), pp. 216–229.

[100] Minghao Zhao et al. “Real-time underwater image recognition with FPGA
embedded system for convolutional neural network”. In: Sensors 19.2 (2019),
p. 350.

[101] Yi Zhou et al. “Semi-Dense 3D Reconstruction with a Stereo Event Camera”.
In: CoRR abs/1807.07429 (2018). arXiv: 1807.07429. url: http://arxiv.org/
abs/1807.07429.

[102] Alex Zihao Zhu et al. “EV-FlowNet: Self-Supervised Optical Flow Estimation
for Event-based Cameras”. In: CoRR abs/1802.06898 (2018). arXiv: 1802.06898.
url: http://arxiv.org/abs/1802.06898.

[103] Alex Zihao Zhu et al. “EventGAN: Leveraging Large Scale Image Datasets for
Event Cameras”. In: CoRR abs/1912.01584 (2019). arXiv: 1912.01584. url:
http://arxiv.org/abs/1912.01584.

[104] Alex Zihao Zhu et al. “Unsupervised Event-based Learning of Optical Flow,
Depth, and Egomotion”. In: CoRR abs/1812.08156 (2018). arXiv: 1812.08156.
url: http://arxiv.org/abs/1812.08156.

[105] Zheng Zhu et al. “Distractor-aware siamese networks for visual object tracking”.
In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,
pp. 101–117.

[106] Zynq UltraScale+ MPSoC. url: https://www.xilinx.com/products/silicon-
devices/soc/zynq-ultrascale-mpsoc.html.

76

https://arxiv.org/abs/1801.03924
http://arxiv.org/abs/1801.03924
https://arxiv.org/abs/1807.07429
http://arxiv.org/abs/1807.07429
http://arxiv.org/abs/1807.07429
https://arxiv.org/abs/1802.06898
http://arxiv.org/abs/1802.06898
https://arxiv.org/abs/1912.01584
http://arxiv.org/abs/1912.01584
https://arxiv.org/abs/1812.08156
http://arxiv.org/abs/1812.08156
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Background
	3 FPGA Implementation of Adaptive Subsampling for ROI-based Object Tracking
	4 Optically Defocused Reconstruction for Event-based Vision Sensors
	5 Conclusion

	References

