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ABSTRACT

Dynamical decoupling (DD) is a promising approach to mitigate the detrimental ef-

fects that interactions with the environment have on a quantum system. In DD,

the finite-dimensional system is rotated about specified axes using strong and fast

controls that eliminate system-environment interactions and protect the system from

decoherence. In this thesis, the framework of DD is theoretically studied, and later it

discusses how this framework can be implemented on an infinite-dimensional system

that amplifies system components rather than suppressing them through quadra-

ture squeezing operations. It begins by studying the impact of system-environment

interactions on a quantum system, and then it analyzes how DD suppresses these

interactions. The conditions for protecting a finite-dimensional system through DD

are reviewed, and a numerical analysis of the DD conditions for simple systems is con-

ducted. Using bang-bang controls, a framework for decoupling decoherence-inducing

components from a general finite-dimensional system is studied. Later, following an

overview of schemes that amplify the strength of a quantum signal through reversible

squeezing, a theoretical study of Hamiltonian Amplification (HA) for quantum har-

monic oscillators is presented. By implementing the DD framework with squeezing

operations, HA achieves speed-up in the dynamics of quantum harmonic oscillators,

which translates into the strengthening of interactions between harmonic oscillators.

Finally, the application of HA in amplifying the third-order nonlinearity in a Kerr

medium is proposed to obtain a speed-up in the implementation of controlled phase

gates for optical quantum computations. Numerically simulated results show that

large amplification in nonlinearity is feasible with sufficient squeezing resources, com-

pleting the set of universal quantum gates in optical quantum computing.
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Chapter 1

INTRODUCTION

Quantum mechanics is the mathematical theory that predicts the behavior of micro-

scopic particles or, at least, outlines a framework that describes the tools we use to

examine this behavior. Although perhaps not complete [1], it has been immensely

successful in describing the nature of the microscopic universe up to the present day.

It began as “quantum theory”, which was initially a set of hypotheses to explain a

variety of mysterious phenomena: the wave-particle nature of quantum particles, the

quantization of energy, the probabilistic nature of the quantum particles in space and

time, and so on [2]. The laws governing quantum mechanics were formulated in the

early 20th century with a series of novel contributions from physicists, chemists, and

mathematicians. In the present day, the laws of quantum mechanics are fundamen-

tals in physics, chemistry, biology, engineering, and information technology. Perhaps

the most well-known application of quantum mechanics is to solve a computational

problem through a “quantum computer” [3]. Inarguably, there has been tremendous

progress in the area of experimental implementation of devices that exploit the prop-

erties of quantum particles; however, there are still significant challenges involved in

constructing a continual, error-free quantum computer [4].

One common challenge in realizing these devices is the unwanted interaction of

the quantum particles with the macroscopic world. Quantum mechanical systems,

in general, are extremely sensitive to the noise induced by the environment [5]. The

noise plagues the system in such a way that it loses its “quantumness” and behaves

like a classical system. At this point, the notions of quantum and classical may be

confusing, and to understand the difference between the two, we will consider the
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(a) (b)

Figure 1.1: (a) According to the postulates of quantum mechanics, the atom, the

hammer, the poison, and the cat exist in a superposition of two mutually incompatible

states, one of which describes the cat as alive and dead in the other. In the closed

box, the cat is, fictitiously, both dead and alive simultaneously. (b) By the laws of

quantum mechanics, when an observer opens the box, the superposition of the dead

and alive states is collapsed to either one of the two states (in this case, the cat is

found alive). Figure adopted from Schlosshauer, “Decoherence: and the quantum-to-

classical transition.”, 2007, pg. 2.

infamous thought experiment of Schrödinger’s cat [6].

For the experiment, imagine a cat trapped in a box, as shown in Fig 1.1(a).

Within the box, a two-level atom serves as a trigger for the hammer to break the

flask containing poison. The atom is connected to the hammer in such a way that

if the atom is excited to a high energy level, the hammer will fall on the flask and

release the poison, which will kill the cat. But if the atom is in the ground state, the

hammer is untriggered, and the cat is alive. This entire setup corresponds the excited

and ground states of an atom to the dead and alive states of the cat.

According to the laws of quantum mechanics, the atom is characterized by the

superposition of excited and ground states. Since the atom is in the excited and

2



ground states at the same time, the cat is both dead and alive at the same time! This

property of the atom to exist in a superposition of classically mutually exclusive states

describes the “quantumness” of microscopic particles, called “quantum coherence” or

simply “quantum superposition” [6].

In the second part of the experiment (see Fig 1.1(b)) imagine we are allowed to

open the box and check the state of the cat. One of the postulates of quantum

mechanics predicts that when an observation is made on a quantum system, the

superposition state collapses into one of its component states. Thus, if we open the

box and find the cat alive, the atom’s superposition of the ground and excited states

must have collapsed to the ground state. Similarly, if the poor animal is found dead,

then the atom must have collapsed to its excited state. It is the observer who decides

the fate of the animal by simply opening the box. This is essentially a classical case

where a system exists in any one of the states but not in the superposition of all of

them.

Obviously, the thought experiment by Schrödinger is based on certain assump-

tions. One of them is that the box within which the cat is confined is assumed to be

isolated from the rest of the universe. Experience shows that a quantum mechani-

cal system cannot be kept completely insulated from the effects of the environment

around it [5, 7]. Thus, for an accurate description of the system’s dynamics, the quan-

tum system must be considered “open,” and the effect of the surroundings around it

must be taken into account. The effect of the openness of the system could be under-

stood with the same Schrödinger’s cat experiment. Let’s assume a similar setup as

shown in Fig 1.1(a), but this time an electromagnetic field from an unknown source

is interacting with the atom inside the box. The result of the interaction is that the

atom loses its coherence over the course of time and collapses into one of the states.

Now if the box is opened by an external observer, the cat will be found in either dead

3



or alive state; however, this time it’s not the observer who enforces classicality on the

system but it is due to the uncontrollable interaction between the atom and the field.

The uniqueness of quantum systems lies in their ability to exist in a superposition

of their component states. The rapid development of quantum technologies heavily

relies on how long we can preserve this superposition state before it decays to a mix-

ture of classical probabilities. In addition, the larger a quantum system is, the more

strongly it interacts with its environment, and the faster the system loses its coher-

ence or undergoes “decoherence” [5]. The effect of decoherence could be observed as

a source of error in quantum computation, which depends on large-scale superposi-

tions. To achieve a longer coherence time, we tend to combat the detrimental effects

of the environment using quantum error correction techniques. We will study the

challenges involved in developing these techniques and briefly review some of them

in Chapter 3. Our primary focus in this thesis is to thoroughly study “dynamical de-

coupling” (DD) [8], which suppresses the system-environment interaction by rotating

the system about a set of axes such that the average deviation of the system from

the desired state is zero. By using this technique, the system’s state is preserved, and

larger computations can be performed.

We aspire to address the fundamentals of DD in a simplified manner; however,

we do not limit ourselves to it. Instead, we switch ourselves from finite-dimensional

systems to infinite-dimensional systems with the purpose of identifying schemes, in the

same vein as DD, that may enhance the properties of the system instead of suppressing

them. Such a scheme has been shown to amplify desired interactions between system

components, which is crucial for maintaining quantum effects in a quantum device

[9]. In this thesis, we propose that through the “Hamiltonian amplification” (HA)

[9] protocol, weak nonlinear interaction between photonic qubits can be enhanced

by squeezing the photonic states along two quadratures. We numerically show that
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with the nonlinearity amplified, a speed-up in the implementation of controlled phase

gates can be achieved for media with weak nonlinear interactions in optical quantum

computing.

The narrative of the thesis as a whole can be divided into two parts. The first

part provides an outline of how a quantum system is affected by system-environment

interactions and how DD suppresses these interactions. Throughout the overview,

we try to represent the decoherence and the dynamics involved with mathematical

models previously proposed by Lidar and Brun [5], and Viola and Lloyd [8]. We review

the necessary conditions derived in [5] for decoupling a general open quantum system

from an environment and numerically examine these conditions by evaluating the

dynamics of a simple qubit system driven with specifically tailored controls. Finally,

we derive “bang-bang controls” [8] from a continuous-time control drive and obtain a

framework of transformations that eliminates the system-environment interaction in

a general finite-dimensional system.

The second part takes nearly the opposite turn. In this context, our narrative

shifts to infinite-dimensional systems that describe harmonic motion, for example,

a quantum harmonic oscillator. We briefly discuss how quantum harmonic oscil-

lators are described in the sense of quantum mechanics and then we go through

the squeezed coherent states in Chapter 4. With the knowledge of squeezed states,

we review recently proposed amplification schemes that amplify the magnitude of

a quantum signal with reversible squeezing. Then, we meticulously discuss Hamil-

tonian amplification (HA) [9], or what we preferably call “dynamical amplification”

(DA), which aims to speed-up the dynamics of harmonic oscillators via quadrature

squeezing. Consequently, this speed-up translates into the amplification of interac-

tions when the harmonic oscillator is coupled with another system. We look into the

systems where this scheme provides an additional advantage in the system dynamics,

5



and finally, we review the emerging field of optical quantum computing and propose

the application of DA for fast implementation of controlled phase gates by enhancing

the nonlinear photon-photon interactions.

6



Chapter 2

BACKGROUND

2.1 Quantum Superposition

The idea of superposition is intrinsically based on the wave-like nature of quantum

particles. Classically, two coherent waves may interfere with each other to form a wave

with a waveform defined by the superposition of the two waves. If the wave associated

with a quantum particle is split into two, defining the two states of a quantum particle,

then these waves might interfere with each other to generate another state described

by the superposition of the two states. The peculiarity of quantum superposition

becomes evident when the two states are “mutually exclusive”, which corresponds to

Schrödinger cat’s dead and alive states, which we earlier discussed. But how can an

animal be dead and alive at the same time?

To accurately explain the characteristics of quantum superposition in a classical

scenario is extremely challenging. This property is exclusively observed for quantum

particles like silver atoms in the Stern-Gerlach experiment [10] and for photons in

Young’s double slit experiment [11]. In fact, the ability of a quantum particle to exist

in a superposition state is the cornerstone of every advantage provided by quantum

systems over their classical counterparts. From quantum computation [3, 12–14],

nanoscale thermodynamics [15, 16], quantum sensing [17], metrology [18, 19] to bi-

ology [19–21] and condensed matter [22, 23] are some of the fields where quantum

superposition is a precious resource. Quantum algorithms [24], which became popu-

lar after the introduction of Shor’s algorithm [25], are based on the superposition of

inputs, which results in parallel computations also known as “quantum parallelism”.
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In a mathematical setting, the two mutually exclusive states of a quantum particle

can be represented in Dirac notation by orthonormal vectors |u1⟩ and |u2⟩ in a complex

Hilbert space. A superposition of the orthogonal states is represented as

|ψ⟩ = c1 |u1⟩ + c2 |u2⟩ , (2.1)

where c1, c2 ∈ C and the states are normalized such that the inner product ⟨ψ|ψ⟩ =

|c1|2 + |c2|2 = 1. The absolute square of c1 and c2 provides the probability to find

state |ψ⟩ in one of the two orthonormal states. And the interference between |u1⟩

and |u2⟩ is due to the constant phase difference between complex numbers c1 and c2.

Moreover, the vectors |u1⟩ and |u2⟩ form the basis of the Hilbert space in which any

arbitrary superposition of the two states exists. In general, a state in a n dimensional

Hilbert space is given by

|ψ⟩ =
n∑

i=1
ci |ui⟩ , (2.2)

where ci is the complex scalar associated with |ui⟩, which forms a complete and

orthonormal basis spanning the Hilbert space. At this point, it may be appropriate

to consider the famous double-slit experiment to physically realize the phenomenon

of quantum superposition.

In the experiment [11] (see Fig 2.1) single photons are sent through a barrier

with two slits, which are then detected by a photon detector. The number of photons

detected in the vertical direction is a function of the horizontal position on the screen.

In Fig 2.2(a) the detector is exposed to a small number of single photons coming out

of the two slits, and we observe the random distribution of photons on the screen.

However, when the detector is exposed to a large population of single photons in Fig

2.2(b), we notice a pattern starts to emerge. And in Fig 2.2(c), for sufficiently large

photon counts, we clearly observe the interference fringes similar to the one obtained

in Young’s double-slit interference pattern for a beam of light [27].

8



Figure 2.1: Illustration of the experimental setup of a single photon double-slit exper-

iment which exhibits the interference fringes formed by single photons. Figure taken

from Tang and Hu, “Analysis of single-photon self-interference in young’s double-slit

experiments.”, 2022.

But, given that a single photon arrives at the slits, the interference pattern is

only possible if a photon coexists in both of the slits at the same moment. This is

explained by the wave nature of the photon, which is split into two at the slits. Now

if we denote the two possible trajectories of a photon through the slits by states |ψ1⟩

and |ψ2⟩, the photon will be in the superposition state given by

|Ψ⟩ = 1√
2

(|ψ1⟩ + |ψ2⟩). (2.3)

Note that the superposition state cannot be described by a classical statistical dis-

tribution. For a classical case, we expect that the particle will go through either of

the two slits and yield the standard Gaussian distribution centered behind each slit

[28]. Therefore, the interference pattern confirms the existence of a superposition of

states, which is a non-classical case.

We also note that to observe quantum superposition, one has to study a large

number of identical quantum systems. This collection of identical systems is referred

9



(a) (b)

(c)

Figure 2.2: (a) Pattern obtained on photon detector for 0.1 s exposure time. The

grayscale represents a range of 0–20 pixel counts. The graph on the bottom shows the

number of counts detected in the vertical direction as a function of horizontal position.

(b) Pattern for 1 s exposure time; the graph and image grayscale is 0–20 counts. (c)

Pattern for 120 s exposure time: the graph and image grayscale is 0–500 counts.

Clearly, for longer exposure time we obtain the interference fringe characterized by

the superposition of photons. Figures taken from Rueckner and Peidle, “Young’s

double-slit experiment with single photons and quantum eraser.”, 2013.
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to as an ensemble. If we consider all the systems in the ensemble to be in a state |ψ⟩,

the entire ensemble can be represented by |ψ⟩ which we call a “pure state”. However,

for an ensemble where not all the systems are in the same state or are in a “mixed

state”, we represent it with a density operator [29]

ρ =
∑

j

pj |ψj⟩ ⟨ψj| , (2.4)

where pj describes the fraction of ensemble in state |ψj⟩. Note that ρ describes a

pure state when pj = 1. Hence, the density operator is a general representation of

the state of an ensemble. A thorough discussion about the density operators can be

found in the book by Sakurai and Napolitano [10]. For this work, we require only

the fundamental properties of the density operator, which are described in Appendix

A.3.

We now consider an ensemble of pure states |ψ⟩ = ∑
i ci |ui⟩ which can also be

written as

ρ =
∑

i

∑
j

cic
∗
j |ui⟩ ⟨uj| . (2.5)

The diagonal elements |ci|2 in (2.5) represent the probabilities of finding a system

in the corresponding state |ui⟩ whereas the off-diagonal elements cic
∗
j represent the

interference between the “coexisting” states |ui⟩ and |uj⟩. These off-diagonal elements

describe the coherence present in the system. However, we must be careful with our

choice of basis for the states. Just because the density matrix is diagonal does not

mean that the system is classical in nature. Whether off-diagonal elements appear or

not will depend on our choice of basis.

Now consider a two-level closed system described by the Hamiltonian

HS = ℏω0σz, (2.6)

where σz is a Pauli-Z operator with eigenvalues {1, -1} corresponding to eigenstates

{|0⟩ , |1⟩} and ω0 describes the natural frequency at which the system oscillates be-
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tween the basis states. This system is preferably called a single qubit system (see Fig

2.3), and we will extensively use it throughout this work. Moreover, for simplicity,

we assume ℏ = 1 whenever we describe the dynamics of a system in the thesis. Let’s

consider that the qubit is initially in a pure state represented in basis states {|0⟩ , |1⟩}

such that

|ψ(t0)⟩ = 1√
2

(|0⟩ + |1⟩). (2.7)

Figure 2.3: Bloch sphere representation of a qubit state. The north pole is |0⟩ and

the south pole is |1⟩. Any arbitrary superposition of |0⟩ and |1⟩ is |ψ⟩ = cos
(

θ
2

)
|0⟩ +

eiφ sin
(

θ
2

)
|1⟩ where θ is polar angle from positive z axis and φ is the azimuth angle

from positive x axis. Figure adopted from Wendin and Shumeiko, “Quantum bits

with josephson junctions.”, 2007.

The matrix representation of the density operator for |ψ(t0)⟩ is given by

ρ(t0) =

 1
2

1
2

1
2

1
2

 , (2.8)

where the off-diagonal elements resemble the superposition state between the basis

states |0⟩ and |1⟩. If we look into the dynamics of the density operator, which is given

12



by the solution of Liou-ville–von Neumann equation [7], we get

ρ(t) = e−iHS(t−t0)ρ(t0)eiHS(t−t0), (2.9)

where the matrix representation of ρ(t) is

ρ(t) =

 1
2

1
2e

−iω02(t−t0)

1
2e

iω02(t−t0) 1
2

 . (2.10)

Note that the off-diagonal elements oscillate with frequency 2ω0 in opposite directions

to each other. This is due to the dynamics induced in the relative phase between

the basis states |0⟩ and |1⟩ which itself evolve with respect to the unitary operator

e−iHS(t−t0).

In the framework of closed systems, quantum mechanics can be understood in

the most simple and fundamental way. In a quantum mechanical setting, a closed

system is an isolated system that doesn’t exchange any energy with its surroundings.

The entropy of a closed system is preserved, and transformations in the state of

these systems are unitary in nature. However, in realistic scenarios, there are no

truly closed systems. Only for certain time scales could the dynamics of practical

systems be defined by those of closed quantum systems. These time scales are called

coherence times since, beyond this time, the quantum system loses its coherence and

is then reduced to a mixture of classical probabilities. For example, the coherence

time for a spin qubit in silicon is experimentally observed to be ≈ 200 µs [31]. For

superconducting qubits, coherence times exceeding 0.30 ms have been demonstrated

[32, 33]. Thus, to obtain a more accurate description of the dynamics of a quantum

system, one must take the effects of its surroundings into account.
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2.2 Open Quantum System

A quantum mechanical system is called an open system if it is partially or entirely

coupled to an environment. The term environment here refers to an external system

whose coupling with the system of our interest results in the loss of information. By

“environment”, we do not mean only the macroscopic objects like detectors or lasers,

but we refer to everything in the universe that can couple with the closed system.

This includes interaction with other qubits in a multi-qubit system, interaction with

an electromagnetic field, or the noise induced by air particles, sound waves, or even

the cosmic wave background. This coupling with the environment, no matter how

weak it is, induces features that result in the inclusion of decoherence in the system.

Decoherence can be simply introduced as the loss of a density matrix’s off-diagonal

elements during its evolution; however, one should not confuse decoherence with

effects like dissipation and dephasing, which also result in the decay of off-diagonals

in a density matrix of a system.

Figure 2.4: An illustration of a quantum system coupled to an environment. The

Hamiltonians HS and HB describe system and environment respectively. The system-

environment interaction is shown by HSB.

Dissipation in quantum mechanics occurs when the energy in the system is ir-
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reversibly lost to the environment. In general, dissipation is a quantum analog of

the dissipation of energy in classical mechanics. The energy from the system is dis-

tributed over many degrees of freedom in the environment, and over time, the energy

is entirely lost to the environment. For example, consider an excited two-level atom

interacting with an electromagnetic field in a cavity resonator [34]. The coupling

between the field and atoms causes an energy exchange, and if the system is perfectly

insulated, the energy exchange inside the cavity remains unperturbed. However, in

practical scenarios, the atom interacts with an external bath of fields such that energy

exchange between the atom and modes in the bath takes place in a nonunitary fash-

ion. Since the energy of the bath is (i) not well defined and (ii) distributed over many

modes of field, the atom-bath interaction results in the complete removal of energy

from the cavity resonator, and the atom collapses in its ground state. For dissipation,

the loss of energy over time corresponds to the decay of diagonal elements ρii(t) of the

density operator, which resemble the energy eigenstates of the system. To preserve

the positivity of ρ(t) (see Appendix A.7) the off-diagonals elements should also decay,

which intrinsically causes decoherence.

An ensemble is subjected to dephasing when due to a classical noise the average

over the relative phase factor of its systems, in which each individual system is de-

scribed by a pure state, results in zero [6]. This corresponds to the disappearance

of off-diagonal elements in the density operator of the ensemble. Let us consider

the example by Schlosshauer in [6]. Suppose an ensemble of N identical systems is

characterized by a pure state such that the kth system is given by

|ψk⟩ = 1√
2

(|0⟩ + eiϕ |1⟩), (2.11)

where ϕ is a relative phase factor. Let’s assume due to some external disturbances

the relative phase factor in each system is perturbed by a factor δk such that |ψk⟩ is

15



now

|ψk⟩ = 1√
2

(|0⟩ + ei(ϕ±δk) |1⟩). (2.12)

Now if we take an average over the ensemble with the ensemble density operator, we

obtain

ρ = 1
N

N∑
k=1

|ψk⟩ ⟨ψk|

= 1
2 |0⟩ ⟨0| + 1

2 |1⟩ ⟨1| +
( 1

2N

N∑
k=1

e−i(ϕ±δk)
)

|0⟩ ⟨1| +
( 1

2N

N∑
k=1

ei(ϕ±δk)
)

|1⟩ ⟨0| ,

(2.13)

where for N → ∞, the average over the phase factors e±i(ϕ±δi) results in zero and we

get the diagonal density matrix,

ρ = 1√
2

|0⟩ ⟨0| + 1√
2

|1⟩ ⟨1| . (2.14)

It is important to point out that the loss of off-diagonal elements does not mean

that dephasing and decoherence are the same phenomena [35]. Dephasing occurs

due to inaccuracy on the classical level and may contribute to decoherence in spin

systems, but the noise information about the cause of dephasing can be obtained in

advance and possibly rectified [35]. However, knowledge about decoherence cannot

be perceived earlier to undo its effect. This point will become more clear when we

look into decoherence.

2.3 Decoherence

In the simplest terms, decoherence is the loss of the ability of a quantum system to

exhibit superposition between its basis states. For example, consider the superposi-

tion state 1√
2(|0⟩+|1⟩) for the system described in (2.6). If the system is coupled to an

environment, then the effect is that after a certain time the superposition state decays

into either |0⟩ or |1⟩. It can be interpreted as the environment taking measurements of

the system, which collapses the superposition state into logical states associated with
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the observables monitored by the environment, which in the above example coincides

with the basis we (the observer) considered. This environment’s selection of certain

states from the system’s Hilbert space is called “einselection”, and states onto which

the system collapses are called “pointer states” or simply einselected states [35].

The mechanism of decoherence is governed by the system-environment interaction,

which results in the entanglement of system and environment states. Entanglement

implies the irreversible transfer of information from the system to the environment.

In general, the time scale at which the system is entangled with the environment is

extremely small [36]. As observers, we seem to compete with the environment for

system information. But because of the continuous and unperturbed interaction and

its large size, the environment wins the competition, obtaining information faster

than the observer [35].

In terms of the density operator, decoherence corresponds to the decay of the

off-diagonal elements. This is also evident from the example of decoherence of state
1√
2(|0⟩+|1⟩) to |0⟩ or |1⟩ we above considered. The density operator for the einselected

states in the example is simply ρ(t) = 1
2 |0⟩ ⟨0| + 1

2 |1⟩ ⟨1| or

ρ(t) =

 1
2 0

0 1
2

 . (2.15)

Recall from (2.14) that for dephasing in an ensemble density operator, we obtained

a similar density matrix. It should be emphasized that in the case of dephasing, there

is no entanglement between the system and environment, and subsequently, there is no

transfer of information. However, due to dephasing, the states lose phase coherence,

which randomizes the phases of states in a system interacting with the environment.

This is a factor that contributes to the decoherence of the system [37, 38]. Thus,

we note that both dissipation and dephasing, collectively and individually, could be
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contributing factors in decoherence.

2.4 Decoherence of a Single Qubit

To examine the mechanism behind environment-induced decoherence, we consider

a single qubit given in (2.6) interacting with an environment such that the interaction

Hamiltonian is given by

HSB = ℏω0σz ⊗B, (2.16)

where B is Hermitian and describes an arbitrary environment operator. The dynamics

of states in the open system are described by combined density operator ρtot(t) s.t.

ρtot(t) = e−iHSB(t−t0)ρS(t0) ⊗ ρB(t0)eiHSB(t−t0), (2.17)

where ρS(t0) and ρB(t0) represent the initial system and environment states. Here

we considered a standard assumption that qubit and the environment are initially

uncorrelated. Now, we wish to observe only the system’s dynamics in the overall

system-environment interaction. This is accomplished using the operation “partial

trace” (see Appendix A.4) which averages over the degrees of freedom of the environ-

ment to obtain the reduced density operator ρS(t) s.t.

ρS(t) =TrB{ρtot(t)} (2.18)

=TrB{e−iHSB(t−t0)ρS(t0) ⊗ ρB(t0)eiHSB(t−t0)}.

At this point, we may assume that the environment’s Hilbert space is spanned by the

orthonormal basis {|ϕr⟩}. We further assume that {|ϕr⟩} are eigenstates for B with

eigenvalues {λr}. Now, for any time t the elements of the reduced density matrix

ρS(t) are simply given by

⟨i| ρS(t) |j⟩ = ⟨i|
∑

r

⟨ϕr| {e−igλrω0σz(t−t0)ρS(t0) ⊗ ρB(t0)eigλrω0σz(t−t0)} |ϕr⟩ |j⟩ (2.19)

= ρij(t),
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where |i⟩ , |j⟩ ∈ {|0⟩ , |1⟩}. For the diagonal elements we obtain

ρ00(t) = ⟨i| ρS(t0) |i⟩
∑

r

⟨ϕr| ρB(t0) |ϕr⟩

= ρ00(t0).
(2.20)

Similarly, ρ11(t) = ρ11(t0). On the other hand, the off-diagonal elements are

ρ01(t) = ⟨0| ρS(t0) |1⟩
∑

r

e−i2gλrω0(t−t0) ⟨ϕr| ρB(t0) |ϕr⟩ , (2.21)

and ρ10(t) = (ρ01(t))∗. If we assume that ρS(t0) = |+⟩ ⟨+| and the environment is

initially in pure state |ψB⟩ then, from (2.8) we know

ρ00(t0) = ρ11(t0) = 1
2 , (2.22)

and,

ρ01(t) = 1
2
∑

r

e−i2gλrω0(t−t0) ⟨ϕr|ψB⟩ ⟨ψB|ϕr⟩ (2.23)

= 1
2 ⟨ψB|

(∑
r

e−igλrω0(t−t0) |ϕr⟩ ⟨ϕr| e−igλrω0(t−t0)
)

|ψB⟩

= 1
2 vB(t, t0),

where vB(t, t0) = ⟨ψB| e−i2gBω0(t−t0) |ψB⟩. Thus, the reduced density matrix ρS(t) is

given by

ρS(t) =

 1
2

1
2vB(t, t0)

1
2v

∗
B(t, t0) 1

2

 . (2.24)

Suppose that for a time t′ the value vB(t′, t0) and v∗
B(t′, t0) becomes zero then, the

matrix ρS(t′) decays to

ρS(t′) =

 1
2 0

0 1
2

 . (2.25)

The off-diagonal elements disappear over time due to the unavoidable system-environment

interaction, and eventually, the quantum system exhibits the behavior of a classical

system with two logical states.
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We can explicitly describe the environment by a bath of continuum of harmonic

oscillators to interpret the impact of environment-induced decoherence on the system,

as described in the single qubit dephasing mechanism by Viola and Llyod in [8]. For

the qubit system described in (2.6) interacting with a bath of harmonic oscillators,

the overall system plus bath Hamiltonian can be written as

H0 = HS +HB +HSB

= ℏω0σz +
∑

k

ℏωkb
†
kbk +

∑
k

ℏσz(gkb
†
k + g∗

kbk),
(2.26)

where HS and HB are the system and bath Hamiltonians respectively and HSB de-

scribes a bilinear interaction between the system and bath. The bath operators bk and

b†
k are bosonic operators, ωk is the frequency, and gk is the complex coupling param-

eter of kth field mode. In the joint Hamiltonian, the tensor product of two different

modes and the tensor product of the system and bath are shown by simple multipli-

cation. Note the commutator relation [HS, HSB] = 0, which implies that the system

and interaction Hamiltonian share common eigenbases. Indeed, these eigenbases are

the preferred state in which the system collapses after decoherence.

In this model, decoherence is assumed to occur purely through the dephasing

mechanism with no energy dissipation. With the detailed derivation in Appendix B,

we can show that the time evolution of H0 in the interaction picture Ũtot(t, t0) induces

entanglement between the qubit and bath state. This entanglement is precisely re-

sponsible for the decoherence of the system. If we consider an example where initially

the system is in state |ψ(0)⟩ = |+⟩ = 1√
2(|0⟩ + |1⟩) and the kth mode of bath is in the

vacuum state, then the states are evolved through Ũtot(t) to generate the entangled

state [39](
1√
2

(|0⟩ + |1⟩)
)

|0⟩k

Ũtot(t)
−−−→ 1√

2

(
|0⟩

∣∣∣∣12ξk(t)
〉

+ |1⟩
∣∣∣∣−1

2ξk(t)
〉)

, (2.27)

where the initial state is transformed into an entangled state correlated with the
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orthogonal coherent state
∣∣∣±1

2ξk(t)
〉
, where ξk(t) is

ξk(t) = 2gk

ωk

(1 − eiωkt). (2.28)

The entanglement in (2.27) consequently destroys the purity of the quantum state and

enforces the transition from a pure state to the classical mixture of basis states. This

can be seen for the elements in the system’s reduced density matrix ρ̃S(t), where the

diagonal elements ρ̃00(t) = ρ00(t0) and ρ̃11(t) = ρ11(t0), whereas for the off-diagonal

elements we obtain

ρ̃01(t) = ρ01(t0)e−Γ(t−t0), (2.29)

where Γ(t − t0) is a real time-dependent function, called “decoherence function” [7].

Following the result in [40] we obtain

Γ(t− t0) = Γ(∆t) =
∑

k

|ξk(∆t)|2

2 coth
(
ωk

2T

)
, (2.30)

where T is the temperature of the bath. Clearly, Γ(∆t) corresponds to the decay of

off-diagonal elements in the reduced density matrix and enforces classicality in the

system. If the qubit’s initial state is given by (2.7) then, we can write the reduced

density matrix ρS(t) in Schrödinger picture as

ρS(t) =

 1
2

1
2e

−iω2∆te−Γ(∆t)

1
2e

iω2∆te−Γ(∆t) 1
2

 , (2.31)

which after a certain time t decays into

ρS(t) =

 1
2 0

0 1
2

 . (2.32)

The decoherence function Γ(∆t) depends upon various parameters like the size of

the system under consideration, the nature of the environment, and the strength of

system-environment coupling [7]. It describes the spectral density of the bath, the

spectrum over which the energy from the system is distributed as a function of modes,

which in turn determines the time scales of decoherence.
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Small-scale experiments that can be conducted within the coherence time of a

quantum system have been demonstrated in recent times [41–43]. However, large-

scale quantum systems are required for classically intractable calculations to achieve

quantum superiority over the classical approach of computations [44, 45]. In general,

as the scale of components in a quantum system grows, its interactions with the

environment get stronger, and the coherence time decreases [5]. Techniques that apply

external controls can be used to increase the coherence time of systems by suppressing

the errors due to system-environment interaction or removing the components that

induce these errors. In the next Chapter, we will investigate techniques that can

suppress decoherence due to system-environment interactions or, ideally, eliminate

the effect completely.
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Chapter 3

DYNAMICAL DECOUPLING

3.1 Introduction

Eliminating the effect of decoherence is the most critical and universal requirement

for achieving longer coherence times in a quantum system. Development of such a

framework is a prerequisite for systems which rely on the capability of maintaining

extended coherence times for large-scale computations. These applications include

quantum computations [3, 5] and quantum information processing [46], as well as

in experiments with photonic qubits [47], trapped ions [48], quantum dots [49] and

optomechanics [50]. In classical error correction, the error generators are identified

through repeated measurements, and then the error is suppressed via a feedback

mechanism [51]. However, one will quickly realize that the exact scheme won’t work

for a quantum system. Firstly, any measurement will change the state of a quantum

system, and error correction through direct feedback is impossible. Secondly, since

cloning is not possible for quantum states, one cannot make copies of the state and

calculate errors by measuring the copied states.

For scenarios where the error rates are below a threshold, these challenges can be

overcome by developing quantum error correction techniques [52]. In recent years,

many efficient tools have been introduced in the field of quantum error correction

to mitigate the impact of environment-induced decoherence [5, 53]. Error correction

codes [5, 52, 53] have been shown to effectively realize improvements in state fidelity

[54–56]. Lidar et al. [57] suggested using decoherence-free subspaces to encode in-

formation that is intrinsically unaffected by noise. Topological quantum computing
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[58, 59] makes use of anyonic systems, which are naturally robust to computational

errors.

Dynamical decoupling (DD) is an effective quantum error correction technique,

especially in cases where the knowledge of the system-environment interaction is un-

known. It originates from NMR spectroscopy [60–62] where we strongly need precise

spectroscopy of complex molecules. In the context of quantum computing, DD was

introduced to suppress dephasing in spin systems by the application of a periodic

sequence of strong instantaneous pulses that flip the qubit in such a manner that the

net dephasing in the qubit is averaged to zero [5, 8, 63]. Later, the technique was used

to achieve noise-tolerant controls for a general open quantum system [64]. Lately, in

addition to increasing coherence time in various physical systems [48, 65–67], DD

has been demonstrated as an efficient method to create high-fidelity gates [68–70]

and for noise spectroscopy in various systems [71–74]. In order to establish a strong

understanding of DD, let us begin with the famous Hahn’s “spin echo” experiment

[75, 76].

3.2 Spin Echo

In the spin echo experiment, we have an ensemble of spins with magnetic moments

along the direction of a strong applied magnetic field (along |0⟩ in Fig 3.1). These

spins are now rotated about x axis with π/2 pulse along the equator of the Bloch

sphere. At this point, we notice that due to local inhomogeneities in the magnetic

field, certain spins rotate with higher frequencies (due to higher field strength) and

certain spins rotate with lower frequencies (due to lower field strength). This causes

dephasing in the spin ensemble, where higher-frequency spins are rotating faster than

the lower frequencies. Due to the strong magnetic field, the dissipation is minimized,

and the spins decohere only via dephasing [77].
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Figure 3.1: Bloch sphere representation of pulse sequences used in spin echo exper-

iment. On applying π/2 pulse the spin ensemble rotates in xy plane and dephases

due to an inhomogeneous magnetic field. After waiting for time τ the ensemble is

rotated by π pulse about y axis and the spins refocus after time 2τ . Figure adopted

from Putz, “Circuit cavity QED with macroscopic solid-state spin ensembles.”, 2017,

pg. 114.

After allowing the dephasing for time τ , if the spins are rotated 180° about y axis

with π pulse (see in Fig 3.1) we notice that the dephasing has now been reversed.

Hence, the spins rotating with lower frequencies catch up with the ones with higher

frequencies, and spins get back into phase after time τ . With this scheme of pulses,

we momentarily evade dephasing. If we keep repeating the scheme for any arbitrary

time t, with the ideal pulses, the dephasing can be effectively eliminated.

Viola and Llyod extended this method of refocusing of spins to a general quantum

system setting with bang-bang controls [8, 63] after realizing that, similar to dephasing

in NMR, in an open quantum system the decoherence process never takes place

instantaneously. And if the dynamics of the system are altered faster than the shortest

time scales at which the system-environment interaction induces decoherence, these
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effects can be suppressed over the course of time.

3.3 The Concept of Dynamical Decoupling

To better understand the underlying concept let’s invoke the single-qubit model

from (2.16) where the system-environment interaction is given by

HSB = ℏω0σz ⊗B. (3.1)

This interaction induces decoherence in the system and we aim to suppress the dy-

namics driven by HSB. For simplicity, we assume ω0 = 1. Further assume that we

can apply instantaneous π pulses to rotate the qubit by 180° about x axis, with the

operator

Rx(π) = exp
(

−iπ2σx

)
⊗ 1B, (3.2)

where σx is the Pauli-X operator and 1B is the identity matrix of the same dimensions

as operator B. In a similar way, using R†
x(π) we can rotate the system in the opposite

direction i.e. in counter-clockwise direction if Rx(π) rotates the system in clockwise

direction and vice versa. Now if we switch on and off these pulses in the intervals of

∆t in the order:

U(2∆t) = e−iHSB∆tR†
x(π)e−iHSB∆tRx(π), (3.3)

where upto a global phase, unitary operator Rx(π) = R†
x(π) = σx ⊗ 1B. As a result(

e−iσz∆tσxe
−iσz∆tσx

)
⊗ 1B =

(
e−iσz∆te−iσxσzσx∆t

)
⊗ 1B. (3.4)

Since σxσzσx = −σz, then (3.3) can be simplified to

U(2∆t) =
(
e−iσz∆teiσz∆t

)
⊗ 1B = 1. (3.5)

Thus, after time 2∆t the qubit returns to its initial state, and the net evolution of

the system is zero. Note that [σxσzσx, HSB] = 0, hence in this case, decoupling can

be achieved for an arbitrary time interval 2∆t [79]. Moreover, since we have complete
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knowledge of system-environment interaction, we can easily define a decoupling set

for the given interaction Hamiltonian. However, in general, we have zero or partial

knowledge of system operators which interact with the environment. In the following

section, we will show that DD can be implemented for a general open quantum system

under minimal assumptions about the system-environment interactions.

3.4 Dynamical Decoupling in a Continuous-Time Framework

In a general control-theoretic framework, we can analyze DD by considering a

finite-dimensional open quantum system as described in [5, 63]. In this framework,

we consider a finite time-independent quantum system S coupled to an uncontrollable

bath B defined on the Hilbert space H = HS ⊗ HB, where HS and HB are system

and bath Hilbert spaces, respectively. The combined Hamiltonian is given by

H0 = HS +HB +HSB, HSB =
∑

a

Sa ⊗Ba, (3.6)

where HS and HB are system and bath Hamiltonians, respectively, and the interaction

HSB is the term that induces decoherence in the system. Both HS and Sa are chosen

to be traceless. Furthermore, it is essential that Sa and HSB are assumed to be finite

in order to define a finite set of decoupling operations [5]. We will see later why these

assumptions are critical for the effective decoupling of the system.

We begin with a standard assumption: the system and environment are initially

uncorrelated, i.e., ρSB(0) = ρS(0) ⊗ ρB(0), and the reduced density operator for the

system at time t is given by ρS(t) = TrB{ρSB(t)}. To achieve control over the dynam-

ics of the system, we adjoin the Hamiltonian H0 with a controllable time-dependent

Hamiltonian Hc(t) which selectively acts on the system. The joint Hamiltonian is

then modified to

H(t) −→ H0 +Hc(t) ⊗ 1B, Hc(t) =
∑

i

ui(t)Hi, (3.7)
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Figure 3.2: An illustration of controls applied to an open quantum system through

the time-dependent controller Hc(t).

where ui(t) are control inputs corresponding to the primary control Hamiltonian Hi.

The desired control action can be produced by applying any linear combination of

local controls ui(t)Hi to the system. The control propagator governed by Hc(t) is

given by

Uc(t) = T exp
(

−i
∫ t

0
dsHc(s)

)
, (3.8)

where T is time ordering operator. If the decoupling is achieved at time t = Tc, then

to realize a decoherence-free system for an arbitrarily long time t such that t = NTc,

where N ∈ N, the controls are designed to be cyclic over Tc i.e.

Uc(t) = Uc(t+ Tc). (3.9)

In order to identify the conditions where the interaction Hamiltonian is suppressed,

we examine the dynamics of the combined system. In open quantum systems, the

dynamics of states are given by the density operator, which in this case is

ρSB(t) = U(t)[ρS(0) ⊗ ρB(0)]U †(t), (3.10)

where U(t) is evolution of joint Hamiltonian H(t). At this point, it is convenient

to switch to a reference frame rotating about the control propagator in order to

“unwind” U(t) into different components. A technical overview of the consistency
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of rotating frames in quantum mechanics is well explained in [80]. Moreover, the

equation of motion in the rotating frame can be found in Appendix A.5. Thus the

revised dynamics with reference to the rotating frame is

ρSB(t) = Uc(t)ρ̃SB(t)U †
c (t), (3.11)

where ρ̃SB(t) is the density operator in rotating frame. If the evolution of the com-

bined system in a rotating frame is given by Ũ(t), then

ρ∼
SB(t) = Ũ(t)[ρS(0) ⊗ ρB(0)]Ũ †(t), (3.12)

where Ũ(t) is the time evolution of Hamiltonian H̃(t) such that

H̃(t) = U †
c (t)H0Uc(t). (3.13)

From equations (3.10), (3.11) and (3.12) we get

U(t) = Uc(t)Ũ(t). (3.14)

If we choose to design the control field such that Uc(Tc) = 1, then for time t = NTc,

the total evolution of the combined system is given by

U(NTc) = Ũ(NTc). (3.15)

From average Hamiltonian theory, Ũ(NTc) can be expressed as an exponential of the

form exp
(
−iH̄NTc

)
where the time-independent “effective Hamiltonian” or average

Hamiltonian H̄ describes exactly the evolution of the time-dependent Hamiltonian

H̃(t) over the time period Tc [5]. The effective Hamiltonian can be expanded in a

series called the Magnus expansion [81] as

H̄ = H̄(0) + H̄(1) + H̄(2) + H̄(3) . . . , (3.16)

where the term H̄(n) is referred as the nth order average Hamiltonian. The first two

terms of the Magnus expansion are given by

H̄(0) = 1
Tc

∫ Tc

0
dt′H̃(t′), (3.17)

29



H̄(1) = −i
2Tc

∫ Tc

0
dt′′

∫ t′′

0
dt′[H̃(t′′), H̃(t′)]. (3.18)

With the assumption that H0 is bounded such that the spectral norm ∥H0∥ ≤ κ, the

spectral norm for the nth term of Magnus expansion is given by [5]

∥H̄(n)∥ = O[κ(κTc)n], (3.19)

where κ > 0, has units of frequency associated with the energy greater than or equal

to the largest eigenvalue of H0. Note that the Magnus series rapidly converges when

κTc ≪ 1, (3.20)

which gives a loose upper bound on Tc. From (3.19) and (3.20), it is clear that for

sufficiently fast control, i.e., in the limit Tc → 0, the contributions from higher orders

(H̄(n), n ≥ 1) in (3.16) are negligible. Since Tc = T/N , alternatively, we can state that

convergence is achieved for sufficiently large N such that limN → ∞. Consequently,

under convergence conditions, the DD problem is simply reduced to devising a unitary

operator Uc(t) such that evolution described by the first order term of the Magnus

series H̄(0) is successfully eliminated, i.e.

lim
Tc→0

U(NTc) = exp
(
−iH̄(0)NTc

)
= 1. (3.21)

In particular, we see that achieving effective decoupling doesn’t require specific knowl-

edge of the system operators interacting with the environment. Instead, the unwanted

dynamics induced by the interaction Hamiltonian can always be suppressed by

(i) choosing a proper set of decoupling operations, and

(ii) implementing these operations faster than the time scales at which decoherence

completely destroys the superposition states in the system’s Hilbert space.

We now numerically simulate the DD scheme discussed above to investigate how

effectively the time evolution of a target Hamiltonian is suppressed in the limTc → 0.

Let us consider a time-independent Hamiltonian
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H0 = ℏω0σy, (3.22)

where σy is Pauli-Y operator. This system is assumed to be completely coupled with

the environment such that H0 → H0 ⊗ B, where B is an environment operator.

For simplicity lets assume ω0 = 1. We use Hc(t) as the control Hamiltonian which

continuously rotates the system about the x axis in the Bloch sphere. Now the control

propagator Uc(t) is designed such that∫ Tc

0
dt′U †

c (t′)H0Uc(t′) = 0. (3.23)

Let us say,

Uc(t) = exp(−if(t)σx), (3.24)

then the decoupling in H0 is obtained when∫ Tc

0
dt′e±i2f(t′) = 0. (3.25)

This is accomplished by using Hansen-Bessel formula [82] so that f(t) is chosen in

such a way that

f(t) = z

2 sin
(2πt
Tc

)
= z

2 sin(ωct), (3.26)

where z is the zeros of zeroth order Bessel functions of the first kind [83] and ωc is

the control frequency. The time t is determined such that the sampling frequency for

the discretization of Uc(t) satisfies the Nyquist–Shannon sampling theorem [84]. We

calculate the expectation value of Pauli-Z operator where dynamics of the states are

described by unitary operator U(t) (see (3.14)) where initially |ψ(0)⟩ = |0⟩. From

(3.19) and (3.20) we know that for this case the Magnus series converges when spectral

norm ∥σy∥ ≤ κ, where ∥σy∥ = 1. Thus the convergence condition in this case is

Tc ≪ 1. (3.27)

Note in Fig (3.3) that when Tc satisfy the above condition, the dynamics from the
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Figure 3.3: Expectation value of Pauli-Z as a function of time for Hamiltonian H0 +

Hc(t). For simulation, we used total time t = 6 and number of data points n = 104.

Note that in the absence of control, the system evolves with free dynamics, as shown

by the gray line. When the system is perturbed by Hc(t) with Tc = 3, Tc = 2, and

Tc = 1, the expectation value is “up-shifted” closer to 1 and oscillates away as time

progresses. For Tc = 0.1, the states approximately remain in their initial state at all

times.

interaction Hamiltonian H0 are effectively eliminated, i.e., U(t) ≈ 1 and the system

remains in its initial state |0⟩. Now, if we instill time dependence on the H0 such that

ω0 is a time-dependent angular frequency and the Hamiltonian is modified to

H1 = ℏ(cos(4t) + cos(2t))σy. (3.28)

We use same Uc(t) from (3.24) to suppress the system-environment interaction. In

Fig (3.4) and Fig (3.5), DD is achieved when Tc is less then the smallest time scale

present in H1 or ωc is larger than any frequency component present in H1.

The shown results can be generalized for any time-dependent Hamiltonian, i.e. in
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Figure 3.4: Expectation value of Pauli-Z as a function of time for Hamiltonian H1 +

Hc(t). We used similar parameters from Fig 3.3. Similar to the previous case, for

larger values of ωc the expectation value is shifted upwards towards 1. For ωc = 62.83

or Tc = 0.1, the evolution of the system is effectively suppressed.

the limiting condition ωc → ∞, any finite time-dependent Hamiltonian can be treated

like time-independent in the period Tc. Thus no matter how fast the time scale for

the evolution of interaction Hamiltonian is, for a short duration, the system drifts

slowly into some fixed direction, and these control operations quickly rotate it such

that the net movement in the direction is close to zero.

3.5 Bang-Bang Dynamical Decoupling

In the previous section, we numerically demonstrated DD, which is applied con-

tinuously along with the system dynamics to suppress decoherence. The alternative

to continuous controls is the originally proposed bang-bang decoupling [8], which is

closer to the spirit of the scheme of pulses used in Hahn’s spin echo experiment. To
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Figure 3.5: Frequency spectrums of the expectation values for the dynamics governed

by (a) H1 and (b) H1 + Hc(t). The logarithmic value of the Fourier transform is

plotted on the y-axis where we neglected the values for F (ω) < 1. The frequency

range is −50 ≤ ω ≤ 50. For sufficiently large controls ωc = 62.83, we see that all

frequencies other than 0 are completely suppressed in (b).
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derive bang-bang controls for an open quantum system, we recall the general system-

environment model controlled by Hc(t) in (3.6). From (3.20) we know that in the

limit of fast control, the goal of DD is simplified to suppress the dynamics from the

first term of Magnus expansion. Now consider that we can design the control field as

a sequence of pulses given by

Hc(t) =



H1 0 < t ≤ tP1

H2 tP1 < t ≤ tP2

...

Hnp tPnp−1 < t ≤ tPnp
,

(3.29)

where Hk is the time-independent Hamiltonian describing the pulse at time t, where

t ∈ (tPk−1 , tPk
] and tP0 = 0. The number of pulses subjected to the system in one

cycle Tc is denoted by np. The sequence of pulses is uniformly distributed over time,

i.e.,

∆t = tPnp
− tPnp−1 = . . . = tP2 − tP1 = tP1 − 0, (3.30)

where tPnp
= Tc and ∆t = Tc/np. From (3.8), the evolutions of control Hamiltonian

described in (3.29) for time t ∈ (tPk−1 , tPk
] is given by

Uc(t, tPk−1) = T exp
(

−i
∫ t

tPk−1

dt′Hk

)
. (3.31)

If we invoke the composition property of unitary operators [85] i.e. for a unitary

operator V ,

V (tn, t0) = V (tn, tn−1) . . . V (t2, t1)V (t1, t0)

=
n∏

k=1
V (tk, tk−1).

(3.32)

Then, in similar fashion the evolution of H̄(0) over Tc is given by

exp
(
−iH̄(0)Tc

)
=

np∏
k=1

exp
(

−i
∫ tPk

tPk−1

dtU †
c (t, tPk−1)H0Uc(t, tPk−1)

)
. (3.33)
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To ensure that the time scale at which pulses are applied is smaller than the deco-

herence time, we ideally want that the pulses are

(i) an unit impulse (given by Dirac delta distribution) [86];

Hc(t) =
np∑
k

Hkδ(t− tPk
). (3.34)

(ii) strong pulses or parity “kicks” [87], i.e., the open system does not evolve within

each pulse. For control fields given by (3.34) the unitary operator Uc(t, tPk−1) is given

by

Uc(t, tPk−1) = T exp
(

−i
∫ t

tPk−1

dt′Hkδ(t′ − tPk−1)
)

= exp(−iHk).
(3.35)

Note that the time ordering operator is omitted in the second step since Hk commutes

with itself in the duration of the pulse. We also note that Uc(t, tPk−1) is now a time-

independent operator, and for convenience, let’s say Uc(t, tPk−1) = gk. Then (3.33) is

further simplified to

exp
(
−iH̄(0)Tc

)
=

np∏
k=1

exp
(
−ig†

kH0gk∆t
)
. (3.36)

Now we wish to calculate the evolution of total system Hamiltonian H(t) for an

arbitrary long time t, where t = mTc, m ∈ N, which is described by the unitary

operator

U(t) =
[
exp

(
−iH̄(0)Tc

)]m

=
[ np∏

k=1
exp

(
−ig†

kH0gk∆t
)]m

.

(3.37)

From (3.20) we know that the simultaneous condition for the convergence of Magnus

expansion is limm → ∞. Moreover, ∆t can be rewritten for time t as

∆t = mTc

mnp

= t

mnp

. (3.38)

It is immediately seen that under above conditions, U(t) is given by the Trotter

product formula [88]
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U(t) = lim
m→∞

[ np∏
k=1

exp
(
−ig†

kH0gk∆t
)]m

(3.39)

= exp
(

−i
[

1
np

np∑
k=1

g†
kH0gk

]
t

)

= exp(−iMDD(H0)t),

where MDD is a linear Hermitian map that applies decoupling operators g taken from

a finite decoupling set G, such that

MDD(H0) = 1
|G|

∑
gk∈G

g†
kH0gk, (3.40)

where |G| denotes the number of elements in the set G. From (3.39) and (3.6) we can

calculate MDD(H0) while taking into account that decoupling operations are applied

only to the system, as

MDD(H0) = MDD(HS) +HB +
∑

a

MDD(Sa) ⊗Ba. (3.41)

We recall the presumption that HS and Sa are trace-less. Thus, for a single qubit,

the system operator Sa can be written as a linear combination of Pauli operators such

that

Sa = λxσx + λyσy + λzσz, (3.42)

which is averaged out to zero with decoupling set G = {σx, σy, σz,1} (see Appendix

C). Similarly, for K qubits system decoupling can be achieved with G = {σ(i)
α ,1}⊗K ,

where α = x, y, z and i = 1, 2, . . . K [63]. Similar inferences can be made for HS.

Hence, on applying an appropriate decoupling set, we follow the result:

MDD(H0) = 0 +HB +
∑

a

0 ⊗Ba = HB. (3.43)

Thus, the dynamics of joint system U(t) is simply given by

U(t) = exp(−iHBt), (3.44)
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where under this transformation, the states in the system remain invariant to the

environment-induced decoherence.

To analyze bang-bang decoupling in the qubit-boson model we earlier discussed

in section 2.4, we implement infinitely strong π pulses that rotate the qubit system

described in (2.26) about x axis, i.e., from pointing up to down in the Bloch sphere

or vice versa with the controls

Hc(t) =
np∑

k=1

π

2σxδ(t− tPk
). (3.45)

In the interaction picture, the control propagator at time t = tPk
, is given by (see

Appendix D)

Ũc(tPk
) = exp

(
−iπ2 e

iω0σztPkσxe
−iω0σztPk

)
= Pk.

(3.46)

Similar to the pulse sequence defined in (3.3), we implement the sequence for np = 2

in the order as schematically shown in Fig 3.6. Firstly, the system evolves under

H̃SB(t) during t0 ≤ t < tP1 ; at tP1 pulse P1 is applied; then the system evolves freely

during tP1 ≤ t < tP2 ; pulse P2 is applied at tP2 [8]. For the sake of ease, we keep the

pulses equally spaced in time,

∆t = tP1 − t0 = tP2 − tP1 . (3.47)

𝑃

𝑆 𝑟
𝑆 (𝑟)

𝑆 𝑟

𝑒

𝑈 𝑡 , 𝑡 𝑈 𝑡 , 𝑡𝑃

𝑡𝑡𝑡𝑡

𝑃𝑃

𝑈 𝑡 , 𝑡 = 𝑃𝑃

Figure 3.6: Pulse sequence for bang-bang controls used for DD in [8] for a single cycle

with number of pulses np = 2. The combined unitary operator for the application of

one cycle of control pulses is given by Ũ(t1, t0).
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With detailed derivation in Appendix D, the total evolution after N cycles is

determined by the time-ordered product of the evolutions for each cycle, s.t.

Ũ(tN , t0) = Ũ(tN , tN−1) . . . Ũ(t2, t1)Ũ(t1, t0). (3.48)

We now proceed to compute the off-diagonal elements of the reduced density matrix

for the system. The diagonal elements in ρ̃S(t) remains invariant, however the off-

diagonal elements are

ρ̃01(tN) = ei2ω0(tN −t0)ρ01(t0)e−ΓP (N,∆t), (3.49)

where ΓP (N,∆t) is similar to (2.30), a decoherence function which can be written as

ΓP (N,∆t) =
∑

k

|µk(N,∆t)|2

2 coth
(
ωk

2T

)
. (3.50)

We invoke the evolution of off-diagonal elements in the absence of pulses from (2.29)

and notice two key differences: (i) a phase contribution from eigenbases of σz (ii)

a modified decoherence function proportional to |µk(N,∆t)|2 [8]. We will see in a

moment what effect the added phase factor has on the elements, but first, let us

analyze the decoherence function. By considering a single mode of frequency ω, we

can compute the ratio
|µ(N,∆t)|2

|ξ(tN − t0)|2
= tan2

(
ω∆t

2

)
. (3.51)

The above relation shows that for a given mode of frequency ω, there exists a finite

region ω∆t ≤ π/2 where

|µ(N,∆t)|2 ≤ |ξ(tN − t0)|2. (3.52)

Thus, in this particular region, the contribution from decoherence is relatively smaller

when the system is subjected to pulses [8]. Notice that this condition can be met for

appropriate smaller values of ∆t which consequently means rapid execution of pulses.

Unsurprisingly, this is in accordance with the convergence condition from (3.20) which

we obtained for a general finite-dimensional open quantum system. Similar to the
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limiting case numerics we simulated for (3.22) and (3.28), in this case, we can check

an idealized situation by considering the following limits:

lim
∆t→0,

N→∞

ΓP (N,∆t) = lim
∆t→0

∑
k

|µk(N,∆t)|2

2 coth
(
ωk

2T

)
. (3.53)

With the assumption that ∆t is sufficiently small so that for any arbitrary field mode

ωk∆t → 0, we obtain the limit (see Appendix D),

lim
∆t→0
N→∞

µk(N,∆t) = 0. (3.54)

Thus, in an idealistic scenario, the decoherence function

lim
∆t→0

ΓP (N,∆t) = 0, (3.55)

which suggests that the complete and accurate removal of decoherence is achieved

when the qubit is flipped in a continuously fast manner, irrespective of the temper-

ature of the bath. However, there exists a cut-off frequency ωl beyond which the

spectral density of the bath is negligible [5]. For this reason, a lower bound propor-

tional to ω−1
l can be assumed for pulse intervals. Thus, a sufficient condition to reach

the ideal case (3.55) is [8]

ωl∆t ≲ 1. (3.56)

The final step is to calculate the reduced density matrix ρ(tN) of the qubit, in a

similar manner to (2.31). In Schrödinger picture, we obtain 1
2

1
2e

−iω02t0

1
2e

iω02t0 1
2

 tN−→

 1
2

1
2e

−ΓP (N,∆t)

1
2e

−ΓP (N,∆t) 1
2

 . (3.57)

Note that the off-diagonal elements no longer have a phase factor when compared with

(2.31). This is due to the reversal of the state of the qubit from the pulses applied

to the system. Since the qubit is flipped in the opposite direction to its oscillations

with the exact same frequency, the oscillations of the qubit are refocused, and when

we move to Schrödinger picture, the net movement is zero. If the condition in (3.56)
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is met, the density matrix is simply

ρS(tN) =

 1
2

1
2

1
2

1
2

 . (3.58)

Numerous adaptations of DD have been proposed in recent times to achieve the

elimination of high-order terms in the Magnus expansion for non-zero cyclic time Tc.

In general, bang-bang pulses applied periodically (PDD) [5] in the sequence described

in (3.3) achieves the elimination of the first-order term H̄(0). Removal of up to the

second-order term is obtained if the pulses are applied in a time-symmetric sequence

so that the PDD is applied for the first half of a cycle and in reverse sequence for

the second half [66, 89]. With concatenated dynamical decoupling (CDD), terms

up to any arbitrary order N can be eliminated with the application of a number

of pulses of order O(4N) for every cycle, whereas with Uhrig dynamical decoupling

(UDD), any single kind of error is removed up to Nth order with pulses of order

O(N) [89]. Quadratic dynamical decoupling (QDD) [90] improvised on UDD with

the removal of any arbitrary error to N order with O(N2) pulses every cycle [89].

Randomized dynamical decoupling (RDD) [91] was introduced for large quantum

systems, where instead of following a deterministic sequence, decoupling operations

are selected randomly from a given decoupling set [79]. Other novel adaptations

include fault-tolerant dynamical decoupling [92], mixed dynamical decoupling [93],

adaptive dynamical decoupling (ADAPT) [94] and optimal dynamical decoupling

[95].

Although our discussions were limited to the decoupling of finite systems, in a

recent work, Arenz et al. [96] analyzed cases of infinite-dimensional Hamiltonians

to which DD may be applicable. This provides an opportunity for describing a

dimension-independent DD scheme, which will be investigated in our future work.
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Chapter 4

DYNAMICAL AMPLIFICATION

4.1 Introduction

Earlier, we showed that DD can suppress the decoherence-causing components of a

system with appropriately designed controls. Now, one may wonder whether a similar

kind of scheme can be used to amplify the dynamics of desired system components.

Since the effective implementation of such a scheme will have twofold advantages: (i)

enhanced coupling strength amongst the components of a quantum system; and (ii)

speeding up the dynamics of the system, such a framework is strongly desired for the

advancement of quantum devices. For example, in optomechanics [97–99], in quantum

sensors [100, 101], in trapped-ion systems [102, 103] and in general any multi-qubit

system [3, 104] require strong interactions to maintain their quantum effects.

The goal of such a scheme would be to modify the natural unitary evolution of

time-independent Hamiltonian H0 into an amplified evolution such that [9]

exp(−iH0t) → exp(−iλH0t), where λ > 1. (4.1)

In the case where we have complete knowledge of the Hamiltonian and total control

over the system, the amplification factor λ can be easily achieved by perturbing the

system with a suitable control Hamiltonian H ′ = (λ− 1)H0 i.e.

H0 +H ′ = λH0. (4.2)

However, acquiring full knowledge of even small systems, in general, is very hard

[105, 106]. In practical cases, mostly we have limited knowledge about the system, or

the set of control parameters that drive the systems are restricted. It is interesting to
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note in (4.2) that if we have resources to construct Hamiltonian H ′ then, we already

have an amplified system!

In a realistic scenario, we wish to achieve speed-up with local controls without

having any prior knowledge about the details of the system. Consider that a sequence

of bang-bang controls V , as described in (3.39), is implemented on the dynamics of

Hamiltonian H0 which transforms into an amplification of scalar λ, i.e.
1

|V |
∑
v∈V

v†H0v = λH0. (4.3)

Now, we take the Frobenius norm of the operators on both sides to obtain∥∥∥∥∥ 1
|V |

∑
v∈V

v†H0v

∥∥∥∥∥ = |λ| ∥H0∥ . (4.4)

If we recall the triangle inequality for the norm of summation of operators [107] we

get ∥∥∥∥∥ 1
|V |

∑
v∈V

v†H0v

∥∥∥∥∥ ≤ 1
|V |

∑
v∈V

∥∥∥v†H0v
∥∥∥ , (4.5)

where we know that the Frobenius norm is unitarily invariant. Then, from (4.4) and

(4.5) we obtain the inequality

|λ| ∥H0∥ ≤ ∥H0∥ , where λ > 1. (4.6)

which is obviously not true if H0 is finite. A general proof to show that finite-

dimensional Hamiltonians cannot be amplified can be found in Appendix E.1. How-

ever, such a constraint does not exist for infinite-dimensional systems. For example,

a quantum harmonic oscillator is an optimal system to implement amplification ow-

ing to the fact that the largest energy associated with an eigenstate of a quantum

harmonic oscillator is infinite [108].

A quantum harmonic oscillator is central to concepts in quantum optics [108],

molecular physics [109], quantum field theory [110], and any physical system that

involves a quantum degree of freedom. For systems described by quantum harmonic

oscillators, squeezing has been proven to be an effective technique to enhance the
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system’s characteristics [111, 112]. Protocols to achieve amplification with squeezing

have been proposed to enhance cavity-qubit coupling in cavity quantum electrody-

namics (CQED) [113–115], interactions in optomechanical systems [116, 117], speed

of quantum gates [118], metrology in microwave cavities [119, 120], interactions in

quantum hybrid systems [121], the sensitivity of mechanical oscillators [122] and the

coupling in electron-phonon superconductivity [123]. In a recent proposal, Arenz

et al. [9] introduced the scheme of Hamiltonian amplification (HA) to amplify the

dynamics of a quantum harmonic oscillator by squeezing at two different angles. We

aspire to thoroughly study the concept of HA by starting off with similar but simple

protocols that aim to amplify coherent displacement in a harmonic oscillator. Then

we generalize the ideas to speed-up the dynamics of a quantum harmonic oscillator

by gradually moving toward more complex cases. But first, let us comprehend the

idea of squeezing.

4.2 Squeezed States and Squeezing Operations

We proceed by providing a brief introduction to quantum optics relevant to under-

stand squeezing. For a general introduction to quantum optics, we highly recommend

the excellent book by Gerry and Knight [108]. Unsurprisingly the majority of this

introduction overlaps with that book. To begin with, consider a single mode of light

with frequency ω which quantum mechanically is represented by the Hamiltonian

H = ℏω
[
a†a+ 1

2

]
= ℏω

[
X2 + P 2

]
, (4.7)

where a† and a are annihilation and creation operators which obey the commutation

relation [a, a†] = 1. The operator product a†a is called the number operator denoted

by n. The eigenstate of the number operator |n⟩ describes the energy eigenvalue En

of the field such that
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H |n⟩ = ℏω
[
a†a+ 1

2

]
|n⟩ = En |n⟩ , (4.8)

where the number states |n⟩ are orthonormal i.e. ⟨n′|n⟩ = δnn′ . We can describe

an electric field of single mode propagating along z coordinate and polarized along x

coordinate in terms of a and a† as

Ex = i√
2

E0[aei(kz−ωt) − a†e−i(kz−ωt)], (4.9)

where E0 represents electric fields per photon and k is the wavenumber of the field.

One can also represent a single mode of light by the Hermitian operators X and

P , which describe the field amplitudes oscillating out of phase with each other by 90°

or one-quarter of a cycle. Therefore, they are called quadrature operators, and they

are related to a and a† as

X = 1
2(a+ a†) and P = 1

2i(a− a†), (4.10)

which essentially describes position x =
√

ℏ
2mω

(a+a†) and momentum p = 1
i

√
ℏmω

2 (a−

a†) operator of a quantum harmonic oscillator, scaled to be dimensionless [108]. In

terms of the quadrature operator, the electric field of a single mode is

Ex = −2 ξ0[X sin(kz − ωt) + P cos(kz − ωt)]. (4.11)

The quadrature operator also satisfies the uncertainty relation as

⟨(∆X)2⟩⟨(∆P )2⟩ ≥ 1
16 . (4.12)

The fluctuations of the field in both quadratures can be calculated by the variance

for the number state |n⟩. The expected value of quadrature operators is zero, but the

expected value of the square of quadrature operators is given by

⟨n|X2 |n⟩ = ⟨n|P 2 |n⟩ = 1
4(2n+ 1). (4.13)

Then, we can write the variance as

⟨(∆X)2⟩ = ⟨(∆P )2⟩ = 1
4(2n+ 1), (4.14)
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where n represents the number of photons in state |n⟩. When n = 0, i.e., for a

vacuum state, the uncertainties in both quadratures still exist; however, in this case,

the uncertainties are minimal

⟨(∆X)2⟩ = ⟨(∆P )2⟩ = 1
4 . (4.15)

It is now appropriate to introduce the coherent state of light, which in practice de-

scribes the light in a laser [124]. It is represented by |α⟩ which is the eigenstate of

the annihilation operator a, such that

a |α⟩ = α |α⟩ , (4.16)

where α = |α|eiθ is a complex number and |α⟩ is the superposition of infinite photons

with normalized coefficients given by

|α⟩ = e− 1
2 |α|2

∞∑
n=0

αn

√
n!

|n⟩ . (4.17)

The number state |n⟩ defines the energy of the field, but it’s not a state of a well-

defined field [108]. But a coherent state closely resembles a classical state of light

because

(i) For a coherent state the mean value of the field is very similar to a classical field;

⟨α|Ex |α⟩ =
√

2|α|E0 sin(ωt− kz − θ), (4.18)

which is a field oscillating sinusoidally in time at a fixed point. On the other hand,

for number state ⟨n|Ex |n⟩ = 0, no matter how large the value of n is.

(ii) The fluctuations in the quadrature operator for coherent states are minimal;

⟨(∆X)2⟩α = ⟨(∆P )2⟩α = 1
4 . (4.19)

Thus, the uncertainty in two orthogonal quadrature operators is equal. From (4.10)

we can compute the expectation value as: ⟨X⟩α = (α + α∗)/2 = Re(α) and ⟨P ⟩α

= (α − α∗)/2i = Im(α). Hence, we can represent a coherent state in a complex α

plane, where real and imaginary parts depict the quadrature operators. Since the
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uncertainty associated with a coherent state is minimal, we represent it in phase

space as a circle in a frame rotating at the oscillator frequency, as shown in Fig 4.1

and Fig 4.2.

𝑆 𝑟 𝑈(Δ𝑡) 𝑆 𝑟 𝑆 𝑟 𝑈(Δ𝑡) 𝑆 𝑟 ≈ e    

𝑃 

𝑋 
∆𝑃 = 1/2 

∆𝑋 = 1/2 

Figure 4.1: Phase space representation of a vacuum state.

We can create a coherent state from vacuum using the displacement operator D(α)

defined by

D(α) = exp
(
αa† − α∗a

)
. (4.20)

The displacement operator displaces the vacuum state to coherent state given by

|α⟩ = D(α) |0⟩ . (4.21)

We have shown a phase space representation of the displaced state in Fig 4.2, where

the vacuum state is displaced by magnitude |α| at an angle θ from X quadrature.

Recall the uncertainty relation from (4.12) which for a coherent state is minimized to

⟨(∆X)2⟩⟨(∆P )2⟩ = 1
16 . (4.22)

We call a coherent state a squeezed state when the uncertainty along a quadrature is

lower than the uncertainty in a vacuum state, i.e.,

⟨(∆X)2⟩ < 1
4 or ⟨(∆P )2⟩ < 1

4 . (4.23)
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𝑃

𝑋  

∆𝑃 = 1/2 

∆𝑋 = 1/2 

𝜃

|α|

Figure 4.2: Phase space representation of a displaced vacuum state.

Obviously, squeezing in one quadrature will increase the fluctuations in other quadra-

ture to satisfy the relation in (4.22). The squeezed states are obtained by the squeezing

operator defined as

S(ξ) = exp
[

1
2(ξ∗a2 − ξa†2)

]
, (4.24)

where ξ = reiβ. We define r as the squeezing parameter and 0 ≤ r < ∞, and β

determines the angle of squeezing and 0 ≤ β ≤ 2π. The parameter ξ defined here

should not be confused with the one in (2.27), where it describes a totally different

function. A squeezed vacuum state denoted by |ξ⟩ is given by

|ξ⟩ = S(ξ) |0⟩ . (4.25)

Now, if we wish to find the uncertainties in the X and P quadratures for squeezed

states, we invoke the results derived from the Baker-Hausdorff lemma [108]:

S†(ξ)aS(ξ) = a cosh r − eiβa† sinh r

S†(ξ)a†S(ξ) = a† cosh r − e−iβa sinh r.
(4.26)

Hence, the variances for the squeezed vacuum state are

⟨(∆X)2⟩ = 1
4e

−2r and ⟨(∆P )2⟩ = 1
4e

2r. (4.27)

We show the phase space representation of the squeezed state for β = 0 in Fig 4.3.
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When β = π, squeezing exists in P quadrature, as shown in Fig 4.4. Note that the

product of uncertainties satisfies the condition in (4.22). However, in general, the

squeezed states do not equalize the uncertainty relation [108].

𝑆 𝑟 𝑈(Δ𝑡) 𝑆 𝑟 𝑆 𝑟 𝑈(Δ𝑡) 𝑆 𝑟 ≈ e    

𝑃 

𝑋 

∆𝑃 =
𝑒

2

∆𝑋 =
𝑒

2

Figure 4.3: Phase space representation of a vacuum state squeezed along X quadra-

ture.

𝑆 𝑟 𝑈(Δ𝑡) 𝑆 𝑟 𝑆 𝑟 𝑈(Δ𝑡) 𝑆 𝑟 ≈ e    

𝑃 

𝑋

∆𝑋 =
𝑒

2

∆𝑃 =
𝑒

2

Figure 4.4: Phase space representation of a vacuum state squeezed along P quadra-

ture.

For a general coherent state, squeezed states can be obtained using the displace-

ment operator to get

|α, ξ⟩ = D(α)S(ξ) |0⟩ . (4.28)
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It is important to highlight that squeezing is a unitary operation, i.e. S†(ξ)S(ξ) = 1,

where S†(ξ) = S(−ξ), where S†(ξ) executes the “anti-squeezing” operation. For

example if β = 0, operation S†(ξ) |0⟩ will increase fluctuations in X and squeezing

appears in P quadrature.

4.3 Amplification of Coherent Displacement

For the detection of weak forces in nature, a mechanical oscillator is proven to

be a strong tool [125, 126]. The forces to be measured can be coupled with a high

- Q harmonic oscillator, and then the observables of the oscillator are monitored.

However, the precision to which the forces can be measured is limited by the quantum

fluctuations, which, as we earlier discussed, exist even in the vacuum state (or ground

state) of an oscillator. By squeezing, one can enhance the precision of measurement

of an observable; however, the noise added during detection must be smaller than the

squeezed noise. In order to overcome the requirement of low-noise detection, Burd

et al. [122] proposed the amplification of a coherent displacement of a mechanical

oscillator to amplify the magnitude of the signal to be measured, ideally with no

added noise.

According to the proposed protocol [122] (see Fig 4.5), first the vacuum state is

squeezed along any direction in phase-space (along X in Fig 4.5) to suppress the quan-

tum fluctuations. Then a small displacement αi is applied along the squeezed axis.

Finally, by applying an anti-squeezing operation, the oscillator returns to its vacuum

state with a larger amplitude αf = λ1αi, where λ1 is the gain in the displacement. In

particular, the scheme can be written in terms of operators as

D(λ1αi) = S†(ξ)D(αi)S(ξ), (4.29)

where,

50



Amplification of coherent displacement

Figure 4.5: An illustration of the amplification of a vacuum state of a quantum

harmonic oscillator. The vacuum state is squeezed along the X quadrature and then

displaced along the squeezed axis. The displaced state is then anti-squeezed along

X quadrature to obtain amplified displacement λ1αi. The protocol is assumed to

add no noise during the operations. Figure adapted from Burd et al., “Quantum

amplification of mechanical oscillator motion.”, 2019.

λ1 = cosh r + ei(β−2θ) sinh r, (4.30)

and, where θ is the angle of displacement and β is the squeezing angle. Notice that

when displacement angle θ = β/2 or β−2θ = 2kπ for integer k, the gain is maximum

i.e., λ1 = er. Thus, given that we have full knowledge of αi then, with the application

of two orthogonal squeezing operations before and after the small displacement, the

displacement can be amplified to the factor er.

This technique is experimentally demonstrated in [122] using a single trapped ion

as the mechanical oscillator. Since the gain is dependent on the phase relationship

between displacement and squeezing angle, the final coherent displacement could

become smaller than its initial value, i.e.,

e−r ≤ λ1 ≤ er. (4.31)

Therefore, it may be difficult to stabilize θ and β with regard to the nature of the

system considered [127].
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Dynamical amplification

Figure 4.6: An illustration of the phase-insensitive amplification of a vacuum state of a

quantum harmonic oscillator. The vacuum state is squeezed along the X quadrature,

displaced by αi/2 and anti-squeezed along the X quadrature. The operations are then

repeated in the P quadrature. As a result, the displaced state is amplified to factor

λ2 = cosh(r). Figure adapted from Burd et al., “Experimental speedup of quantum

dynamics through squeezing.”, 2023.

To avoid the phase-dependent amplification, Burd et al. [127] modified the protocol

by dividing the displacement into two equal steps and amplifying each step with

squeezing and anti-squeezing operators as shown in Fig 4.6. However, in this scheme

of operations, the squeezing angle is predetermined. For the first displacement the

angle of squeezing and anti-squeezing β = 0, and for the second displacement β = π.

The sequence of operations required to achieve phase-independent amplification is

given by

D(λ2αi) = S†
π(r)D

(αi

2
)
Sπ(r)S†

0(r)D
(αi

2
)
S0(r), (4.32)

By substituting β = 0 and β = π in (4.26) we can divide the above expression into

two terms as

S†
0(r)D

(αi

2
)
S0(r) = exp

{
αi

2 (a† cosh(r) − a sinh(r)) − α∗
i

2 (a cosh(r) − a† sinh(r))
}
,

S†
π(r)D

(αi

2
)
Sπ(r) = exp

{
αi

2 (a† cosh(r) + a sinh(r)) − α∗
i

2 (a cosh(r) + a† sinh(r))
}
.

(4.33)

Using the Baker-Campbell-Hausdorff formula [5] the product of two terms, up to a

global phase, is nothing but a displacement operator D(λ2αi) where λ2 = cosh(r).
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Thus, with the above sequence of predetermined squeezing, we amplify the displace-

ment by gain λ2 which is independent of phases θ and β. With this scheme of

operations, no prior knowledge of αi is required to amplify the displacement. Note

that although we achieve phase insensitivity by orthogonal squeezing, in comparison

to the previous scheme, the maximum gain in this case is reduced, i.e., λ2 < λ1 for

r > 0.

4.4 Amplification of Interactions between Quantum Harmonic Oscillators

The protocols earlier discussed amplify the displacement of the vacuum state,

which enhances the strength of the signal to be measured. We can generalize the

idea of amplification by orthogonal squeezing to enhance interactions in a system

described by the Hamiltonian of the form [127]

H = ℏΩ(µa† + µ†a), (4.34)

where a and a† are annihilation and creation operators of a quantum harmonic oscil-

lator, and Ω is the interaction strength between the oscillator and either a quantum

system, in which case µ is an operator, or an external drive, where µ is a complex

number. If a constant amplitude drive is applied to the harmonic oscillator for time t

such that in the evolution −iΩµt = α, then the unitary operator exp(−iHt) = D(α)

which will result in a coherent displacement of the oscillator. On the contrary, if

µ = σ−, the lowering operator for a single qubit system, then (4.34) describes the

interaction Hamiltonian in a Jaynes-Cummings model [108, 127].

In order to amplify the coupling strength between two interacting systems in a

Jaynes-Cummings type interaction, we follow a similar sequence of operations as

implemented in (4.32) to obtain [127]

U(t) = S†
π(r)UH

(
t

2

)
Sπ(r)S†

0(r)UH

(
t

2

)
S0(r), (4.35)
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where UH(t) = exp(−iHt). As we did in (4.33), we divide the above expression into

two terms:

S†
π(r)UH

(
t

2

)
Sπ(r) × S†

0(r)UH

(
t

2

)
S0(r) = exp

(
−iH+

t

2

)
× exp

(
−iH−

t

2

)
, (4.36)

where,

H± = Ω cosh r(µa† + µ†a) ± Ω(µ†a† sinh r + µa cosh r)). (4.37)

Now, if we invoke Baker–Campbell–Hausdorff formula,

e−iH+
t
2 e−iH−

t
2 = e−i(H++H−) t

2 − 1
2 [H+,H−] t2

4 + i
12 ([H+,[H+,H−]+[H−,[H−,H+]) t3

8 ..., (4.38)

we note that we do obtain an amplified Hamiltonian with this scheme, but with

additional “error-causing” terms that grow exponentially for a sufficiently long period

of time. To minimize the error, we divide the total time t into smaller intervals

∆t = t/2n and Trotterize the sequence in (4.35) for sufficiently large n (see Fig 4.7)

such that

U(t) = lim
n→∞

[
S†

π(r)UH(∆t)Sπ(r)S†
0(r)UH(∆t)S0(r)

]n

. (4.39)

Using (4.36) we simplify the above expression into

U(t) = lim
n→∞

[
exp(−iH+∆t) exp(−iH−∆t)

]n

(4.40)

= exp
(

−i(H+ +H−) t2

)
(4.41)

= exp(−i cosh(r)Ht).

Thus, when the squeezing operations are implemented instantaneously and switched

𝑆 𝑟

𝑛 𝑡𝑖𝑚𝑒𝑠

𝑈 Δ𝑡 𝑆 𝑟 𝑆 𝑟 𝑈 Δ𝑡 𝑆 𝑟e    ≈

Figure 4.7: Bang-bang controls type squeezing operations used in [127] which are

Trotterized for n times to achieve dynamical amplification of factor cosh(r).
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infinitely fast between the two angles, the interaction strength in the Hamiltonian

H is amplified by the factor λ which in this case λ = cosh(r). Similar to the

scheme in (4.32), we do not require knowledge of interaction strength Ω for am-

plification. At this point, one can also note the similarity between DD and the

amplification scheme we discussed above. As we defined a map in (3.40) which

suppresses the system Hamiltonian H, in a similar fashion, for a set of squeezing

operations defined by V = {Sπ(r), S0(r)} implemented in a Trotter type sequence

limn→∞

[∏
v∈V v

† exp
(
−iH t

|V |n

)
v
]n

, where |V | is the cardinality of set V . We can

define a linear map which amplifies a Hamiltonian H given by [9]

MDA(H) = 1
|V |

∑
v∈V

v†Hv

= λH, where λ > 1.
(4.42)

We will use this definition of amplification extensively throughout the remainder of

this work.

Since the scheme’s effect is that the system Hamiltonian is amplified, the protocol

is introduced as Hamiltonian amplification (HA) in [9, 128]. However, as we can

see, essentially it is the dynamics of the Hamiltonian that is amplified, and given its

resemblance to DD, we call it “dynamical amplification” (DA) in this thesis.

The Hamiltonian (4.34) represents a quantum harmonic oscillator for a single

mode if, µ = a and ω = 2Ω. We call this Hamiltonian as H0 and

H0 = ℏω
[
a†a+ 1

2

]
. (4.43)

On applying DA with squeezing operators V = {Sπ(r), S0(r)} we obtain

MDA(H0) =1
2

[
S†

πH0Sπ + S†
0H0S0

]
. (4.44)

We know that S†(ξ)S(ξ) = 1 then, from (4.26) we solve the expression to obtain the

amplified Hamiltonian,

MDA(H0) = cosh(2r)H0. (4.45)
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Note that both, the harmonic oscillator and the interaction term in the Jaynes-

Cummings model can be amplified with the exact set of operations. While taking into

account that the DA works only for infinite dimensional Hamiltonians, this scheme

can be used to amplify the qubit-qubit interaction strength in systems where the

coupling between qubits is mediated via a quantum harmonic oscillator [9]. We will

discuss the potential applications of the scheme in greater detail later, for now, let us

examine DA for a case of interacting harmonic oscillators.

ConsiderN modes of interacting quantum harmonic oscillators described by quadratic

Hamiltonian of the form

H0 =
N∑

j=1
ωja

†
jaj +

N∑
i=1

ωia
†
iai +

N∑
i,j=1

hij[a†
iaj + aia

†
j] +

N∑
i,j=1

gij[a†
ia

†
j + aiaj], (4.46)

where ωi, ωj are the frequency of each mode of oscillators, hij and gij are coupling

constants defined such that, matrix h = [hij] is Hermitian and matrix g = [gij] is

symmetric [129]. Now, assume that multi-mode squeezing is implemented by the

operations V = {Sπ,S0} where Sβ = ∏N
i=1 S(i)β(r). On implementing DA with these

operations we, once again, get MDA(H0) = cosh(2r)H0, where the calculations can

be found in Appendix E.2.

Thus, we find that without any knowledge of the frequencies ωi, ωj and coupling

constants hij, gij in the system Hamiltonian of the form (4.46) we can amplify these

terms simultaneously to factor λ = cosh (2r) through the exact local squeezing oper-

ations. In a similar vein, we now want to broaden this method to a general quadratic

Hamiltonian.

In order to study amplification for a general case of quadratic Hamiltonians we

now describe our system with canonical position x and momentum p operators. To

begin with, consider N modes of quantum harmonic oscillator which corresponds to

N pairs of position and momentum operators {xi, pj}N
i,j=1. These operators can be
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arranged in a vectorial operator b, where b = (x1, p1, x2, p2, . . . , xN , pN)T, such that

we can define a most general quadratic Hamiltonian operator H, as [130]

H = 1
2bTAb + bTb, (4.47)

where A is a 2N × 2N symmetric matrix. We can split H into two parts H0 and H1

such that; H0 constitutes of terms

H0 =
N∑

i,j=1
(cx

ijxixj + cp
ijpipj), (4.48)

and H1 comprises of

H1 =
N∑

i,j=1
(cxp

ij xipj + cpx
ij pixj), (4.49)

where c is an appropriate coefficient computed from (4.47). It may be useful to recall

the transformation in (4.26) for canonical momentum and position operators

S†
β(r)xSβ(r) = x cosh(r) − 1

2

[
x(eiβ + e−iβ) + i

1
mω

p(e−iβ − eiβ)
]

sinh(r),

S†
β(r)pSβ(r) = p cosh(r) + i

mω

2

[
x(eiβ − e−iβ) − i

1
mω

p(e−iβ + eiβ)
]

sinh(r).
(4.50)

Under the amplification through the set V = {Sπ,S0} the Hamiltonian H is amplified

as MDA(H) = cosh(2r)H0 +H1. The terms in H0 are amplified through the transfor-

mation to factor cosh(2r) however, H1 is invariant to DA [9]. This is because when

squeezing is implemented along one quadrature for half a cycle in the sequence (4.39)

the net squeezing in operators xipj and pixj is nullified. Equivalently, the terms are

unaffected by squeezing along the other quadrature, i.e.,

S†
0xipjS0 = xipj,

S†
πxipjSπ = xipj.

(4.51)

One can draw similar conclusions for operators pixj. Interestingly, if we implement

squeezing by operations V ′ = {S−π/2,Sπ/2} the terms in H1 are amplified to λ =

cosh(2r), however we don’t achieve an amplification for H0. Therefore, we conclude

that the unitary transformations which amplify a general quadratic Hamiltonian H
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have yet to be identified [9].

Apart from enhancing qubit-qubit interactions [9], DA has been proposed to be

advantageous in the spectator-based recovery of quantum states [131], to amplify

shortcuts-to-adiabatic (STA) dynamics in order to rapidly generate ground states of

Rabi model [132] and to construct a quantum transducer by controlling the coupling

strength in the swapped quantum non-demolition (QND) gate [133]. A perspective on

DA to enhance coupling between photons or phonons with qubits or a bosonic mode

is suggested in [134]. There are many different areas that we believe can benefit from

such a strategy [135–137], and hereby we purpose another field where DA may be

advantageous.

4.5 Amplification of Cross-Kerr Phase Shifts

4.5.1 Optical Quantum Computing

As of now, a number of physical implementations have been pursued to realize a

quantum computing device that could meet these basic requirements: a physical and

scalable two-state quantum system that can be initialized, measured, and interact

in a controlled manner to implement a universal set of quantum logic gates, but

in addition, it remains isolated from the effects of the environment. Some of these

quantum technologies include trapped ion systems [138], nuclear magnetic resonance

[139], quantum dots and dopants in solids solid state [140] and super-conducting

systems [3, 141]. A recent addition to the list is “topological qubits”, which store

information using non-abelian quantum phases of matter [142, 143].

An attractive approach for building a quantum computer is using photons. They

are famous in quantum information as “flying qubits” since they can be transferred

over long distances with minimal loss in optical fibers. They are chargeless particles,
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and their interaction with other particles and matter is very weak, which makes these

systems relatively free of the decoherence that plagues other quantum systems [85].

In order to realize photons as qubits, we need a way to represent distinguishable

states as binary numbers. These states could have some observable bipartite degree of

freedom. One way of encoding information on photons is “single-rail representation”.

In this regime, the logical bases are any orthonormal states of a single optical mode,

i.e. a physical system whose state space consists of superpositions of the number

states |n⟩. For example, a logical basis could be the vacuum and single-photon states

of a single quantum mode, such that |0⟩ = |0⟩ and |1⟩ = |1⟩.

Another way to encode information in photons, and perhaps the most famous

one, is using two distinct optical modes. If we consider two orthogonal optical modes

represented by the annihilation operators a and b and their vacuum modes given by

|0⟩a and |0⟩b respectively, then the logical basis for the qubits can be defined as |0⟩

= |1⟩a |0⟩b and |1⟩ = |0⟩a |1⟩b, where |0⟩ signifies single photon in the first mode and

zero photons in the second mode, and vice versa for |1⟩. Since we use two modes to

represent a qubit, it is called “dual-rail representation” [85, 144].

Once we have an optical qubit, we need the capability to manipulate its state

through gates. Any arbitrary single-qubit operation can be achieved using linear

optical gates; mirrors, phase shifters, and beam splitters [145]. However, for imple-

menting universal quantum computations, we need nonlinear optical gates. In this

context, “nonlinearity” simply refers to the feature through which the relative phase

difference between two photons changes according to the state of one of the photons.

In general, this action is achieved through nonlinear gates [85]. A simple example of

a nonlinear gate is a controlled-NOT (C-NOT) gate.

A CNOT gate is a two-qubit gate where one qubit acts as a control and the other

qubit as the target. This is because when the control qubit is in state |0⟩ the target
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qubit remains unaffected, but when the control qubit is in state |1⟩ the target qubit

flips its state from |0⟩ → |1⟩ and vice versa. If we represent the control qubit in a

superposition state, we realize that CNOT operation requires maximally entangled

qubits [144]. These entangled states can be implemented only if the qubits interact

in a nonlinear fashion. So then, how might this interaction between two photons be

carried out?

One practical component to achieve such a nonlinear configuration is a “Kerr

medium”; a material whose index of refraction n varies proportionally with the total

intensity of light I going through it, as

n(I) = n0 + n2I, (4.52)

where n0 is the linear index of refraction and n2 is a nonlinearity coefficient. This

is known as the optical Kerr effect. This occurs very weakly in liquids, gases, and

crystals. Silica fibers has a nonlinearity coefficient n2 of ≈ 2.52 × 10−16 cm2/W [146]

and for semiconductor doped glasses, the observed n2 is as high as ≈ 1.52 × 10−4

cm2/W [147]. When two modes of photons pass through such a medium, the atoms

inside mediate “cross-phase modulation” between them [85]. Due to this effect, a

phase difference is observed between the photons. This results in a phase shift in one

of the photons, which is called “cross-Kerr phase shift” [144] and the Hamiltonian

that describes this effect is

Hck = −χa†a⊗ b†b, (4.53)

where χ is third-order nonlinear susceptibility (usually written as χ(3)) and, a repre-

sents one optical mode and b another. χ is related to nonlinearity coefficient n2 by

[148]

n2 = χ

n0ϵ0

√
µ

ϵ
≃ χ

n2
0ϵ

2
0c
, (4.54)

where µ is the magnetic permeability of the material, ϵ0 and ϵ is the dielectric constant
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of vacuum and the material respectively, n2 is in cm2/W and χ is given in units of

esu. For a medium of length L, the time evolution governed by Hck is given by

Uck(t) = exp
(
iχLt a†a⊗ b†b

)
. (4.55)

With this unitary operator, the controlled-Z (CZ) gate can be constructed for

which all the qubit states are unchanged except |11⟩ → −|11⟩. To implement CZ

gate with unitary operator Uck(t), we want the following configuration

Uck(t)|00⟩ =|00⟩, (4.56)

Uck(t)|01⟩ =|01⟩,

Uck(t)|10⟩ =|10⟩,

Uck(t)|11⟩ =eiχLt|11⟩,

where we choose χLt = π to flip the sign of the target qubit. A CNOT gate can be

easily implemented with a CZ gate by using Hadamard gates before and after the

CZ operation on the target qubit [144]. Thus, we have a complete set of universal

quantum gates required to execute any arbitrary computation.

However, it has been experimentally shown that the value χ is far too small to

practically realize a CZ gate [85, 144, 149]. This is also evident from values of n2

earlier provided. To get around this issue, the primary focus in the field of optical

quantum computing has been on using linear gates to construct nonlinearity between

photons, referred to as Knill-Laflamme-Milburn (KLM) scheme [150, 151]. The major

disadvantage of using KLM scheme is that it requires a large number of optical compo-

nents to perform useful computations [150]. Measurement-based quantum computing

[152, 153] has been suggested as an alternative to KLM scheme where prepared en-

tangled states are used for nondeterministic measurements. In the last two decades,

many schemes realizing CZ gate have been proposed using giant cross-Kerr nonlin-

earity [151, 154–158], here we show that using DA, a speed-up in the implementation
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of CZ gate can be achieved even for a medium with weaker cross-Kerr nonlinearity.

4.5.2 Dynamcial Amplification of Cross-Kerr Phase Shifts

We implement the pulse sequence as shown in Fig 4.8 on a Kerr medium described

by the Hamiltonian Hck (4.53), where the pulses execute squeezing operation alter-

natively along X and P quadrature as described in (4.39). The pulses are selectively

applied on the mode defined by annihilation operator a in the intervals of ∆t = t/2n

s.t.

U(t) =
[
S†

π,a(r)Uck(∆t)Sπ,a(r)S†
0,a(r)Uck(∆t)S0,a(r)

]n

. (4.57)

From [9], we know that when the pulse sequence is repeated for a sufficient number

𝑆 , 𝑟

𝑛 𝑡𝑖𝑚𝑒𝑠

𝑈 Δ𝑡 𝑆 , 𝑟 𝑆 , 𝑟 𝑈 Δ𝑡 𝑆 , 𝑟e   ≈

Figure 4.8: Bang-bang controls type squeezing operations applied on mode a of a

Kerr medium which are Trotterized for n times to achieve dynamical amplification of

factor cosh(2r).

of times, the harmonic oscillator a†a is amplified by factor λ = cosh(2r) i.e.

MDA(Hck) = λHck. (4.58)

As a result of the amplification of one mode, the Hamiltonian in the dynamics of the

system is transformed to λHck. Hence, the time evolution of state |11⟩ is given as:

e−iλHckt|11⟩ = eiλχLt|11⟩. (4.59)

To construct a CZ gate, we now require λχLt = π, where λ > 1 is a controllable

parameter. Therefore, with a sufficiently large squeezing parameter implemented

via rapid fast squeezing alternating instantaneously between the two quadratures, a
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𝑆 𝑒 𝑆 𝑒 𝑆 ≈ 𝑒

𝑒 = 𝑒  

Time

 𝑛 times

Figure 4.9: Schematic comparison between the non-amplified iterations and amplified

cross-Kerr phase shifts via DA. The time interval ∆t = t/n, and both of the evolutions

are repeated for large n times. Note that the amplification via DA results in the

downscaling of gate time by λ.

speed-up in the implementation of the CZ gate can be achieved even when a medium

with weak third-order nonlinear susceptibility is taken into use (see Fig 4.9). For

a finite interval between pulses ∆t, the error can be upper-bounded with a state-

dependent Trotter error bound [159]. The infinite-dimensional state space of quantum

harmonic oscillators is projected into the computational range of the CZ gate with

a projection matrix, and with the assumption that Hck is bounded, we obtain the

upper-bound on error as

ϵ ≤

χ2t sinh2(2r)
4n

√
6(1 +

√
5), (4.60)

where the error is computed using operator norm and n is the number of times the

sequence has been repeated in Trotter sequence or simply Trotter steps (for further

details see Appendix E.3).

To examine numerically, we truncated the Hilbert space of Hck to appropriate

dimensions and evaluated the error for n = 10 in Fig 4.10. The amplification factor

is chosen for assumed values of χ for 5 media whose parameters can be found in the

caption of Fig 4.10. As expected, the gate error decreases for large Trotter steps
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1 2 3 4 5 6 7 8 9 10

10-2

10-1

100

Figure 4.10: Gate error for amplifying the Hamiltonian of five Kerr media with the

length of media L = 1 and time to implement gate t = 1 as a function of Trotter steps

implemented for sequence schematically shown in Fig 4.8. The squeezing operations

are applied in an idealized bang-bang sequence to amplify medium with nonlinear

susceptibility (1) χ = π/2 (blue squares) (2) χ = π/3 (red squares) (3) χ = π/10

(yellow squares) (4) χ = π/100 (purple squares) (5) χ = π/1000 (green squares) to

the amplification factor λ in such a way that for every medium λχ = π. The solid

gray line shows the upper bound given in (4.60) normalized to an appropriate factor.

Clearly, for large Trotter steps the error decreases rapidly for each of the medium.
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for large χ (λ1,2 = 2,3). However, for smaller values of χ (λ4,5 = 102, 103) the error

becomes indistinguishable for all Trotter steps (see Fig 4.11). It implies that the error

doesn’t increase with an increasing amplification factor when λ is sufficiently large.

This is explained by recalling the Trotter terms H± from (4.40) which for this case is

modified to

H± = χ

[
cosh(2r)a†a∓ sinh(2r)

2 (a†a† + aa)
]

⊗ b†b, (4.61)

where for large values of squeezing parameter r;

cosh(2r) ≈ sinh(2r) ≈ e2r

2 . (4.62)

Since r is chosen such that cosh(2r)χ = π, then

H± ≈ π

[
a†a∓ (a†a† + aa)

2

]
⊗ b†b, (4.63)

which is independent of r and, hence, λ. Therefore the Trotter product for n steps

(e−iH+
t

2n e−iH−
t

2n )n remains approximately constant for large amplification, and so

does the gate error in Fig 4.10.

The scheme proposed here is for a simple case of single-mode fields. Shapiro [160]

and Gea-Banacloche [161] earlier showed that single-mode analysis of Kerr media

fails to address the multi-mode effect which prevents the large cross-phase modula-

tion between the photons. Since the atoms mediate the phase shift in Kerr media,

the photons are physically localized in space and not in frequency. This creates a

difference between the spectral width and the response time of the Kerr medium,

inducing negligible phase shift [151]. However, it has recently been demonstrated

that in some cases, the multi-mode effects can be overcome with novel experimental

setups [162–165].

Our approach of amplifying cross-Kerr phase shifts via DA is further supported

by two positive outcomes. Firstly, it is not impractical to achieve strong squeezed

states in the present day [166, 167]. For vacuum states, squeezing as strong as 15
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10-6
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10-4

10-3

10-2

Figure 4.11: Difference in gate error (see Fig 4.10) between successive Kerr media

with length L = 1 and gate time t = 1 as a function of Trotter steps. The label

∆ϵ(λij) = ϵ(λj) − ϵ(λi) implies the difference between errors to achieve amplification

factor λj and λi. The graph depicts that errors in the amplification of Kerr medium

become approximately identical for large values of λ.

dB (r ≈ 1.73) in optical parametric amplifier [168] and 12.6 dB (r ≈ 1.45) in a

bow-tie optical cavity has been directly measured [169]. Secondly, large cross-Kerr

nonlinearities have been demonstrated in recent years [156]. For example, phase shifts

of ≈ 1.04 (π/3) rad per photon in atomic ensembles [170], ≈ 0.35 (π/9) rad per photon

in artificial atoms [171] and ≈ 0.28 (π/11) rad per photon in CQED [172] has been

experimentally observed.

Apart from optical quantum computers, this approach can be extended to a wide

range of areas where strong cross-Kerr nonlinearity is required [173–176]. Another
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very similar approach of amplifying phase shifts in Kerr media via quadrature squeez-

ing has been proposed in [177]. The major difference we observe between ours and

their method is that they obtain an extra phase shift in b mode that may lead to

a residual error, which is restrained in our case due to Trotterization. We further

notice that if DA is implemented for both modes a and b, with the overall composi-

tion MDA,b(MDA,a(Hck)) the Hamiltonian Hck is amplified to a factor of cosh2(2r).

Notably, larger amplification is achieved in comparison to single-mode amplification

for a given squeezing parameter.

It should be noted that the amplification of system dynamics also enhances the

system-environment interactions which speed-up the decoherence of our system. This

is also evident in the experiments conducted by Burd et al. [127] (see Fig. 4). How-

ever, with an appropriate composition of DD and DA, desired components in the

system can be amplified and unwanted interactions can be decoupled in the same

cycle of operations [9]. We wish to investigate the feasibility of DD and DA for the

amplification of cross-Kerr phase shifts in our future work.
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Chapter 5

CONCLUSIONS

In this thesis, we have studied two open-loop quantum protocols that share a similar

framework, but achieve completely opposite transformations for the system of interest.

The first technique is DD, which aims to suppress decoherence-causing components

in the system. We began by studying the decoherence caused by the unavoidable

interaction of a quantum system with its environment. In particular, we discussed

simple mathematical models of decoherence in a single qubit system. We showed

that in an open quantum system, the ability of a quantum system to exist in a

superposition state is limited by the coherence time, which in general is very small

for large-scale computations.

In order to suppress decoherence in a qubit system, we investigated the scheme of

DD and derived the necessary conditions for effective decoupling of the system and

environment in Chapter 3. Specifically, we saw that DD can successfully decouple the

system from the environment without any knowledge about the strength of system-

environment coupling. Then, we demonstrated the feasibility of decoupling condi-

tions by numerically simulating single-qubit systems. From a general description of

continuous-time controls, we obtained discrete-time bang-bang controls, which, when

applied instantaneously fast, yielded the complete removal of decoherence-causing

components in the system. At the end of Chapter 3, we analytically studied the

mathematical model in [8, 63] to conclude that the evolution of system-environment

interactions governed by any finite traceless operator can be completely eliminated

with appropriately designed, sufficiently fast bang-bang controls.

The scope of this thesis was limited to the application of DD to finite-dimensional
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systems; however, recent proposals suggest that decoherence in a certain class of

infinite-dimensional systems can be suppressed via DD [79, 96]. A thorough study

of these proposals might open up a promising direction to find a control sequence

that could extend coherence time in quantum technologies that work with continuous

variable systems [178–180].

Based on the framework described in DD, we investigated DA, which is aimed at

amplifying system components instead of suppressing them. Through this scheme, a

speed-up in the evolution of infinite-dimensional systems is achieved, which results

in the amplification of interactions in harmonic oscillators. We began Chapter 4

by studying squeezed operations and reviewing protocols that aim to amplify the

displacement of coherent states through reversible squeezing. Then, we showed that

by squeezing and anti-squeezing harmonic oscillators in a Trotter-type sequence, an

amplification factor can be achieved in the system dynamics without full knowledge of

the system. Other than a single mode of quantum harmonic oscillator, we investigated

DA for interacting oscillators and for a general quadratic Hamiltonian. We briefly

reviewed the potential areas where this scheme can render an advantage, and finally,

we proposed the application of DA in the amplification of the cross-Kerr phase shift to

obtain a speed-up in the implementation of the controlled-phase gate. Our numerical

results show that large amplification in cross-Kerr phase shifts can be achieved with

sufficient squeezing resources. Using state-dependent Trotter error bound [159] we

upper-bounded the error between a CZ gate and amplified cross-Kerr phase shifts.

Furthermore, our results show that for large amplifications, the gate error becomes

constant and does not increase with the amplification factor. Thus, with this scheme,

a large amplification in the speed of controlled phase gates can be achieved without

scaling the error.

We recognize that there are several open questions that haven’t been explored in
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this work. Firstly, the effect of amplification on the decoherence of the system has

not been investigated here. Experience shows that, in general, the amplification of

a quantum system results in the strengthening of system-environment interactions

[9, 127]. Arenz et al. [9] showed that in a particular form of harmonic oscillators, the

desired interactions can be amplified and unwanted system-environment interactions

can be suppressed through a selectively arranged sequence of controls in a cycle of

operations. A similar framework for the amplification of the cross-Kerr phase shift

will be investigated in our future work.

Secondly, in section 4.5.2 we concentrated only on the cross-Kerr phase shift in the

Kerr medium and neglected the self-Kerr effect. This leaves us with the open question

of what the impact of amplification might be on self-Kerr components. How is the

cross-Kerr phase shift affected by the amplified self-Kerr components? An approach

to analyzing these effects might be to squeeze the states of harmonic oscillators in

directions other than along X and P quadratures. Certainly, investigating this will

be a key focus of our future efforts.
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[38]  Lukasz Cywiński, Wayne M Witzel, and S Das Sarma. Electron spin dephasing
due to hyperfine interactions with a nuclear spin bath. Physical review letters,
102(5):057601, 2009.

[39] G Massimo Palma, Kalle-Antti Suominen, and Artur Ekert. Quantum com-
puters and dissipation. Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, 452(1946):567–584, 1996.

[40] MOSM Hillery, Robert F O’Connell, Marlan O Scully, and Eugene P Wigner.
Distribution functions in physics: Fundamentals. Physics reports, 106(3):121–
167, 1984.

[41] Fedor Jelezko, T Gaebel, I Popa, M Domhan, A Gruber, and Jorg Wrachtrup.
Observation of coherent oscillation of a single nuclear spin and realization of a
two-qubit conditional quantum gate. Physical Review Letters, 93(13):130501,
2004.

73



[42] Dohun Kim, Zhan Shi, CB Simmons, DR Ward, JR Prance, Teck Seng Koh,
John King Gamble, DE Savage, MG Lagally, Mark Friesen, et al. Quantum
control and process tomography of a semiconductor quantum dot hybrid qubit.
Nature, 511(7507):70–74, 2014.

[43] Jarryd J Pla, Kuan Y Tan, Juan P Dehollain, Wee H Lim, John JL Mor-
ton, Floris A Zwanenburg, David N Jamieson, Andrew S Dzurak, and Andrea
Morello. High-fidelity readout and control of a nuclear spin qubit in silicon.
Nature, 496(7445):334–338, 2013.

[44] Matthias F Brandl. A quantum von neumann architecture for large-scale quan-
tum computing. arXiv preprint arXiv:1702.02583, 2017.

[45] Kosuke Fukui and Shuntaro Takeda. Building a large-scale quantum computer
with continuous-variable optical technologies. Journal of Physics B: Atomic,
Molecular and Optical Physics, 55(1):012001, 2022.

[46] Osamu Hirota, Aleksandr Semenovich Holevo, and CM Caves. Quantum Com-
munication, Computing, and Measurement. Springer Science & Business Media,
2012.

[47] Sajeev Damodarakurup, Marco Lucamarini, Giovanni Di Giuseppe, David Vi-
tali, and Paolo Tombesi. Experimental inhibition of decoherence on flying qubits
via “bang-bang” control. Physical review letters, 103(4):040502, 2009.

[48] Michael J Biercuk, Hermann Uys, Aaron P VanDevender, Nobuyasu Shiga,
Wayne M Itano, and John J Bollinger. Optimized dynamical decoupling in a
model quantum memory. Nature, 458(7241):996–1000, 2009.

[49] Ronald Hanson, Leo P Kouwenhoven, Jason R Petta, Seigo Tarucha, and
Lieven MK Vandersypen. Spins in few-electron quantum dots. Reviews of
modern physics, 79(4):1217, 2007.

[50] Vaibhav N Prakash and Aranya Bhuti Bhattacherjee. Decoherence control
of a single-photon optomechanical system in phase-sensitive reservoirs. arXiv
preprint arXiv:2111.05554, 2021.

[51] Simon J Devitt, William J Munro, and Kae Nemoto. Quantum error correction
for beginners. Reports on Progress in Physics, 76(7):076001, 2013.

[52] David P DiVincenzo and Peter W Shor. Fault-tolerant error correction with
efficient quantum codes. Physical review letters, 77(15):3260, 1996.

[53] Joschka Roffe. Quantum error correction: an introductory guide. Contemporary
Physics, 60(3):226–245, 2019.

[54] David G Cory, MD Price, W Maas, Emanuel Knill, Raymond Laflamme, Wo-
jciech H Zurek, Timothy F Havel, and Shyamal S Somaroo. Experimental
quantum error correction. Physical Review Letters, 81(10):2152, 1998.

74



[55] Debbie Leung, Lieven Vandersypen, Xinlan Zhou, Mark Sherwood, Constantino
Yannoni, Mark Kubinec, and Isaac Chuang. Experimental realization of a two-
bit phase damping quantum code. Physical Review A, 60(3):1924, 1999.

[56] Suppressing quantum errors by scaling a surface code logical qubit. Nature, 614
(7949):676–681, 2023.

[57] Daniel A Lidar, Isaac L Chuang, and K Birgitta Whaley. Decoherence-free sub-
spaces for quantum computation. Physical Review Letters, 81(12):2594, 1998.

[58] Michael Freedman, Alexei Kitaev, Michael Larsen, and Zhenghan Wang. Topo-
logical quantum computation. Bulletin of the American Mathematical Society,
40(1):31–38, 2003.

[59] Sankar Das Sarma, Michael Freedman, and Chetan Nayak. Topological quan-
tum computation. Physics today, 59(7):32–38, 2006.

[60] Ali Ahmed and Mustafa Ahmed. Dynamical decoupling using NMR for quantum
computing. PhD thesis, 2013.

[61] Ulrich Haeberlen and John S Waugh. Coherent averaging effects in magnetic
resonance. Physical Review, 175(2):453, 1968.

[62] Lieven MK Vandersypen and Isaac L Chuang. Nmr techniques for quantum
control and computation. Reviews of modern physics, 76(4):1037, 2005.

[63] Lorenza Viola, Emanuel Knill, and Seth Lloyd. Dynamical decoupling of open
quantum systems. Physical Review Letters, 82(12):2417, 1999.

[64] Lorenza Viola, Seth Lloyd, and Emanuel Knill. Universal control of decoupled
quantum systems. Physical Review Letters, 83(23):4888, 1999.

[65] Jiangfeng Du, Xing Rong, Nan Zhao, Ya Wang, Jiahui Yang, and RB Liu.
Preserving electron spin coherence in solids by optimal dynamical decoupling.
Nature, 461(7268):1265–1268, 2009.

[66] Alexandre M Souza, Gonzalo A Alvarez, and Dieter Suter. Robust dynami-
cal decoupling for quantum computing and quantum memory. Physical review
letters, 106(24):240501, 2011.

[67] Zhi-Hui Wang and VV Dobrovitski. Aperiodic dynamical decoupling sequences
in the presence of pulse errors. Journal of Physics B: Atomic, Molecular and
Optical Physics, 44(15):154004, 2011.

[68] Jacob R West, Daniel A Lidar, Bryan H Fong, and Mark F Gyure. High
fidelity quantum gates via dynamical decoupling. Physical review letters, 105
(23):230503, 2010.

[69] Wenzheng Dong, FA Calderon-Vargas, and Sophia E Economou. Precise high-
fidelity electron–nuclear spin entangling gates in nv centers via hybrid dynam-
ical decoupling sequences. New Journal of Physics, 22(7):073059, 2020.

75



[70] VJ Mart́ınez-Lahuerta, L Pelzer, K Dietze, L Krinner, PO Schmidt, and K Ham-
merer. Quadrupole transitions and quantum gates protected by continuous
dynamic decoupling. arXiv preprint arXiv:2301.07974, 2023.
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A.1 Pauli Operators

The Pauli operators are given by

σx =

 0 1

1 0

 , (A.1)

σy =

 0 −i

i 0

 , (A.2)

σz =

 1 0

0 −1

 . (A.3)

A.2 Properties of Pauli Opertors

The Pauli operators follow these multiplication properties

σ2
i = 1, where i ∈ {x, y, z} and

σij = −σji = iσk, where i, j, k = x, y, z respectively.
(A.4)

The Pauli operators follow the commutation and anticommutation relation as

[σi, σj] = 2iεijkσk,

{σi, σj} = 2δij1.

(A.5)

where εijk is the Levi-Civita symbol which describes the cyclic permutation of Pauli

matrices and δij is the Kronecker delta function.

A.3 Properties of Density Operator

The density operator ρ follow these fundamental properties

1. ρ is Hermitian

ρ† = ρ. (A.6)
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2. ρ is positive semidefinite

ρ ≥ 0. (A.7)

3. ρ is a projector

ρ2 = ρ. (A.8)

4. Trace of ρ is normalized

Tr(ρ) = 1. (A.9)

5. if ρ represent a mixed ensemble

0 < Tr(ρ2) < 1. (A.10)

A.4 Partial Trace

For two sub-systems A and B, if the states in the combined system are described

by composite density operator ρAB then, the partial trace over the system B is denoted

by TrB such that

TrB{ρAB} =
∑

r

(1A ⊗ ⟨ϕr|)ρAB(1A ⊗ |ϕr⟩), (A.11)

where {|ϕr⟩} is an orthonormal basis for the Hilbert space of system B. Similarly the

partial trace over the system A is given by

TrA{ρAB} =
∑

r

(⟨φr| ⊗ 1B)ρAB(|φr⟩ ⊗ 1B), (A.12)

where {|φr⟩} is an orthonormal basis for the Hilbert space of system A.

A.5 Rotating Frame

The concept of the rotating frame is invoked to simplify the dynamics of the

composite system by moving into a frame where the dynamics of a subsystem is

absent. Let us consider we have a time-independent Hamiltonian H0 driven by a

time-dependent Hamiltonian V (t) such that the combined Hamiltonian is
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H(t) = H0 + V (t). (A.13)

In Schrödinger picture, the evolution of state |ψ(t)⟩ for the given Hamiltonian will be

i
∂ |ψ(t)⟩
∂t

= H(t) |ψ(t)⟩ . (A.14)

We can define a state in a rotating frame such that

|ϕ(t)⟩ = R(t) |ψ(t)⟩ . (A.15)

To obtain the equation of motion for the state |ϕ(t)⟩ we differentiate it and multiply

by i s.t.

i
∂ |ϕ(t)⟩
∂t

= i
∂R(t)
∂t

|ψ(t)⟩ +R(t) i∂ |ψ(t)⟩
∂t

= i
∂R(t)
∂t

R†(t) |ϕ(t)⟩ +R(t)H(t)R†(t) |ϕ(t)⟩

=
(
i
∂R(t)
∂t

R†(t) +R(t)H(t)R†(t)
)

|ϕ(t)⟩ .

(A.16)

Here, one can choose R(t) to move into a frame where the dynamics are defined by

the subsystem of our interest. For example, if the system of interest is H0 we move

into a frame defined by R(t) = U †
V (t) where UV (t) = T exp

(
−i
∫ t

0 duV (u)
)
, such that

in the above expression
∂R(t)
∂t

= ∂U †
V (t)
∂t

= iU †
V (t)V (t). (A.17)

Hence, (A.16) can be written as

i
∂ |ϕ(t)⟩
∂t

=
(
−U †

V (t)V (t)UV (t) + U †
V (t)H(t)UV (t)

)
|ϕ(t)⟩ . (A.18)

From (A.13) the terms defining dynamics of V (t) are cancelled in the above equation

and the remaining evolution is given by

i
∂ |ϕ(t)⟩
∂t

= H̃(t) |ϕ(t)⟩ , (A.19)

where H̃(t) = U †
V (t)H0UV (t) is the Hamiltonian in the reference frame rotated about

the control propagator UV (t). The interaction picture is a case of rotating frame
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where the system itself is split into free Hamiltonian and interacting Hamiltonian i.e.

H(t) = H0 +HI(t), (A.20)

where the subsystem of interest is the interaction part. Thus, we move to a reference

frame rotating about the evolution governed by the free Hamiltonian such that the

state |ϕ(t)⟩ is given by

|ϕ(t)⟩ = U †
0(t) |ψ(t)⟩ , (A.21)

and the Hamiltonian in the interaction picture is

H̃(t) = U †
0(t)HI(t)U0(t). (A.22)

A.6 Baker-Campbell-Hausdorff Formulae

For the product of the exponentials of two operators A and B, the BCH formula

is

eAeB = eA+B+ 1
2 [A,B]+ 1

12 [A,[A,B]]− 1
12 [B,[A,B]]+.... (A.23)

An useful lemma of BCH formulae is

eABe−A = B + [A,B] + 1
2[A, [A,B]] + 1

3! [A, [A, [A,B]]] + . . . (A.24)
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This model for decoherence in qubit-boson model has been thoroughly studied

in [7, 8, 39]. The key elements of that work will be briefly reviewed here. For the

combined Hamiltonian described in (2.26) the interaction Hamiltonian H̃SB(t) is given

by

H̃SB(t) =ei(ω0σz+
∑

k
ωkb†

k
bk)∆t

[∑
k

ℏσz(gkb
†
k + g∗

kbk)
]
e−i(ω0σz+

∑
k

ωkb†
k

bk)∆t

=ℏσz

∑
k

(gke
i(ωkb†

k
bk)∆tb†

ke
−i(ωkb†

k
bk)∆t + g∗

ke
i(ωkb†

k
bk)∆tbke

−i(ωkb†
k

bk)∆t).
(B.1)

Using BCH lemma (A.24) the above expression is simplified to

H̃SB(t) =
∑

k

ℏσz(gkb
†
ke

iωkt + g∗
kbke

−iωkt). (B.2)

Now, the time evolution of H̃SB(t) is given by a time-ordered unitary operator

Ũtot(t, t0) = T exp
(

−i
∫ t

t0
ds
∑

k

σz(gkb
†
ke

iωks + g∗
kbke

−iωks)
)
. (B.3)

Let us now consider that ρtot is the density operator that describes the states in

the combined system-environment Hilbert space. We wish to focus on the evolution

governed by system-environment interaction and for that purpose, it is convenient to

move into the interaction picture to obtain ρ̃tot(t) as

ρ̃tot(t) = ei(HS+HB)(t−t0)ρtot(t)e−i(HS+HB)(t−t0). (B.4)

The time evolution of H̃SB(t) is given by a time-ordered unitary operator

Ũtot(t, t0) = T exp
(

−i
∫ t

t0
ds
∑

k

σz(gkb
†
ke

iωks + g∗
kbke

−iωks)
)
. (B.5)

We know that in the evolution of a system, the time order can be omitted if the

Hamiltonians commute to a complex scalar at different times [5]. In our case

[H̃SB(t′), H̃SB(t′′)] = −2i
∑

k

|gk|2 sinωk(t′ − t′′), (B.6)

which is simply a complex number. Thus we can simply integrate H̃SB(t) over time

without worrying about the order to find

Ũtot(t, t0) = exp
{
σz

2
∑

k

(b†
ke

iωkt0ξk(t− t0)) + (bke
−iωkt0ξ∗

k(t− t0))
}
, (B.7)
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where
ξk(t− t0) = ξk(∆t) = 2gk

ωk

(1 − eiωk∆t). (B.8)

For the eigenstate of σz and a pure bath state |Φ⟩ the time evolution Ũtot(t, t0) is

defined by

Ũtot(t, t0) |0⟩ |Φ⟩ = |0⟩
∏
k

D(eiωkt0
1
2ξk(∆t)) |Φ⟩ , (B.9)

Ũtot(t, t0) |1⟩ |Φ⟩ = |1⟩
∏
k

D(−eiωkt0
1
2ξk(∆t)) |Φ⟩ ,

where D(ξk) is a displacement operator given by

D(ξk) = e(b†
k

ξk−bkξ∗
k). (B.10)

Hence, the unitary operator Ũtot(t, t0) can be described by a displacement operator

D(ξk), where the direction of the displacement of a bath state depends on the logical

state of the qubit [39]. To observe the effect of this entanglement we compute the

elements of reduced density matrix ρ̃S(t) given by

⟨i| ρ̃S(t) |j⟩ = ρ̃ij(t) = ⟨i| TrB{Ũtot(t, t0)ρ̃tot(t0)Ũ †
tot(t, t0)} |j⟩ . (B.11)

This can be solved by invoking two standard assumptions from [8]:

(i) qubit and bath are initially uncorrelated:

ρ̃tot(t0) = ρS(t0) ⊗ ρB(t0); (B.12)

(ii) at temperature T the bath is in thermal equilibrium, s.t. for given k modes

ρtot(t0) =
∏
k

ρB,k(T ) =
∏
k

(1 − eβℏωk)
∞∑

n=0
e−nβℏωk |n⟩ ⟨n| . (B.13)

where β = 1/kBT , where T is temperature and kB is the Boltzmann constant. For

simplicity, we assume kB = 1. From (B.9) and (B.11) we see that ρ̃00(t) = ρ00(t0)

and ρ̃11(t) = ρ11(t0) whereas for the off-diagonal elements we obtain

ρ̃01(t) = ⟨0| TrB{Ũtot(t, t0)ρ̃tot(t0)Ũ †
tot(t, t0)} |1⟩

= ρ01(t0)
∏
k

Trk{ρB,k(t0)D(eiωkt0ξk(t− t0))}.
(B.14)

From [40] we know that (B.14) is the symmetric order generating function for a
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harmonic oscillator in thermal equilibrium. Then, one can simply rewrite the above

expression in the form

ρ̃01(t) = ρ01(t0)e−Γ(t−t0), (B.15)

where

Γ(t− t0) = Γ(∆t) =
∑

k

|ξk(∆t)|2

2 coth
(
ωk

2T

)
. (B.16)
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DD FOR TRACELESS OPERATORS
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For an arbitrary finite-dimensional traceless operator given by the combination

Sa = λxσx + λyσy + λzσz, (C.1)

where λx, λy and λz are coefficients associated with Pauli-X,Y and Z operators respec-

tively, if we implement bang-bang DD through the decoupling set G = {σx, σy, σz,1}

in the sequence as described in (3.39) we obtain

MDD(Sa) = 1
|G|

∑
gk∈G

g†
kSagk.

=1
4
(
σ†

xSaσx + σ†
ySaσy + σ†

zSaσz + 1Sa1
)
,

(C.2)

where

σ†
xSaσx =λx(σ†

xσxσx) + λy(σ†
xσyσx) + λz(σ†

zσxσx) (C.3)

=λxσx − λyσy − λzσz.

Similarly, the other terms are

σ†
ySaσy = − λxσx + λyσy − λzσz,

σ†
zSaσz = − λxσx + λyσy + λzσz.

(C.4)

Thus, (C.2) is simply

MDD(Sa) = 1
4
(
−2λxσx − 2λyσy − 2λzσz + 2λxσx + 2λyσy + 2λzσz

)
= 0.

(C.5)
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We analyze bang-bang decoupling in the qubit-boson model from (2.26), by apply-

ing controls through the control Hamiltonian Hc(t) which induces spin-flip transitions

to the system. As demonstrated in [8] we implement the controls with the Hamilto-

nian

Hc(t) =
np∑

k=1

π

2σxδ(t− tPk
). (D.1)

From (3.2) we know that the unitary operator of a π pulse is simply

Uc(tPk
) = exp

(
−iπ2σx

)
. (D.2)

To easily analyze the contribution of the pulses to system-bath interaction we move

into the interaction picture. The Hamiltonian in the interaction picture is rewritten

as

H̃(t) = H̃c(t) + H̃SB(t), (D.3)

where H̃SB(t) is calculated in (B.2) and H̃c(t) can be easily calculated to obtain

H̃c(t) = π

2

np∑
k=1

eiω0σztPkσxe
−iω0σztPk . (D.4)

Now, the time evolution of H̃c(t) for kth pulse is described by

Ũc(tPk
) = exp

(
−iπ2 e

iω0σztPkσxe
−iω0σztPk

)
. (D.5)

For simplicity lets call Ũc(tPk
) = Pk. We implement the sequence for np = 2, in the

order as schematically shown in Fig 3.6. The pulses are kept equally spaced in time.

Let’s consider the time taken to implement one cycle as Tc; Tc = 2∆t. The cycle is

said to be complete at time t1, where t1 = t0 + 2∆t. For the considered zero width

pulses, tP2 = t1. The joint propagator for one cycle of application of control pulses is

given by

Ũ(t1, t0) = P2P1 × [P †
1 Ũtot(tP2 , tP1)P1] × Ũtot(tP1 , t0). (D.6)

To keep it simple we divide the task of finding Ũ(t1, t0) into three simpler calculations:

(i) calculate Ũtot(tP1 , t0); (ii) calculate pulses P2P1 and (iii) calculate P †
1 Ũtot(tP2 , tP1)P1.
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We earlier derived the unitary operator Ũtot(t, t0) in (B.7) which in turn describes the

evolutions in the absence of control fields. P2P1 can be easily calculated from (D.5)

as
P2P1 = eiω0σztP2σxe

−iω0σztP2eiω0σztP1σxe
−iω0σztP1

= eiω0σz2∆t.

(D.7)

Hence, now our goal is to find the (iii) term which is

P †
1 Ũtot(tP2 , tP1)P1 = (D.8)

exp
{
P †

1
σz

2 P1
∑

k

(b†
ke

iωktP1ξk(tP2 − tP1) + bke
−iωktP1ξ∗

k(tP2 − tP1))
}
.

From the properties of Pauli matrices; eiω0σztkσze
−iω0σztk = −σz, therefore

P †
1 Ũtot(tP2 , tP1)P1 = exp

{
−σz

2
∑

k

(b†
ke

iωktP1ξk(∆t) + bke
−iωktP1ξ∗

k(∆t))
}
. (D.9)

and henceforth we can write the complete evolution over a cycle by finding the product

of unitary operators from (D.6) to get

Ũ(t1, t0) = exp
{
iω0σz(t1 − t0) − σz

2
∑

k

(b†
ke

iωktP1ξk(∆t) + bke
−iωktP1ξ∗

k(∆t)) (D.10)

+ σz

2
∑

k

(b†
ke

iωkt0ξk(∆t) + bke
−iωkt0ξ∗

k(∆t))
}
.

Notice that for the derivation of the unitary operator, we have omitted the time order-

ing operator owing to the fact that the evolution due to commutators of Hamiltonian

is a global phase. In order to compare the evolution (D.10) with the one described in

absence of pulses (B.7) we replace tP1 → t0 + ∆t to obtain

Ũ(t1, t0) = exp
{
iω0σz(t1 − t0) + σz

2
∑

k

(b†
ke

iωkt0µk(∆t) + bke
−iωkt0µ∗

k(∆t))
}
, (D.11)

where,

µk(∆t) = ξk(∆t)(eiωk∆t − 1) = −2gk

ωk

(1 − eiωk∆t)2. (D.12)

We wish to observe the effects of the pulse sequence after its implementation for N

cycles. The total duration tn to execute n cycles is given by

tn = 2n∆t+ t0, n = 1, 2, 3 . . . , N (D.13)
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From (D.11) the time evolution for nth cycle is

Ũ(tn, tn−1) = exp
{
iω0σz(tn − tn−1) + σz

2
∑

k

(b†
ke

iωktn−1µk(∆t) + bke
−iωktn−1µ∗

k(∆t))
}
.

(D.14)
The total evolution after N cycles is determined by the time-ordered product of the

evolutions during each cycle, s.t.

Ũ(tN , t0) = Ũ(tN , tN−1) . . . Ũ(t2, t1)Ũ(t1, t0). (D.15)

A simple approach to obtain Ũ(tN , t0) is through calculating any two consecutive

terms in (D.15) and then generalizing the solution for N cycles. Hence, let’s try to

find the product

Ũ(tj+1, tj)Ũ(tj, tj−1) = exp
{
iω0σz(tj+1 − tj) + σz

2
∑

k

(b†
ke

iωktjµk(∆t)

+ bke
−iωktjµ∗

k(∆t))
}

× exp
{
iω0σz(tj − tj−1)

+ σz

2
∑

k

(b†
ke

iωktj−1µk(∆t) + bke
−iωktj−1µ∗

k(∆t))
}
.

(D.16)

Since, the Hamiltonians in the above expression commute, we can write the product

as exponential of the sum of the operators. Moreover, from (D.13) we know that for

jth cycle tj = 2j∆t+ t0, thus we simplify (D.16) to

Ũ(tj+1, tj)Ũ(tj, tj−1) = exp
{
iω0σz2∆t+ σz

2
∑

k

(b†
ke

iωkt0µk(∆t)[eiωk(2j∆t)+

eiωk2(j−1)∆t)] + bke
−iωkt0µ∗

k(∆t)[e−iωk(2j∆t) + e−iωk2(j−1)∆t)])
}

= exp
{
iω0σz2∆t+ σz

2
∑

k

(b†
ke

iωkt0µk(j + 1,∆t)

+ bke
−iωkt0µ∗

k(j + 1,∆t))
}
.

(D.17)

The product of unitary operators which describe the overall evolution for N cycles is

given by
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Ũ(tN , t0) = exp
{
iω0σz(tN − t0) + σz

2
∑

k

(b†
ke

iωkt0µk(N,∆t) + bke
−iωkt0µ∗

k(N,∆t))
}
,

(D.18)

where

µk(N,∆t) = ξk(∆t)(eiωk∆t − 1)
N∑

n=1
eiωk2(n−1)∆t. (D.19)

If we calculate ξk(∆t) for N cycles we get

ξk(tN − t0) = ξk(2N∆t) = 2gk

ωk

(1 − eiωk2N∆t)

= 2gk

ωk

(1 − eiωk2∆t)(1 − eiωk2N∆t)
(1 − eiωk2∆t)

= ξk(2∆t)
N∑

n=1
eiωk2(n−1)∆t,

(D.20)

where

ξ(2∆t) = ξ(∆t)(1 + eiωk∆t). (D.21)

While considering a single mode, with (D.19) and (D.20) we can calculate the ratio

|µ(N,∆t)|2

|ξ(tN − t0)|2
=

∣∣∣eiω∆t + 1
∣∣∣2

|eiω∆t − 1|2
= tan2

(
ω∆t

2

)
. (D.22)

In order to find an ideal case of decoupling we evaluate the limit in (3.53). With

the assumption that ∆t → 0, we exploit (D.19), (D.20) and (D.21) to calculate the

limiting case

lim
∆t→0
N→∞

µk(N,∆t) = lim
∆t→0

ξ(2N∆t) − lim
∆t→0

2ξ(∆t)
N∑

n=1
eiωk2(n−1)∆t (D.23)

= ξ(2N∆t)
{

1 − lim
∆t→0

2 ξ(∆t)
ξ(2N∆t)

N∑
n−1=0

eiωktn−1e−iωkt0

}

= ξ(2N∆t)
{

1 − e−iωkt0

1 − eiωk(tN −t0) lim
∆t→0

1 − eiωk∆t

∆t

N∑
n−1=0

2∆teiωktn−1

}

= ξ(2N∆t)
{

1 − e−iωkt0

1 − eiωk(tN −t0) lim
∆t→0

1 − eiωk∆t

∆t

∫ tN

t0
dseiωks

}

= ξ(2N∆t)
{

1 − lim
∆t→0

eiωk∆t − 1
iωk∆t

}
= 0.
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E.1 Non-applicability of DA on Finite Hamitlonians

The general proof that the dynamics of a finite-dimensional system cannot be am-

plified is concisely explained in the Appendix of [9]. We go through the details of the

work by following the results from [181]. Let’s consider a finite-dimensional quantum

system H0, which is controlled through Hamiltonian Hc(t) which aims to speed-up

its dynamics. As we did with DD, we move into a reference frame rotating about the

control propagator Uc(t) = T exp
(
−i
∫ t

0 dsHc(s)
)

to obtain the total evolution

U(t) = Uc(t)Ũ(t), (E.1)

where

Ũ(t) = T exp
(

−i
∫ t

0
dsH̃(s)

)
, (E.2)

and, where H̃(t) is Hamiltonian in rotating frame. The time-ordered evolution Ũ(t)

can be written as an infinite, ordered product

Ũ(t) = lim
n→∞

n∏
j=0

exp
[
−i t
n
H̃

(
jt

n

)]
. (E.3)

From Thompson’s theorem [182], for a given pair of operators A and B, there exist

unitary operators V and W which satisfies the relation

eAeB = eV AV †+W BW †
. (E.4)

Thus, for given Hermitian operators {Aj}n
j=1 there exists unitary operators {Wj}n

j=1

such that
n∏

j=0
exp(−iAj) = exp

 n∑
j=0

(−iWjAjW
†
j )
. (E.5)

Applying these results in (E.3) we obtain

Ũ(t) = lim
n→∞

exp
[
−i t
n

n∑
j=0

WjH̃

(
jt

n

)
W †

j

]

= T exp
[
−i
∫ t

0
dsWj(s)H̃(s)W †

j (s)
]
.

(E.6)
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We calculate the Frobenius norm of the Hamiltonian operator governing the evolution

Ũ(t) and use triangle inequality for integrals of a norm to find∥∥∥∥∫ t

0
dsWj(s)H̃(s)W †

j (s)
∥∥∥∥ ≤

∫ t

0
ds
∥∥∥Wj(s)H̃(s)W †

j (s)
∥∥∥

≤
∫ t

0
ds
∥∥∥Wj(s)U †

c (s)H0Uc(s)W †
j (s)

∥∥∥ . (E.7)

Since the Frobenius norm is unitarily invariant, we obtain∥∥∥∥∫ t

0
dsH̃(s)

∥∥∥∥ ≤ t ∥H0∥ . (E.8)

Hence, the dynamics of a finite-dimensional Hamiltonian is upper bounded. Therefore

a finite system cannot be amplified with any admissible controls. This reasoning also

applies to Schrödinger’s picture where the bound is∥∥∥∥∫ t

0
ds(H0 +Hc(s))

∥∥∥∥ ≤ t ∥H0 +Hc(t)∥ . (E.9)

E.2 DA for N Interacting Quantum Harmonic Oscillators

With the resources to implement squeezing operations V = {Sπ,S0} where Sβ =∏N
i=1 S(i)β(r), DA executed on (4.46) yields

MDA(H0) =MDA

(
N∑

j=1
ωja

†
jaj

)
+ MDA

(
N∑

i=1
ωia

†
iai

)
+ MDA

(
N∑

i,j=1
hij[a†

iaj + aia
†
j]
)

+ MDA

(
N∑

i,j=1
gij[a†

ia
†
j + aiaj]

)
.

(E.10)

From (4.45) we know

MDA

(
N∑

j=1
ωja

†
jaj

)
= cosh (2r)

N∑
j=1

ωja
†
jaj, (E.11)

MDA

(
N∑

i=1
ωia

†
iai

)
= cosh (2r)

N∑
i=1

ωia
†
iai. (E.12)

For the third term
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MDA

(
N∑

i,j=1
hij[a†

iaj + aia
†
j]
)

=1
2

[(
N∑

i,j=1
hij[S†

(i)π(r)a†
iS(i)πS

†
(j)πajS(j)π

+ S†
(i)πaiS(i)πS

†
(j)πa

†
jS(j)π]

)
+
(

N∑
i,j=1

hij[S†
(i)0(r)a†

iS(i)0

S†
(j)0ajS(j)0 + S†

(i)0aiS(i)0S
†
(j)0a

†
jS(j)0]

)]

=1
2

[(
N∑

i,j=1
hij[S†

(i)π(r)a†
iS(i)πS

†
(j)πajS(j)π

+ S†
(i)0(r)a†

iS(i)0S
†
(j)0ajS(j)0]

)
+
(

N∑
i,j=1

hij[S†
(i)πaiS(i)π

S†
(j)πa

†
jS(j)π + S†

(i)0aiS(i)0S
†
(j)0a

†
jS(j)0]

)]
,

(E.13)

we invoke the relations from (4.26) to obtain

S†
(i)π(r)a†

iS(i)πS
†
(j)πajS(j)π + S†

(i)0a
†
iS(i)0S

†
(j)0ajS(j)0 = 2 cosh(2r)a†

iaj. (E.14)

Similarly,

S†
(i)π(r)aiS(i)πS

†
(j)πa

†
jS(j)π + S†

(i)0aiS(i)0S
†
(j)0a

†
jS(j)0 = 2 cosh(2r)aia

†
j. (E.15)

As a result

MDA

(
N∑

i,j=1
hij[a†

iaj + aia
†
j]
)

= cosh(2r)
N∑

i,j=1
hij[a†

iaj + aia
†
j]. (E.16)

In a similar manner, the last term in (E.10) is

MDA

(
N∑

i,j=1
gij[a†

ia
†
j + aiaj]

)
= cosh(2r)

N∑
i,j=1

gij[a†
ia

†
j + aiaj]. (E.17)

Hence, (E.10) is transformed as

MDA(H0) = cosh(2r)H0. (E.18)
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E.3 Error for DA of Cross-Kerr Phase Shift

In order to derive the upper bound for the error in (4.60), consider the Trotter

sequence (
U+

(
t

2k

)
U−

(
t

2k

))k

, (E.19)

where k is Trotter steps and U±(t) = e−iH±(t), where H± from (4.61) is

H± = χ

[
cosh(2r)a†a∓ sinh(2r)

2 (a†a† + aa)
]
b†b, (E.20)

For simplicity, in the expression, the tensor product between the two modes is shown

by simple multiplication. For the given operators, we can develop an error estimate

similar to the error obtained in [183], given by

∥PΛkP∥ ≤ sup∥Λk |n1n2⟩∥, (E.21)

where Λk =
([
U+

(
t

2k

)
U−

(
t

2k

)]k

−Up(t)
)

and states |n1n2⟩ ∈ { |00⟩ , |01⟩ , |10⟩ , |11⟩}.

The projection of transformations through Λk onto the space defined by bases |n1n2⟩

is given by the projection matrix P and Up(t) describes the CZ gate configuration

such that

Up(t) = |00⟩ ⟨00| + |01⟩ ⟨01| + |10⟩ ⟨10| − |11⟩ ⟨11| , (E.22)

and

P = Up(t) + 2 |11⟩ ⟨11| . (E.23)

In the computational bases |n1n2⟩, the expression in (E.21) is upper bounded by

∥PΛkP∥ ≤ sup∥Λk |n1n2⟩∥ ≤
∑

|n1n2⟩
∥Λk |n1n2⟩∥. (E.24)

This can be solved by following the result from [159] by calculating the eigenstate of

(Ĥ+ + Ĥ−), through eigenvalue equation

(H+ +H−) |n1n2⟩ = n1n2χ cosh(2r) |n1n2⟩ . (E.25)

If we assume h = n1n2χ cosh(2r), then the Trotter error will be bounded as
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∥([U+(t/2k)U−(t/2k)]k−Up(t)) |n1n2⟩∥ ≤

2t
k

max

∥∥∥∥∥∥∥
H+ − h

2

2

|n1n2⟩

∥∥∥∥∥∥∥ ,
∥∥∥∥∥∥∥
H− − h

2

2

|n1n2⟩

∥∥∥∥∥∥∥
,
(E.26)

where for the given computational bases,H± − h

2

2

|n1n2⟩ =
±χn2 sinh(2r)

4

2

{
√
n1 + 4

√
n1 + 3

√
n1 + 2

√
n1 + 1 |n1 + 4, n2⟩} .

(E.27)

With this expression, we can calculate the operator norm in (E.26). For states

{|00⟩ , |10⟩} the norms are given by∥∥∥∥∥∥∥
Ĥ± − h

2

2

|00⟩


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
Ĥ± − h

2

2

|10⟩


∥∥∥∥∥∥∥ = 0. (E.28)

Now for the remaining states, we obtain the norms∥∥∥∥∥∥∥
Ĥ± − h

2

2

|01⟩


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
±χ sinh(2r)

4

2√
24 |4, 1⟩

∥∥∥∥∥∥∥
=
χ sinh(2r)

4

2√
24.

(E.29)

Similarly, ∥∥∥∥∥∥∥
Ĥ± − h

2

2

|11⟩


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥
±χ sinh(2r)

4

2√
120 |5, 1⟩

∥∥∥∥∥∥∥
=
χ sinh(2r)

4

2√
120.

(E.30)

Hence, by adding up all the norms we obtain the error in (4.60) as

∥P ([U+(t/2k)U−(t/2k)]k − Up(t))P∥ ≤

χ2 sinh2(2r)
4

 t
k

√
6(1 +

√
5). (E.31)
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