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ABSTRACT

Distributed databases, such as Log-Structured Merge-Tree Key-Value Stores (LSM-

KVS), are widely used in modern infrastructure. One of the primary challenges in

these databases is ensuring consistency, meaning that all nodes have the same view

of data at any given time. However, maintaining consistency requires a trade-off: the

stronger the consistency, the more resources are necessary to replicate data across

replicas, which decreases database performance. Addressing this trade-off poses two

challenges: first, developing and managing multiple consistency levels within a single

system, and second, assigning consistency levels to effectively balance the consistency-

performance trade-off.

This thesis introduces Self-configuring Consistency In Distributed LSM-KVS (S-

CID), a service that leverages unique properties of LSM KVS properties to manage

consistency levels and automates level assignment with ML. To address the first chal-

lenge, SCID combines Dynamic read-only instances and Logical KV-based partitions

to enable on-demand updates of read-only instances and facilitate the logical separa-

tion of groups of key-value pairs. SCID uses logical partitions as consistency levels and

on-demand updates in dynamic read-only instances to allow for multiple consistency

levels. To address the second challenge, the thesis presents an ML-based solution,

SCID-ML to manage consistency-performance trade-off with better effectiveness. We

evaluate SCID and find it to improve the write throughput up to 50% and achieve

62% accuracy for consistency-level predictions.
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Chapter 1

INTRODUCTION

Distributed Key-Value stores, specifically Log-Structured Merge-Tree-based Key-

Value Stores (LSM-KVS), play a vital role in modern-day infrastructure. LSM-KVS

are extensively utilized in various applications, such as the highly reliable etcd [7],

Kubernetes [10], and the highly scalable ArkDB [38], as well as in large companies

like Meta [35, 36] and Alibaba [14, 38]. However, ensuring consistency across replicas

remains a challenge for these distributed LSM-KVS. Here, database consistency refers

to the guarantee that all system nodes have an identical view of the data, regardless

of the timing of updates.

To address the consistency challenge, distributed LSM-KVS must navigate the

trade-off between consistency (C), availability (A), and partition tolerance (P) as

outlined by the CAP theorem [28]. The trade-off arises due to the inevitability of

network failures, requiring tolerance of network partitioning. Consequently, database

engineers need to choose between ensuring consistency or availability since these two

properties are inversely related by definition. Strong consistency, where a write must

be propagated to every node before any new reads/writes can be performed, reduces

availability, where a database should be available for writes at all times. Conversely,

the high availability of a database implies weak consistency, where data may be

provided to users with outdated information until eventual replication occurs.

To effectively manage these trade-offs and provide flexibility, alternatives like

multi-consistent databases have been developed [41]. These databases enable mul-

tiple consistency levels within a single distributed database, allowing users to choose

the appropriate level for different portions of data and achieve flexible choices ranging
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from strong to eventual consistency within the same database. However, designing

such a database and ensuring high performance pose significant challenges. Current

implementations [6] of multi-consistency still suffer from a major difficulty: when

data is written with strong consistency, the database temporarily experiences low

availability across the entire system until the data is propagated to all nodes. This

behavior is undesirable and highlights the challenge of providing high availability for

parts of the database not associated with strong consistency.

Creating a database with multiple consistency levels is challenging, as is managing

the balance between consistency and performance. Incorrectly identifying strongly

consistent data as weakly consistent can result in losing data correctness at replica

nodes. On the other hand, misidentifying weakly consistent data as strongly consis-

tent can lead to a loss of high availability. Therefore, it is crucial to accurately identify

consistency levels to maintain optimal database performance. The responsibility of

managing the trade-off between consistency and performance lies with the application

developers, as each project requires a different balance. When a database is shared

by multiple teams, developers must correctly assess the consistency level of their data

relative to that utilized by other teams. Incorrect identification of consistency levels

can lead to a loss of correctness or availability.

This thesis identifies two major challenges in designing and optimizing multi-

consistency distributed LSM-KVS. Firstly, creating and managing multiple consis-

tency levels within the same distributed LSM-KVS is difficult [41, 39], requiring

solutions for data synchronization, replication, and request forwarding issues. Sec-

ondly, optimizing the overall performance of LSM-KVS with multiple consistency

levels and reducing the burden of manual consistency level choices for developers is

an unexplored issue. To address these challenges, this thesis presents Self-configuring

Consistency In Distributed LSM-KVS (SCID), an ML-based solution that manages
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the consistency-performance trade-off in a distributed, scalable, and nodal LSM-KVS.

To overcome the first challenge, SCID leverages the unique properties of LSM-

KVS, including logical KV-pair-based partitions and low overhead of dynamic read-

only instances without data replication. LSM-KVS exhibits high write performance

[1, 40]. To maintain strong consistency, every write operation must be propagated

to all nodes, which can significantly impact write performance. To mitigate the

availability impact of strong consistency, SCID maintains only one KVS instance for

a specific key range instead of multiple replicas. This approach saves space, avoids

data synchronization during writes, and assumes the reliability and availability of the

data stored in disaggregated storage (e.g., HDFS or S3) [9, 5].

Secondly, to support intensive read requests, SCID utilizes read-only instances

to respond to queries with different consistency levels. The read-only instances can

access all data from the primary instance, ensuring eventual consistency.‘ the read-

only instances can serve reads for data not yet flushed to storage by the primary

instance through online synchronization initiated by the read-only instance itself.

Dynamic read-only instances, capable of updating data on-demand, enable retrieval

of the latest data from the primary instance. Furthermore, SCID leverages logical

KV-pair-based partitions to manage data with different consistency levels, allowing

each partition to have an individual consistency level. The dynamic read-only in-

stances update the data in each partition through on-demand calls. These design

choices enable SCID to achieve multiple consistency levels without data replication

and synchronization during the write path, ensuring optimal write performance and

space efficiency. The read-only instances cater to intensive read operations, and their

number can be adjusted based on the workload.

Currently, developers are typically responsible for assigning consistency levels to

each KV-pair in databases [13, 42, 12]. However, as applications and product scales
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increase, and database centralization becomes necessary, this task becomes challeng-

ing. It requires considering the future state of the application and the trade-offs

with other teams’ data. Incorrect estimation of consistency levels can lead to over-

or under-estimation. To tackle this challenge, accurate consistency-level assignments

and predictions are necessary. These predictions should be resilient to spontaneous

situations with complex patterns that may be too intricate for simple rule-based so-

lutions. ML models excel at discovering relationships between data attributes and

appropriate consistency levels. SCID leverages the predictive capabilities of ML mod-

els.

In scenarios like Key-Value stores where only two columns are present, tradi-

tional solutions using pre-analyzed data attributes and organizational requirements

are insufficient. To address this limitation, we propose using ML models specifically

tailored for Key-Value stores, testing various models, and selecting the random forest

model based on its accuracy and low latency. Additionally, we propose predicting

consistency levels at the read path, enabling the query to be redirected to either the

primary instance or one of the read-only instances (which may have different consis-

tency levels based on their synchronization status). The returned KV-pair contains

the consistency level tag. In case of incorrect consistency level assignment, the ap-

plication can resend the request with explicit consistency requirements to the shard,

incurring extra overhead. Therefore, a high prediction accuracy of consistency levels

is crucial.

We implemented SCID based on RocksDB and utilized Kubernetes and Docker to

manage the read-only instances that share the data. In the evaluation, we divided the

entire dataset into multiple shards based on the key range. Each shard has only one

primary instance responsible for write requests and most of the strongly consistent

read requests. The read-only instances of each shard are dynamically launched or shut
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down by Kubernetes based on workload. We used YCSB [23], a widely-used NoSQL

benchmark, to evaluate SCID. Compared to Master-Slave-based distributed LSM-

KVS designs, SCID achieved up to 50% better write throughput while maintaining

consistent performance across varying consistency distributions. We also evaluated

the ML model used, comparing it against a random selection model due to the absence

of existing prediction solutions. The proposed SCID-ML model outperformed the

random-selection model by 21%.

The structure of this thesis is as follows. Chapter 2 provides background infor-

mation on relevant domains, describing the procedures involved. Chapter 3 presents

the motivation and challenges of maintaining multi-consistency levels in distributed

LSM-KVS. The design details of SCID are outlined in Chapter 4, while Chapter 5

delves into the implementation details. Chapter 6 evaluates and presents the results

of SCID.
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Chapter 2

BACKGROUND AND RELATED WORK

This chapter provides the technical background and discusses related work in the

field of LSM-KVS (Log-Structured Merge Key-Value Stores) and database consistency

in distributed setups.

2.1 LSM-based Key-Value Stores

Key-value stores (KVS) are simple associative array databases where a string-

type key uniquely identifies the string-type value. This simplicity is a huge factor in

the high performance of the datasets and the rising popularity of KVS. To construct

the high-performing and fault-tolerant KVS, a variety of data structures such as

B+ Trees, Radix, Hashtables, and Log-Structured Merge-tree (LSM-Tree) have been

implemented. Among them, the LSM-tree structure is one of the most popular and

widely used designs in mainstream KVS today [2, 1].

LSM trees have an append-only implementation, allowing for efficient writes by

storing data in memory and persistently in immutable Write-Ahead-Log (WAL) files

on disk. This implementation gives them high write throughputs and good read

performance compared to other read-optimized KVS. These properties lead to LSM-

based KVS like Google’s LevelDB [27], Facebook’s RocksDB [26], and DGraph’s

BadgerDB [3].

This thesis leverages some unique properties that LSM-based KVS as logical par-

titions [15, 4] and dynamic read-only instances [11] to improve read performance.

The conjunction of these properties is present in Fig. 2.1. The dynamic read-only

instances in LSM-KVS can update or be initialized directly from the storage com-
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Figure 2.1: Process of Writes in LSM KVS

ponent using the WAL and SST files. Offloading Reads to the secondary instances

makes the primary database instance available for Writes, improving throughput.

Writes. For every write, LSM-KVS will write data to 2 places, its in-memory

MemTable (the write cache) and on-diskWrite-Ahead Log (WAL). Once the memtable

reaches a specific size limit (user-configured or default) or a manual Flush is called, the

memtable and WAL become immutable, and a new memtable and WAL are spawned

for new writes. The contents of the memtable are then flushed into the storage system

as an SST file on disk following which, the old memtable and WAL will be deleted.

The behavior can be identified in popular databases like Cassandra and RocksDB.

Logical KV-based Partitions. LSM-KVS uses WAL and SSTs primarily to

store data, and after every Flush, the data is persisted in the SST files. However, this
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process can be modified in the middle, where while the database shares the WAL,

there is a logical partition between the SSTs. This logical partition each has its

properties and uses. This has already been implemented in popular databases with

the term ’Column Families’ synonymous with it in RocksDB, Cassandra, HBase, and

BigTable [45, 21, 26]. While the implementation differs in every database, the core

principle remains the same to achieve logical data separation in the same database.

Dynamic Read-only Instances. Much like read-only instances, these in-

stances allow for read operations to the database without any ability to edit the

database contents in any way. Read-only instances read the on-storage data of the

primary instance and use the ”on-storage snapshot” to serve the reads. Therefore, it

can be quickly launched and respond the user requests. Dynamic read-only instances

are much like read-only instances, with the additional ability to update themselves

with new data with a special OnDemandSync() function. This function pulls data

from the WAL (data that is cached in the primary instance’s memtable) and the SST

files. Since data is read directly from the disk, it has minimal overhead and allows for

the dynamic instance to be more efficient than traditional read-only instances. Such a

feature has been implemented in RocksDB and referred to as ”Secondary Instances”

[11].

2.1.1 Distributed KV-Stores

Single Instance KV-Stores are usually libraries like RocksDB [26] and LevelDB

[27] and need to be integrated into applications. These embeddable key-value stores

lack the scalability expected for modern databases and need to be modified for use

as Distributed DBs. Facebook’s ZippyDB [35], Apache’s HBase [45], and Google’s

BigTable [21] are examples of such distributed databases. These databases are highly

reliable and exhibit the properties of the CAP theorem as expected from distributed
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databases. All these designs replicate the database to multiple replicas, which can

achieve better fault tolerance against both hardware and software issues. This also

leads to direct applications, like Netflix’s EVCache [18] uses KV-stores as their caching

solution for their most-used content, LinkedIn’s FollowFeed [8] uses KV-Stores to

organize the timeline for their platform’s posts.

These Distributed KVS are often provided as cloud services, Google’s BigTable

being the prime example. And while data storage costs are low, they are substantial

when considering the scale of a lot of applications like YouTube, Instagram, or Spotify,

and having a copy of all data at every single node in a distributed system is not ideal

[34].

Existing distributed LSM-KVS designs have two overheads:

• Storage Overhead as having a copy of all data at all locations is not ideal.

• Network Overhead, especially in times of peak performance when any addi-

tional overhead would greatly affect performance.

2.2 Database Consistency

Every Distributed database has to ensure that data read at different nodes is the

same, this synchronization of data is irrespective of time. If done on the very write

that data comes in, it is known as strong consistency, and if done at a later time,

this is known as eventually consistent. What data to replicate is ensured with con-

sensus algorithms (PAXOS [31], Raft [37] or variations of the same) or non-consensus

algorithms (Last Write Wins, Conflict-free Replicated Data Types (CRDT) [43]).

However, when to replicate is decided by Consistency levels [19].
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2.2.1 Multi-Consistency Databases

Every application needs a different level to suit its use case and some applications

even serve multiple use cases needing multiple databases. This requirement has led

to the creation of various consistency levels, most prominently Casual consistency,

and also led to the creation of database systems having multiple consistency levels.

Prominent modern databases like Cassandra [6], MongoDB [41], and ZippyDB [35]

all have implementations of this multi-consistency model.

Such a multi-consistency model is helpful for applications as every application

has a different requirement for consistency, and often, the same application can also

require multiple consistency levels. An example of this would be posts on a social plat-

form can have eventual consistency and direct messages on the same social platforms

need strong consistency. And instead of choosing to have a second database which

increases costs, maintenance, and workforce; the multi-consistency databases can be

easily configured to manage for strong and eventual consistency. However, it should

be noted that these multiple consistency levels are provided based on the number

of replications being made, essentially making it an extension of weaker consistency

models.

2.2.2 Automating Consistency Classification

Having multiple consistency levels also means that there is a need to assign data

to one of these levels. The current methodology is for the application develop-

ers to manually assign the key-values pairs to particular consistency levels which

has the downside of the developers misidentifying the consistency level required by

over/underestimating the relative importance of their data compared to other data.

Researchers have since taken this topic up to help determine how data should be
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classified to different consistency levels. RedBlue [33] consistency is an early example

of this, where the researchers propose a set of conditions to be met to determine what

data is supposed to be strongly consistent (red) and what is to be eventual consistent

(blue). This concept is then extended by the work in SIEVE [32] where the researchers

automate this data distribution into either strong or eventual consistency using static

and dynamic analysis of data. This analysis is done using pre-conditions on the data

and the methodology limited to a per-use-case basis.

Researchers extend this in Indigo[17] by performing post-condition static analysis

to prevent invariant violation for concurrent operations. And work done in QUELEA

[44] allows for fine-grained application-level consistency properties using contract en-

forcement systems to generate an appropriate consistency protocol. However, all these

methods need an extensive amount of knowledge that is application specific which is

where the more recent work of AUTOGR [46] furthers the field.

Researchers in AUTOGR release this burden from programmers by not requiring

them to specify application-specific invariants. The approach taken now requires zero

human intervention and only needs the application codes as input. The primary al-

gorithm used by them (RIGI) infers path conditions that could lead to consistency

violations and avoiding them. Their research differs by focusing on a single con-

sistency level and achieving geo-replication with that instead of having developers

manually define consistency levels required by particular data.

All this research [33, 32, 17, 44, 46] has been performed on column-rich databases,

where the value from the columns make it easier to achieve classification, and not

much attention has been given to Key-Value stores.
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Chapter 3

MOTIVATION AND CHALLENGES

Modern distributed LSM-KVS serve multiple purposes. Common examples like

ZippyDB are known to store file-system metadata (usually strong consistency) to keep

event counters (usually eventual consistency) [35, 16, 20]. This leads to an inherent

existence of consistency gradients, ranging from hot to cold data. Every point in

this gradient has a different performance trade-off, strong consistency trading off

performance much more than eventual consistency.

3.1 Motivation

When considering databases with a single use case, this consistency-performance

trade-off can be handled easily due to the pre-defined consistency level and perfor-

mance expectation. However, in modern databases supporting multiple consistency

levels, losing any performance leads to slowdowns for all data, including one that is a

higher priority, and the better possible performance-consistency trade-off is needed.

For this optimum, data needs to be assigned to the correct consistency level which

currently is the responsibility of developers. And while this step allows for granular-

ity and flexibility, it also introduces the likelihood of misidentification of consistency

levels when considering companies at scale with multiple teams working on multiple

products.

To avert these situations, every aspect of all the products should be known before

any team can decide on what consistency level would be required for their product.

Furthermore, this solution lacks flexibility beyond a limited number of consistency

levels. For instance, it is more feasible for a team to assess the importance of their data
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on a scale of 1 to 5 rather than on a scale of 1 to 100. Such an option is expensive both

in terms of time and monetary value, raising the question if something better could

be possible. Further, current implementations of deciding when consistency is met

are based on the number of nodes where data is replicated, rather than consistency

levels where the machine inherently should have the ability to decide. This is an

important factor to consider since allowing the machine to decide on consistency

syncing has the potential to make the process of writes much faster. Therefore,

designing and developing a distributed LSM-KVS with multiple consistency level

support and achieving a better tradeoff between performance and consistency level

guarantees is essential but challenging.

3.2 Challenges

Solutions for such a problem can reside in the automation of this process, right

from the selection for an accurate consistency level to allowing the database service

to decide when the data is to be synced up. Current work for performing consistency-

level selection exist and uses methods varying from rule-based approaches to more

complex ML-based algorithms. However, work done is scarce and for column-rich

databases [32, 17, 44, 46, 22]. This thesis focuses on Key-Value based data, attempting

to resolve the two questions above in KVS.

To resolve these questions for distributed LSM-KVS, we propose the solution

which is a prediction algorithm to determine what the consistency level for each key-

value pair is supposed to be. This prediction algorithm is responsible for maintaining

the performance-consistency balance and a prominent challenge is to ensure that the

data is identified correctly. Additionally, scenarios when data is misidentified need

to be devised to make sure that leash performance is lost and the fastest resolution

is possible. This even leads to ensuring the availability of the database is not being
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hampered in case there are misidentifications.

Further, another major challenge is to devise a consistency syncing mechanism

that allows for the data synchronization mechanism to be handled at the replicas

when data is requested rather than when written. This setup needs a combination

of both, disjoint and selective synchronization of data. A possible solution for such

synchronizations is the combination of the properties of dynamic read-only instances

and logical kv-based partitions in LSM-KVS. Such a setup only being possible due to

how data is only persisted in LSM-KVS on performing compactions and how dynamic

read-only instances fetch data. The primary contributions of the thesis are:

• Reducing the Data Overhead: A system implementing disaggregated persistent

storage. Instead of having data stored at all instances, a highly reliable and

available persistent data storage is utilized.

• Reducing the Performance Overhead: On writes, data needs to be replicated

to multiple instances in case of stronger consistency, this thesis implements a

system that avoids this performance and network overhead.

• Reducing the Programming Overhead: Having the developers assign data may

lead to misidentification for applications at scale. To simplify this process, this

thesis proposes an automated consistency assignment system for KVS.
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Chapter 4

SYSTEM DESIGN

In this chapter, we introduce SCID, a distributed LSM-KVS that achieves a supe-

rior balance between consistency-level guarantees and performance. Unlike traditional

approaches that rely on manual consistency level selections, SCID incorporates auto-

matic consistency level selection in the read path, reducing development overhead.

Figure 4.1: SCID Architecture
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4.1 Tunable Consistency in Distributed KVS

SCID builds upon the strengths of LSM-KVS while introducing changes to en-

hance the tradeoff between consistency-level guarantees and system performance.

SCID’s architecture, depicted in Fig 4.1, assumes deployment on a storage-compute

disaggregated infrastructure. The storage layer provides services over the network

(e.g., HDFS or S3) and ensures data availability and reliability. In traditional dis-

tributed LSM-KVS systems, multiple replicas are used for certain key ranges to pro-

vide consistency guarantees. Immediate reads return either the new or old value,

depending on the replica accessed. However, SCID takes a different approach by

moving the consistency guarantee operations from the write path to the read path.

In SCID, writes are only applied to the primary instance, returning immediately

without data synchronization with the replicas. Figure 4.2b illustrates this approach,

where strong consistency levels lead to immediate selective replication and consis-

tency, while weaker levels return older data. This design is based on the assumption

that non-immediate reads are likely to have the latest data due to periodic replication

regardless of consistency methodology.

To enable selective replication of data, SCID combines the properties of Logical

KV-based Partitions (Column Families) and Dynamic Read-only Instances. Dynamic

Read-only Instances support a call called OnDemandSync(), enabling a read-only in-

stance to catch up with the primary instance’s memory key-value pairs through re-

playing the Write-Ahead Log (WAL) in its memtable. On the other hand, Column

Families allow the logical partitioning of KV-pairs within the same database instance.

By leveraging these properties, SCID utilizes different logical partitions for KV-pairs

with varying consistency levels. The database can be made multi-consistent on its sec-

ondary instances by modifying the call to catch up in Dynamic read-only instances to
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(a) Current Systems

(b) Proposed System

Figure 4.2: Consistency Management in Current and Proposed System
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OnDemandSync(ColumnFamily), allowing one read-only instance to synchronize one

column family while others remain unchanged. This design avoids the latency of

synchronizing all data together.

This design allows for SCID to have an interesting property to allow data on

every server to exhibit a different consistency level. While not implemented directly

in SCID, this is notable as it allows for the same key-value pair to have different

consistency guarantees on different servers based on the server’s use case rather than

the overall system requirement. However, our implementation does not dwell on this

and is limited to a single consistency guarantee across all servers, leaving this as a

future avenue for research.

4.2 Managing Performance-Consistency Trade-off via ML Model

Here we aim to discuss how we determine the consistency value of a particular

key-value pair. The goal is to predict what consistency level would be appropriate for

a particular KV-pair, this consistency level needs to take into account the accesses

that are made to that particular data point along with factors like when and how the

data is accessed. For such a solution where the parameters are not very well defined,

and in some cases can be completely new to the machine. These scenarios will benefit

from a Machine Learning model at the core that allows for predictions on data that

is unseen in the past.

The ML model must meet two key requirements. Firstly, SCID accommodates

client inputs in case of prediction errors, allowing clients to set a specific consistency

level for any key-value pair on write or read, bypassing the ML model. Secondly,

to minimize overhead and preserve database throughput, SCID employs models with

lower run-time complexity, such as Naive Bayes, Random Forest, and Logistic Re-

gression [29, 30, 24].
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Due to the lack of columns in the key-value store, SCID tackles this challenge

by utilizing metadata associated with the system and the key-value pairs to create

additional columns. Eight features are gathered for each row of training data: Time,

Date, Key, Value, Key Size, Value Size, Operation type, and Access Count. Since

some of these features are non-numerical, Naive Bayes or Logistic Regression may

suffer in accuracy. Random Forest performs better in this regard, demonstrating

higher accuracy and lower latency while satisfying the second requirement.

SCID adopts the Random Forest model, a supervised learning technique. This

requires an initial database with correct consistency-level assignments for training

the model. Assigning values for each case can be done manually, varying according to

the specific use case. Once the database is created and labeled, the Random Forest

model can be integrated into the docker container on a separate thread, as depicted

in Fig. 4.1.

SCID’s integration of a machine learning model, particularly Random Forest, for

consistency-level prediction introduces a powerful adaptive capability. This ensures

that SCID can adapt to changing workloads and evolving data access patterns over

time. As the system learns from historical data and client inputs, it becomes more

adept at making precise consistency-level decisions, further bolstering overall system

performance.

19



Chapter 5

IMPLEMENTATION

We developed the prototype of SCID based on RocksDB and use a combination

of Kubernetes and Docker to achieve the dynamic management of multiple read-only

instances. The use of Kubernetes as an orchestrator allows for partition tolerance and

scalability, and Docker containers inside the cluster that run RocksDB internally to

perform the Database operations. We use RocksDB (v7.4.5) and modified it to allow

for connections using TCP/IP and created a new OnDemandSync() function call to

partially sync selective consistency levels. Finally, Hadoop Distributed File System

(HDFS) has been used at the persistent storage layer, HDFS allows for a singular

storage location for data from all instances along with read streaming, distributed

storage, and replication.

To obtain the baseline, the system uses the same method that existing work use

(i.e., primary-secondary mode with data synchronization during the writes). The

primary instance will wait for the secondary instances to replicate the data and once

the requested number of instances. Once the requested number of instances has

replicated the data, an acknowledgment is sent back to the user. When SCID is

evaluated, the proposed system in the previous chapter is employed. The difference is

when the data is made consistent when compared to the baseline. Compared to the

baseline, SCID performs better in Writes and suffers in Reads which will be shown

in Chapter 6.

The second implementation of SCID is related to the ML model. We address this

implementation as SCID-ML and train a model using the Random Forest method as

described in Chapter 4. We utilize a 100% read workload from YCSB as a testing
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sample, using an input of 100,000 rows of data, using a 70:30, train:test split (Note:

A newly generated workload is used for the actual benchmarking). The workload

generated is generated in a Zipfian fashion and demonstrates the property of higher

access counts for a small subset of data. We utilize this and remove the access count

column, converting it into a label column with labels ranging from 1 to 5, equally

distributed based on the access count. This dataset is now utilized to create a Random

Forest model that is integrated into the setup. Note that since access count is how we

define the consistency level, we do not provide that column to the ML model during

any evaluations.

Due to the lack of available models that serve the purpose of predicting consistency,

we use a random-prediction model as the baseline. As the name suggests the random-

prediction model guesses a consistency value randomly, and the SCID-ML model uses

the ML model created for SCID. To train this model, we use AutoGluon [25] and

achieve an accuracy of 62%. In both situations, if the model predicts the incorrect

value, we invoke the scenario where the client informs the system of the correct value,

and the delay caused by this is taken into consideration when measuring throughput.
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Chapter 6

EVALUATION

Based on the system design, SCID should improve on the write performance while

having read performance that is worse in the worst case scenario. In this section, the

same is tested and evaluated with various test cases. To assess the performance

and effectiveness of the proposed system, we conducted evaluations using multiple

read-write workloads and also multiple consistency levels of KV-pair read queries.

The evaluation aims to measure the system’s capabilities and address the following

research questions:

• Research Question 1: How does the proposed consistency model (SCID) per-

form compared to the Baseline for various distributions of strong and eventual

consistency in databases?

• Research Question 2: Does the ML model in SCID provide a performance

uplift?

6.1 Test Setup and Metrics

All implementations have been performed on a Machine with 6 cores of an Intel(R)

Xeon(R) Gold 6330 CPU, and 8 GB of RAM. A total of 3 instances are used to perform

all tests, 1 primary and 2 secondary. This has been done to demonstrate the worst

case scenarios for both models.

We further use three YCSB workloads with different write and read ratios for the

tests; W (Write-only), A (50% writes, 50% reads), and C (Read-only), testing how

the consistency models behave in different scenarios. All workloads have been run in

22



the Zipfian distribution consisting of 100,000 key-value pairs and 100,000 operations.

We focus on the following measurement metrics: 1) throughput (query per second,

the higher the better), 2) latency (milli-second, the lower the better).

6.2 SCID Performance

We first evaluate the consistency model against the baseline. Tests with varying

distributions of strongly and eventually consistent data are performed. For every

workload of YCSB mentioned, 100,000 keys were used with 0 to 100% ratio of strong

and eventual consistency, with 10% intervals. These tests aim to comprehensively

demonstrate how SCID will fare against the baseline in multiple scenarios. It should

also be noted, that all conducted tests will consider the worst-case scenarios for read

and writes. A read request comes directly after the write request, not allowing either

database to do any background tasks after the writes are completed. A write request

will also come right after the previous write request, not allowing for any background

tasks after the first write request is completed.

6.2.1 Workload-based Tests

YCSB W - This test constitutes a 100% Write workload. Given the design of the

consistency models, we expect SCID to have the same throughput and latency for any

consistency distribution. SCID implements a methodology where Writes are acknowl-

edged immediately and written to persistent media, and based on server workloads

later propagated to other secondary instances. This allows SCID to guarantee data

being persisted immediately in contrast to the Baseline model. On performing the

tests, we see the expected results reflected in the resulting output. This is seen in Fig.

6.1 where SCID has lower latency and higher throughput than the Baseline as data

gets more strongly consistent. Depending on the distribution of strong and eventually
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consistent data, we see SCID having up to 50% increase in throughput (Fig. 6.1b)

compared to the Baseline.

The YCSB W test demonstrated the effectiveness of SCID in handling a 100%

Write workload, with SCID showing up to a 50% increase in throughput compared

to the Baseline model. This indicates that is a more efficient approach for handling

writes across consistency levels.

YCSB A - This test constitutes a 50% Write and 50% Read workload. Since

both models have trade-offs, SCID in reads and Baseline in writes, we expect the

results to be similar. This expectation is also met in the tests (Fig. 6.2) where both

models have very similar latency (Fig. 6.2a) and throughput (Fig. 6.2b).

The YCSB A test has a mixed workload of Reads and Writes; it assumes the

worst-case scenario for Reads and Writes both. The results extracted here point

to SCID being at par with the current solutions, not losing performance even with

different operations.

YCSB C - This test constitutes a 100% Read workload. As data gets more

strongly consistent, we expect the Baseline model to outperform SCID. Here, we

utilize another mechanism of SCID which allows the primary instance to respond

to the values, however, this will come with a bandwidth limitation since only the

primary instance will have the correct values. We call this implementation of SCID,

SCID-Optimal, allowing for higher throughput but served from the primary instance

only. When the secondary instance is forced to serve the reads, the implementation

is called SCID-Offloaded. Here, the expectation of the baseline model outperforming

SCID is expected because the baseline model will already have replicated the data

in the loading stage. Since the tests consider the worst-case scenarios only (reads

happen right after the write), SCID-Offloaded will not have the data present at the

secondary instances. This difference is reflected in the results in Fig. 6.3 and leads to
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(a) Latency

(b) Throughput

Figure 6.1: YCSB W - 100% Writes
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(a) Latency

(b) Throughput

Figure 6.2: YCSB A - 50% Writes, 50% Reads
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SCID-Offloaded having higher latency (Fig. 6.3a) and lower throughput (Fig. 6.3b)

by at much as 50%; and SCID-Optimal having almost equivalent throughput and

latency to the Baseline.

The YCSB C test considers the situation for 100% read operations. This test

contains SCID-Optimal and SCID-Offloaded, where both situations, when SCID pri-

mary and secondary instances serve reads respectively. The results here point to

SCID-Optimal being at par with the current solutions and SCID-Offloaded having at

least 50% throughput of current solutions.

6.2.2 Consistency-based Tests

The Workload-based tests demonstrate that as data gets more strongly consistent,

we can see a more distinctive image of how SCID differs from the baseline. We

further create more workloads, focusing specifically on only 100% Strong consistency

and evaluate the difference between SCID and the baseline model. The result for

this evaluation can be seen in Fig. 6.4, while the Baseline has a throughput that

suffers in any write-heavy scenario, it gets much better in a read-heavy scenario.

SCID in the meantime has consistent performance across the board, showing similar

throughput (Fig. 6.4b) and latency (Fig. 6.4a) regardless of the workload. This

would be beneficial in case of any scenario where the data is not read immediately

after write, allowing SCID to have near-equal throughput in reads and making the

offering much better.

The Consistency based tests take the worst-case scenarios at 100% strong con-

sistency and show that SCID maintains the throughput regardless of the workload.

This is in contrast to the baseline model, which can have a higher or lower throughput

based on the workload that is being utilized.
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(a) Latency

(b) Throughput

Figure 6.3: YCSB C - 100% Reads
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(a) Latency

(b) Throughput

Figure 6.4: 100% Strong Consistency - Various Workloads
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6.3 SCID-ML Performance

Another set of tests with various distributions of consistency is carried out to mea-

sure the performance of the ML model. To sufficiently compare the model and cover

the lack of pre-existing models that predict consistency, we use a random-consistency

baseline. The random consistency model randomly guesses the consistency for a par-

ticular key-value pair. To evaluate SCID, the ML model trained for SCID is used to

generate the consistency level. When either model provides a value for consistency,

the code performs the corresponding action for the consistency level, and if it is then

found that the wrong consistency is assigned, the case where the client provides the

correct consistency is invoked and the appropriate actions are taken as described in

the design section.

Using this information, it can be expected that for any ML model that performs

well and correctly, it can outperform a model that randomly guesses data. This is

demonstrated in Fig. 6.5 where it can be observed that as data is more often strongly

consistent, both models have about equal latency and throughput, but as the distri-

bution of consistency starts to move towards eventual, the ML model outperforms

the random-consistency model. This lines up with our expectation as the ML model

has an accuracy of 62% which makes it more likely to correctly guess the consistency

than the random-consistency model.

Taking the ML tests as a separate unit, it is observed that SCID will outperform

the random-selection model by 21%, with an accuracy of 62%. Utilizing the model can

assist the developers to get better estimates and speed up the development process.
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(a) Latency

(b) Throughput

Figure 6.5: 100% Read Workload - ML Model Evaluation
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Chapter 7

DISCUSSION AND CONCLUSION

This thesis introduces a new methodology to maintain consistency in databases.

Performing replications in the background and before reads rather than instantly on

writes. It utilizes various aspects of LSM-KVS to perform this and presents the so-

lution SCID. With SCID, we improve in scenarios where the databases are write and

update heavy. Overall, SCID is an approach to consistency that trades immediate

read performance for improved write performance. We further present an ML-based

approach to assigning consistency values in Key-Value stores that relies upon a com-

bination of metadata and the key values to predict the consistency level of given

data.

The approaches are evaluated and show the major advantages and disadvantages

of SCID. Taking the worst-case situations into consideration, in a 100% Write work-

load, SCID maintains its throughput and latency. In a 100% Read situation, the

model when performing reads from the secondary instance suffers in comparison to

the current implementation, however, if the reads are performed from the primary

instance directly, the performance penalties are reduced. When evaluating the ML

model, there is a lack of other baselines to compare against, we devise our baseline,

one that utilizes random-value assignment to consistency levels to have a better es-

timation of consistency levels. The model also has another solution that allows for

forcing a particular consistency level directly to the database which can differ from

what the model predicts. This model can prove to be a great aid for developers when

the same database is used by multiple teams, aiding the process of consistency-level

assignment to key-value pairs.
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Considering the consistency model, SCID has trade-offs when compared with the

baseline model. However, these trade-offs disappear once we take SCID-Optimal

into consideration which serves reads directly from the primary at the cost of lower

bandwidth of the primary instance, which is not desirable for instances when mixed

workloads are present. A future path would be the efficient use of SCID-Optimal,

reducing the bandwidth by integrating SCID-Offloaded for parts of the database.

We can also further improve the ML model by performing optimizations on the ac-

tual model and exploring more optimized models that can more effectively predict

consistency levels.

Another avenue of research can be to have more effective benchmarking systems

where multiple consistency levels are taken into account. While YCSB provides for

various workloads, it does not allow for testing with multiple consistency levels at

the same time. A more robust framework for benchmarking such systems can be

developed and used to effectively test such systems.

Overall, we note that SCID allows further optimizing the consistency-performance

trade-off, and presents a methodology that allows circumventing this trade-off provid-

ing a flexible middle ground. While SCID may not apply to every situation, especially

when quick responses are needed immediately after writes, it offers much for situa-

tions where there is a majority of eventual consistency data or where there is a lack

of data being immediately accessed after writes.
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