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ABSTRACT 

Potentiometric instrumentation technologies are widely used across many disciplines 

of science and engineering providing the ability to measure changes to specific environmental 

variables through various types of sensor electrodes and selective membranes.  However, types 

I, II, and III potentiometric sensor electrodes are limited by biofouling activity, membrane 

maintenance, grounding sensitivity, thermodynamic variables, and electromagnetic 

interference. Further, algorithms embedded into instrumentation hardware have impeded the 

usefulness of such measurements outside of highly controlled environments.  Reliability of 

accurate measurement using these types of senor electrodes is limited to industrial and lab 

applications in chemistry and nominally active biological environments.  Novel innovations in 

using exotic materials have improved the usefulness of Type II (e.g. tantalum-rubidium-doped 

titanium) and Type III (e.g. Nafion™ membranes) sensor electrodes, but those sensors are 

still limited to measuring a single selective parameter.  This scope of work investigates utilizing 

a novel non-selective membrane, or naturally occurring biofilm membrane, as the active 

sensing surface of a graphite electrode as a new Type IV potentiometric sensor electrode (e.g., 

the MiProbE™) in biologically active environments.  The analysis herein demonstrates 

decomposition of these non-selective signals into real-time metabolic activity, measurement 

of key biochemical processes and environmental condition parameters through classical 

mathematical analysis methods providing the basis of Potentiomics – the characterization and 

quantification of biochemical metabolic processes in highly dynamic non-equilibrium states. 
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INTRODUCTION 

The focus of this work is to look at how to convert real-time data from dynamic 

systems into usable information using temporal, geospatial, or controlled variable comparison 

of the MiProbe signal as it relates to changes in key biological process parameters.  Using 

classical mathematical analysis tools, the composite signal of all the complex reactions taken 

place can be simplified into actionable information for improving decision making or alerting 

to disruptive changes of interest to environmental regulations.  The following sections are 

investigating connecting the principles of thermodynamic potentiometric measurements to 

the realities of needing useful real-time data for decision making, , advanced analysis based on 

mathematical analysis tools, applying those tools and analysis frameworks to research, and the 

development of new analytical tools based on those findings. 

The analysis tools and frameworks herein were developed under multiple research 

grant awards from the DOE and CAP and provided with instrumentation systems and data-

science analysis support to multiple graduate students in Dr. Taylor Weiss’ lab (Weiss Lab) for 

their own traditional applied projects and research.  The partnership between Burge 

Environmental, Inc., AzCATI, and the Weiss Lab has allowed for the testing of innovative 

ways of using the sensor technology across multiple research projects, including the early-stage 

proof-of-concept instrumentation systems and physical sensor probes. 

  



 

2 

 

POTENTIOMETRIC SENSING 

Potentiometric sensors have a long and storied history as they have been a pillar of 

analytical chemistry since their invention over a century ago (Reedy, 1915) and eventual 

discovery of glass electrodes as hydrogen ion selective pH (potential of hydrogen) meters 

(Partridge, 1929) (Hines & de Levie, 2010). The ubiquity of such novel technology cannot be 

understated, from laboratories to industrial facilities to commercial and residential kitchens, 

potentiometric sensors are commonplace.  The accuracy, consistency, and cost of such 

instruments coupled with the usefulness of reported parameters has made these types of 

meters a mainstay of industrial and environmental decision making and regulation.  From 

Safety Data Sheets (SDS) to the Environmental Protection Agency’s (EPA) Causal 

Analysis/Diagnosis Decision Information (Ahmad, 2006) System (CADDIS) (U.S. EPA 

(Environmental Protection Agency), 2022), pH is a critical component of understanding 

chemistry in industrial and environmental applications.  Oxidation-Reduction Potential (ORP, 

or Potential E) is similarly used for monitoring water systems and contaminated sites as highly 

oxidative or reducing conditions are 

an indicator of the concentration of 

contamination.  These two factors 

are critical to understanding 

chemical reactions and are 

commonly represented in Pourbaix 

diagrams (Figure 1) (Ahmad, 2006). 

Figure 1 - Pourbaix Diagram of H20 
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New developments in novel materials for both electrodes (Tom Sale, 2021) and 

polymer-based membranes have taken the fundamental principles of potentiometric sensors 

into advanced analytical fields by overcoming common problems of durability, sensitivity, and 

selectivity interference (A. Bratov, 2010), or inconsistent results from empirically derived 

equations for calculating the electromotive force (EMF) such as the Nicolsky-Eisenman 

equation (Eric. Bakker, 1994). These advancements are allowing the development of real-time 

monitoring of environmental and industrial processes or contamination sites.  ORP and pH 

are used as discharge parameters for both municipal and industrial wastewater, and as inputs 

into monitored natural attenuation and environmental remediation models (Sanjay Garg, 

2017). Such activities require considerable maintenance and servicing of in situ potentiometric 

sensors or are regulated to manual sample measurement which can be labor intensive and of 

limited value beyond regulatory monitoring applications. 

Fundamentally both the reliability and selectivity of these potentiometric sensor 

technologies are problematic for making operational decisions in complex environmental or 

biological systems where control of inputs and outputs is infeasible, or maintenance and 

reliability issues make them impractical.  Some of these issues can be resolved through 

engineering more complex sampling methods such as micro-fluidics equipment coupled with 

sample filtering and baseline reagent comparisons or automated membrane cleaning. This still 

requires considerable capital and maintenance outlays as well as specialized expertise in analysis 

for accurate interpretation.  This still will not fully resolve the problems of biofouling even 

with the most robust potentiometric sensor electrodes in most environments.  The anti-

microbial platinum or silver electrode based ORP sensors which resist biofouling, are still 

vulnerable to their Silver/Silver Chloride (Ag/AgCl) reference electrode being biofouled or 

dried out from osmotic pressure differences between the reference electrode’s electrolyte 
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solution and the environment. Further, while regular maintenance in aqueous environments 

can enable consistent gathering of more well understood Oxygen Reduction Potential (ORP), 

and pH sensors, unsaturated environments such as soils become difficult to measure overall 

due to losses in ionic conductivity, and overall durability issues of both types of sensor 

electrodes. 

The use of a graphite electrodes, thought highly vulnerable to biofouling from biofilm 

development and of particular interest in microbial fuel cell (Diana Pocaznoi, 2012) and water 

treatment applications (Soumya Pandit, 2017), has revealed that after the establishment of a 

stable biofilm on their surface function as a non-selective membrane and present a composite 

signal of the aggregate metabolic activity of the biofilm as it responds to changes in the 

environment or microbial populations (i.e. even selectivity).  After a stabilization period that 

can takes hours to days in aqueous environments, and up to months in dry soil environments, 

consistent and repeatable signals are observed that can by directly correlated with critical 

metabolic parameters in biologically active systems.  These composite signal patterns are most 

prominent in photosynthetically active systems such as microalgae cultivation and plants, but 

also behave consistently across other microbial processes such as fermentation and anaerobic 

conditions. 

Accelerating the establishment of stable biofilms was conducted in both aqueous and 

dry soil environments by using alginate hydrogels as pseudo-membrane material on graphite 

electrode surfaces.  This was evaluated due to concerns in applying the sensing technology to 

high-turnover microalgae applications at AzCATI, and commercial market viability of 

rhizosphere sensors.  Specifically, algae-pond resets and the need for contamination 

prevention by fully cleaning probe surfaces between strain change or harvest reset operations, 

and soil environments where 90-day stabilization periods would be operationally and 
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economically infeasible for most commercial and industrial agriculture activities.  The 

differences in measurement variability between uncoated and coated probes was compared 

across multiple replicate experiments to determine the need and benefit of this pretreatment 

process. 

Rudimentary statistical analyses were performed on these composite real-time signals 

to develop methodologies for comparing the change in voltage potentials rather than the 

absolute voltage potentials with metabolic activity of the living system being observed.  This 

break in traditional potentiometric analysis frameworks of using the absolute value of potential 

measurements is due to observations that the biofilm is a living sensor membrane and not 

selective to any specific ion or chemical process.  Higher temporal resolution investigations 

have revealed that signals are aggregating multiple biochemical reactions as a result of cyclical 

processes such as diurnal effects of day-night photosynthesis cycles and that dominant species 

or metabolic process in the observed environment produce distinct signal patterns at 

substantially different baseline potentials.  Various classical mathematical analysis methods 

were used to amplify or filter parts of the signal to expose changes in conditions that are of 

operational or decision-making consequence as an attempt to create novel real-time alert and 

predictive analysis algorithms that would not result in false positives. The methodology here 

was intended to not rely on obfuscated results through overly complex custom algorithms or 

black-box machine-learning enhanced results that might defy belief and be largely 

irreproducible. 
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MIPROBE AND POTENTIOMETRIC SENSING 

The MiProbe (Figure 2) and associated sensor instrumentation hardware (Table 1) 

differentiates itself from other potentiometric sensor electrodes by allowing an endemic 

biofilm to develop on an inert carbonaceous electrode to function as the sensing electrode 

membrane (Scott R Burge, 2020). Graphite electrodes have been observed to have faster 

bacterial cell growth rates as measured by cell density than similarly sized stainless steel 

electrodes in aqueous environments (Bimakr, 2018), and are commonly used with selective 

membranes for determination of various concentrations of chemical species (Abe, 1996) 

(Amini, 1999) (Ganjali, 2001).  This type of biofilm formation is commonly described as 

biofouling of these electrodes as the open-circuit voltage (OCV) potential measurements (e.g. 

millivolts) against a reference electrode standard (e.g. commonly Ag/AgCL) no longer 

Figure 2 - MiProbe Sensor Electrodes and Measurement Types. Credit: Michell Peppers, Burge Environmental, Inc. 
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correspond to the absolute values associated with the oxidation reduction potentials or specific 

chemical potentials of the selective electrode (e.g. “sensor drift”).  Both biofilm-based 

biofouling and adsorption of biomolecules or metabolic products create long-term 

maintenance issues for in situ potentiometric measurement (Lisak, 2016).  Remedies to this 

biofilm formation or biofouling are a common area of research in environmental chemistry, 

electrochemistry, and analytical chemistry (Rice, 96) (Kuhlmann, 2012). Numerous techniques 

exist to protect potentiometric sensors from biofouling in remote monitoring applications 

(Delauney, 2010) and selective membrane sensor drift is of particular concern for 

environmental monitoring applications. 

 To further confound matters, OCV is an inherently ambiguous definition as while in 

theory it is based on the Nernst equation (Chang, 2004) which is based on a completed reaction 

as it related to Gibbs free energy in an equilibrium state but in practice OCV measurements 

are taken at intervals that are outside of controlled processes and thus are an inherently non-

equilibrium state measurement (del Olmo, 2021). 

Equation 1 - The Nersnt Equation 

" = "! + ()*+,- ln (
0$1
)23- 

“Perhaps the [Nernst Equation’s] theoretically most appealing definition is that the electrochemical cell has 

been left undisturbed for a sufficiently long time to reach thermodynamic equilibrium.” (del Olmo, 2021) 

The complex interactions of biological systems and the biofilm-based membrane of 

the MiProbe requires analyzing the data of the MiProbe signals as a non-equilibrium state 

measurement and not attempting to derive specific reaction coefficients from them outside of 

highly controlled environments.  This however does not prevent the use of analyzing the 

MiProbe signals in comparison to themselves geo-spatially or temporally and being able to 

derive actional information.  In environmental, industrial bioreactor, and agricultural 



 

8 

applications, simplifications of this complex data into trend analysis, scale analysis, frequency 

analysis, and use of simple amplification and filtering techniques for rudimentary statistical 

analysis can provide determinative and predictive capabilities without having to precisely 

derive the multitudes of individual terms found in non-equilibrium reaction equations of 

electrical potentials or OCVs.  The goal of this work is to use powerful but simple 

mathematical analysis techniques that can consistently and reproducibly derive key process 

information or parameters within the variability range of multi-day lab assays or high cost and 

maintenance instrumentation systems but using real-time data and rolling analysis.   
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Lab Instrument 
Boards Inputs Modes Temporal Resolution Microbial 

Impedence/Precision Connectivity Deployed Modes

B1 (Deprecated)
3 MiProbe/ORP/pH, 1 4-20mA, 1 

Temp Potentiometric < 1 Second 1 Gigaohm, +/- 1mV i2c 1 Lab

B5 (Deprecated) 3 MiProbe, 3Temp, 1 pH, 1 ORP, 1 4-
20mA

Potentiometric 30 Minute 50 Megaohm, +/- 4mV Serial/Cellul
ar

20 IoT/Lab

B9 (Deprecated) Expandandable
Potentiometric, Amperometric, 

Kinetic 1 Minute 50 Megaohm, +/- 4mV Serial 3 Lab

B10 (Current) 8 MiProbe, 4 ORP/pH, 4 pH/ORP, 4 4-
20mA Potentiometric 5 Minute 250 Megaohm, +/- 2mV USB/Cellular 60+ IoT/Lab

B49 (Deprecated) 3 MiProbe, 3 Temp Potentiometric, Amperometric, 
Kinetic

1 Minute 1 Gigaohm, +/- 2mV USB 1 Lab

B50 (Deprecated) 52 MiProbe, 5 Temp Potentiometric 1 Minute < 1 Gigaohm, +/- 4mV Serial/USB 3 Lab

B56 (Current) 56 MiProbe/ORP/pH, 5 Temp Potentiometric 1 Minute 1 Gigaohm, +/- 1mV USB 20+ Lab

B176 (Current) 176 MiProbe/ORP/pH, 5 Temp Potentiometric 1 Minute 1 Gigaohm, +/- 1mV USB 10 Lab

BEXP (Testing) 23 MiProbes, 5 Temp
Potentiometric, Amperometric, 

Kinetic < 1 Second < 1 Gigaohm, +/- 0.1mV USB/i2C TBD Lab

B23T (Testing) 16-20 MiProbes, 1 ORP, 1 pH, 3 
Temp

Potentiometric < 20ms 2 Gigaohm, +/- 0.03mV i2c/USB TBD IoT/Lab

Table 1 - MiProbe Instrumentation Specifications. 
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MATHEMATICAL ANALYSIS AND OCV 

The Nernst Equation functions as a discrete measurement of voltage potential 

assuming at a specific point in time assuming stable equilibrium state of reactants.  In this 

equation the electrical potential ! is made up of the Environment Potential (!!), the universal 

gas constant ($), the temperature (%), the moles of electrons or charge of the ion (&), and 

the Faraday constant or electrical charge in coulombs for every mol of reactant in the cell, and 

the natural log of the reaction quotient (ln())). In controlled benchtop experiments, Q can 

be two reactants added together in an aqueous solution and measured at the completion of a 

stable reaction against a reference electrode (!"#$).   

Equation 2 - Complete OCV Measurment using the Nernst Equation. 

! = !! − ,$%&-. ln()) − !"#$ 

 The terms !! and ln()) in this equation is where engineering innovation takes place 

to create different Type I, II, and III electrodes for determining pH, Dissolved Oxygen (DO), 

Chlorine concentration (Cl), etc. More advanced membrane voltage measurements use highly 

complex applications of the Nernst equation principles, for example, the Goldman-Hodgkin-

Katz voltage equation which accounts ion-specific voltages through knowing both sides of the 

balanced equation in a controlled solution (John D. Enderle, 2012). 

Equation 3 - The Goldman-Hodgkin-Katz Voltage Equation. 

/% = ,0%1 . ln 2
3&'[56(]) + 3*[0(]) + 3+,[9:-]!
3&'[56(]! + 3*[0(]! + 3+,[9:-])

; 

With complete knowledge of inputs and a controlled experimental environment, discrete ion-

specific potentials have been derived through measuring solutions at equilibrium states of 

stable chemical reactions.  ORP and pH probes approximate these OCV measurements 

through repeated measurements over time intervals and reporting a stabilized measurement 
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value based on instrumentation firmware algorithms and the well understood potential 

differences of standard electrodes and hydrogen ion specific membranes.   

 Evaluating this change in potential (∆!) over time using Nernst-style equations 

requires breaking out the actual equations to expose the underlying principle that the shared 

reference electrode voltage is not necessary when looking at the change in potential as it 

cancels out through algebraic reduction.  The measurement no longer looks at the discrete 

millivolt values of E on a specific scale as it relates to a specific reaction potential (e.g. redox, 

pH values), but the change as it relates to the selectivity or ion specificity of the electrode.  

This temporal evaluation of ∆! is a common method to confirm measurement stability on 

pH and ORP electrodes. 

Evaluating ∆! as a change in potential over time of an indicator electrode can be 

represented as: 

∆! = !)./)0'12"	#,#01"2/#!" −	!)./)0'12"	#,#01"2/#!#  

Or, when expanded: 

Equation 4 - Complete Expanded Comparison of ∆E Between Electrodes. 

∆! = (!! − ,45!"6!"7
. ln>)1"? − !"#$#"#.0#!") −	(!! − ,

45!#
6!#7

. ln>)1#? − !"#$#"#.0#!#)   

After removing common terms such as the !!	6@A	!"#$#"#.0# electrodes: 

Equation 5 - Simplified Comparison of ∆E Between Electrodes. 

∆! = (47 (%1" − %1#)) × (
89	:;!"<
6!"

− 89	:;!#<
6!#

	)  

While manufacturers will not usually publicize internal algorithms of their instrumentation 

equipment, this temporal style of measurement of ∆! is a common way of determining 

measurement stability and can be a valuable tool in investigating transport phenomena at 

high sample rates. 
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As the MiProbe’s OCV measurements do not map to a specific ion or reaction potential and 

the living biofilm membrane is inherently changing constantly, we can apply the framework 

that the MiProbe OCV is a direct measurement of energy state under non-equilibrium 

thermodynamic conditions.  Using the model that the MiProbe measures energy state, we can 

derive useful information comparing the OCV of the MiProbe over time, geospatially, or 

under controlled experiment conditions (e.g. indicator electrodes in metabolically distinct but 

ionically conductive environments). 

∆! = ($- (%1" − %1#)) × (
ln	>)1"?
&1"

− ln	>)1#?&1#
	) 

This will not work with any Nernst-like equations, despite the measurement instrumentation 

being identical.  While $ and -, are known constants, and % can be directly measured, the 

reactant quotient ) and electron concentration & side of the equation cannot be further 

derived as neither variable can be measured nor is the reaction at a stable equilibrium state at 

either C! or C=.  It’s also possible that a Type IV non-selective biofilm membrane electrode 

would have more a more complex equation than can presented here.  ∆! can however still be 

used to evaluate key biological process parameters using known temporal intervals of changes 

in biomass, nutrient concentration (e.g. reactants), and metabolic pathway (e.g. photosynthesis 

or respiration), and the resultant changes in potential energy of the cell.  This composite of 

change in potentials, 3, can be represented as an incomplete and simplified equation: 

Equation 6 - MiProbe ∆E Conceptually Equation. 

∆! = ∆(3>)2%'?? + 3"#'01'.1 + 3@#1'>2,)?%	+	.		.		. )	 

The net change, or ∆! represents the change in both biomass concentration and 

metabolic activity (e.g. chemical reactions) in a composite signal of a non-selective membrane 

electrode.  In this case,  ∆! is made up of Potentials (3) of environmental conditions (e.g. 
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chemical reactants outside of biological activity), biomass, and the net reaction of the biomass’ 

metabolic activities. These aforementioned potentials are not indeterminant but not 

necessarily differentiable and provide a composite signal. By using the ∆! of electrical 

potential measurements over process specific time intervals it is possible to transform these 

real-time measurements into datasets for other types of classical analysis that correlate strongly 

with key performance and operating parameters of biological systems.  The other terms (e.g. 

“…“) that may affect ∆! are indeterminant at this time as they may be within the margin of 

error when comparing this composited signal to standard lab assays (e.g. Ash Free Dry 

Weights, Cell Counts, etc.) or other selective measurements. 

This work will investigate three principal ways of evaluating ∆! and how it relates to 

biological metabolic activities across time, space, and variable controls as the basis for the 

concept of Potentiomics.  These methods represent building blocks for more complex analysis 

and can be used in conjunction with each other.  The fundamental equations which can be 

simplified and adjusted to these various measurements across time, space, and controlled 

environments.  These equation function as rudimentary definitions of comparisons of ∆! that 

are used in more advanced analysis techniques in this work.  These equations are intentionally 

shown using basic algebraic forms to provide an approachable framework for practitioners, 

graduate students and researchers without having to resort to more complex calculus-based 

approaches. 
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Essential Methods of Evaluating the Change in MiProbe Signals 

Equation 7 - Expanded Change in Energy (∆E) with Respect to a Reference Electrode. 

∆! = (!#,#01"2/#$ − !"#$#"#.0#$) −	(!#,#01"2/#$ − !"#$#"#.0#$) 

and simplified into the three principal analysis components: 

Equation 8 - Change in Energy (∆"!) with respect to Time 

∆!1 = !#,#01"2/#!"% − !#,#01"2/#!#%  
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Equation 9 - Change in Energy (∆"") with Respect to Geospatial position. 

∆!A = !#,#01"2/#!#% − !#,#01"2/#!#&  
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Equation 10 - Change in Energy (∆"#) with Respect to Metabolic Differences. 

∆!% = !B'")'>,#	#,#01"2/# −	!02.1"2,	#,#01"2/# 

 

 

Combinations of these principal equations can be used to trace algae blooms through 

large water systems, nutrient loading through a wastewater system, predict change in biomass 

over time in bioreactors, or filter or amplify differences in metabolic activity within an 

experimental environment.   
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Time Series Analysis 

Large datasets of real-time measurement data are providing scientists, industrial 

operators, and regulators new tools in understanding changes in environmental conditions and 

critical biological or ecological processes.  The quantity of measurement using high-frequency 

real-time measurement aids in reducing measurement error and noise within data as compared 

to conventional sample analysis datasets (i.e. smoother data) (Philippe Esling, 2012). In 

ecological systems where traditional lab replicate analysis cannot be performed such as riverine 

and canal systems or municipal wastewater treatment plants, time series analysis of repeating 

and changing patterns of behavior is key to understanding underlying conditions. Looking at 

changes over time of common sensor instruments reveals metabolic activity through either 

indirect measurement of environmental variables (e.g. ORP, pH, DO, Temperature) or the 

direct measurement of biological indicators (cell counts, biomass dry weights).  Real-time data 

streams coupled with time series based statistical analyses can allow for early warning detection 

of major disruptions to biological environments (Vasilis Dakos, 2012)or industrial processes.  

Most importantly, the change in OCV values of MiProbe signals (∆!) is complementary to 

time series-based analysis over discrete analysis of single measurements (e.g. pH) for making 

decisions in regulatory or process control systems. 
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Classical Statistical Analysis 

To remove error, noise, and enhance understanding of the underlying MiProbe OCV 

signals, rolling statistical analyses on these time-series data sets are performed.  At a 

fundamental level OCV instruments all use rolling statistics in to acquire stable measurements 

or de-noising electronics-based signals (e.g. temperature induced or AC-current derived noise 

sources) (Huixian Ye, 2019).  Rolling standard deviations, variance, averages, minimas, 

maximas, and other classical statistical analyses can be performed to detect changes in 

environmental conditions (Figure 3) (Vasilis Dakos, 2012) or to directly monitor metabolic 

activity of the MiProbe or indirectly extract functional information.  Deciding on the period 

of analysis is important for creating actionable information from these statistical analysis tools. 

 

Figure 3 - Rolling Statistical Analysis Methods (Vasilis Dakos, 2012) 
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Classical Decomposition 

The composite signal of multiple metabolic and environmental factors of the MiProbe 

signals can be used as a way of filtering and amplifying portions of the MiProbe signal that 

correspond to parameters of interest.  The basis of this statistical decomposition technique 

has been used for nearly a century (Anderson, 1927), and is now a fundamental analysis used 

in forecasting and predictive models (Rob J. Hyndman, 2018).   

The additive model (Equation 11) for classical statistical decomposition is composed 

of the raw data E1 which is made up of a seasonal component F1 which is a repeating pattern 

based on a supplied pattern (e.g. diurnal, annual, hourly, etc.), the trend %1 which is a rolling 

average, and the residuals or error !1, which is the remainder of the signal not accounting for 

in either seasonal or tend components. 

Equation 11 - Classical Decomposition Additive Model Equation. 

E1 = F1 + %1 + !1 

Building real-time rolling statistical analysis models for detecting disruptive events to 

wastewater treatment systems can help identify the dumping of chemical contaminants that 

can harm both operations of the biological processing and nutrient removal and the effluent 

parameters of the treated waste out of discharge regulations.  Applying a statistical filter to 

decomposed signals can be used to create automated alert thresholds of real-time data 

platforms to aide stakeholders in making sampling or process decisions.  The residuals 

remaining after subtracting the trend %1 and the normal diurnal pattern F1 are of special interest 

in automating alerts for wastewater applications (Figure 4, 5, 6).  As the residuals are a change 

from 0 after removing the %1 and F1, simple automated alert thresholds can be used based on 

a rolling standard deviation filter (Figure 5). 
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Figure 4 - Seasonal Decomposition as Applied to the Headworks of a Wastewater Treatment Plant in Arizona. 
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Figure 5 - Automated detection of disruptive events using the residual signals and a rolling standard deviation filter. 
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= 

  

Figure 6 - Comparison of Observed and Decomposed Residuals of MiProbe Sensor Data from a Wastewater Treatment Plant. 
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Fast Fourier Analysis 

Determining seasonal periods for classical decomposition, or time intervals for 

investigating metabolic activity of MiProbe signals requires a quantifiable and repeatable 

methodology.  The Fast Fourier Transform (FFT) is a common numerical analysis tool 

(Ziegler, 1972) for identifying the periodicity of signal patterns within timeseries data (Like 

Gao, 2002), and is commonly used in biological signal analysis (Harris, 1998). Running an FFT 

on real-time data of 3 weeks of algae growth in a well-mixed controlled chamber with a distinct 

diurnal pattern (Figure 7) reveals multiple periods with amplitude signals that can be associated 

with controlled variables such as 12-hour light cycles.  This diurnal pattern is revealed in the 

FFT at the .5 day or 12-hour mark (Figure 8), accounting for the diurnal variability of the 

signal, while an approximately 30 +/- 5 minute signal is observed which relates to the constant 

variability within the signal pattern (Figure 9).  Without assuming these amplitude spikes are 

directly related to any specific metabolic function, an FFT can be used as a basis of choosing 

Figure 7 - Timeseries Data of the Average a 55 MiProbe Array’s Signals in an Algae Chamber. 
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temporal intervals for seasonal decomposition, intervals between various statistical analyses, 

and identifying periods for investigating further metabolic activity.  The figures herein are 

provided as example analysis from ongoing research to demonstrate the statistical 

methodology that will be applied to other datasets. 

  

Figure 8 - Fast Fourier Transform of Average MiProbe Array Data (24-hour Window). 
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Figure 9 - Fast Fourier Transform of Average MiProbe Array Data (<2-hour Window) 
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Predictive Models 

Taking these timeseries analysis methods for identifying temporal patterns, statistical 

relevance to both operational and regulatory concerns, basic predictive modeling tools provide 

the next step in providing useful data for decision making.  Rolling analyses can be used to 

create real-time predictive forecasts that can be the basis of more advanced alerting, confirm 

tracing of biomass and nutrient loads through industrial processes or water systems, and as 

the basis of assisted learning models of Machine Learning (ML) and Artificial Intelligence (AI) 

tools.  

The Holt-Winters predictive algorithm (Anne Koehler, 2001) is commonly used in 

climate-forecasting models (Liljana Ferbar Trater, 2016) and has established itself as a standard 

model to utilize in seasonal forecasting across multitudes of disciplines (Howard Grubb, 2001).  

The simplicity of the model is of specific interest as the multiple factors influence the MiProbe 

signal cannot be known.  This provided a simple starting point for analyzing the predictive 

capabilities of the MiProbe metabolic signals.  
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IN SITU OBSERVATIONS AND IN VITRO EXPERIMENTS 

Central Arizona Algae Bloom Monitoring 

The following evaluation of predictive modeling of Central Arizona Project (CAP) 

canal algae bloom monitoring data was conducted using a combination of seasonal 

decomposition and Holt-Winters’ Exponential Smoothing algorithm’s additive method 

(Meyer, 2021).  The trend, diurnal pattern and residuals were extracted from the raw signal for 

the MiProbe near the surface of the canal system near Lake Pleasant in Arizona (Figure 10).  

During the evaluation of decomposing the raw Lake Pleasant data, changes in flow coinciding 

with operation changes in April (flow increases from the reservoir), and a later event of an 

unforeseen water release was observed to impact signals in the MiProbe trend and residuals. 

This was effectively applying a rolling average to subtract the trend of baseline 

MiProbe signals, and amplify the portions of the signals directly related to algae photosynthetic 

activity and nutrient (or operational) changes. A forward prediction of using 3 weeks of prior 

decomposed diurnal and residual signals are used as training data to forecast 7 days of the 

canal bloom (Figure 11).  A disruption from intrusion of water into the canal system on May 

17
th
 was noted upstream of the sensor system that required maintenance on the canal system 

disrupting normal flow later in the month. 
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Figure 10 - Decomposition of Real-Time MiProbe Sensor Data on the CAP Canal (Meyer, 2021). Top-Bottom: Raw Observations, Trend, 
Normal Diurnal Pattern, Residuals. 
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Figure 11 - Holt-Winters Model as Applied to Recomposed Seasonal + Residuals Data (Meyer, 2021). 
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Expanding on this work, further evaluation of creating an automated alert trigger using 

these predictive methods was applied.  Ten days of prediction using the previous methodology 

were applied to see how accurate the prediction in algae metabolic activity would perform and 

if it could be used as an automated indicator in real-time monitoring applications (Figure 14).  

A rolling correlation between the Prediction and Testing (e.g. real-time data) series using the 

last 24 hours of datapoints of both produced significant drops in prediction correlation (Figure 

13) prior to the detection of the water intrusion event on May 17
th
 and a severe drop in 

correlation between predicted pattern behavior and real-time data.  The preceding drop on the 

15
th
 and 16

th
 coincided with a severe storm event which was the root cause of the down-stream 

water intrusion event (Figure 12).  The larger drop in prediction correlation takes place during 

an interruption in flow to allow maintenance work in response to the intrusion event.  This 

early drop in correlation of MiProbe sensor prediction data can be used to alert to severe 

changes in environmental or operational conditions enabling faster response to operational 

disruptions and prevent or lessen intrusions into the canal system. 
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Figure 12 - Central Arizona Project Canal Map (Credit: CAP) 



 

30 

Figure 14 - Expanding the Holt-Winters prediction. 

Figure 13 - Rolling window corellation between prediction and test (real) data. 
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Rhizosphere Applications 

Background: 

 Biofilm formation and stabilization in aqueous environments has been observed to 

take place within 24-48 hours in algae raceway ponds, however dry soil environment present 

difficulties in achieving stable MiProbe signals on commercially feasible timescales.  

Additionally, while insertion of probes into the rhizosphere had been demonstrated in during 

a DOE SBIR investigations of Phase I, II, and IIB research awards for monitoring the 

saturated and unsaturated zones for environmental, applications in soils the minimum times 

before stable signal could be observed were in 1-3 months.  This may be an acceptable 

stabilization for long-term environmental and ecological system monitoring using low-zero 

maintenance probes but would be non-viable for agricultural applications.   

An early milestone of a DOE BETO investigation was to assess if the MiProbe sensors 

could stabilize quickly enough for 3-5 day harvest resets, and 1-week cultivation studies. 

Previously stabilization periods in riverine and potable water monitoring systems had been 

observed to take up to a month while wastewater systems, depending on process, would take 

between 1 and 14 days before stabilization of the MiProbe signal could be observed.  Coating 

probes with an alginate hydrogel was investigated in both these applications to provide a 

scaffold structure for accelerating microbial growth as well as a nutrient source.  To test if 

stable signals could be measured quickly a proof-of-concept experiment using a seedling tray 

and coated and uncoated graphite electrode.   
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Proof-of-Concept Methods: 

 An alginate coated graphite electrode and an uncoated graphite electrode were inserted 

into a Root Riot™ peat seedling pod and hydroponics seedling tray with an ORP and 

previously stabilized (2-weeks in the seedling tray) uncoated graphite electrode in the water to 

investigate stabilization period signal changes as a proof-of-concept.  The seedling tray 

maintained a 2cm water depth and the Ag/AgCl reference electrode of the ORP was used as 

a shared reference between all graphite and ORP indicator electrodes.  The system was setup 

inside an enclosed Percival incubator chamber set to 31C and 90% humidity with 1.5% 

atmospheric CO2 being maintained and lighting on a 12-hour day-night cycle using a TP-

Link™ Kasa HS105 programmable wifi-outlet controlled a Giixer 1000W LED light 

suspended 45cm above the seedling tray. 

Data Acquisition: 

Real-time humidity and temperature were measured using a DHT22 sensor, and two 

PiCamera NoIR was setup to store imagery data. MiProbe and ORP data were acquired using 

a Raspberry Pi 4 and a MiProbe B56 sensor instrumentation board.  Both imagery and sensor 

data were recorded every 5 minutes to an AWS cloud platform using DynamoDB and S3 

storage buckets for sensor data and imager respectively.   

Measurement Confirmation: 

A high impedance Milwaukee™ MW500 ORP meter and a Fluke™ 79 Series II 

Multimeter were used to confirm conductivity between reference electrode and indicator 

electrodes (both ORP and Graphite) through the seedling trays and into the seedling pods.  

Upon the 2
nd

 iteration, a tomato seed was bonded to the alginate hydrogel.   

The alginate coating and seeds were prepared identically to Deyang Qi’s later Thesis 

work methodology (Qi, 2021) below: 
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Preparation of Alginate: 

3.3 g of sodium alginate (Alginic acid sodium salt from brown algae, BioReagent, 

suitable for immobilization of microorganisms, Sigma-Aldrich) and 4.3g of MOPS were 

dissolved in 225 ml water. Then the suspension was stirred at 180 rpm and 95 °C until 

completely dissolved. The dissolved gases during the stirring process in the alginate solution 

were removed with a vacuum pump. Then, the alginate solution was sterilized at 121 °C for 

30 min. A CaCl2 solution was prepared by dissolving 2.49 g CaCl2 and 4.7 g of MOPS in 225 

ml DI water. The solution was autoclaved at 121 °C for 45 min. 

Seed Coating Preparation: 

The seeds of tomato ‘Golden Jubilee’ (Marde Ross & Company) were surface  

sterilized with 30% bleach for 15 min, then washed 3 times with sterile water. Coating of seeds 

were carried out under sterile conditions in a laminar flow hood. The alginate was added 

dropwise with the aid of a 10-ml sterile syringe on the tomato seeds and the probe surface. 

The coated seeds and probes were then bonded together, by soaking in 0.1 M CaCl2 solution 

to form the alginate hydrogel. The excess Ca2+ ions were washed out with sterile tap water 

after 3 min of the formation of alginate hydrogel. 
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Initial Results: 

 Immediate signal similar to the previously stabilized graphite electrode in the water 

tray, while the uncoated electrode took 4 hours to achieve its baseline magnitude but did not 

show the same variability as the other graphite electrodes (Figure 15).  Signal behavior was 

largely unchanged for the following 2 weeks of monitoring after this 4-hour window.  

Repeated confirmation of OCV measurements and conductivity were completed using high 

impedance meters. 

 

  

Alginate Coated Electrode 

Uncoated Electrode 

Previously Stabilized 

Electrode in Water Tray 

Insertion 

Figure 15 - Initial Testing of Alginate Coated Electrodes in a Hydroponic Seedling Tray. 
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Proof-of-Concept with Seed Results: 

 After successful signal differenced and conductivity with the experimental apparatus 

was confirmed a repeat of this initial experiment with this time the seed directly bonded to the 

graphite electrode (Figure 16, top).  Initial results were identical, however upon germination 

of the seedling variability and baseline signals shifted.  Upon closer inspection, a 12-hour cycle 

pattern matching the light timing of the incubator appeared (Figure 16, Bottom).  Both 

variability and baseline signal patterns appeared to change during these 12-hour cycles of the 

seed-attached electrode. 

  

12-Hour Cycles 

Figure 16 - Clockwise from top: Bonded Tomato Seed to MiProbe, Figure of Bonded Seed and Peat Pod, Real-Time Dashboard of First Seeded 
MiProbe and Comparison Electrodes. 



 

36 

An Expanded Proof-of-Concept: 

 After initial confirmation of the principles that the MiProbe with an alginate hydrogel 

coating could discern signal patterns within the first 2 weeks of germination of a directly 

attached seed (Figure 17), an expanded investigation was planned to confirm differences 

between coated and uncoated probes in seeded and unseeded pods under identical conditions.  

Upon initial inspection there were no discernable signal pattern differences in the raw 

measurement data.  While an underlying diurnal pattern could be discerned in the raw signals, 

metabolic differences from treatment types were not clearly differentiable (Figure 18). 

 

 

Figure 17 - Seeded and Unseeded Coated and Uncoated Probes in Randomized Tray Experiment (Qi, 2021) 
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Figure 19 - Real-time Seedling Pod Data of Coated and Uncoated Probes (Qi, 2021). 

Figure 18 - Average of Normalized Coated and Uncoated MiProbes Categorized by Treatment (Qi, 2021). 
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Using the combined averages of the germinated seedlings by treatment (e.g. 

fertilization) and type (coated vs. uncoated) and subtracting out control electrode values (e.g. 

uncoated and uncoated probes inserted into empty seedling pods) by type, baseline 

environmental conditions could be filtered from the signal.  A combination of looking at ∆! 

with respect to variable and control electrodes, and then ∆! with respect to time of those 

normalized electrode measurements revealed consistent signal patterns and enabled further 

investigation of differences in growth based on treatment (Figure 19).  Further investigations 

in a repeated experiment using only alginate coated electrodes was able to identify a stronger 

change in ∆! in response to photosynthesis cycles than earlier proof of concept work (Figure 

20). 

Figure 20 - Comparison of Day/Night Cycle Activity of Bonded MiProbe by Treatment Type (Qi, 2021). 
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Decision-Model Supported Algal Cultivation Process Enhancement Investigations 

Strain Change Detection 

Introduction 

Microalgae cultivation is a growing industry for producing a wide variety of 

bioproducts from the protein and lipid content of microalgae biomass. Improving biofuels 

production from microalgae cultivation practices is of significant interest as a renewable 

alternative to fossil fuels with the added benefit of carbon sequestration.  Microalgae strains 

of special interest in biofuels production can be morphologically similar to each other as well 

as less productive strains necessitating the development of tools to quickly and cost effectively 

characterizing cultivation productivity and quality.  In some cases microalgae strain 

morphology can be dependent on environmental factors making consistent monitoring of 

microalgae cultivation unpredictable with current characterization methods.  Microscopy, 

Optical Density, DNA analysis, flow cytometry, and MALDI-TOF (Duane Barbano, 2015) 

analyses offer varying degrees of confidence in characterization of microalgae strains at 

variable timeframes and expense.  Few, if any of these analyses can provide information 

certainty within a work-day period and all require specialized training and significant capital 

expense.  The MiProbe’s measurement of microbial electron activity has been observed to 

show strong relationships with growth parameters such as biomass or nutrient loading in 

wastewater applications but not necessarily differentiation of dominant microbial species 

strains.  Discerning real-time algae growth parameters using the MiProbe is of interest for 

improving microalgae cultivation yields and real-time detection of disruptive changes. 

Real-world outdoor cultivation of microalgae strains can have substantial 

morphological differences from lab-grown counterparts requiring different analysis 

considerations to make decisions.  It has been long established that Scenedesmus obliquus 
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(UTEX393) can present different morphologies under microscopy observation depending on 

media composition. During outdoor cultivation at the Arizona Center for Algae Technology 

& Innovation, UTEX393 (Figure 22) has been observed to present spherical morphologies 

similar to other similarly productive strains such as chlorella vulgaris 1201 (Figure 23).  These 

strains are of particular interest in biofuels production as they consistently outperform other 

microalgae strains in Life-Cycle Analysis (LCA) and Techno-Economic Analysis (TEA) in 

both summer and winter cultivation conditions.  The variability in cell shape of UTEX393 

under industrial-scale outdoor conditions prevents using Optical Density (OD) measurements 

to predict current biomass production rates as measured by Ash-free Dry Weights 

(AFDW).  The AFDW:OD ratios of consistent morphology microalgae cultures function as a 

reliable baseline for predicting current biomass concentrations without waiting multiple days 

for AFDW results to be completed using low-cost and fast OD measurements.  This still 

requires the complexity, cost, and time investment in AFDW measurements, but allows for 

essential operational decision making when cultivating morphologically consistent strains.   
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Figure 22 - Scenedesmuc obliquus (UTEX393) Seed Microscopy Showing Spherical Morphology.  Credit: Aaron Geels (AzCATI, ASU). 

Figure 21 - Chlorella vulgaris (1201) Seed Microscopy Showing Similar Morphology.  Credit: Aaron Geels (AzCATI, ASU) 
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Decision making for harvesting or resetting of algae ponds using current OD 

measurement still presents an information gap as the latest AFDW measurements are between 

24 and 48 hours old under ideal circumstances and relies on high variability lab and optical 

measurements.  If the MiProbe can accurately and continuously measure potentiometric 

changes in algae ponds that correlate strongly with these discrete lab sample techniques such 

as AFDW measurements, AFDW:OD ratios can be used less frequently to monitor quality 

assurance and quality control (QA/QC) parameters, reducing the need for continuous 

sampling, technician labor, and increase the quantity of reactor systems or volume of algae 

production managed by the same operations team.  Furthermore, if these signal patterns can 

be associated with dominant cultivation strains, pond takeover events that are only detectable 

through more costly, technically complex, and time intensive procedures such as MALDI-

TOF, Flow Cytometry, and DNA analysis, the MiProbe could dramatically reduce the costs 

of monitoring and improving algae production yields in homogeneous and heterogeneous 

bioreactor environments. 

Methodology 

Outdoor raceway pond cultivation was replicated under indoor controlled conditions 

using higher precision instrumentation and higher intensity sampling rates to confirm MiProbe 

biosensor behavior and its correlation with current state of the art analysis techniques.  These 

controlled experiments were conducted to isolate changes in MiProbe biosensor signals 

associated with cultivation of the specific strains originally detected through intermittent PCR 

Analysis and eliminate any signals associated with other potential contaminants or operational 

characteristics. 
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Algae Cultivation - Outdoor Raceway Ponds 

S. obliquus was cultivated outdoors in 3 replicates of 1000 L ponds with a nominal volume of 

820 l, a depth of 20 cm, and a surface area of about 4.2m^2.  Each pond was provided a data 

acquisition and control system (YSI, Inc.) measuring pH, dissolved oxygen (DO), and oxygen 

reduction potential (ORP), and temperature sensors, a real-time microbial sensor system 

(Burge Environmental, Inc.) with ORP, pH, Temperature, and 2 or more MiProbe biosensors 

sharing the ORP’s AgCl reference electrode, a local microclimate weather station (Onset 

Computer Corp.) providing outdoor temperature, humidity, photosynthetically active 

radiation (PAR), wind speed and integrating nearby weather station API temperature, 

humidity, sunrise, sunset, and weather conditions (OpenWeather Project).  A CO2 sparge line 

was controlled with feedback provided by the control system to maintain a pH of 7 during 

daylight hours.  A variable frequency drive was used to set paddlewheel rotation speed of 10.88 

RPM continuously during both day and night cycles.  BG11 standard media was used as the 

base nutrient media for the open raceway pond. 

MiProbe biosensors were stored in chlorine water solution and cleaned between pond 

resets to allow the biofilm membrane to regrow after each harvest and avoid contamination 

risks from undesirable organisms that may have colonized the biofilm.  pH and ORP probes 

were cleaned with chlorine and de-ionized (DI) water solutions and stored in buffer solutions 

between resets.  Temperature and DO probes were cleaned with chlorine and DI water 

solutions between resets to disinfect them before redeployment.  MiProbe biosensor systems 

were configured for 15-minute data acquisition through a cellular IoT mode of the B10 data 

acquisition system.  The pH, ORP, and MiProbe open circuit potential measurements were 

configured for 250 Megaohm input impedance and +/- 2mV of precision. 
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Results 

During normal cultivation of S. obliquus in outdoor raceway ponds consistent signal 

behavior between surface (< 5cm depth) and benthic (> 15 cm depth) MiProbes is observed 

after the initial biofilm stabilization period (Figure 23).  Surface MiProbes have consistently 

stronger diurnal patterns associated with photosynthetic periods (Figure 21). Harvest periods 

precede drops in baseline signal and days of lower daily light intervals (DLI) decrease daily 

differences between daily local minima and maxima values.  Despite these changes in growth 

and operations, rolling 2-hour variance and standard deviations show distinct ranges that are 

Figure 23 - Real-Time MiProbe Data During S. obliquus (UTEX393) Dominant cultivation. 
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consistent with dominant cultivation of a single algae strain (Figure 24, 25).  These rudimentary 

statistical methods were investigated to provide the basis for automated alerting capabilities 

for further investigation of disruptions or potential crash events prior to lab analysis or visual 

inspection. 

  

Figure 24 - Variance Analysis of S. obliquus Before Strain Change Event (Left).  Surface (MiProbe1) and Benthic (MiProbe2) Hourly 
Distribution plot (Right). 

Figure 25 - Standard Deviation Analysis of S. obliquus Before Strain Change Event (Left).  Surface (MiProbe1) and Benthic (MiProbe2) 
Hourly Distribution Plot (Right). 
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Strain Transition Periods 

During PCR-confirmed strain-change events as reported by AzCATI’s researcher Dr. Henri 

Gerken, distinctly different baseline, daily minima and maxima, and rolling variance and standa

rd deviation values similarly shift (Figure 26, 27, 28). Microscopy confirmation of the presence 

of C. vulgaris during this period was also confirmed (Figure 29). 

 

 

Figure 26 - Real-Time MiProbe Data Before, During, and After a Dominant Strain Change Event as Confirmed by PCR Sample Dates 
(Shaded Regions). PCR Analysis Credit: Henri Gerken (AzCATI, ASU) 
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Figure 27 - Rolling Standard Deviation Analysis During Strain Change Period (Left). Hourly Distribution Plots (Right) 

Figure 28 - Rolling Variance Analysis During Strain Change Period (Left). Hourly Distribution Plots (Right) 
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Figure 29 - C. vulgaris Detected Via Microscopy During Strain Change Event.  Credit: Aaron Geels (AzCATI, ASU) 
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Biofilm Stabilization Period Investigations 

Growth of biofilms on graphite surfaces is not an immediate process and until a stable 

biofilm is present, MiProbe signals may be too erratic for consistent use and interpretation 

(Figure 30).  Electrochemical Impedance Spectroscopy (EIS) has been used to determine 

biofilm growth on electrode surfaces, however this method requires specialized 

instrumentation and expertise in interpretation and the system.  In Algae raceway ponds a 

diurnal pattern emerges by the 2
nd

 day of cultivation after a complete chlorination and cleaning 

of MiProbe sensors.  Using a combination of timeseries analysis and standard box-plots give 

provide a way of visualizing the rolling variance of the MiProbes and quantifying raw MiProbe 

Figure 30 - Day 1-6 Real-Time MiProbe Data. 
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signals into a biofilm establishment or stability metric.  The hourly box-plots provide insight 

into operationally-induced variability in signals such as 9-10 a.m. scheduled sampling and 

maintenance.  Variability of signals during the initial deployment of probes have been an a 

visually identifiable indicator across pond resets, field deployments, and benchtop 

experimental setups. 

Methods: 

 Hourly box plots of measurement variance distribution we plotted for both the surface 

and benthic MiProbes in an algae raceway basin were visualized for the first 3 days of 

deployment (Figures 31, 32, 33) and then from day 3 until day 6 (Figure 34).  Ponds were 

cultivating UTEX393 as per the methodology in the later DMSCAPE investigation section of 

this work.  Probes were prepared by cleaning off any present biofilm and storing in 5% bleach 

solution until reintroduced to the freshly seeded open raceway pond. 

Results: 

 Hourly variation of measurements and boxplot distributions fluctuated substantially 

during the first 2 days of cultivation and probe deployment.  Reduction in variance magnitude 

(left axis) and from day 1 to day 2 and day 3 were observed (Figures 31, 32, 33).  Day 3-6 

variance magnitude was consistently below 250 for all upper (e.g. 3
rd
) quartile box plots (Figure 

34). 

Conclusions: 

 Hourly distribution of variance may be a reliable statistical method of identifying stable 

biofilms on probes in algae cultivation.  Evaluation of comparing both the raw MiProbe signals 

and decomposed variants to take into account the operational conditions of newly seeded 

raceway ponds may be necessary as biomass growth may a substantial part of both day 1 and 

day 2 variance and signal behavior. 
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Figure 31 - Day 1 Hourly Variance Plot. 
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Figure 32 - Day 2 Hourly Variance Plot. 
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Figure 33 - Day 3 Hourly Variance Plot. 
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Figure 34 - Day 3-6 Hourly Variance Plot. 
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Alginate Hydrogel as a biofilm stabilization accelerator 

 Unlike wastewater bioreactor processes and environmental monitoring applications, 

algae cultivation is frequently done in batches from sterilized reactor conditions requiring 

decontamination of in situ sensor electrodes.  Though it may only take 1-2 days to establish a 

biofilm membrane for MiProbe OCV measurement, this could prevent some commercial 

adoption if bioreactors are only operated for short time interval.  Investigation into pre-coating 

the graphite MiProbe electrode were conducted to identify performance characteristic 

differences of using an alginate hydrogel as a pre-formed biofilm structure. 

Methods: 

Preparation of Alginate: 

3.3 g of sodium alginate (Alginic acid sodium salt from brown algae, BioReagent, 

suitable for immobilization of microorganisms, Sigma-Aldrich) and 4.3g of MOPS were 

dissolved in 225 ml water. Then the suspension was stirred at 180 rpm and 95 °C until 

completely dissolved. The dissolved gases during the stirring process in the alginate solution 

were removed with a vacuum pump. Then, the alginate solution was sterilized at 121 °C for 

30 min. A CaCl2 solution was prepared by dissolving 2.49 g CaCl2 and 4.7 g of MOPS in 225 

ml DI water. The solution was autoclaved at 121 °C for 45 min. 

Probe Coating Preparation: 

The MiProbes were stored in 5% bleach solution and then, then washed with 30% 

bleach solution. The coated probes were then bonded together, by soaking in 0.1 M CaCl2 

solution to form the alginate hydrogel onto the graphite electrode surface.  Coated MiProbe 

were stored in sample test tubes until redeployed in open raceway ponds. 
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Probe Deployment: 

 Both coated and uncoated MiProbes were deployed at the same depth within 5-10cm 

of the surface due to paddle wheel induced mixing of an established algae raceway pond.  

Probes were deployed 3 times over 5-7 days in ponds cultivating Phaeodactylum tricornutum 

(UTEX646) under the DISCOVR project.  Coated probes were connected as Probe1, and 

uncoated probes were connected as Probe2 during the first 2 experiments, and swapped for 

the 3
rd 

test.  The period of investigation was from 2020-11-20 to 2021-01-11 (Figure 35). 
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Figure 35 - Continuous Phaeodactylum triconutum Cultivation Real-Time MiProbe Sensor and Optical Density 680/750 Measurements Timeseries Data. 
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Figure 37 – Replicate 1 – Correlations of Alginate Coated and Uncoated MiProbe Daily Maxima Values Versus OD 680/750 Data. 

Table 2 – Replicate 1 -Correlation Matrix of Coated and Uncoated MiProbes Versus OD 680/750 Measurements. Probe 1 Coated, Probe2 Uncoated. 

Figure 36 – Replicate 1 -Hourly Distribution Plots of coated and uncoated MiProbe variance. 
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Figure 39 - Replicate 2 – Correlations of Alginate Coated and Uncoated MiProbe Daily Maxima Values Versus OD 680/750 Data. 

Table 3 - Replicate 2 -Correlation Matrix of Coated and Uncoated MiProbes versus OD 680/750 Measurements. Probe1 Coated, Probe2 Uncoated. 

Figure 38 - Replicate 2 -Hourly Distribution Plots of coated and uncoated MiProbe variance. 
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Figure 40 - Replicate 3 – Correlations of Alginate Coated and Uncoated MiProbe Daily Maxima Values Versus OD 680/750 Data. 

Table 4 - Replicate 3 - Correlation Matrix of Coated and Uncoated MiProbes Versus OD 680/750 Measurements.  Probe1 Uncoated, Probe2 Coated. 
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Results: 

 No discernable difference in performance when analyzing the raw timeseries data 

(Figure 35), however significant drops in correlation between optical density (OD680 and 

OD750) measurement data provided by AzCATI (Tables 2, 3, 5, Figures 37, 39, 41). Upon 

further inspection, coated probes had consistently higher hourly variance of coated probes 

measurements were observed in each replicate in both magnitude and quartile size (Figures 

36, 38). 
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Petri Dish Sensor Matrix 

As previously demonstrated, using the experimental control electrodes as a reference 

to filter baseline environmental changes and amplify metabolic activity or biomass changes as 

a result of experimental variables, it may be possible to create a re-usable petri dish-based lab 

assay tool that is not reliant on conventional standard reference electrodes.  Utilizing a 

combination of experimental methods to investigate measuring ∆" such as leaving unstreaked 

areas of the assay plate to function as control electrodes, or: 

∆"! = ""#$%#&'(	('(*+$,-( −	"*,.+$,'	('(*+$,-( 

Monitoring the data in real-time to look at changes in potential over time, or: 

∆"+ = "('(*+$,-(!"# − "('(*+$,-(!$#  

And visualizing the data geospatially to evaluate: 

∆"/ = "('(*+$,-(!$# − "('(*+$,-(!$%  

Methods: 

A proof-of-concept with 55 graphite 

electrodes in a hexagonal grid (Figure 42) was 

prototyped to evaluate if differentiation of 

metabolic activity would be observable using 

experimental control-based control electrodes.  

The dish provided a shallow well for allowing 

plate medias to be poured in preparation for 

streaking.  Plate was prepared with the standard 

BG11 media used in outdoor cultivation ponds 

at AzCATI for the Chlorella vulgaris quadrant 
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Figure 41 - Schematic of MiProbe Petri Dish with Control and 

Variable Streak Quadrants. 
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streak area but modified to provide sucrose 

as a feedstock for the Escheria coli quadrant 

streak.  Two quadrants were left unstreaked 

to provide control nodes for comparing ∆".  

The plate was tested in an Infors HT 

Multitron Shaking Incubator with a 6 hour 

light phase at 50% humidity, 27C, and 1.5% 

CO2 followed by a 6 hour dark phase at 50% 

humidity, 15C, 1.5% CO2, and a 125 rpm 

shaking rate.  Light intensity was set to 100%/0% during light/dark phases.  Data was 

collected in real-time at a 1-minute sampling interval by a USB-mode B56 MiProbe 

instrumentation board using a Raspberry Pi and the open-source miprobe python package. 

Results: 

 Due to a maintenance error, the incubator chamber’s water reservoir emptied during 

the initial run of the experiment causing the modified media to peel off portions of the plate 

making it difficult to discern streak growth or compare electrode signals (Figure 43). While 

growth across the E. coli streak area could be observed, substantial peeling on approximately 

40% of the right side of the edge of the dish, and around nearly every graphite electrode. 

The experiment was repeated with an adequate water supply and monitored for 4 days.   

Signal patterns were distinctly different between E. coli and C. vulgaris (Figure 44, 45) and 

similarly to outdoor cultivation ponds, establishment and growth periods were observed over 

the first 24 hours before repeatable signal patterns emerged.  The measurements of the 

unstreaked electrodes were averaged and subtracted from the variable electrodes (e.g. streaked 

E. coli and C. vulgaris electrode).  

Figure 42 - Photo of Post-Experiment Peeling Due to Drying Out. 
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Figure 43 - E. coli Petri Dish Data from Repeated Experiment. 

Figure 44 - C. vulgaris Petri Dish Data from Repeated Experiment. 
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An interactive 3D scatterplot was developed using the python package plotly to look 

at both the raw potential values of the electrodes (Figure 46, Top) as well as the rolling change 

in potentials (Figure 46, Bottom) as a tool for evaluating changes in potential with respect to 

geospatial and temporal considerations.   

 

 

 

  

Figure 45 - Interactive 3D Visualization of Real-Time Petri Dish Data Showing Raw MiProbe Signals (Top), and 

Rolling Change in Potenital Over Time (Bottom). 
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SUMMARY CONCLUSIONS 

 The MiProbe may be the first of a new type of potentiometric sensor 

technology based on living biofilms as non-selective or partially selective membranes.  This 

new type of sensor technology appears to generate signals associated with biological metabolic 

processes that can provide better information faster when coupled with real-time data analysis 

and visualization tools.  These potentiometric signals can be decomposed and correlated with 

living metabolic activity directly, as opposed to potentiometric measurement of environmental 

variables.   

This does not limit the MiProbe as the value of a real-time general health indicator 

that can be compared to other critical biological parameters and used for early-warning of 

both environmental monitoring and industrial process control disruptions.  The low-cost and 

near-permanent lifetime of these in situ sensors can enable improved environmental 

management through reliable measurement of key ecological metabolic activity, alerting to 

disruptions that would otherwise require substantial capital costs and advanced expertise to 

monitor and analyze, and improve climate and environmental sciences through measuring the 

overall health of living systems in real-time. 

Despite being a potentiometric measurement, the MiProbe is dissimilar from selective 

potentiometric sensors and cannot be evaluated using equilibrium state thermodynamic 

principles.  The MiProbe is a living membrane sensor electrode and does not fall under any of 

the current Type I, II, or III Potentiometric sensor categories.  The MiProbe is effectively a 

non-equilibrium thermodynamic state measurement tool for evaluating the change in energy 

in a biological system or process.  As MiProbe measurements cannot be interpreted using the 

thermodynamically derived equations for normal types of potentiometric sensor electrodes, a 
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new classification of a Type IV living membrane sensor electrode is necessary to differentiate 

it. 

Type IV sensor electrodes appear to measure the energy of the system from the 

perspective of the biofilm membrane. Further investigations into comparing ∆" across time, 

geospatially, and utilizing variable and control electrodes in experimental methodologies may 

reveal new understanding and be the basis for new research tools.  This does not replace the 

use of previous types of potentiometric sensors or conventional absolute potential values, such 

as pH electrodes and their critical importance in understanding other potentials (Figure 1), but 

opens new possibilities in better understanding the biology of a system as it interacts with the 

chemistry of the environment. 

Investigations into the use of alginate hydrogels (e.g. Agar) have revealed that in 

seedlings and petri dish applications the living membrane Type IV sensors can stabilize signals 

quickly enough to be used in rapid bioscience applications using low-cost disposable seedling 

electrodes and petri-dish style assays.  The metabolic patterns revealed within the MiProbe 

potentiometric signals could have far reaching consequences in the non-destructive study of 

microbial and plant metabolic interactions with their environments. 
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FUTURE WORK 

 It is the Author’s intention to continue investigating utilizing the principal equations 

for analyzing ∆" as part of a future Ph.D. program and develop improved predictive modeling 

for environmental applications and new analytical tools for investigating the proposed field of 

study of Potentiomics utilizing these Type IV living membrane sensor electrodes.   

The Petri Dish application of Type IV sensors will be investigated as a new tool for 

ascertaining axenic culturing, isolation of both novel or genetically transformed species, and 

as a tool for investigating impacts of stress or therapeutic treatments on metabolic activity and 

function.  This tool is envisioned to be able to bring down both the cost and time necessary 

for rudimentary to complex scientific investigation that currently requires specialized and 

expensive equipment and expertise. 

Harmful Algae Bloom (HAB) monitoring beyond water infrastructure and into natural 

environments to protect critical habitat and commercial interest in fisheries is already being 

planned in conjunction with research centers in the Gulf of Mexico, Atlantic Ocean, and 

stakeholders within the Charles River Watershed in Massachusetts.  This will be in addition to 

working with utilities such as the Central Arizona Project and the Massachusetts Water 

Resource Authority. 

Further investigating the implications of this biosensor and more advanced analysis 

techniques to understand how error from applying portions of the Nernst equation variable 

limits (e.g. error from unknown ion concentrations z) to the real-time sensor data may reveal 

far greater implications of the technology for environmental monitoring than have currently 

been discussed.  Well characterized environments or point-source polluter locations may allow 

real-time detection and categorization of pollutant releases as it pertains to instability or error 

induced from changes in ion concentration. 
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And most critically, developing a library of both documentation and training data on 

metabolic activity, abiotic disruptions, and species-specific signatures to improve AI, ML and 

real-time detection models to provide insights across all applications of the technology will be 

developed across all areas of investigation to aide researchers and practitioners in better 

understanding and improving processes using this new sensor technology. 

The work herein will be expanded upon in collaboration with Arizona Center for Algae 

Technology & Innovation at Arizona State University, the Center for Contaminant Hydrology 

at Colorado State University, and numerous individual contributors for joint publication later 

this summer.  
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