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ABSTRACT

With the rapid development of reflect-arrays and software-defined meta-surfaces, re-

configurable intelligent surfaces (RISs) have been envisioned as promising technologies

for next-generation wireless communication and sensing systems. These surfaces com-

prise massive numbers of nearly-passive elements that interact with the incident signals in

a smart way to improve the performance of such systems. In RIS-aided communication

systems, designing this smart interaction, however, requires acquiring large-dimensional

channel knowledge between the RIS and the transmitter/receiver. Acquiring this knowl-

edge is one of the most crucial challenges in RISs as it is associated with large compu-

tational and hardware complexity. For RIS-aided sensing systems, it is interesting to first

investigate scene depth perception based on millimeter wave (mmWave) multiple-input

multiple-output (MIMO) sensing. While mmWave MIMO sensing systems address some

critical limitations suffered by optical sensors, realizing these systems possess several key

challenges: communication-constrained sensing framework design, beam codebook de-

sign, and scene depth estimation challenges. Given the high spatial resolution provided

by the RISs, RIS-aided mmWave sensing systems have the potential to improve the scene

depth perception, while imposing some key challenges too. In this dissertation, for RIS-

aided communication systems, efficient RIS interaction design solutions are proposed by

leveraging tools from compressive sensing and deep learning. The achievable rates of these

solutions approach the upper bound, which assumes perfect channel knowledge, with negli-

gible training overhead. For RIS-aided sensing systems, a mmWave MIMO based sensing

framework is first developed for building accurate depth maps under the constraints im-

posed by the communication transceivers. Then, a scene depth estimation framework based

on RIS-aided sensing is developed for building high-resolution accurate depth maps. Nu-

merical simulations illustrate the promising performance of the proposed solutions, high-

lighting their potential for next-generation communication and sensing systems.
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Tepedelenlioglu, and Prof. Nicolò Michelusi for their time and valuable feedback. Finally

and most importantly, my family deserves a special mention. I would like to thank my

parents for their continuous support. I am eternally grateful.

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 RIS Aided Communication Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 RIS Aided Sensing Systems for Scene Depth Estimation . . . . . . . . . . . . . . 4

1.3 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 INTERACTION DESIGN FOR RECONFIGURABLE INTELLIGENT SUR-

FACES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 System and Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Reconfigurable Intelligent Surfaces with Sparse Sensors: A Novel Ar-

chitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Compressive Sensing Based RIS Interaction Design . . . . . . . . . . . . . . . . . . 23

2.6.1 Recovering Full Channels from Sampled Channels: . . . . . . . . . . . . 23

2.6.2 Simulation Results and Discussion: . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



CHAPTER Page

2.7 Supervised Deep Learning Based RIS Interaction Design . . . . . . . . . . . . . . 29

2.7.1 Key Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.2 Proposed System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7.3 Deep Learning Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 Deep Reinforcement Learning Based RIS Interaction Design . . . . . . . . . . 37

2.8.1 Key Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8.2 Proposed System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8.3 Machine Learning Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.9 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.9.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.9.2 Achievable Rates with Compressive Sensing and Deep Learn-

ing Based RIS Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.9.3 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.9.4 How Much Training is Needed for the Deep Learning Models? . 55

2.9.5 Impact of Important System and Channel Parameters . . . . . . . . . . 56

2.9.6 Refining the Deep Learning Prediction . . . . . . . . . . . . . . . . . . . . . . . 59

2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 MILLIMETER WAVE MIMO BASED SCENE DEPTH ESTIMATION . . . . . 64

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 System and Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

v



CHAPTER Page

3.3.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.1 Target Range Estimation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.2 Target Range Estimation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 General Framework for Scene Depth Estimation . . . . . . . . . . . . . . . . . . . . . . 79

3.6.1 Codebook Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.6.2 Scene Depth Estimation Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Depth Map Based Design for Sensing Codebooks . . . . . . . . . . . . . . . . . . . . 84

3.7.1 Proposed Codebook Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.7.2 Sidelobe Reduction Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.8 Proposed Scene Range/Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8.1 Overlapped Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8.2 Successive Interference Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.8.3 Joint Processing Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.8.4 Range/Depth Map Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.9 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.9.1 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.9.2 One Wall Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.9.3 Two Walls Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.9.4 A Room with Two Pillars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.9.5 Conference Room Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vi



CHAPTER Page

4 RECONFIGURABLE INTELLIGENT SURFACE AIDED WIRELESS SENS-

ING FOR SCENE DEPTH ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 System and Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.2 Main Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.5.1 Key Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.5.2 RIS Sensing Codebook Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.5.3 Scene Depth Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.6.1 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.6.2 Results for A Living Room Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

APPENDIX

A PREVIOUSLY PUBLISHED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

vii



LIST OF TABLES

Table Page

2.1 The Adopted DeepMIMO Dataset Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 The Adopted Diffuse Scattering Parameters for Different Materials . . . . . . . . 102

3.2 The Estimation Error Results of the One Wall Scenario for Different Wall

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1 The Adopted RIS-Aided Sensing System Parameters . . . . . . . . . . . . . . . . . . . . . 138

viii



LIST OF FIGURES

Figure Page

1.1 The Transmitter-Receiver Communication Is Assisted by a Reconfigurable

Intelligent Surface (RIS). The RIS Is Interacting with the Incident Signal

Through an Interaction Matrix Ψ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 This Figure Illustrates the Proposed RIS Architecture Where M Active

Channel Sensors Are Randomly Distributed Over the RIS. These Active El-

ements Have Two Modes of Operation (I) a Channel Sensing Mode Where

It Is Connected to the Baseband and Is Used to Estimate the Channels and

(Ii) a Reflection Mode Where It Just Reflects the Incident Signal by Apply-

ing a Phase Shift. The Rest of the RIS Elements Are Passive Reflectors and

Are Not Connected to the Baseband. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 This Figure Plots the Achievable Rates Using the Proposed Compressive

Sensing Based Solution for Two Scenarios, Namely a mmWave 28GHz

Scenario and a Low-frequency 3.5GHz One. These Achievable Rates Are

Compared to the Optimal Rate R⋆ in (2.9) That Assumes Perfect Channel

Knowledge. This Figure Illustrates the Potential of the Proposed Solutions

That Approach the Upper Bound, While Requiring Only a Small Fraction

of the Total RIS Elements to Be Active. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 This Figure Summarizes the Key Idea of the Proposed Supervised Deep

Learning (SL) Solution. The Sampled Channel Vectors Are Considered as

Environment Descriptors as They Define, with Some Resolution, the Trans-

mitter/Receiver Locations and the Surrounding Environment. The Deep

Learning Model Learns How to Map the Observed Environment Descrip-

tors to the Optimal RIS Reflection Vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



Figure Page

2.4 The Adopted Neural Network Architecture Consists of Q Fully Connected

Layers. Each Layer Is Followed by a Non-linear ReLU Activation Layer.

The Deep Learning Model Learns How to Map the Observed Sampled

Channel Vectors to the Predicted Achievable Rate Using Every RIS In-

teraction Vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 This Figure Summarizes the Key Idea of the Proposed Deep Reinforcement

Learning (DRL) Solution. The Transmitter-receiver Communication Is As-

sisted by a Reconfigurable Intelligent Surface (RIS). The RIS Is Interacting

with the Incident Signal Through an Interaction Vector ψ. The Environ-

ment Is Represented by Various Scatterers, User Locations, Etc. The RIS

Acts as a Reinforcement Learning Agent by Acquiring a State and a Reward

from the Environment and Exerting an Action Back on the Environment. . . . 38

2.6 This Figure Illustrates the Adopted Ray-tracing Scenario Where an RIS Is

Reflecting the Signal Received from One Fixed Transmitter to a Receiver.

The Receiver Is Selected from an X-Y Grid of Candidate Locations. This

Ray-tracing Scenario Is Generated Using Remcom Wireless InSite [1], And

Is Publicly Available on the DeepMIMO Dataset [2]. . . . . . . . . . . . . . . . . . . . . . 43

x



Figure Page

2.7 This Figure Illustrates the Optimal and Predicted Index Map of the RIS Re-

flection Bemforming Codebook. Each Pixel Represents the Location of a

Candidate Receiver on the X-Y User Grid Under-study (Shown In Fig. 2.6).

The Pixel Color Represents the Index of the Optimal/Predicted Reflection

Beamforming Vector for the User at This Location. In This Scenario with

64×64 RIS, the Optimum Achievable Rate, R⋆, Averaged Across All Can-

didate Locations, Is 5.06 bps/Hz, While the Achievable Rate of the Pro-

posed Deep Learning Based Predicted Beams Is 4.74 bps/Hz. . . . . . . . . . . . . . 44

2.8 The Achievable Rate of Both Proposed CS and SL Based Reflection Beam-

forming Solutions Are Compared to the Upper Bound R⋆, for Different

Numbers of Active Receivers, M . The Figure Is Generated At fc = 28GHz,

M = 64× 64 Antennas, and L = 10 Paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.9 The Achievable Rate of Both Proposed CS and SL Based Reflection Beam-

forming Solutions Are Compared to the Upper Bound R⋆, for Different

Numbers of Active Receivers, M . The Figure Is Generated At fc = 3.5GHz,

M = 16× 16 Antennas, and L = 15 Paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



Figure Page

2.10 The Achievable Rates of Both the Proposed Deep Reinforcement Learning

(Drl) Solution and the Supervised Deep Learning (Sl) Solution Are Com-

pared to the Upper Bound, Using M = 4 Active Elements for A 3.5GHz

Scenario with L ∈ {1, 15} Channel Path(/s). The Simulation Considers

An RIS with A 40× 10 UPA Architecture. The Upper Bound, R⋆ in (2.9),

Assumes Perfect Channel Knowledge. The Figure Shows the Potential of

the Proposed DRL Solution in Approaching the Optimal Rate with Almost

No Beam Training Overhead and a Small Fraction of the RIS Elements to

Be Active. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.11 The Spectral Energy Efficiency of Both Proposed CS and SL Based Reflec-

tion Beamforming Solutions Are Compared to the Upper Bound R⋆, for

Different Numbers of Active Receivers, M . The Figure Is Generated at

fc = 28GHz, M = 64× 64 Antennas, and L = 10 Paths. . . . . . . . . . . . . . . . . . 54

2.12 The Achievable Rate of the Proposed SL Based Reflection Beamforming

Solution Is Compared to the Upper Bound R⋆ and the CS Beamforming

Solution, for Different Numbers of Active Receivers, M . The Adopted

Setup Considers an RIS with 64× 64 UPA, at 28GHz with L = 1 Channel

Path. This Figure Highlights the Promising Gain of the Proposed Super-

vised Deep Learning Solution That Approaches the Upper Bound Using

Only 8 Active Elements (Less than 1% of the Total Number of Antennas).

This Performance Requires Collecting a Dataset of Around 20-25 Thou-

sand Data Points (User Locations). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xii



Figure Page

2.13 The Achievable Rate of the Proposed SL Based Reflection Beamforming

Solution Is Compared to the Upper Bound R⋆ for Different Sizes of In-

telligent Surfaces, Namely with RIS Of 32 × 32 and 64 × 64 UPAs. The

Number of Active Elements (Channel Sensors) Equals M = 8. This Figure

is Generated at 28GHz with L = 1 Channel Path. . . . . . . . . . . . . . . . . . . . . . . . . 56

2.14 The Achievable Rate of the Proposed Supervised Deep Learning Based

Reflection Beamforming Solution Is Compared to the Upper Bound R⋆, for

Different Values of User Transmit Power, PT. The Figure is Generated for

an RIS with M = 64×64 UPA and M = 8 Active Elements, at 28GHz with

L = 1 Channel Path. This Figure Shows That the Proposed SL Solution Is

Capable of Learning and Approaching the Optimal Achievable Rate Even

with a Relatively Small Transmit Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.15 The Achievable Rate of the Proposed Sl Based Reflection Beamforming

Solution Is Compared to the Upper Bound R⋆, for Different Numbers of

Channel Paths, L. The Figure Is Generated for an RIS with 64 × 64 UPA

and M = 4 Active Elements, at 28GHz. As the Number of Channel Paths

Increases, the Achievable Rate Achieved by the Proposed SL Solution Con-

verges Slower to the Upper Bound. Hence, Using More Training Data Can

Help Learn Multi-path Signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xiii



Figure Page

2.16 The Achievable Rate of the Proposed SL Based Reflection Beamforming

Solution Is Compared to the Upper Bound R⋆. The Simulation Considers

an RIS with 64 × 64 UPA and M = 4 Active Channel Sensors, at 28GHz

with L = 1 Channel Path. The Figure Illustrates the Achievable Rate Gain

When the Beams Selected by the Deep Learning Model Are Further Re-

fined Through Beam Training Over kB Beams. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.17 The Achievable Rate of the Proposed DRL Based Approach Is Compared

to the Upper Bound R⋆. The Simulation Considers an RIS with 40 × 10

UPA, M = 4 Active Elements, and L = 15 Channel Paths, at 3.5GHz.

The Figure Illustrates the Achievable Rate Gain When the Beams Selected

by the Deep Reinforcement Learning Model Are Further Refined Through

Beam Training Over kB Beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1 The Considered Setup Where the mmWave Communication System, De-

ployed at the AR/VR Device, Is Jointly Leveraged for Sensing and Depth

Map Construction. This Figure Is Generated Using Blender [3] with 3D

Models Downloaded from [4–7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 A Block Diagram of the Communication-Constrained Sensing Model Is

Illustrated. The Sensing Framework, Π, Consists of (a) the Beam Code-

book Design P and (b) the Post-Processing Design g (.,P), to Estimate

the Scene Depth Map D̂. The Upper Path Represents the Transmitter Path,

While the Lower Path Represents the Receiver Path. . . . . . . . . . . . . . . . . . . . . . 71

xiv



Figure Page

3.3 This Figure Shows the Conventional Single Target Range Estimation Prob-

lem, Where One Target Exists in Free Space in Line-of-sight (LoS) with

the AR/VR Device. This Device Steers Perfectly One Beam Towards That

Target to Estimate the Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 The Figure Summarizes the Proposed Sensing Framework for mmWave

MIMO Based Depth Estimation, Which Involves Sensing the Scene Us-

ing the Designed Beamforming Codebook P and Applying the Proposed

Post-Processing Operations g(.;P) to The Receive Signal to Construct the

Estimated Depth Map D̂map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 (a) The Intersections Between the Classical Codebook Beam Directions

and the x-z Depth Plane Form the Parabolic Shape of the Classical Code-

book Grid. (b) The Mismatch Between the Classical Codebook Grid of a

16× 16 UPA and the Desirable Rectangular Grid for a Depth Map Is Illus-

trated at a y = 13.32mm Depth Plane, for a Scene of 100◦ Field of View

and 16/9 Aspect Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6 The Multipath Estimation Challenge for Scene Range Estimation Is Illus-

trated. The Design Challenge Is How the Sensing Framework Can Detect

and Estimate the Range Through the Desired Channel Path (Path 1 in Blue)

and Avoid Making Faulty Estimation Because of the Other Undesired Paths

(Paths 2-4) in the Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xv



Figure Page

3.7 The Comparison Between (a) the Classical (on the Left Side) and the Pro-

posed (on the Right Side) Beam Codebook Design Is Demonstrated for a

Scene of 100◦ Field of View and 16/9 Aspect Ratio, Using 16× 16 UPAs.

The Proposed Codebook Eliminates Any Grid Mismatch Distortion. The

Top Figures Are the 3D Codebook Radiation Patterns, While the Bottom

Figures Are the 2D Codebook Grids at a Plane Within 13.32mm Depth. . . . . 87

3.8 Normalized Power Radiation Pattern Comparison Between (a) the Case

Without the Sidelobe Reduction (SLR) Approach, (b) the Case with the

SLR Approach Where δH = δV = 3, and (c) Where δH = δV = 4.

As Shown, Increasing the Values of the Control Variables (the Deltas) In-

creases the Gap Between the Mainlobe Level and the Sidelobes Levels. The

Top Figures Are the 3D Views of the Patterns While the Bottom Figures Are

the Top Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.9 Normalized Power Radiation Pattern Comparison Between the Case with

No Phase Quantization and the Case with 2-bit Phase Quantization, for Two

Scenarios: Without or with the Sidelobe Reduction (SLR) Approach Where

δH = δV = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.10 The Operation of the Successive Interference Cancellation (SIC) Algorithm

Is Illustrated. The Delay Position of the Maximum Cross-correlation Is

First Detected. The SIC Algorithm Then Encodes a Signal Shifted at This

Delay Position and Subtracted It from the Receive Signal. After That, the

Algorithm Repeats Itself until All the Local Maxima above the Threshold

Value Are Detected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xvi



Figure Page

3.11 This Figure Illustrates the Basic Operation of the Joint Processing (JP) So-

lution for Overlapped Beams. The JP Solution Sweeps from Left to Right,

Then from Top to Bottom. The JP Solution Decides on Which Path to

Choose from the Current Candidate Set by a Simple Comparison with the

Sets of the Surrounding Grid Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.12 This Figure Demonstrates the Adopted Simulation Framework for Scene

Depth Estimation. The Framework Consists of Designing the Indoor Setup,

Generating the Ground Truth Range/Depth Maps, and Constructing the Es-

timated Maps for Performance Evaluation. For More Complex Setups, De-

signing the Indoor Scenarios Jointly in Wireless InSite and Blender Can Be

More Effective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.13 The Maps for the One Wall Scenario Are Depicted for a Separation Dis-

tance of 7 Meters from the AR/VR Device with 16 × 16 UPAs. The De-

picted Maps Are the Estimated Maps (at the Top), Ground Truth Maps (at

the Bottom), Range Maps (on the Left Side), and 1080p Depth Maps (on

the Right Side). Comparing (a) with (b), the Range Map Estimation Error:

MAE = 0.098m. Comparing (c) with (d), the Depth Map Estimation Error:

MAE = 0.12m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.14 The Depth Maps for the One Wall Scenario Are Depicted for Different An-

tenna Configurations and Codebook Resolutions, for a Separation Distance

of 7 Meters. Figures (a), (b), and (c) Illustrate the Estimated 1080p Maps

for 8 × 8, 16 × 8, and 16 × 16 UPAs. Figures (d) Illustrate the Ground

Truth Maps. The Top Maps Are with No Codebook Oversampling While

the Bottom Maps Are with Codebook Oversampling Factors of Two. . . . . . . 104

xvii



Figure Page

3.15 The 1080p Depth Maps for the One Wall Scenario Are Depicted at Differ-

ent Antenna Configurations, for a Separation Distance of 7 Meters. The

Same Number of Antenna Elements Is Used (24 Elements) and Codebook

Oversampling Factors of Four Are Employed. Figures (a), (b), and (c) Il-

lustrate the Estimated Maps for 12× 2, 8× 3, and 6× 4 UPAs. Figure (d)

Illustrates the Ground Truth Depth Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.16 The 1080p Depth Maps for the One Wall Scenario at 7m Separation Dis-

tance Are Estimated for Two Cases of the RF Phase Shifters at the AR/VR

Device: (a) Continuous Phase Shifts and (b) 2-bit Quantized Phase Shifts.

16 × 16 UPA Is Employed with Codebook Oversampling Factors of Two.

Figure (c) Illustrates the Ground Truth Depth Map. . . . . . . . . . . . . . . . . . . . . . . . 106

3.17 For the One Wall Scenario, the Error Performance of the Proposed mmWave

MIMO Based Depth Estimation Solution Is Evaluated under Different Er-

ror Metrics in (a) and Is Evaluated for Different Preamble Sequence Lengths

in (b). The Wall Is 7 Meters Away from theAR/VR Device with 16 × 16

UPAs. The Figures Show the Robustness of the Developed Approach under

a Relatively Low SNR Regime. Note That the Displayed Transmit Power

Range in (b) Corresponds to an Average SNR Range of −20.7dB to −0.7dB.107

3.18 The Error Performance of the Proposed mmWave MIMO Based Depth Es-

timation Solution Is Evaluated Across Different Separation Distances for

the One Wall Scenario. The Estimation Error Starts from ≈ 1.5m at a 1m

Distance and Reaches Around 10cm at a 7m Distance. . . . . . . . . . . . . . . . . . . . . 108

3.19 The Adopted Two Walls Scenario Is Illustrated. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xviii



Figure Page

3.20 The Maps for the Two Walls Scenario Are Depicted. The AR/VR Device

Is Employed with 16 × 16 UPAs. The Depicted Maps Are the Estimated

Maps (at the Top), Ground Truth Maps (at the Bottom), Range Maps (on

the Left Side), and 1080p Depth Maps (on the Right Side). Comparing (a)

with (b), the Range Map Estimation Error: MAE = 0.052m. Comparing

(c) with (d), the Depth Map Estimation Error: MAE= 0.046m. . . . . . . . . . . . . 110

3.21 Figure (a) Illustrates the Bird View of the Room with Two Pillars. Figure

(b) Shows the Scene from the AR/VR Device Position, Centered at the

Front Door. The 5m×5m Room Consists of a Concrete Floor Plan with

Two Wood Pillars in the Middle of the Room. The Wood Pillars Are at 2

Meters Distance from the AR/VR Device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.22 The Maps for the Room with Two Pillars Are Depicted. 16× 16 UPAs Are

Employed with Codebook Oversampling Factors of Four. The Depicted

Maps Are the Estimated Maps (at the Top), Ground Truth Maps (at the

Bottom), Range Maps (on the Left Side), and 1080p Depth Maps (on the

Right Side). Comparing (a) with (b), the Range Map Estimation Error:

MAE = 0.139m. Comparing (c) with (d), the Depth Map Estimation Error:

MAE = 0.126m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.23 For the Room with Two Pillars, the Error Performance of the Proposed

mmWave MIMO Based Depth Estimation Is Evaluated for Different Error

Metrics. 16 × 16 UPAs Are Employed with a Codebook Oversampling

Factors of Four in Both Dimensions. This Figure Shows the Robustness of

the Proposed mmWave MIMO Based Depth Estimation under a Relatively

Low SNR Regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xix



Figure Page

3.24 (a) the Bird View of the Conference Room Scenario; (b) and (c) the Scenes

under Study. The 10m×10m Indoor Space Contain a 6m×6m Conference

Room in Glass. The Indoor Space Walls Are Made from Layered Dry-

wall, the Ceiling Is Made from Ceiling Board and the Floor Is Made from

Floorboard. The Conference Room Chairs and Tables Are Made from Wood.114

3.25 For the Conference Room Scenario, the Proposed mmWave MIMO Based

Depth Estimation Is Compared with the RGB Based Depth Estimation in

[8]. 16 × 16 UPAs Are Employed with Codebook Oversampling Factors

of Four. The Depicted Maps Are the Maps of the First Scene with Lights

On/Off (the Top Two Rows) and the Second Scene (the Bottom Row). (a)

the Scenes under Study; (b) the Estimated Maps from Monocular RGB Im-

ages; (c) the Estimated Maps from Our Proposed Solution; (d) the Ground

Truth Depth Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.1 The RIS-Aided Wireless Sensing System Is Shown. The Sensing Signals

Are Transmitted to the RIS Through a Feeding Antenna. The RIS Then Re-

flects the Incident Signals to the Environment. The Backscattered/Reflected

Signals Are Then Reflected by the RIS Back to the Sensing System, Using

a Sensing Codebook, for Depth Perception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xx



Figure Page

4.2 For the Living Room Scenario, the Proposed RIS-Based Depth Estimation

Solution Is Compared Against Two RGB-Based Depth Estimation Solu-

tions [8, 9] and the Ground Truth Depth Map. The RIS Is Equipped with

30 × 30 or 40 × 40 UPA Elements and Codebook Oversampling Factors

of Four Are Employed. (a) The Scene under Study; (b, c) The Estimated

Maps from Monocular RGB Images Using RGB-Based Solutions [8, 9];

(d) The Ground Truth Depth Map; (e, f) The Estimated Depth Maps Using

Our Proposed RIS-based Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xxi



Chapter 1

INTRODUCTION

Wireless communications can be arguably considered as one of the main techno-

logical revolutions. With the massive number of devices that are wirelessly connected

at all times, it is hard not to perceive the impact of wireless communications on the

contemporary society. In the recent period, reconfigurable intelligent surfaces (RISs)

have been envisioned as integral technologies for next-generation wireless communi-

cation and sensing systems. From a conceptual design perspective, by stacking a huge

number of sensing or radiating elements, the RIS ideally aims to effectuate a contin-

uous electromagnetically active surface. As depicted in Fig. 1.1, these RIS elements

are expected to interact in a smart way with the incident signals in order to enhance

the spectral efficiency and coverage of wireless systems [10, 11]. These surfaces could

also be developed with energy-efficient implementations, e.g., using nearly-passive el-

ements with reconfigurable parameters [12–14], which deems them more promising

for next-generation wireless systems.

Similar to wireless communications, radar systems are deployed worldwide, with

a variety of applications including air traffic control, geophysical monitoring, weather

observation as well as surveillance for defense and security. Recently, a special focus

has been assigned on radar systems operating in the millimeter-wave (mmWave) fre-

quency band to provide high-accuracy environment details in a short range. mmWave

radar systems that are used in short-range applications are commonly referred to as

mmWave sensing systems. mmWave sensing is widely adopted in various mobility

and imaging applications, e.g. autonomous vehicle applications. The goal of mmWave

sensing is to acquire information about the surrounding environment using mmWave
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Figure 1.1: The Transmitter-Receiver Communication Is Assisted by a Reconfigurable In-
telligent Surface (RIS). The RIS Is Interacting with the Incident Signal Through an Inter-
action Matrix Ψ.

radar sensors.

Conventional radar and wireless communication systems operate separately at pre-

defined frequency bands to avoid interference. Given the rapid growth of connected

devices and services, the frequency spectrum is becoming increasingly congested,

with almost all wireless services having a need for a greater access to it. As a result,

spectrum authority entities are seeking opportunities to reuse some bands of the

frequency spectrum currently restricted to other applications. The radar bands are

among the best candidate to be shared with various communication systems. For

these reasons, joint sensing and communication systems, sharing the same spectral

band, have captured a great deal of attention in recent years.

Augmented and virtual reality (AR/VR) systems are rapidly becoming key com-

ponents of the wireless landscape. Enabling immersive wireless AR/VR experience,

however, requires high resolution and accurate scene depth perception. This can

potentially allow the wireless AR/VR users to move freely within their indoor or

outdoor environment. Current scene depth perception approaches rely mainly on
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optical sensing for constructing the depth maps. Previous depth map construction

approaches focused on leveraging: (i) monocular images using RGB cameras [8], (ii)

passive/active stereo images using either RGB-D depth cameras [15, 16] or infrared

(IR) stereo cameras [17, 18], and (iii) gated images using active gated imaging cam-

eras [19, 20]. The performance of these depth cameras, however, has clear limitations

in several scenarios in AR/VR applications, which motivates the need for RIS-aided

wireless sensing systems in constructing accurate scene depth perception.

Enabling the aforementioned systems in practice suffers from some critical chal-

lenges. In the upcoming sections, we discuss the key research challenges in (a) RIS

aided wireless communication systems and (b) RIS aided wireless sensing systems

for scene depth estimation. We then introduce our contributions to addressing these

research challenges.

1.1 RIS Aided Communication Systems

In reconfigurable intelligent surfaces aided communication systems, prior work

focused on designing the RIS interaction matrices and evaluating their spectral ef-

ficiencies and coverage gains while assuming the availability of the global channel

knowledge. For example, all the prior work in [13, 21–23] assumed that the knowl-

edge about the channels between the RIS and the transmitters/receivers is available

at the base station, either perfectly or with some error. Obtaining this channel knowl-

edge, however, is one of the most crucial challenges for RIS systems because of the

massive number of RIS elements and the hardware constraints on these elements.

More specifically, if all RIS elements are passive, channel estimation or beam training

solutions yields huge-and possible prohibitive, training overhead, as the number of

pilots (or codebook beams) in this case will be in the order of the number of RIS

elements. To reduce this training overhead, the RIS is required to employ a complex
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hardware architecture that connects all the antenna elements to a baseband process-

ing unit either through a fully-digital or hybrid analog/digital architectures [24, 25].

This approach, though, can lead to high hardware complexity and power consumption

given the massive number of RIS elements.

This challenge motivates the need to develop an interaction design framework for

the RIS systems with no prior challenge knowledge. This interaction design framework

needs to approach the upper bound on the achievable rate — which assumes perfect

channel knowledge — with low-training overhead and with energy-efficient hardware.

1.2 RIS Aided Sensing Systems for Scene Depth Estimation

Current scene depth estimation approaches rely heavily on using optical sens-

ing systems. While optical sensors can generally provide good accuracy, they suffer

from critical limitations. These limitations stem from the fundamental properties

of the way visible light propagates and interacts with the elements of an environ-

ment. Adopting the depth map construction approaches in [8, 15–20, 26] have the

following important complications. (i) First, the accuracy of optical sensors normally

degrades in scenarios with unfavorable light conditions, in the presence of shiny, dark,

or transparent objects/surfaces, and in the presence of non-line-of-sight (NLoS) ob-

jects/surfaces. While there are some attempts to solve some of these challenges using

IR stereo cameras [17] or excessive processing of the RGB-D images [27], there is

no complete and general solution yet to this problem. (ii) Second, optical sensors

suffer from key privacy concerns and depth/velocity estimation ambiguity for distant

objects/surfaces. For example, the depths for distant surfaces can not be resolved by

the algorithms in [17, 27]. (iii) The field of view coverage is also a key challenge. The

depth map coverage is limited by the camera field of view. The camera field of view

is constrained by the camera lens and by the light sensor. The field of view in wire-
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less sensing systems, however, can be constrained by the antenna radiation pattern.

By comparison, the typical field of view in mmWave wireless sensing systems can

be larger than the typical optical camera field of view. (iv) In addition, for AR/VR

systems, another key challenge is the additional bill of materials (BOM) cost incurred

from integrating the IR stereo camera systems into the wireless AR/VR device archi-

tectures. By contrast, the existing mmWave systems in the wireless AR/VR device

architectures incur no additional BOM cost when leveraged for depth map estima-

tion purposes jointly with the primary purpose of wireless communications. These

challenges motivate the research for other technologies to complement or replace the

optical sensors in accurately estimating the scene depth of the surrounding environ-

ment.

1.3 Overview of Contributions

The key challenges discussed in Sections 1.1 and 1.2 need to be addressed in this

dissertation. With this motivation, the research problems addressed in this disserta-

tion serves as a good start to resolve these challenges. The primary contributions of

this dissertation can be summarized as follows.

1. We propose efficient RIS interaction design approaches for RIS-aided wireless

communication systems with negligible training overhead. First, we propose

a new RIS architecture, where all the elements are passive except for a few

randomly distributed active channel sensors. Only those few active sensors are

connected to the baseband of the RIS controller to enable the efficient design

of the RIS interaction matrices. Using this new architecture, we develop three

solutions that design the RIS interaction matrices: (a) compressive sensing

based solution, (b) supervised deep learning based solution, and (c) deep rein-

forcement learning based solution. Simulation results show that the developed

5



solutions can all approach the optimal upper bound, which assumes perfect

channel knowledge, when only a few RIS elements are active and with almost

no training overhead [28–30].

2. We propose a mmWave MIMO based scene depth estimation framework for

wireless AR/VR systems, under the constraints imposed by mmWave commu-

nication hardware and frame structure. We define the characteristics of the

desirable mmWave sensing beamforming codebook for efficient depth map con-

struction and develop a depth-map suitable sensing beamforming codebook that

meets these characteristics. Given the designed beamforming codebook, we pro-

pose a signal processing approach for jointly processing the signals received by

the sensing beams and building accurate depth maps. Simulation results show

the promise of mmWave MIMO sensing in becoming a viable depth estimation

solution for communication-constrained sensing systems, either as a standalone

approach or as an integrated approach with RGB-D depth cameras [31]. This

contribution point represents an important step towards developing RIS-aided

wireless sensing systems for scene depth estimation.

3. We propose a sensing framework for scene depth estimation using RIS aided

wireless sensing systems. This framework comprises two key elements, namely

the RIS interaction codebook design and the scene depth estimation solution.

We propose a novel RIS interaction codebook design capable of creating a sens-

ing grid of reflected beams that meets the desirable characteristics of efficient

scene depth map construction. Given the designed RIS interaction codebook, we

develop a post-processing solution on the receive signals to build high-resolution

accurate depth maps. Simulation results highlight the potential of leveraging

RIS aided mmWave sensing in achieving accurate depth perception of the sur-
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rounding environment.

1.4 Notations

We use the following notation throughout this dissertation: A is a matrix, a is a

vector, a is a scalar, A is a set of scalars, and A is a set of vectors. ∥a∥p is the p-norm

of a. |A| is the determinant of A, ∥A∥F is its Frobenius norm, whereas AT , AH , A∗,

A−1, A† are its transpose, Hermitian (conjugate transpose), conjugate, inverse, and

pseudo-inverse respectively. [A]r,c is the element in the rth row and cth column of the

matrixA. [A]r,: and [A]:,c are the r
th row and cth column of the matrixA respectively.

[a]k is the kth element of the vector a. diag(a) is a diagonal matrix with the entries of

a on its diagonal. I is the identity matrix. 1N and 0N are the N -dimensional all-ones

and all-zeros vector, respectively. A⊗B is the Kronecker product of A and B, A◦B

is their Khatri-Rao product, andA⊙B is their Hadamard product. vec(A) is a vector

whose elements are the stacked columns of matrix A. N (m,R) is a complex-valued

Gaussian random vector with mean m and covariance R. |A| is the cardinality of

the set A. E [·] is used to denote expectation. Re(z), Im(z), and arg(z) are the real

part, the imaginary part, and the phase angle of the complex number z. f(t) ∗ g(t)

is the continuous-time convolution of two signals f(t) and g(t). FFTm(·) is the 1D

FFT operation on the input matrix along its column dimension of index m.

1.5 Organization

The rest of the dissertation is organized as follows. In Chapter 2, we first con-

sider the challenge of adopting reconfigurable intelligent surfaces to assist the wireless

communication systems with no prior channel knowledge, and we propose efficient

refelection beamforming design approaches for such challenge. Then, we consider

wireless AR/VR systems in Chapter 3 and we propose a communication-constrained
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mmWave MIMO based wireless sensing framework for scene depth estimation. In

Chapter 4, we then investigate RIS aided wireless sensing systems for scene depth

estimation. Last, concluding remarks and future work are presented in Chapter 5.
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Chapter 2

INTERACTION DESIGN FOR RECONFIGURABLE INTELLIGENT SURFACES

2.1 Abstract

Employing Reconfigurable Intelligent Surfaces (RISs) is a promising solution for

improving the coverage and rate of future wireless systems. These surfaces comprise

massive numbers of nearly-passive elements that interact with the incident signals,

for example by reflecting them, in a smart way that improves the wireless system

performance. Prior work focused on the design of the RIS reflection matrices assuming

full channel knowledge. Estimating these channels at the RIS, however, is a key

challenging problem. With the massive number of RIS elements, channel estimation

or reflection beam training will be associated with (i) huge training overhead if all

the RIS elements are passive (not connected to a baseband) or with (ii) prohibitive

hardware complexity and power consumption if all the elements are connected to the

baseband through a fully-digital or hybrid analog/digital architecture. This chapter

1 proposes efficient solutions for these problems by leveraging tools from compressive

sensing and deep learning. First, a novel RIS architecture based on sparse channel

sensors is proposed. In this architecture, all the RIS elements are passive except for

a few elements that are active (connected to the baseband). We then develop three

solutions that design the RIS reflection matrices with negligible training overhead.

In the first approach, we leverage compressive sensing tools to construct the channels

1This chapter is based on the work published in the journal paper: A. Taha, M. Alrabeiah and A. Alkha-
teeb, ”Enabling Large Intelligent Surfaces With Compressive Sensing and Deep Learning,” in IEEE Access,
vol. 9, pp. 44304-44321, 2021. This work was supervised by Prof. Ahmed Alkhateeb. Dr. Muhammad
Alrabeiah provided important ideas for the large intelligent surface aided system design that greatly improved
the work.
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at all the RIS elements from the channels seen only at the active elements. In the

second approach, we develop a deep-learning based solution where the RIS learns how

to interact with the incident signal given the channels at the active elements, which

represent the state of the environment and transmitter/receiver locations. We show

that the achievable rates of the proposed solutions approach the upper bound, which

assumes perfect channel knowledge, with negligible training overhead and with only

a few active elements, making them promising for future RIS systems.

2.2 Introduction

reconfigurable intelligent surfaces (RISs) have been envisioned as integral con-

stituents of beyond-5G wireless systems [10–14, 21–23, 32–39]. From a conceptual

design perspective, by stacking a huge number of sensing or radiating elements, the

RIS ideally aims to effectuate a continuous electromagnetically active surface. These

RIS elements are expected to interact in a smart way with the incident signals in or-

der to enhance the spectral efficiency and coverage of wireless systems [10, 11]. What

adds to the appeal of such surfaces is that their function could be performed with

energy-efficient implementations, e.g., using nearly-passive elements such as analog

phase shifters [12–14]. Prior work focused on designing the RIS interaction matrices

and evaluating their spectral efficiencies and coverage gains while assuming the avail-

ability of global channel knowledge. But how can these extremely large-dimensional

channels be estimated if the RIS is implemented using only reflecting elements? Ob-

taining this channel knowledge may require huge—and possibly prohibitive—training

overhead, which represents the main challenge for the RIS system operation. To over-

come that, this work proposes a novel RIS hardware architecture along with three

solutions based on compressive sensing and deep learning. These solutions utilize the

novel architecture of the surface and design the interaction matrix with very negligible
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training overhead.

2.2.1 Prior Work

Under various names such as large intelligent surfaces, intelligent reflecting sur-

faces, and smart reflect-arrays, RIS-assisted wireless communications have been draw-

ing increasing interest in recent years. From an implementation perspective, RIS can

be built using nearly-passive elements with reconfigurable parameters [13]. Vari-

ous RIS designs have been proposed in the literature with more prominence given to

software-defined metamaterials [32, 33] and conventional reflect-arrays [12, 14] among

others. For all those designs, different signal processing solutions have been proposed

for optimizing the design of the RIS interaction matrices. An RIS-assisted down-

link multiuser setup was considered in [13] with single-antenna users. computational

low-complexity algorithms were then proposed for optimizing the design of the RIS

interaction matrices, using quantized phase shifters/reflectors for modeling the RIS

elements. In [21], an RIS-assisted downlink scenario was considered, where both the

RIS interaction matrix and the base station precoder matrix were designed, assum-

ing the case where a line-of-sight (LOS) may exist between the base station and the

RIS. In [22], a new transmission strategy combining RIS with index modulation was

proposed to improve the system spectral efficiency.

In terms of the overall system performance, an uplink multiuser scenario was

considered in [34] and the data rates were formulated for the case where channel es-

timation errors exist in the available channel knowledge. A downlink RIS-assisted

multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA)

framework is proposed in [23] for achieving higher system spectrum efficiency gains.

The RIS can be leveraged for wireless localization purposes as well; in [39], an RIS-

assisted downlink millimeter wave (mmWave) positioning problem was analyzed from
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the Fisher Information perspective. Based on this analysis, an algorithm was devel-

oped for improving the positioning quality.

Deep learning solutions have been proposed in the literature for addressing design

challenges in mmWave and massive MIMO systems [40–42]. In [40], a deep learning

based beam prediction solution was proposed for distributed mmWave MIMO sys-

tems to serve highly mobile users with negligible training overhead and high data

rate gains, compared to coordinated beamforming strategies that do not leverage

machine learning. In [41], a deep learning based blockage prediction solution was

proposed to address the reliability and latency challenges of sudden blockage of the

line-of-sight link in mmWave MIMO systems. A channel covariance prediction solu-

tion using generative adversarial networks was proposed in [42] for mmWave Massive

MIMO systems to reduce the training overhead associated with acquiring the channel

knowledge.

The Critical Challenge: All the prior work in [13, 14, 21–23, 34] assumed that

the knowledge about the channels between the RIS and the transmitters/receivers is

available at the base station, either perfectly or with some error. Obtaining this chan-

nel knowledge, however, is one of the most crucial challenges for RIS systems because

of the massive number of antennas (RIS elements) and the hardware constraints on

these elements. More specifically, if the RIS elements are implemented using phase

shifters that just reflect the incident signals, then there are two main approaches for

designing the RIS reflection matrix. The first approach is to estimate the RIS-assisted

channels at the transmitter/receiver by training all the RIS elements, normally one by

one, and then use the estimated channels to design the reflection matrix. This yields

a massive channel training overhead because of the very large number of elements at

the RIS. Instead of the explicit channel estimation, the RIS reflection matrix can be

selected from quantized codebooks via online beam/reflection training. This is similar
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to the common beam training techniques in mmWave systems that employ similar

phase shifter architectures [43, 44]. To sufficiently quantize the space, however, the

size of the reflection codebooks needs normally to be in the order of the number of

antennas, which leads to huge training overhead. To avoid this training overhead,

a trivial solution is to employ fully-digital or hybrid analog/digital architectures at

the RIS, where every antenna element is connected somehow to the baseband where

channel estimation strategies can be used to obtain the channels [24, 25, 45]. This

solution, however, leads to high hardware complexity and power consumption because

of the massive number of RIS elements.

2.2.2 Contribution

In this chapter, we consider an RIS-assisted wireless communication system and

propose a novel RIS architecture as well as compressive sensing and deep learning

based solutions that design the RIS reflection matrix with negligible training overhead.

More specifically, the contributions of this chapter can be summarized as follows.

• Novel RIS hardware architecture: We introduce a new RIS architecture where

all the elements are passive except a few randomly distributed active channel

sensors. Only those few active sensors are connected to the baseband of the

RIS controller and are used to enable the efficient design of the RIS reflection

matrices with low training overhead.

• Compressive sensing based RIS reflection matrix design: Given the new RIS

architecture with randomly distributed active elements, we develop a compres-

sive sensing based solution to recover the full channels between the RIS and

the transmitters/receivers from the sampled channels sensed at the few active

elements. Using the constructed channels, we then design the RIS reflection
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matrices with no training overhead. We show that the proposed solution can

efficiently design the RIS reflection matrices when only a small fraction of the

RIS elements are active, yielding a promising solution for RIS systems from

both energy efficiency and training overhead perspectives.

• Deep learning based RIS reflection matrix design: By leveraging deep learning

tools, we propose three solutions that learns the direct mapping from the sam-

pled channels seen at the active RIS elements and the optimal RIS reflection

matrices that maximize the system achievable rate. Essentially, the proposed

approaches teach the RIS system how to interact with the incident signal given

the knowledge of the sampled channel vectors, that we call environment descrip-

tors. The RIS learns that when it observes these environment descriptors, it

should reflect the incident signal using this reflection matrix. Different from the

compressive sensing solution, the deep learning approaches leverage the prior

observations at the RIS and does not require any knowledge of the array struc-

ture. It is worth mentioning that a conference version of this work is presented

in [29].

• A novel deep reinforcement learning (DRL) based solution is proposed for pre-

dicting the best RIS interaction, where the RIS learns how to reflect the incident

signals in the best possible way by adjusting its reflection matrix. This solution

eliminates the need for collecting large training dataset, hence requires almost

no beam training overhead. The proposed framework is directed more towards

standalone RIS operation, where the RIS architecture is not controlled/assisted

by any base station, but rather operating on its own while interacting with the

environment, and without any initial training phase requirement. A conference

version of this work is presented in [30].

14



The proposed solutions are extensively evaluated using the accurate ray-tracing based

DeepMIMO dataset [2]. The results show that the developed compressive sensing and

deep learning solutions can all approach the optimal upper bound, which assumes

perfect channel knowledge, when only a few RIS elements are active and with almost

no training overhead.

The rest of the chapter is organized as follows. Section 2.3 presents the system and

channel models adopted. Section 2.4 presents the formal description of the main prob-

lem — the design of the RIS interaction matrix. Section 2.5 proposes and discusses

the novel sparse RIS architecture. Sections 2.6, 2.7, and 2.8 present, respectively,

the proposed compressive sensing, supervised deep learning, and deep reinforcement

learning solutions to the problem of designing the interaction matrix. Section 2.9

puts the proposed architecture and solutions to test by investigating the performance

of each solution and the effect of various design parameters. Finally, Section 2.10

concludes this chapter with a summary of the findings and a few concluding remarks.

2.3 System and Channel Models

The adopted system and channel models for reconfigurable intelligent surfaces

(RISs) are described in this section.

2.3.1 System Model

Consider a communication system where a transmitter is communicating with

a receiver, and this communication is aided by a reconfigurable intelligent surface

(RIS), as depicted in Fig. 1.1. These transmitters/receivers can represent either base

stations or user equipment. As shown in Fig. 1.1, the RIS is interacting with the

incident signal through an interaction matrix Ψ. Let the RIS be equipped with M

reconfigurable elements and assume that both the transmitter and receiver have a
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single-antenna. It is worth noting here that such an assumption is only adopted for

simplicity of exposition and the proposed solutions and the results in this chapter can

be readily extended to multi-antenna transceivers. To put that description in formal

terms, we adopt an OFDM-based system with K subcarriers. We define hTR,k ∈ C

as the direct channel between the transmitter and receiver at the kth subcarrier,

hT,k,hR,k ∈ CM×1 as the M × 1 uplink channels from the transmitter and receiver to

the RIS at the kth subcarrier, and by reciprocity, hT
T,k,h

T
R,k as the downlink channels.

The received signal at the receiver side could be expressed as

yk = hT
R,kΨkhT,ksk︸ ︷︷ ︸

RIS-assisted link

+ hTR,ksk︸ ︷︷ ︸
Direct link

+nk, (2.1)

where the matrix Ψk ∈ CM×M , that we call the RIS interaction matrix, characterizes

the interaction of the RIS with the incident (impinging) signal from the transmitter.

sk represents the transmitted signal over the kth subcarrier, and satisfies the per-

subcarrier power constraint E[|sk|2] = PT

K
, with PT being the total transmit power.

The receive noise is denoted by nk ∼ NC(0, σ
2
n).

The overall objective of the RIS is then to interact with the incident signal (via

adjustingΨk) in a way that optimizes a certain performance metric such as the system

achievable rate or the network coverage. To simplify the design and analysis of the

algorithms in this work, we will focus on the case where the direct link does not exist.

This represents the scenarios where the direct link is either blocked or has negligible

receive power compared to that received through the RIS-assisted link. With this

assumption, the receive signal can be expressed as

yk = hT
R,kΨkhT,ksk + nk, (2.2)

(a)
= (hR,k ⊙ hT,k)

T ψksk + nk, (2.3)

where (a) follows from the diagonal structure of the interaction matrix Ψk, whose

diagonal entries could be stacked in a vector ψk ∈ CM×1 such that Ψk = diag (ψk).
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This diagonal structure results from the RIS operation where every element m,m ∈

{1, 2, . . . ,M}, reflects only its incident signal after multiplying it with an interaction

factor [ψk]m. Now, we make two important notes on these interaction vectors. First,

while the interaction factors, [ψk]m ,∀m, k, can generally have different magnitudes

(amplifying/attenuation gains), it is more practical to assume that the RIS elements

are implemented using only phase shifters. Second, since the implementation of the

phase shifters is done in the analog domain (using RF circuits), the same phase shift

will be applied to the signals on all subcarriers, i.e., ψk = ψ,∀k. Accounting for

these practical considerations, we assume that every interaction factor is just a phase

shifter, i.e., [ψ]m = ejϕm . Further, we will call the interaction vector ψ in this case

the reflection beamforming vector.

2.3.2 Channel Model

In this work, we adopt a wideband geometric channel model for the channels

hT,k,hR,k between the transmitter/receiver and the RIS [29, 30, 40]. Consider an

uplink transmitter-RIS channel, hT,k ∈ CM×1, consisting of L clusters, each of which

(i.e., ℓth cluster) contributes a single ray with a time delay τℓ ∈ R; azimuth/elevation

angles of arrival, ϕℓ ∈ [0, 2π), θℓ ∈ [0, π); an uplink path loss ρT; and a complex

coefficient αℓ ∈ C. Let p (τ) denotes the pulse shaping function for TS-spaced signaling

evaluated at τ seconds. Let the array response vector of the RIS at the angles of

arrival, ϕℓ, θℓ, be defined as a(ϕℓ, θℓ) ∈ CM×1. The delay-d channel vector, hT,d ∈

CM×1, between the transmitter and the RIS can then be formulated as

hT,d =

√
M

ρT

L∑
ℓ=1

αℓ p(dTS − τℓ) a (θℓ, ϕℓ) , (2.4)

Given this delay-d channel, the channel vector at subcarrier k, hT,k, can be defined
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in the frequency domain as

hT,k =
D−1∑
d=0

hT,d e−j 2πk
K

d. (2.5)

where D is the channel tap length. The downlink RIS-receiver channel hR,k can

be defined similarly. The channel vectors, {hT,k}Kk=1 and {hR,k}Kk=1, are assumed

constant within the period of one coherence time, TC , which mainly depends on the

dynamics of the environment and the user mobility. It is worth noting that the

number of channel paths L depends highly on the operational frequency band and

the propagation environment. For example, mmWave channels normally consist of a

few channel paths, ∼3-5 paths, [46–48], while sub-6 GHz signal propagation generally

experiences rich scattering resulting in channels with more multi-path components.

2.4 Problem Formulation

Given the system and channel models in Section 2.3, our objective is to design

the RIS interaction vector (reflection beamforming vector), ψ ∈ CM×1, in order to

maximize the achievable rate at the receiver, which can be formulated as

R =
1

K

K∑
k=1

log2

(
1 + SNR

∣∣hT
R,kΨhT,k

∣∣2) , (2.6)

=
1

K

K∑
k=1

log2

(
1 + SNR

∣∣∣(hT,k ⊙ hR,k)
T ψ
∣∣∣2) , (2.7)

where SNR = PT/(Kσ2
n) represents the signal-to-noise ratio. As mentioned in Sec-

tion 2.3.1, every element in the RIS reflection beamforming vector, ψ, is implemented

using an RF phase shifter. These phase shifters, however, normally have a quantized

set of angles and can not shift the signal with any phase. To capture this con-

straint, we assume that the reflection beamforming vector ψ can only be picked from

a pre-defined codebook P . Every candidate reflection beamforming codeword in P

is assumed to be implemented using quantized phase shifters. With this assumption,
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our objective is then to find the optimal reflection beamforming vector ψ⋆ that solves

ψ⋆= argmax
ψ∈P

K∑
k=1

log2

(
1 + SNR

∣∣∣(hT,k ⊙ hR,k)
T ψ
∣∣∣2), (2.8)

to result in the optimal rate R⋆ defined as

R⋆= max
ψ∈P

1

K

K∑
k=1

log2

(
1 + SNR

∣∣∣(hT,k ⊙ hR,k)
T ψ
∣∣∣2). (2.9)

The optimization problem in (2.8), unfortunately, has no close-form solution. This is

a consequence of (a) the time-domain implementation of the reflection beamforming

vector, i.e., using only one vector ψ for all subcarriers, and (b) the quantized codebook

constraint.

The main challenge: As characterized in (2.8), finding the optimal RIS interaction

vector ψ⋆ and achieving the optimal rate R⋆ requires an exhaustive search over the

codebook P . Note that the codebook size should normally be in the same order as

the number of antennas to make use of these antennas. This means that a reason-

able reflection beamforming codebook for RIS systems will probably have thousands

of candidate codewords. With such huge codebooks, solving the exhaustive search

in (2.8) is very challenging. More specifically, there are two main approaches for

performing the search in (2.8).

• Full channel estimation with offline exhaustive search: In this approach, we

need to estimate the full channels between the RIS and the transmitter/receiver,

hT,k,hR,k and use it to find the best reflection beamforming vector by the offline

calculation of (2.8). Estimating these channel vectors, however, requires the

RIS to employ a complex hardware architecture that connects all the antenna

elements to a baseband processing unit either through a fully-digital or hybrid

analog/digital architectures [24, 25]. Given the massive numbers of antennas at

reconfigurable intelligent surfaces, this approach can yield prohibitive hardware
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complexity in terms of routing and power consumption among others. If the

RIS is operated and controlled via a base station or an access point [13], then

this channel estimation process can be done at these communication ends. This,

however, assumes an orthogonal training over the RIS antennas, for example

by activating one RIS antenna at a time, which leads to prohibitive training

overhead given the number of antennas at the RIS.

• Online exhaustive beam training: Instead of the explicit channel estimation,

the best RIS beam reflection vector ψ⋆ can be found through an over-the-air

beam training process. This process essentially solves the exhaustive search

in (2.8) by testing the candidate interaction vectors ψ ∈ P one by one. This

exhaustive beam training process, however, incurs again very large training

overhead at the RIS systems.

Our objective in this chapter is to enable reconfigurable intelligent surfaces by

addressing this main challenge. More specifically, our objective is to enable RIS

systems to approach the optimal achievable rate in (2.9) by adopting low-complexity

hardware architectures and requiring low training overhead. For this objective,

we first propose a novel energy-efficient RIS transceiver architecture in Section 2.5.

Then, we show in Sections 2.6-2.7 how to employ this RIS architecture to achieve

near-optimal achievable rates with negligible training overhead via leveraging tools

from compressive sensing and deep learning.

2.5 Reconfigurable Intelligent Surfaces with Sparse Sensors: A Novel Architecture

As discussed in Section 2.4, a main challenge for the RIS system operation lies

in the high hardware complexity and training overhead associated with designing

the RIS interaction (reflection beamforming) vector, ψ. To overcome this challenge
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Figure 2.1: This Figure Illustrates the Proposed RIS Architecture Where M Active Channel
Sensors Are Randomly Distributed Over the RIS. These Active Elements Have Two Modes
of Operation (I) a Channel Sensing Mode Where It Is Connected to the Baseband and
Is Used to Estimate the Channels and (Ii) a Reflection Mode Where It Just Reflects the
Incident Signal by Applying a Phase Shift. The Rest of the RIS Elements Are Passive
Reflectors and Are Not Connected to the Baseband.

and enable RIS systems in practice, we adopt a novel RIS architecture that relies on

sparsely embedded active sensors. To further illustrate this architecture, consider the

RIS depicted in Fig. 2.1, which consists of (i) a set of M passive reflecting elements

and (ii) another set of M active channel sensors such that M ≪ M . The M passive

elements are all implemented using RF phase shifters, and they are not connected

to the baseband unit. On the other hand, the M active sensors are assumed to be

selected from the passive sensors in the RIS. In particular, those sensors are designed

to have two modes of operation (as shown in Fig. 2.1): (i) A channel sensing mode

where they work as receivers with full RF chains and baseband processing, and (ii) a

reflection mode where they act just like the rest of the passive elements that reflect

the incident signal.

Before proceeding further, we need to emphasize two important points. First,

while we describe the M phase-shifting elements as passive elements, they are nor-

mally implemented using reconfigurable active RF circuits [12, 49]. We just adopt
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that terminology to differentiate them from the active channel sensors, i.e., they are

passive in the sense that they do not provide any sensing information to the baseband.

Second, our proposed architecture is different from the one proposed in [50], where an

all-passive RIS assists the multiuser communication systems enabled by an all-active

access point. Next, we define the channels from the transmitter/receiver to the active

channel sensors of the RIS, and then we discuss how to leverage this energy-efficient

RIS architecture for designing the RIS interaction vector ψ.

Sampled channel vectors: We define the M × 1 uplink sampled channel vector,

hT,k ∈ CM×1, as the channel vector from the transmitter to the M active elements at

the RIS. This vector can then be expressed as

hT,k = GRIS hT,k, (2.10)

where GRIS is an M × M selection matrix that selects the entries of the original

channel vector, hT,k, that correspond to the active RIS elements. If A defines the set

of indices of the active RIS antenna elements, |A| = M , then GRIS = [I]A,:, i.e., GRIS

includes the rows of the M ×M identity matrix, I, that correspond to the indices

of the active elements. The sampled channel vector, hR,k ∈ CM×1, from the receiver

to the M active sensors of the RIS is similarly defined. Finally, hk = hT,k ⊙ hR,k is

defined as the overall RIS sampled channel vector at the kth subcarrier.

Designing the RIS interaction vector: In the system model and the proposed

RIS architecture in, respectively, Section 2.3.1 and Fig. 2.1, the sampled channel

vectors hT,k,hR,k can easily be estimated. This is done by, for example, using an

uplink training approach, in which the transmitter can send a single pilot that is

simultaneously processed with all active elements to get hT,k. The same approach

could also be followed to estimate hR,k. With the knowledge of these two sampled

channels, the critical question now becomes: can we use them to select the optimal
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reflection beamforming vector ψ⋆ that solves (2.9)? The next three sections propose

th three approaches for addressing this problem, by leveraging compressive sensing

(in Section 2.6), supervised deep learning (in Section 2.7), and deep reinforcement

learning (in Section 2.8).

2.6 Compressive Sensing Based RIS Interaction Design

As shown in Section 2.4, finding the optimal RIS interaction (reflection beam-

forming) vector ψ⋆ that maximizes the achievable rate with no beam training over-

head requires the availability of the full channel vectors hT,k,hR,k. Estimating these

channel vectors at the RIS, however, normally requires that every RIS antenna gets

connected to the baseband processing unit through a fully-digital or hybrid archi-

tecture [25, 45, 51]. This can massively increase the hardware complexity with the

large number of antennas at the RIS systems. In this section, and adopting the low-

complexity RIS architecture proposed in Section 2.5, we show that it is possible to

recover the full channel vectors hT,k,hR,k from the sampled channel vectors hT,k,hR,k

when the channels experience sparse scattering. This is typically the case in mmWave

and LOS-dominant sub-6 GHz systems.

2.6.1 Recovering Full Channels from Sampled Channels:

With the proposed RIS architecture in Fig. 2.1, the RIS can easily estimate the

sampled channel vectors hT,k,hR,k through uplink training from the transmitter and

receiver to the RIS with a few pilots. Next, we explain how to use these sampled

channel vectors to estimate the full channel vectors hT,k,hR,k. First, note that the
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hT,k in (2.4), (2.5) (and similarly for hR,k) can be written as

hT,k=

√
M

ρT

D−1∑
d=0

L∑
ℓ=1

αℓ p(dTS − τℓ) a (θℓ, ϕℓ) e
−j 2πk

K
d, (2.11)

=
L∑

ℓ=1

βℓ,k a (θℓ, ϕℓ) , (2.12)

where βℓ,k =
√

M
ρT
αℓ

∑D−1
d=0 p(dTS−τℓ)e−j 2πk

K
d. Further, by defining the array response

matrix A and the kth subcarrier path gain vector βk as

A = [a (θ1, ϕ1) , a (θ2, ϕ2) ..., a (θL, ϕL)] , (2.13)

βk = [β1,k, β2,k, ..., βL,k]
T , (2.14)

we can write hT,k in a more compact way as hT,k = A βk. Now, we note that in

several important scenarios, such as mmWave and LOS-dominant sub-6 GHz, the

channel experiences sparse scattering, which results is a small number of paths L

[24, 47]. In order to leverage this sparsity, we follow [45] and define the dictionary of

array response vectors AD, where every column constructs an array response vector

in one quantized azimuth and elevation direction. For example, if the RIS adopts a

uniform planar array (UPA) structure, then we can define AD as

AD = AAz
D ⊗AEl

D (2.15)

with AAz
D and AEl

D being the dictionaries of the azimuth and elevation array response

vectors. Every column in AAz
D (and similarly for AEl

D ) constructs an azimuth array

response in one quantized azimuth (elevation) direction. If the number of grid points

in the azimuth and elevation dictionaries isNAz
D andNEl

D , respectively, and the number

of horizontal and vertical elements of the UPA is MH,MV, where M = MHMV, then

AD has dimensions M ×NAz
D NEl

D . Now, assuming that size of the grid is large enough

such that the azimuth and elevation angles θℓ, ϕℓ,∀ℓ matches exactly L points in
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this grid (which is a common assumption in the formulations of the sparse channels

estimation approaches [24, 45, 52]), then we can rewrite hT,k as

hT,k = AD xβ,k, (2.16)

where xβ,k is an NAz
D NEl

D sparse vector with L≪ NAz
D NEl

D non-zero entries equal to the

elements of βk. Further, these non-zero entries are in the positions that correspond

to the channel azimuth/elevation angles of arrival. Next, let ĥT,k denote the noisy

sampled channel vectors, then we can write

ĥT,k = GRIShT,k + vk, (2.17)

= GRISAD xβ,k + vk, (2.18)

= Φ xβ,k + vk, (2.19)

where vk ∼ NC (0, σ
2
nI) represent the receive noise vector at the RIS active channel

sensors and GRIS is the selection matrix defined in (2.10). Now, given the equivalent

sensing matrix, Φ and the noisy sampled channel vector ĥT,k, the objective is to

estimate the sparse vector xβ,k that solves the non-convex combinatorial problem

min ∥xβ,k∥0 s.t.
∥∥∥ĥT,k −Φ xβ,k

∥∥∥
2
≤ σ. (2.20)

Given the sparse formulation in (2.20), several compressive sensing reconstruction

algorithms, such as orthogonal matching pursuit (OMP) [53, 54], can be employed

to find an approximate solution for xβ,k. With this solution for xβ,k, the full channel

vector hT,k can be constructed according to (2.16). Finally, the constructed full

channel vector can be used to find the best RIS reflection beamforming vector, ψnCS ∈

P , out of the codebook P , via an offline search using (2.8).

In this work, we assume for simplicity that the M active channel sensors are

randomly selected from the M RIS elements, assuming that all the elements are
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equally likely to be selected. It is important, however, to note that the specific

selection of the active elements designs the compressive sensing matrix Φ and decides

its properties. Therefore, it is interesting to explore the optimization of the active

element selection, leveraging tools from nested arrays [55], co-prime arrays [56, 57],

incoherence frames [58], and difference sets [51, 59].

2.6.2 Simulation Results and Discussion:

To evaluate the performance of the proposed compressive sensing based solution,

we consider a simulation setup at two different carrier frequencies, namely 3.5GHz

and 28GHz. The simulation setup consists of one reconfigurable intelligent surface

with a uniform planar array (UPA) in the y-z plane, which reflects the signal coming

from one transmitter to another receiver, as depicted in Fig. 2.6. This UPA consists

of 16 × 16 antennas at 3.5GHz and 64 × 64 antennas at 28GHz. We generate the

channels using the publicly available ray-tracing based DeepMIMO dataset [2], with

the ’O1’ scenario that consists of a street and buildings on the sides of the street.

Please refer to Section 2.9.1 for a detailed description of the simulation setup and its

parameters.

Given this described setup, and adopting the novel RIS architecture in Fig. 2.1, we

apply the proposed compressive-sensing based solution described in Section 2.6.1 as

follows: (i) We obtain the channel vectors hT,k,hR,k using the ray-tracing based Deep-

MIMO dataset, and add noise with the noise parameters described in Section 2.9.1.

(ii) Adopting the RIS architecture in Fig. 2.1, we randomly select M elements to be

active and construct the sampled channel vectors ĥT,k, ĥR,k. (iii) Using OMP with a

grid of size NAz
D NEl

D , NAz
D = 2MH, N

El
D = 2MV, we recover an approximate solution of

the full channel vectors and use this to search for the optimal RIS interaction vector

using (2.8). The achievable rate using this proposed compressive sensing based solu-
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Figure 2.2: This Figure Plots the Achievable Rates Using the Proposed Compressive Sens-
ing Based Solution for Two Scenarios, Namely a mmWave 28GHz Scenario and a Low-
frequency 3.5GHz One. These Achievable Rates Are Compared to the Optimal Rate R⋆

in (2.9) That Assumes Perfect Channel Knowledge. This Figure Illustrates the Potential of
the Proposed Solutions That Approach the Upper Bound, While Requiring Only a Small
Fraction of the Total RIS Elements to Be Active.

tion is shown in Fig. 2.2 compared to the upper bound with perfect full channel state

information (CSI), hT,k and hR,k, calculated according to (2.9).

Gains and Limitations: In Fig. 2.2, we plot the achievable rates of the proposed

compressive sensing based solution and upper bound versus the ratio of the active

elements to the total number of antennas, i.e., M/M . As shown in this figure, the

proposed novel RIS architecture with the compressive sensing based solution can

achieve almost the optimal rate with a small fraction of the RIS antennas being active.

This illustrates the significant saving in power consumption that can be achieved

using the RIS architecture in Fig. 2.1 that includes a few active channel sensors.

Further, since the RIS reflection beamforming vector ψ is obtained through an offline

search with no beam training, the proposed solution approaches the optimal rate
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Figure 2.3: This Figure Summarizes the Key Idea of the Proposed Supervised Deep Learn-
ing (SL) Solution. The Sampled Channel Vectors Are Considered as Environment De-
scriptors as They Define, with Some Resolution, the Transmitter/Receiver Locations and
the Surrounding Environment. The Deep Learning Model Learns How to Map the Ob-
served Environment Descriptors to the Optimal RIS Reflection Vector.

with negligible training overhead, ideally with two uplink pilots to estimate ĥT,k, ĥR,k.

This enables the proposed RIS systems to support highly mobile applications such as

vehicular communications and wireless virtual/augmented reality.

Despite this interesting gain of the proposed compressive sensing based solution, it

has some limitations. First, recovering the full channel vectors from the sampled ones

according to Section 2.6.1 requires the knowledge of the array geometry and is hard

to extend to RIS systems with unknown array structures. Second, the compressive

sensing solution relies on the sparsity of the channels and its performance becomes

limited in scenarios with rich NLOS scattering. This is shown in Fig. 2.2 as the

compressive sensing based solution requires a higher ratio of the RIS elements to be

active to approach the upper bound in the 3.5GHz scenario that has more scattering
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than the mmWave 28GHz case. Further, the compressive sensing solution does not

leverage previous observations to improve the current channel recovery. These limi-

tations motivate the deep learning based solutions that we propose in the following

sections.

2.7 Supervised Deep Learning Based RIS Interaction Design

In this section, we introduce a novel application of deep learning in the reflection

beamforming design problem of reconfigurable intelligent surfaces. The section is

organized as follows: First, the key idea of the proposed supervised deep learning

(SL) based reflection beamforming design is explained. Then, the system operation

and the adopted deep learning model are diligently described. We refer the interested

reader to [60] for a brief background on deep learning.

2.7.1 Key Idea

The reconfigurable intelligent surfaces are envisioned as key components of future

networks [13]. These surfaces will interact with the incident signals, for example by

reflecting them, in a way that improves the wireless communication performance. To

decide on this interaction, however, the RIS systems or their operating base stations

and access points need to acquire some knowledge about the channels between the

RIS and the transmitter/receiver. As we explained in Section 2.4, the massive num-

ber of antennas at these surfaces makes obtaining the required channel knowledge

associated with (i) prohibitive training overhead if all the RIS elements are passive

or (ii) infeasible hardware complexity/power consumption in the case of fully-digital

or hybrid based RIS architectures.

The channel vectors/matrices, however, are intuitively some functions of the vari-

ous elements of the surrounding environment such as the geometry, scatterer materi-
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als, and the transmitter/receiver locations among others. Unfortunately, the nature of

this function—its dependency on the various components of the environment—makes

its mathematical modeling very hard and infeasible in many cases. This dependence,

though, means that the interesting role the RIS is playing could be enabled with

some form of awareness about the surrounding environment. With this motivation,

and adopting the proposed RIS architecture in Fig. 2.1, we propose to utilize the sam-

pled channels seen by the few active elements of the RIS as environment descriptors.

These descriptors are expected to capture some information about the multi-path

signature [40–42], as shown in Fig. 2.3. By tapping into the environment-specific

information in those descriptors, a prediction on the optimal RIS interaction vector

could be made using a deep learning algorithm. The algorithm is simply expected

to learn a mapping function that relates the descriptor vector space with that of the

RIS interaction vector. In an abstract sense, this could be seen as teaching the

RIS system how to interact with the wireless signal given the knowledge of the

environment descriptors. This is a desirable ability for the RIS to have, especially

considering that the sampled channel vectors can be obtained with negligible train-

ing overhead as explained in Section 2.5. Ideally, the algorithm will learn a perfect

prediction function that maps an environment descriptor to the optimal interaction

vector, which means the RIS can approach the optimal rate in (2.9) with negligible

training overhead and with low-complexity architectures (as only a few elements of

the RIS are active).

2.7.2 Proposed System Operation

In this section, we describe the system operation of the proposed deep learning

based RIS interaction solution. The proposed system operates in two phases, namely

(I) the learning phase and (II) the prediction phase.
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Learning phase: In this phase, the RIS employs an exhaustive search reflection

beamforming approach, as will be explained shortly, while it is collecting the dataset

for the deep learning model. Once the dataset is fully acquired, the RIS trains the

deep learning model, which in turn will be leveraged in the prediction phase. Let

the term “data sample” indicates the data point captured in one coherence block,

and define the concatenated sampled channel vector as h = vec
([
h1,h2, . . . ,hK

])
.

Further, let h(s) denotes the concatenated sampled channel vector at the sth coherence

block, where s = 1, ..., S and S is the total number of data samples used to construct

the learning dataset. As depicted in Algorithm 1, at every coherence block s, the

proposed RIS system operation consists of four steps, namely (1) estimating the

sampled channel vector, (2) exhaustive beam training, (3) constructing a new data

point for the learning dataset, and (4) data transmission. After collecting the whole

dataset with S data samples, the deep learning model is trained. We describe these

steps in detail as follows.

1. Sampled channel estimation (lines 1,2): For every channel coherence

block s, the transmitter and receiver transmit two orthogonal uplink pilots. The RIS

active elements will receive these pilots and estimate the sampled channel vectors to

construct the multipath signature, which is expressed as

ĥT,k(s) = hT,k(s) + vk, ĥR,k(s) = hR,k(s) +wk, (2.21)

ĥk(s) = ĥT,k(s)⊙ ĥR,k(s), (2.22)

ĥ(s) = vec
([

ĥ1(s), ĥ2(s), . . . , ĥK(s)
])

. (2.23)

where vk,wk ∼ NC (0, σ
2
nI) are the receive noise vectors at the RIS active channel

sensors.

2. Exhaustive beam training (lines 3-6): In this step, the RIS performs an
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exhaustive search over reflection codewords using the reflection codebook P . Specif-

ically, the RIS attempts every candidate reflection beamforming vector, ψn, n =

1, ..., |P |, and receives a feedback from the receiver indicating the achievable rate

attained by using this interaction vector, Rn(s), which is defined as

Rn(s) =

1

K

K∑
k=1

log2

(
1 + SNR

∣∣∣(hT,k(s)⊙ hR,k(s))
T ψn

∣∣∣2) . (2.24)

Note that, in practice, the computation and feedback of the achievable rate Rn(s) will

have some error compared to (2.24) because of the limitations in the pilot sequence

length and feedback channel, which are neglected in this work. For the rest of this

chapter, we define the achievable rate vector at the sth coherence block as r(s) =[
R1(s), R2(s), ..., R|P|(s)

]T
.

3. Learning dataset update (line 7): The new data entry comprised of

the sampled channel vector ĥ(s), estimated in step (1), and the corresponding rate

vector r(s), constructed in step (2), is added to the deep learning dataset D, such

that D ← (ĥ(s), r(s)).

4. Data transmission (line 8): After the beam training task, given the

constructed achievable rate vector r(s), the best reflection beamforming vector, ψn⋆ ,

that corresponds to the highest achievable rate, where n⋆ = argmaxn [r(s)]n, is used

to reflect the transmitted data from the transmitter for the rest of the coherence

block.

5. Deep learning model training (line 9): After acquiring the data en-

tries for all S coherence blocks, the deep learning model is trained using the entire

dataset D. This model learns how to map an input (the sampled channel vector

ĥ) to an output (predicted achievable rate with every candidate interaction vector

r̂ =
[
R̂1, R̂2, . . . , R̂|P|

]
, as shown in Fig. 2.4. It is worth mentioning here that while
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Algorithm 1 Supervised Deep Learning Based Reflection Beamforming Prediction
Inputs: Reflection beamforming codebook P .

Phase I: Learning phase

1: for s = 1 to S do ▷ For every channel coherence block

2: RIS receives two pilots to estimate ĥ(s).

3: for n = 1 to |P | do ▷ Beam training

4: RIS reflects using ψn beam.

5: RIS receives the feedback Rn(s).

6: Construct r(s) =
[
R1(s), R2(s), ..., R|P|(s)

]T .

7: Store new entry in the learning dataset, D ←
(
ĥ(s), r(s)

)
.

8: RIS reflects using ψn⋆ beam, n⋆ = argmaxn [r(s)]n.

9: Train the SL model using the learning dataset D.

Phase II: Prediction phase

10: while True do ▷ Repeat for every channel coherence block

11: RIS receives two pilots to estimate ĥ.

12: Predict the rate vector r̂ using the trained SL model.

13: RIS reflects using ψnSL beam, nSL = argmaxn [r̂]n.

we assume that the system will switch one time to Phase II after the deep learning

model is trained, the system will need to retrain and refine the model frequently to

account for the changes in the environment.

Prediction phase: Following the deep learning model training in the learning

phase, the RIS leverages the trained model to predict the reflection beamforming

vector directly from the estimated sampled channel vector, ĥ. As shown in Algorithm

1, Phase II performs the following steps repeatedly for every channel coherence block.

1. Sampled channel estimation (line 11): This step is the same as the first
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step in the learning phase. The active elements of the RIS receive uplink pilots to

estimate and construct the concatenated sampled channel vector, ĥ.

2. Achievable rate prediction (line 12): In this step, the estimated sampled

channel vector, ĥ, is fed into the trained deep learning model. It predicts the achiev-

able rate vector, r̂, which is used to identify the best SL-based reflection beamforming

vector.

3. Data transmission (line 13): In this step, the predicted deep learning

reflection beamforming vector, ψnSL , that corresponds to the highest predicted achiev-

able rate, where nSL = argmaxn [̂r]n, is used to reflect the transmitted data from the

transmitter for the rest of the coherence block. Note that instead of selecting only the

interaction vector with the highest predicted achievable rate, the RIS can generally

select the kB beams corresponding to the kB highest predicted achievable rates. It

can then refine this set of beams online with the receiver to select the one with the

highest achievable rate. In Section 2.9.6, we evaluate the performance gain if more

than one reflection beam, i.e. kB reflection beams, are selected.
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2.7.3 Deep Learning Model

Recent advances in machine learning have proven deep learning to be one of the

most successful learning paradigms [61]. With this motivation, a deep neural network

is chosen in this work to be the model with which the desired RIS interaction function

is learned. In the following, the elements of this model are described.

Input Representation: A single input to the neural network model is defined

as a stack of environment descriptors at K sub-carrier frequencies, i.e., the sampled

channel vector ĥ. This sets the dimensionality of a single input vector to KM . A

common practice in machine learning is the normalization of the input data. This

guarantees a stable and meaningful learning process [62]. The normalization method

of choice here is a simple per-dataset scaling; all samples are normalized by one

constant value over the whole input data,

ĥnorm(s) =
ĥ(s)

maxs

∥∥∥ĥ(s)∥∥∥
∞

, s = 1, . . . , S. (2.25)

Besides helping the learning process, this normalization choice preserves distance

information encoded in the environment descriptors. This way the model learns

to become more aware of the surroundings, which is the bedrock for proposing a

machine-learning-powered RIS.

The last pre-processing step of input data is to convert them into real-valued

vectors without losing the imaginary-part information. This is done by splitting each

complex entry into real and imaginary values, doubling the dimensionality of each

input vector. The main reason behind this step is the modern implementations of SL

models, which mainly use real-valued computations.

Target Representation: The learning approach used in this work is supervised

learning. This means the model is trained with input data that are accompanied

by their so-called target responses [60]. They are the desired responses the model is
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expected to approximate when it encounters inputs like those in the input training

data. Since the target of the training process is to learn a function mapping descrip-

tors to reflection vectors, the model is designed to output a set of predictions on the

achievable rates of every possible reflection beamforming vector in the codebook |P |.

Hence, the training targets are real-valued vectors, r(s), s = 1, ..., S, with the desired

rate for each possible reflection vector.

For the same training-efficiency reason expressed for the input representation, the

labels are usually normalized. The normalization used in this work is per-sample

scaling where every vector of rates r(s) is normalized using its maximum rate value

maxn [r(s)]n. The output of the normalization process is denoted by r̂(s). The choice

of normalizing each vector independently guards the model against being biased to-

wards some strong responses. In terms of our RIS application, it gives the receivers

equal importance regardless of how close or far they are from the RIS.

Neural Network Architecture: The SL model is designed as a Multi-Layer Per-

ceptron (MLP) network, sometimes referred to as a feedforward Fully Connected

network. It is well-established that MLP networks are universal function approxima-

tors [63]. This motivates adopting an MLP network to capture the relation between

the environment descriptors and the RIS interaction (reflection beamforming) vec-

tors. As depicted in Fig. 2.4, the proposed MLP model consists of Q layers. The first

Q− 1 of them alternate between fully connected and non-linearity layers and the last

layer (output layer) is a fully connected layer. For the fully connected layers, each

Layer q in the network has a stack of Nq neurons, each of which sees all the outputs

of the previous layer. For the non-linearity layers, they all employ Rectified Linear

Units (ReLUs) [60].

Training Loss Function: The model training process aims at minimizing a loss

function that measures the quality of the model predictions. Given the objective of
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predicting the best reflection beamforming vector, ψnSL , having the highest achievable

rate estimate, maxn R̂n, the model is trained using a regression loss function. At

every coherence block, the neural network is trained to make its output, r̂, as close

as possible to the desired output, the normalized achievable rates, r. Specifically, the

training is guided through minimizing the loss function, L (θ), expressed as

L (θ) = MSE (r, r̂) , (2.26)

where θ represents the set of all the neural network parameters and MSE (r, r̂) indi-

cates the mean-squared-error between r and r̂.

From the training overhead standpoint, the SL based reflection beamforming so-

lution, however, still demands a large dataset collection phase before training, in the

learning phase. Given an end goal of achieving harmonic co-existence between all the

heterogeneous wireless systems, setting an objective of developing standalone RIS

architectures with no beam training overhead appears like the next step forward for

reaching that end goal. To reach this objective, we propose a deep reinforcement

Learning (DRL) based reflection beamforming design approach in the upcoming sec-

tion.

2.8 Deep Reinforcement Learning Based RIS Interaction Design

In this section, we introduce a novel application of deep reinforcement learning

in predicting the RIS reflection coefficients without requiring any prior training over-

head, as detailed in [30]. The section is organized as follows: First, the key idea of the

proposed deep reinforcement learning (DRL) based reflection beamforming design is

explained. Then, the system operation and the deep learning model are detailed.
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Figure 2.5: This Figure Summarizes the Key Idea of the Proposed Deep Reinforcement
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2.8.1 Key Idea

From (2.8), the optimal interaction vector is a function of the channels between the

two communication ends and the RIS. To avoid the prohibitive overhead of estimating

the full RIS channels, the optimal interaction vector choice can be mapped to the sur-

rounding environment, which the full RIS channels inherently describe. Modeling the

various elements of the environment, mathematically, is notoriously complicated. In

contrast, leveraging an awareness of the environment using a multipath signature [40]

can be sufficient. In such case, deep reinforcement learning models can be adopted

to learn the mapping function from multipath signatures to the optimal interaction

vectors as illustrated in Fig. 2.5. The RIS active elements play a crucial role in

capturing one form of multipath signatures: the sampled channels, hT,k,hR,k. Fortu-

nately, estimating the sampled channel vectors can be accomplished with a few pilot

signals; i.e., negligible training overhead. This solution also involves energy-efficient
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low-complexity hardware architectures (few sparse active RIS elements) [28].

2.8.2 Proposed System Operation

The proposed deep reinforcement learning (DRL) based RIS interaction prediction

solution operates in two modes: (I) the agent interaction and (II) the agent learning,

as in Algorithm 2. The RIS interchanges between these two tasks continuously; this

cycle repeats over time and across multiple users.

Task I: Agent Interaction: The RIS interaction with the environment can be

outlined as follows: the RIS observes the current state, s, of the environment and

takes an action, a, predicated upon the observed state. The RIS then receives a

reward, r, for the action taken and a new state observation, s′, from the environment.

Once the experience is acquired, ⟨s, a, r, s′⟩, the RIS trains the DRL model using

current and past experiences, in the second task.

Let the term “experience” indicates the information captured in one learning

episode, and define the concatenated sampled channel vector as

h = vec
([
h1,h2, . . . ,hK

])
. (2.27)

Assume that the one learning episode occurs every coherence block and let T be

the maximum number of episodes, h(t) denotes the concatenated sampled channel

vector at the tth episode, where t = 1, ..., T . Task I steps are summarized as follows.

1. Sampled channel estimation (lines 3 and 13): The transmitter and receiver

transmit two orthogonal uplink pilots. The RIS active elements will receive these

pilots and estimate the sampled channel vectors to construct the multipath signature.
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Algorithm 2 Deep Reinforcement Learning Based RIS Interaction Prediction
Inputs: Reflection beamforming codebook P .

Outputs: Trained network Q (s, a|θ).

1: Initialize: Network Q (s, a|θ), replay buffer D.

2: repeat

3: RIS receives two pilots to estimate ĥ(1). ▷ Current state

4: for episode t = 1 to T do ▷ For every episode

Task I: Agent Interaction

5: Sample ξ ∼ Uniform (0, 1)

6: if ξ ≤ ϵ then ▷ Select action

7: Select interaction vector, ψ(t) ∈ P at random.

8: else

9: Select interaction vector, ψ(t) = argmaxa′ Q (s, a′|θ).

10: RIS reflects using ψ(t) beam. ▷ Carry out action

11: RIS receives the feedback R(t). ▷ Observe reward

12: RIS quantizes the reward, RQ(t) ∈ {±1}.

13: RIS receives two pilots to estimate ĥ(t+ 1) ▷ Next state

Task II: Agent Learning

14: ⟨s, a, r, s′⟩ ←
〈
ĥ(t),ψ(t), RQ(t), ĥ(t+ 1)

〉
.

15: Store experience ⟨s, a, r, s′⟩ in D then minibatch the experiences from D for training.

16: Feedforward s to calculate R̂(t)← Q (s, a|θ)∀a.

17: Feedforward s′ to calculate Γ← maxa′ Q (s′, a′|θ) and a⋆ ← argmaxa′ Q (s′, a′|θ).

18: Construct the target vector, R(t):

19:
[
R(t)

]
a⋆ ← RQ(t) + γΓ,

[
R(t)

]
a′ ̸=a⋆ ←

[
R̂(t)

]
a′ ̸=a⋆

, a′ ∈ {1, . . . , |P |}.

20: Perform SGD on MSE
(
R(t), R̂(t)

)
to find θ⋆.

21: Update network weights θ(t)← θ⋆ and decrease ϵ gradually.

22: s← s′. ▷ Assign next state to current state

23: until reaching a terminal goal
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ĥT,k(t) = hT,k(t) + vk, ĥR,k(t) = hR,k(t) +wk, (2.28)

ĥk(t) = ĥT,k(t)⊙ ĥR,k(t), (2.29)

ĥ(t) = vec
([

ĥ1(t), ĥ2(t), . . . , ĥK(t)
])

. (2.30)

where vk,wk ∼ NC (0, σ
2
nI) are the receive noise vectors.

2. Interaction prediction (lines 5-10): The multipath signature is used to predict

the interaction vector. To account for exploration (i.e., randomly sampling from the

action space) besides exploitation (i.e., using prior learning experience), the factor

ϵ is introduced such that an interaction vector can be randomly chosen out of the

codebook P with ϵ probability. Otherwise, the interaction vector is predicted from

the current network. After that, the interaction vector chosen reflects the transmitted

data from the transmitter.

3. Feedback reception (lines 11 and 12): The RIS receives feedback from the

receiver indicating the achievable rate, R(t), attained by using the interaction vector,

which is defined as

R(t) =

1

K

K∑
k=1

log2

(
1 + SNR

∣∣∣(hT,k(t)⊙ hR,k(t))
T ψa

∣∣∣2) .
(2.31)

After that, the rate is quantized based on a threshold level, such that RQ(t) = 1

if R(t) > RTH; otherwise, RQ(t) = −1. Reward clipping is substantial for learning

convergence [64].

Task II: Agent Learning: The RIS leverages the acquired experiences to train the

DRL model. Task II steps are summarized as follows.

1. Constructing a new experience (lines 14 and 15): The new experience acquired

is now stored in the experience replay buffer D for the training of the deep Q-network

[65].
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2. Model training (lines 16-21): The deep Q-network is now trained to minimize

the prediction loss. To do so, we use the stochastic gradient descent algorithm (SGD).

The training operates sequentially using minibatchs from the replay bufferD. It learns

how to map an input state (sampled channel vector) to an output action (interaction

vector).

2.8.3 Machine Learning Design

Input Representation: the concatenated sampled channel vector, ĥ, is the input

to the deep Q-network. The normalization method used is a simple per-dataset

scaling [66]; all samples are normalized by the maximum absolute value over the whole

input data. This method preserves distance information encoded in the multipath

signatures. Each complex entry of the input data is split into real and imaginary

values, doubling the dimensionality of each input vector to 2KM .

Q-Network Architecture: The Q-network is designed as a Multi-Layer Perceptron

network of U layers. The first U − 1 of them alternate between fully-connected and

rectified linear unit layers and the last one (output layer) is a fully-connected layer.

The uth layer in the network has a stack of Au neurons. Two deep Q-networks are

used for training stability [67].

Training Loss Function: Given the objective of predicting the best interaction

vector (with the highest achievable rate), the model is trained using a regression

loss function. At the tth episode, the training is guided through minimizing the loss

function, MSE
(
R(t), R̂(t)

)
, which is the mean-squared-error between the desired and

the predicted output, R(t) and R̂(t).
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Figure 2.6: This Figure Illustrates the Adopted Ray-tracing Scenario Where an RIS Is Re-
flecting the Signal Received from One Fixed Transmitter to a Receiver. The Receiver Is
Selected from an X-Y Grid of Candidate Locations. This Ray-tracing Scenario Is Gen-
erated Using Remcom Wireless InSite [1], And Is Publicly Available on the DeepMIMO
Dataset [2].

2.9 Simulation Results

In this section, we evaluate the performance of the compressive sensing (CS),

the supervised deep learning (SL), and the deep reinforcement learning (DRL) based

reflection beamforming solutions. The flow of this section is as follows. First, we

describe the adopted experimental setup and datasets. Then, we compare the per-

formance of the supervised deep learning and compressive sensing solutions at both

mmWave and sub-6 GHz bands. After that, we compare the performance of the super-

vised deep learning and deep reinforcement learning solutions. Lastly, we investigate

the impact of different system and machine learning parameters on the performance

of the deep learning solution.

2.9.1 Simulation Setup

Given the geometric channel model adopted in Section 2.3 and the nature of

the reflection beamforming optimization problem, with its strong dependence on the
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(a) Original Codebook Beams
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(b) Predicted Codebook Beams

Figure 2.7: This Figure Illustrates the Optimal and Predicted Index Map of the RIS Reflec-
tion Bemforming Codebook. Each Pixel Represents the Location of a Candidate Receiver
on the X-Y User Grid Under-study (Shown In Fig. 2.6). The Pixel Color Represents the In-
dex of the Optimal/Predicted Reflection Beamforming Vector for the User at This Location.
In This Scenario with 64 × 64 RIS, the Optimum Achievable Rate, R⋆, Averaged Across
All Candidate Locations, Is 5.06 bps/Hz, While the Achievable Rate of the Proposed Deep
Learning Based Predicted Beams Is 4.74 bps/Hz.

environmental geometry, it is critical to evaluate the performance of the proposed

solutions based on realistic channels. This motivates using channels generated by

ray-tracing to capture the dependence on the key environmental factors such as the

environment geometry and materials, the RIS and transmitter/receiver locations, the

operating frequency among others. To do that, we adopted the DeepMIMO dataset,

described in detail in [2], to generate the channels based on the outdoor ray-tracing

scenario ‘O1’ [1], as will be discussed shortly. The DeepMIMO is a parameterized

dataset published for deep learning applications in mmWave and massive MIMO

systems. The machine learning simulations were executed using the Deep Learning

Toolbox of MATLAB R2019a. The source code of this work is available on [68]. Next,

we explain in detail the key components of the simulation setup.

System model: Following the system model in Section 2.3.1, we adopt an RIS-

assisted communication system where one RIS aims to reflect the signal received from
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Table 2.1: The Adopted DeepMIMO Dataset Parameters

DeepMIMO Dataset Parameter Value

Frequency band 3.5GHz or 28GHz

Active BSs 3

Number of BS Antennas (Mx,My,Mz) ∈ {(1, 16, 16) ;

(1, 32, 32) ; (1, 40, 10) ; (1, 64, 64)}
Active users (receivers) From row R1000 to row R1300

Active user (transmitter) row R850 column 90

System bandwidth 100MHz

Number of OFDM subcarriers 512

OFDM sampling factor 1

OFDM limit 64

Number of channel paths {1, 2, 5, 10, 15}

Antenna spacing 0.5λ

a transmitter to a receiver. The transmitter is assumed to be fixed in position while

the receiver can take any random position in a specified x-y grid as illustrated in

Fig. 2.6. We implemented this setup using the outdoor ray-tracing scenario ’O1’ of

the DeepMIMO dataset that is publicly available at [2]. As shown in Fig. 2.6, we

select BS 3 in the ’O1’ scenario to be the RIS and the user in row R850 and column

90 to be the fixed transmitter. The uniform x-y grid of candidate receiver locations

includes 54300 points from row R1000 to R1300 in the ’O1’ scenario where every row

consists of 181 points. Unless otherwise stated, the adopted RIS employs a UPA with

64× 64 (M = 4096) antennas at the mmWave 28GHz setup and a UPA with 16× 16

(M = 256) antennas at the 3.5GHz setup. The active channel sensors described in
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Section 2.5 are randomly selected from the M UPA antennas. The transmitter and

receiver are assumed to have a single antenna each. The antenna elements have a

gain of 3dBi and the transmit power is 35dBm. The antenna element spacing is set

to half the wavelength, 0.5λ, where λ is the operating wavelength. The rest of the

adopted DeepMIMO dataset parameters are summarized in Table 2.1.

Channel generation: The channels between the RIS and the transmitter/receiver,

hT,k,hR,k, for all the candidate receiver locations in the x-y grid, are constructed using

the DeepMIMO dataset generation code [2] with the parameters in Table 2.1. With

these channels, and given the randomly selected active elements in the proposed RIS

architecture, we construct the sampled channel vectors hT,k,hR,k. The noisy sampled

channel vectors ĥT,k, ĥR,k are then generated by adding noise vectors to hT,k,hR,k

according to (2.23), with the noise power calculated based on the bandwidth and other

parameters in Table 2.1, and with receiver noise figure of 5dB. These noisy sampled

channels are then used to design the RIS interaction (reflection beamforming) vectors

following the proposed compressive sensing and deep learning solutions.

RIS interaction (reflection beamforming) codebook: We adopt a DFT codebook

for the candidate RIS interaction vectors. More specifically, considering the UPA

structure, we define the RIS interaction codebook as DFTMH
⊗DFTMV

. The codebook

DFTMH
∈ CMH×MH is a DFT codebook for the azimuth (horizontal) dimension where

the mHth column, mH = 1, 2, ...,MH, is defined as [1, e
−j 2π

MH
mH , ..., e

−j(MH−1) 2π
MH

mH ]T .

The codebook DFTMV
is similarly defined for the elevation (vertical) dimension.

As an example, Fig. 2.7(a) illustrates the optimal index map of the RIS reflection

bemforming codebook at fc = 28 GHz, M = 64 × 64 antennas, and L = 1 channel

path. The map orientation and directions are set according to the adopted ray-tracing

scenario, previously shown in Fig. 2.6. The pixel position represents the candidate

location of the receiver on the x-y grid under-study. The pixel color represents the in-
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dex number of the optimal reflection beamforming vector for each candidate location,

calculated according to (2.8), under the assumption of perfect full channel knowledge,

hT,k and hR,k, at the RIS. By comparison, Fig. 2.7(b) depicts the predicted index map

of the RIS reflection bemforming codebook using the proposed Deep Learning (SL)

based reflection beamforming with only M = 8 active channel sensors.

Compressive sensing parameters: We consider the developed compressive sensing

solution in Section 2.6 to recover the full RIS-transmitter/receiver channels and design

the RIS reflection beamforming vectors. For approximating the solution of (2.20), we

use OMP with a grid of size NAz
D NEl

D points, where NAz
D = 2MH, N

El
D = 2MV.

Supervised deep learning parameters: We adopt the deep learning model de-

scribed in Section 2.7.3. To reduce the neural network complexity, however, we in-

put the normalized sampled channels only at the first KSL = 64 subcarriers, ĥk,

k = 1, . . . , KSL and KSL ≤ K, which sets the length of the SL input vector to be

2MKSL. This is motivated by the fact that the channel is highly correlated in the fre-

quency domain, a consequence of channel sparsity, especially in the mmWave range.

The length of the SL output vector is M = |P |, as described in Section 2.7.3. The

neural network architecture consists of four fully connected layers. Unless otherwise

mentioned, the number of hidden nodes of the four layers is (M, 4M, 4M,M), where

M is the number of RIS antennas. Given the size of the x-y grid of the candidate

receiver locations in Fig. 2.6, the deep learning dataset has 54300 data points. We

split this dataset into two sets, namely a training set and a testing set with 85% and

15% of the points, respectively. A dropout layer is added after every ReLU layer.

Unless otherwise mentioned, we consider a batch size of 500 samples, a 50% dropout

rate, an L2 regularization factor of 10−4, and 20 epochs of training. The learning rate

starts from 0.1 and drops by 50% every 3 epochs.

Deep reinforcement learning parameters: We adopt the DRL model described in
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Section 2.8.3. States are represented by the normalized concatenated sampled channel

of each user pair, and actions are represented by each candidate interaction vector,

ψ ∈ P . To reduce the Q-network complexity, we input the normalized sampled

channels only at the first 64 subcarriers. The neural network architecture of the

Q-network consists of four fully-connected layers of 4096, 16384, 16384, 4096 nodes,

respectively. We consider a replay buffer of 8192 samples and a batch size of 512

samples. ϵ starts from 0.99 and decreases gradually by a factor of 0.5% every 40

training iterations till it reaches 0.1. γ = 0. RTH = 8.9 bps/Hz is set to the min-

max rate of the dataset. Only when evaluating the DRL based solution, and when

comparing the SL based solution with the DRL based solution, we follow the following

dataset settings. we select the size of the receiver x-y grid From row R1000 to row

R1200, the DRL dataset has 36200 data points. We split this dataset into two sets:

training and testing sets, with 70% and 30% of the points, respectively.

Next, given this described setup, and adopting the novel RIS architecture in

Fig. 2.1 with only M active channel sensors, we evaluate the performance of the

developed compressive sensing and deep learning solutions.

2.9.2 Achievable Rates with Compressive Sensing and Deep Learning Based RIS

Systems

In this subsection, we evaluate the achievable rates of the proposed compressive

sensing (CS), supervised deep learning (SL), and deep reinforcement learning (DRL)

based reflection beamforming solutions for RIS systems, as previously described in

Section 2.6.1, Section 2.7.2, and Section 2.8.2, respectively. These rates are compared

to the genie-aided upper bound, R⋆, in (2.9) which assumes perfect knowledge of the

full channel vectors, hT,k and hR,k, at the RIS. The average achievable rate used for
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Figure 2.8: The Achievable Rate of Both Proposed CS and SL Based Reflection Beam-
forming Solutions Are Compared to the Upper Bound R⋆, for Different Numbers of Active
Receivers, M . The Figure Is Generated At fc = 28GHz, M = 64 × 64 Antennas, and
L = 10 Paths.

assessing the performance of these proposed solutions can be formulated as

R =
1

K

K∑
k=1

log2

(
1 + SNR

∣∣∣(hT,k ⊙ hR,k)
T ψ
∣∣∣2) , (2.32)

where ψ ∈ {ψnCS ,ψnSL ,ψnDRL} is the reflection beamforming vector chosen by the

CS, SL or DRL based reflection beamforming solutions, respectively. To reduce the

computational complexity of the performance evaluation, we compute the achievable

rate summation over the first subcarrier instead of computing over all the K = 512

subcarriers.

In Fig. 2.8, we consider the simulation setup in Section 2.9.1 at the mmWave

28GHz band with RIS employing a UPA of 64 × 64 antennas. The channels are

constructed to include the strongest L = 10 channel paths. Fig. 2.8 shows that the

proposed supervised deep learning (SL) solution approaches the optimal upper bound

with a very small number of active antennas. For example, with only M = 4 active
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Figure 2.9: The Achievable Rate of Both Proposed CS and SL Based Reflection Beam-
forming Solutions Are Compared to the Upper Bound R⋆, for Different Numbers of Active
Receivers, M . The Figure Is Generated At fc = 3.5GHz, M = 16 × 16 Antennas, and
L = 15 Paths.

antennas (out of M = 4096 total antennas), the supervised deep learning solution

achieves almost 85% of the optimal achievable rate. This figure also illustrates the

performance gain of the SL solution compared to the compressive sensing solution,

especially when the number of active antennas is very small. Note that the two CS

and SL solutions approach the upper bound with 28 − 36 active antennas, which

represent less than 1% of the total number of antennas (M = 4096) in the RIS. This

illustrates the high energy efficiency of the proposed RIS architecture and reflection

beamforming solutions, as will be demonstrated in the upcoming subsection.

Additionally, to evaluate the performance at sub-6 GHz systems, we plot the

achievable rates of the proposed supervised deep learning and compressive sensing

solutions compared to the optimal rate R⋆ as illustrated in Fig. 2.9. This figure

adopts the simulation setup in Section 2.9.1 at a 3.5GHz band. The RIS is assumed
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to employ a UPA with 16 × 16 antennas, compared to 64 × 64 in the 28GHz band,

given the path loss difference between the 3.5GHz and 28GHz bands. Each channel

incorporates the strongest L = 15 paths, compared to L = 10 in the 28GHz band,

motivated by the fact that the channels are less sparse in the sub-6 GHz systems

compared to the mmWave systems.

Fig. 2.9 shows that the proposed supervised deep learning and compressive sensing

solutions are also promising for sub-6 GHz RIS systems. This is captured by the

convergence to the upper bound with only 4 active elements in the deep learning case

and around 18 elements in the compressive sensing case. This figure also illustrates

the gain from employing the supervised deep learning approach over the compressive

sensing approach in the sub-6 GHz systems, where the channels are less sparse than

mmWave systems. This gain, however, has the cost of collecting a dataset to train

the deep learning model, which is not required in the compressive sensing approach.

In Fig. 2.8 and Fig. 2.9, the number of active sensors (M) is a design parameter

that controls the size of the input of the neural network. As that number varies, the re-

lation between the input vector and the output target vector also varies. This suggests

that the neural network architecture needs to be designed carefully to capture that

relation. In Fig. 2.8, the neural network architecture used for M = {1, 2, 4, 12, 20}

has the following number of nodes (M, 4M, 4M,M). This architecture changes to

(3M, 4M, 4M,M) to account for the change in the input-output relation as the num-

ber of sensors increases to M = {28, 36}. For the results in Fig. 2.9, we have

found that the architecture with
(
4MKSL, 16384, 16384,M

)
performs consistently

well across all choices of M .

Fig. 2.10 illustrates the achievable rate of both the proposed deep reinforcment

learning (DRL) based solution and the supervised deep learning (SL) based solution,

using 4 active elements with L ∈ {1, 15} channel paths. Their performances are com-
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Figure 2.10: The Achievable Rates of Both the Proposed Deep Reinforcement Learning
(Drl) Solution and the Supervised Deep Learning (Sl) Solution Are Compared to the Upper
Bound, Using M = 4 Active Elements for A 3.5GHz Scenario with L ∈ {1, 15} Channel
Path(/s). The Simulation Considers An RIS with A 40× 10 UPA Architecture. The Upper
Bound, R⋆ in (2.9), Assumes Perfect Channel Knowledge. The Figure Shows the Potential
of the Proposed DRL Solution in Approaching the Optimal Rate with Almost No Beam
Training Overhead and a Small Fraction of the RIS Elements to Be Active.

pared to the upper bound with perfect full channel knowledge, calculated according

to (2.9). As shown, the proposed DRL solution is capable of approaching the optimal

rate with more training samples than the one needed by the SL solution. In contrast,

the proposed DRL solution uses only one beam for each training episode, which

constitute almost 0.3% of the beams used by the SL solution in the training phase

(400 beams). This emphasizes the efficiency of the DRL solution in operating with

almost no beam training overhead.

2.9.3 Energy Efficiency

In this subsection, we evaluate the energy efficiency of both proposed CS and SL

based reflection beamforming solutions, compared to the upper bound on spectral
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energy efficiency, which assumes perfect full channel knowledge at the RIS. Starting

with a formulation of a generic power consumption model for the proposed RIS archi-

tecture, we can then evaluate the energy efficiency, as formulated in [13, 69]. Consider

the proposed RIS architecture shown in Fig. 2.1 and described in Section 2.5, with

M active elements connected to the baseband through fully-digital architecture of

b-bit ADCs. Let PBB, PRFchain, PADC, PPS, PLNA denote the power consumption in the

baseband processor, RF chains, ADC, phase shifter (passive reflector), and LNA, re-

spectively. The RIS power consumption model, Pc, can be generally formulated as

[69]

Pc =MPPS +M(PLNA +PRFchain +2PADC) + PBB. (2.33)

The power consumption of the ADC, PADC, can be further calculated as

PADC = FOMW × fS × 2b, (2.34)

where b is the number of bits, fS is the Nyquist sampling frequency, and FOMW is the

Walden’s figure-of-merit for power efficiency ranking of the ADCs [70, 71]. Finally,

the energy efficiency can be formulated as

ηEE =
R×W

Pc

bits/Joule, (2.35)

where W is the transmission bandwidth and R is the achievable rate.

Next, using (2.33)-(2.35), we evaluate the energy efficiency of both proposed CS

and SL based reflection beamforming solutions compared to the upper bound, as

depicted in Fig. 2.11. The various power consumption variables are assumed to be

PBB = 200 mW, PRF = 40 mW, PPS = 10 mW, PLNA = 20 mW, and W = 100MHz

[69]. Assume b = 4 bits according to the trade-off figure between the achievable

rate and power consumption for fully-digital architecture, illustrated in [69]. Also,

assume FOMW = 46.1 fJ/conversion-step at 100 MHz bandwidth according to the
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Figure 2.11: The Spectral Energy Efficiency of Both Proposed CS and SL Based Reflection
Beamforming Solutions Are Compared to the Upper Bound R⋆, for Different Numbers of
Active Receivers, M . The Figure Is Generated at fc = 28GHz, M = 64 × 64 Antennas,
and L = 10 Paths.

architecture in [71, 72]. In Fig. 2.11, The energy efficiency values across different

numbers of active channel sensors are calculated from the achievable rate values of

Fig. 2.8.

Fig. 2.11 shows the high energy efficiency gained from employing the proposed RIS

architecture with few active channel sensors. This figure also illustrates that both

proposed CS and SL based beamforming solutions can approach the upper bound

with only 28 − 36 active antennas. The SL solution achieves more energy efficiency

gains when compared to the CS solution. Also, according to (2.33)-(2.35), since the

upper bound is a monotonically decreasing bound when the number of active elements

increases, it’s safe to state that the optimal operating point for the SL based reflection

beamforming solution is at M = 28 active antenna elements, with an optimal energy

efficiency of ∼ 12Mbits/J, for the described scenario only.
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Figure 2.12: The Achievable Rate of the Proposed SL Based Reflection Beamforming So-
lution Is Compared to the Upper Bound R⋆ and the CS Beamforming Solution, for Different
Numbers of Active Receivers, M . The Adopted Setup Considers an RIS with 64×64 UPA,
at 28GHz with L = 1 Channel Path. This Figure Highlights the Promising Gain of the Pro-
posed Supervised Deep Learning Solution That Approaches the Upper Bound Using Only
8 Active Elements (Less than 1% of the Total Number of Antennas). This Performance
Requires Collecting a Dataset of Around 20-25 Thousand Data Points (User Locations).

2.9.4 How Much Training is Needed for the Deep Learning Models?

The data samples in the deep learning dataset are captured when the receiver is

randomly sampling the x-y grid. In Fig. 2.12, we study the performance of the devel-

oped deep learning approaches for designing the RIS interaction vectors for different

dataset sizes. This illustrates the improvement in the machine learning prediction

quality as it sees more data samples. For Fig. 2.12, we adopt the simulation setup

in Section 2.9.1 with an RIS of 64× 64 UPA and a number of active channel sensors

M = 2, 4, and 8. The setup considers a mmWave 28GHz scenario and the channels

are constructed with only the strongest path, i.e., L = 1. Fig. 2.12 shows that with

only 8 active antennas, the proposed supervised deep learning solution can achieve
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Figure 2.13: The Achievable Rate of the Proposed SL Based Reflection Beamforming
Solution Is Compared to the Upper Bound R⋆ for Different Sizes of Intelligent Surfaces,
Namely with RIS Of 32×32 and 64×64 UPAs. The Number of Active Elements (Channel
Sensors) Equals M = 8. This Figure is Generated at 28GHz with L = 1 Channel Path.

almost 90% of the optimal rate in (2.9) when the model is trained on 14 thousand data

points (out of the 54300 points) in the x-y grid. Further, this figure highlights the

performance gain of the supervised deep learning solution compared to the compres-

sive sensing solution. This gain increases with larger dataset sizes as the compressive

sensing solution does not leverage the prior channel estimation/RIS interaction ob-

servations and its performance does not depend on the size of the dataset.

2.9.5 Impact of Important System and Channel Parameters

In this subsection, we evaluate the impact of the key system and channel param-

eters on the performance of the supervised deep learning solution.

Number of RIS antennas: Fig. 2.13 examines the achievable rate performance

of the developed solutions for designing the RIS interaction vectors when the RIS
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Figure 2.14: The Achievable Rate of the Proposed Supervised Deep Learning Based Re-
flection Beamforming Solution Is Compared to the Upper Bound R⋆, for Different Values
of User Transmit Power, PT. The Figure is Generated for an RIS with M = 64× 64 UPA
and M = 8 Active Elements, at 28GHz with L = 1 Channel Path. This Figure Shows That
the Proposed SL Solution Is Capable of Learning and Approaching the Optimal Achievable
Rate Even with a Relatively Small Transmit Power.

employs either a 32 × 32 or a 64 × 64 UPA. This figure adopts the same mmWave

scenario considered in Fig. 2.12. As illustrated, with only M = 8 active receivers, the

proposed supervised deep learning solution approaches the optimal rate in (2.9) that

assumes perfect channel knowledge for different RIS sizes. This shows the potential

of the proposed RIS architecture and supervised deep learning solution in enabling

reconfigurable intelligent surfaces with large numbers of antennas. Note that the

proposed solution does not require any beam training overhead (as it relies on the

deep learning prediction of the best beam) and needs only 8 active receivers to

realize this near-optimal performance in Fig. 2.13.

Transmit power: In Fig. 2.14, we study the impact of the transmit power (and
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Figure 2.15: The Achievable Rate of the Proposed Sl Based Reflection Beamforming Solu-
tion Is Compared to the Upper Bound R⋆, for Different Numbers of Channel Paths, L. The
Figure Is Generated for an RIS with 64× 64 UPA and M = 4 Active Elements, at 28GHz.
As the Number of Channel Paths Increases, the Achievable Rate Achieved by the Proposed
SL Solution Converges Slower to the Upper Bound. Hence, Using More Training Data Can
Help Learn Multi-path Signatures.

receive SNR) on the achievable rate performance of the supervised deep learning (SL)

solution. This is important in order to evaluate the robustness of the learning and

prediction quality, as we input the noisy sampled channel vectors to the deep learning

model. In Fig. 2.14, we plot the achievable rates of the proposed SL solution as well as

the upper bound in (2.9) for three values of the transmit power, PT = −5, 0, 5 dBW.

These transmit powers map to receive SNR values of −3.8, 6.2, 16.2 dB, respectively,

including the RIS beamforming gain of the 4096 antennas. The rest of the setup

parameters are the same as those adopted in Fig. 2.12. Fig. 2.14 illustrates that the

proposed SL solution can perform well even with relatively small transmit powers and

low SNR regimes.

Number of channel paths: In Fig. 2.15, we investigate the impact of the number
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Figure 2.16: The Achievable Rate of the Proposed SL Based Reflection Beamforming
Solution Is Compared to the Upper Bound R⋆. The Simulation Considers an RIS with
64 × 64 UPA and M = 4 Active Channel Sensors, at 28GHz with L = 1 Channel Path.
The Figure Illustrates the Achievable Rate Gain When the Beams Selected by the Deep
Learning Model Are Further Refined Through Beam Training Over kB Beams.

of channel paths on the performance of the developed SL solution. In other words,

we examine the robustness of the proposed deep learning model with multi-path

channels. For this figure, we adopt the same simulation setup of Fig. 2.12 with an

RIS employing 64× 64 UPA. The channels are constructed considering the strongest

L = 1, 2, or 5 channel paths. As shown in Fig. 2.15, with the increase in the number

of channel paths, the achievable rate by the proposed SL solution converges slower to

the upper bound. This shows that the proposed deep learning model can learn from

multi-path channels if a large enough dataset is available.

2.9.6 Refining the Deep Learning Prediction

In Fig. 2.8-Fig. 2.15, we considered the proposed SL solution where the deep

learning model uses the sampled channel vectors to predict the best beam and this
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beam is directly used to reflect the transmitted data. Relying completely on the

deep learning model to determine the reflection beamforming vector has the clear

advantage of eliminating the beam training overhead and enabling highly mobile

applications. The achievable rates using this approach, however, may be sensitive to

small changes in the environment. A candidate approach for enhancing the reliability

of the system is to use the machine learning model to predict the most promising

kB beams. These beams are then refined through beam training with the receiver

to select the final beam reflection vector. Note that the most promising kB beams

refer to the kB beams with the highest predicted rates from the deep learning model.

To study the performance using this approach, we plot the achievable rate of the SL

solution in Fig. 2.16, for different values of kB. As this figure shows, refining the

most promising kB yields higher achievable rates compared to the case when the RIS

relies completely on the deep learning model to predict the best beam, i.e., with kB.

The gain in Fig. 2.16 is expected to increase with a more time-varying and dynamic

environment, which is an interesting extension in future work.

Similarly, for the DRL solution, another candidate approach for refining the DRL

prediction is to use the trained DRL model in predicting the most promising kB

beams. Then, these beams are used for beam training to identify the best beam that

will be utilized for the rest of the coherence block. Fig. 2.17 illustrates the achievable

rate of the proposed DRL based solution compared to the upper bound, at different

values of kB (1, 3), using 4 active elements. As demonstrated, the beam training of

the promising kB beams achieves better performance than just relying on the best

network-predicted beam to reflect the incident signals. To test the effectiveness of

the proposed framework, we examined another variant of the algorithm by updating

its reward policy such that RQ(t) = 1 if R(t) = R⋆(t); otherwise, RQ(t) = −1, as

illustrated in Fig. 2.17. The proposed DRL solution under this ideal rewarding as-
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Figure 2.17: The Achievable Rate of the Proposed DRL Based Approach Is Compared to
the Upper Bound R⋆. The Simulation Considers an RIS with 40× 10 UPA, M = 4 Active
Elements, and L = 15 Channel Paths, at 3.5GHz. The Figure Illustrates the Achievable
Rate Gain When the Beams Selected by the Deep Reinforcement Learning Model Are
Further Refined Through Beam Training Over kB Beams.

sumption can converge to the optimal rate. This indicates that the small gap between

the performance of the proposed solution and the upper bound can be explained by

the practical assumptions of using threshold-based rewards and operating in an en-

vironment with 15 channel paths. These results show the gains from exploring deep

reinforcement learning frameworks to develop standalone RIS architectures.

2.10 Conclusion

In this chapter, we considered RIS-assisted wireless communication systems and

developed efficient solutions that design the RIS interaction (reflection) matrices with

negligible training overhead. We first introduced a novel RIS architecture where only

a small number of the RIS elements are active (connected to the baseband). Then,

we developed three solutions that design the RIS reflection matrices for this new ar-
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chitecture with almost no training overhead. The first solution leverages compressive

sensing tools to construct the channels at all the antenna elements from the sampled

channels seen only at the active elements. The second approach exploits deep learning

tools to learn how to predict the optimal RIS reflection matrices directly from the

sampled channel knowledge, which represents what we call environment descriptors.

Given the objective of developing standalone RIS architectures, the third approach

exploits deep reinforcement learning frameworks for the RIS to learn how to predict,

on its own, the optimal interaction matrices directly from the sampled channel knowl-

edge. This solution does not require an initial dataset collection phase as opposed to

the supervised learning based solutions.

Extensive simulation results based on accurate ray-tracing showed that the three

proposed solutions can achieve near-optimal data rates with negligible training over-

head and with a few active elements. Compared to the compressive sensing solution,

the deep learning solutions requires a smaller number of active elements to approach

the optimal rate, thanks to leveraging its prior observations. Further, the deep learn-

ing solutions does not require any knowledge of the RIS array geometry and does not

assume sparse channels. To achieve these gains, however, the deep learning model

needs to collect enough dataset, which is not needed in the compressive sensing so-

lution. The proposed deep reinforcement learning solution, however, can converge

near the optimal data rates with no dataset collection overhead and with few active

elements.

For the compressive sensing solution, there are several interesting extensions, in-

cluding the optimization of the sparse distribution of the active sensors leveraging

tools from nested and co-prime arrays. Further, based on the expected large physical

dimensions of the RIS, different parts of the RIS may observe different views of the

propagation environment [36]. This motivates the need to account for non-stationary
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properties in RIS performance evaluation as well as reflection beamforming design.

Finally, in order to quantify the real-world performance of the RIS systems, it is

neither realistic to assume a nearly stationary outdoor environment nor to consider

this wide range of reflection phase shift values away from the specular reflection an-

gle. For this reason, it is interesting to investigate the robustness of RIS systems in

highly dynamic environments, under more practical reflection phase shift hardware

constraints.
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Chapter 3

MILLIMETER WAVE MIMO BASED SCENE DEPTH ESTIMATION

3.1 Abstract

Augmented and virtual reality systems (AR/VR) are rapidly becoming key com-

ponents of the wireless landscape. For immersive AR/VR experience, these devices

should be able to construct accurate depth perception of the surrounding environ-

ment. Current AR/VR devices rely heavily on using RGB-D depth cameras to achieve

this goal. The performance of these depth cameras, however, has clear limitations in

several scenarios, such as the cases with shiny objects, dark surfaces, and abrupt color

transition among other limitations. In this chapter 1 , we propose a novel solution for

AR/VR depth map construction using mmWave MIMO communication transceivers.

This is motivated by the deployment of advanced mmWave communication systems in

future AR/VR devices for meeting the high data rate demands and by the interesting

propagation characteristics of mmWave signals. Accounting for the constraints on

these systems, we develop a comprehensive framework for constructing accurate and

high-resolution depth maps using mmWave systems. In this framework, we developed

new sensing beamforming codebook approaches that are specific for the depth map

construction objective. Using these codebooks, and leveraging tools from successive

interference cancellation, we develop a joint beam processing approach that can con-

struct high-resolution depth maps using practical mmWave antenna arrays. Extensive

1This chapter is based on the work published in the journal paper: A. Taha, Q. Qu, S. Alex, P. Wang, W. L.
Abbott and A. Alkhateeb, ”Millimeter Wave MIMO-Based Depth Maps for Wireless Virtual and Augmented
Reality,” in IEEE Access, vol. 9, pp. 48341-48363, 2021. This work was supervised by Prof. Ahmed
Alkhateeb. Dr. Qi Qu, Dr. Sam Alex, Dr. Ping Wang, and Dr. William L. Abbott provided important ideas
for the millimeter wave MIMO based system design that greatly improved the work.
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simulation results highlight the potential of the proposed solution in building accurate

depth maps. Further, these simulations show the promising gains of mmWave based

depth perception compared to RGB-based approaches in several important use cases.

3.2 Introduction

Wireless augmented and virtual reality (AR/VR) applications are recently attract-

ing increasing interest. Realizing wireless AR/VR in practice can open the door for

a wide range of interesting applications and use cases. Enabling immersive AR/VR

experience, however, requires high resolution and accurate depth perception. This

can potentially allow the wireless AR/VR users to move freely within their indoor or

outdoor environment. Current depth perception approaches for AR/VR systems rely

mainly on RGB-D (depth) cameras for constructing the depth maps. While RGB-D

based depth map construction approaches can generally provide good accuracy, they

suffer from critical limitations in scenarios with bright shiny or transparent surfaces,

dark objects, and large rooms among others. These limitations stem from the funda-

mental properties of the way visible light propagate and interact with the different

surfaces.

In order to overcome these limitations, we propose to leverage mmWave systems

and signals for improving the depth map estimation accuracy. This is motivated

by the interesting characteristics of mmWave signals and by the note that mmWave

systems will be deployed in future AR/VR devices anyway for meeting the wireless

communication requirements [73]. In terms of the mmWave signal characteristics, the

propagation of these signals is not affected by the interference from the light sources

which makes mmWave systems capable of detecting bright and dark objects. Fur-

ther, the mmWave diffuse scattering and specular reflection properties could help in

detecting transparent objects as well as rough surfaces. These aspects among others
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motivate exploring the potential of leveraging mmWave transceivers for complement-

ing the RGB-D depth-maps in AR/VR systems, which is the focus of this chapter.

3.2.1 Prior Work

Previous depth map construction approaches focused on leveraging: (i) monocular

images using RGB cameras [8], (ii) passive/active stereo images using either RGB-D

depth cameras [15, 16] or infrared (IR) stereo cameras [17, 18], and (iii) gated images

using active gated imaging cameras [19, 20]. In [8], a monocular depth estimation

approach capable of capturing the object boundaries is proposed. In [15], RGB im-

ages along with sparse depth samples, acquired from depth cameras or computed

via Simultaneous Localization and Mapping (SLAM) algorithms, are used jointly to

reconstruct the depth maps. An alternative approach for depth estimation was pro-

posed in [16], where a monocular structured-light camera — a calibrated stereo set-up

with one camera and one laser projector— is leveraged for estimating the disparity.

As for the active stereo systems, in [17], IR projected pattern from stereo IR cameras

is adopted for depth estimation through active stereo matching. The IR images are

acquired from the Intel Realsense camera [74]. Also, the IR pattern characteristics

needed for active stereo matching are described in [18]. In addition, high-resolution

depth images can be achieved for far objects using active gated imaging systems, as

in [19, 20].

These depth map construction approaches [8, 15–20, 26], however, have several im-

portant complications as follows. (i) First, these depth map construction approaches

normally fail to sense the depth for shiny, dark, transparent, and distant surfaces.

While there are some attempts in solving these challenges using IR stereo cameras

[17] or excessive processing of the RGB-D images [27], there is no complete and gen-

eral solution yet to this problem. (ii) Further, these IR and RGB-D based depth map
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construction algorithms suffer from a critical limitation, which is the depth ambigu-

ity for faraway objects/surfaces. The depths for distant surfaces can not be resolved

by the algorithms in [17, 27]. (iii) Another key challenge is the additional bill of

materials (BOM) cost incurred from integrating the IR stereo camera systems into

the wireless AR/VR device architectures. On the contrary, the existing mmWave

systems in the wireless AR/VR device architectures incurs no additional BOM cost

when leveraged for depth map estimation purposes jointly with the primary purpose

of wireless communications. (iv) The field of view coverage is also a main challenge.

The depth map coverage is limited by the camera field of view. The camera field of

view is constrained by the camera lens and by the light sensor. The field of view in

mmWave MIMO systems, however, is constrained by the array radiation pattern, as

will be explained in Section 3.7. By contrast, the typical field of view in mmWave

MIMO systems can be larger than the typical camera field of view.

These challenges motivate the research for other technologies to complement the

RGB-D cameras in accurately sensing the VR/AR environment. One promising tech-

nology for this goal is employing wireless millimeter wave (mmWave) systems. Since

mmWave antenna arrays will be used to satisfy the communication high data rate

demands of wireless VR/AR, it is interesting to investigate if they could also be

useful for VR/AR-relevant sensing functions, such as depth estimation. Initial stud-

ies for using mmWave communication arrays for radar and sensing were presented

in [75, 76]. These studies, however, focused only on the ranging problem (of one

or multiple targets), not on the depth map construction problem. Other mmWave

sensing and tracking work that was not restricted to communications hardware was

presented in [77, 78]. The research in [77, 78], though, targeted tracking a single

object in a small distance, and cannot be directly applied to depth estimation of sur-

rounding surfaces in VR/AR. Further, the work in [75–78], did not study the trade-
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offs between estimation accuracy and different system parameters, such as number

of antennas and adopted bandwidth, and did not compare between the system per-

formance under transceiver architectures constraints, such as those imposed on the

analog phased-array transceiver architectures. By contrast, interesting research chal-

lenges are accompanying the mmWave MIMO based scene depth map construction

framework ranging from beam codebook design challenges to scene depth estimation

challenges. These challenges will be addressed in this work and will be explained in

detail in Section 3.6.

3.2.2 Contribution

In this chapter, we consider the mmWave MIMO based depth map construction

problem for AR/VR systems, adopting mmWave communication hardware and frame

structure. The contributions of this chapter can be summarized as follows.

• mmWave MIMO depth map construction framework: We formulate the mmWave

MIMO depth map construction problem and propose a general framework for

building depth maps under the constraints imposed by mmWave communication

hardware and frame structure.

• A design for depth-map suitable sensing beamforming codebook: We define the

characteristics of the desirable mmWave sensing beamforming codebook for

efficient depth map construction and develop a codebook construction approach

that meets these characteristics.

• High-resolution depth map construction approach: Given the designed beam-

forming codebook, we develop a novel signal processing approach for jointly pro-

cessing the signals received by the sensing beams and building high-resolution

depth maps.
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Figure 3.1: The Considered Setup Where the mmWave Communication System, Deployed
at the AR/VR Device, Is Jointly Leveraged for Sensing and Depth Map Construction. This
Figure Is Generated Using Blender [3] with 3D Models Downloaded from [4–7].

The proposed solution is extensively evaluated using accurate ray-tracing channels

generated from Wireless InSite [1], and ground truth depth images generated from

Blender [3]. The simulation results show the promise of mmWave MIMO sensing in

becoming a viable depth estimation solution for communication-constrained sensing

systems, either as a standalone approach or as an integrated approach with RGB-

D depth cameras. These simulation results can be of great usefulness for various

applications; they can be generally applied to AR/VR devices, smart home devices,

or auto drive devices.

3.3 System and Channel Models

In this section, the system model for the adopted communication-constrained

sensing framework is first formulated, followed by the characterization of the adopted

channel model.
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3.3.1 System Model

In this work, we propose to reuse the same AR/VR mmWave communication

system/circuits to do the sensing and depth map construction, as shown in Fig. 3.1.

Hence, we adopt a sensing model that accounts for the mmWave communication

system/circuit constraints. This communication-constrained sensing model consists

of a transmitter and a receiver; both are connected through a self-isolation circuitry

to a shared N antenna array, as depicted in Fig. 3.2. This type of operation is

commonly referred to as MIMO in-band full-duplex operation [79]. We assume that

the transmitter and receiver chains are well-isolated by an isolation circuitry to avoid

any self-interference. This assumption is reasonable with the recent developments

of self-interference systems. One example of these systems is the magnetic-free non-

reciprocal circulators (i) based on coupled-resonator loops [80] or (ii) based on CMOS

circulators operating in the 28GHz mmWave band [81]. Another example is the

receiver with integrated magnetic-free non-reciprocal circulator and baseband self-

interference cancellation operating in the Sub-6 GHz band [82]. A third example is

the magnetic-free SOI CMOS circulator operating in the 60GHz mmWave band [83].

Accounting for this self-interference, however, is an important direction for future

extensions.

Further, and for the sake of having low-cost and power consumption mmWave

transceivers, we adopt an analog-only architecture for the N -antenna array used for

transmission and reception, [24, 25], where the beamforming/combining is done in the

analog domain using a network of phase shifters. Next, we summarize the transmit

and receive signal models.

Transmit Signal Model: We consider a wideband single-carrier waveform com-

prising multiple time frames. These frames are transmitted over an aggregated time
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Figure 3.2: A Block Diagram of the Communication-Constrained Sensing Model Is Illus-
trated. The Sensing Framework, Π, Consists of (a) the Beam Codebook Design P and (b)
the Post-Processing Design g (.,P), to Estimate the Scene Depth Map D̂. The Upper Path
Represents the Transmitter Path, While the Lower Path Represents the Receiver Path.

interval of T seconds during which the environment is assumed to be relatively static.

This time interval is commonly referred to as a coherent processing interval (CPI)

[84]. Each frame consists of both data and preamble sequences designed for the wire-

less communication function. The co-existing sensing model also uses these preamble

sequences to sense the environment and build the depth maps, as will be explained

in detail in the following sections. This can be achieved by either splitting the frames

between sensing and communication or by designing the sensing and communication

beam training operations to share the same preamble sequences. Next, for ease of

exposition, we assume that M frames/preamble sequences are dedicated for sensing.

If sm[n] denotes the nth transmitted symbol at the mth frame, with E
[
|sm[n]|2

]
= 1,

then the complex-baseband representation of the transmit waveform can be written

as [85]

a(t) =
√
Es

M−1∑
m=0

Nm−1∑
n=0

sm[n] δ(t− nTS −mTF), (3.1)

where Es represents the average energy per symbol, TS is the symbol time, and TF

is the frame duration. Nm is the number of symbols in the mth frame, which is di-

vided into a preamble sequence of length Np and a set of data symbols of length
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Nd
m. Further, we assume that the same preamble sequence sp[n], n ∈ {1, . . . , Np}, is

transmitted in the first Np symbols of each frame. Note that for the sake of sim-

plifying the transmit and receive signal representation, we incorporated the transmit

pulse shaping and receive filtering functions into the channel model. Finally, if a

beamforming vector f ∈ CN×1 is used to transmit the signal at the AR/VR device,

the complex-baseband representation of the transmitted signal can expressed as

x(t) = fa(t). (3.2)

This transmitted signal will interact with the environment (through reflection, scat-

tering, etc.) and will be received back by the AR/VR device. Next, we describe the

receive signal model.

Receive Signal Model: Let Gtar denote the number of targets/scatterers in the

environment. Then, focusing on the preamble sequence transmission/reception (i.e.,

the first Np symbols of each frame), the receive sensing signal of the mth frame can

be written as

ym[n] =
Gtar∑
g=1

Ld−1∑
d=0

√
EswHHd,gfs

p[n− d] +wHvm[n], (3.3)

where w ∈ CN×1 is the combining vector at the AR/VR, and vm[n] ∼ NC (0
¯
, σ2

nI) is

the receive noise with variance σ2
n. Hd,g ∈ CN×N , d ∈ {1, . . . , Ld − 1}, is the delay-

d channel matrix between the transmission from and the reception by the AR/VR

antenna array, which is described in the following subsection.

3.3.2 Channel Model

Given that the depth sensing problem highly relies on the accurate modeling of

the surrounding environment and its geometry, we adopt a geometric channel model

in this work. More specifically, we consider the extended Saleh-Valenzuela wideband
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geometric channel model [86–89]. Based on that, the gth target contribution in the

delay-d channel, Hd,g, can be modeled as

Hd,g=
√

Gg

Lray∑
ℓ=1

[
αℓe

−ȷ2πfcτℓp (dTs − τℓ)×

aR

(
ϕR
ℓ,g, θ

R
ℓ,g

)
aH
T

(
ϕT
ℓ,g, θ

T
ℓ,g

) ]
, (3.4)

where Lray is the number of channel clusters; each cluster is contributing with one

ray of complex channel coefficient αℓ, time delay τℓ, and azimuth/elevation angles of

departure and arrival, ϕT
ℓ,g, θ

T
ℓ,g and ϕR

ℓ,g, θ
R
ℓ,g, respectively. aT(·, ·) and aR(·, ·) represent

the transmit and receive array response vectors associated with the angles of departure

and arrival respectively. The transmit and receive pulse shaping signals are included

within p(t) such that p(t) = pT(t) ∗ pR(t). The path gain associated with the gth

target is denoted by Gg and can be expressed as

Gg =
GTGRλ

2σRCS
g

(4π)3(ρg)
2PL

, (3.5)

where GT and GR are the transmitter and receiver gains, λ is the operating wave-

length, PL is the path loss exponent. Finally, ρg denotes the distance (range) between

the AR/VR device and the gth target/scatterer and σRCS
g denotes the radar cross sec-

tion of this target.

3.4 Problem Definition

Our objective in this work is to efficiently estimate the depth/range map of the sur-

rounding environment using the communication-constrained mmWave MIMO sensing

model in Section 3.3. Before delving into the formal problem definition, it is impor-

tant to distinguish between the range and the depth of a certain target. As depicted

in Fig. 3.3, the range of a target with respect to the AR/VR camera (which is aligned

with the AR/VR antenna array) is the linear radial distance from the camera center
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(focal point) to the target. For the depth, it is measured by the y-coordinate of the

camera center (focal point) with respect to the x-z plane of the target. Given that

the range and depth can be calculated from one another, we focus our formulation

on the depth estimation problem. Next, we define the depth map of the surrounding

environment with respect to an AR/VR device.

Definition (Depth Map): We define the depth map Dmap of resolution Mh ×Mw

as an image of Mh pixels high and Mw pixels wide, where the value of each pixel

represents the smallest depth between the AR/VR device and the targets/objects in

this pixel.

In this work, we express this depth map as an Mh×Mw matrix Dmap ∈ RMh×Mw .

Further, we use Mres = MhMw to denote the total number of pixels in the depth

map. The range map Rmap ∈ RMh×Mw is similarly defined. Now, given the sys-

tem and channel models in Section 3.3, the AR/VR device constructs the estimated

mmWave-based depth map through two main steps: (i) sensing the environment us-

ing several beamforming and combining sensing vectors and (ii) post-processing the

receive sensing signal to construct the estimated depth map. More formally, if a

beamforming-combining pair (fm,wm) is used to transmit and receive the Np sym-

bols of the mth preamble sequence, then the receive sensing signal can be expressed

as

ym[n] =

Ld−1∑
d=0

√
EswH

mHdfms
p[n− d] +wHvm[n], (3.6)

where n ∈ {0, 1, . . . , Np + Ld − 1},Hd =
∑Gtar

g=1 Hd,g. By stacking the Np+Ld receive

symbols (from transmitting the preamble sequence), we get ym =
[
ym[0], . . . , ym[N

p+

Ld− 1]
]T
, which represents the receive sensing vector of one preamble sequence using

one beamforming-combining pair. Next, if M preamble sequences are used to sense

the environment via M beamforming-combining pairs (fm,wm) ,m ∈ {1, . . . ,M},
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then the aggregated receive sensing signal can be written as

Y = [y1, . . . ,yM ]. (3.7)

For ease of exposition, we define the sensing beamforming codebook P as the

codebook that includes the M beamforming-combining pairs, i.e., P = {(fm,wm) :

m ∈ {1, . . . ,M}}. Finally, given the receive sensing matrix Y, a post-processing is

applied for estimating the depth map. If g(.) denotes the post-processing function,

the estimated depth map D̂map ∈ RMh×Mw can be written as

D̂map = g(Y;P). (3.8)

Our objective in this work then is to design the sensing beamforming codebook P and

the post-processing g(·) to efficiently estimate the depth map D̂map to be as close as

possible to the actual depth map Dmap. To evaluate the performance of the proposed

approaches, we will adopt the root-mean squared estimation error (RMSE) and the

mean absolute error (MAE) between the depth maps, which are defined as

∆RMSE =

√
1

M
∥Dmap − g (Y;P)∥22, (3.9)

∆MAE =
1

M
∥Dmap − g (Y;P)∥21 . (3.10)

In Section 3.6, we will present the general framework of our proposed depth map

estimation approach. This will be followed by a detailed description of the two main

components in this framework, namely the beamforming codebook design P and the

post-processing solution g(.), in Sections 3.7 and 3.8.

3.5 Background

Before going into the proposed framework for estimating depth/range maps using

mmWave MIMO, we provide a brief background on the basis of the single-target
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Figure 3.3: This Figure Shows the Conventional Single Target Range Estimation Problem,
Where One Target Exists in Free Space in Line-of-sight (LoS) with the AR/VR Device.
This Device Steers Perfectly One Beam Towards That Target to Estimate the Range.

range estimation problem. For a preliminary model, consider one target in the free

space with a Line-of-sight (LoS) path to the AR/VR device. Further, consider the

case when one mmWave beam is perfectly steered towards that target, as depicted

in Fig. 3.3. Adopting this preliminary model, the target range estimation accuracy

bound will be first examined. Then, a description of the main algorithms used in the

literature to approach this problem is provided.

3.5.1 Target Range Estimation Accuracy

Our main objective is to find the fundamental limit for mmWave MIMO based

depth estimation, which can be considered as range estimation at every possible

eyesight direction, i.e. at every azimuth angle ϕ ∈ [0, 2π[ and every elevation angle

θ ∈ [0, π[. For the range estimation accuracy, one useful metric is the Cramer-Rao

lower bound (CRLB) on the range estimation. For white Gaussian noise, the CRLB

provides a lower bound on the mean-squared-error of any unbiased estimator, hence

it is used as a benchmark for the performance analysis of parameter estimation[90].

Considering the case of range estimation for a single target, the CRLB of this single
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target range is formulated as [76, 84, 90]

σ2
ρ̂ ≥

ς2

8Pint η2B2 SNRrad

, (3.11)

where ς is the speed of light, B is the transmission bandwidth, Pint is the integration

gain and is equal to the number of symbols used for preamble estimation, and η

depends on the power spectral density shape of a(t) over the preamble duration.

Under the assumption of a flat spectral density for a(t), η2 = (2π)2 /12. The radar

signal-to-noise ratio for this target can then be expressed as SNRrad = EsGrad/σ
2
n,

where Grad denotes the path gain associated with the target.

3.5.2 Target Range Estimation Algorithms

Estimating the round trip delay τ̂ is equivalent to finding the range estimate ρ̂,

since they are directly related through τ̂ = 2ρ̂/ς. Given the extensive research on

delay estimators in the literature [84, 91], we will restrict the scope of this work on

the magnitude based delay estimators in [92] for simplicity. In a general sense, given a

known transmit preamble sequence x0[n] and the received baseband sequence z[n], the

receiver can estimate the round-trip delay by maximizing an objective function, the

cross-correlation function between the two time-sequences, over a range of possible

delays. Based on this notion, two delay estimators are formulated as follows [92].

Basic Correlator

The basic correlator is a coarse delay estimator that performs the maximization at the

same sampling frequency, fS, tuned by the AR/VR communication system. Assume

that the length of the received baseband sequence, z[n], is Lz samples, where the last

Nz samples are non-zeros. The range estimate can then be formulated as

ρ̂BC =
ςTS

2
argmax

q:q∈Q

∣∣∣∣∣
Lz−1∑

n=Lz−Nz

x0[n]× z∗[n− q]

∣∣∣∣∣
2

. (3.12)
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where TS = 1
fS

= 1
B

denotes the sampling time, Q represents the set of possible

discrete sample delays, and the optimal q solution is denoted by qBC. Unfortunately,

the accuracy of this range estimate is limited by the sampling frequency fS. One

attempt of improving the estimation accuracy is by performing the maximization at

a higher sampling frequency. This attempt, however, increases the computational

complexity dramatically, which motivates the role of the upcoming delay estimator,

the massive correlator [92].

Massive Correlator

The primary function of the massive correlator is to perform the maximization of

the objective function at a higher sampling frequency without the computational

burden of computing the shift in real time. For this reason, [92, 93] introduced the

solution of pre-designing a specific correlator bank that contains shifted versions of

the reference sequence, x0[n]. The receiver will then multiply the received sequence

by the correlator bank to compute the objective function.

We describe the steps of the massive correlator algorithm as follows [92, 93]. (a)

Upsample x0[n] with a sampling frequency higher than fS, denoted as fest. (b) Define

the correlator bank matrix, X0, where each row of this matrix is a shifted version of

the upsampled x0[n]. Let the number of rows inX0 be equal to (2δ + 1), where δ is the

largest lag/advance discrete fractional delay in the receive sequence, such that δ = fest
2fS

.

(c) Downsample independently each row of the correlator matrix to the lower sampling

frequency fS; let the resulting matrix be named as B0. The reason for this step is to

test delays at the higher sampling frequency, fest, but only apply multiplications at

the lower sampling frequency, fS. (d) Shift back the receive sequence, z[n], with the

coarse discrete delay estimate, qBC, such that z̄[n] = z[n+qBC], and then concatenate

the sequence into one row vector, z̄. (e) Calculate the fractional range estimate, ρ̂′,
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such that ρ̂′ = ς
2fest

(
−(δ + 1) + argmaxq′ [g]q′

)
, where g = z̄×BH

0 . (f) Calculate the

fine range estimate, ρ̂MC, such that ρ̂MC = ρ̂BC + ρ̂′.

With an end goal of constructing depth maps, these range estimation algorithms

will then be leveraged by the mmWave MIMO based depth estimation as explained

in the upcoming sections. In the next section, we formulate a general framework for

scene depth estimation.

3.6 General Framework for Scene Depth Estimation

In this section, we highlight the key elements of the proposed depth map esti-

mation approach, namely the sensing beamforming codebook P and post-processing

g(.), and discuss the challenges associated with designing these elements. As depicted

in Fig. 3.4, we first design the sensing beamforming codebook P offline based on the

desired AR/VR properties such as the field of view, the scene aspect ratio, and the

number of horizontal and vertical beams covering the scene view. To build the depth

map of a certain scene, the beam pairs of the designed codebook are used to sense the

environment and acquire the receive sensing matrix Y in (3.6). This receive signals
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are then jointly processed using the post-proposed approach to build the depth map.

In the remaining of this section, we explain the challenges associated with designing

the codebook and the post-processing operations. Then, we will present how our

proposed solutions overcome these challenges in Sections 3.7 and 3.8.

3.6.1 Codebook Design Challenges

To effectively sense the surrounding environment and build efficient depth maps,

the beams of the sensing codebooks should be designed to scan the full scene. Since the

mmWave MIMO based depth maps may potentially complement the RGB-D based

maps, our objective is to build a beamforming codebook that scans the full rectangular

grid of the typical depth sensors of the AR/VR cameras. However, the classical beam

steering codebooks such as the DFT codebooks [94], that independently sample the

azimuth and elevation directions, do not normally fit a rectangular grid, as shown in

Fig. 3.5(b). They instead form a parabolic grid, i.e., for a fixed elevation angle, the

grid line of these codebook beams are parabolic curves as shown in Fig. 3.5(a). This

mismatch between the mmWave MIMO-based and camera-based depth grids could

lead to clear distortion in the joint mmWave/RGB-D depth map construction and

make it hard to complement the RGB-D depth map using mmWave MIMO sensing.

One possible solution is to estimate the depths on the parabolic grid using the

classical beamforming codebook and then interpolate/extrapolate to calculate the

rectangular depth map. The main disadvantage of this solution, however, is that

the interpolation can potentially lead to considerable loss in the depth map accuracy

as the changes of the depth are not normally smooth in nature. Hence, in order to

avoid the interpolation loss, the more persuasive solution is to develop a depth map

compatible beamforming codebook that fits exactly the desirable rectangular sensor

grid. With this motivation, we propose a beamforming/combining design approach
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Figure 3.5: (a) The Intersections Between the Classical Codebook Beam Directions and
the x-z Depth Plane Form the Parabolic Shape of the Classical Codebook Grid. (b) The
Mismatch Between the Classical Codebook Grid of a 16 × 16 UPA and the Desirable
Rectangular Grid for a Depth Map Is Illustrated at a y = 13.32mm Depth Plane, for a
Scene of 100◦ Field of View and 16/9 Aspect Ratio.

in Section 3.7 to overcome the codebook mismatch challenge.

3.6.2 Scene Depth Estimation Challenges

The sensing beamforming codebook is used to sense the surrounding environment.

Now, given the receive sensing matrix Y, the objective of the post-processing is to

construct an accurate depth map of the facing scene. This process, however, has sev-

eral challenges. In order to explain these challenges, let’s first consider the case when

the environment has only a single target. In this case, the sensing/scanning beam that

is directed towards the region that includes this target will result in some backscat-

tering signal. This signal can be used for calculating the round-trip time of flight and

consequently the range of this target, leveraging the MIMO radar concepts [84, 95]

and the algorithms detailed in Section 3.5.2. In terms of the range/depth map, the

pixel that includes the region of this target will simply have the value of the estimated

range/depth. In practice, however, the environment has several targets/surfaces and

the mmWave arrays have strict constraints on their hardware: power budget, compu-
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tational complexity, etc. These limitations lead to critical challenges for our objective

of building accurate depth and range maps of the environment. More specifically, if we

adopt the approach that scans the surrounding scene using a beamforming codebook

and processed the receive sensing signal of each beam independently to estimate the

depth of the region defined by this beam, then this approach will have the following

key drawbacks.

• Low-resolution depth-maps: The low resolution drawback is mainly due to (i)

the limitation on the number of AR/VR antennas, which is controlled by many

factors in the AR/VR device such as the device dimensions, computational

complexity, circuit routing, power consumption, etc., and (ii) the number of

beams in the sensing codebook P , which is limited by the time allocated for

the depth estimation process.

• Inter-target interference: The constraints on the number of antennas at the

AR/VR device limit the system spatial resolution. This makes it hard to dif-

ferentiate between the ranges/depths of the different targets/surfaces that are

close to each other. In other words, when measuring the depth of the object in a

particular region/ direction, multiple objects/surfaces may reflect the incident

signal at the same time. The interference between these reflected/scattered sig-

nals may highly affect the accuracy of the range/ depth estimation. Hence, if

a certain pixel has multiple objects/surfaces, it will be difficult to estimate the

shortest depth of the objects in this pixel (to follow the depth map definition

in Section 3.4).

• Inter-path interference: When sensing the range/depth of a certain target, the

optimal situation (in terms of depth estimation accuracy) is when the target

backscatters a single ray to the receiving array. In practice, however, the signal
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incident on a certain target may experience more than one phenomenon, such as

scattering, reflection, diffraction, etc., which results in multiple rays. More than

one of these rays could traverse the environment in different ways/directions,

especially in indoor environments, before reaching the receiver. This means

that they may reach the receiving array from multiple angles and with different

time of flights. This causes an inter-path interference which makes it hard to

accurately estimate the range/depth of the target of interest. For example, if the

receiver estimates the range/depth based on a wrong path, this may noticeably

degrade the accuracy of the depth map estimation. This challenge is depicted

in Fig. 3.6. As illustrated, the challenge is how to design the sensing framework

(the codebook and post-processing) to detect the desired channel path (the

path in blue) while filtering out all the undesired channel paths. Examples of

undesired paths are the paths 2-4. Path 2 is transmitted and received within

the main lobe. Path 3 is transmitted and received within the side lobe. Path

4 experiences multiple reflections instead of back-scattering, before reaching

back the receiver. It has to be noted that the diffuse scattering and specular

reflection properties of the mmWave signals are still crucial for constructing

depth maps despite their contribution to the inter-path interference challenge.

Without these properties, the sensing framework may not be able to construct

a meaningful depth scene of the surrounding environment.

In the next two sections, we efficiently design the two elements of our proposed

depth map sensing framework, namely the sensing codebook and the post-processing,

to address these challenges.
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Figure 3.6: The Multipath Estimation Challenge for Scene Range Estimation Is Illustrated.
The Design Challenge Is How the Sensing Framework Can Detect and Estimate the Range
Through the Desired Channel Path (Path 1 in Blue) and Avoid Making Faulty Estimation
Because of the Other Undesired Paths (Paths 2-4) in the Environment.

3.7 Depth Map Based Design for Sensing Codebooks

As discussed in Section 3.6.1, our objective is to design a sensing beamforming

codebook that fits the rectangular grid of the depth camera. In this section, we first

present our codebook design that achieves this objective. Then, we incorporate a new

side-lobe reduction approach to ameliorate the inter-path interference problem.

3.7.1 Proposed Codebook Design

Since the objective from the beamforming-combining pair codebook design is for

the codebook grid to match the desired rectangular grid of a range/depth scene, we

start with the relevant camera geometry equations. The scene definition starts by

defining the key quantities of the field of view, FoV, and the scene aspect ratio, AR.

Let the field of view be centered around the boresight antenna array direction. It is

worth noting that the separation distance of the camera plane away from the antenna

array reference point, aka the focal length, is irrelevant in our codebook design. This
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is based on the notice that the beamforming/combining codebook design normally

depends on angles rather than distances.

In a general sense, for any chosen value of focal length, the sensor grid points’

coordinates are first calculated to determine the codebook angles accordingly. More

specifically, assume that the focal length is set to a certain value, FL. The camera

plane width, aka the sensor grid width in the horizontal dimension, SH, and cam-

era plane height, aka the sensor grid height in the vertical dimension, SV, can be

calculated as

SH = 2FL tan (FoV/2) , and SV = SH/AR. (3.13)

For designing a beamforming-combining pair codebook, let N = NV × NH, where

NV and NH denote the number of UPA antennas on the elevation (vertical) and

azimuth (horizontal) dimensions, respectively. Consider an oversampled beamforming

codebook of M = NVNH beams, where NV = NVF
OS
V and NH = NHF

OS
H with FOS

V

and FOS
H denoting the oversampling factors in the elevation and azimuth dimensions,

respectively. The grid spacing in the vertical and horizontal directions are expressed

as QV = SV/NV and QH = SH/NH. Notice that the codebook resolution of NVNH

beams will be mapped at the end to the desired up-scaled depth image resolution of

Mres = Mh ×Mw pixels.

Let the x- and z-axes be aligned in the direction of the sensor grid width and

height respectively, and let the y-axis be the direction of the depth. The (x, y, z)

rectangular coordinates of the sensor grid points on the camera plane can then be
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defined as

(x, y, z) ∈ C, C = X × Y × Z, (3.14)

X =
{
x : x ∈

{−SH

2
+ QH

2
, −SH

2
+ 3QH

2
, . . . , SH

2
− QH

2

}}
,

Y = {y : y = FL} ,

Z =
{
z : z ∈

{−SV

2
+ QV

2
, −SV

2
+ 3QV

2
, . . . , SV

2
− QV

2

}}
,

where we note that |C| = NVNH = M . After defining the (x, y, z) coordinates of every

grid point on the camera plane, their M corresponding (θz, θx) angles with respect

to the z- and x-axes can now be calculated using the mapping from rectangular to

spherical coordinates, such that

O =

{
(θz, θx) : θz =

[
π
2
− arctan

(
z√

x2+y2

)]
, (3.15)

θx =

[
π
2
− arctan

(
x√

y2+z2

)]
, (x, y, z) ∈ C

}
.

Finally, after calculating the (θz, θx) angles for each and every grid point, the

beamforming codebook, F , for an NH ×NV transmit UPA, is then expressed as

F =
{
f ∈ CN×1 : f = b̃V (θz) ◦ b̃H (θx) , (θz, θx) ∈ O

}
, (3.16)

b̃V (θz) =
[
1, e−ȷκds cos(θz), . . . , e−ȷ(NV−1)κds cos(θz)

]T
,

b̃H (θx) =
[
1, e−ȷκds cos(θx), . . . , e−ȷ(NH−1)κds cos(θx)

]T
,

where κ = 2π
λ

is the wave number, λ is the operating wavelength, and ds is the

antenna element spacing between adjacent UPA elements in meters. b̃H ∈ CNH×1

and b̃V ∈ CNV×1 are the horizontal and vertical basic vectors used for constructing

the beamforming codebook. We will call these vectors, b̃H and b̃V, the constituent

horizontal and vertical beamforming vectors, respectively. In our depth estimation

problem, the receive combining codebook,W , can be similarly defined for theNH×NV
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Figure 3.7: The Comparison Between (a) the Classical (on the Left Side) and the Proposed
(on the Right Side) Beam Codebook Design Is Demonstrated for a Scene of 100◦ Field of
View and 16/9 Aspect Ratio, Using 16 × 16 UPAs. The Proposed Codebook Eliminates
Any Grid Mismatch Distortion. The Top Figures Are the 3D Codebook Radiation Patterns,
While the Bottom Figures Are the 2D Codebook Grids at a Plane Within 13.32mm Depth.

receive UPA. For such case, the cardinalities of the sets are equal, |W | = |F | = |C| =

|O| = M . Further, let F ∈ CN×M and W ∈ CN×M be the matrices that consist of the

codebooks beams of F and W . Then, the proposed sensing beamforming-combining

pair codebook P can be expressed as

P =
{
(fm,wm) ∈CN×1 × CN×1 : fm = [F]:,m , (3.17)

wm = [W]:,m ,m ∈ {1, . . . ,M}
}
.

A comparison between the classical and the proposed beam codebook design is

demonstrated in Fig. 3.7 for a scene of 100◦ field of view and 16/9 aspect ratio, using

16 × 16 UPAs. The top figures are the 3D codebook radiation patterns, while the
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bottom figures are the 2D codebook grids at a plane within 13.32mm depth. As

shown, the proposed beam codebook eliminates any grid mismatch distortion.

3.7.2 Sidelobe Reduction Approach

As discussed in Section 3.6.2, to rectify the inter-path interference problem, the

sensing framework needs to filter out the undesired channel paths. As illustrated

in Fig. 3.6, one type of undesired channel paths is the type of paths transmitted

from/received by the sidelobes of a codebook beam. For this reason, we propose

an efficient sidelobe reduction (SLR) approach. In [96, 97], an SLR approach was

proposed for low sidelobe beamforming in uniform circular arrays. Inspired by their

work, we propose a new efficient sidelobe reduction approach to uniform planar arrays

(UPAs) to reduce beamforming/combining sidelobe levels.

The key idea of this approach is when applying different weights on the beamform-

ing/combining vector elements, the sensing framework can control the beam radiation

pattern in a way to increase the power difference between the mainlobe and the side-

lobes. Specifically, let cH ∈ RNH×1 and cV ∈ RNV×1 represent the horizontal and

vertical weight vectors for sidelobe reduction. Let bH and bV denote the horizontal

and vertical constituent beamforming vectors after sidelobe reduction. The updated

beamforming codebook, F , for an NH ×NV transmit UPA, can then be rewritten as

F =
{
f ∈ CN×1 : f = bV (θz) ◦ bH (θx) , (θz, θx) ∈ O

}
, (3.18)

bV (θz) = b̃V (θz)⊙ cV, bH (θx) = b̃H (θx)⊙ cH,

[cV]rV = e
−(rV−µV)2

2σ2
V , µV = NV

2
, σV = NV

δV
, rV ∈ {1, . . . , NV}

[cH]rH = e
−(rH−µH)2

2σ2
H , µH = NH

2
, σH = NH

δH
, rH ∈ {1, . . . , NH}

where δH, δV denote the sidelobe reduction control variables; the higher the values, the

greater reduction in the sidelobe power levels compared to the mainlobe power level.

88



(a) No SLR (b) SLR, deltas = 3 (c) SLR, deltas = 4

Figure 3.8: Normalized Power Radiation Pattern Comparison Between (a) the Case With-
out the Sidelobe Reduction (SLR) Approach, (b) the Case with the SLR Approach Where
δH = δV = 3, and (c) Where δH = δV = 4. As Shown, Increasing the Values of the Control
Variables (the Deltas) Increases the Gap Between the Mainlobe Level and the Sidelobes
Levels. The Top Figures Are the 3D Views of the Patterns While the Bottom Figures Are
the Top Views.

The updated combining codebook W can be similarly defined. The beam codebook

P follows the same definition in (3.17).

Fig. 3.8 illustrates the radiation pattern in dB for one beamforming vector out of

the updated beamforming codebook, F , for different values of the sidelobe reduction

control variables, δH, δV. As depicted, increasing the values of the control variables

increases the power gap between the mainlobe level and the sidelobes levels. To take

into consideration the phase quantization of the RF phase shifters in the AR/VR

transceiver architecture previously shown in Fig. 3.2, we examine the effect of 2-bit

phase quantization on the power radiation pattern. The 2-bit discrete phase shift set

is
{
0, π

2
, π, 3π

2

}
. Fig. 3.9 compares the normalized power radiation pattern between

the case of continuous phase shifts and the case of 2-bit quantized phase shifts. As

depicted, the phase quantization affects the beam pattern shape of the sidelobes.
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(a) No SLR and Continuous Phase Shifts (b) SLR Deltas = 4 and Continuous Phase Shifts

(c) No SLR and 2-bit Phase Shifts (d) SLR Deltas = 4 and 2-bit Phase Shifts

Figure 3.9: Normalized Power Radiation Pattern Comparison Between the Case with No
Phase Quantization and the Case with 2-bit Phase Quantization, for Two Scenarios: With-
out or with the Sidelobe Reduction (SLR) Approach Where δH = δV = 4.

One main advantage of this approach is its computational efficiency; as formulated,

only two element-wise multiplication between the weight vectors and the constituent

beamforming vectors, b̃H, b̃V, are needed to update the beam radiation pattern. This

multiplication, however, requires an analog beamforming architecture with the ca-

pability of changing both the phase and magnitude. In the results section, we only

used this SLR-based beam codebook in the simulations of Fig. 3.25. In the future

work, it is interesting to explore phase-only approximations of this SLR-based beam

codebook structure. By contrast, reducing the sidelobe levels dramatically increases
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the beamwidth of the mainlobe, as depicted in Fig. 3.8. The increased mainlobe

beamwidth, however, can be mitigated by the other solutions proposed for rectifying

the inter-path interference problem, e.g. the successive interference cancellation (SIC)

algorithm and the joint processing (JP) solution, as will be described in the following

section.

3.8 Proposed Scene Range/Depth Estimation

In this section, given a pre-designed beamforming/combining codebook, P , we

propose an efficient approach for the scene range/depth estimation in AR/VR devices.

As depicted in Fig. 3.4, once the beamforming/combining codebook has been de-

signed, the AR/VR transmits the sensing signal while sweeping over all the beamforming-

combining vector pairs. Specifically, for a beamforming-combining vector pair (fm,wm),

where m ∈ {1, . . . ,M}, the receive sensing signal, ym ∈ CNp+Ld , can be modeled as

in (3.6) and (3.7). After reception, the acquired sensing signals are processed to

estimate the range and depth maps, as will be thoroughly explained in this sec-

tion. Our proposed post-processing solution has three main elements: (i) The use

of oversampled/overlapped beams, (ii) the successive interference cancellation based

management of inter-target and inter-path interference, and (iii) the joint processing

of the signals received using the codebook beams to realize high-resolution and accu-

rate depth maps. Next, we explain these three elements in Sections 3.8.1-3.8.3 before

presenting the scene range/depth map construction approach in Section 3.8.4.

3.8.1 Overlapped Beams

With the objective of increasing the resolution of the mmWave MIMO based depth

maps, we propose to adopt oversampled sensing codebooks to scan the surrounding

environment. In particular, for the sensing codebook, we adopt the developed code-
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book in Section 3.7.1 with oversampling factors of FOS
H and FOS

V in the azimuth and

elevation directions. While the oversampled codebook has the potential of enhanc-

ing the depth map resolution, it is important to note that advanced post-processing

(for the receive signals using these oversampled beams) needs to be incorporated to

achieve this goal. The reason mainly goes back to the wide beamwidth (and low spa-

tial resolution) of the codebook beams, which is fundamentally limited by the number

of AR/VR antennas. This wide beamwidth leads to a number of challenges: (i) The

spatial regions scanned by the oversampled beams have high overlap. This makes it

hard to differentiate between the depths of the different objects in the depth map

pixels, which challenges the objective of realizing high-resolution depth maps. (ii)

Since the codebook beams still have wide beamwidth, the inter-target interference

problem discussed in Section 3.6.2 still exists.

To address these challenges, we propose a novel post-processing approach based

on successive interference cancellation and joint-beam processing. This approach in

summarized in two main steps as follows. In the first step, a successive interference

cancellation (SIC) based algorithm is used to detect the most dominant channel paths

contributing to the range/depth estimation of the region covered by each codebook

beam. These paths form a set of candidate ranges/depths for the scene range/depth

estimation. In the second step, a developed joint-beam processing solution selects

one range/depth out of the set of candidate ranges/depths formed by the SIC algo-

rithm. These two sequential algorithms are discussed in detail in the following two

subsections.

3.8.2 Successive Interference Cancellation

The main goal of the successive interference cancellation (SIC) algorithm is to

detect all the dominant paths that might contribute to the range estimation of the
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Figure 3.10: The Operation of the Successive Interference Cancellation (SIC) Algorithm
Is Illustrated. The Delay Position of the Maximum Cross-correlation Is First Detected.
The SIC Algorithm Then Encodes a Signal Shifted at This Delay Position and Subtracted
It from the Receive Signal. After That, the Algorithm Repeats Itself until All the Local
Maxima above the Threshold Value Are Detected.

region of interest. This is motivated by its good performance in multi-target detec-

tions problems [98]. The SIC algorithm is applied in the discrete-time domain and

is summarized in Algorithm 3. The algorithm is described as follows. Let the length

of the receive sensing sequence ym[n] be Ly = Np + Ld symbols. First, as shown

in Fig. 3.10, for every codebook beam, the delay position of the maximum cross-

correlation magnitude value is detected. Q is the set of possible delays. Second, the

SIC algorithm encodes the transmit preamble signal to be shifted to this delay po-

sition and subtracted it from the received signal. Afterwards, the algorithm repeats

itself to detect the second local maximum above the threshold value. Finally, The

SIC algorithm stops iterating when all the local maxima above the threshold value are

detected. The output of this algorithm is a set of candidate delays for every codebook

beam. These sets pass as input to the next algorithm, the joint processing solution,

as will be explained in the next part. In Fig. 3.10, note that the cross-correlation

magnitude plot appears to be drawn as a continuous plot, only for illustration pur-

poses. The actual cross-correlation magnitude, however, is expressed in discrete time

delays.
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Algorithm 3 Successive Interference Cancellation

Inputs: Receive sensing signal ym[n], transmit preamble signal sp[n], threshold level ATH,

beamforming-combining pair codebook P .

Outputs: Candidate delay set for each beam, Tm, ∀m ∈ {1, . . . ,M},.

1: for m = 1 to M do

2: Initialize: Updated signal ỹm[n]← ym[n], solution set Tm ← ∅,∀m, and

Ã← ATH.
3: while Ã ≥ ATH do

4: Calculate the delay of the path with maximum cross-correlation

q̃ ← argmax
q:q∈Q

∣∣∣∣∣∣
Ly−1∑

n=Ly−Ny

sp[n]× (ỹm[n− q])∗

∣∣∣∣∣∣
2

.

5: Add the candidate delay q̃ to the solution set

Tm ← Tm ∪ {q̃} .

6: Calculate the energy of the transmit signal up to q̃

EQ ←
Ly−q̃−1∑

n=Ly−Ny

|sp[n]|2 .

7: Perform interference cancellation at q̃

Ã←

 Ly−1∑
n=Ly−Ny

sp[n]× (ỹm[n− q̃])∗

 .

ỹm[n]← ỹm[n]−
Ã

EQ

sp[n− q̃].

8: Calculate the next max. in the cross-correlation

Ã← max
q:q∈Q

∣∣∣∣∣∣
Ly−1∑

n=Ly−Ny

sp[n]× (ỹm[n− q])∗

∣∣∣∣∣∣
2

.
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Algorithm 4 Joint Processing Solution

Inputs: Candidate delay set for each beam, Th,v,∀h ∈ {1, . . . , NH},∀v ∈ {1, . . . , NV}.

Outputs: Scene range estimate (ρ̂h,v)
SRE ,∀h, v.

1: Initialize: Common adjacent set Nh,v ← ∅,∀h, v, difference set

Mh,v ← ∅,∀h, v.
2: for v = 1 to NV do

3: for h = 1 to NH do

4: Construct the common adjacent set

Nh,v ←(Th−1,v ∪ Th,v−1 ∪ Th−1,v−1 ∪ Th+1,v−1) .

5: Construct the difference set

Mh,v ← Th,v \ Nh,v.

6: ifMh,v ̸= ∅ then

7: Choose the least delay from the difference set

(ρ̂h,v)
SRE ← ςTS

2
minMh,v.

8: else

9: Choose the least delay from the candidate set

(ρ̂h,v)
SRE ← ςTS

2
min Th,v.
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Figure 3.11: This Figure Illustrates the Basic Operation of the Joint Processing (JP) Solu-
tion for Overlapped Beams. The JP Solution Sweeps from Left to Right, Then from Top
to Bottom. The JP Solution Decides on Which Path to Choose from the Current Candidate
Set by a Simple Comparison with the Sets of the Surrounding Grid Points.

3.8.3 Joint Processing Solution

The purpose of the joint processing (JP) solution between the overlapped beams

is to estimate the transitions in depth/range maps more accurately. The proposed

JP solution is summarized in Algorithm 4. The algorithm is described in detail as

follows. First, the JP solution works on the candidate delay sets, the output from the

SIC algorithm, {Tm}Mm=1, to choose one range estimate out of the candidate delay set.

This processing, however, is employed relative to the 2D codebook grid, as illustrated

in Fig. 3.11. Following this notion, the linear indices in Tm is now converted into

matrix subscripts Th,v through the transformation m = (v − 1)NH + h, such that

Tm = Th,v, where v is the elevation beam index (vertical grid index) and h is the

azimuth beam index (horizontal grid index). The objective is to calculate the scene

range estimates across all beam directions, (ρ̂h,v)
SRE ,∀h, v.

As shown in Fig. 3.11, the JP solution sweeps from left to right, then from top to

bottom. For each grid point, the JP solution uses (i) the set of the current grid point,

named as the ”current set”, and (ii) the sets of the previous adjacent grid points to
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construct a ”common adjacent set”. This common adjacent set is the union of the

sets of all previous adjacent grid points. Then, to investigate if a new object/surface

transition appears, this current set is compared with the common adjacent set to

detect if there is any set difference. This is based on the notion that the difference

set can probably be the new edges that will appear in the range map while sweeping.

If the set difference is not empty, then the solution chooses the path with the least

time-of-flight from the set difference. Otherwise, if the set difference is empty, then

the solution chooses the path with the least time-of-flight from the current set.

Algorithm 5 mmWave MIMO Sensing Based Range/Depth Estimation Framework
Inputs: Field of view FoV, aspect ratio AR, number of horizontal and vertical beams

NH, NV.

Outputs: Range map R̂map, depth map D̂map.

1: Design the beamforming-combining pair codebook, P , following Section 3.7.

2: for m = 1 to M do ▷ For each pair (fm,wm).

3: Acquire receive sensing signal, ym[n], as in (3.6), ∀n ∈ {0, 1, . . . , Np + Ld − 1}.

4: Calculate the candidate delay set for each beam,Tm,

∀m, as in Algorithm 3.
5: Calculate the scene range estimate, (ρ̂m)

SRE, ∀m, as in Algorithm 4.

6: Calculate fine range estimates, following Section 3.5.2.

(ρ̂m)
MC ← (ρ̂m)

SRE + (ρ̂m)
′ ,∀m.

7: Construct the range map, R̂map, from (3.20).

8: Construct the depth map, D̂map, from (3.21).
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3.8.4 Range/Depth Map Construction

In this section, we formulate the depth map construction approach, the last step

in Fig. 3.4. In summation of the broader view, the mmWave MIMO sensing based

range/depth map estimation framework is outlined in Algorithm 5. The algorithm

steps are summarized as follows. Step 1 refers to the design of the beamforming-

combining pair codebook P was covered in Section 3.7. Step 4 refers to the succes-

sive interference cancellation described in Section 3.8.2. Step 5 refers to the joint

processing solution detailed in Section 3.8.3. After that, in Step 6, the fine range

estimate can be calculated, such that (ρ̂m)
MC = (ρ̂m)

SRE + (ρ̂m)
′, where (ρ̂m)

′ is com-

puted from the algorithm described in Section 3.5.2. Next, after calculating the range

estimates, the upcoming steps (Steps 7,8 ) are focused on constructing the range and

depth maps. Note that the range of an object is actually the radial distance in spher-

ical coordinates. Fortunately, the (x, y, z) rectangular coordinates of the sensor grid

points on the camera plan were already calculated for the design of the beamforming-

combining pair codebook using (3.14). These rectangular coordinates in (3.14) can

then be converted to spherical coordinates, such that

S =

{
(θz,Φ) : θz =

[
π
2
− arctan

(
z√

x2+y2

)]
, (3.19)

Φ = arctan
(
y
x

)
, (x, y, z) ∈ C

}
.

In order to construct the matrices for the range and depth maps, let Θ,Φ ∈

RNV×NH be the matrices that represent the angles of the spherical coordinates (θz,Φ) ∈

S, respectively. Following Step 6 in Algorithm 5, the range map estimate R̂map ∈

RNV×NH can be expressed as[
R̂map

]
v,h

= (ρ̂m)
MC , m = (v − 1)NH + h, (3.20)

where m ∈ {1, . . . ,M}, h ∈ {1, . . . , NH}, v ∈ {1, . . . , NV}. Given the angles in
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Figure 3.12: This Figure Demonstrates the Adopted Simulation Framework for Scene
Depth Estimation. The Framework Consists of Designing the Indoor Setup, Generating
the Ground Truth Range/Depth Maps, and Constructing the Estimated Maps for Perfor-
mance Evaluation. For More Complex Setups, Designing the Indoor Scenarios Jointly in
Wireless InSite and Blender Can Be More Effective.

spherical coordinates and the range map estimate, the depth map estimate D̂map ∈

RNV×NH can then be expressed as

[
D̂map

]
v,h

= |ρ̂ sin (θz) sin (Φ)| , (3.21)

where ρ̂ =
[
R̂map

]
v,h

, θz = [Θ]v,h , Φ = [Φ]v,h , ∀v, h.

Finally, since the range and depth map resolutions are set toNH×NV, two-dimensional

image interpolation can be employed to scale the maps to the desired resolutions,

Mh×Mw. Examples of interpolation methods are the nearest neighbor interpolation

and the bicubic interpolation. Although the bicubic interpolation can probably be the

interpolation method of choice for achieving more estimation accuracy, the nearest

neighbor interpolation is more computationally efficient. In the simulation results of

Section 3.9, we evaluate the two interpolation approaches for our mmWave MIMO

based depth map construction problem.

3.9 Simulation Results

In this section, we evaluate the performance of the proposed mmWave based

depth estimation approach. First, we describe the adopted simulation framework
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in Section 3.9.1 before extensively studying the estimation accuracy of the proposed

approach under various scenarios and system parameters. The simulation results

presented can be of great usefulness for various applications; they can be generally

applied to AR/VR devices, smart home devices, or auto drive devices.

3.9.1 Simulation Framework

Since the depth estimation heavily depends on the environment under test, it

is crucial to evaluate the performance of the proposed solution based on realistic

channels. This motivates using channels generated by accurate ray-tracing to capture

the sensing dependence on the environment geometry, scatterers’ materials, AR/VR

position, etc. This is why we designed the simulations models using Remcom Wireless

InSite [1], which is an accurate 3D ray-tracing simulator. Further, to efficiently

incorporate diffuse scattering models, we need to have highly detailed floor plans

with a sufficient number of faces. To achieve this objective, we resorted to the high-

fidelity game engine, Blender [3], to build accurate floor plans. These plans/models

are then exported to Wireless InSite to obtain the ray-tracing outputs, and finally to

MATLAB to construct the channel models in (3.4) and implement the proposed depth

estimation approach. The proposed evaluation framework is illustrated in Fig. 3.12.

For benchmarking, we also use the Blender floor plans to obtain the ground truth

depth maps, which are essential to evaluate the accuracy of our solutions. The ground

truth maps are generated by placing a Blender camera at the same position of the

UPA reference antenna element, and adjusting the Blender camera parameters to

capture the same field of view.

Signal model: We adopt the signal model described in Section 3.3 with a focus

on the sensing system performance. The AR/VR device is assumed to be fixed in

position. Unless otherwise mentioned, the UPA size is 16 × 16 antennas (NH =
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NV = 16) at the mmWave 60GHz operating band with transmission bandwidth of

2GHz. The antenna elements have a gain of 0dBi with half-wavelength antenna

spacing. The transmit power is set to 30dBm. The preamble sequence is the same

as the one in the single carrier PHY packet preamble of the IEEE 802.11ad standard

(3328 symbols). M preamble sequences are used to sense the environment via M

beamforming-combining pairs. For the sake of calculating a rough estimate of the

time allocated for environment sensing through transmission and reception, assume

that all the M preamble sequences are transmitted sequentially with guard intervals

in between. The highest M value reported in the upcoming simulation results is 4096

beams. Assuming a sampling rate of 2Gsps, the sensing time estimate is ≈ 7ms.

Channel generation: The channel matrix, Hd, is generated in two steps. The first

step is generating the channel rays using the ray-tracing software, Wireless InSite.

The Wireless InSite propagation model is set to ’X3D’ with 0.1◦ ray-spacing and

enabled mode of diffuse scattering. Up to three reflections, one diffraction, and one

transmission properties are allowed for each ray in the Wireless InSite simulation.

The diffuse scattering model used is “directive with backscatter”; this model is fixed

across all materials in all the testing scenarios. The chosen diffuse scattering model

creates two scattering lobes; a forward lobe of diffuse scattered power centered on

the direction of specular reflection and a backward lobe centered on the opposite

direction of incidence. The diffuse scattering parameters of the different materials

are summarized in Table 3.1. The values reported in Table 3.1 follow the ITU default

parameter values at 60GHz. The second step in the sensing channel generation is

calculating the delay-d channel matrix out of the channel paths using the DeepMIMO

dataset generation code [2]. Using these channels and following (3.3)-(3.4), the noisy

receive sensing sequences are generated. The noise power is calculated based on a

2GHz bandwidth and a receiver noise figure of 7dB.
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Table 3.1: The Adopted Diffuse Scattering Parameters for Different Materials

Diffuse Scattering Parameter Concrete Ceilingboard Wood Floorboard Drywall Glass

Scattered to incident electric field ratio 40% 30% 15% 15% 10% 0%

Forward to backward scattering power ratio 75% 75% 75% 75% 75% 75%

Cross-polarization ratio 40% 40% 40% 40% 40% 40%

Narrowness of the scattering lobes 40% 40% 40% 40% 40% 40%

Table 3.2: The Estimation Error Results of the One Wall Scenario for Different Wall Materials

Estimation Error (m) Concrete Ceilingboard Wood Floorboard Layered Drywall Glass

Basic Correlator 0.101 0.099 0.101 0.0984 0.103 12.697

Massive Correlator 0.0983 0.097 0.0983 0.0983 0.101 15.498

102



(a) Estimated range map (c) Estimated depth map

(b) Ground truth range map (d) Ground truth depth map

Range RMSE = 0.127m 
Range MAE    = 0.098m

Depth RMSE = 0.153m 
Depth MAE    = 0.120m

Figure 3.13: The Maps for the One Wall Scenario Are Depicted for a Separation Distance
of 7 Meters from the AR/VR Device with 16 × 16 UPAs. The Depicted Maps Are the
Estimated Maps (at the Top), Ground Truth Maps (at the Bottom), Range Maps (on the Left
Side), and 1080p Depth Maps (on the Right Side). Comparing (a) with (b), the Range Map
Estimation Error: MAE = 0.098m. Comparing (c) with (d), the Depth Map Estimation
Error: MAE = 0.12m.

mmWave based depth estimation parameters: The beamforming-combining pair

codebook is designed based on a 100◦ field of view centered on the antenna array

boresight, a 16/9 scene aspect ratio, and horizontal and vertical oversampling factors

of unity. The ground truth depth maps are generated from Blender using a Blender

camera with a 100◦ field of view, a focal length of 13.43mm corresponding to a sensor

width of 32mm. The ground truth depth map image quality is set to 1080p resolution;

i.e., 1920× 1080 pixels. Concerning the massive correlator, fest is set to 100 multiple

of the sampling frequency fS; i.e., δ = fest
2fS

= 50. Unless mentioned otherwise, the

massive correlator is adopted for range estimation. Throughout this chapter, two
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(1.b) 16x8

Depth RMSE=0.208m 
Depth MAE=0.161m

(1.a) 8x8

Depth RMSE=0.395m 
Depth MAE=0.304m

(1.d) Ground truth

(2.d) Ground truth

(1.c) 16x16

Depth RMSE=0.153m 
Depth MAE=0.120m

(2.a) 8x8

Depth RMSE=0.329m 
Depth MAE=0.239m

(2.b) 16x8

Depth RMSE=0.202m 
Depth MAE=0.153m

(2.c) 16x16

Depth RMSE=0.148m 
Depth MAE=0.111m

Figure 3.14: The Depth Maps for the One Wall Scenario Are Depicted for Different An-
tenna Configurations and Codebook Resolutions, for a Separation Distance of 7 Meters.
Figures (a), (b), and (c) Illustrate the Estimated 1080p Maps for 8× 8, 16× 8, and 16× 16
UPAs. Figures (d) Illustrate the Ground Truth Maps. The Top Maps Are with No Code-
book Oversampling While the Bottom Maps Are with Codebook Oversampling Factors of
Two.

performance metrics are used: (i) root-mean-square-error (RMSE) between the es-

timated map and the ground truth map to indicate the standard deviation of the

estimation error, and (ii) mean-absolute-error (MAE) to denote the expected value

of the estimation error. The two metrics are defined in (3.9). Next, we evaluate

the performance of our proposed mmWave MIMO depth estimation approach in four

main scenarios: (i) A one wall scenario in Section 3.9.2, (ii) a two walls scenario

in Section 3.9.3; (iii)) a room with two pillars scenario in Section 3.9.4, and (iv) a

conference room scenario in Section 3.9.5.

104



200 400 600 800 1000 1200 1400 1600 1800

100

200

300

400

500

600

700

800

900

1000
5.5

6

6.5

7

7.5

(a) 12× 2 UPA

Depth RMSE = 0.505m

Depth MAE = 0.392m
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(b) 8× 3 UPA

Depth RMSE = 0.512m

Depth MAE = 0.397m
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(c) 6× 4 UPA

Depth RMSE = 0.473m

Depth MAE = 0.372m
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(d) Ground Truth

Figure 3.15: The 1080p Depth Maps for the One Wall Scenario Are Depicted at Different
Antenna Configurations, for a Separation Distance of 7 Meters. The Same Number of
Antenna Elements Is Used (24 Elements) and Codebook Oversampling Factors of Four
Are Employed. Figures (a), (b), and (c) Illustrate the Estimated Maps for 12×2, 8×3, and
6× 4 UPAs. Figure (d) Illustrates the Ground Truth Depth Map.

3.9.2 One Wall Scenario

The one wall scenario consists of an AR/VR transceiver facing a wall in free

space propagation. Unless otherwise mentioned, the separation distance between the

wall and the transceiver is 7 meters and the wall building material is concrete. In

Fig. 3.13, we show the estimated range and depth maps for the one wall scenario

compared to the ground truth maps. Fig. 3.13(a) and Fig. 3.13(b) show that the

range map estimation error has an average MAE of 0.098m and RMSE of 0.127m.

Further, the depth map estimation error Fig. 3.13(c) and Fig. 3.13(d) has an average

MAE of 0.12m and RMSE of 0.153m. Overall, these figures show that the proposed

approaches can accurately estimate the range/depth maps for a wall at 7m distance

from the AR/VR device with around 10cm error, which highlights the effectiveness

of this approach.

Impact of the important system parameters: Next, we briefly evaluate the impact

of the various system parameters on the performance of the proposed mmWave depth

map estimation solution.
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(a) Continuous Phase Shifts

Depth RMSE = 0.148m

Depth MAE = 0.1106m
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(b) 2-bit Phase Shifts

Depth RMSE = 0.149m

Depth MAE = 0.1111m
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(c) Ground Truth

Figure 3.16: The 1080p Depth Maps for the One Wall Scenario at 7m Separation Distance
Are Estimated for Two Cases of the RF Phase Shifters at the AR/VR Device: (a) Contin-
uous Phase Shifts and (b) 2-bit Quantized Phase Shifts. 16 × 16 UPA Is Employed with
Codebook Oversampling Factors of Two. Figure (c) Illustrates the Ground Truth Depth
Map.

• Number of antennas and sensing codebook beams: In Fig. 3.14, we plot the

estimated and ground-truth depth maps for a different number of antennas and

codebook oversampling factors. As illustrated, the depth estimation accuracy

can generally improve by increasing the number of antennas and/or the code-

book oversampling factors. This comes with the cost of deploying more antennas

at the AR/VR device or employing more beams, which translates to a longer

sensing time. In Fig. 3.15, we plot the estimated and ground-truth depth maps

for different antenna configurations using the same number of antenna elements.

As depicted, the depth estimation accuracy depends on the UPA configuration,

with the best configuration being the 6× 4 UPA because of its closeness to the

1080p aspect ratio.

• RF phase shift quantization: As previously described in Section 3.7.2, the phase

quantization of the RF phase shifters in the AR/VR transceiver architecture

produces a noticeable change in the radiation pattern shape of the sidelobes.

106



-20 -15 -10 -5 0

10-1

100

101

(a) Signal-to-noise Ratio

-5 0 5 10 15
10-1

100

101

(b) Transmit Power

Figure 3.17: For the One Wall Scenario, the Error Performance of the Proposed mmWave
MIMO Based Depth Estimation Solution Is Evaluated under Different Error Metrics in (a)
and Is Evaluated for Different Preamble Sequence Lengths in (b). The Wall Is 7 Meters
Away from theAR/VR Device with 16 × 16 UPAs. The Figures Show the Robustness
of the Developed Approach under a Relatively Low SNR Regime. Note That the Dis-
played Transmit Power Range in (b) Corresponds to an Average SNR Range of −20.7dB
to −0.7dB.

To examine the effect of this phase quantization on the estimated depth maps,

Fig. 3.16 shows the comparison of the estimated depth maps for two cases of

the RF phase shifters at the AR/VR device: (a) continuous phase shift and (b)

2-bit quantized phase shifts. As depicted, the phase quantization contributes

with a small negative impact on the depth map estimation accuracy for the one

wall scenario at a separation distance of 7 meters.

• Transmit sensing power: In Fig. 3.17(a), we investigate the effect of changing

the transmit power on the depth map estimation accuracy. The SNR value

of 0dB corresponds to a transmit power of 15dBm. This figure shows that a

transmit power of 5dBm (SNR of −10dB) could be sufficient to reach around

10cm error for the depth estimation accuracy.

• Preamble sequence length: The estimation error versus transmit power is de-
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Figure 3.18: The Error Performance of the Proposed mmWave MIMO Based Depth Es-
timation Solution Is Evaluated Across Different Separation Distances for the One Wall
Scenario. The Estimation Error Starts from ≈ 1.5m at a 1m Distance and Reaches Around
10cm at a 7m Distance.

picted in Fig. 3.17(b) for different values of preamble sequence lengths, namely

preambles with 50, 100, 1000, and 3000 symbols. As shown in this figure, in-

creasing the preamble sequence length improves the depth estimation accuracy

at the expense of increased sensing time and post-processing complexity.

• Separation distance between the AR/VR device and the facing wall: Fig. 3.18

investigates the impact of increasing the depth value on the depth estimation

accuracy. As shown in this figure, the larger the distance between the AR/VR

device and the facing surface, the larger the error in the depth estimate, which

is expected. This figure also highlights some advantage for the bicubic interpo-

lation compared to the other interpolation methods.

• The surface material: Now, we evaluate the performance of the proposed ap-
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Figure 3.19: The Adopted Two Walls Scenario Is Illustrated.

proach for different surface materials. More specifically, we summarize in Table

3.2 the range map MAE for different candidates of the wall material. Overall,

we can notice some correlation between the estimation accuracy and the scat-

tered to incident power ratio property of the materials, which are summarized

in Table 3.1.

3.9.3 Two Walls Scenario

The two walls scenario consists of one AR/VR device facing two walls in free space

propagation as depicted in Fig. 3.19. The separation distance between the front wall

and the AR/VR device is 1m while the separation between the back wall and the

AR/VR device is 2m. The walls’ building material is concrete. Each wall consists of

2, 048 faceted faces, and each face contributing with at most one backscattered ray.

The purpose behind studying this scenario is to test the alignment of the estimated

map compared to the ground truth depth map. The results of this test are illustrated
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(a) Estimated range map (c) Estimated depth map

(b) Ground truth range map (d) Ground truth depth map

Range RMSE = 0.100m 
Range MAE   = 0.052m

Depth RMSE = 0.085m 
Depth MAE     = 0.046m

Figure 3.20: The Maps for the Two Walls Scenario Are Depicted. The AR/VR Device Is
Employed with 16 × 16 UPAs. The Depicted Maps Are the Estimated Maps (at the Top),
Ground Truth Maps (at the Bottom), Range Maps (on the Left Side), and 1080p Depth
Maps (on the Right Side). Comparing (a) with (b), the Range Map Estimation Error: MAE
= 0.052m. Comparing (c) with (d), the Depth Map Estimation Error: MAE= 0.046m.

in Fig. 3.20, where the estimated range and depth maps are compared to the ground

truth maps. As shown in Fig. 3.20, the two edges of the front wall in the estimated

maps align reasonably well with the one displayed in the ground truth maps. This

highlights the promising performance of proposed mmWave based depth estimation

solution.

3.9.4 A Room with Two Pillars

In this scenario, we consider a 5m×5m room where one AR/VR device is centered

at the front door of the room, as depicted in Fig. 3.21. The room consists of a concrete

floor plan with two wood pillars in the middle of the room. The wood pillars are at
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(a) The Room with Two Pillars (b) The Room Scene from the Door Position

Figure 3.21: Figure (a) Illustrates the Bird View of the Room with Two Pillars. Figure
(b) Shows the Scene from the AR/VR Device Position, Centered at the Front Door. The
5m×5m Room Consists of a Concrete Floor Plan with Two Wood Pillars in the Middle of
the Room. The Wood Pillars Are at 2 Meters Distance from the AR/VR Device.

2 meters distance from the AR/VR transceiver. The floor plan consists of 15, 488

faceted faces whereas each of the wood pillars consists of 3, 072 faceted faces. Note

that the ceiling of the floor plan is set to the invisible mode for visibility purposes

only. For the estimation error assessment of the indoor space scenario, Fig. 3.22

shows the comparison between estimated and ground truth maps for 16 × 16 UPA

antennas with a codebook oversampling factors of four in both azimuth and elevation

dimensions.

First, Fig. 3.22(a) with Fig. 3.22(b) show the estimate and ground truth range

maps, which have a MAE of 0.139m and RMSE of 0.355m. For the depth maps,

Fig. 3.22(c) with Fig. 3.22(d) represent 1080p maps with estimation error of(i) 0.126m

for the MAE and 0.356m for the RMSE with nearest neighbor interpolation, and (ii)

0.123m for the MAE and 0.328m for the RMSE with bicubic interpolation. From

observing the difference in maps, the mmWave reasonably recover most of the depth

information of the scene with low codebook resolution (16 × 16) compared to the

ground truth 1080p resolution. With narrower transmit and receive beams, i.e. more

antenna elements, the estimation accuracy is expected to further improve.
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(a) Estimated range map (c) Estimated depth map

(b) Ground truth range map (d) Ground truth depth map

Range RMSE = 0.355m
Range MAE   = 0.139m

Depth RMSE = 0.356m 
Depth MAE    = 0.126m

Figure 3.22: The Maps for the Room with Two Pillars Are Depicted. 16 × 16 UPAs
Are Employed with Codebook Oversampling Factors of Four. The Depicted Maps Are the
Estimated Maps (at the Top), Ground Truth Maps (at the Bottom), Range Maps (on the Left
Side), and 1080p Depth Maps (on the Right Side). Comparing (a) with (b), the Range Map
Estimation Error: MAE = 0.139m. Comparing (c) with (d), the Depth Map Estimation
Error: MAE = 0.126m.

The depth map estimation accuracy for this scenario is also evaluated at different

SNRs in Fig. 3.23. In this figure, we adopt the model and system parameters used

in Fig. 3.22 with 16 × 16 UPAs and oversampling factors of four. It is also worth

mentioning that 0dB SNR corresponds to −20dBm transmit power in our setup. As

shown in Fig. 3.23, the estimated depth maps have MAE of almost 10cm at 0dB,

which highlights the promising performance of our proposed depth map estimation

approach at relatively low SNRs and in an indoor room with several surfaces and

different materials. This will be further emphasized in the following subsection.
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Figure 3.23: For the Room with Two Pillars, the Error Performance of the Proposed
mmWave MIMO Based Depth Estimation Is Evaluated for Different Error Metrics. 16×16
UPAs Are Employed with a Codebook Oversampling Factors of Four in Both Dimensions.
This Figure Shows the Robustness of the Proposed mmWave MIMO Based Depth Estima-
tion under a Relatively Low SNR Regime.

3.9.5 Conference Room Scenario

In this scenario, we consider the conference room shown in Fig. 3.24. The ceiling of

the indoor space is set to the invisible mode for visibility purpose only. The 10m×10m

indoor space has a 6m×6m conference room with glass walls. The indoor space walls

are made of layered drywall, the ceiling is made of ceiling board, and the floor is

made of floorboard. The conference room chairs and tables are made of wood. The

conference room door opening is 1m in width and 2.7m in height. The number of

facets for each item in the indoor space is as follows: 2, 048 facets for the layered

drywall, 2, 048 facets for the floorboard, and 2, 048 facets for the ceiling board. In

addition, the number of facets for each item in the conference room is as follows:

1, 568 facets for the glass wall, 4, 446 facets for the table, 21, 192 facets for the office

chairs. The conference room scenario consists of two AR/VR devices for two scenes
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(a) Conference room scenario (c) Second scene

(b) First scene

Figure 3.24: (a) the Bird View of the Conference Room Scenario; (b) and (c) the Scenes
under Study. The 10m×10m Indoor Space Contain a 6m×6m Conference Room in Glass.
The Indoor Space Walls Are Made from Layered Drywall, the Ceiling Is Made from Ceiling
Board and the Floor Is Made from Floorboard. The Conference Room Chairs and Tables
Are Made from Wood.

under study — the first device is centered at the front door of the conference room

while the second transceiver is placed outside of the conference room facing the other

glass facet. The scenes captured by the AR/VR camera for the two cases are shown

in Fig. 3.24(b) and Fig. 3.24(c).

One main motivation for leveraging mmWave MIMO to estimate the depth maps

(compared to RGB based depth estimation approaches) is the expected higher ef-

ficiency in detecting transparent and dark objects. In Fig. 3.25, we compare our

mmWave MIMO based depth estimation approach with the RGB based depth esti-

mation approach, detailed in [8], for the two considered conference room scenarios.

It’s worth emphasizing here that the algorithms in [8] achieve considerably good depth

accuracy when tested on the NYU depth V2 dataset [99]. As shown in Fig. 3.25, the

mmWave MIMO based estimator outperforms the RGB based estimator in recogniz-
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(1.a) First scene
(lights on)

(2.a) First scene
(lights off)

(3.a) Second scene

(1.b) RGB

Depth RMSE = 0.974m 
Depth MAE = 0.767m

(1.d) Ground truth(1.c) mmWave MIMO

Depth RMSE = 0.997m 
Depth MAE = 0.518m

(2.b) RGB (2.d) Ground truth(2.c) mmWave MIMO

Depth RMSE = 0.997m 
Depth MAE = 0.518m

(3.b) RGB

Depth RMSE = 2.283m 
Depth MAE = 1.919m

(3.d) Ground truth(3.c) mmWave MIMO

Depth RMSE = 0.634m 
Depth MAE = 0.381m

Depth RMSE = 1.162m 
Depth MAE = 0.921m

Figure 3.25: For the Conference Room Scenario, the Proposed mmWave MIMO Based
Depth Estimation Is Compared with the RGB Based Depth Estimation in [8]. 16×16 UPAs
Are Employed with Codebook Oversampling Factors of Four. The Depicted Maps Are the
Maps of the First Scene with Lights On/Off (the Top Two Rows) and the Second Scene (the
Bottom Row). (a) the Scenes under Study; (b) the Estimated Maps from Monocular RGB
Images; (c) the Estimated Maps from Our Proposed Solution; (d) the Ground Truth Depth
Maps.
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ing transparent and dark objects. For the first scene, the glass wall was not detected

by the RGB estimator. Also, in the presence of a scene with low illumination, the

mmWave MIMO based estimator performance shows robustness in the estimation

accuracy compared to the RGB based estimator. Figure 1.c) and 2.c) were generated

with the aid of the SLR approach in Section 3.7.2, with δH = 2, δV = 3. For this

reason, the depth maps constructed by the mmWave MIMO system seem coarser

than the one constructed by RGB cameras, which can be resolved using morpho-

logical image processing operations, e.g., the erosion operation. As for the second

scene, the RGB based estimator is unable to detect the transparent glass compared

to the mmWave MIMO based estimator. Interestingly, despite the fact that the glass

scattering ratio is 0% based on Table 3.1, the conference room glass wall is partially

recovered by the mmWave MIMO based estimator because of the boresight reflection

path. This makes the wireless AR/VR experience safer by providing the ability to

detect transparent surfaces. All these promising results highlight the potential of

leveraging the proposed mmWave MIMO based depth map estimation approaches for

immersive AR/VR experience.

3.10 Conclusion

In this chapter, we considered the problem of estimating accurate depth maps for

AR/VR devices, which is an essential goal for immersive mixed-reality experience.

For this problem, we proposed leveraging the mmWave communication systems that

are deployed on the AR/VR devices to estimate and build high-resolution depth

maps. We formulated the communication-constrained depth map sensing problem

and proposed a comprehensive framework for realizing this objective. The proposed

framework includes (i) the construction of depth map specific sensing codebooks using

practical mmWave antenna arrays and (ii) the development of efficient post-processing
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solutions for jointly processing the receive signals from the multiple sensing beams and

estimating high-resolution depth maps. Simulations using accurate 3D ray-tracing

models confirmed the promising accuracy of our proposed mmWave based depth

map estimation approach in various environment scenarios. In particular, the results

show that the proposed approach can construct relatively high-resolution depth maps

with less than 10cm error using practical mmWave systems. This highlights the

potential of leveraging this solution to complement RGB-D based depth maps and

realize immersive depth perception for wireless virtual/augmented reality systems.
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Chapter 4

RECONFIGURABLE INTELLIGENT SURFACE AIDED WIRELESS SENSING

FOR SCENE DEPTH ESTIMATION

4.1 Abstract

Current scene depth estimation approaches mainly rely on optical sensing, which

carries privacy concerns and suffers from estimation ambiguity for distant, shiny, and

transparent surfaces/objects. Reconfigurable intelligent surfaces (RISs) provide a

path for employing a massive number of antennas using low-cost and energy-efficient

architectures. This has the potential for realizing RIS-aided wireless sensing with

high spatial resolution. In this chapter 1 , we propose to employ RIS-aided wireless

sensing systems for scene depth estimation. We develop a comprehensive framework

for building accurate depth maps using RIS-aided mmWave sensing systems. In this

framework, we propose a new RIS interaction codebook capable of creating a sensing

grid of reflected beams that meets the desirable characteristics of efficient scene depth

map construction. Using the designed codebook, the received signals are processed

to build high-resolution depth maps. Simulation results compare the proposed solu-

tion against RGB-based approaches and highlight the promise of adopting RIS-aided

mmWave sensing in scene depth perception.

1This chapter is based on the work submitted to IEEE and published in the preprint paper: A. Taha, H. Luo,
and A. Alkhateeb, ”Reconfigurable Intelligent Surface Aided Wireless Sensing for Scene Depth Estimation,”
in arXiv preprint arXiv:2211.08210, Nov. 2022. [Online]. Available: https://arxiv.org/abs/2211.08210. This
work was supervised by Prof. Ahmed Alkhateeb. Hao Luo provided important ideas for the reconfigurable
intelligent surface aided wireless sensing design that greatly improved the work.
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4.2 Introduction

Because of their promising coverage and spectral efficiency gains [28, 100, 101],

the use of reconfigurable intelligent surfaces (RISs) is envisioned as a key enabler

for next-generation communication systems. These surfaces comprise massive num-

bers of nearly passive elements that interact with the incident signals in a smart

way to improve the performance of such systems. RISs have recently started gaining

interest in improving some of the wireless sensing systems [102–108], with no appli-

cation yet in scene depth estimation. Current scene depth estimation approaches are

mainly rooted in optical sensing. While optical sensors can generally provide good

accuracy, they suffer from some critical limitations. These limitations stem from the

fundamental properties of the way light propagates and interacts with the elements

of an environment. The accuracy of optical sensors normally degrades in scenar-

ios with unfavorable light conditions, in the presence of shiny, dark, or transparent

objects/surfaces, and in the presence of non-line-of-sight (NLoS) objects/surfaces.

Optical sensors also suffer from key privacy concerns and range/velocity estimation

ambiguity for distant objects/surfaces.

To overcome these limitations, millimeter-wave (mmWave) wireless sensing is a

promising technology for complementing optical sensors in accurately sensing the en-

vironment. mmWave signal propagation is not affected by interference from light

sources. These signals exhibit different propagation properties that can aid in rec-

ognizing transparent, shiny, dark, and distant objects/surfaces. In addition, wireless

sensing systems have fewer privacy concerns and can be well integrated with the

wireless communication framework [109].

mmWave wireless sensing has been investigated in the literature for various sens-

ing problems. For instance, in [110], an imaging algorithm using frequency-modulated

119



continous-wave (FMCW) mmWave radar is developed by leveraging the conditional

generative adversarial networks. In [31], a mmWave MIMO based sensing framework

is developed for estimating scene depth maps, under the constraints of a mmWave

communication system. In [111], a 3D body reconstruction dataset is built with

the proposed automatic annotation system. The effectiveness of the mmWave radar

based body reconstruction is demonstrated by a point-cloud based algorithm. Scal-

ing mmWave MIMO antenna arrays, however, is associated with large computa-

tional/hardware complexity and energy consumption. This limitation poses a critical

challenge in scaling the spatial resolution, which motivates leveraging RISs to assist

mmWave wireless sensing systems. In addition, RIS aided sensing systems can filter

out in the signal reception more undesired channel paths than the ones filtered out

by mmWave MIMO based sensing systems, as will be discussed in detail later.

RIS-aided sensing systems is gaining interest in the literature. Several RIS-aided

sensing systems have been studied to improve the sensing performance in target detec-

tion [102–104]. In [102], RIS is used to extend the coverage of the radar surveillance in

non-line-of-sight (NLOS) scenarios. In [103], an RIS-aided radar system with multiple

targets is proposed, where the radar waveforms and the phase shifts of the RIS are

jointly optimized. In [104], a general signal model for RIS-aided target detection is

studied by considering monostatic, bistatic, LOS, and NLOS scenarios. In addition,

RISs can be leveraged in addressing wireless imaging challenges [105–108].

In [105, 106], RIS-aided microwave imaging systems are proposed, where the image

of the targets can be reconstructed from the receive signals. In [107], the authors

propose a WiFi-based RIS-aided imaging system, and the beamforming of the RIS

is designed for sensing all regions of interest. In [108], an RIS-aided RF sensing

system for semantic segmentation is proposed. The semantic recognition is conducted

based on the point cloud of the objects, which is reconstructed from the receive
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signals. To the best of our knowledge, RIS-aided sensing systems have not yet been

investigated for scene depth estimation. Accurate scene depth perception can enable

some key emerging applications, including augmented and virtual reality (AR/VR)

and automotive vehicles among others.

In this chapter, we investigate the RIS aided wireless sensing based scene depth

estimation problem. The contributions of this chapter can be summarized as follows.

• RIS sensing based scene depth estimation framework: We formulate the RIS

wireless sensing based scene depth estimation problem and propose a com-

prehensive framework for building scene depth maps using RIS aided wireless

sensing systems.

• Depth map suitable RIS sensing codebook: We propose a novel RIS interaction

codebook design capable of creating a sensing grid of reflected beams that meets

the desirable characteristics of efficient scene depth map construction. Given

the designed RIS interaction codebook, we develop a post-processing solution

on the receive signals to build high-resolution depth maps.

Based on accurate 3D ray-tracing Wireless InSite [1] channels and ground truth

Blender [112] depth maps, the simulation results show the promise of adopting RIS

aided mmWave sensing for scene depth estimation.

4.3 System and Channel Models

In this section, we present the adopted system and channel models for RIS aided

wireless sensing systems.
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Figure 4.1: The RIS-Aided Wireless Sensing System Is Shown. The Sensing Signals Are
Transmitted to the RIS Through a Feeding Antenna. The RIS Then Reflects the Incident
Signals to the Environment. The Backscattered/Reflected Signals Are Then Reflected by
the RIS Back to the Sensing System, Using a Sensing Codebook, for Depth Perception.

4.3.1 System Model

In this chapter, we adopt a reconfigurable intelligent surface (RIS) aided mmWave

wireless sensing system, as shown in Fig. 4.1. The sensing system consists of a trans-

mitter and a receiver; both are connected through a self-isolation circuitry [31] to a

shared single antenna, for ease of exposition. This single antenna acts as a feeding

antenna that illuminates the RIS for sensing purposes. The proposed solution and the

results in this chapter can be extended though to multi-antenna sensing transceivers.

The RIS is equipped with N reconfigurable elements, where each element can be

modeled as a phase shifter. Denote the RIS interaction (reflection beamforming) ma-

trix by Ψ = diag (ψ) ∈ CN×N , where ψ =
[
eȷϕ1 , . . . , eȷϕN

]T
is the interaction vector

with unit modulus entries. The phase shift induced by the nth RIS elements on the

incident signals is represented by ϕn, n ∈ {1, . . . , N}.
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The sensing process proceeds as follows: (a) the sensing system transmits sensing

signals to the RIS; (b) the RIS reflects these signals towards the surrounding envi-

ronment, which contains Gtar mobile targets; (c) the signals are reflected back to the

surface by the targets; (d) the RIS reflects back these incident signals to the sens-

ing system; (e) the sensing system processes the receive signals to achieve a sensing

objective.

In this chapter, our sensing objective is to estimate the depth map of the environ-

ment. For that objective, we make the following assumptions: (a) The RIS elements

are not mutually correlated; (b) the channel between the sensing system and the RIS

is in the near field region whereas the channel between the RIS and the targets is

in the far field region; (c) the channel between the sensing system and the targets

is neglected, assuming the feeding antenna radiation pattern is directional towards

the RIS; (d) the RIS interaction is reciprocal when interchanging the incident signal

directions with the reflected signal directions. Next, we describe the transmit and

receive signal models and channel model in detail.

Transmit Signal Model: The adopted sensing system is a wideband frequency-modulated

continous-wave (FMCW) radar transceiver, with a complex-baseband architecture, as

detailed in [113]. Let the FMCW radar transmit signal be a radar frame, which con-

sists of a sequence of Mchirp repeated chirp signals with a chirp repetition interval of

TPRI seconds. Let aBP(t) ∈ R be the real-valued bandpass transmit signal of a single

chirp, with a duration of Tactive seconds, a transmission bandwidth of BW = STactive,

a chirp slope of S, and a starting chirp frequency of f0. The time-varying frequency

of the transmit signal is f(t) = f0 + St, 0 ≤ t ≤ Tactive. The time-varying phase can

then be expressed as χ(t) = 2π
∫ t

0
(f0 + Sη) dη = 2πf0t+πSt2. The signal aBP(t) can
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then be formulated as

aBP(t) =


cos (2πf0t+ πSt2) 0 ≤ t ≤ Tactive,

0 otherwise.

(4.1)

The real-valued bandpass transmit signal of a single radar frame, xBP(t), can then be

formulated as

xBP(t) =
√
ET

Mchirp−1∑
c=0

aBP(t− cTPRI) (4.2)

= Re
(
x(t) eȷ2πf0t

)
, t ∈ R≥0, (4.3)

where ET is the transmit signal energy and x(t) ∈ C is the complex-valued lowpass-

equivalent transmit signal.

Receive Signal Model: For the channel model, we adopt the extended Saleh-Valenzuela

wideband geometric channel model [31]. After the transmit signal travels through the

bandpass channel and experiences additive noise at the receiver, the receive bandpass

signal yBP(t) = Re(y(t)eȷ2πf0t) can be modeled in terms of its complex-valued lowpass-

equivalent signal y(t) ∈ C, which can be defined as

y(t) = x(t) ∗ h(t) + w(t) =
Gtar∑
g=1

Lg∑
ℓ=1

hg,ℓ(t)x(t− ξg,ℓ(t)) + w(t), (4.4)

where h(t) ∈ C is the complex-valued lowpass-equivalent channel. w(t) ∼ N (0, σ2
w),

w(t) ∈ C is the receive noise with variance σ2
w. Lg is the number of channel paths

interacting with the gth target. hg,ℓ ∈ C is the complex-valued channel path gain of

the ℓth channel path of the gth target, which is modeled in detail in Section 4.3.2.

The propagation delay is denoted by ξg,ℓ(t) ∈ R, which can be formulated as

ξg,ℓ(t) =
Rg,ℓ(t)

ς
=

R0,g,ℓ

ς
+

νg,ℓt

ς
+

ag,ℓt
2

2ς
, (4.5)

where ς is the speed of light. Rg,ℓ(t) is the time-varying total propagation distance

at time t, traveled by the ℓth channel path of the gth target (with one or multiple
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interactions with the environment), starting from the radar transmitter and ending

at the radar receiver. R0,g,ℓ is the initial propagation distance observed at the sensing

start time, at t = 0. νg,ℓ and ag,ℓ represent the Doppler velocity and acceleration of

the ℓth channel path contributed by the gth target, respectively.

To construct the receive baseband signal [113], the receive signal yBP(t) is first

mixed with two versions of the transmit signal xBP(t), one with a −90◦ phase shift dif-

ference. Then, the outputs of the mixers pass through low-pass filters and analog-to-

digital converters (ADCs) to generate the in-phase signal I[s, c] and the quadrature-

phase signal Q[s, c], for the ADC sample s ∈ S,S = {0, 1, . . . , (Msample − 1)}, and for

the chirp c ∈ C, C = {0, 1, . . . , (Mchirp − 1)}. Msample is the number of ADC samples

per chirp. Let b[s, c] denotes the discrete-time equivalent of a continuous-time signal

b(t), sampled at time t = sTS + cTPRI, TS = 1/FS. TS and FS are the ADC sampling

time period and the ADC sampling frequency, respectively. The receive baseband

digital signal, z[s, c] = I[s, c] + ȷQ[s, c], can be formulated as

z[s, c] =

(
Gtar∑
g=1

L∑
ℓ=1

√
ρg,ℓ[s, c] e

−ȷϑg,ℓ[s,c] e+ȷΞg,ℓ[s,c]

)
+ w[s, c]eȷχ[s], (4.6)

where χ[s] = 2πf0tfast + πSt2fast and tfast = sTS. The channel path receive power and

phase are ρg,ℓ[s, c] = ET|hg,ℓ[s, c]|2 and ϑg,ℓ[s, c] = arg (hg,ℓ[s, c]), respectively. The

phase term Ξg,ℓ[s, c] contains range and Doppler information of the targets, which

can be defined as

Ξg,ℓ[s, c]=2π
(
f0ξg,ℓ[s, c] + Stfastξg,ℓ[s, c]− S

2
ξ2g,ℓ[s, c]

)
. (4.7)

The discrete time varying propagation delay is denoted by ξg,ℓ[s, c], which can be

formulated as

ξg,ℓ[s, c] =
Rg,ℓ[s, c]

ς
=

R0,g,ℓ + νg,ℓtslow +
ag,ℓ
2
t2slow

ς
, (4.8)

tslow = tfast + cTPRI = sTS + cTPRI, (4.9)
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where tslow represents the discrete time delay of each ADC sample in each chirp out

of the Mchirp chirps. Next, we describe the time-varying complex-valued channel gain

model hg,ℓ(t).

4.3.2 Channel Model

For RIS aided radar channel modeling, we adopt and extend on the channel model

of the non-line-of-sight monostatic radar configuration detailed in [104]. Different

from the model in [104], we adopt a multi-path geometric channel model where each

channel path can experience one or multiple interactions in the environment, which

consists of multiple targets. The complex-valued channel path gain hg,ℓ(t) ∈ C can

be modeled as [104]

hg,ℓ(t) = (gTΨv(θ̄g,ℓ(t))γ̄g,ℓ(t))︸ ︷︷ ︸
Radar→RIS→Target

× (gTΨv(θ̈g,ℓ(t))γ̈g,ℓ(t))︸ ︷︷ ︸
Target→RIS→Radar

, (4.10)

= γ̄g,ℓ(t)
(
(g ⊙ψ)T v

(
θ̄g,ℓ(t)

))
× γ̈g,ℓ(t)

(
(g ⊙ψ)T v

(
θ̈g,ℓ(t)

))
, (4.11)

where g ∈ CN is the normalized near-field forward/backward channel vector between

the radar feeding antenna and the RIS elements. The normalization is relative to

the scalar channel passing through the RIS reference element, whose complex-valued

gain is included in the definitions of γ̄g,ℓ(t), γ̈g,ℓ(t)
2 . The far-field transmit/receive

RIS array response vector is v(·) ∈ CN . Let an angle notation of φ denote the set

of the azimuth and zenith angles, φ = {φaz, φze}. θ̄g,ℓ(t) (and θ̈g,ℓ(t)) are the time-

varying azimuth and zenith angles of departure (and arrival) of the ℓth channel path

of the gth target, relative to the RIS reference element. The time-varying nature

of the path gains and the angles is caused by the mobility of the targets in the

environment. G(φ) is the transmit/receive gain of the feeding antenna in the direction

2The diacritical marks (̄·) and (̈·) are used to distinguish between the forward (Radar-Target) and backward
(Target-Radar) sides, respectively.
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φ. γ̄g,ℓ(t), γ̈g,ℓ(t) ∈ C are the two-hop forward and backward complex-valued channel

path gains, including the propagation between the radar transceiver and the RIS

reference element, and the propagation between the RIS reference and the gth target.

The normalized near-field channel vector g, between the radar transceiver and the

RIS elements, can be represented as [104]

[g]n =

(
G(Ω̄n)ζ(ω̄n, θ̄g,ℓ)δ

2
1

G(Ω̄1)ζ(ω̄1, θ̄g,ℓ)δ2n

)1/2

e−ȷ2π(δn−δ1)/λ, (4.12)

where n ∈ {1, . . . , N} and λ = ς
f0

is the operating wavelength. δn is the distance

between the radar feeding antenna and the nth RIS element, where δ1 represents

the distance with respect to the RIS reference element. Let the vector of distances

between the radar feeding antenna and the RIS elements be δ = [δ1, . . . , δN ]
T . Ω̄n

(and Ω̈n) are the azimuth and zenith angles of departure (and arrival), relative to

the radar feeding antenna, for the propagation between the radar transceiver and

the nth RIS element. ω̄n (and ω̈n) are the azimuth and zenith angles of arrival (and

departure), relative to the nth RIS element, for the propagation between the radar

transceiver and the nth RIS element. ζ(φin, φout) is the radar cross-section gain of

an RIS element towards the direction φout, when illuminated from the direction φin,

which is modeled in [104].

The two-hop forward and backward channel path gains are defined as [104]

γ̄g,ℓ(t) =

(
G(Ω̄1)ζ(ω̄1, θ̄g,ℓ)

(4π)2δ21 d̄
2
g,ℓ(t)L̄g,ℓ(t)

)1/2

e−ȷ2π(δ1+d̄g,ℓ(t))/λ, (4.13)

γ̈g,ℓ(t) =

(
σgζ(θ̈g,ℓ, ω̈1)G(Ω̈1)λ

2

(4π)3d̈2g,ℓ(t)δ
2
1L̈g,ℓ(t)

)1/2

e−ȷ2π(d̈g,ℓ(t)+δ1)/λ, (4.14)

where d̄g,ℓ(t), d̈g,ℓ(t) are the time-varying forward and backward traveling distance of

the ℓth path, between the RIS reference element and the gth target, which can be

related to the total propagation distance such that Rg,ℓ(t) = 2δ1 + d̄g,ℓ(t)+ d̈g,ℓ(t). σg
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is the radar cross-section gain of the gth target. L̄g,ℓ(t), L̈g,ℓ(t) are the time-varying

forward and backward loss factors for any additional attenuation. The time-varying

nature of these distances and these loss factors is caused by the mobility of the targets

in the environment.

4.4 Problem Formulation

In this chapter, our objective is to efficiently estimate the depth map of the sur-

rounding environment using the RIS-aided wireless sensing system described in Sec-

tion 4.3.

4.4.1 Problem Definition

Following the depth map definition in [31], the depth map, Dmap ∈ RMh×Mw , can

be defined as an image of resolution Mw pixels wide and Mh pixels high, where the

value of each pixel denotes the smallest depth between the RIS reference element

and the targets/surfaces in this pixel. The total number of pixels in the depth map

is Mres = MwMh. Through (a) effectively scanning the environment using several

RIS interaction vectors and (b) processing the receive sensing signals, the RIS aided

sensing system can construct the RIS based estimated depth map.

To effectively scan the environment, we define a sensing codebook of RIS inter-

action vectors, F = {ψm : m ∈ M,M = {0, . . . ,M − 1}}. Each RIS interaction

vector aids in the transmission and reception of a single chirp signal, when directed

towards a certain direction in the environment. For the mth RIS interaction vector,

ψm, the discrete-time complex-valued channel path gain hg,ℓ[s,m], s ∈ S, m ∈ M,
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can be expressed as

hg,ℓ[s,m] = γ̄g,ℓ[s,m]
(
(g ⊙ψm)

T v
(
θ̄g,ℓ[s,m]

))
×

γ̈g,ℓ[s,m]
(
(g ⊙ψm)

T v
(
θ̈g,ℓ[s,m]

))
. (4.15)

The receive baseband digital signal can then be defined as

z[s,m] =
Gtar∑
g=1

L∑
ℓ=1

√
ρg,ℓ[s,m]e−ȷϑg,ℓ[s,m]e+ȷΞg,ℓ[s,m]

︸ ︷︷ ︸
Receive signal

+ w[s,m]eȷχ[s]︸ ︷︷ ︸
Noise

, (4.16)

where ρg,ℓ[s,m] = ET|hg,ℓ[s,m]|2 is the channel path receive power and ϑg,ℓ[s,m] =

arg (hg,ℓ[s,m]) is the channel path phase, for the sth ADC sample and using the mth

RIS interaction vector. Ξg,ℓ[s,m] can be formulated as

Ξg,ℓ[s,m] = 2π
(
f0ξg,ℓ[s,m] + Stfastξg,ℓ[s,m]− S

2
ξ2g,ℓ[s,m]

)
, (4.17)

where the propagation delay ξg,ℓ[s,m] can be defined as

ξg,ℓ[s,m]=
Rg,ℓ[s,m]

ς
=
R0,g,ℓ + νg,ℓtslow +

ag,ℓ
2
t2slow

ς
, (4.18)

tslow = tfast +mTPRI = sTS +mTPRI. (4.19)

By stacking the S receive ADC samples, we can construct the receive sensing

vector, z[m] ∈ CMsample , corresponding to the transmission of a single chirp signal using

one RIS interaction vector, z[m] = [z[0,m], . . . , z[Msample − 1,m]]T . If M radar chirps

(a single radar frame) are transmitted and received via M RIS interaction vectors,

the aggregated receive sensing signal matrix, Z ∈ CMsample×M , can be expressed as

Z = [z[0], z[1], . . . , z[M − 1]] . (4.20)

Next, to estimate the depth map, we define a post-processing function p(.). Given

the receive sensing matrix Z and the RIS sensing codebook F , the estimated depth

map can be formulated as

D̂map = p(Z;F). (4.21)
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Our objective is to minimize the estimation error between the estimated depth map

D̂map and the actual depth map Dmap. For this reason, we adopt the root-mean

squared error (RMSE) and the mean absolute error (MAE) as the performance metrics

of depth sensing, which are defined as [31]

∆RMSE =

(
1

M
∥Dmap − p(Z;F)∥22

)1/2

, (4.22)

∆MAE =
1

M
∥Dmap − p(Z;F)∥21. (4.23)

4.4.2 Main Challenges

Estimating scene depth maps using mmWave sensing systems suffer from the

following challenges.

1. Codebook design: To build RIS-based depth maps capable of complementing

RGB-D based depth maps, the RIS interaction codebook needs to be designed to

reflect the incident signals in the directions of the full rectangular grid of typical

depth optical sensors. Classical RIS codebooks [28], however, are designed based on

DFT codebooks which forms parabolic grids instead of rectangular grids. In addition,

mmWave MIMO based sensing codebooks, as detailed in [31], can not be adopted as

RIS sensing codebooks.

2. Low-resolution depth maps: mmWave MIMO based depth map estimation has

been investigated for wireless AR/VR systems [31]. Scaling mmWave antenna ar-

rays, however, is associated with large computational/hardware complexity and en-

ergy consumption. This limitation poses a prominent challenge in scaling the spatial

resolution of the depth maps.

3. Inter-target and inter-path interferences: When sensing the depth of a certain

region of interest (represented by a single pixel), the best scenario is when only a

single target exist in that region of interest, and that target backscatters a single-
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bounce path to the receiver. In practice, however, it can be hard to differentiate the

receive signals from multiple targets that are close to each others. In addition, the

incident signals on each target can experience multiple bounces in different directions

— directions away from the desired direction — before reaching the receiver. The

challenge is how to design the RIS aided sensing solution to detect the desired channel

path while filtering out the undesired channel paths [31]. In the next section, we

present our proposed solution to address these challenges in estimating scene depth

maps.

4.5 Proposed Solution

In this section, we introduce a comprehensive framework for scene depth estima-

tion using RIS aided mmWave wireless sensing systems.

4.5.1 Key Idea

Because of the massive number of the nearly-passive RIS elements, these surfaces

can adopt fine-grained reflection beams while scanning the environment, enabling

high-resolution sensing grids using energy-efficient architectures [28]. In addition,

RIS aided sensing systems can filter out more undesired paths than the ones filtered

out by mmWave MIMO based sensing systems, without leveraging any elaborate post-

processing functions (as opposed to the ones used in [31]). One possible reason is that

an RIS interaction matrix is designed to focus the reflection in one desired direction

and the reception from the same direction; any channel path arriving back to the

RIS from a direction other than the desired direction is reflected away from the radar

receiver. Also, for AR/VR systems, the post-processing sensing tasks can be offloaded

from the AR/VR devices to the RIS aided wireless sensing systems — a significant

advantage for AR/VR appplications. For these reasons, we propose an RIS aided
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sensing based scene depth map estimation solution capable of further improving the

depth perception of the surrounding environment compared to existing RGB based

depth map estimation solutions [8, 9]. Next, we formulate the two main elements of

our proposed RIS aided sensing framework for scene depth estimation, namely (a)

the RIS sensing codebook design and (b) the scene depth estimation solution.

4.5.2 RIS Sensing Codebook Design

Our objective for the RIS interaction codebook design is to construct a sensing grid

of reflected directions that fits the rectangular grid of a depth camera. For simplicity

of the formulation, we first start by enunciating a set of reasonable assumptions as

follows. Assume the M radar chirps (a single radar frame) are transmitted, received,

and processed for depth map construction over a time interval of T seconds, during

which the environment is assumed relatively static. In such case, the Doppler velocity

and acceleration terms can be neglected from the previous definitions. We can also

omit the time dependence notation previously used in defining some of the variables,

e.g. ξg,ℓ(t), Rg,ℓ(t), θ̄g,ℓ(t), θ̈g,ℓ(t), γ̄g,ℓ(t), γ̈g,ℓ(t), d̄g,ℓ(t), d̈g,ℓ(t), L̄g,ℓ(t), L̈g,ℓ(t).

Assume the RIS is employing a uniform planar array (UPA) structure in the x-z

plane. The RIS is then equipped with NH elements on the x-axis (the horizontal axis)

and NV elements on the z-axis (the vertical axis), where N = NHNV. In such case,

the far-field RIS array response vector v (φ), in the direction φ = {φaz, φze}, can then

be formulated as

v (φ) = vz (φ)⊗ vx (φ) . (4.24)

where vx(.) and vz(.) represent the elemental array response vectors in the x and z
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directions, and are expressed as

vx (φ) =
[
1, eȷκd cos(φ

az) sin(φze), . . . , eȷκd(NH−1) cos(φaz) sin(φze)
]T

, (4.25)

vz (φ) =
[
1, eȷκd cos(φ

ze), . . . , eȷκd(NV−1) cos(φze)
]T

, (4.26)

where κ = 2π
λ

is the wave number and d is the RIS element spacing in meters. For

simplicity of scene definition, let the horizontal direction (the width) of the depth

map be parallel to the x-axis, and its vertical direction (the height) be parallel to

the z-axis. Let the RIS reference element — the focal point of the scene depth map

— be the origin of the rectangular coordinate system. In such case, the depth of a

target is measured by the y-coordinate of the x-z plane of that target, with respect

to the RIS reference element. Consider an oversampled RIS interaction codebook of

M = NVNH beams, where NV = NVF
OS
V and NH = NHF

OS
H . FOS

V and FOS
H are the

oversampling factors in the horizontal and vertical dimensions, respectively.

Under these assumptions, The complex-valued channel path gain hg,ℓ[m], m ∈M,

can now be expressed as

hg,ℓ[m] = γ̄g,ℓ

(
(g ⊙ψm)

T v
(
θ̄g,ℓ
))
× γ̈g,ℓ

(
(g ⊙ψm)

T v
(
θ̈g,ℓ

))
. (4.27)

The receive baseband digital signal can be redefined as

z[s,m] =
Gtar∑
g=1

L∑
ℓ=1

√
ρg,ℓ[m] e−ȷϑg,ℓ[m] e+ȷΞg,ℓ

︸ ︷︷ ︸
Receive signal

+w[s,m]eȷχ[s]︸ ︷︷ ︸
Noise

, (4.28)

where ρg,ℓ[m] = ET|hg,ℓ[m]|2 and ϑg,ℓ[m] = arg (hg,ℓ[m]). The phase term Ξg,ℓ can then

be formulated as

Ξg,ℓ = 2π
(
f0ξg,ℓ + Stfastξg,ℓ − S

2
ξ2g,ℓ
)
, (4.29)

where ξg,ℓ = Rg,ℓ/ς is the propagation delay. The receive sensing matrix, Z, can then

be constructed as in (4.20).
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Now, we explain how to design the RIS interaction matrix to reflect the incident

signal into a certain direction. From (4.28), the receive signal from a target in a certain

direction can become more distinguishable from the ones received from targets in other

directions by controlling their respective channel gains, |hg,ℓ|. More specifically, to

distinguish more the receive signal gain of the ℓth channel path of the gth target, the

RIS interaction vector ψ⋆ can be designed as

ψ⋆ = argmax
ψ

|hg,ℓ| = argmax
ψ

∣∣∣((g ⊙ψ)Tv(θ̄g,ℓ))((g ⊙ψ)Tv(θ̈g,ℓ))∣∣∣ , (4.30)

s. t. |[ψ]n| = 1, ∀n ∈ {1, . . . , N}. (4.31)

Note that we are only interested in distinguishing single-bounce paths to estimate

the depth correctly [31], θ̄g,ℓ = θ̈g,ℓ = θg,ℓ. In such case, the optimization problem is

reduced to

ψ⋆ = argmax
ψ

∣∣(v(θg,ℓ)⊙ g)Tψ
∣∣2 , (4.32)

s. t. |[ψ]n| = 1, ∀n ∈ {1, . . . , N}. (4.33)

Assume prior knowledge of (i) the distance vector δ between the radar feeding antenna

and the RIS elements and (ii) the direction specified by θg,ℓ. The RIS interaction

vector ψ⋆ can then be designed using equal-gain conjugate beamforming as

ψ⋆ = (v(θg,ℓ)⊙ arg (g))∗ = (v(θg,ℓ)⊙ e−ȷ2π(δ−δ1)/λ)∗. (4.34)

Next, we explain how to design the RIS interaction codebook to construct a sensing

grid of reflected directions that fits the rectangular grid of a depth camera. More

specifically, let O be the set of spherical coordinate angles representing the grid point

directions from the desired rectangular grid, such that O = {θm}M−1
m=0 . We adopt

the design of the set O from [30, Sec. VII, Eq. 19] to eliminate any grid mismatch

distortion. The set O can be completely described using the scene field of view FoV,
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the aspect ratio of the depth map AR, and the number of horizontal and vertical

grid points NH, NV, as detailed in [31]. For the mth grid point pointing towards the

far-field direction θm ∈ O, the RIS interaction vector ψ⋆
m can then be designed as

ψ⋆
m = argmax

ψm

|hg,ℓ[m]| (4.35)

s. t. |[ψm]n| = 1, ∀n ∈ {1, . . . , N}, (4.36)

ψ⋆
m =

(
v(θm) ⊙ e−ȷ2π(δ−δ1)/λ

)∗
, m ∈M, (4.37)

where hg,ℓ[m] is defined in (4.27). Finally, given prior knowledge of (i) the distance

vector δ and (ii) the set of codebook angles O, the RIS interaction codebook can be

calculated as

F =
{
ψm ∈ CN×1 : ψm = (v(θm)⊙ e−ȷ2π(δ−δ1)/λ)∗, θm ∈ O

}
. (4.38)

where |F | = |O| = M . Given a pre-designed RIS interaction codebook, we formulate

next the scene depth map estimation solution.

4.5.3 Scene Depth Estimation

In this section, we formulate the scene depth map estimation solution, which

is outlined in Algorithm 6. First, the RIS interaction codebook F is designed, as

covered in Section 4.5.2. Then, the sensing system sweeps over the RIS codebook

and acquires the receive sensing signal for every RIS interaction vector ψm ∈ F , as

defined in (4.28). After that, the receive sensing matrix Z is constructed as in (4.20).

The receive sensing matrix is then processed using 1D Fourier transforms along its

column dimension, to calculate the scene range estimate for every grid point m ∈M.

The Fourier-based range profile matrix ZRP ∈ CMsample×M can be formulated as

ZRP = FFTm (Z) ,m ∈M, (4.39)
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Algorithm 6 RIS-Based Scene Depth Estimation Solution
Inputs: Field of view FoV, aspect ratio AR,

number of horizontal/vertical grid points NH, NV.
Outputs: Depth map estimate D̂map.

1: Design RIS interaction codebook F , as in Section 4.5.2.

2: for m = 1 to M do ▷ For each ψm

3: Acquire receive sensing signal z[s,m], ∀s ∈ S, (4.28).

4: Construct receive sensing matrix Z, as in (4.20).

5: Calculate scene range estimate vector r̂, as in (4.40).

6: Construct the range map estimate R̂map, as in (4.41).

7: Construct the depth map estimate D̂map, as in [31].

wherem is the column index of the matrix Z. The scene range estimate vector r̂ ∈ RM

can then be calculated as

[r̂]m = ∆R × argmax
s

∣∣∣[ZRP
]
s,m

∣∣∣ ,m ∈M, (4.40)

where ∆R = ς/(2BW) is the range resolution of the Fourier-based estimation solution.

Next, the sensing system constructs the 2D range map estimate matrix R̂map ∈

RNV×NH from the 1D scene range estimate vector r̂ ∈ RM . Let the horizontal grid

index be denoted by hmap ∈ {1, . . . , NH} and the vertical grid index be denoted by

vmap ∈ {1, . . . , NV}. By converting the linear indices to matrix subscripts, the range

map estimate R̂map can be constructed as

[
R̂map

]
vmap,hmap

= [r̂]m , m = (vmap − 1)NH + hmap, (4.41)

where m ∈ {1, . . . ,M}. After that, the depth map estimate D̂map ∈ RNV×NH can

then be calculated from the range map estimate R̂map and the set of angles of the grid

points’ spherical coordinates, as detailed in [31]. Finally, the depth map estimate is
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mapped from the codebook resolution of of NV ×NH pixels to the desired up-scaled

depth map resolution of Mh ×Mw pixels, using 2D signal interpolation [31].

4.6 Simulation Results

In this section, we evaluate the performance of our proposed RIS based depth map

estimation solution.

4.6.1 Simulation Framework

We follow the simulation framework adopted in [31] to evaluate the performance of

the proposed solution with realistic channels. We first build a detailed floor plan with

sufficient number of facets using a high-fidelity 3D graphics design engine, Blender

[112]. this floor plan is then exported to an accurate 3D ray-tracing simulator, Wire-

less Insite [1]. Using the ray-tracing output data, we use MATLAB to construct the

receive signal models and implement the proposed solution. For comparison, we gen-

erate the ground truth depth map by placing a depth camera in Blender at the same

position of the RIS reference element, and adjusting the camera scene parameters

to follow the same scene parameters of the proposed RIS sensing codebook grid of

reflected directions.

System Model: The RIS-aided sensing system parameters are summarized in Table

4.1. The adopted FMCW radar configuration can be achieved by current commerical

FMCW radar systems. The adopted RIS architectures are 30×30 and 40×40 UPAs,

i.e. NH = NV = NRIS ∈ {30, 40}. It is worth noting that the far field assumption

of the channel between the RIS and the targets may not be valid if the size of the

RIS architecture is increased beyond certain limits. It is interesting to characterize

these limits and analyze the near-field operation in the future work. For simplicity,

assume the radar cross section gain of the RIS elements is an isotropic gain with half-
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Table 4.1: The Adopted RIS-Aided Sensing System Parameters

System Configuration

RIS architecture, NH ×NV {30× 30; 40× 40}

Starting frequency, f0 60GHz

Chirp slope, S 300MHz µs−1

ADC Sampling frequency, FS 38MS/s

Samples per chirp, Msample 512

Chirp repetition interval, TPRI 13.47 µs

Derived Parameters

Chirp duration, Tactive 13.47 µs

Transmission bandwidth, BW 4.04GHz

Range resolution, ∆R 3.71 cm

Maximum range, Rmax 18.95m

Chirp rate, Fchirp 74.2 kHz

RIS codebook size, |F | = M {14, 400; 25, 600}

Depth map sensing rate, FDM {5.15, 2.90}Hz

wavelength RIS element spacing, d = λ/2. The transmit power of the radar system is

set to 20 dBm and 15 dBm for the 30×30 and 40×40 RIS architectures, respectively.

The transmit/receive gain of the feeding antenna is assumed to reach a maximum

of 25 dBi in the direction of the RIS elements. The maximum effective isotropic

radiated power (EIRP) is then 45 dBm and 40 dBm for the adopted RIS architectures,

respectively. The radar system transmits M repeated chirps to sense the environment

using M RIS interaction vectors out of the RIS interaction codebook.

Receive Signal Generation: The receive radar signals are generated in two steps. The
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(a) RGB Scene Image (b) RGB-Based Depth Map [8]

∆RMSE = 94.5 cm

∆MAE = 82.9 cm

(c) RGB-Based Depth Map [9]

∆RMSE = 98.3 cm

∆MAE = 86.6 cm

(d) Ground Truth Depth Map (e) Proposed Sol. (30× 30 RIS)

∆RMSE = 37.5 cm

∆MAE = 14.5 cm

(f) Proposed Sol. (40× 40 RIS)

∆RMSE = 31.9 cm

∆MAE = 11.6 cm

Figure 4.2: For the Living Room Scenario, the Proposed RIS-Based Depth Estimation
Solution Is Compared Against Two RGB-Based Depth Estimation Solutions [8, 9] and the
Ground Truth Depth Map. The RIS Is Equipped with 30×30 or 40×40 UPA Elements and
Codebook Oversampling Factors of Four Are Employed. (a) The Scene under Study; (b,
c) The Estimated Maps from Monocular RGB Images Using RGB-Based Solutions [8, 9];
(d) The Ground Truth Depth Map; (e, f) The Estimated Depth Maps Using Our Proposed
RIS-based Solution.

first step is generating the parameters of the channel paths using Wireless InSite [1].

The adopted propagation model and diffuse scattering parameters are the same as

the ones in [31]. The second step is using the generated channel data to construct the

receive baseband digital signals (4.28). The thermal noise floor is calculated based on

a noise figure of 10 dB and the transmission bandwidth of 4.04GHz.

RIS-Aided Depth Map Estimation Parameters: The RIS interaction matrix is de-
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signed based on a 100◦ field of view centered on the RIS boresight, a 4/3 scene aspect

ratio, and horizontal and vertical oversampling factors of FOS
H = FOS

V = 4. The RIS

codebook size is calculated using |F | = M = NHF
OS
H NVF

OS
V . Correspondingly, the

ground truth depth maps are generated by Blender with a depth camera of 100◦ field

of view and a sensor width of 32mm. The image quality of the ground truth depth

maps and the up-scaled estimated depth maps is set to 480p resolution, i.e. 640×480

pixels. Next, we evaluate the performance of our proposed RIS aided depth map

estimation solution in an indoor living room scenario.

4.6.2 Results for A Living Room Scenario

In this scenario, we consider a 15.6m×6.5m×3.8m indoor space, with a glass wall

dividing the space into two rooms. The room under study is a 9.6m× 6.5m× 3.8m

living room, where a 1.8m tall person is moving from left to right. The adopted

materials of the inanimate objects/surfaces follow the ITU default parameter values

at 60GHz. The adopted materials are as follows: concrete for the walls, floorboard for

the floor, ceiling board for the ceiling, glass for the glass wall and the TV, wood for the

entertainment center, the speakers, the arm chairs, and the sofa. The RIS is assumed

to be placed on the wall behind the sofa. The number of facets ranges between ≈ 2k

and 30k for the inanimate objects/surfaces. 20, 542 facets are used for the person

model. The number of facets are as follows: 9, 946 facets for the wall in front, 4, 222

for the left wall, 10, 494 for the glass wall, 8, 391 facets for the floorboard, 10, 494

facets for the ceiling, 2, 926 facets for the TV, 1, 152 facets for the entertainment

center, 1, 152 facets for the speakers, 6, 238 facets for the arm chairs, 30, 660 facets for

the sofa, and 20, 542 facets for the person model. We compare the proposed solution

against two RGB-based solutions [8, 9] to demonstrate the capability of the RIS-aided

sensing in (i) detecting transparent surfaces and (ii) achieving higher trueness of the
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estimated depth values. We follow the official implementation of these RGB-based

solutions and utilize the well-trained models on the NYU depth V2 dataset [99].

Fig. 4.2 compares the estimated depth maps from the RIS-based solution against

the ones from the RGB-based solutions, which uses monocular RGB images to esti-

mate the depth maps. As shown, the RGB-based solutions can construct the shape

of the objects/person more clearly than the proposed solution; i.e they achieve a

higher depth precision. These RGB-based solutions, however, do not achieve high

depth accuracy due to their low level of trueness, especially when misdetecting the

transparent glass wall. As for the proposed RIS-based solution, even though the

glass has the lowest scattering factor among all the other materials, the depth of the

glass wall can be better perceived with a lower estimation error; i.e. the proposed

solution can achieve a higher depth trueness. the depth estimation accuracy of the

RIS-based solution, however, suffers from inter-path interference at some directions,

where the receive powers of undesired paths are higher than the ones of the desired

single-bounce paths. Although the RIS based solution offers a higher spatial resolu-

tion than the mmWave MIMO based solution [31], the RIS reflected beams are yet

relatively wide compared to the ideal pencil beams. For this reason, high estimation

errors are observed around the edges of the objects/person. It would be interesting

to address these challenge in future work.

4.7 Conclusion

In this chapter, we considered the problem of scene depth map estimation using

mmWave wireless sensing systems. For this problem, we proposed to leverage RISs to

accurately estimate high-resolution depth maps. To achieve this objective, we formu-

lated the RIS wireless sensing based scene depth estimation problem and proposed a

comprehensive framework for building scene depth maps using RIS aided mmWave
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sensing systems. The proposed framework includes designing an RIS interaction code-

book capable of creating a sensing grid of reflected beams that meets the desirable

characteristics of efficient scene depth map construction. Using the designed RIS in-

teraction codebook, a post-processing solution is developed to build high-resolution

depth maps. By adopting accurate 3D ray-tracing models, the simulation results

showed that the developed solution can achieve depth map estimation errors in the

order of 12 cm. This highlights the potential of leveraging this proposed solution in

achieving accurate depth perception of the surrounding environment.
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Chapter 5

SUMMARY AND FUTURE WORK

5.1 Summary

This dissertation focused on addressing the key challenges in (a) reconfigurable

intelligent surface (RIS) aided wireless communication systems and (b) RIS aided

wireless sensing systems for scene depth estimation. We considered RIS-aided wire-

less communication systems and developed efficient solutions that design the RIS

interaction (reflection) matrices with negligible training overhead. We first proposed

a novel RIS architecture where only a small number of the RIS elements are active

(connected to the baseband). By leveraging compressive sensing and deep learning

tools, we then developed three solutions that design the RIS reflection matrices for

this new architecture with almost no training overhead. The three proposed solutions

are extensively evaluated and compared against each others. The three proposed so-

lutions can achieve near-optimal data rates with negligible training overhead and with

a few active elements. Some interesting insights were also developed on the impact

of various system and channel parameters. In addition, given an objective of devel-

oping standalone RIS architectures, the third solution exploits a deep reinforcement

learning framework for the RIS to learn how to predict, on its own, the optimal in-

teraction matrices directly from the sampled channel knowledge. This solution does

not require an initial dataset collection phase, as opposed to the supervised learning

based solutions.

We also considered the problem of estimating accurate depth maps for AR/VR de-

vices. For this problem, we proposed leveraging the mmWave communication systems
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that are deployed on the AR/VR devices to estimate and build high-resolution depth

maps. We formulated the communication-constrained depth map sensing problem

and proposed a comprehensive framework for realizing this objective. The proposed

framework includes (i) the construction of depth map specific sensing codebooks using

practical mmWave antenna arrays and (ii) the development of efficient post-processing

solutions for jointly processing the receive signals from the multiple sensing beams

and estimating high-resolution depth maps. The simulation results highlight the po-

tential of leveraging this proposed framework to complement RGB-D based depth

maps and realize immersive depth perception for wireless virtual/augmented real-

ity systems. This work represents an important step towards developing RIS-aided

wireless sensing systems for scene depth estimation.

Last, we investigated the scene depth estimation problem using wireless sens-

ing systems much further; we proposed leveraging RISs to accurately estimate high-

resolution depth maps. To achieve this objective, we formulated the RIS sensing

based scene depth estimation problem and proposed a comprehensive framework for

building scene depth maps using RIS aided mmWave sensing systems. The pro-

posed framework includes designing an RIS interaction codebook capable of creating

a sensing grid of reflected beams that meets the desirable characteristics of efficient

scene depth map construction. Using the designed RIS interaction codebook, a post-

processing solution is developed to build high-resolution depth maps. the simulation

results highlight the potential of leveraging this proposed framework in achieving

accurate depth perception of the surrounding environment.

5.2 Future Work

In this section, we summarize the possible directions for future research as follows.

RIS-aided wireless communication systems: It would be interesting to address
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any additional challenges introduced in highly-dynamic environments and aim at in-

creasing the performance robustness of the proposed solutions under such conditions.

Given the hardware connstraints imposed by practical RIS implementations, it would

be also interesting to analayze the performance of the proposed solutions under the

constraint of discrete RIS induced phase shift values. For the proposed solutions,

an interesting extension would be the optimization of the sparse distribution of the

active sensors leveraging tools from nested and co-prime arrays. For the deep rein-

forcement learning based solution, an interesting extension would be the development

of a fully-standalone RIS operation framework, where the RIS configures itself with

no control from the wireless communication infrastructure.

RIS-aided wireless sensing systems for scene depth estimation: to decreases

the sensing overheard, it would be interesting to leverage the sparse nature of the

mmWave channels and develop a scene depth estimation framework based on com-

pressive sensing for RIS aided mmWave sensing systems. Given the practical hardware

constraints of mmWave MIMO architectures, it would be also interesting to explore a

phase-only approximation of the proposed side lobe reduction approach. In addition,

it would be interesting to consider the case of near-field channels between the RIS and

the targets and develop reliable solutions for such a case. It would also be interesting

to investigate the coupling between the RIS elements and its effect on the scene depth

estimation performance.
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