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ABSTRACT

In the era of big data, more and more decisions and recommendations are being

made by machine learning (ML) systems and algorithms. Despite their many suc-

cesses, there have been notable deficiencies in the robustness, rigor, and reliability of

these ML systems, which have had detrimental societal impacts. In the next genera-

tion of ML, these significant challenges must be addressed through careful algorithmic

design, and it is crucial that practitioners and meta-algorithms have the necessary

tools to construct ML models that align with human values and interests.

In an effort to help address these problems, this dissertation studies a tunable

loss function called α-loss for the ML setting of classification. The α-loss is a hy-

perparameterized loss function originating from information theory that continuously

interpolates between the exponential (α = 1/2), log (α = 1), and 0-1 (α =∞) losses,

hence providing a holistic perspective of several classical loss functions in ML. Fur-

thermore, the α-loss exhibits unique operating characteristics depending on the value

(and different regimes) of α; notably, for α > 1, α-loss robustly trains models when

noisy training data is present. Thus, the α-loss can provide robustness to ML systems

for classification tasks, and this has bearing in many applications, e.g., social media,

finance, academia, and medicine; indeed, results are presented where α-loss produces

more robust logistic regression models for COVID-19 survey data with gains over

state of the art algorithmic approaches.
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Chapter 1

INTRODUCTION

1.1 Background

In the era of big data, more and more decisions and recommendations are being

made by machine learning (ML) systems and algorithms. Despite their many suc-

cesses, there have been notable deficiencies in the robustness, rigor, and reliability of

these ML systems, which have had detrimental societal impacts. In the next genera-

tion of ML, these significant challenges must be addressed through careful algorithmic

design, and it is crucial that practitioners and meta-algorithms have the necessary

tools to construct ML models that align with our values and interests.

Within the supervised ML paradigm, the loss function plays a crucial role. As

an algorithm learns on training data, the loss function gives feedback to the algo-

rithm, allowing it to adjust and better fit the training data. For classification tasks,

practitioners typically employ the log/logistic/cross-entropy loss, as it has good sta-

tistical characteristics and guarantees, and is easy to implement. However, as massive

amounts of training data continue to be aggregated and labeled, it is inevitable that

noise appears in the data; furthermore, the data accumulates human biases, which

have implications for fairness in ML. Indeed, the usual log/logistic/cross-entropy loss

choice is known to suffer in such situations, misleading the learning algorithm to

perturbed and biased models.

Therefore, in an effort to help address these problems, in this dissertation we

propose a tunable loss function called α-loss for the ML setting of classification. The

α-loss is a hyperparameterized loss function originating from information theory that
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continuously interpolates between the exponential (α = 1/2), log (α = 1), and 0-1

(α =∞) losses, hence providing a holistic perspective of several classical loss functions

in ML. Furthermore, the α-loss exhibits unique operating characteristics depending

on the value (and different regimes) of α; notably, for α > 1, α-loss is able to produce

more robust models than state of the art for important tasks involving noisy data.

1.2 Outline of Thesis

The following Dissertation is organized in four main chapters, as follows:

• Chapter 2 presents the foundations of the α-loss.

In Section 2.2, we articulate the information-theoretic motivations of α-loss;

in Section 2.3 for the setting of binary classification, we show that α-loss is

classification-calibrated for all α ∈ (0,∞]; in Section 2.4 for the logistic model,

we provide results regarding the optimization landscape as a function of α,

particularly noticing that convexity decreases as α > 1 increases; in Section 2.5,

we provide Rademacher complexity generalization bounds for all α ∈ (0,∞] and

asymptotic optimality results; finally in Section 2.6, we provide experiments for

logistic regression and convolutional neural networks, observing sensitivity to

class imbalances for α < 1 and robustness to noisy labels for α > 1.

• Chapter 3 presents a statistical theory of robustness for loss functions in the

class probability estimation setting, proving that α-loss satisfies a notion of

robustness called twist-properness.

In Section 3.4 we present the notion of twist-properness for the setting of class

probability estimation; we show that α-loss is twist-proper and a fixed α0 > 1

is statistically more robust than the log-loss (α = 1) for symmetric label noise.

In Section 3.5 we “properly” boost α-loss with PILBoost (pseudo-inverse-link),
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a convex boosting algorithm that has robustness characteristics that are shown

experimentally in Section 4.5.

• Chapter 4 studies the robustness of α-loss for simple models, e.g., logistic re-

gression and boosting with low maximum depth trees.

In Section 4.3.1, we present a novel boosting algorithm, AdaBoost.α, that

smoothly tunes through classical boosting algorithms (vanilla AdaBoost for

α = 1/2 and LogAdaBoost for α = 1) to non-convex boosters (α > 1). In

Section 4.3.2, we show that AdaBoost.α is provably robust for α > 1 on the

hard Long-Servedio dataset, which pathologically defeats any convex booster;

we support this theory with experiments in Section 4.5.1. In Section 4.4 we in-

dicate robustness for α-loss in the logistic model, with upper and lower bounds

showing that the noisy gradient is smaller for α > 1 than when α ≤ 1; this the-

ory is supported in Section 4.5.2 with an application on a COVID-19 dataset,

indicating the real-world efficacy of α-loss for robustness tasks.

• Lastly, Chapter 5 presents a novel framework for generative adversarial networks

(GAN) via α-loss, called α-GAN.

In Section 5.2 we present the theoretical foundations for the α-GAN, showing

how it recovers the vanilla GAN for α = 1. In Section 5.3 we present the

connections between the α-GAN and the classical Arimoto divergence, arguing

for the efficacy of α-GAN for certain tasks.
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Chapter 2

FOUNDATIONS: CALIBRATION, LANDSCAPE, AND GENERALIZATION

2.1 Introduction

In the context of machine learning, the performance of a classification algorithm,

in terms of accuracy, tractability, and convergence guarantees crucially depends on the

choice of the loss function during training (Friedman et al., 2001; Shalev-Shwartz and

Ben-David, 2014). Consider a feature vector X ∈ X , an unknown finite-valued label

Y ∈ Y , and a hypothesis h : X → Y . The canonical 0-1 loss, given by 1[h(X) 6= Y ],

is considered an ideal loss function in the classification setting that captures the

probability of incorrectly guessing the true label Y using h(X). However, since the

0-1 loss is neither continuous nor differentiable, its applicability in state-of-the-art

learning algorithms is highly restricted (Ben-David et al., 2003). As a consequence,

surrogate loss functions that approximate the 0-1 loss such as log-loss, exponential

loss, sigmoid loss, etc. have garnered much interest (Bartlett et al., 2006b; Masnadi-

Shirazi and Vasconcelos, 2009; Lin, 2004; Nguyen et al., 2009a; Rosasco et al., 2004;

Nguyen and Sanner, 2013; Singh and Principe, 2010; Tewari and Bartlett, 2007; Zhao

et al., 2010; Barron, 2019; Lin et al., 2017b).

In the field of information-theoretic privacy, Liao et al. recently introduced a

tunable loss function called α-loss for α ∈ [1,∞] to model the inferential capacity

of an adversary to obtain private attributes (Liao et al., 2018a, 2019, 2020). For

α = 1, α-loss reduces to log-loss which models a belief-refining adversary; for α =∞,

α-loss reduces to the probability of error which models an adversary that makes

hard decisions. Using α-loss, Liao et al. (2018a) derived a new privacy measure
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called α-leakage which continuously interpolates between Shannon’s mutual informa-

tion (Shannon, 2001) and maximal leakage introduced by Issa et al. (2019); indeed,

Liao et al. showed that α-leakage is equivalent to the Arimoto mutual informa-

tion (Verdú, 2015). We extend α-loss to the range α ∈ (0,∞] and propose it as a

tunable surrogate loss function for the ideal 0-1 loss in the machine learning setting of

classification. Through our extensive analysis, we argue that: 1) since α-loss contin-

uously interpolates between the exponential (α = 1/2), log (α = 1), and 0-1 (α =∞)

losses and is related to the Arimoto conditional entropy, it is theoretically an object

of interest in its own right; 2) navigating the convexity/robustness trade-offs inherent

in the α hyperparameter offers significant practical improvements over log-loss, which

is a canonical loss function in classification, and can be done quickly and effectively.

2.1.1 Related Work

The study and implementation of tunable utility (or loss) metrics which continu-

ously interpolate between useful quantities is a persistent theme in information theory,

networking, and machine learning. In information theory, Rényi entropy generalized

the Shannon entropy (Rényi, 1961), and Arimoto extended the Rényi entropy to con-

ditional distributions (Arimoto, 1971a). This led to the α-mutual information (Verdú,

2015; Sason and Verdú, 2017), which is directly related to a recently introduced pri-

vacy measure called α-leakage (Liao et al., 2018a). More recently in networking, Mo

and Walrand (2000) introduced α-fairness, which is a tunable utility metric that alters

the value of different edge users; similar ideas have recently been studied in the feder-

ated learning setting (Li et al., 2019). Even more recently in machine learning, Barron

(2019) presented a tunable extension of the l2 loss function, which interpolates be-

tween several known l2-type losses and has similar convexity/robustness themes as this

chapter. Presently, there is a need in the machine learning setting of classification for
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alternative losses to the cross-entropy loss (one-hot encoded log-loss) (Janocha and

Czarnecki, 2016). We propose α-loss, which continuously interpolates between the

exponential, log, and 0-1 losses, as a viable solution.

In order to evaluate the statistical efficacy of loss functions in the learning setting

of classification, Bartlett et al. (2006b) proposed the notion of classification-calibration

in a seminal paper. Classification-calibration is analogous to point-wise Fisher con-

sistency in that it requires that the minimizer of the conditional expectation of a loss

function agrees in sign with the Bayes predictor for every value of the feature vector.

A more restrictive notion called properness requires that the minimizer of the condi-

tional expectation of a loss function exactly replicates the true posterior (Nock and

Menon, 2020; Walder and Nock, 2020; Reid and Williamson, 2010a). Properness of a

loss function is a necessary condition for efficacy in the class probability estimation

setting (see, e.g., (Reid and Williamson, 2010a)), but for the classification setting

which is the focus of this chapter, the notion of classification-calibration is sufficient.

In the sequel, we find that the margin-based form of α-loss is classification-calibrated

for all α ∈ (0,∞] and thus satisfies this necessary condition for efficacy in binary

classification.

While early research was predominantly focused on convex losses (Bartlett et al.,

2006b; Rosasco et al., 2004; Nguyen et al., 2009a; Lin, 2004), more recent works

propose the use of non-convex losses as a means to moderate the behavior of an algo-

rithm (Mei et al., 2018; Nguyen and Sanner, 2013; Masnadi-Shirazi and Vasconcelos,

2009; Barron, 2019). This is due to the increased robustness non-convex losses offer

over convex losses (Long and Servedio, 2010; Mei et al., 2018; Barron, 2019) and the

fact that modern learning models (e.g., deep learning) are inherently non-convex as

they involve vast functional compositions (Goodfellow et al., 2016). There have been

numerous theoretical attempts to capture the non-convexity of the optimization land-
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scape which is the loss surface induced by the learning model, underlying distribution,

and the surrogate loss function itself (Mei et al., 2018; Hazan et al., 2015; Li et al.,

2018b; Nguyen and Hein, 2017; Fu et al., 2020; Liang et al., 2018; Engstrom et al.,

2019; Chaudhari et al., 2018). To this end, Hazan et al. (2015) introduce the notion of

strictly local quasi-convexity (SLQC) to parametrically quantify approximately quasi-

convex functions, and provide convergence guarantees for the Normalized Gradient

Descent (NGD) algorithm (originally introduced in (Nesterov, 1984)) for such func-

tions. Through a quantification of the SLQC parameters of the expected α-loss, we

provide some estimates that strongly suggest that the degree of convexity increases

as α decreases less than 1 (log-loss); conversely, the degree of convexity decreases as

α increases greater than 1. Thus, we find that there exists a trade-off inherent in

the choice of α ∈ (0,∞], i.e., trade convexity (and hence optimization speed) for ro-

bustness and vice-versa. Since increasing the degree of convexity of the optimization

landscape is conducive to faster optimization, our approach could serve as an alter-

native to other approaches whose objective is to accelerate the optimization process,

e.g., the activation function tuning in (Benigni and Péché, 2019; Xiao et al., 2018;

Pennington and Worah, 2017) and references therein.

Understanding the generalization capabilities of learning algorithms stands as one

of the key problems in theoretical machine learning. A classical approach to this

problem consists in deriving algorithm independent generalization bounds, mainly

relying on the notion of Rademacher complexity (Shalev-Shwartz and Ben-David,

2014, Ch. 26). A recent line of research, initiated by the works of Russo and Zou (2020)

and Xu and Raginsky (2017), aims to improve generalization bounds by considering

the statistical dependency between the input and the output of a given learning

algorithm. While there are many extensions and refinements, e.g., (Lopez and Jog,

2018; Wang et al., 2019a; Bu et al., 2020; Steinke and Zakynthinou, 2020; Esposito
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et al., 2021; Gálvez et al., 2021; Neu et al., 2021), these results are inherently algorithm

dependent which makes them hard to instantiate and obfuscates the role of the loss

function. Hence, in this chapter we rely on classical Rademacher complexity tools

to provide algorithm independent generalization bounds that lead to the asymptotic

optimality of α-loss w.r.t. the 0-1 loss.

There are a few proposed tunable loss functions for the classification setting in

the literature (Wang et al., 2019b; Amid et al., 2019a; Nguyen and Sanner, 2013; Li

et al., 2021). Notably, the symmetric cross entropy loss introduced by Wang et al.

(2019b) proposes the tunable linear combination of the usual cross entropy loss with

the so-called reverse cross entropy loss, which essentially reverses the roles of the one-

hot encoded labels and soft prediction of the model. Wang et al. report gains under

symmetric and asymmetric noisy labels, particularly in the very high noise regime.

Another approach introduced by Amid et al. (2019a) is a bi-tempered logistic loss,

which is based on Bregman divergences. As the name suggests, the bi-tempered lo-

gistic loss depends on two temperature hyperparameters, which Amid et al. show

improvements over vanilla cross-entropy loss again on noisy data. Recently, Li et al.

(2021) introduced tilted empirical risk minimization, a framework which parametri-

cally generalizes empirical risk minimization using a log-exponential transformation

to induce fairness or robustness in the model. Contrasting with this chapter, we note

that our study is exclusively focused on α-loss acting within empirical risk minimiza-

tion. Summing up, the main distinctions that differentiate this chapter from related

work are that α-loss has a fundamental relationship to the Arimoto conditional en-

tropy, continuously interpolates between the exponential, log, and 0-1 losses, and

provides robustness to noisy labels and sensitivity to imbalanced classes.
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2.1.2 Contributions

The following are the main contributions presented in this chapter:

• We formulate α-loss in the classification setting, extending it to α ∈ (0, 1),

and we thereby extend the result of Liao et al. (2018a) which characterizes the

relationship between α-loss and the Arimoto conditional entropy.

• For binary classification, we define a margin-based form of α-loss and demon-

strate its equivalence to α-loss for all α ∈ (0,∞]. We then characterize convexity

and verify statistical calibration of the margin-based α-loss for α ∈ (0,∞]. We

next derive the minimum conditional risk of the margin-based α-loss, which

we show recovers the relationship between α-loss and the Arimoto conditional

entropy for all α ∈ (0,∞]. Lastly, we provide synthetic experiments on a

two-dimensional Gaussian mixture model with asymmetric label flips and class

imbalances, where we train linear predictors with α-loss for several values of α.

• For the logistic model in binary classification, we show that the expected α-

loss is convex in the logistic parameter for α ≤ 1 (strongly-convex when the

covariance matrix is positive definite), and we show that it retains convexity as

α increases greater than 1 provided that the radius of the parameter space is

small enough. We provide a point-wise extension of strictly local quasi-convexity

(SLQC) by Hazan et al., and we reformulate SLQC into a more tractable in-

equality using a geometric inequality which may be of independent interest.

Using a bootstrapping technique which also may be of independent interest, we

provide bounds in order to quantify the evolution of the SLQC parameters as

α increases.

• Also for the logistic model in binary classification, we characterize the gener-
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alization capabilities of α-loss. To this end, we employ standard Rademacher

complexity generalization techniques to derive a uniform generalization bound

for the logistic model trained with α-loss for α ∈ (0,∞]. We then combine a

result by Bartlett et al. and our uniform generalization bound to show (under

standard distributional assumptions) that the minimizer of the empirical α-loss

is asymptotically optimal with respect to the expected 0-1 loss (probability of

error), which is the ideal metric in classification problems.

• Finally, we perform symmetric noisy label and class imbalance experiments

on MNIST, FMNIST, and CIFAR-10 using convolutional-neural-networks. We

show that models trained with α-loss can either be more robust or sensitive

to outliers (depending on the application) over models trained with log-loss

(α = 1). Following some of our theoretical intuitions, we demonstrate the

“Goldilocks zone” of α ∈ (0,∞], i.e., for most applications α∗ ∈ [.8, 8]. Thus,

we argue that α-loss is an effective generalization of log-loss (cross-entropy loss)

for classification problems in modern machine learning.

2.2 Information-Theoretic Motivations

Consider a pair of discrete random variables denoted (X, Y ) ∼ PX,Y . Observing

X, one can construct an estimate Ŷ of Y such that Y − X − Ŷ form a Markov

chain. It is possible to evaluate the fitness of a given estimate Ŷ using a loss function

` : Y × P(Y)→ R+ via the expectation

EX,Y
[
`(Y, PŶ |X)

]
, (2.1)

where Ŷ |X ∼ PŶ |X is the learner’s posterior estimate of Y given knowledge of X; for

simplicity we sometimes abbreviate PŶ |X=x as P̂ when the context is clear. Liao et al.

(2018a) proposed the definition of α-loss for α ∈ [1,∞] in order to quantify adversarial
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Figure 2.1: (a) α-loss (2.2) as a Function of the Probability for Several Values of

α; (b) α-tilted Posterior (2.6) for Several Values of α Where the True Underlying

Distribution Is the (20,.5)-binomial Distribution.

action in the information leakage context. We adapt and extend the definition of α-

loss to α ∈ (0,∞] in order to study the efficacy of the loss function in the machine

learning setting.

Definition 1. Let P(Y) be the set of probability distributions over Y. For α ∈

(0, 1) ∪ (1,∞), we define α-loss, denoted by lα : Y × P(Y)→ R+, as

lα(y, P̂ ) :=
α

α− 1

(
1− P̂ (y)1−1/α

)
, (2.2)

and, by continuous extension, l1(y, P̂ ) := − log P̂ (y) and l∞(y, P̂ ) := 1− P̂ (y).

Note that for (y, P̂ ) fixed, lα(y, P̂ ) is continuous1 and monotonically decreasing

in α. Also note that l1 recovers log-loss, and plugging in α = 1/2 yields l1/2(y, P̂ ) :=

P̂−1(y) − 1. One can use expected α-loss EX,Y [lα(Y, PŶ |X)], hence called α-risk, to

quantify the effectiveness of the estimated posterior PŶ |X . In particular,

EX,Y
[
l1(Y, PŶ |X)

]
= EX

[
H(PY |X=x, PŶ |X=x)

]
, (2.3)

1The continuity of α-loss in α has nontrivial importance in later robustness arguments.
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whereH(P,Q) := H(P )+DKL(P‖Q) is the cross-entropy between P andQ. Similarly,

EX,Y [l∞(Y, PŶ |X)] = P[Y 6= Ŷ ], (2.4)

i.e., the expected α-loss for α = ∞ equals the probability of error. Recall that the

expectation of the canonical 0-1 loss, EX,Y [1[Y 6= Ŷ ]], also recovers the probability

of error (Shalev-Shwartz and Ben-David, 2014). For this reason, we sometimes refer

to l∞ as the 0-1 loss.

Observe that α-loss presents a tunable class of loss functions that value the prob-

abilistic estimate of the label differently as a function of α; see Fig. 2.1(a). In the

sequel, we find that, when composed with a sigmoid, l1/2, l1, l∞ become the exponen-

tial, logistic, and sigmoid (smooth 0-1) losses, respectively. While we note that there

may be infinitely many ways to continuously interpolate between the exponential, log,

and 0-1 losses, we observe that the interpolation introduced by α-loss is monotonic

in α, seems to provide an information-theoretic interpretation (Proposition 1), and

also appears to be apt for the classification setting which will be further elaborated in

the sequel. The following result was shown by Liao et al. (2018a) for α ∈ [1,∞] and

provides an explicit characterization of the optimal risk-minimizing posterior under

α-loss. We extend the result to α ∈ (0, 1).

Proposition 1. For each α ∈ (0,∞], the minimal α-risk is

min
PŶ |X

EX,Y
[
lα(Y, PŶ |X)

]
=

α

α− 1

(
1− e

1−α
α
HA
α (Y |X)

)
, (2.5)

where HA
α (Y |X) :=

α

1− α
log
∑
x

(∑
y

PX,Y (x, y)α
)1/α

is the Arimoto conditional en-

tropy of order α (Arimoto, 1977). The resulting unique minimizer, P̂ ∗α, is the α-tilted

true posterior

P̂ ∗α(y|x) =
PY |X(y|x)α∑
y

PY |X(y|x)α
. (2.6)

12



The proof of Proposition 1 for α ∈ [1,∞] can be found in (Liao et al., 2018a) and

is readily extended to the case where α ∈ (0, 1) with similar techniques. Through

Proposition 1, we note that α-loss exhibits different operating conditions through the

choice of α. Observe that the minimizer of (2.5) given by the α-tilted distribution

in (2.6) recovers the true posterior only if α = 1, i.e., for log-loss. Further, as α

decreases from 1 towards 0, α-loss places increasingly higher weights on the low prob-

ability outcomes; on the other hand as α increases from 1 to ∞, α-loss increasingly

limits the effect of the low probability outcomes. Ultimately, we find that for α =∞,

minimizing the corresponding risk leads to making a single guess on the most likely

label, i.e., MAP decoding. See Fig. 2.1(b) for an illustration of the α-tilted distri-

bution on a (20,0.5)-Binomial distribution. Intuitively, empirically minimizing α-loss

for α 6= 1 could be a boon for learning the minority class (α < 1) or ignoring label

noise (α > 1); see Section 2.6 for experimental consideration of such class imbalance

and noisy label trade-offs in logistic regression and convolutional neural networks.

Through Proposition 2.5, we observe that the minimization of α-loss recovers

the Arimoto entropy (Arimoto, 1971b). As we will see in Chapter 5, utilizing α-

loss in Generative Adversarial Networks also recovers Arimoto divergences (Vajda,

2009). Hence, α-loss is intimately related to Arimoto-type entropies, informations,

and divergences. With the information-theoretic motivations of α-loss behind us, we

now consider the setting of binary classification, where we study the statistical and

robustness properties of α-loss.

2.3 Binary Classification

In this section, we study the role of α-loss in binary classification. First, we pro-

vide its margin-based form, which we show is intimately related to the original α-loss

formulation in Definition 1; next, we analyze the optimization characteristics and
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statistical properties of the margin-based α-loss where we notably recover the rela-

tionship between α-loss and the Arimoto conditional entropy in the margin setting;

finally, we comment on the robustness and sensitivity trade-offs which are inherent

in the choice of α through theoretical discussion and experimental considerations.

First, however, we formally discuss the binary classification setting through the role

of classification functions and surrogate loss functions.

In binary classification, the learner ideally wants to obtain a classifier h : X →

{−1,+1} that minimizes the probability of error, or the risk (expectation) of the 0-1

loss, given by

R(h) = P[h(X) 6= Y ], (2.7)

where the true 0-1 loss given by 1[h(X) 6= Y ]. Unfortunately, this optimization

problem is NP-hard (Ben-David et al., 2003). Therefore, the problem is typically

relaxed by imposing restrictions on the space of possible classifiers and by choosing

surrogate loss functions with desirable properties. Thus during the training phase,

it is common to optimize a surrogate loss function over classification functions of

the form f : X → R, R = R ∪ {±∞}, whose output captures the certainty of a

model’s prediction of the true underlying binary label Y ∈ {−1, 1} associated with

X (Bartlett et al., 2006b; Lin, 2004; Nguyen et al., 2009a; Masnadi-Shirazi and Vas-

concelos, 2009; Sypherd et al., 2019; Schapire and Freund, 2013; Shalev-Shwartz and

Ben-David, 2014; Friedman et al., 2001). Once a suitable classification function has

been chosen, the classifier is obtained by making a hard decision, i.e., the model out-

puts the classification h(X) = sign(f(X)), in order to predict the true underlying

binary label Y ∈ {−1, 1} associated with the feature vector X ∈ X . Examples of

learning algorithms which optimize surrogate losses over classification functions in-

clude SVM (hinge loss), logistic regression (logistic loss), and AdaBoost (exponential

loss), to name a few (Friedman et al., 2001). With the notions of classification func-
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tions and surrogate loss functions in hand, we now turn our attention to an important

family of surrogate loss functions in binary classification.

2.3.1 Margin-based α-loss

Here, we provide the definition of α-loss in binary classification and characterize

its relationship to the form presented in Definition 1. First, we discuss an important

family of loss functions in binary classification called margin-based losses.

A loss function is said to be margin-based if, for all x ∈ X and y ∈ {−1,+1},

the loss associated to a pair (y, f(x)) is given by l̃(yf(x)) for some function l̃ : R →

R+ (Bartlett et al., 2006b; Lin, 2004; Masnadi-Shirazi and Vasconcelos, 2009; Nguyen

et al., 2009a; Janocha and Czarnecki, 2016). In this case, the loss of the pair (y, f(x))

only depends on the product z := yf(x), the (unnormalized) margin (Schapire and

Freund, 2013). Observe that a negative margin corresponds to a mismatch between

the signs of f(x) and y, i.e., a classification error by f . Similarly, a positive margin

corresponds to a match between the signs of f(x) and y, i.e., a correct classification by

f . We now provide the margin-based form of α-loss, which is illustrated in Fig. 2.2(a).

Definition 2. For α ∈ (0, 1)∪(1,∞), we define the margin-based α-loss, l̃α : R→ R+,

as

l̃α(z) :=
α

α− 1

(
1−

(
1 + e−z

)1/α−1
)
, (2.8)

and, by continuous extension, l̃1(z) = log(1 + e−z) and l̃∞(z) = (1 + ez)−1.

Note that l̃1/2(z) = e−z. Thus, l̃1/2, l̃1, and l̃∞ recover the exponential, logistic,

and sigmoid losses, respectively. Navigating the various regimes of α induces different

optimization, statistical, and robustness characteristics for the margin-based α-loss;

this is elaborated in the sequel. First, we discuss its relationship to the original
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Figure 2.2: (a) Margin-based α-loss (4.3) as a Function of the Margin (z := yf(x))

for α ∈ {.3, .5, .77, 1, 1.44,∞}; (b) minimum Conditional Risk (2.14) for the Same

Values of α.

form in Definition 1, which requires alternative prediction functions to classification

functions called soft classifiers.

In binary classification, it is also common to use soft classifiers g : X → [0, 1]

which encode the conditional distribution, namely, g(x) := PŶ |X(1|x). In essence,

soft classifiers capture a model’s belief of Y |X (Shalev-Shwartz and Ben-David, 2014;

Goodfellow et al., 2016; Sypherd et al., 2019). Similar to the classification function

setting, the hard decision of a soft classifier is obtained by h(x) = sign(g(x)− 1/2).

Log-loss, and by extension α-loss as given in Definition 1, are examples of loss func-

tions which act on soft classifiers. In practice, a soft classifier can be obtained by

composing a classification function with the logistic sigmoid function σ : R → [0, 1]

given by

σ(z) =
1

1 + e−z
, (2.9)

which is generalized by the softmax function in the multiclass setting (Goodfellow

et al., 2016). Observe that σ is invertible and σ−1 : [0, 1]→ R is given by

σ−1(z) = log

(
z

1− z

)
, (2.10)
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which is often referred to as the logistic link (Reid and Williamson, 2010a).

With these two transformations, one is able to map classification functions to soft

classifiers and vice-versa. Thus, a loss function in one domain is readily transformed

into a loss function in the other domain. In particular, we are now in a position to

derive the correspondence between α-loss in Defintion 1 and the margin-based α-loss

in Definition 2, which generalizes our previous proof in (Sypherd et al., 2019).

Proposition 2. Consider a soft classifier g(x) = PŶ |X(1|x). If f(x) = σ−1(g(x)),

then, for every α ∈ (0,∞],

lα(y, g(x)) = l̃α(yf(x)). (2.11)

Conversely, if f is a classification function, then the soft classifier g(x) := σ(f(x))

satisfies (2.11). In particular, for every α ∈ (0,∞],

min
g

EX,Y (lα(Y, g(x))) = min
f

EX,Y (l̃α(Y f(X))). (2.12)

Therefore, there is a direct correspondence between α-loss in Definition 1 and the

margin-based α-loss which is used in binary classification.

Remark 1. Instead of the fixed inverse link function (4.1), it is also possible to

use any other fixed inverse link function, or even inverse link functions dependent

on α; indeed, it is possible to derive many such tunable margin-based losses this

way. However, the margin-based α-loss as given in Definition 2 allows for continuous

interpolation between the exponential, logistic, and sigmoid losses, and thus motivates

our choice of the fixed sigmoid in (4.1) as the inverse link.

The following result, which quantifies the convexity of the margin-based α-loss,

will be useful in characterizing the convexity of the average loss, or landscape, in the

sequel.
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Proposition 3. As a function of the margin, l̃α : R → R+ is convex for α ≤ 1 and

quasi-convex for α > 1.

Recall that a real-valued function f : R → R is quasi-convex if, for all x, y ∈ R

and λ ∈ [0, 1], we have that f(λx+ (1−λ)y) ≤ max {f(x), f(y)}, and also recall that

any monotonic function is quasi-convex (see e.g., (Boyd and Vandenberghe, 2004a)).

Intuitively through Fig. 2.2(a), we find that the quasi-convexity of the margin-based

α-loss for α > 1 reduces the penalty induced during training for examples which have

a negative margin; this has implications for robustness that will also be investigated

in the sequel.

2.3.2 Calibration of Margin-based α-loss

With the definition and basic properties of the margin-based α-loss in hand,

we now discuss a statistical property of the margin-based α-loss that highlights its

suitability in binary classification. Bartlett et al. (2006b) introduce classification-

calibration as a means to compare the performance of a margin-based loss function

relative to the 0-1 loss by inspecting the minimizer of its conditional risk. For-

mally, let φ : R → R+ denote a margin-based loss function and let Cφ(η(x), f(x)) =

E[φ(Y f(X))|X = x] denote its conditional expectation (risk), where η(x) = PY |X(1|x)

is the true posterior and f : X → R is a classification function. Thus, the conditional

risk of the margin-based α-loss for α ∈ (0,∞] is given by

Cα(η(x), f(x)) = EY [l̃α(Y f(X))|X = x]. (2.13)

We say that φ : R → R+ is classification-calibrated if, for all x ∈ X , its minimum

conditional risk

inf
f :X→R

Cφ(η(x), f(x)) = inf
f :X→R

η(x)φ(f(x)) + (1− η(x))φ(−f(x)), (2.14)
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is attained by a f ∗ : X → R such that

sign(f ∗(x)) = sign(2η(x)− 1). (2.15)

In words, a margin-based loss function is classification-calibrated if for each feature

vector, the minimizer of its minimum conditional risk agrees in sign with the Bayes

optimal predictor. Note that this is a pointwise form of Fisher consistency (Lin, 2004;

Bartlett et al., 2006b).

The expectation of the loss function φ, or the φ-risk, is denoted

Rφ(f) = EX [Cφ(η(X), f(X))], (2.16)

and this notation will be useful in the sequel when we quantify the asymptotic behav-

ior of α-loss. Finally, as is common in the literature (Masnadi-Shirazi and Vasconcelos,

2009; Bartlett et al., 2006b), we omit the dependence of η and f on x, and we also

let C∗φ(η) = Cφ(η, f ∗) for notional convenience. With the necessary background on

classification-calibrated loss functions in hand, we are now in a position to show that

l̃α is classification-calibrated for all α ∈ (0,∞].

Theorem 1. For α ∈ (0,∞], the margin-based α-loss l̃α is classification-calibrated.

In addition, its optimal classification function is given by

f ∗α(η) = α · σ−1(η) = α log

(
η

1− η

)
. (2.17)

See Appendix A.1 for full proof details. Examining the optimal classification

function in (2.17) more closely, we observe that this expression is readily derived

from the α-tilted distribution for a binary label set in Proposition 2. Thus, analogous

to the intuitions regarding the α-tilted distribution in (2.6), the optimal classification

function in (2.17) suggests that α > 1 is more robust to slight fluctuations in η and

α < 1 is more sensitive to slight fluctuations in η. In the sequel, we find that this has

practical implications for noisy labels and class imbalances.

19



Upon plugging (2.17) into (2.13), we get the next result which specifies the mini-

mum conditional risk of l̃α for α ∈ (0,∞].

Corollary 1. For α ∈ (0,∞], the minimum conditional risk C∗α(η) of l̃α is equal to

α
α−1

(
1− (ηα + (1− η)α)1/α

)
α ∈ (0, 1) ∪ (1,+∞),

−η log η − (1− η) log (1− η) α = 1,

min{η, 1− η} α→ +∞.

(2.18)

Remark 2. Observe that in (2.18) for α = 1, the minimum conditional risk can be

rewritten as

C∗1(η) = −η log η − (1− η) log (1− η) (2.19)

= H(Y |X = x), (2.20)

where H(Y |X = x) is the Shannon conditional entropy for a Y given X = x (Thomas

and Joy, 2006). For α ∈ (0, 1) ∪ (1,+∞), also note that in (2.18), the minimum

conditional risk can be rewritten as

C∗α(η) =
α

α− 1

[
1− (ηα + (1− η)α)1/α

]
(2.21)

=
α

α− 1

[
1− e

1−α
α
HA
α (Y |X=x)

]
, (2.22)

where HA
α (Y |X = x) = 1

1−α log
(∑

y PY |X(y|x)α
)

is the Arimoto conditional entropy

of order α (Arimoto, 1977). Finally, observe that EX [C∗α(η(X))] recovers (2.5) in

Proposition 1.

Finally, note that the minimum conditional risk of the margin-based α-loss is con-

cave for all α ∈ (0,∞] (see Fig. 2.2(b)); indeed, this is known to be a useful property

for classification problems (Masnadi-Shirazi and Vasconcelos, 2009). Therefore, since

the margin-based α-loss is classification-calibrated and its minimum conditional risk
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is concave for all α ∈ (0,∞], it seems to have reasonable statistical behavior for binary

classification problems. We now turn our attention to the robustness and sensitivity

tradeoffs induced by traversing the different regimes of α for the margin-based α-loss.

2.3.3 Robustness and Sensitivity of Margin-based α-loss

Despite the advantages of convex losses in terms of numerical optimization and

theoretical tractability, non-convex loss functions often provide superior model robust-

ness and classification accuracy (Mei et al., 2018; Nguyen and Sanner, 2013; Barron,

2019; Sypherd et al., 2019; Schapire and Freund, 2013; Wu and Liu, 2007; Chapelle

et al., 2009; Long and Servedio, 2010; Masnadi-Shirazi and Vasconcelos, 2009). In

essence, non-convex loss functions tend to assign less weight to misclassified training

examples2 and therefore algorithms optimizing such losses are often less perturbed

by outliers, i.e., examples which induce large negative margins. More concretely,

consider Fig. 2.2(a) for α = 1/2 (convex) and α = 1.44 (quasi-convex), and suppose

that z1 = −1 and z2 = −5. Plugging these parameters into Definition 2, we find that

l̃1/2(z1) = e1 ≈ 2.7, l̃1/2(z2) = e5 ≈ 148.4, l̃1.44(z1) ≈ 1.1, and l̃1.44(z2) ≈ 2.6. In words,

the difference in these loss evaluations for a negative value of the margin, which is

representative of a misclassified training example, is approximately exponential versus

sub-linear. Indeed, this difference appears to be most relevant for outliers (e.g., noisy

or imbalanced training examples) (Masnadi-Shirazi and Vasconcelos, 2009; Schapire

and Freund, 2013).

We explore these ideas with the following synthetic experiment presented in Fig. 2.3.

We assume the practitioner has access to modified training data which approximates

the true underlying distribution given by a two-dimensional Gaussian Mixture Model

2Convex losses grow at least linearly with respect to the negative margin which results in an

increased sensitivity to outliers. See Fig. 2.2(a) for α = 1 as an example of this phenomenon.

21



-2 -1 0 1

X
1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

X
2

(a) Class Imbalance

+1 Class

-1 Class

Bayes Optimal [Balanced]

 = .65

 = 1 [Log-Loss]

 = 4

-3 -2 -1 0 1 2 3

X
1

-3

-2

-1

0

1

2

3

X
2

(b) Noisy Labels

Figure 2.3: Two Synthetic Experiments Each Averaged over 100 Runs Highlighting

the Differences in Trained Linear Predictors of α-loss for α ∈ {.65, 1, 4} on Imbalanced

and Noisy Data, Which Are Compared with the Bayes Optimal Predictor for the

Clean, Balanced Distribution. Training Data Present in Both Figures Is Obtained

from the Last Run in Each Experiment, Respectively. (a) averaged Linear Predictors

Trained Using α-loss on Imbalanced Data with 2 Examples from y = −1 Class per

Run. Averaged Linear Predictors for Smaller Values of α Are Closer to the Bayes

Predictor for the Balanced Distribution, Which Highlights the Sensitivity of α-loss

to the Minority Class for α < 1. (b) averaged Linear Predictors Trained Using α-loss

on Noisy Data, Which Is Obtained by Flipping the Labels of the y = −1 Class with

Probability 0.2. Averaged Linear Predictor for α = 4 Is Closer to the Bayes Predictor

for the Balanced Distribution, Which Highlights the Robustness of α-loss to Noise

for α > 1.
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(2D-GMM) with equal mixing probability P[Y = −1] = P[Y = +1], symmetric means

µX|Y=−1 = (−1,−1)ᵀ = −µX|Y=1, (2.23)

and shared identity covariance matrix Σ = I2. The first experiment considers the sce-

nario where the training data suffers from a class imbalance; specifically, the number

of training examples for the Y = −1 class is 2 and the number of training examples

for the Y = +1 class is 98 for every run. The second experiment considers the sce-

nario where the training data suffers from noisy labels; specifically, the labels of the

Y = −1 class are flipped with probability 0.2 and the labels of the Y = +1 class

are kept fixed. For both experiments we train α-loss on the logistic model, which is

the generalization of logistic regression with α-loss and is formally described in the

next section. Specifically, we minimize α-loss using gradient descent with the fixed

learning rate = 0.01 for each α ∈ {0.65, 1, 4}. Note that α = 0.65 (lower limit) and

α = 4 (upper limit) were both chosen for computational feasibility in the logistic

model; in practice, the range of α ∈ (0,∞], while usually contracted as in this ex-

periment, is dependent on the model - this is elaborated in the sequel. Training is

allowed to progress until convergence as specified by the optimality parameter = 10−4.

The linear predictors presented in Fig. 2.3 are averaged over 100 runs of randomly

generated data according to the parameters for each experiment.

Ideally, the practitioner would like to generate a linear predictor which is invariant

to noisy or imbalanced training data and tends to align with the Bayes optimal

predictor for the balanced distribution. Indeed, when the training data is balanced

(and clean), all averaged linear predictors generated by α-loss collapse to the Bayes

predictor; see Fig. A.5 in Appendix A.4.2. However, training on noisy or imbalanced

data affects the linear predictors of α-loss in different ways. In the class imbalance

experiment in Fig. 2.3(a), we find that the averaged linear predictor for the smaller
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values of αmore closely approximate the Bayes predictor for the balanced distribution,

which suggests that the smaller values of α are more sensitive to the minority class.

Similarly in the class noise experiment in Fig. 2.3(b), we find that the averaged linear

predictor for α = 4 more closely approximates the Bayes predictor for the balanced

distribution, which suggests that the larger values of α are less sensitive to noise in

the training data. Both results suggest that α = 1 (log-loss) can be improved with the

use of α-loss in these scenarios. For quantitative results of this experiment, including

a wider range of α’s, additional imbalances and noise levels, and results using the F1

score, see Tables A.1, A.2, and A.3 in Appendix A.4.2.

In summary, we find that navigating the convexity regimes of α-loss induces dif-

ferent robustness and sensitivity characteristics. We explore these themes in more

detail on canonical image datasets in Section 2.6; theoretical investigations of the ro-

bustness of α-loss can be found in (Sypherd et al., 2021). We now turn our attention

to theoretically characterizing the optimization complexity of α-loss for the different

regimes of α in the logistic model.

2.4 Optimization Landscape

In this section, we analyze the optimization complexity of α-loss in the logistic

model as we vary α by quantifying the convexity of the optimization landscape. First,

we show that the α-risk is convex (indeed, strongly-convex if a certain correlation

matrix is positive definite) in the logistic model for α ≤ 1; next, we provide a brief

summary of a notion known as strictly local quasi-convexity (SLQC); then, we provide

a more tractable reformulation of SLQC which is instrumental for our theory; finally,

we study the convexity of the α-risk in the logistic model through SLQC for a range

of α > 1, which we argue is sufficient due to the rapid saturation effect of α-loss

as α → ∞. Notably, our main result depends on a bootstrapping argument that
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might be of independent interest. Our main conclusion of this section is that there

exists a ”Goldilocks zone” of α ∈ (0,∞] which drastically reduces the hyperparameter

search induced by α for the practitioner. Finally, note that all proofs and background

material can be found in Appendix A.2.

2.4.1 α-loss in the Logistic Model

Prior to stating our main results, we clarify the setting and provide necessary

definitions. Let X ∈ [0, 1]d be the normalized feature where d ∈ N is the number

of dimensions, Y ∈ {−1,+1} the label and we assume that the pair is distributed

according to an unknown distribution PX,Y , i.e., (X, Y ) ∼ PX,Y . For θ̃ ∈ Rd and

r > 0, we let Bd(θ̃, r) := {θ ∈ Rd : ‖θ−θ̃‖ ≤ r}. For simplicity, we let Bd(r) = Bd(0, r)

when θ̃ = 0; also note that all norms are Euclidean. Given r > 0, we consider the

logistic model and its associated hypothesis class G = {gθ : θ ∈ Bd(r)}, composed of

parameterized soft classifiers gθ such that

gθ(x) = σ(〈θ, x〉), (2.24)

with σ : R → [0, 1] being the sigmoid function given by (4.1). For convenience, we

present the following short form of α-loss in the logistic model which is equivalent to

the expanded expression in (Sypherd et al., 2019). For α ∈ (0,∞], α-loss is given by

lα(y, gθ(x)) =
α

α− 1

[
1− gθ(yx)1−1/α

]
. (2.25)

For α = 1, l1 is the logistic loss and we recover logistic regression by optimizing this

loss. Note that in this setting 〈yx, θ〉 is the margin, and recall from Proposition 7 that

(2.25) is convex for α ∈ (0, 1] and quasi-convex for α > 1 in 〈yx, θ〉. For θ ∈ Bd(r),

we define the α-risk Rα as the risk of the loss in (2.25),

Rα(θ) := EX,Y [lα(Y, gθ(X))]. (2.26)
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The α-risk (2.26) is plotted for several values of α in a two-dimensional Gaussian

Mixture Model (GMM) in Fig. 2.4. Further, observe that, for all θ ∈ Bd(r),

R∞(θ) := EX,Y [l∞(Y, gθ(X))] = P[Y 6= Ŷθ], (2.27)

where Ŷθ is a random variable such that for all x ∈ Bd(1), P[Ŷθ = 1|X = x] = gθ(x).

In order to study the landscape of the α-risk, we compute the gradient and Hessian

of (2.25), by employing the following useful properties of the sigmoid

σ(−z) = 1− σ(z) and
d

dz
σ(z) = σ(z)(1− σ(z)). (2.28)

Indeed, a straightforward computation shows that

∂

∂θj
lα(y, gθ(x)) =

[
−ygθ(yx)1−1/α(1− gθ(yx))

]
xj, (2.29)

where θj, xj denote the j-th components of θ and x, respectively. Thus, the gradient

of α-loss in (2.25) is

∇θl
α(Y, gθ(X)) = F1(α, θ,X, Y )X, (2.30)

where F1(α, θ, x, y) is defined as the expression within brackets in (2.29). Another

straightforward computation yields

∇2
θl
α(Y, gθ(X)) = F2(α, θ,X, Y )XXᵀ, (2.31)

where F2 is defined as

F2(α, θ, x, y) := gθ(yx)1−1/αgθ(−yx)

(
gθ(yx)−

(
1− 1

α

)
gθ(−yx)

)
. (2.32)

2.4.2 Convexity of the α-risk

We now turn our attention to the case where α ∈ (0, 1]; we find that for this

regime, Rα is strongly convex; see Fig. 2.4 for an example. Prior to stating the

result, for two matrices A,B ∈ Rd×d, we let � denote the Loewner (partial) order in
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Figure 2.4: The Landscape of α-loss (Rα for α = .95, 1, 2, 10) in the Logistic Model,

Where Features Are Normalized, for a 2d-GMM with P[Y = −1] = .12, µX|y=−1 =

(−0.18, 1.49)ᵀ, µX|y=1 = (−0.01, .16)ᵀ, σ−1 = [3.20,−2.02;−2.02, 2.71], and σ1 =

[4.19, 1.27; 1.27, .90].

the positive semi-definite cone. That is, we write A � B when A − B is a positive

semi-definite matrix. For a matrix A ∈ Rd×d, let λ1(A), . . . , λd(A) be its eigenvalues.

Finally, we recall that a function is m-strongly convex if and only if its Hessian has

minimum eigenvalue m ≥ 0 (Boyd and Vandenberghe, 2004a).

Theorem 2. Let Σ := E[XXᵀ]. If α ∈ (0, 1], then Rα(θ) is Λ(α, r
√
d) min

i∈[d]
λi (Σ)-

strongly convex in θ ∈ Bd(r), where

Λ(α, r
√
d) := σ(r

√
d)1−1/α

(
σ′(r
√
d)−

(
1− 1

α

)
σ(−r

√
d)2

)
. (2.33)

Observe that if mini∈[d] λi(Σ) = 0, then the α-risk is merely convex for α ≤ 1.
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Also observe that for r
√
d > 0 fixed, Λ(α, r

√
d) is monotonically decreasing in α.

Thus, Rα becomes more strongly convex as α approaches zero.

While Theorem 2 states that the α-risk is strongly-convex for all α ≤ 1 and for any

r
√
d > 0, the following corollary, which is proved with similar techniques as Theorem

2, states that the α-risk is strongly-convex for some range of α > 1, provided that

r
√
d > 0 is small enough.

Corollary 2. Let Σ := E[XXT ]. If r
√
d ≤ arcsinh (1/2), then we have that Rα(θ) is

Λ̃(α, r
√
d) mini∈[d] λi (Σ)-strongly convex in θ ∈ Bd(r) for α ∈

(
0, (e2r

√
d − er

√
d)−1

]
,

where

Λ̃(α, r
√
d) := σ(−r

√
d)2−1/ασ(r

√
d)

(
1− er

√
d +

e−r
√
d

α

)
. (2.34)

It could be verified that (e2r
√
d − er

√
d)−1 > 1 whenever r

√
d < arcsinh (1/2). By

inspecting the relationship between convexity and its dependence on r
√
d, Corollary 2

seems to suggest that as α increases slightly greater than 1, convexity is lost faster

nearer to the boundary of the parameter space. Indeed, refer to Fig. 2.4 to observe an

example of this effect for α increasing from α = 1 to α = 2, and note that convexity

is preserved in the small radius about 0 for α = 2.

Examining the α-risk in Fig. 2.4 for α = 2 more closely, we see that it is reminiscent

of a quasi-convex function. Recall that (e.g., Chapter 3.4 in (Boyd and Vandenberghe,

2004a)) a function f : Rd → R is quasi-convex if for all θ, θ0 ∈ Rd, such that f(θ0) ≤

f(θ), it follows that

〈−∇f(θ), θ0 − θ〉 ≥ 0. (2.35)

In other words, the negative gradient of a quasi-convex function always points in the

direction of descent. While α-loss (2.25) is quasi-convex for α > 1, this does not

imply that the α-risk (2.26) is quasi-convex for α > 1 since the sum of quasi-convex
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functions is not guaranteed to be quasi-convex (Boyd and Vandenberghe, 2004a).

Thus, we need a new tool in order to quantify the optimization complexity of the

α-risk for α > 1 in the large radius regime.

2.4.3 Strictly Local Quasi-Convexity and its Extensions

We use a framework developed by Hazan et al. (2015) called strictly local quasi-

convexity (SLQC), which is a generalization of quasi-convexity. Intuitively, SLQC

functions allow for multiple local minima below an ε-controlled region while stipu-

lating (strict) quasi-convex functional behavior outside the same region. Formally,

we recall the following parameteric definition of SLQC functions provided in (Hazan

et al., 2015).

Definition 3 (Definition 3.1, (Hazan et al., 2015)). Let ε, κ > 0 and θ0 ∈ Rd. A

function f : Rd → R is called (ε, κ, θ0)-strictly locally quasi-convex (SLQC) at θ ∈ Rd

if at least one of the following conditions apply:

1. f(θ)− f(θ0) ≤ ε,

2. ‖∇f(θ)‖ > 0 and, for every θ′ ∈ B(θ0, ε/κ),

〈−∇f(θ), θ′ − θ〉 ≥ 0. (2.36)

Briefly, in Hazan et al. (2015) refer to a function as SLQC in θ, whereas for the

purposes of our analysis we refer to a function as SLQC at θ. We recover the uniform

SLQC notion of Hazan et al. by articulating a function is SLQC at θ for every θ.

Our later analysis of the α-risk in the logistic model benefits from this pointwise

consideration.

Observe that where Condition 1 of Definition 3 does not hold, Condition 2 implies

quasi-convexity about B(θ0, ε/κ) as evidence through (2.35); see Fig. 2.5 for an illus-

tration of the difference between classical quasi-convexity and SLQC in this regime.
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Figure 2.5: An Illustration Highlighting the Difference Between Quasi-convexity as

given in (2.35) and the Second Slqc Condition of Definition 3. If f Is Quasi-convex,

the Red Angle Describes the Possible Negative Gradients of f at θ with Respect to

θ0. If f Is Slqc, the Blue Angle Describes the Possible Negative Gradients of f at θ

with Respect to θ0 and the given ε/κ-radius Ball.

We now present the following lemma, which is a structural result for general differ-

entiable functions that provides an alternative formulation of the second requirement

of SLQC functions in Definition 3; proof details can be found in Appendix A.2.4.

Lemma 1. Assume that f : Rd → R is differentiable, θ0 ∈ Rd and ρ > 0. If θ ∈ Rd

is such that ‖θ − θ0‖ > ρ, then the following are equivalent:

1. 〈−∇f(θ), θ′ − θ〉 ≥ 0 for all θ′ ∈ Bd (θ0, ρ),

2. 〈−∇f(θ), θ0 − θ〉 ≥ ρ‖∇f(θ)‖.

Intuitively, the equivalence presented by Condition 2 of Lemma 1 is easier to

manipulate in proving SLQC properties of the α-risk as we merely need to control

〈−∇f(θ), θ0 − θ〉 rather than 〈−∇f(θ), θ′ − θ〉 for every θ′ ∈ B(θ0, ε/κ).

In Hazan et al. (2015), they measure the optimization complexity of SLQC func-

tions through the normalized gradient descent (NGD) algorithm, which is almost

canonical gradient descent (see, e.g., Chapter 14 in (Shalev-Shwartz and Ben-David,

2014)) except gradients are normalized such that the algorithm applies uniform-size
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Figure 2.6: The Landscape of α-loss, Rα (α = 1, 1.001) in the Logistic Model, Where

the Features Are Normalized and r = 5, for a 2d-GMM with P[Y = 1] = P[Y = −1],

µX|y=−1 = [.4, .4], µX|y=1 = [1, 1], σ = [3, .2; .2, 1.5]. For α = 1, the Red Region

Depicts ε0/κ0 Which Is Calculated Using Theorem 2 about θ0, Where θ0 Is Set to Be

the Global Minimum of R1 and Is Depicted by the Star; For Illustrative Purposes, We

Set ε0 = .4 and It Is Depicted by the Yellow Plane. For α = 1.001, the Red Region

Depicts ε/κ about θ0 (the Star) and ε Is Also Depicted by the Yellow Plane; Both

Quantities Approximate the Bounds given by Theorem 3.

directional updates given by a fixed learning rate η > 0. While NGD may not be

the most appropriate optimization algorithm in some applications, we use it as a the-

oretical benchmark which allows us to understand optimization complexity; further

details regarding NGD can be found in Appendix A.2.4. Indeed, the convergence

guarantees of NGD for SLQC functions are similar to those of Gradient Descent for

convex functions.
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Proposition 4 (Thm. 4.1, (Hazan et al., 2015)). Let f : Rd → R, θ1 ∈ Rd, and θ∗ =

arg minθ∈Rd f(θ). If f is (ε, κ, θ∗)-SLQC at θ for every θ ∈ Rd, then running the NGD

algorithm with learning rate η = ε/κ for number of iterations T ≥ κ2‖θ1 − θ∗‖2/ε2

achieves min
t=1,...,T

f(θt)− f(θ∗) ≤ ε.

For an (ε, κ, θ0)-SLQC function, a smaller ε provides better optimality guarantees.

Given ε > 0, smaller κ leads to faster optimization as the number of required iterations

increases with κ2. Finally, by using projections, NGD can be easily adapted to work

over convex and closed sets (e.g., B(θ0, r) for some θ0 ∈ Rd and r > 0).

2.4.4 SLQC Parameters of the α-risk

With the above SLQC preliminaries in hand, we start quantifying the SLQC

parameters of the α-risk, Rα. It can be shown that for α ∈ (0,∞], Rα is Cd(r, α)-

Lipschitz in θ ∈ Bd(r) where, for α ∈ (0, 1],

Cd(r, α) :=
√
dσ(r
√
d)σ(−r

√
d)1−1/α; (2.37)

and, for α ∈ (1,∞],

Cd(r, α) :=


√
d
(
α−1
2α−1

)1−1/α ( α
2α−1

)
er
√
d ≥ α−1

α
,

√
dσ(r
√
d)σ(−r

√
d)1−1/α er

√
d < α−1

α
.

(2.38)

Thus, in conjunction with Theorem 2, Corollary 2, and a result by Hazan et al. (2015)

(after Definition 3), we provide the following result that explicitly characterizes the

SLQC parameters of the α-risk Rα for two separate ranges of α near 1.

Proposition 5. Suppose that Σ � 0 and θ0 ∈ Bd(r) is fixed. We have one of the

following:

• If r
√
d < arcsinh (1/2), then, for every ε > 0, Rα is (ε, Cd(r, α), θ0)-SLQC at
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θ for every θ ∈ Bd(r) when α ∈
(

0, (e2r
√
d − er

√
d)−1

]
where Cd(r, α) is given

in (2.37) and (2.38);

• Otherwise, for every ε > 0, Rα is (ε, Cd(r, α), θ0)-SLQC at θ for every θ ∈ Bd(r)

for α ∈ (0, 1].

Thus, by Proposition 4 and (2.37), the number of iterations of NGD, Tα, tends

to infinity as α tends to zero. This consequence of the result seems somewhat coun-

terintuitive because one would expect that increasing convexity (Rα becomes “more”

strongly convex in θ as α decreases, see Theorem 2 and Fig. 2.4) would improve the

convergence rate. However, the number of iterations of NGD tends to infinity as α

tends to zero because the Lipschitz constant of Rα, Cd(r, α) = κ blows up. This

phenomenon of the Lipschitz constant worsening the convergence rate is not merely a

feature of the SLQC theory surrounding NGD. It is also present in convergence rates

for SGD optimizing convex functions, e.g., see Theorem 14.8 in (Shalev-Shwartz and

Ben-David, 2014). Therefore, we find that there exists a trade-off between the desired

strong-convexity of Rα and the optimization complexity of NGD.

Next, we quantify the evolution of the SLQC parameters of Rα both in the small

radius regime and in the large radius regime. Since Rα tends more towards the

probability of error (expectation of 0-1 loss) as α approaches infinity, we find that the

SLQC parameters deteriorate and the optimization complexity of NGD increases as

we increase α.

Fortunately, in the logistic model, α-loss exhibits a saturation effect whereby

relatively small values of α resemble the landscape induced by α = ∞. In order to

quantify this effect, we state the following two Lipschitz inequalities which will also

be instrumental for our main SLQC result.
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Figure 2.7: An Illustration of the Saturation Phenomenon of α-loss (Rα for α = 10,∞)

in the Logistic Model for a 2d-GMM with P[Y = 1] = P[Y = −1], µX|y=−1 =

(−.91, .50)ᵀ, µX|y=1 = (−.27, .20)ᵀ, σ = [1.38, .55; .55, 2.18]. Note the Small Differ-

ence, Uniformly over the Parameter Space, Between R10 and R∞.

Lemma 2. If α, α′ ∈ [1,∞], then, for all θ ∈ Bd(r),

|Rα(θ)−Rα′(θ)| ≤ Ld(θ)

∣∣∣∣α− α′αα′

∣∣∣∣ , (2.39a)

‖∇Rα(θ)−∇Rα′(θ)‖ ≤ Jd(θ)

∣∣∣∣α− α′αα′

∣∣∣∣ , (2.39b)

where

Ld(θ) :=

(
log
(

1 + e‖θ‖
√
d
))2

2
, (2.40a)

Jd(θ) :=
√
d log

(
1 + e‖θ‖

√
d
)
σ(‖θ‖

√
d). (2.40b)

This result is proved in Appendix A.2.6, and it can be applied to illustrate a

saturation effect of α-loss in the logistic model. That is, let α = 10 and α′ =∞, then
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for all θ ∈ Bd(r), we have that

|R10(θ)−R∞(θ)| ≤ Ld(θ)

10
, (2.41a)

|∇R10(θ)−∇R∞(θ)| ≤ Jd(θ)

10
, (2.41b)

where Ld(θ) and Jd(θ) are both given in (2.40). In words, the pointwise distance

between the α = 10 landscape and the α =∞ landscape decreases geometrically; for

a visual representation see Fig. 2.7.

The saturation effect of α-loss suggests that it is unnecessary to work with large

values of α. In particular, this motivates us to study the evolution of the SLQC

parameters of the α-risk as we increase α > 1.

Theorem 3. Let α0 ∈ [1,∞], ε0, κ0 > 0, and θ0, θ ∈ Bd(r). If Rα0 is (ε0, κ0, θ0)-SLQC

at θ and

0 ≤ α− α0 <
α2

0‖∇Rα0(θ)‖

2Jd(θ)
(

1 + r κ0

ε0

) , (2.42)

then Rα is (ε, κ, θ0)-SLQC at θ with

ε = ε0 + 2Ld(θ)

(
α− α0

αα0

)
, (2.43)

ε

κ
=
ε0
κ0

1−

(
1 + 2r κ0

ε0

)
Jd(θ)(α− α0)

αα0‖∇Rα0(θ)‖ − Jd(θ)(α− α0)

 . (2.44)

The proof of Theorem 3 can be found in Appendix A.2.6. The crux of the proof

is a consideration of two cases, dependent on the location of θ ∈ Bd(r) relative to

the ε0-plane. The first case considers θ ∈ Bd(r) such that Rα0(θ)− Rα0(θ0) ≤ ε0 and

provides the required increase for ε to capture such points as α increases. The second

case considers θ ∈ Bd(r) such that Rα0(θ) − Rα0(θ0) > ε0 and provides the required

decrease for ε/κ to capture such points as α increases. The second case is far more

geometric than the first one, as it makes use of finer gradient information. As a result,
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the decrease in ε/κ is more closely related to the landscape evolution of Rα than the

corresponding increase in ε. From a numerical point of view, Proposition 4 implies

that reducing the radius of the ε/κ ball about θ0 increases the required number of

iterations (for optimality), and thus reflects the intuition that increasing α > 1 more

closely approximates the intractable 0-1 loss. While on the contrary, Proposition 4

implies that increasing the value of ε reduces the optimality guarantee itself.

We note that the bounds provided in Theorem 3 are pessimistic, but fortunately,

we can improve them by employing a bootstrapping technique - we take infinitesimal

steps in α and repeatedly apply the bounds in Theorem 3 to derive improved bounds

on α, ε, and κ. The following result is the culmination of our analysis regarding the

SLQC parameters of the α-risk in the logistic model. The proof can be found in

Appendix A.2.8.

Theorem 4. Let α0 ∈ [1,∞), ε0, κ0 > 0, and θ0, θ ∈ Bd(r). Suppose that Rα0 is

(ε0, κ0, θ0)-SLQC at θ ∈ Bd(r) and that there exists gθ > 0 such that ‖∇Rα′(θ)‖ > gθ

for every α′ ∈ [α0,∞]. Then, for every λ ∈ (0, 1), Rαλ is (ελ, κλ, θ0)-SLQC at θ where

αλ := α0 + λ
α2

0gθ

Jd(θ)
(

1 + 2r κ0

ε0

) , (2.45)

ελ := ε0 + 2λLd(θ)

(
αλ − α0

αλα0

)
α2

0gθ

Jd(θ)
(

1 + r κ0

ε0

) , (2.46)

ελ
κλ

>
ε0
κ0

(1− λ). (2.47)

We now provide three different interpretations and comments regarding the pre-

vious result. First regarding the SLQC parameters themselves, observe from (2.45)

that the bound on α is improved over Theorem 3 as the factor of 2 in the denominator

in (2.42) is moved into the parentheses; next, it can be observed (upon plugging in αλ)

that ελ in (2.46) is linear in λ, which is again an improvement over the first equation

in (2.43); finally, note that the bound on ελ/κλ in (2.46) is vastly more tractable and
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informative than the second expression in (2.43). Thus, bootstrapping the bounds of

Theorem 3 provides strong improvements for all three relevant quantities, α, ε, and

κ. Next, regarding the extra assumption for Theorem 4 over Theorem 3, i.e., the

existence of a lowerbound gθ on the norm of the gradient ‖∇Rα′(θ)‖ for all α′ ≥ α0,

observe that this is equivalent to the requirement that the landscape at θ does not

become ”flat” for any α′ ≥ α0. In essence, this is a distributional assumption in

disguise, and it should be addressed in a case-by-case basis. Finally, regarding the

effect of the dimensionality of the feature space, d, on the bounds, we observe that for

θ ∈ Bd(r) and d ∈ N large enough, Jd(θ) ≈ d‖θ‖ as given in (2.40). Thus in the high-

dimensional regime, the bound on α, i.e., αλ, is dominated by 1/d. This implies that

the convexity of the landscape worsens as the dimensionality of the feature/parameter

vectors d increases.

While a practitioner would ultimately like to approximate the 0-1 loss (captured by

α =∞), the bounds presented in Theorem 4 suggest that the optimization complexity

of NGD increases as α increases. Fortunately, α-loss exhibits a saturation effect as

exemplified in (2.41) and Fig. 2.7 whereby smaller values of α quickly resemble the

landscape induced by α = ∞. Thus, while the optimization complexity increases as

α increases (and increases even more rapidly in the high-dimensional regime), the

saturation effect suggests that the practitioner need not increase α too much in order

to reap the benefits of the ∞-risk. Therefore, for the logistic model, we ultimately

posit that there is a narrow range of α useful to the practitioner and we dub this the

”Goldilocks zone”; we explore this theme in the experiments in Section 2.6.

Before this however, we conclude the theoretical analysis of α-loss with a study

of the empirical α-risk, and we provide generalization and optimality guarantees for

all α ∈ (0,∞].

37



2.5 Generalization and Asymptotic Optimality

In this section, we provide generalization and asymptotic optimality guarantees

for α-loss for α ∈ (0,∞] in the logistic model by utilizing classical Rademacher

complexity tools and the notion of classification-calibration introduced by Bartlett

et al. (2006b). We invoke the same setting and definitions provided in Section 2.4.3.

In addition, we consider the evaluation of α-loss in the finite sample regime. Formally,

let X ∈ [0, 1]d be the normalized feature and Y ∈ {−1,+1} the label as before, and let

Sn = {(Xi, Yi) : i = 1, . . . , n} be the training dataset where, for each i ∈ {1, . . . , n},

the samples (Xi, Yi) are independently and identically drawn according to an unknown

distribution PX,Y . Finally, we let R̂α denote the empirical α-risk of (2.25), i.e., for

each θ ∈ Bd(r) we have

R̂α(θ) =
1

n

n∑
i=1

lα(Yi, gθ(Xi)). (2.48)

In the following sections, we consider the generalization capabilities and asymptotic

optimality of a predictor θ ∈ Bd(r) which is learned through empirical evaluation of α-

loss (2.48). First, we recall classical results in Rademacher complexity generalization

bounds.

2.5.1 Rademacher Complexity Preliminaries

In this section, we provide the main tools we use to derive generalization bounds for

α-loss in the sequel. The techniques are standard; see Chapter 26 in (Shalev-Shwartz

and Ben-David, 2014) for a complete discussion. First, we recall that the Rademacher

distribution is the uniform distribution on the set {−1,+1}. The Rademacher com-

plexity of a set is as follows.

38



Definition 4. The Rademacher complexity of a nonempty set A ⊂ Rn is defined as

R(A) := E
(

sup
a∈A

1

n
〈σ, a〉

)
, (2.49)

where σ = (σ1, σ2, . . . , σn) with σ1, σ2, . . . , σn i.i.d. Rademacher random variables.

In words, the Rademacher complexity of a set approximately measures the richness

of the set through the maximal correlation of its elements with uniformly distributed

Rademacher vectors. The notion of Rademacher complexity can be used to measure

the richness of a hypothesis class as established in the following proposition.

Proposition 6 (Thm. 26.5, (Shalev-Shwartz and Ben-David, 2014)). Let H be a

hypothesis class. Assume that l : X × Y ×H → R+ is a bounded loss function, i.e.,

there exists D > 0 such that for all h ∈ H and for all (x, y) ∈ (X ,Y) we have that

|l(h, (x, y))| ≤ D. Then, with probability at least 1− δ, for all h ∈ H,∣∣∣Rl(h)− R̂l(h)
∣∣∣ ≤ 2R(l ◦ H ◦ Sn) + 4D

√
2 ln (4/δ)

n
, (2.50)

where Rl(h) and R̂l(h) denote the true risk and empirical risk of l, respectively, and3

l ◦ H ◦ Sn ⊂ Rn which is equal to

{(l(h, (x1, y1)), . . . , l(h, (xn, yn))) : h ∈ H}. (2.51)

For linear predictors, obtaining a bound onR(l◦H◦Sn) is feasible; we now provide

two results (in conjunction with Proposition 6) necessary to derive a generalization

bound for α-loss in the logistic model.

Lemma 3 (Lemma 26.9, (Shalev-Shwartz and Ben-David, 2014)). Suppose l̃1, . . . , l̃n :

R → R are r0-Lipschitz functions with common constant r0 ≥ 0. If l̃ = (l̃1, . . . , l̃n)

and A ⊂ Rn, then R(l̃(A)) ≤ r0R(A), where l̃(A) := {(l̃1(a1), . . . , l̃n(an)) : a ∈ A}.
3In (2.50) we present the two-sided version of Theorem 26.5 in (Shalev-Shwartz and Ben-David,

2014), which can be readily obtained via the symmetrization technique.
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The previous result, known as the Contraction Lemma, provides an upperbound

on the Rademacher complexity of the composition of a function acting on a set. For

our purposes, one can think of l̃ = (l̃1, . . . , l̃n) as a margin-based loss function acting

on a training set with n samples - this will be further elaborated in the sequel. The

following result provides an upperbound on the Rademacher complexity of the set

comprised of inner products between a given parameter vector drawn from a bounded

space and the n-sample training set.

Lemma 4 (Lemma 26.10, (Shalev-Shwartz and Ben-David, 2014)). Let x1:n = {x1, . . . , xn}

be a set of vectors each in Rd, and define the following composition H ◦ x1:n =

{(〈θ, x1〉, . . . , 〈θ, xn〉) : ‖θ‖2 ≤ r}. Then,

R(H ◦ x1:n) ≤
rmaxi∈[n] ‖xi‖2√

n
. (2.52)

With the above Rademacher complexity preliminaries in hand, we now apply these

results to derive a generalization bound for α-loss in the logistic model.

2.5.2 Generalization and Asymptotic Optimality of α-loss

We now present the following Lipschitz inequality for the margin-based α-loss

(Definition 2) and will be useful in applying Proposition 6. It can readily be shown

that the margin-based α-loss, l̃α is Cr0(α)-Lipschitz in z ∈ [−r0, r0] for every r0 > 0,

where for α ∈ (0, 1],

Cr0(α) := σ(r0)σ(−r0)1−1/α; (2.53)

and, for α ∈ (1,∞],

Cr0(α) :=


(
α−1
2α−1

)1− 1
α
(

α
2α−1

)
er0 ≥ α−1

α
,

σ(r0)σ(−r0)1− 1
α er0 < α−1

α
.

(2.54)
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That is, for α ∈ (0,∞] and z, z′ ∈ [−r0, r0], we have that |l̃α(z)− l̃α(z′)| ≤ Cr0(α)|z−

z′|; see Lemma 11 in Appendix A.3 for the proof. Lastly, note that for any fixed

r0 > 0, Cr0(α) is monotonically decreasing in α.

With the Lipschitz inequality for l̃α in hand, we are now in a position to state a

generalization bound for α-loss in the logistic model.

Theorem 5. If α ∈ (0,∞], then, with probability at least 1− δ, for all θ ∈ Bd(r),

∣∣∣Rα(θ)− R̂α(θ)
∣∣∣ ≤ Cr

√
d (α)

r
√
d√
n

+Dr
√
d (α)

√
log
(

4
δ

)
n

, (2.55)

where Cr
√
d (α) is given in (2.53) and (2.54) and where Dr

√
d (α) is given by Dr

√
d (α) :=

4
√

2
α

α− 1

(
1− σ(−r

√
d)1−1/α

)
.

Note that Dr
√
d(α) is also monotonically decreasing in α for fixed r

√
d > 0. Thus,

Theorem 5 seems to suggest that generalization improves as α → ∞. However,

because Rα and R̂α also monotonically decrease in α, it is difficult to reach such a

conclusion. Nonetheless, Corollary 3 in Appendix A.3 offers an attempt at providing

a unifying comparison between the ∞-risk, R∞, and the empirical α-risk, R̂α.

Lastly, observe that for the generalization result in Theorem 5, we make no distri-

butional assumptions such as those by Audibert et al. (2007), where they assume the

posterior satisfies a margin condition. Under such an assumption, we observe that

faster rates could be achieved, but optimal rates are not the focus of this chapter.

Nonetheless, the next theorem relies on the assumption that the minimum α-risk is

attained by the logistic model, i.e., given α ∈ (0,∞], suppose that

min
θ∈Bd(r)

Rα(θ) = min
f :X→R

Rα(f), (2.56)

where Rα(θ) is given in (2.26) and Rα(f) = E[l̃α(Y f(X))] for all measurable f .
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Theorem 6. Assume that the minimum α-risk is attained by the logistic model,

i.e., (2.56) holds. Let Sn be a training dataset with n ∈ N samples as before. If for

each n ∈ N, θ̂αn is a global minimizer of the associated empirical α-risk θ 7→ R̂α(θ),

then the sequence (θ̂αn)∞n=1 is asymptotically optimal for the 0-1 risk, i.e., almost surely,

lim
n→∞

R(fθ̂αn ) = R∗, (2.57)

where fθ̂αn (x) = 〈θ̂αn , x〉 for each n ∈ N and the Bayes risk R∗ is given by R∗ :=

min
f :X→R

P[Y 6= sign(f(X))].

In words, setting the optimization procedure aside, utilizing α-loss for a given α ∈

(0,∞] is asymptotically optimal with respect to the probability of error (expectation

of the 0-1 loss). Observe that the assumption in (2.56) is a stipulation for the the

underlying data-generating distribution, PX,Y , in disguise. That is, we assume that

PX,Y is separable by a linear predictor, which is a global minimizer for the α-risk. In

essence, Theorem 6 is a combination of Theorem 5 and classification-calibration.

With the statistical, optimization, and generalization considerations of α-loss be-

hind us, we now provide experimental results in two canonical settings for α-loss in

logistic and convolutional-neural-network models.

2.6 Logistic Regression and CNN Experiments

As was first introduced in Section 2.3.3, in this section we further experimentally

evaluate the efficacy of α-loss in the following two canonical scenarios:

(i) Noisy labels: the classification algorithm is trained on a binary-labeled dataset

that suffers from symmetric noisy labels, and it attempts to produce a model which

achieves strong performance on the clean test data.

(ii) Class imbalance: the classification algorithm is trained on a binary-labeled

dataset that suffers from a class imbalance, and it attempts to produce a model
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which achieves strong performance on the balanced test data.

Our hypotheses are as follows: for setting (i), tuning α > 1 (away from log-loss)

improves the robustness of the trained model to symmetric noisy labels; for setting

(ii), tuning α < 1 (again away from log-loss) improves the sensitivity of the trained

model to the minority class. In general, we experimentally validate both hypotheses.

In our experimental procedure, we use the following image datasets: MNIST (Le-

Cun, 1998), Fashion MNIST (FMNIST) (Xiao et al., 2017), and CIFAR-10 (Krizhevsky

et al., 2014). While these datasets have predefined training and test sets, we present

binary partitions of these datasets for both settings in the main text, in alignment

with our theoretical investigations of α-loss for binary classification problems; in Ap-

pendix A.4.4, we present multiclass symmetric noise experiments for the MNIST

and FMNIST datasets. Regarding the binary partitions themselves, we chose classes

which are visually similar in order to increase the difficulty of the classification task.

Specifically, for MNIST we used a binary partition on the 1 and 7 classes, for FM-

NIST we used a binary partition on the T-Shirt and Shirt classes, and finally for

our binary experiments on CIFAR-10 we used a binary partition on the Cat and Dog

classes.

All code is written in PyTorch, version 1.30 (Paszke et al., 2019). Architectures

learning CIFAR are trained with GPUs, while the architectures learning MNIST and

FMNIST are both trained with CPUs. Throughout, we consider two broad classes

of architectures: logistic regression (LR) and convolutional neural networks (CNNs)

with one or two fully connected layers preceded by varying convolutional layer depths

(2, 3, 4, and 6) such that we obtain the shorthand CNN X+Y where X is one of 2, 3, 4,

or 6 and Y is one of 1 or 2. For all architectures learning CIFAR, we additionally use

a sigmoid at the last layer for smoothing. For each set of experiments, we randomly

fix a seed, and for each iteration we reinitialize a new architecture with randomly
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selected weights. We use softmax activation to generate probabilities over the labels,

and we evaluate the model’s soft belief using α-loss on a one-hot-encoding of the

training data.

All (dataset, architecture) tuples were trained with the same optimizer, vanilla

SGD, with fixed learning rates. In order to provide the fairest comparison to log-loss

(α = 1), for each (dataset, architecture) tuple we select a fixed learning rate from the

set {10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1} which provides the highest

validation accuracy for a model trained with log-loss. Then for the chosen (dataset,

architecture) tuple, we train α-loss for each value of α using this fixed learning rate.

Regarding the optimization of α-loss itself which is parameterized by α ∈ (0,∞], in

general we find that searching over α ∈ [.8, 8] for noisy labels and α ∈ [.8, 4] for class

imbalances is sufficient, and we typically do so in step-sizes of 0.1 or 0.05 (near α = 1)

or a step-size of 1 (when α > 1). This is in line with our earlier theoretical discussions

regarding the “Goldilocks zone” of α-loss, i.e., the gradient explosion for very small

values of α, the increased difficulty of optimization for large values of α, and the fact

that relatively small values of α closely approximate the ∞-loss.

For all experiments, we employ a training batch size of 128 examples. For all

experiments on the MNIST and FMNIST datasets, training was allowed to progress

for 50 epochs; for all experiments on the CIFAR-10 dataset, training was allowed

to progress for 120 epochs - convergence for all values of α was ensured for both

choices. Lastly, for each architecture we re-run each experiment 10 times and report

the average test accuracies calculated according to the relative accuracy gain, which

we rewrite for our experimental setting as

rel acc gain % =
|α-loss acc− log-loss acc|

log-loss acc
× 100, (2.58)

where we use acc to denote test accuracy. Also note that α∗ is chosen as the α over the
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search range which maximizes the average test accuracy of its trained models. For

more details regarding architecture configurations (i.e., CNN channel sizes, kernel

size, etc) and general experiment details, we refer the reader to the code for all of our

experiments (including the implementation of α-loss), which can be found at (Cava,

2021).

2.6.1 Noisy Labels

For the first set of experiments, we evaluate the robustness of α-loss to symmetric

noisy labels, and we generate symmetric noisy labels in the binary training data as

follows:

1. For each run of an experiment, we randomly select 0-40% of the training data

in increments of 10%.

2. For each training example in the randomly selected group, we flip the label of

the selected training example.

Note that for all symmetric noisy label experiments we keep the test data clean, i.e.,

we do not perform label flips on the test data. Thus, these experiments address the

scenario where training data is noisy and test data is clean. Also note that during

our 10-iteration averaging for each accuracy value presented in each table, we are also

randomizing over the symmetric noisy labels in the training data.

The results on the binary MNIST dataset (composed of classes 1 and 7 ), binary

FMINIST dataset (composed of classes T-Shirt and Shirt), and binary CIFAR-10

(composed of classes Cat and Dog) are presented in Tables 2.1, 2.2, and 2.3, respec-

tively. As stated previously, in order to report the fairest comparison between log-loss

and α-loss, we first find the optimal fixed learning rate for log-loss from our set of

learning rates (given above), then we train each chosen architecture with α-loss for
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all values of α also with this found fixed learning rate. Following this procedure, for

the binary MNIST dataset, we trained both the LR and CNN 2+2 architectures with

a fixed learning rate of 10−2; for the binary FMNIST dataset, we trained the LR and

CNN 2+2 architectures with fixed learning rates of 10−4 and 5 × 10−3, respectively;

for the binary CIFAR-10 dataset, we trained the CNN 2+1, 3+2, 4+2, and 6+2

architectures with fixed learning rates of 10−2, 10−1, 5× 10−2, and 10−1, respectively.

Regarding the results presented in Tables 2.1, 2.2, and 2.3, in general we find

for 0% label flips (from now on referred to as baseline) the extra α hyperparameter

does not offer significant gains over log-loss in the test results for each (dataset,

architecture) tuple. However once we start to increase the percentage of label flips,

we immediately find that α∗ increases greater than 1 (log-loss). Indeed for each

(dataset, architecture) tuple, we find that as the number of symmetric label flips

increases, training with α-loss for a value of α > 1 increases the test accuracy on clean

data, often significantly outperforming log-loss. Note that this performance increase

induced by the new α hyperparameter is not monotonic as the number of label flips

increases, i.e., there appears to be a noise threshold past which the performance of all

losses decays, but this occurs for very high noise levels, which are not usually present

in practice. Recalling Section 2.3.3, the strong performance of α-loss for α > 1 on

binary symmetric noisy training labels can intuitively be accounted for by the quasi-

convexity of α-loss in this regime, i.e., the reduced sensitivity to outliers. Thus, we

conclude that the results in Tables 2.1, 2.2, and 2.3 on binary MNIST, FMNIST, and

CIFAR-10, respectively, indicate that practitioners should employ α-loss for α > 1

when training robust architectures to combat against binary noisy training labels.

Lastly, we report two experiments for multiclass symmetric noisy training labels in

Appendix A.4.4. In short, we find similar robustness to noisy labels for α > 1, but we

acknowledge that further empirical study of α-loss on multiclass datasets is needed.
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Arch LF % LL Acc % α∗ Acc % α∗ Gain %

0 99.26 99.26 0.95,1 0.00

10 99.03 99.13 6 0.10

LR 20 98.65 99.03 7 0.39

30 97.89 98.96 3.5 1.10

40 92.10 98.53 8 6.98

0 99.83 99.84 4-8 0.01

10 95.27 99.68 6,7 4.63

CNN 2+2 20 87.41 98.72 8 12.94

30 77.56 87.86 8 13.28

40 62.89 66.10 8 5.12

Table 2.1: Symmetric Binary Noisy Label Experiment on MNIST Classes 1 and 7.

Note That Arch Stands for Architecture, Lf for Label Flip, Ll Acc and α Acc Stand

for Log-loss Accuracy and α-loss Accuracy for α∗, Respectively, and That Gain %

Is Calculated According To (2.58). Also Note That Each Reported Accuracy Is

Averaged over 10 Runs.

2.6.2 Class Imbalance

For the second set of experiments, we evaluate the sensitivity of α-loss to class

imbalances, and we generate binary class imbalances in the training data as follows:

1. Given a dataset, select two classes, Class 1 and Class 2, and generate baseline

50/50 (balanced) data, i.e., such that |Class 1| = |Class 2| = 2500 training

examples. For all experiments ensure that |Class 1|+|Class 2| = 5000 randomly

drawn training examples.

47



Arch LF % LL Acc % α∗ Acc % α∗ Gain %

0 84.51 84.78 1.5 0.32

10 83.80 84.41 2 0.72

LR 20 83.11 83.94 2.5 1.01

30 81.29 83.43 3 2.63

40 74.39 92.02 8 23.69

0 86.96 87.19 1.1 0.27

10 81.14 83.74 5 3.20

CNN 2+2 20 72.96 78.00 8 6.93

30 66.17 69.21 8 4.59

40 57.90 58.56 3 1.15

Table 2.2: Symmetric Binary Noisy Label Experiment on Classes T-shirt and Shirt

of the FMNIST Dataset.

2. Starting at the baseline (2500/2500) and drawing from the available training

examples in each dataset when necessary, increase the number of training ex-

amples of Class 1 by 500, 1000, 1500, 2000, and 2250 and reduce the number of

training examples of Class 2 by the same amounts in order to generate training

example splits of 60/40, 70/30, 80/20, 90/10, and 95/5, respectively.

3. Repeat the previous step where the roles of Class 1 and Class 2 are reversed.

Note that the test set is balanced for all experiments with 2000 test examples (1000

for each class). Thus, these experiments address the scenario where training data

is imbalanced and the test data is balanced. Also note that during our 10-iteration

averaging for each accuracy value presented in each table, we are also randomizing
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Arch LF % LL Acc % α∗ Acc % α∗ Gain %

0 80.59 80.68 0.99 0.11

10 79.61 79.89 1.1 0.35

CNN 2+1 20 77.01 77.15 0.99 0.19

30 73.67 74.78 2.5 1.51

40 63.54 68.12 4 7.21

0 85.80 85.80 1 0.00

10 82.92 83.15 0.99 0.28

CNN 3+2 20 77.61 80.88 3 4.21

30 69.53 76.72 5 10.34

40 59.44 67.19 6 13.04

0 87.49 87.59 0.9 0.12

10 83.65 84.69 1.2 1.25

CNN 4+2 20 78.96 81.39 3.5 3.07

30 69.24 75.56 6 9.13

40 59.12 64.53 8 9.15

0 87.31 87.93 1.2 0.70

10 84.91 85.33 2 0.49

CNN 6+2 20 78.92 81.80 6 3.64

30 68.88 77.20 7 12.09

40 58.54 65.16 7 11.32

Table 2.3: Symmetric Binary Noisy Label Experiment on CIFAR-10 Classes Cat and

Dog.
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over the training examples present in each class imbalance split, according to the

procedure above.

The results on binary FMNIST (composed of classes T-Shirt and Shirt) and binary

CIFAR-10 (composed of classes Cat and Dog) are presented in Tables 2.4, 2.5, and 2.6.

For this set of experiments, note that α∗ is the optimal α ∈ [0.8, 4] (in our search set)

which maximizes the average test accuracy of the minority class, and also note that

there are slight test accuracy discrepancies between the baselines in the symmetric

noisy labels and class imbalance experiments because of the reduced training and

test set size for the class imbalance experiments. For the binary FMNIST dataset,

we trained the LR and CNN 2+2 architectures with fixed learning rates of 10−4 and

5 × 10−3, respectively; for the binary CIFAR-10 dataset, we trained the CNN 2+1,

3+2, 4+2, and 6+2 architectures with fixed learning rates of 10−2, 10−1, 5 × 10−2,

and 10−1, respectively.

In general, we find that the minority class is almost always favored by the smaller

values of α, i.e., we typically have that α∗ < 1. Further, we observe that as the

percentage of class imbalance increases, the relative accuracy gain on the minority

class typically increases through training with α-loss. This aligns with our intuitions

articulated in Section 2.3.3 regarding the benefits of ”stronger” convexity of α-loss

when α < 1 over log-loss (α = 1), particularly when the practitioner desires models

which are more sensitive to outliers. Nonetheless, sometimes there does appear to

exist a trade-off between how well learning the majority class influences predictions

on the minority class, see e.g., recent work in the area of stiffness by Fort et al. (Fort

et al., 2019). This is a possible explanation for why α < 1 is not always preferred

for the minority class, e.g., 30% and 40% imbalance in Table 2.5 when Dog is the

minority class. Thus we conclude that the results in Tables 2.4, 2.5, and 2.6, on binary

FMNIST and CIFAR-10, respectively, indicate that practitioners should employ α-
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loss (typically) for α < 1 when training architectures to be sensitive to the minority

class in the training data.
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Log-Loss α-Loss

Imb % Min Min Acc % Ov Acc % LL-F1 Min Acc % Ov Acc % α∗-F1 α∗ Rel Gain %

50
T-Shirt 85.4 84.31 0.8448 85.7 84.17 0.8441 1.5 0.35

Shirt 83.2 84.31 0.8413 83.4. 84.33 0.8418 0.85 0.24

40
T-Shirt 80.0 83.68 0.8306 80.2. 83.73 0.8313 1.1 0.25

Shirt 77.7 83.88 0.8282 77.7 83.90 0.8284 0.99 0.00

30
T-Shirt 72.9 81.89 0.8010 73.0 81.88 0.8011 0.99 0.14

Shirt 70.8 82.04 0.7977 72.3 82.52 0.8053 0.8 2.12

20
T-Shirt 60.9 77.97 0.7344 61.7 78.20 0.7389 0.8 1.31

Shirt 63.1 79.81 0.7576 64.5 80.40 0.7669 0.8 2.22

10
T-Shirt 43.0 70.50 0.5931 45.2 71.50 0.6133 0.8 5.12

Shirt 55.2 76.97 0.7056 56.0 77.25 0.7111 0.8 1.45

5
T-Shirt 24.6 61.85 0.3920 26.0 62.54 0.4097 0.8 5.69

Shirt 47.5 73.52 0.6421 47.6 73.48 0.6422 0.8 0.21
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Table 2.4: Binary Fmnist Logistic Regression Imbalance Experiments on the T-shirt and Shirt Classes. Note That Ll-F1

Corresponds to the F1 Score of Log-loss on the Imbalanced Class; Similarly α∗-F1 Corresponds to the F1 Score of α∗-loss

on the Imbalanced Class. See Appendix A.4.1 for a Brief Review of the Definition of the F1 Score. The Relative % Gain

Is Defined as the Relative Percent Gain (2.58) on the Average Minority Class Accuracy (on Test Data) of Models Trained

with Log-loss Vs. The Average Minority Class Accuracy of Models Trained with α-loss. Note That Ov = Overall. Lastly,

Observe That for the Baseline (50% Imbalance) Experiments, We Present the Accuracy and α∗ for Both Classes.
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Log-Loss α-Loss

Imb % Min Min Acc % Ov Acc % LL-F1 Min Acc % Ov Acc % α∗-F1 α∗ Rel Gain %

50
Cat 83.7 83.48 0.8352 87.2 83.86 0.8438 1.1 4.18

Dog 83.3 83.48 0.8345 86.1 84.06 0.8438 0.99 3.36

40
Cat 79.8 83.34 0.8273 82.7 83.39 0.8327 0.95 3.63

Dog 78.4 83.85 0.8292 82.4 83.20 0.8306 2.5 5.10

30
Cat 73.0 81.98 0.8020 74.6 82.40 0.8000 0.99 2.19

Dog 72.0 82.00 0.8091 74.9 83.18 0.8166 1.2 4.03

20
Cat 64.6 78.96 0.7543 66.2 78.85 0.7579 0.8 2.48

Dog 63.1 78.94 0.7498 65.0 79.79 0.7628 0.8 3.01

10
Cat 39.1 68.04 0.5502 41.6 68.88 0.5721 0.9 6.39

Dog 42.1 70.03 0.5842 48.5 72.53 0.6384 0.8 15.20

5
Cat 0.0 50.00 0.0000 9.6 54.48 0.1742 0.8 ∞

Dog 10.0 54.94 0.1816 23.2 61.31 0.3749 0.8 132.00
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Table 2.5: Binary Cifar-10 Cnn 4+2 Imbalance Experiments on Cat and Dog Classes. Note That Ll-F1 Corresponds to the

F1 Score of Log-loss on the Imbalanced Class; Similarly α∗-F1 Corresponds to the F1 Score of α∗-loss on the Imbalanced

Class. Note That Due to Our Calculation of Rel % Gain That Division by 0 Is ∞, and Thus Absolute % Gain for the

Minority Class Cat at a 5% Imbalance Is 9.6%.
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Log-Loss α-Loss

Imb % Min Min Acc % Ov Acc % LL-F1 Min Acc % Ov Acc % α∗-F1 α∗ Rel Gain %

50
Cat 84.4 84.30 0.8432 85.2 84.93 0.8497 0.99 0.95

Dog 84.1 84.30 0.8427 87.0 83.91 0.8439 2 3.45

40
Cat 80.3 83.79 0.8320 82.4 84.87 0.8449 0.8 2.62

Dog 81.2 84.91 0.8433 84.0 84.83 0.8470 0.9 3.45

30
Cat 74.2 82.72 0.8111 78.2 83.32 0.8242 0.8 5.39

Dog 73.0 82.92 0.8104 77.2 83.60 0.8248 0.9 5.75

20
Cat 64.6 78.98 0.7545 64.6 78.98 0.7545 1 0.00

Dog 67.4 81.02 0.7803 70.2 81.75 0.7937 0.99 4.15

10
Cat 38.0 67.69 0.5405 41.8 69.34 0.5769 0.85 10.00

Dog 46.4 72.14 0.6248 50.1 73.53 0.6543 0.9 7.97

5
Cat 1.7 50.80 0.0334 13.6 56.26 0.2372 0.8 700.00

Dog 23.7 61.44 0.3807 31.0 64.90 0.4690 0.8 30.80
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Table 2.6: Binary Cifar-10 Cnn 6+2 Imbalance Experiments on Cat and Dog Classes.57



2.6.3 Key Takeaways

We conclude this section by highlighting the key takeaways from our experimental

results.

Overall Performance Relative to Log-loss: The experimental results as ev-

idenced through Tables 2.1 to 2.6 suggest that α-loss, more often than not, yields

models with improvements in test accuracy over models trained with log-loss, with

more prominent gains in the canonical settings of noisy labels and class imbalances

in the training data. In order to remedy the extra hyperparameter tuning induced

by the seemingly daunting task of searching over α ∈ (0,∞], we find that searching

over α ∈ [.8, 8] in the noisy label experiments or α ∈ [.8, 4] in the class imbalance

experiments is sufficient. This aligns with our earlier theoretical investigations (Sec-

tion 2.4.3) regarding the so-called “Goldilocks zone”, i.e., most of the meaningful

action induced by α occurs in a narrow region. Notably in the class imbalance exper-

iments, we find that the relevant region is even narrower than our initial choice, i.e.,

α∗ ∈ [.8, 2.5] (in our search set) for all imbalances. For the noisy label experiments,

we always find that α∗ > 1 and usually α is not too large, and for the class imbal-

ance experiments, we almost always find that α∗ < 1. These two heuristics enable

the practitioner to readily determine a very good α in these two canonical scenar-

ios. Consequently, α-loss seems to be a principled generalization of log-loss for the

practitioner, and it perhaps remedies the concern of Janocha et al. in (Janocha and

Czarnecki, 2016) regarding the lack of canonical alternatives to log-loss (cross-entropy

loss) in modern machine learning.

In this chapter, we introduced a tunable loss function called α-loss, α ∈ (0,∞],

which interpolates between the exponential loss (α = 1/2), the log-loss (α = 1), and

the 0-1 loss (α = ∞), for the machine learning setting of classification. We illus-
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trated the connection between α-loss and Arimoto conditional entropy (Section 2.2),

and then we studied the statistical calibration (Section 2.3), optimization landscape

(Section 2.4.3), and generalization capabilities (Section 2.5) of α-loss induced by nav-

igating the α hyperparameter. Regarding our main theoretical results, we showed

that α-loss is classification-calibrated for all α ∈ (0,∞]; we also showed that in the

logistic model there is a “Goldilocks zone”, such that most of the meaningful action

induced by α occurs in a narrow region (usually α ∈ [.8, 8]); finally, we showed (un-

der standard distributional assumptions) that empirical minimizers of α-loss for all

α ∈ (0,∞] are asymptotically optimal with respect to the true 0-1 loss. Practically,

following intuitions developed in Section 2.3.3, we performed noisy label and class

imbalance experiments on MNIST, FMNIST, and CIFAR-10 using logistic regression

and convolutional neural networks (Section 2.6). Furthermore, we showed that mod-

els trained with α-loss can be more robust or sensitive to outliers (depending on the

practitioner’s choice) over models trained with log-loss (α = 1). Therefore, we argue

that α-loss seems to be a principled generalization of log-loss for classification algo-

rithms in modern machine learning. Regarding promising avenues to further explore

the role of α-loss in machine learning, the robustness of neural-networks to adversarial

influence has recently drawn much attention (Zhang et al., 2019; Madry et al., 2018a;

Schmidt et al., 2018) in addition to learning censored and fair representations that

ensure statistical fairness for all downstream learning tasks (Kairouz et al., 2019a).
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Chapter 3

BEING PROPERLY IMPROPER: A STATISTICAL THEORY OF ROBUSTNESS

FOR LOSS FUNCTIONS

3.1 Introduction

The loss function is a cornerstone of machine learning (ML). The founding the-

ory of properness for supervised losses stipulates that the loss function shapes the

learning algorithm towards the true posterior (Reid and Williamson, 2011). Conse-

quently, a model trained with a proper loss function will try to closely approximate

the Bayes rule of the data generating distribution. Historically, properness draws

its roots from classical work in normative economics for class probability estimation

(cpe) (Reid and Williamson, 2011; Savage, 1971; Shuford et al., 1966) and Fisher

consistency (Fisher, 1922); some of the most famous losses in supervised learning are

proper, e.g., log, square, Matusita (Matusita, 1956), to name a few. Unfortunately,

in many modern applications data can be corrupted or twisted in various ways (see

Section 3.2); examples of twists include label noise, adversarial noise, and feature

noise. Thus, optimizing a proper loss function on twisted data could perilously lead

the learning algorithm towards the Bayes rule of the twisted posterior, rather than to

the desired clean posterior. To ensure that a model trained with a proper loss func-

tion on twisted data properly generalizes to the clean distribution, a generalization

of properness is clearly required.

To this end, we propose the notion of twist-properness. In words, a loss function

is twist-proper if and only if (iff), for any twist, there exist hyperparameter(s) of

the loss which allow its minimizer to “untwist” the twisted posterior into the clean
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posterior. Thus, twist-properness certifies loss functions that allow general posterior

corrections, which is analogous to how PAC learning certifies computationally efficient

and accurate learning algorithms (Valiant, 1984). This generalization of properness

with twist-properness would be less impactful without a solid contender loss, and we

show that a nontrivial extension of α-loss, which itself is an information-theoretic hy-

perparameterization of the log-loss (Arimoto, 1971c; Liao et al., 2018b; Sypherd et al.,

2019), is twist-proper and exhibits desirable properties for local and global (namely,

fixed hyperparameter) twist corrections. Furthermore, twist-properness is not vac-

uous as we provide a counterexample that another (popular) generalization of the

log-loss, the focal loss (Lin et al., 2017a), which was originally designed to solve spe-

cific twists, i.e., class imbalance, is not twist-proper. In addition, we provide a proof

that a loss which acts as a general “wrapper” of a loss, the Super Loss (Castells et al.,

2020), is also not twist-proper. One of our key takeaways is that twist-properness

necessitates a certain nontrivial symmetry of the loss, rather than merely a trivial

extension of the hyperparameter(s).

Recently, α-loss was practically implemented in logistic regression and in deep

neural networks (Sypherd et al., 2022a). In both settings, it was shown to be more

robust to symmetric label noise for fixed α > 1 than the proper log-loss (α = 1),

thereby providing a hint at the twist-properness of α-loss. In order to complement

our theory of twist-properness and these recent results regarding the robustness of

α-loss, we also practically implement α-loss in boosting. Boosting is imbued with the

computational constraint that strong learning happens from “weak updates” in poly-

nomial time, thus inducing substantial convergence rates (Kearns and Vazirani, 1994).

Furthermore, boosting algorithms are known to suffer under label noise, particularly

for convex losses in low capacity models (Long and Servedio, 2010; Mansour et al.,

2022a). Thus, boosting presents as an ideal choice to further practically investigate
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the twist-properness of α-loss.

In order to implement α-loss in boosting, a popular route is to invert the canonical

link of the loss which computes the weighting of the examples (Friedman, 2001; Nock

and Nielsen, 2008; Nock and Williamson, 2019). While this is feasible for the log-loss

(one gets the popular sigmoid function), it turns out to be nontrivial for α-loss. We

address this issue by providing the first (to the best of our knowledge) general boosting

scheme (called PilBoost) for any loss which requires only an approximation of the

inverse canonical link, depending on a parameter ζ ∈ [0, 1] (the closer to 0, the better

the approximation), and gives boosting-compliant convergence, further meeting the

general optimum number of calls to the weak learner. The cost of this approximation

is only a factor O(1/(1− ζ)2) in number of iterations.

In Section 4.5, we implement PilBoost with the approximate inverse canonical

link of α-loss on several tabular datasets, each suffering from various twists (label,

feature, and adversarial noise), and compare against AdaBoost (Freund and Schapire,

1997a) and XGBoost (Chen and Guestrin, 2016). In general, we find improved algo-

rithmic robustness to all twists through using simple (fixed) hyperparameter correc-

tions via the α-loss, which aligns with our theoretical contributions (see Section 3.4).

3.2 Related Work

Studying data corruption in ML dates back to the 80s (Valiant, 1985). Remark-

ably, the first twist models assumed very strong corruption, possibly coming from

an adversary with unbounded computational resources, but the data at hand was bi-

nary. Thus, because the feature space was as “complex” as the class space, the twist

models lacked the unparalelled data complexity that we now face. Obtaining such

twist models at scale with real world data has been a major problem in ML over the

past decade for a number of reasons. Nevertheless, there have been several streams
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of recent research aimed at addressing specific twists.

Label noise is a twist which has recently drawn much attention and garnered many

corrective attempts (Patrini et al., 2017b; Zhang and Sabuncu, 2018b; Zhang et al.,

2021; Natarajan et al., 2013; Long and Servedio, 2010; Sypherd et al., 2022a; Liu and

Guo, 2020; Ghosh et al., 2017). Notably, Natarajan et al. (2013) theoretically study

the presence of class conditional noise in binary classification. Their approach consists

of augmenting proper loss functions with re-weighting coefficients, which is strictly

dependent on the class conditional noise percentages, and hence requires knowledge

of the noise proportions. As a byproduct of their analysis, they show that biased

SVM and weighted logistic regression are provably noise-tolerant.

Setting label noise aside, there exists a zoo of other twists and corrective attempts.

For instance, data augmentation techniques, with vicinal risk minimization standing

as a pioneer (Chapelle et al., 2000), seek to induce general robustness (Zhang et al.,

2018). In deep learning, adversarial robustness attempts to address the brittleness

of neural networks to targeted adversarial noise (Szegedy et al., 2013; Madry et al.,

2018b; Andriushchenko and Hein, 2019). Data poisoning twists in computer vision can

be very sophisticated and require further investigation (Truong et al., 2020). Invariant

risk minimization aims at finding data representations yielding good classifiers but

also invariant to “environment changes” (Arjovsky et al., 2019); relatedly, covariate

shift seeks to address changes between train and test, stemming from non-stationarity

or bias in the data (Zhang et al., 2020). A recent trend has also emerged with

correcting losses due to model confidence issues (Guo et al., 2017; Mukhoti et al.,

2020; Castells et al., 2020).

Viewed more broadly, the abovementioned papers arguably study much different

problems, but they tend to have a theme that goes substantially deeper than the

superficial observation that they assume twisted data in some way: the core loss
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function is usually a proper loss. Therefore, they tend to start from the premise of a

loss that inevitably fits the (unwanted) twist, and correct it mostly with a regularizer

informed with some prior knowledge of the twist, on a “twist-by-twist” basis. There

has been some positive work in this “loss + regularizer” direction (Amid et al., 2019b;

Ma et al., 2020; Zhang et al., 2021), but we note that this does not fully address the

underlying issue of properness shaping the learning algorithm towards the twisted

posterior.

Lastly, our generalization of properness with twist-properness is partly inspired

by recent work by (Charoenphakdee et al., 2021), where they theoretically investigate

the focal loss. Notably, they show that the focal loss is classification-calibrated, but

not strictly proper. From their work, we also gather the implicit notion that hyperpa-

rameterized losses that generalize proper losses (e.g., focal loss or α-loss generalizing

log-loss), which may represent a next step for loss functions in ML, need to be care-

fully understood from the standpoint of what their hyperparameterization trades-off

from properness.

3.3 Losses for Class-Probability Estimation

Our setting is that of losses for class probability estimation (cpe) and our nota-

tions follow (Reid and Williamson, 2010b, 2011). Given a domain of observations X ,

we wish to learn a classifier h : dom(h) = X that predicts the label Y ∈ Y .
= {−1, 1}

(we assume two classes or labels) associated with every instance of data drawn from

X . Traditionally, there are two kinds of outputs sought: one requires Im(h) = [0, 1],

in which case h provides an estimate of P[Y = 1|X], which is often called the Bayes

posterior. This is the framework of class probability estimation. The other kind of

output requires Im(h) = R, but is usually completed by a mapping to [0, 1], e.g., via

the softmax in deep learning. A loss for class probability estimation, ` : Y×[0, 1]→ R,
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has the general definition

`(y, u)
.

= [y = 1] · `1(u) + [y = −1] · `−1(u), (3.1)

where [·] is Iverson’s bracket (Knuth, 1992). Functions `1, `−1 are called partial

losses, minimally assumed to satisfy dom(`1) = dom(`−1) = [0, 1] and |`1(u)| �

∞, |`−1(u)| � ∞,∀u ∈ (0, 1) to be useful for ML. Key additional properties of partial

losses are:

(M) Monotonicity: `1, `−1 are non-increasing and non-decreasing, respectively;

(D) Differentiability: `1 and `−1 are differentiable;

(S) Symmetry: `1(u) = `−1(1− u),∀u ∈ [0, 1].

Commonly used proper losses such as log, square and Matusita all satisfy the above

three assumptions. The pointwise conditional risk of the local guess u ∈ [0, 1] with

respect to a ground truth v ∈ [0, 1] is

L(u, v)
.

= E
Y∼B(v)

[`(Y, u)] = v · `1(u) + (1− v) · `−1(u), (3.2)

where B(v) defines a Bernoulli distribution with v.

Properness L(u, v) is the fundamental quantity that allows to distinguish proper

losses: a loss is proper iff for any ground truth v ∈ [0, 1], L(v, v) = infu L(u, v), and

strictly proper iff u = v is the sole minimiser (Reid and Williamson, 2011). The

(pointwise) Bayes risk is L(v)
.

= infu L(u, v).

Surrogate loss Oftentimes, minimization occurs over the reals (e.g., boosting),

hence it is useful to employ a surrogate to the 0-1 loss (Bartlett et al., 2006a). (Nock

and Nielsen, 2008) showed that the outputs in [0, 1] and R can be related via convex

duality of the losses. Let g?(z)
.

= supt{zt − g(t)} denote the convex conjugate of

g (Boyd and Vandenberghe, 2004b). The surrogate F of L is thus given by

F (z)
.

= (−L)?(−z),∀z ∈ R. (3.3)
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For example, picking the log-loss as ` gives the binary entropy for L and the logistic

loss for F (see Appendix B.1.1 for a derivation). Convex duality implies that predic-

tions in [0, 1] and R are related via the (canonical) link of the loss, (−L)′ (Nock and

Williamson, 2019) where we use the notation f ′ to denote the derivative of a function

f with respect to its argument. In the sequel, we will see that boosting requires in-

verting the link of the loss, which we show is nontrivial for hyperparameterized losses,

such as α-loss. Lastly, we provide summary properties of a cpe loss (not necessarily

proper) and its surrogate, monotonicity being of primary importance. Some parts of

the following Lemma are known in the literature (e.g., concavity in (Agarwal, 2014,

Lemma 1)), or are folklore.

Lemma 5. ∀` cpe loss, L is concave and continuous; F is convex, continuous and

non-increasing.

3.4 Twist-Proper Losses

With the classical setting of properness in hand, we now provide fundamental def-

initions of twists and twist-properness, and study the twist-properness of several hy-

perparameterized loss functions. When it comes to correcting (or untwisting) twists,

one needs a loss with the property that its minimizer in (3.2) is different from the

now twisted value ṽ and recovers the “hidden” ground truth v.

Bayes tilted estimates We first characterize the minimizers of (3.2) when the

cpe loss is not necessarily proper. We define the set-valued (pointwise) Bayes tilted

estimate t` as

t`(ṽ)
.

= arg inf
u∈[0,1]

L(u, ṽ). (3.4)

Ideally, we would like for v ∈ t`(ṽ), i.e., the Bayes tilted estimate t`(ṽ) untwists (with

hyperparameter(s)) the twisted value ṽ and recovers the ground truth v. However, it
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follows that if the loss is proper, ṽ ∈ t`(ṽ) and, if strictly proper, t`(ṽ) = {ṽ}. This

formally highlights the limitation of proper loss functions in twisted settings, namely,

the inability of a proper loss to untwist the twisted value because the minimization

of the loss is centered on what it “perceives” to be the ground truth. The following

result stipulates the cardinality of the Bayes tilted estimates.

Lemma 6. If the partial losses `1 and `−1 of a given cpe loss ` : Y × [0, 1] → R

satisfy (M), (D), and (S) and are also strictly convex, then |t`(ṽ)| = 1 for every

ṽ ∈ [0, 1].

In Appendix B.1.3, we provide an extended version of Lemma 6, denoted Lemma 12,

where we prove properties of Bayes tilted estimates for when t` is set-valued (e.g.,

set-valued monotonicity and symmetry, and analysis of extreme values). As a con-

sequence, we show that strict monotonicity of the partial losses is not sufficient to

guarantee that t` is a singleton; in fact, strict convexity is required as in Lemma 6.

An important class of twists We now adopt more conventional ML notations

and instead of a hidden ground truth v and twisted ground truth ṽ, we use ηc and

ηt to denote the “clean” and “twisted” posterior probabilities that Y = 1 given

X = x, respectively. Further, a “twist” refers to a general mapping ηc 7→ ηt, which

could be a consequence of label/feature/adversarial noise. The following delineates a

fundamental class of twists, important in the sequel.

Definition 5. A twist ηc 7→ ηt is said to be Bayes blunting if and only if (ηc ≤ ηt ≤

1/2) ∨ (ηc ≥ ηt ≥ 1/2).

The term “blunting” is inspired by adversarial training (Cranko et al., 2019).

Intuitively, a Bayes blunting twist does not change the maximum a posteriori guess for

the label given the observation, but it does reduce algorithmic confidence in learned

posterior estimates, which is particularly damaging in practice where the learning
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algorithm only has a finite number of (twisted) training examples. Furthermore,

Bayes blunting twists capture a very important twist (see Section 3.2): symmetric

label noise (SLN). Under symmetric label noise with flip probability p ∈ [0, 1], the

twisted posterior ηt is given by ηt = ηc(1 − p) + (1 − ηc)p (Reid and Williamson,

2010b). The following result readily follows via Definition 5 from consideration of p

for fixed ηc.

Lemma 7. SLN is Bayes blunting for p < 1/2.

Historically, Reid and Williamson (2010b) showed that proper loss functions are

not robust to this twist which further motivates our consideration of twist-proper

losses.

Twist-proper losses To overcome these limitations of properness, we propose a

generalized notion, called twist-properness, which utilizes hyperparameterization of

the loss to untwist twisted posteriors into clean posteriors.

Definition 6. A loss ` is twist-proper (respectively, strictly twist-proper) iff for any

twist, there exists hyperparameter(s) such that ηc ∈ t`(ηt) (respectively, {ηc} = t`(ηt)).

Where a proper loss could perilously lead the learning algorithm to estimate ηt, a

twist-proper loss employs hyperparameters so that its Bayes tilted estimate recovers

ηc, hence guiding the algorithm to untwist the twisted posterior. We emphasize

the need for hyperparameters as otherwise, twist-properness would trivially enforce

t`(·) = [0, 1]. Recently, hyperparameterized loss functions have garnered much interest

in ML, to name a few (Barron, 2019; Lin et al., 2017a; Amid et al., 2019b; Li et al.,

2021; Sypherd et al., 2022a), possibly because such losses allow practitioners to induce

variegated models. Indeed, hyperparameterized loss functions could be efficiently

implemented via meta-algorithms, such as AutoML (He et al., 2021), or practically

utilized in the burgeoning field of federated learning (Kairouz et al., 2019b), where
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the hyperparameter(s) might yield more fine-grained ML model customization for

edge devices.

Ostensibly, “optimal” hyperparameters requires explicit knowledge of the distri-

bution and twist, and each example in the training set requires a different hyper-

parameter to untwist its twisted posterior. However, in the sequel, we show that a

twist-proper loss, namely α-loss, with a fixed hyperparameter (α) can untwist a large

class of twists, i.e. Bayes blunting twists (such as SLN), better than log-loss. Thus,

we posit through our experimental results in Section 4.5 that the practitioner only

needs peripheral, rather than explicit, knowledge of a Bayes blunting twist in the

data.

Twist-(im)proper losses Lin et al. (2017a) introduced the focal loss to improve

class imbalance issues associated with dense object detection. It generalizes the log-

loss and has become popular due to its success in such domains. Recently, the focal

loss has received increased scrutiny (Charoenphakdee et al., 2021), where it was shown

to be classification-calibrated but not strictly proper. Here, we determine the twist-

properness of the focal loss.

Lemma 8. Define the focal loss via the following partial losses: `FL1 (u)
.

= −(1 −

u)γ log u and `FL−1(u)
.

= `FL1 (1−u), with γ ≥ 0. Then the focal loss is not twist proper.

In the proof (see Appendix B.1.4), we also provide a proof that a loss which acts

as a general “wrapper” of a loss, the Super Loss (Castells et al., 2020), is not twist

proper. Concerning the focal loss, Lemma 8 is not necessarily an impediment for this

loss function, which was designed to deal with a specific twist, class imbalance, and it

does not prevent generalizations of the focal loss that would be twist proper. However,

our proof suggests that the Bayes tilted estimate (3.4) of such generalizations risks

not being in a simple analytical form. Intuitively, twist-properness requires more than
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a trivial extension of the hyperparameter of the loss; it also seems to require a certain

symmetry, which we observe with the following twist-proper loss, α-loss.

A twist-proper loss The α-loss was first introduced in information theory in

the early 70s (Arimoto, 1971c) for α ∈ R+ and recently received increased scrutiny

in privacy and ML (Liao et al., 2018b; Sypherd et al., 2019) for α ≥ 1. Most re-

cently, Sypherd et al. (2022a) studied the calibration, optimization, and generaliza-

tion characteristics of α-loss in ML for α ∈ R+. In particular, they experimentally

found that α-loss is robust to noisy labels under logistic regression and convolutional

neural-networks for α > 1. We now provide our (extended) definition of the α-loss

in cpe.

Definition 7. For α ≥ 0, the α-loss has the following partial losses: ∀u ∈ [0, 1],

`α1 (u)
.

= `α−1(1− u) where

`α1 (u)
.

=
α

α− 1
·
(

1− u
α−1
α

)
, (3.5)

and by continuity we have `0
1(u)

.
=∞, `1

1(u)
.

= − log u, and `∞1 (u)
.

= 1−u. For α < 0,

we let ∀u ∈ [0, 1],

`α1 (u)
.

= `−α−1 (u) = `−α1 (1− u). (3.6)

For a plot of (3.5), see Figure B.1 in Appendix B. Note that the α-loss is

(S)ymmetric by construction, and that it continuously interpolates the log-loss (α =

1) which is proper (Reid and Williamson, 2010b). Our definition extends the previ-

ous definitions with (3.6), which induces a fundamental symmetry that is required

for twist-properness and is utilized in the following result. For any u ∈ [0, 1], we let

ι(u)
.

= log(u/(1− u)) denote the logit of u.

Lemma 9. The following four properties, labeled (a)-(d), all hold for α-loss: (a)

(M), (D), (S) all hold, ∀α ∈ R \ {0}; (b) if (α = 0) ∨ (α = ±∞∧ ηt = 1/2), then
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t`α(ηt) = [0, 1], if α ∈ R \ {0,±∞}, then t`α(ηt) =
{

ηαt
ηαt +(1−ηt)α

}
, and if α → ±∞,

then t`±∞(ηt) = ±1 or ∓1, depending on the sign of ηt − 1/2; (c) hence, α-loss is

twist-proper with α∗ = ι(ηc)/ι(ηt); (d) for any Bayes blunting twist, α∗ ≥ 1.

The proof of Lemma 9 can be found in Appendix B.1.5. Note that (a) readily

follows from Definition 7. The Bayes tilted estimate in (b), i.e. t`α for α ∈ R \

{0,±∞}, is known in the literature as the α-tilted distribution (Arimoto, 1971c; Liao

et al., 2018b; Sypherd et al., 2022a). We observe that the α-tilted distribution is

symmetric upon permuting (ηt, α) and (1− ηt,−α). Hence, our nontrivial extension

of the α-loss induces a symmetry, particularly useful for untwisting malevolent twists,

which thereby yields twist-properness, (c). Lastly, (d) indicates that α∗ ≥ 1 for any

Bayes blunting twist (e.g., SLN with p < 1/2); however, note that this holds merely

for a given x, not over the whole domain X .

Untwisting over the whole domain X Just as classification-calibration is a point-

wise form of consistency (Bartlett et al., 2006a), twist-properness is a pointwise form

of correction. Extending twist-properness to the entire domain X seems to require

learning a mapping α : X → [−∞,∞], which is infeasible under standard ML as-

sumptions, since one would need explicit knowledge of the distribution and twist.

Nevertheless, we show here that for a large class of twists, namely Bayes blunting

twists, a fixed α0 > 1 obtained non-constructively, is strictly “better” than the proper

choice, log-loss (α = 1). We also provide a general constructive formula for a fixed

α∗∗ ∈ R, calculated from distributional and twist information.

In order to represent population quantities, we assume a marginal distribution M

over X (following notation by (Reid and Williamson, 2011)), from which the expected

value of a loss ` quantifies its true risk of a given classifier h. With a slight abuse

of notation, we also let ηc, ηt : X → [0, 1] denote the clean and twisted posterior

mappings, respectively. To evaluate the efficacy of the Bayes tilted estimate of α-
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loss at untwisting the twisted posterior mapping and recovering the clean posterior

mapping, we define the following averaged cross-entropy, given by

ce(ηc, ηt;α)
.

= EX∼M[ηc(X) · − log t`α(ηt(X)) + (1− ηc(X)) · − log t`α(1− ηt(X))],

(3.7)

where for convenience we used the symmetry property of t` from Appendix B.1.3, i.e.,

t`α(1− ηt(X)) = 1− t`α(ηt(X)). Following (Schapire and Freund, 2012), we denote the

binary entropy as Hb(u)
.

= −u · log(u) − (1 − u) · log(1 − u), for u ∈ [0, 1]. We let

H(ηc) represent an averaged binary entropy of the ηc-mapping, given by

H(ηc)
.

= EX∼M[Hb(ηc(X))]. (3.8)

With (3.7) and (3.8), we obtain (cf. (Thomas and Joy, 2006)),

Dkl(ηc, ηt;α)
.

= ce(ηc, ηt;α)−H(ηc), (3.9)

that is, a KL-divergence between the α-Bayes tilted estimate of the twisted posterior

and the clean posterior mappings. Intuitively, Dkl(ηc, ηt;α) aggregates a series of

information-trajectories, strictly dependent on α (either fixed or a mapping), each

tracing a path on the probability simplex between the two posterior mappings for

every x ∈ X . Slightly more restrictive than Definition 5, we define a strictly Bayes

blunting twist as a Bayes blunting twist where there exists ε > 0 such that (ηc + ε ≤

ηt ≤ 1/2) ∨ (ηc − ε ≥ ηt ≥ 1/2); we state one of our main results whose proof is in

Appendix B.1.6.

Theorem 7. For any strictly Bayes blunting twist ηc 7→ ηt, there exists a fixed α0 > 1

and an optimal α?-mapping, α? : X → R>1, which induces the following ordering

Dkl(ηc, ηt; 1) > Dkl(ηc, ηt;α0) ≥ Dkl(ηc, ηt;α
?). (3.10)
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This result answers in the affirmative that untwisting X for a large class of twists

with a fixed hyperparameter α0 > 1 is strictly better than simply using the proper

choice, i.e., α = 1 (log-loss). Specifically, Theorem 7 holds for SLN, which is a

strictly Bayes blunting twist for flip probability 0 < p < 1/2 (Lemma 7). The result

also states that there exists a mapping α? : X → R>1 which optimally untwists the

strictly Bayes blunting twist; indeed, α? can be recovered from Lemma 9(c), i.e.,

α?(x) := ι(ηc(x))/ι(ηt(x)), for every x ∈ X . Thus, by the twist-properness of α-loss,

Dkl(ηc, ηt;α
?) = 0 (more details in Appendix B.1.6). Regarding the search for a fixed

α0 > 1 in practice, Sypherd et al. (2022a) showed via optimization landscape analysis

and experiments on SLN for logistic regression and neural-networks that the search

space for α0 is bounded (due to saturation), typically α0 ∈ [1.1, 8]. In Section 4.5,

we report experimental results for several α; we also incorporate a method inspired

by (Menon et al., 2015) to estimate the amount of SLN in training data and thus

estimate α0 using Lemma 9(c) as motivated by Theorem 7.

Theorem 7 gave a nonconstructive indication for the optimal regime of α for

strictly Bayes blunting twists. Our next result gives a constructive formula for a

fixed α for any twist. Given B > 0, let M(B) denote the distribution restricted to

the support over X for which we have almost surely

(1 + exp(B))−1 ≤ ηt(x) ≤ (1 + exp(−B))−1, (3.11)

and let p(B) ∈ [0, 1] be the weight of this support in M. We let D(B) denote the

product distribution on examples (X × Y) induced by marginal M(B) and posterior

ηc (see (Reid and Williamson, 2011, Section 4)). We define the logit-edge as

e
.

= (1/B) · E(X,Y)∼D(B) [Y · ι(ηt(X))] , (3.12)

where we note that e ∈ [−1, 1] due to the assumption in (3.11). Finally, we let

q
.

= (1 + e)/2 ∈ [0, 1].
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Theorem 8. Let B > 0. If p(B) = 1 and we fix α = α∗∗ with α∗∗
.

= ι(q)/B, then the

following bound holds

Dkl(ηc, ηt;α
∗∗) ≤ Hb(q)−H(ηc). (3.13)

The proof of Theorem 8 is in Appendix B.1.7, where we also prove an extended

version of the result when p(B) < 1. In addition, we provide a simple example

where Dkl(ηc, ηt;α
∗∗) can vanish with respect to Dkl(ηc, ηt; 1) (the “proper” choice).

Intuitively, the difference on the right-hand-size of (3.13) in Theorem 8 is reminiscent

of a Jensen’s gap. Also in the proof of Theorem 8, we find that if |α∗∗| is large, there

is more “flatness” in the bounded terms near α∗∗. Hence, this suggests that a choice

of α0 “close-enough” to α∗∗ could yield similar performance.

3.5 Sideways Boosting a Surrogate Loss

With the theory of twist-properness and the twist-proper α-loss in hand, we now

turn towards the algorithmic contribution presented in this chapter. As stated in the

introduction, α-loss was recently implemented in logistic regression and in deep neural

networks (Sypherd et al., 2022a), and was found to be more robust to symmetric label

noise for fixed α > 1 than the proper log-loss (α = 1). Thus, in order to complement

our theory of twist-properness and these recent results of α-loss, we also practically

implement α-loss in boosting.

Formally, we have a training sample S .
= {(xi, yi), i ∈ [m]} ⊂ X × Y of m examples,

where [m]
.

= {1, 2, ...,m} and note that Y = {−1,+1}. We write i ∼ S to indicate

sampling example (xi, yi) according to S. Following (Schapire and Singer, 1999;

Collins et al., 2000; Nock and Nielsen, 2008), the boosting algorithm minimizes an

expected surrogate loss with respect to S in order to learn a real-valued classifier
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H : X → R given by

Hβ
.

=
∑

j βjhj, (3.14)

where {h· : X → R} are wl (weak learning) classifiers with slightly better than

random classification accuracy. The oracle wl returns an index j ∈ N, and the task

for the boosting algorithm is to learn the coordinates of β, initialized to the null

vector. In our general framework, the losses we consider are the surrogates F in

Lemma 5, essentially convex and non-increasing functions, adding the condition that

they are twice differentiable. We compute weights using the blueprint of (Friedman,

2001), which uses the full Hβ,

wi
.

= −F ′(yiHβ(xi)), ∀i ∈ [m]. (3.15)

Via Lemma 5, weights wi are non-negative and tend to increase for an example given

the wrong class by the current weak classifier hj, thus, weighting puts emphasis on

“hard” examples. For an underlying cpe loss `, we have that (see Appendix B.1.8

for a derivation)

−F ′(z) = (`−1 ◦ t` − `1 ◦ t`)−1(−z). (3.16)

We thus need to invert the difference of the partial losses to recover −F ′. The in-

version is easy for the log-loss because of properties of the log function and for the

square loss because its partial losses are quadratic functions. However, for hyper-

parameterized losses, such as the α-loss, the inversion in (3.16) is nontrivial. We

circumvent this difficulty by proposing a novel boosting algorithm, PilBoost, given

in Algorithm 1. Rather than using −F ′ as in (3.15) for the weight update in Step 2.1,

PilBoost uses an approximation function f̃ , which is non-negative and increasing,

that we dub pseudo-inverse link (Pil), which is studied in general in Appendix B.1.8.
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Algorithm 1 PilBoost

Input sample S, number of iterations T , af > 0, Pil f̃ ;

Step 1 : let β ← 0; // first classifier, H0 = 0

Step 2 : for t = 1, 2, ..., T

Step 2.1 : let wi ← f̃(−yiHβ(xi)), ∀i ∈ [m];

Step 2.2 : let j ← wl(S,w);

Step 2.3 : let ej ← (1/m) ·
∑

iwiyihj(xi);

Step 2.4 : let βj ← βj + afej;

Output Hβ.

Specifically, in Lemma 17, we provide f̃` for α-loss, given in (B.145). Furthermore

in Lemma 18, we show that there exists K > 0 such that, for almost all z ∈ R,

|(f̃` − (−L′)−1)(z)| . K/α. We now theoretically analyze PilBoost, and we make

two classical assumptions on wl (Schapire and Singer, 1999; Nock and Williamson,

2019).

Assumption 1. (R) The weak classifiers have bounded range: ∃M > 0 such that

|hj(xi)| ≤M,∀j.

Let ẽj
.

= m · ej/(1>wj) ∈ [−M,M ] be the normalized edge of the j-th weak

classifier, where with a slight abuse of notation of (3.12), ej is the (unnormalized)

edge (Step 2.3).

Assumption 2. (WLA) The weak classifiers are not random: ∃γ > 0 such that

|ẽj| ≥ γ ·M,∀j.

Note that “WLA” denotes the Weak Learning Assumption, which is a pillar of

boosting theory (cf. (Freund et al., 1999)). Since we employ f̃ instead of F ′ in Pil-

Boost, we need two more functional assumptions on the first- and second-order
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derivatives of F . The edge discrepancy of a function F on weak classifier hj at itera-

tion t is given by

∆j(F )
.

= |Ei∼S [yihj(xi)F
′(yiHβ(xi))]− ej| , (3.17)

which is the absolute difference of the edge using (the derivative of) F vs. using

PilBoost’s f̃ (implicit in ej).

Assumption 3. (E, C) ∃ζ, π ∈ [0, 1) such that:

(E) the edge discrepancy is bounded ∀t: ∆j(F ) ≤ ζ · ej, where j is returned by

wl at iteration t;

(C) the curvature of F is bounded: F ∗
.

= supz F
′′(z) ≤ (1− ζ)(1 + π)/(afM

2).

Note that (C) is quite mild for specific sets of functions, e.g., proper canonical

losses are Lipschitz (Reid and Williamson, 2010b), so (C) can in general be ensured

by a simple renormalization of the loss. On the other hand, (E) can become progres-

sively harder to ensure as the number of iterations increases because the choices of

the wl will become restricted; nevertheless, it is not prohibitory in practice as our

experiments in Section 4.5 suggest (also see the remark in Appendix B.1.10 for further

commentary on this assumption). Let w̃t
.

= 1>wt, the total weight at iteration t in

PilBoost.

Theorem 9. Suppose (R, WLA) hold on wl and (E, C) hold on F , for each

iteration of PilBoost. Denote Q(F )
.

= 2F ∗/(γ2(1 − ζ)2(1 − π2)). The following

holds:

• on the risk defined by F : ∀z∗ ∈ R,∀T > 0, if we observe
∑T

t=0 w̃
2
t ≥ Q(F ) ·

(F (0)− F (z∗)), then

Ei∼S [F (yiHβ(xi))] ≤ F (z∗). (3.18)
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• on edge distribution: ∀θ ≥ 0,∀ε ∈ [0, 1],∀T > 0, letting Fε,θ
.

= (1 − ε) inf F +

εF (θ), if the number of iterations satisfiees T ≥ 1
ε2
· Q(F )·(F (0)−Fε,θ)

f̃2(−θ)
, then

Pi∼S [yiHβ(xi) ≤ θ] ≤ ε. (3.19)

Thus, Theorem 9 gives boosting compliant convergence on training, and the syn-

thesis of (3.18) and (3.19) provides a very strong convergence guarantee. When clas-

sical assumptions about the loss of interest are satisfied, such as it being Lipschitz

(ensured for proper canonical losses (Reid and Williamson, 2010b)), there is a natural

extension to generalization following standard approaches (Bartlett and Mendelson,

2002; Schapire et al., 1998). See Appendix B.1.10 for the proof of Theorem 9, and

for additional remarks regarding its optimality and further application to addressing

discrepancies due to machine type approximations.

3.6 Experiments

We provide experimental results on PilBoost (for α ∈ {1.1, 2, 4}) and compare

with AdaBoost (Freund and Schapire, 1997a) and XGBoost (Chen and Guestrin,

2016) on four binary classification datasets, namely, cancer (Wolberg et al., 1995),

xd6 (Buntine and Niblett, 1992), diabetes (Smith et al., 1988), and online shoppers

intention (Sakar et al., 2019). We performed 10 runs per algorithm with randomiza-

tion over the train/test split and the twisters. All experiments use regression decision

trees (of varying depths 1-3) in order to align with XGBoost. Hyperparameters of

XGBoost were kept to default to maintain the fairest comparison between the three

algorithms; for more of these experimental details, please refer to Appendix B.2.5.

In order to demonstrate the twist-properness of α-loss as implemented in PilBoost,

we corrupt the training examples of these datasets according to three different (ma-

licious) twisters.
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Figure 3.1: Box and Whisker Plots Reporting the Classification Accuracy of Ad-

aboost, PilBoost (for α ∈ {1.1, 2, 4}), and Xgboost on the Cancer Dataset Affected

by the Class Noise Twister with 0%, 15%, and 30% Twist. Note That the Orange

Line Is the Median, the Green Triangle Is the Mean, the Box Is the Interquartile

Range, and the Circles Outside of the Whiskers Are Outliers. All Three Algorithms

Were Trained with Decision Stumps (Depth 1 Regression Trees). For α = 1.1, 2, and

4, We Set aF = 7, 2, and 4, Respectively. Numeric Values Corresponding to the Box

and Whisker Plots Are Provided in Table B.1 in Section B.2.3. We Find That Pil-

Boost has Gains over Adaboost and Xgboost When There Is Twist Present, and α∗

(of Our Set) Increases as the Amount of Twist Increases, Which Follows Theoretical

Intuition (Lemma 9).

Class Noise Twister (all datasets): This twister is equivalent to SLN in the

training sample. Results on this twister for the cancer dataset are presented in Fig-

ure 3.1 and see Appendix B.2.3 for further results. In general, we find that Pil-

Boost is more robust to the Class Noise Twister than AdaBoost and XGBoost, and

we find that α∗ increases as the amount of twist increases, which complies with our

theory (Lemma 9 and Theorem 7). We also present an adaptive α experiment in Fig-

ure 3.2. We denote the adaptive method Menon PilBoost, since we take inspiration

from (Menon et al., 2015), where they show that one can estimate the level of label

noise (see their Appendix D.1) from the minimum and maximum posterior values.
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Dataset Algorithm Feature Noise Twister

p = 0 0.15 0.25 0.5

AdaBoost 1.00± 0.00 0.99± 0.01 0.97± 0.01 0.88± 0.02

us (α = 1.1) 1.00± 0.00 1.00± 0.00 0.99± 0.01 0.91± 0.02

us (α = 2.0) 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.91± 0.03xd6

us (α = 4.0) 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.96± 0.02

XGBoost 1.00± 0.00 0.97± 0.02 0.96± 0.01 0.83± 0.03

Table 3.1: Accuracies of AdaBoost, PilBoost (for α ∈ {1.1, 2, 4}), and XGBoost on

the xd6 dataset affected by the feature noise twister with the flipping probability p =

{0, 0.15, 0.25, 0.5}. All three algorithms were trained with depth 3 regression trees.

For each value of α, we set af = 8. Note that the xd6 dataset is perfectly classified

(when there is no twist) by a Boolean formula on the features, given in (Buntine and

Niblett, 1992), which explains the performance when p = 0.

Using a single decision tree classifier with O(log(m)) leaves and O(
√
m) samples per

leaf (m ≈ 681 examples for xd6 dataset with 70/30 train/test-split), and information

gain as the splitting criterion, we estimate the minimum and maximum posterior val-

ues directly from the training data with local counts of number of samples classified

such that Y = 1 at each leaf. Once we obtain ηmin and ηmax in this way, we estimate

the symmetric noise value p ∈ [0, 1] with the geometric mean p =
√
ηmin(1− ηmax).

Finally, to estimate α0 for each noise level, we apply the formula in Lemma 9(c) and

the SLN formula given just before Lemma 7 where we estimate ηc with the average

posterior from the decision tree classifier. Further experimental consideration is given

in Appendix B.2.6.
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Feature Noise Twister (xd6 dataset): This twister perturbs the training sample

by randomly flipping features. More precisely, for each training example, the example

is selected if Ber(p1) returns 1. Then, for each selected training example, and for

each feature independently, the feature is flipped (the features of xd6 are Booleans)

to the other symbol if Ber(p2) also returns 1. Results on this twister are presented in

Table 3.1 where p1 = p2 = p. In general, we find that PilBoost is more robust to the

Feature Noise Twister than AdaBoost and XGBoost, and we find that α∗ increases

as the amount of twist increases.

Insider Twister (online shoppers intention dataset): This twister assumes more

knowledge about the model than the previous two twisters. In essence, the insider

twister adds noise to a few of the most informative features for predicting the class.

Specifically for the online shoppers intention dataset, the insider twister adds noise to

feature 8 (page values - numeric type with range in [−250, 435]), feature 10 (month),

and feature 15 (visitor type - ternary alphabet). For page values, the insider twister

adds i.i.d. N (0, 60) to the entries; for both month and visitor type, the insider twister

independently increments (with probability 1/2) the symbol according to their respec-

tive alphabets such that about 50% of each of these features are perturbed. Results

on this twister are presented in Figure 3.3 and further discussion in Appendix B.2.4

(Figure B.10); post-twister, the feature importance profile of XGBoost is almost uni-

form, displaying damages to the algorithm’s discriminative abilities (Figure 3.3, right),

while the feature importance profile of PilBoost is much less perturbed overall.
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Figure 3.2: Adaptive α Experiment on the Xd6 Dataset with Depth 3 Regression

Trees. Solid Curves Correspond to Mean Classification Accuracy and Shaded Areas

Are the Associated 95% Confidence Intervals Obtained from a t-test. For Each Label

Noise Value, We Train Three Algorithms: 1) Vanilla Xgboost; 2) PilBoost with

Fixed α = 1.1; 3) and, an Adaptive α PilBoost (We Refer to as Menon PilBoost).

For Details Regarding Menon PilBoost, Refer to Class Noise Twister in the Main

Body. The Result Suggests That a Fixed Value of α = 1.1 in PilBoost is Good,

but Approximating α0 Does Induce Slightly Better Model Performance. For General

Twists, We Suggest This Heuristic (or Some Variant) as Inspired By (Menon et al.,

2015) Could Be Used to Learn α0. Further Experimental Consideration Is given in

Appendix B.2.6.
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Figure 3.3: Normalized Feature Importance Profiles for PilBoost with α = 1.1 and

af = 7 (Top) and for Xgboost (Bottom) on the Online Shoppers Intention Dataset

(Both for Depth 3 Trees) with and Without the Insider Twister. We Find That the In-

sider Twister Significantly Perturbs the Feature Importance of Xgboost as Evidenced

in the Plot (Far Right), and Hence Significantly Reduces the Inferential Capacity of

the Learned Model. More Details Can Be Found in Insider Twister (Main Body) and

Appendix B.2.4.
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Chapter 4

SMOOTHLY GIVING UP: ROBUSTNESS FOR SIMPLE MODELS

4.1 Introduction

In several critical infrastructure applications, simple models are favored over com-

plex models. In health care analytics, simple models are typically preferred for their

interpretability so that practitioners can audit the correlations the model uses for

decision making (Rudin, 2019; Caruana et al., 2015; Nori et al., 2021; Chen et al.,

2021). In federated learning, simple models can be preferred for computational and

energy efficiency, since edge devices are heterogeneous (Kairouz et al., 2019b; Viola

and Jones, 2001). Examples of learning algorithms that train simple models include

logistic regression and boosting, particularly when the weak learner of the boosting

algorithm is weaker (e.g., decision/regression trees with low maximum depth).

While simple models may offer more interpretability or energy efficiency, they

are known to suffer, provably, from label noise (Ben-David et al., 2012; Ji et al.,

2022; Rolnick et al., 2017). Indeed, Long and Servedio (2010) showed that boosting

algorithms that minimize convex losses over linear weak learners can achieve fair coin

test accuracy after being trained with an arbitrarily small amount of (symmetric)

label noise. In essence, Long and Servedio (2010) construct a pathological dataset

which exploits the sensitivity of linear classifiers and the inability of convex losses

to “give up” on noisy training examples, even if the convex boosting algorithm is

regularized or stopped early.

Recent work argues that the negative result of Long and Servedio (2010) could

perhaps be circumvented by increasing the complexity of the weak learner (Mansour
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et al., 2022b), however, there are certain benefits for utilizing simple models. Thus,

one remaining degree of freedom to robustly train a simple model is by tuning the loss

function itself. We use the recently introduced margin-based α-loss, which smoothly

tunes through the exponential (α = 1/2), logistic (α = 1), and sigmoid (α = ∞)

losses (Sypherd et al., 2022b). The α hyperparameter controls the convexity of the

loss, since for 0 < α ≤ 1 the loss is convex, and for α > 1 the loss is quasi-convex. We

show that tuning α > 1 allows the loss to “give up”, which refers to how it evaluates

large negative margins (preview Figure 4.1 and see the exponential vs. sigmoid losses).

Hence, “giving up” on noisy training examples reduces the sensitivity of a simple

hypothesis class to adverse perturbations.

Our contributions are as follows:

1. In Theorem 10, we show that there exist robust solutions of the margin-based α-

loss for α > 1 to the problem of Long and Servedio (2010); we verify this result

with simulation (Figure 4.2) and experimental results (Section 4.5.1), where we

show increased gains when the maximum depth of the (decision/regression) tree

weak learner is restricted, i.e., for simpler models.

2. Building on the results in 1, we present a novel boosting algorithm (Algorithm 2

in Section 4.3.1), called AdaBoost.α, that may be of independent interest. The

novelty of AdaBoost.α is that it smoothly tunes through vanilla AdaBoost (min-

imizing the exponential loss, α = 1/2), LogAdaBoost (minimizing the logistic

loss, α = 1) (Schapire and Freund, 2013), to non-convex “AdaBoost-type” al-

gorithms for α > 1, all with the single α hyperparameter.

3. Noticing that the boosting setup of Long and Servedio (2010) ultimately reduces

to a two-dimensional linear problem, we theoretically demonstrate robustness of

the margin-based α-loss for α > 1 under linear models of arbitrary dimensions
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with an upperbound (Theorem 11) and dominating terms also appearing in a

lowerbound (Theorem 12). In essence, we provide guarantees on the quality of

optima, showing with upper and lower bounds on the noisy gradient that α > 1

is smaller for “good solutions” than α ≤ 1.

4. Finally, in Section 4.5.2, we report experimental results on the logistic model for

a synthetic Gaussian Mixture Model (GMM) and a COVID-19 survey dataset (Sa-

lomon et al., 2021). In particular, we show that α > 1 is able to preserve the

interpretability of the linear model for the COVID-19 data, while also providing

robustness to label noise. In addition, we provide straightforward heuristics for

tuning α.

4.1.1 Related Work

Convex and Non-Convex Losses Label noise is an important problem (Frénay

and Verleysen, 2013; Rauscher et al., 2008; Gorber et al., 2009), and many works

propose reweighting/augmenting/regularizing/tuning convex loss functions to train

robust models (Natarajan et al., 2013; Ma et al., 2020; Liu and Guo, 2020; Ghosh

et al., 2017; Patrini et al., 2017a; Lee et al., 2006; Lin et al., 2017b; Leng et al., 2022).

Other approaches include abstention (Thulasidasan et al., 2019; Ziyin et al., 2020)

and early stopping (Bai et al., 2021), however, both techniques also typically revolve

around a convex loss. Despite the fact that providing strong optimization guarantees

for non-convex losses is nontrivial (Mei et al., 2018), non-convex loss functions (sat-

isfying certain basic conditions, e.g., differentiability, classification-calibration (Lin,

2004; Bartlett et al., 2006b)) have been observed to provide superior robustness over

convex losses (Beigman and Klebanov, 2009; Manwani and Sastry, 2013; Nguyen and

Sanner, 2013; Barron, 2019; Zhang and Sabuncu, 2018a; Zhao et al., 2010; Sypherd
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et al., 2019; Chapelle et al., 2008; Wu and Liu, 2007; Cheamanunkul et al., 2014;

Masnadi-Shirazi and Vasconcelos, 2009). Intuitively, non-convex loss functions seem

to have a sophisticated regularization ability where they tend to assign less weight to

misclassified training examples, and thus algorithms optimizing such losses are often

less perturbed by outliers during training.

α-loss The α-loss, where α ∈ (0,∞], arose in information theory (Liao et al.,

2018a; Arimoto, 1971b), and was recently introduced to ML (Sypherd et al., 2019).

It smoothly tunes through several important losses, and has statistical, optimization,

and generalization tradeoffs dependent on α (Sypherd et al., 2022b). Indeed, for shal-

low CNNs the α-loss is more robust for α > 1, however, the loss becomes increasingly

more non-convex as α increases greater than 1, hence an optimization/robustness

tradeoff (Sypherd et al., 2020). The α-loss is equivalent (under hyperparameter re-

striction) to the Generalized Cross Entropy loss (Zhang and Sabuncu, 2018a), which

was motivated by the Box-Cox transformation in statistics (Box and Cox, 1964). Also,

the α-loss was shown to satisfy a statistical notion of robustness for loss functions in

the class probability estimation setting (Sypherd et al., 2022c).

Convex and Non-Convex Boosting AdaBoost (Freund and Schapire, 1997b)

(which minimizes the exponential loss (Schapire and Freund, 2013)) is the ground-

breaking convex boosting algorithm. Later, the LogAdaBoost (which minimizes the

logistic loss) was proposed as a more robust convex variant (Collins et al., 2002; Mc-

Donald et al., 2003). Indeed, a SOTA boosting algorithm, XGBoost, minimizes (an

approximated) logistic loss, rather than the exponential loss (Chen and Guestrin,

2016). Sypherd et al. (2022c) recently introduced a novel boosting algorithm called

PILBoost, which minimizes a convex (proper) surrogate approximation of the α-

loss (Nock and Williamson, 2019; Reid and Williamson, 2010a), and presented exper-

imental results on the robustness of PILBoost.
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However, the seminal work of Long and Servedio (2010) showed that convex boost-

ers provably suffer from label noise, particularly for simple weak learners (Mansour

et al., 2022b). Van Rooyen et al. (2015) proposed relaxing the nonnegativity condition

of the convex loss in order to yield robustness, but it seems that this is unable to

completely fix the problem (Long and Servedio, 2022). For this reason, non-convex

boosting algorithms have been considered before (Masnadi-Shirazi and Vasconcelos,

2009; Cheamanunkul et al., 2014), but there remains a large gap between the convex

and non-convex realms. Therefore, we propose using the margin-based α-loss, which

continuously tunes through several canonical convex and quasi-convex losses, in order

to smoothly perform non-convex boosting.

4.2 Preliminaries

4.2.1 Margin-Based α-loss

We consider the setting of binary classification. The learner ideally wants to

output a classifier H : X → {−1,+1} that minimizes the probability of error, the ex-

pectation of the 0-1 loss, however, this is NP-hard (Ben-David et al., 2003). Thus, the

problem is relaxed by optimizing a surrogate to the 0-1 loss over functions H : X → R,

whose output captures the certainty of prediction of the binary label Y ∈ {−1, 1}

associated with the feature vector X ∈ X (Bartlett et al., 2006b). The classifier is

obtained by making a hard decision, i.e., H(X) = sign(H(X)). A surrogate loss is

said to be margin-based if, the loss associated to a pair (y,H(x)) is given by l̃(yH(x))

for l̃ : R → R+ (Lin, 2004). The loss of the pair (y,H(x)) only depends on the

product z := yH(x), i.e., the (unnormalized) margin (Schapire and Freund, 2013). A

negative margin corresponds to a mismatch between the signs of H(x) and y, i.e., a

classification error by H; a positive margin corresponds to a correct classification by
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H.

Since probabilities are typically the inputs to loss functions (e.g., log-loss, Ma-

tusita’s loss (Matusita, 1956), α-loss (Sypherd et al., 2019)), an important function

we use is the sigmoid function σ : R→ [0, 1], given by

σ(z) :=
1

1 + e−z
, (4.1)

where z := yH(x) is the margin. The sigmoid smoothly maps real-valued predictions

H : X → R to probabilities, and in the multiclass setting, the sigmoid is generalized

by the softmax function (Goodfellow et al., 2016). Note that the inverse of σ is the

logit link (Reid and Williamson, 2010a). Noticing that σ(−z) = 1 − σ(z), we have

that

σ′(z) :=
d

dz
σ(z) = σ(z)σ(−z) =

ez

(1 + ez)2
, (4.2)

and note that σ′ is an even function.

We now provide the definition of the margin-based α-loss, which was first presented

in (Sypherd et al., 2019) for α ∈ [1,∞] and extended to α ∈ (0,∞] (Sypherd et al.,

2022b).

Definition 8. The margin-based α-loss, l̃α : R → R+, α ∈ (0,∞], is given by, for

α ∈ (0, 1) ∪ (1,∞),

l̃α(z) :=
α

α− 1

(
1− σ(z)1−1/α

)
, (4.3)

with l̃1(z) := − log σ(z) and l̃∞(z) := 1−σ(z) by continuous extension, and note that

l̃1/2(z) := e−z.

Indeed, l̃1/2, l̃1, and l̃∞ recover the exponential (AdaBoost), logistic (logistic re-

gression), and sigmoid (smooth 0-1) losses, respectively (Shalev-Shwartz and Ben-

David, 2014); see Figure 4.1(a) for a plot of l̃α for several values of α versus the mar-

gin. Note that for fixed z ∈ R, l̃α(z) is continuous in α. Sypherd et al. (2022b) showed
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Figure 4.1: (a) Margin-based α-loss (4.3) as a Function of the Margin (z := yH(x)) for

α ∈ {.3, .5, .77, 1, 1.44,∞}; (b) Its First Derivative (See Lemma 20 in Appendix C.1)

with Respect to the Margin for the Same Set of α. The “Giving Up” Ability of the

Margin-based α-loss for α > 1 Can Be Seen from Its First Derivative, Where It Is

More Constrained (than α ≤ 1) for Large Negative Values of the Margin.

that the margin-based α-loss is classification-calibrated for all α ∈ (0,∞] (Bartlett

et al., 2006b). Thus, tuning the single α hyperparameter allows continuous interpo-

lation through calibrated, important loss functions, however, different regimes of α

have differing robustness properties. To this end, Sypherd et al. (2022b) presented

the following result regarding the convexity characteristics of l̃α.

Proposition 7. l̃α : R→ R+ is convex for 0 < α ≤ 1 and quasi-convex for α > 1.

Recall that a function f : R→ R is quasi-convex if, for all x, y ∈ R and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ max {f(x), f(y)}, and also that any monotonic function is quasi-

convex (cf. (Boyd and Vandenberghe, 2004a)).

In light of Proposition 7, consider Figure 4.1(a) for α = 1/2 (convex) and α = 1.44

(quasi-convex), and suppose for concreteness that z1 = −1 and z2 = −5. The differ-

90



ence in loss evaluations for these two negative values of the margin, which are rep-

resentative of misclassified training examples, is approximately exponential vs. sub-

linear; this is similarly observed in Figure 4.1(b) with the first derivative of l̃α (see

Lemma 20 in Appendix C.1). Intuitively, if a training example is not fit well by the

currently learned parameter values, then its margin will be (large and) negative and

it will incur more derivative update; if such a training example is noisy, convex losses

(e.g., α ≤ 1) encourage the algorithm to continue fitting the bad example, whereas

non-convex losses (e.g., α > 1) would instead allow the algorithm to “give up”. This

tendency of convex losses could be exacerbated for simpler models because they can

suffer significant perturbation by label noise (preview Figure 4.2) vs. more nuanced

function classes (Rolnick et al., 2017).

4.2.2 Boosting Setup

For the boosting context, we assume access to a training sample S := {(xi, yi), i ∈

[m]} ⊂ X × {−1,+1} of m examples, where [m] := {1, 2, ...,m}. Following the

functional gradient perspective of boosting (i.e., the blueprint of (Friedman, 2001)),

the boosting algorithm minimizes a margin-based loss l̃ with respect to S over t ∈ [T ]

iterations in order to learn a function HT : X → R, given by

HT (·) :=
∑
t∈[T ]

θtht(·), (4.4)

where θt are the learned parameters and the ht : X → R are weak learners with

slightly better than random classification accuracy. On each iteration t ∈ [T ], we

compute weights for each training example using the full Ht−1 via

Dt(i) := −l̃′(yiHt−1(xi)),∀i ∈ [m]. (4.5)

The weights Dt(i) are non-negative, normalized to form a distribution over the train-

ing examples, and tend to increase for an example that is incorrectly predicted (neg-
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ative margin) by the previously learned Ht−1. Thus, weighting puts emphasis on

“hard” examples using the first derivative of the loss function, which is a kind of

functional gradient descent (cf. (Schapire and Freund, 2013)). Then, the distribution

over training examples Dt is passed to the weak learning oracle (see Algorithm 2 for

the general procedure).

In the next section, we show that using the derivative of the margin-based α-loss

in (4.5) recovers a novel robust boosting algorithm, which may be of independent

interest. We also show that this algorithm has provable robustness guarantees on the

negative result of Long and Servedio (2010).

4.3 Robustness for Boosting

4.3.1 AdaBoost.α: Boosting with a Give Up Option

Using the smooth tuning of the margin-based α-loss, we present a novel robust

boosting algorithm, AdaBoost.α in Algorithm 2, which is obtained by noticing (from

the functional gradient perspective (Schapire and Freund, 2013)) that the exponential

weighting of vanilla AdaBoost is really the negative first derivative of the exponential

loss (i.e., α = 1/2). Generalizing this observation for all α ∈ (0,∞] (via Lemma 20 in

Appendix C.1) in (4.6), we obtain a hyperparameterized family of “AdaBoost-type”

algorithms.

Indeed, AdaBoost.α also recovers LogAdaBoost (see Section 4.1.1) for α = 1. For

α > 1, AdaBoost.α becomes a non-convex boosting algorithm minimizing the quasi-

convex margin-based α-losses (Proposition 7). As argued in Section 4.2.1, non-convex

losses enable the boosting algorithm to give up on noisy examples, and hence yield a

more robust model HT . Indeed, for these same robustness reasons, non-convex boost-

ing algorithms have been considered before (see Section 4.1.1). However, the novelty
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Algorithm 2 AdaBoost.α

1: Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ {−1,+1}, and α ∈ (0,∞]

2: Initialize: H0 = 0.

3: for t = 1, 2, . . . , T :

4: Update, for i = 1, . . . ,m:

Dt(i) =
σ′(yiHt−1(xi))σ(yiHt−1(xi))−

1
α

Zt
, (4.6)

where Zt is a normalization factor.

5: Return ht, weakly learned on Dt.

6: Compute error of weak hypothesis ht:

εt =
∑

i:ht(xi)6=yi
Dt(i). (4.7)

7: Let θt = 1
2

log
(

1−εt
εt

)
.

8: Update: Ht = Ht−1 + θtht

9: Return H(·) = sign (HT (·))

of AdaBoost.α is that it continuously interpolates through convex AdaBoost variants

(α ≤ 1) to non-convex “AdaBoost-type” algorithms (α > 1). Thus, AdaBoost.α

allows the practitioner or meta-algorithm (He et al., 2021) to tune how much one

would like the algorithm to give up on hard, possible noisy, training examples, which

may be useful in a distributed context (Cooper and Reyzin, 2017).

4.3.2 Robustness on the Long-Servedio Dataset

In Long and Servedio (2010), the training sample S is a multiset consisting of three

distinct examples, one of which is repeated twice, where the data margin 0 < γ < 1/6:

• S contains one copy of the example x = (1, 0) with label y = +1. (Called the
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Figure 4.2: A Plot Depicting Optimal Classification Lines of α̂ = 1 and α = 3

for the Clean Long-servedio Dataset S, Where the Penalizer Examples Are Slightly

Separated for Display. The α̂, α Optima Are Obtained by Grid-search on the Noisy

Long-servedio Dataset Ŝ, Where the Noise Level Is Chosen as p = 1/3, and γα̂ = 1/20

Is Subsequently Chosen for the Negative Result Of Long and Servedio (2010) to

“kick-in”. The α̂ = 1 (Logistic Loss) Line (Red) Is given by (θα̂1 , θ
α̂
2 ) = (.79, 1.41)

For (4.8), and Has Fair Coin Accuracy on S, Misclassifying Both Penalizers. The

α = 3 (Quasi-convex Loss) Line (Green) Is given by (θα1 , θ
α
2 ) = (41.59,−1.19×10−11),

and Has Perfect Accuracy on S. This Simulation Aligns with Theorem 10 in That the

Quasi-convex α = 3 Loss Is Able to “give Up” on the Noisy Copies of the Training

Examples and Recover Perfect Classification Parameters. More α’s Are Presented in

Appendix C.1.1.
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“large margin” example.)

• S contains two copies of the example x = (γ,−γ) with label y = +1. (Called

the “penalizers” since these are the points that the booster will misclassify.)

• S contains one copy of the example x = (γ, 5γ) with label y = +1. (Called the

“puller”.)

Thus, all four examples in S have positive label and lie in the unit disc {x : ‖x‖ ≤

1}; see Figure 4.2 for a plot of the dataset. Notice that H(x) = sign(x1) (sign of

first coordinate of x) corrrectly classifies all four examples in S with margin γ > 0,

so the weak learner hypothesis class H = {h1(x) = x1, h2(x) = x2} is sufficient for

perfect classification of the dataset. The task for the boosting algorithm is to learn

parameters (θ1, θ2) such that, from (4.4),

Hl̃,γ(x1, x2) := θ1x1 + θ2x2, (4.8)

achieves perfect classification accuracy on S, where the dependency on the loss l̃

and data margin γ is clear. Note that (4.8) (we abbreviate Hl̃,γ = (θ1, θ2)) is a 2D

linear model, so this setup parallels with logistic regression, which we consider in the

sequel. Following (Mansour et al., 2022b), we obtain a noisy sample Ŝ with label flip

probability 0 < p < 1/2 by including p−1 − 1 copies of S and 1 copy of S with the

labels flipped. Long and Servedio (2010) showed that for any calibrated, convex loss

l̃:

• When p = 0, i.e., the training sample is S, the optimal Hl̃ = (θl̃1, θ
l̃
2) of l̃ has

perfect accuracy on S.

• For any 0 < p < 1/2 generating training sample Ŝ, there exists 0 < γl̃ < 1/6

such that the optimal Hl̃,γl̃
= (θl̃1, θ

l̃
2) of l̃ has fair coin accuracy on S.
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Intuitively, the interplay between the “large margin” and “puller” examples forces a

convex booster, boosting H, to try to fit the noisy examples in Ŝ; this holds even

if the booster is regularized or stopped early, ultimately outputing a model that

misclassifies both “penalizers” of S (Long and Servedio, 2010). Taking stock with l̃α,

we see that this pathology holds for α ≤ 1, since these are convex losses. However,

tuning α > 1 to quasi-convex losses is able to induce the existence of optima which

can fix the problem.

Theorem 10. Let 0 < p < 1/2 for Ŝ, and α̂ ≤ 1 for l̃α. By Long and Servedio

(2010), there exists 0 < γα̂ < 1/6 such that the optimal Hα̂,γα̂ = (θα̂1 , θ
α̂
2 ) is a fair coin

on S. On the other hand, for α ∈ (1,∞), l̃α has optimum Hα,γα̂ = (θα1 , θ
α
2 ), where

θα1 = O
(
αγ−1

α̂ log (p−1 − 1)
)

and θα2 = 0, with perfect classification accuracy on S.

The proof of Theorem 10 (in Appendix C.1.1) is nontrivial since α > 1 has a

non-convex optimization landscape. In Figure 4.2 where p = 1/3 and γα̂ = 1/20, the

grid search returns (θα1 , θ
α
2 ) = (41.59,−1.19× 10−11), which aligns with Theorem 10,

namely that θα1 ≈ 3 × 20 × log (2) ≈ 41.59 and θα2 ≈ 0. Intuitively, increasing

α ∈ (1,∞) increases θα1 , which may have practical utility (see Section 4.5.1), but the

rate for θα1 hints at why α = ∞ is not included, since α = ∞ “pushes” θα1 to ∞, an

impossibility; this is an example of the robustness/optimization complexity tradeoff

inherent in the margin-based α-loss (Sypherd et al., 2020).

4.4 Robustness for Linear Models

Taking inspiration from the boosting setup in Section 4.3.2, where the weak learner

recovered a 2D linear model in (4.8), we now consider a generalization of that hy-

pothesis class to d ∈ N dimensions, which is equivalent to the logistic model (Sypherd

et al., 2022b). Similar to Theorem 10, we provide guarantees on the quality of optima,
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showing with upper and lower bounds that the noisy gradient for α > 1 is smaller for

“good solutions” than when α ≤ 1.

We let X ∈ [0, 1]d be the normalized feature vector, Y ∈ {−1,+1} the label, and

we assume that the pair is drawn according to an unknown distribution PX,Y . We

assume that the parameter vector θ ∈ Bd(r) where r > 0 and Bd(r) := {θ ∈ Rd :

‖θ‖2 ≤ r}. Thus, in this setting 〈yx, θ〉 (inner product) is the margin, and note by

the Cauchy-Schwarz inequality that 〈yx, θ〉 ≤ r
√
d. Also, note that for α = 1, we

recover logistic regression.

For α ∈ (0,∞], the expected margin-based α-loss, abbreviated the α-risk, evalu-

ated at θ ∈ Bd(r) is given by

Rα(θ) := EX,Y
[
l̃α(〈Y X, θ〉)

]
, (4.9)

and for symmetric label noise rate 0 < p < 1/2,

Rp
α(θ) := EX,Y

[
Eτ∼Rad(p)

(
l̃α(〈−τY X, θ〉)

)]
, (4.10)

is called the noisy α-risk, where τ is a Rademacher random variable with parameter

p. In order to assess the efficacy of a given parameter vector θ ∈ Bd(r), we are

interested in the gradient of the loss function, due to the use of gradient methods

for optimization (Boyd and Vandenberghe, 2004a). Thus, the gradient of the α-risk

in (4.9) is

∇θRα(θ) := EX,Y
[
∇θ l̃

α(〈Y X, θ〉)
]
, (4.11)

∇θ l̃
α(〈Y X, θ〉) := −σ′(〈Y X, θ〉)σ(〈Y X, θ〉)− 1

αY X for α ∈ (0,∞] from Lemma 20 in

Appendix C.1. Hence, the gradient of the noisy α-risk (4.10) is given by

∇θR
p
α(θ) := EX,Y

[
Eτ∼Rad(p)

(
∇θ l̃

α(〈−τY X, θ〉)
)]
. (4.12)

We now present a result in the realizable setting, indicating (4.12) is smaller for α =∞

(soft 0-1 loss) at the data generating vector θ∗ ∈ Bd(r) than for α = 1 (logistic loss).
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Theorem 11. Let 0 < p < 1/2 and let θ̂1, θ̂∞ ∈ Bd(r) be such that ∇θR
p
1(θ̂1) = 0

and ∇θR
p
∞(θ̂∞) = 0. We assume that there exists θ∗ ∈ Bd(r), such that the following

ordering holds for all (x, y) ∈ X × {−1,+1},

〈yx, θ∗〉 ≥ 〈yx, θ̂∞〉 ≥ 〈yx, θ̂1〉 > ln (2 +
√

3). (4.13)

Then, we have that for α = 1 or ∞,

‖∇θR
p
α(θ∗)‖∞
Cα

≤ d
1
2 r
∣∣∣l̃α′′(z∗α)

∣∣∣+ dr2
∣∣∣l̃α′′′(z∗α)

∣∣∣ , (4.14)

where Cα = 2 for α = 1 and Cα = 2−4p for α =∞, and z∗α := arg maxz∈{〈yx,θ̂α〉}

∣∣∣l̃α′′(z)
∣∣∣.

Furthermore,

1− 2p <
d

1
2 r
∣∣∣l̃1′′1 (z∗1)

∣∣∣+ dr2
∣∣∣l̃1′′′(z∗1)

∣∣∣
d

1
2 r
∣∣∣l̃∞′′(z∗∞)

∣∣∣+ dr2

∣∣∣l̃∞′′′(z∗∞)
∣∣∣ . (4.15)

Theorem 11 uses symmetries of the first derivative of l̃α for α = 1 and ∞; see

Appendix C.1.2 for proof details. Intuitively, (4.15) indicates that there is a signifi-

cant discrepancy between the two upper bounds as the noise rate p → 1/2, and the

assumption in (4.13) is mild because all three vectors are assumed to have perfect

accuracy on the clean data.

In support of the upper bounds in Theorem 11, we now present a uniform lower

bound on the norm of (4.12) for the skew-symmetric family of distributions (e.g., a

GMM).

Theorem 12. Let 0 < p < 1/2, and for each y ∈ {−1, 1}, let X [y] have the distribu-

tion of X conditioned on Y = y. We assume a skew-symmetric distribution, namely,

that X [1] d
= −X [−1], and E[X [1]] 6= 0. We also assume that r > 0 is small enough

such that both of the following hold:

(1− 2p)(1− σ′(r
√
d)) <

‖E(X [1])‖2

E(‖X [1]‖2)
, (4.16)
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and, for all α ∈ [1,∞],

e
r
√
d

α log (er
√
d + 1) <

(
p−1 − 1

)
log (e−r

√
d + 1). (4.17)

Then, we have that for every θ ∈ Bd(r),

‖∇θR
p
α(θ)‖2 ≥ ‖E[X [1]]‖2 − γE[‖X [1]‖2] > 0, (4.18)

where (letting γ̃ := σ(r
√
d)1− 1

ασ(−r
√
d)− 1)

γ :=


σ(r
√
d)− p α = 1

pγ̃ − (1− p)γ̃ α ∈ (1,∞)

(1− 2p)(1− σ′(r
√
d)) α =∞,

(4.19)

and γ is monotonically increasing in α ∈ [1,∞].

The proof of Theorem 12 (in Appendix C.1.3) is inspired by the Morse landscape

analysis in (Sypherd et al., 2019). Intuitively, (4.19) implies that the RHS in (4.18)

is monotonically decreasing in α ∈ [1,∞], which aligns with the ordering given by

the upper bounds in Theorem 11. Regarding the assumptions in (4.16) and (4.17),

they are both more easily satisfied for smaller r > 0, indicating alignment with the

underlying optimization landscape phenomena. Taken together, Theorems 11 and 12

suggest that larger α > 1 are more robust than α = 1 (logistic regression); also, note

the 1− 2p coefficient for α =∞ in both bounds.

4.5 Experiments

We now provide empirical results in support of the previous sections, namely the

efficacy of AdaBoost.α (Algorithm 2) on the Long-Servedio dataset and the robustness

of the margin-based α-loss (Definition 8) in linear models, both for α > 1. Further

details and results are in Appendix C.2.
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4.5.1 Boosting

For the boosting experiments, we utilize the experiment version of the Long-

Servedio dataset (Long and Servedio, 2010; Cheamanunkul et al., 2014), where the fea-

ture vectors are 21D, which differs from the theory version presented in Section 4.3.2,

where the feature vectors are 2D. A full description of the dataset is presented in

Appendix C.2.1. We introduce symmetric label noise in the training data with flip

probability 0 < p < 1/2.

Robustness for simple models In Figure 4.3, we report results of AdaBoost.α

with α > 1 (quasi-convex) vs. SOTA convex boosters: vanilla AdaBoost (AdaBoost.α

with α = 1/2), LogAdaBoost (AdaBoost.α with α = 1), XGBoost, and PILBoost

(see Section 4.1.1). For lower maximum tree depth of the weak learner (i.e., simpler

models), α > 1 boosters are better able to “give up” on the noisy labels during

training and the learned model yields better accuracy on the clean test set, aligning

with Theorem 10. When the maximum depth is increased, all of the algorithms

perform roughly the same (Mansour et al., 2022b).

Giving up In Figure 4.4, we plot the clean test accuracy of AdaBoost.α boosting

decision stumps for several values of α versus iterations (i.e., number of weak learners).

We see that for α ≤ 1, increasing iterations does not increase accuracy; however, the

α > 1 (non-convex) boosters continue “giving up” on the noisy training examples,

resulting in a ≈ 25% gain. For the large α > 1, i.e. α = 8 or 20, the confidence

intervals widen, which is an example of the robustness/non-convexity tradeoff inherent

in the α hyperparameter (Sypherd et al., 2020).

Smooth tuning It is not difficult to tune α for AdaBoost.α, see Figure C.8 in

Appendix C.2.1. Sypherd et al. (2022b) indicated that the effective range of α is

typically bounded, e.g., α∗ ∈ [.8, 8] for shallow CNNs; AdaBoost.α appears to be no
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Figure 4.3: Box and Whisker Plots of the Clean Test Accuracies of Several Boosters

with 100 Decision Trees of Varying Maximum Depth on the Long-servedio Dataset

for p = .1 Symmetric Label Noise. The Boxes Are the Interquartile Ranges, the

Lines in the Boxes Are the Medians, and the Diamonds Are the Outliers. Note That

Adaboost.α with α > 1 (Quasi-convex), Outperforms the Convex Boosters When the

Maximum Depth Is 1 or 2. Further Commentary Is in Section 4.5.1, and More Noise

Levels Are in Appendix C.2.1.
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Figure 4.4: We Plot Clean Test Accuracies Vs. the Number of Iterations of

Adaboost.α Boosting Decision Stumps for Several Values of α on the Long-servedio

Dataset with p = .1 Symmetric Label Noise. Note That the Solid Curves Correspond

to Mean Accuracy and Shaded Areas Are the Associated 95% Confidence Intervals

(from 80 Runs of the Experiment). This Result Reflects the Tendency of the Convex

α ≤ 1 Boosters to Continue Overfitting on the Noisy Training Examples, and the

Ability of the Non-convex α > 1 Boosters to Continue Judiciously “giving Up” on

the Noisy Training Examples. Further Commentary Is in Section 4.5.1, and More

Noise Levels Are in Appendix C.2.1.

102



different. In part, this is due to a saturation effect, where α > 1 quickly “resembles”

the ∞-loss (Sypherd et al., 2020). Hence, tuning α > 1, but not too large, trades a

reasonable amount of non-convexity for robustness.

In Appendix C.2.1, we also present results of AdaBoost.α on the breast cancer

dataset (Wolberg et al., 1995), similarly observing gains for smaller maximum tree

depths.

4.5.2 Linear Model

For the linear model experiments, we consider two datasets: a 2D GMM, and a

real-world COVID-19 survey dataset (Salomon et al., 2021). We introduce symmetric

label noise into the training data for both.

For the effectiveness metric of using the margin-based α-loss, we consider the

model parameters themselves, as they have clear interpretations in the form of odds

ratios for the linear setting. Specifically, we examine a linear classifier trained with

α-loss on noisy data and calculate the mean squared error (MSE) of its learned param-

eters and those of some baseline (further described for each dataset). By ensuring that

the model parameters are close to those of a clean model, we preserve interpretability

and accuracy.

2D GMM We first consider a 2D GMM with µ1 = (1, 1) = −µ−1, identity co-

variance, and P[Y = 1] = 0.14 (aligning with the next experiment). Thus, the Bayes-

optimal classifier is linear, and we compare with the separator learned by training

α-loss on noisy data. In Figure 4.5, we see that tuning α > 1 results in a decreased

MSE for every non-zero noise level, and implies that the model learned by α > 1

is closer to the Bayes optimal line than the model learned by α ≤ 1, aligning with

Theorems 11 and 12. Tuning on this simple dataset is quite easy as the MSE is fairly

flat for α > 1, see Appendix C.2.2 for more details.
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Figure 4.5: Mse of Bayes Optimal Line and the Parameters Learned by α-loss, on a

2d Gmm with 86 : 14 Class Imbalance and Varying Label Noise Levels. We See That

α > 1 Is Able to More Closely Approximate the Clean Parameters than α ≤ 1, and

the Mse Is Fairly Flat in the Large α Regime, Indicating That It Is Not Difficult to

Tune α. Note That the 95% Confidence Intervals Grow Wider for Larger α, Indicative

of the Optimization/Robustness Tradeoff (Sypherd et al., 2020).
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COVID-19 survey data We now consider the US COVID-19 Trends and Impact

Survey (US CTIS) dataset (Salomon et al., 2021), which consists of self-reported

survey data. We compress the dataset from 71 features to 42 categorical and real-

valued features including symptom data, behaviors, and comorbidities. For simplicity

and interpretability, 8 features, listed in Table 4.1, were chosen using cross validation

which contributed the most to the final prediction (largest odds ratios). Each example

is labeled either as RT-PCR-confirmed COVID positive (1) or negative (−1), based

on self-reported diagnoses by study participants. Examples with clearly spurious

responses (e.g., a negative number of people in a household) or responses with missing

features were removed. This pre-processing resulted in a dataset of 864, 154 training

examples with a class imbalance of 14 : 86 of positive to negative COVID cases.

Feature Type

Age Categorical

Gender Categorical

LossOfSmellTaste Binary

ShortBreath Binary

Aches Binary

Tired Binary

Cough Binary

Fever Binary

Table 4.1: Top 8 Features of the Us Covid-19 Survey Dataset (Salomon et al., 2021),

Selected via the Largest Odds Ratios on the Validation Set.

In Figure 4.6, we compare the model parameters learned by the margin-based α-

loss on noisy data with those of the α = 1 (logistic regression) trained on clean data,
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Figure 4.6: A US Covid-19 Survey Dataset (Salomon et al., 2021), Plotting Mse of Lo-

gistic Regression (α = 1) Baseline Parameters on Clean Data and Model Parameters

Learned Using α-loss on Noisy Data Vs. α. For Non-zero Noise the Mse Is Minimized

for α > 1, but Some Care Is Required in Increasing α� 1 as the Confidence Intervals

Widen, Due to This Being Non-realizable and Highly Imbalanced Data.
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which is a calibrated model (Tu, 1996); we are interested in the utility of α > 1 to “give

up” on the noisy training data and recover the clean model parameters. We see that

tuning α > 1 gives gains for both non-zero noise levels, but there is a clear tradeoff

with optimization complexity; this is indicated by the widening confidence intervals

as α increases (Sypherd et al., 2020), which could be due to the COVID-19 survey

data being non-realizable and highly imbalanced. However, we note that reduced

MSE for α > 1 directly translates to gains on test-time accuracy; in Figure C.23 in

Appendix C.2 we show that the sensitivity of the model increases with increasing α.
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Chapter 5

α-GAN

We introduce a tunable GAN, called α-GAN, parameterized by α ∈ (0,∞], which

interpolates between various f -GANs and Integral Probability Metric based GANs

(under constrained discriminator set). We construct α-GAN using a supervised loss

function, namely, α-loss, which is a tunable loss function capturing several canonical

losses. We show that α-GAN is intimately related to the Arimoto divergence, which

was first proposed by Österriecher (1996), and later studied by Liese and Vajda (2006).

We posit that the holistic understanding that α-GAN introduces will have practical

benefits of addressing both the issues of vanishing gradients and mode collapse.

Goodfellow et al. (2014) introduced generative adversarial networks (GANs), a

novel technique for training generative models to produce samples from an unknown

(true) distribution using a finite number of real samples. A GAN involves two learning

models (both represented by deep neural networks in practice): a generator model

G that takes a random seed in a low-dimensional (relative to the data) latent space

to generate synthetic samples (by implicitly learning the true distribution without

explicit probability models), and a discriminator modelD which classifies inputs (from

either the true distribution or the generator) as real or fake. The generator wants to

fool the discriminator while the discriminator wants to maximize the discrimination

power between the true and generated samples. The opposing goals of G and D

lead to a zero-sum min-max game in which a chosen value function is minimized and

maximized over the model parameters of G and D, respectively.

For the value function considered in vanilla GAN (we refer to the GAN intro-

duced by (Goodfellow et al., 2014) as vanilla GAN, as done in the literature (Lim
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and Ye, 2017; Cai et al., 2020) to distinguish it from others introduced later) (Good-

fellow et al., 2014), when G and D are given enough training time and capacity, the

min-max game is shown to have a Nash equilibrium leading to the generator min-

imizing the Jensen-Shannon divergence (JSD) between the true and the generated

distributions. Subsequently, Nowozin et al. (2016) showed that the GAN framework

can minimize several f -divergences, including JSD, leading to f -GANs. Arguing that

vanishing gradients are due to the sensitivity of f -divergences to mismatch in distri-

bution supports, Arjovsky et al. (2017) proposed Wasserstein GAN (WGAN) using a

“weaker” Euclidean distance between distributions. This has led to a broader class of

GANs based on integral probability metric (IPM) distances (Liang, 2018). Yet nei-

ther the vanilla GAN nor the IPM GANs perform consistently well in practice due to

a variety of issues that arise during training (e.g., mode collapse, vanishing gradients,

oscillatory convergence, to name a few) (Huszár, 2015; Metz et al., 2016; Salimans

et al., 2016; Arjovsky and Bottou, 2017; Gulrajani et al., 2017), thus providing even

less clarity on how to choose the value function.

In this chapter, we first formalize a supervised loss function perspective of GANs

and propose a tunable α-GAN based on α-loss, a class of tunable loss functions (Sypherd

et al., 2019; Sypherd et al., 2020) parameterized by α ∈ (0,∞] that captures the

well-known exponential loss (α = 1/2) (Freund and Schapire, 1997b), the log-loss

(α = 1) (Merhav and Feder, 1998; Courtade and Wesel, 2011), and the 0-1 loss

(α = ∞) (Nguyen et al., 2009b; Bartlett et al., 2006c). Ultimately, we find that α-

GAN reveals a holistic structure in relating several canonical GANs, thereby unifying

convergence and performance analyses. Our main contributions are as follows:

• We present a unique global Nash equilibrium to the min-max optimization prob-

lem induced by the α-GAN, provided G and D have sufficiently large capacity

and the models can be trained sufficiently long (Theorem 13). When the dis-
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criminator is trained to optimality (where its strategy under α-loss is a tilted

distribution), the generator seeks to minimize the Arimoto divergence (which

has wide applications in statistics and information theory (Liese and Vajda,

2006; Österreicher and Vajda, 2003)) between the true and the generated dis-

tributions, thereby providing an operational interpretation to the divergence.

We note that our approach differs from Nowozin et al. f -GAN approach, please

see Remark 3 for clarification.

• We show that α-GAN interpolates between various f -GANs including vanilla

GAN (α = 1), Hellinger GAN (Nowozin et al., 2016) (α = 1/2), Total Variation

GAN (Nowozin et al., 2016) (α =∞), and IPM-based GANs including WGANs

(when the discriminator set is appropriately constrained) by smoothly tuning

the hyperparameter α (see Theorem 14 and (5.13)). Thus, α-GAN allows a

practitioner to determine how much they want to resemble vanilla GAN, for

instance, since certain datasets/distributions may favor certain GANs (or even

interpolation between certain GANs). Analogous to results on α-loss in clas-

sification (Sypherd et al., 2020, 2019), where the model performance saturates

quickly for α→∞, we expect a similar saturation for α-GAN (see Figure 5.1).

Thus, we posit that smooth tuning from JSD to IPM that results from increas-

ing α from 1 to ∞ can address issues like mode collapse, vanishing gradients,

etc.

• Finally in Theorem 15, we reconstruct the Arimoto divergence using the margin-

based form of α-loss (Sypherd et al., 2019) and the variational formulation

of (Nguyen et al., 2009b), which sheds more light on the convexity of the gener-

ator function of the divergence first proposed by (Österreicher, 1996), and later

studied by (Liese and Vajda, 2006).
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5.1 α-loss and GANs

5.1.1 Background on GANs

Let Pr be a probability distribution over X ⊂ Rd, which the generator wants to

learn implicitly by producing samples by playing a competitive game with a discrim-

inator in an adversarial manner. We parameterize the generator G and the discrimi-

nator D by vectors θ ∈ Θ ⊂ Rng and ω ∈ Ω ⊂ Rnd , respectively, and write Gθ and Dω

(θ and ω are typically the weights of neural network models for the generator and the

discriminator, respectively). The generator Gθ takes as input a d′(� d)-dimensional

latent noise Z ∼ PZ and maps it to a data point in X via the mapping z 7→ Gθ(z).

For an input x ∈ X , the discriminator outputs Dω(x) ∈ [0, 1], the probability that x

comes from Pr (real) as opposed to PGθ (synthetic). The generator and the discrim-

inator play a two-player min-max game with a value function V (θ, ω), resulting in a

saddle-point optimization problem given by

inf
θ∈Θ

sup
ω∈Ω

V (θ, ω). (5.1)

Goodfellow et al. (2014) introduced a value function

VVG(θ, ω) = EX∼Pr [logDω(X)] + EZ∼PZ [log (1−Dω(Gθ(Z)))] (5.2)

= EX∼Pr [logDω(X)] + EX∼PGθ [log (1−Dω(X))] (5.3)

and showed that when the discriminator class {Dω}, parametrized by ω, is rich

enough, (5.1) simplifies to finding the infθ∈Θ 2DJS(Pr||PGθ)−log 4, where DJS(Pr||PGθ)

is the Jensen-Shannon divergence (Lin, 1991) between Pr and PGθ . This simplification

is achieved, for any Gθ, by choosing the optimal discriminator

Dω∗(x) =
pr(x)

pr(x) + pGθ(x)
, (5.4)
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where pr and pGθ are the corresponding densities of the distributions Pr and PGθ ,

respectively, with respect to a base measure dx (e.g., Lebesgue measure).

Generalizing this, Nowozin et al. (2016) derived value function

Vf (θ, ω) = EX∼Pr [Dω(X)] + EX∼PGθ [f
∗(Dω(X))], (5.5)

where1 Dω : X → R and f ∗(t) , supu {ut− f(u)} is the Fenchel conjugate of

a convex lower semincontinuous function f , for any f -divergence Df (Pr||PGθ) :=∫
X pGθ(x)f

(
pr(x)
pGθ (x)

)
dx (Rényi, 1961; Csiszár, 1967; Ali and Silvey, 1966) (not just

the Jensen-Shannon divergence) leveraging its variational characterization (Nguyen

et al., 2010). In particular, supω∈Ω Vf (θ, ω) = Df (Pr||PGθ) when there exists ω∗ ∈ Ω

such that Tω∗(x) = f ′
(

pr(x)
pGθ (x)

)
. Rényi divergence measures are also studied in the

context of GANs (Pantazis et al., 2020; Bhatia et al., 2021; Sarraf and Nie, 2021).

Highlighting the problems with the continuity of various f -divergences (e.g., Jensen-

Shannon, KL, reverse KL, total variation) over the parameter space Θ (Arjovsky and

Bottou, 2017), Arjovsky et al. (2017) proposed Wasserstein-GAN (WGAN) using the

following Earth Mover’s (also called Wasserstein-1) distance:

W (Pr, PGθ) = inf
ΓX1X2

∈Π(Pr,PGθ )
E(X1,X2)∼ΓX1X2

‖X1 −X2‖2, (5.6)

where Π(Pr, PGθ) is the set of all joint distributions ΓX1X2 with marginals Pr and PGθ .

WGAN employs the Kantorovich-Rubinstein duality (Villani, 2008) using the value

function

VWGAN(θ, ω) = EX∼Pr [Dω(X)]− EX∼PGθ [Dω(X)], (5.7)

where the functions Dω : X → R are all 1-Lipschitz, to simplify supω∈Ω VWGAN(θ, ω)

to W (Pr, PGθ) when the class Ω is rich enough. Although, various GANs have been

1This is a slight abuse of notation in that Dω is not a probability here. However, we chose this

for consistency in notation of discriminator across various GANs.
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proposed in the literature, each of them exhibits their own strengths and weaknesses in

terms of convergence, vanishing gradients, mode collapse, computational complexity,

etc. leaving the problem of instability unsolved (Wiatrak et al., 2019).

5.2 Tunable α-GAN

Noting that a GAN involves a classifier (i.e., discriminator), it is well known that

the value function VVG(θ, ω) in (5.3) considered by Goodfellow et al. (2014) is related

to cross entropy loss. While perhaps it has not been explicitly articulated heretofore

in the literature, we first formalize this loss function perspective of GANs and propose

a tunable GAN based on α-loss generalizing vanilla GAN and various other GANs.

Arora et al. (2017) observed that the log function in (5.3) can be replaced by any

concave function φ(x) (e.g., φ(x) = x for WGANs). More generally, we show that one

can write V (θ, ω) in terms of a classification loss `(y, ŷ) with inputs y ∈ {0, 1} (the

true label) and ŷ ∈ [0, 1] (soft prediction of y). For a GAN, we have (X|y = 1) ∼ Pr,

(X|y = 0) ∼ PGθ , and ŷ = Dω(x). With this, we observe that the value function

VVG in (5.3) for the vanilla GAN can be expressed in terms of cross-entropy loss

`CE(y, ŷ) , −y log ŷ − (1− y) log (1− ŷ) as

VVG(θ, ω) = EX|y=1[−`CE(y,Dω(X))] + EX|y=0[−`CE(y,Dω(X))] (5.8)

= EX∼Pr [−`CE(1, Dω(X))] + EX∼PGθ [−`CE(0, Dω(X))]. (5.9)

Now we write α-loss in (2.2) analogous to `CE to obtain

`α(y, ŷ) :=
α

α− 1

(
1− yŷ

α−1
α − (1− y)(1− ŷ)

α−1
α

)
, (5.10)
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for α ∈ (0, 1) ∪ (1,∞). Note that (5.10) recovers `CE as α → 1. Now consider a

tunable α-GAN with a value function

Vα(θ, ω) = EX∼Pr [−`α(1, Dω(X))] + EX∼PGθ [−`α(0, Dω(X))] (5.11)

=
α

α− 1

(
EX∼Pr

[
Dω(X)

α−1
α

]
+ EX∼PGθ

[
(1−Dω(X))

α−1
α

]
− 2
)
. (5.12)

We can verify that limα→1 Vα(θ, ω) = VVG(θ, ω) recovering the value function of the

vanilla GAN. Also, notice that

lim
α→∞

Vα(θ, ω) = EX∼Pr [Dω(x)]− EX∼PGθ [Dω(x)]− 1 (5.13)

is the value function (modulo a constant) used in Intergral Probability Metric (IPM)

based GANs2, e.g., WGAN, McGan (Mroueh et al., 2017b), Fisher GAN (Mroueh

and Sercu, 2017), and Sobolev GAN (Mroueh et al., 2017a). The resulting min-max

game in α-GAN is given by

inf
θ∈Θ

sup
ω∈Ω

Vα(θ, ω). (5.14)

The following theorem provides the min-max solution, i.e., Nash equilibrium, to the

two-player game in (5.14) for the non-parametric setting, i.e., when the discriminator

set Ω is large enough.

Theorem 13 (min-max solution). For a fixed generator Gθ, the discriminator Dω∗(x)

optimizing the sup in (5.14) is given by

Dω∗(x) =
pr(x)α

pr(x)α + pGθ(x)α
. (5.15)

For this Dω∗(x), (5.14) simplifies to minimizing a non-negative symmetric fα-divergence

Dfα(·||·) as

inf
θ∈Θ

Dfα(Pr||PGθ) +
α

α− 1

(
2

1
α − 2

)
, (5.16)

2Note that IPMs do not restrict the function Dω to be a probability.
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Figure 5.1: A Plot of Dfα In (5.18) for Several Values of α Where p ∼ Ber(1/2) and

q ∼ Ber(θ). Note That HD, JSD, and TVD, Are Abbreviations for Hellinger, Jensen-

shannon, and Total Variation Divergences, Respectively. As α→ 0, the Curvature of

the Divergence Increases, Placing Increasingly More Weight on θ 6= 1/2. Conversely,

for α→∞, Dfα Quickly Resembles Df∞ , Hence a Saturation Effect of Dfα .

where

fα(u) =
α

α− 1

(
(1 + uα)

1
α − (1 + u)− 2

1
α + 2

)
, (5.17)

for u ≥ 0 and3

Dfα(P ||Q) =
α

α− 1

(∫
X

(p(x)α + q(x)α)
1
α dx− 2

1
α

)
, (5.18)

which is minimized iff PGθ = Pr.

For intuition on the construction of (5.17), see Theorem 15.

Remark 3. It can be inferred from (5.16) that when the discriminator is trained to

optimality, the generator has to minimize the fα-divergence hinting at an application

3We note that the divergence Dfα has been referred to as Arimoto divergence in the litera-

ture (Österreicher, 1996; Österreicher and Vajda, 2003; Liese and Vajda, 2006). We refer the reader

to Section 5.3 for more details.
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of f -GAN instead. Implementing fα-GAN directly via value function in (5.5) (for fα)

involves finding convex conjugate of fα, which is challenging in terms of computational

complexity making it inconvenient for optimization in the training phase of GANs. In

contrast, our approach of using supervised losses circumvents this tedious effort and

also provides an operational interpretation of fα-divergence via losses. A related work

where an f -divergence (in particular, α-divergence (Amari, 1985)) shows up in the

context of GANs, even when the problem formulation is not via f -GAN, is by (Cai

et al., 2020). However, our work presented in this chapter differs from (Cai et al.,

2020) in that the value function we use is well motivated via supervised loss functions

of binary classification and also recovers the basic GAN (Goodfellow et al., 2014)

(among others).

Remark 4. As α→ 0, note that (5.15) implies a more cautious discriminator, i.e.,

if pGθ(x) ≥ pr(x), then Dw∗(x) decays more slowly from 1/2, and if pGθ(x) ≤ pr(x),

Dw∗(x) increases more slowly from 1/2. Conversely, as α → ∞, (5.15) simplifies to

Dω∗(x) = 1{pr(x) > pGθ(x)} + 1
2
1{pr(x) = pGθ(x)}, where the discriminator imple-

ments the Maximum Likelihood (ML) decision rule, i.e., a hard decision whenever

pr(x) 6= pGθ(x). In other words, (5.15) for α→∞ induces a very confident discrim-

inator. Regarding the generator’s perspective, (5.16) (and Figure 5.1) implies that

the generator seeks to minimize the discrepancy between Pr and PGθ according to the

geometry induced by Dfα. Thus, the optimization trajectory traversed by the genera-

tor during training is strongly dependent on the practitioner’s choice of α ∈ (0,∞].

Please refer to Figure 5.2 for an illustration of this observation.

A detailed proof of Theorem 13 is in Appendix D.1. Next we show that α-GAN

recovers various well known f -GANs.

Theorem 14 (f -GANs). α-GAN recovers vanilla GAN, Hellinger GAN (H-GAN) (Nowozin
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Figure 5.2: An Idealized Illustration on the Probability Simplex of the Infimum over

θ In (5.16) for α1, α2 ∈ (0,∞] Such That α1 6= α2. The Choice of α in the Min-max

Game for the α-GAN In (5.14) Defines the Optimization Trajectory Taken by the

Generator (Versus an Optimal Discriminator as Specified In (5.15)) by Distorting the

Underlying Geometry According to Dfα .

et al., 2016), and Total Variation GAN (TV-GAN) (Nowozin et al., 2016) as α→ 1,

α = 1
2
, and α→∞, respectively.

A detailed proof is in Appendix.

5.3 Reconstructing Arimoto Divergence

It is interesting to note that the divergence Dfα(·||·) (in (5.18)) that naturally

emerges from the analysis of α-GAN was first proposed by (Österreicher, 1996) in the

context of statistics and was later referred to as the Arimoto divergence by (Liese and

Vajda, 2006). It was shown to have several desirable properties with applications in

statistics and information theory (Cerone et al., 2004; Vajda, 2009). For example:

• A geometric interpretation of the divergence Dfα in the context of hypothesis

testing (Österreicher, 1996).
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• Dfα(P ||Q)min{α, 1
2
} defines a distance metric (satisfying the triangle inequality)

on the set of probability distributions (Österreicher and Vajda, 2003).

When the Arimoto divergence Dfα was proposed, the convexity of the generating

function fα was proved via the traditional second derivative test (Österreicher, 1996,

Lemma 1). We present an alternative approach to arriving at the Arimoto divergence

by utilizing the margin-based4 form of α-loss (see (Sypherd et al., 2019)) where the

convexity of fα (and also the symmetric property of Dfα(·||·)) arises in a rather natural

manner, thereby reconstructing the Arimoto divergence through a distinct conceptual

perspective.

We do this by noticing that the Arimoto divergence falls into the category of

a broad class of f -divergences that can be obtained from margin-based loss func-

tions. Such a connection between margin-based losses in classification and the corre-

sponding f -divergences was introduced by (Nguyen et al., 2009b, Theorem 1). They

observed that, for a given margin-based loss function ˜̀, there is a corresponding

f -divergence with the convex function f defined as f(u) := − inft

(
u˜̀(t) + ˜̀(−t)

)
.

The convexity of f follows simply because the infimum of affine functions is con-

cave, and this argument does not require ˜̀ to be convex5. Additionally, the f -

divergence obtained is always symmetric because f satisfies f(u) = uf( 1
u
) since

inft u˜̀(t) + ˜̀(−t) = inft ˜̀(t) + u˜̀(−t).

The margin-based α-loss (Sypherd et al., 2019) for α ∈ (0, 1)∪(1,∞), ˜̀
α : R̄→ R+

is defined as

˜̀
α(t) ,

α

α− 1

(
1− σ(t)

α−1
α

)
, (5.19)

4In the binary classification context, the margin is represented by t := yf(x), where x ∈ X is the

feature vector, y ∈ {−1,+1} is the label, and f : X → R is the prediction function produced by a

learning algorithm.
5in fact α-loss in its margin-based form is only quasi-convex for α > 1
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where σ : R̄ → R+ is the sigmoid function given by σ(t) = (1 + e−t)−1. With these

preliminaries in hand, we have the following result.

Theorem 15. For the function fα in (5.17), it holds that

fα(u) = − inf
t

(
u˜̀

α(t) + ˜̀
α(−t)

)
− α

α− 1

(
2

1
α − 2

)
, for u ≥ 0. (5.20)

A detailed proof is in Appendix D.2.
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A.1 α-loss in Binary Classification

A.1.1 Proof of Proposition 2

Consider a soft classifier g and let PŶ |X be the set of beliefs associated to it.

Suppose f(x) = σ−1(g(x)), where g(x) = PŶ |X(1|x). We want to show that

lα(y, PŶ |X=x) = l̃α(yf(x)). (A.1)

We assume that α ∈ (0, 1) ∪ (1,∞). Note that the cases where α = 1 and α = ∞
follow similarly.

Suppose that g(x) = PŶ |X(1|x) = σ(f(x)). If y = 1, then

lα(1, PŶ |X(1|x)) = lα(1, σ(f(x))) (A.2)

=
α

α− 1

[
1− σ(f(x))1−1/α

]
(A.3)

= l̃α(f(x)). (A.4)

If y = −1, then

lα(−1, PŶ |X(−1|x)) = lα(−1, 1− PŶ |X(1|x)) (A.5)

= lα(−1, 1− σ(f(x))) (A.6)

= lα(−1, σ(−f(x))) (A.7)

=
α

α− 1
[1− σ(−f(x))1−1/α] (A.8)

= l̃α(−f(x)), (A.9)

where (A.7) follows from
σ(x) + σ(−x) = 1, (A.10)

which can be observed by (4.1). To show the reverse direction of (A.1) we substitute

f(x) = σ−1(g(x)) = σ−1(PŶ |X(1|x)), (A.11)

in l̃α(yf(x)). For y = 1,

l̃α(f(x)) = l̃α(σ−1(PŶ |X(1|x))) (A.12)

=
α

α− 1
[1− (σ(σ−1(PŶ |X(1|x))))1−1/α] (A.13)

=
α

α− 1
[1− PŶ |X(1|x)1−1/α] (A.14)

= lα(1, PŶ |X(1|x)). (A.15)
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For y = −1,

l̃α(−f(x)) = l̃α(−σ−1(PŶ |X(1|x))) (A.16)

=
α

α− 1
[1− σ(−σ−1(PŶ |X(1|x)))1−1/α] (A.17)

=
α

α− 1
[1− (1− σ(σ−1(PŶ |X(1|x))))1−1/α] (A.18)

=
α

α− 1
[1− PŶ |X(−1|x)1−1/α] (A.19)

= lα(−1, PŶ |X(−1|x)), (A.20)

where (A.18) follows from (A.10).
The equality in the results of the minimization procedures follows from the equality

between lα and l̃α. As was shown in Liao et al. (2018a), the minimizer of the left-
hand-side is

P ∗
Ŷ |X(y|x) =

PY |X(y|x)α∑
y

PY |X(y|x)α
. (A.21)

Using f(x) = σ−1(PŶ |X(1|x)), f ∗(x) = σ−1(P ∗
Ŷ |X(1|x)).

A.1.2 Proof of Proposition 7

The second derivative of the margin-based α-loss for α ∈ (0,∞] with respect to
the margin is given by

d2

dz2
l̃α(z) =

(e−z + 1)1/αez(αez − α + 1)

α(ez + 1)3
. (A.22)

Observe that if α ∈ (0, 1], then we have that, for all z ∈ R,
d2

dz2
l̃α(z) ≥ 0, which

implies that l̃α is convex Boyd and Vandenberghe (2004a). If we have α ∈ (1,∞],
then note that αez − α + 1 < 0 for all z ∈ R such that z < log (1− α−1). Thus, the

margin-based α-loss, l̃α, is not convex for α ∈ (1,∞]. However, observe that

d

dz
l̃α(z) =

−(e−z + 1)1/αez

(1 + ez)2
. (A.23)

Since
d

dz
l̃α(z) < 0 for α ∈ [1,∞] and for all z ∈ R, l̃α is monotonically decreasing.

Furthermore, since monotonic functions are quasi-convex Boyd and Vandenberghe
(2004a), we have that l̃α is quasi-convex for α > 1.

A.1.3 Proof of Theorem 1

We first show that l̃α is classification-calibrated for all α ∈ (0,∞]. Suppose that
α ∈ (0, 1]; we rely on the following result by (Bartlett et al., 2006b).
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Proposition 8 (Thm. 6, Bartlett et al. (2006b)). Suppose φ : R → R is a con-
vex function in the margin. Then φ is classification-calibrated if and only if it is
differentiable at 0 and φ′(0) < 0.

Observe that l̃α is smooth and monotonically decreasing for all α ∈ (0,∞], and

for α ∈ (0, 1], l̃α is convex by Proposition 7. Thus, l̃α satisfies Proposition 8, which

implies that l̃α is classification-calibrated for α ∈ (0, 1).
Now consider α ∈ (1,∞). Since classification-calibration requires proving that

the minimizer of (2.14) agrees in sign with the Bayes predictor, we first obtain the
minimizer of the conditional risk for all η 6= 1/2. We have that

inf
f∈R

Cl̃α(η, f) = inf
f∈R

ηl̃α(f) + (1− η)l̃α(−f) (A.24)

=
α

α− 1

(
1− sup

f∈R

[
ησ(f)1−1/α + (1− η)σ(−f)1−1/α

])
, (A.25)

where we substituted l̃α into (A.24) and pulled the infimum through. We take the
derivative of the expression inside the supremum, which we denote g(η, α, f), and
obtain

d

df
g(η, α, f) =

(
1− 1

α

)(
1

ef + 2 + e−f

)[
η
(
1 + e−f

) 1
α − (1− η)

(
1 + ef

) 1
α

]
.

(A.26)

One can then obtain the f ∗ minimizing (A.24) by setting
d

df
g(η, α, f) = 0, i.e.,

η
(
1 + e−f

∗)1/α
= (1− η)

(
1 + ef

∗)1/α
, (A.27)

and solving for f ∗ we have

f ∗α(η) = α log
( η

1− η

)
= α · σ−1(η). (A.28)

Recall that the Bayes predictor, which is optimal, is given by hBayes(η) = sign(2η − 1),
and notice that the classification function representation is simply fBayes(η) = 2η− 1.
Observe that for all η 6= 1/2 and for α ∈ [1,∞) (indeed α < 1 as well), we have

that sign(fBayes(η)) = sign(f ∗α(η)). Thus, l̃α is classification-calibrated for α ∈ (0,∞).

Lastly, if α = +∞, then l̃α becomes

l̃∞(z) = 1− σ(z) =
ez

1 + ez
, (A.29)

which is sigmoid loss. Similarly, sigmoid loss can be shown to be classification-
calibrated as is given in Bartlett et al. (2006b). Therefore, l̃α is classification-
calibrated for all α ∈ (0,∞].

Finally, note that the proof of classification-calibration yielded the optimal clas-
sification function given in (A.28) for all α ∈ (0,∞]. Alternatively, the optimal
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classification function can be obtained from Proposition 1 by Liao et al. Specifically,
substitute the α-tilted distribution (2.6) for a binary label Y = {−1,+1} into (2.10)
as stated by Proposition 2. Indeed, we have that

f ∗(x) = σ−1(P ∗
Ŷ |X(1|x)) (A.30)

= log

(
PY |X(1|x)α

PY |X(−1|x)α

)
(A.31)

= α log

(
η(x)

1− η(x)

)
, (A.32)

which aligns with (2.17).

A.1.4 Proof of Corollary 1

For α = 1, we recover logistic loss and we know from Masnadi-Shirazi and Vas-
concelos (2009) and Sypherd et al. (2019) that the minimum conditional risk is given
by

C∗1(η) = −η log η − (1− η) log (1− η). (A.33)

Similarly, for α = ∞, we recover the sigmoid loss and we know from Bartlett et al.
(2006b) and Sypherd et al. (2019) that the minimum conditional risk is given by

C∗∞(η) = min{η, 1− η}. (A.34)

Thus, we now consider the case where α ∈ (0,∞) \ {1}. The conditional risk of l̃α is
given by

Cα(η, f) = ηl̃α(f) + (1− η)l̃α(−f) (A.35)

=
α

α− 1

[
1− ησ(f)1−1/α − (1− η)σ(−f)1−1/α

]
, (A.36)

where we substituted (4.3) into (A.35). We can obtain the minimum conditional risk
upon substituting (2.17) into (A.36) which yields

C∗α(η) =
α

α− 1
− α

α− 1
(1− η)

(
(1− η)α

ηα + (1− η)α

)1−1/α

− α

α− 1
η

(
ηα

ηα + (1− η)α

)1−1/α

(A.37)

=
α

α− 1

[
1− (ηα + (1− η)α)1/α

]
, (A.38)

where the last equation is obtained after some algebra. Finally, observe that C∗1/2(η) =

2
√
η(1− η), which aligns with Masnadi-Shirazi and Vasconcelos (2009).

A.2 Optimization Guarantees for α-loss in the Logistic Model

A.2.1 Proof of Theorem 2

For each α ∈ (0, 1], it can readily be shown that each component of F2(α, θ, x, y)

is positive and monotonic in 〈θ, x〉, which implies that F2(α, θ, x, y) ≥ Λ(α, r
√
d) > 0.
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Now, consider Rα(θ) = E[lα(Y, gθ(X))]. We have

∇2
θRα(θ) = EX,Y [∇2

θl
α(Y, gθ(X))] (A.39)

= EX,Y [F2(α, θ,X, Y )XXᵀ] (A.40)

� Λ(α, r
√
d)E[XXᵀ] (A.41)

= Λ(α, r
√
d)Σ � 0, (A.42)

where we used an identity of positive semi-definite matrices for (A.41) (see, e.g.,

(Horn and Johnson, 2012, Ch. 7)); for (A.42), we used the fact that Λ(α, r
√
d) ≥ 0

and we recognize that Σ is positive semi-definite as it is the correlation of the random
vector X ∈ [0, 1]d (see, e.g., (Papoulis and Pillai, 2002, Ch. 7)). We also note that
mini∈[d] λi (Σ) ≥ 0 (see, e.g., (Horn and Johnson, 2012, Ch. 7)). Thus, ∇2

θRα(θ)
is positive semi-definite for every θ ∈ Bd(r). Therefore, since λmin(∇2Rα(θ)) ≥
Λ(α, r

√
d) mini∈[d] λi (Σ) ≥ 0 for every θ ∈ Bd(r), which follows by the Courant-

Fischer min-max theorem (Horn and Johnson, 2012, Theorem 4.2.6), we have that

Rα is Λ(α, r
√
d) mini∈[d] λi (Σ)-strongly convex for α ∈ (0, 1].

A.2.2 Proof of Corollary 2

Let θ ∈ Bd(r) be arbitrary. We similarly have that

∇2
θRα(θ) = EX,Y [∇2

θl
α(Y, gθ(X))] (A.43)

= EX,Y [gθ(Y X)1−1/α(g′θ(Y X)−
(

1− 1

α

)
gθ(−Y X)2)XXᵀ] (A.44)

= EX,Y [gθ(Y X)1−1/αgθ(−Y X)(gθ(Y X)−
(

1− 1

α

)
gθ(−Y X))XXᵀ],

(A.45)

where we recall (A.40) and factored out gθ(−Y X). Considering the expression in
parentheses in (A.45), we note that this is the only part of the Hessian which can
become negative. Examining this term more closely, we find that

gθ(Y X)−
(

1− 1

α

)
gθ(−Y X) =

1

1 + e−〈θ,Y X〉
−
(

1− 1

α

)
1

1 + e〈θ,Y X〉
(A.46)

= gθ(Y X)

[
1−

(
1− 1

α

)
1 + e−〈θ,Y X〉

1 + e〈θ,Y X〉

]
(A.47)

= gθ(Y X)

[
1−

(
1− 1

α

)
e−〈θ,Y X〉

]
. (A.48)

Continuing, observe that

1−
(

1− 1

α

)
e−〈θ,Y X〉 = 1− e−〈θ,Y X〉 +

e−〈θ,Y X〉

α
(A.49)

≥ 1− er
√
d +

e−r
√
d

α
≥ 0, (A.50)
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where we lowerbound using the radius of the balls (Cauchy-Schwarz), i.e., 〈θ, Y X〉 ≤
|Y |‖θ‖‖X‖ ≤ r

√
d and the last inequality in (A.50) holds if α ≤ e−r

√
d(er

√
d − 1)−1.

Thus, returning to (A.45), we have that

∇2
θRα(θ) = EX,Y [gθ(Y X)1− 1

α g′θ(Y X)(1− (1− 1

α
)e−〈θ,Y X〉)XXᵀ] (A.51)

� σ(−r
√
d)2− 1

ασ(r
√
d)

(
1− er

√
d +

e−r
√
d

α

)
E [XXᵀ] (A.52)

= σ(−r
√
d)2− 1

ασ(r
√
d)

(
1− er

√
d +

e−r
√
d

α

)
Σ � 0, (A.53)

where in (A.51) we used (A.48) and the fact as given in (2.28) that σ′(z) = σ(z)σ(−z),
and in (A.52) and (A.53) we use the upper-bound derived above and the same ar-
guments as Theorem 2, mutatis mudandis. Thus, if we have the following bound

α ≤ e−r
√
d(er

√
d − 1)−1, then we have that Rα(θ) is Λ̃(α, r

√
d) mini∈[d] λi (Σ)-strongly

convex in θ ∈ Bd(r),

Λ̃(α, r
√
d) :=σ(−r

√
d)2−1/ασ(r

√
d)
(

1− er
√
d + α−1e−r

√
d
)
. (A.54)

Finally, recall that sinh(x) = (ex−e−x)/2 and that arcsinhx = log (x+
√
x2 + 1).

Observe that if we have r
√
d ≤ arcsinh (1/2), then e−r

√
d(er

√
d − 1)−1 ≥ 1. Also note

that e−r
√
d(er

√
d − 1)−1 is monotonically decreasing in r

√
d and that arcsinh (1/2) ≈

0.48.

A.2.3 Proof of Proposition 5

In order to prove the result, we apply a result by Hazan, et al. Hazan et al. (2015)
where they show that if a function f is G-Lipschitz and strictly-quasi-convex, then
for all ε > 0, f is (ε, G, θ0)-SLQC in θ. Thus, one may view κ as approximately
quantifying the growth of the gradients of general functions.

First, we show that Rα is Cd(r, α)-Lipschitz in θ ∈ Bd(r) where for α ∈ (0, 1],

Cd(r, α) :=
√
dσ(r
√
d)σ(−r

√
d)1−1/α; (A.55)

and, for α ∈ (1,∞],

Cd(r, α) :=

{√
d
(
α−1
2α−1

)1−1/α ( α
2α−1

)
er
√
d ≥ α−1

α
,√

dσ(r
√
d)σ(−r

√
d)1−1/α er

√
d < α−1

α
.

(A.56)

Formally, we want to show that for all θ, θ′ ∈ Bd(r),

|Rα(θ)−Rα(θ′)| ≤ C‖θ − θ′‖, (A.57)
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where C := supθ∈Bd(r) ‖∇Rα(θ)‖. Recall from (2.30) that

∇θRα(θ) = E[∇θl
α(Y, gθ(X)] (A.58)

= E[F1(α, θ,X, Y )X], (A.59)

where from (2.29) we have

F1(α, θ, x, y) = −ygθ(yx)1−1/α(1− gθ(yx)). (A.60)

It can be shown that for α ≤ 1,

|F1(α, θ, x, y)| = gθ(yx)1−1/α(1− gθ(yx)), (A.61)

is monotonically decreasing in 〈θ, x〉. Thus for α ≤ 1,

C =
√
dσ(r
√
d)σ(−r

√
d)1−1/α. (A.62)

It can also be shown that for α > 1, |F1(α, θ, x, y)| is unimodal and quasi-concave

with the maximum obtained at 〈θ, x〉∗ = log (1− 1/α). If r
√
d ≥ log (1− 1/α), we

obtain upon plugging in 〈θ, x〉∗ for α > 1,

C =
√
d

(
α− 1

2α− 1

)1−1/α(
α

2α− 1

)
. (A.63)

Otherwise, if r
√
d < log (1− 1/α), then, using the local monotonicity of |F1(α, θ, x, y)|,

we obtain for α > 1,

C =
√
dσ(r
√
d)σ(−r

√
d)1−1/α, (A.64)

which mirrors the α < 1 case. Thus, combining the two regimes of α we have that
Rα is Cd(r, α)-Lipschitz in θ ∈ Bd(r) for α ∈ (0,∞] where Cd(r, α) is given in (2.37)
and (2.38).

Finally when Rα is strongly-convex, this implies that Rα is strictly-quasi-convex.
That is, since Σ � 0, we merely apply Corollary 2 to obtain strong-convexity of Rα

when α ∈ (0, (e2r
√
d−er

√
d)−1] for r

√
d < arcsinh (1/2). Similarly, we apply Theorem 2

to obtain strong-convexity of Rα for α ∈ (0, 1], otherwise.

A.2.4 Fundamentals of SLQC and Reformulation

In this subsection, we briefly review strictly locally quasi-convexity (SLQC) which
was introduced by Hazan et al. in Hazan et al. (2015). Recall that in Hazan et al.
(2015) Hazan et al. refer to a function as SLQC in θ, whereas for the purposes of our
analysis we refer to a function as SLQC at θ. We recover the uniform SLQC notion of
Hazan et al. by articulating a function is SLQC at θ for every θ. Our later analysis of
the α-risk in the logistic model benefits from this pointwise consideration. Intuitively,
the notion of SLQC functions extends quasi-convex functions in a parameterized
manner. Regarding notation, for θ0 ∈ Rd and r > 0, we let B(θ0, r) := {θ ∈ Rd :
‖θ−θ0‖ ≤ r}. SLQC definition from Hazan et al. (2015). Let ε, κ > 0 and θ0 ∈ Rd. A
function f : Rd → R is called (ε, κ, θ0)-strictly locally quasi-convex (SLQC) at θ ∈ Rd

if at least one of the following conditions apply:
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1. f(θ)− f(θ0) ≤ ε,

2. ‖∇f(θ)‖ > 0 and, for every θ′ ∈ B(θ0, ε/κ),

〈−∇f(θ), θ′ − θ〉 ≥ 0. (A.65)

Observe that the notion of SLQC implies quasi-convexity about B(θ0, ε/κ) on {θ ∈
Θ : f(θ)−f(θ0) > ε}; see Fig. 2.5 for an illustration of the difference between classical
quasi-convexity and SLQC in this regime. In Hazan et al. (2015), Hazan et al. note

that if a function f is G-Lipschitz and strictly-quasi-convex, then for all θ̃1, θ̃2 ∈ Rd,
for all ε > 0, it holds that f is (ε, G, θ̃1)-SLQC at θ̃2 for every θ̃2 ∈ Rd; this will be
useful in the sequel.

As shown by Hazan et al. in Hazan et al. (2015), the convergence guarantees of
Normalized Gradient Descent (NGD, given in Algorithm 3) for SLQC functions are
similar to those of Gradient Descent for convex functions.

Algorithm 3 Normalized Gradient Descent (NGD)

1: Input: T ∈ N no. of iterations, θ0 ∈ Rd initial parameter, η > 0 learning rate
2: For: t = 0, 1, . . . , T − 1

3: Update: θt+1 = θt − η
∇f(θt)

‖∇f(θt)‖
4: Return θ̄T = arg min

θ1,...,θT

f(θt)

From Hazan et al. (2015), we have the following result.

Proposition 9. Let f : Rd → R, θ1 ∈ Rd, and θ∗ = arg minθ∈Rd f(θ). If f is (ε, κ, θ∗)-
SLQC at θ for every θ ∈ Rd, then running the NGD algorithm with learning rate
η = ε/κ for number of iterations T ≥ κ2‖θ1−θ∗‖2/ε2 achieves min

t=1,...,T
f(θt)−f(θ∗) ≤ ε.

For an (ε, κ, θ0)-SLQC function, a smaller ε provides better optimality guarantees.
Given ε > 0, smaller κ leads to faster optimization as the number of required iterations
increases with κ2. Hazan, et al. Hazan et al. (2015) show that if a function f is G-
Lipschitz and strictly-quasi-convex, then for all ε > 0, f is (ε, G, θ0)-SLQC in θ. Thus,
one may view κ as approximately quantifying the growth of the gradients of general
functions. Finally, by using projections, NGD can be easily adapted to work over
convex and closed sets (e.g., B(θ0, r) for some θ0 ∈ Rd and r > 0).

We conclude this subsection by studying the behavior of (ε, κ, θ0)-SLQC functions

on the ball Bd(θ0, ε/κ), which is articulated by the following novel result.

Proposition 10. Let ε, κ > 0 and θ0 ∈ Rd. Assume f is (ε, κ, θ0)-SLQC at θ ∈ Rd.
If θ ∈ Bd(θ0, ε/κ), then f(θ)− f(θ0) ≤ ε. Indeed, if f is (ε, κ, θ0)-SLQC on Θ, then

Bd(θ0, ε/κ) ∩Θ ⊂ {θ ∈ Θ : f(θ)− f(θ0) ≤ ε}.
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Proof. Since f is (ε, κ, θ0)-SLQC at θ ∈ Rd we have that at least one condition
of Definition 3 holds. Suppose that Condition 2 holds. In this case, we have that
‖∇f(θ)‖ > 0 and 〈−∇f(θ), θ′−θ〉 ≥ 0 for every θ′ ∈ B(θ0, ε/κ). Since ‖θ−θ0‖ < ε/κ,
choose δ > 0 small enough such that

θ′ := θ + δ∇f(θ) ∈ B(θ0, ε/κ). (A.66)

Thus, we have that

0 ≤ 〈−∇f(θ), θ′ − θ〉 (A.67)

= 〈−∇f(θ), θ + δ∇f(θ)− θ〉 (A.68)

= −δ〈∇f(θ),∇f(θ)〉 (A.69)

= −δ‖∇f(θ)‖2, (A.70)

which is a contradiction since δ > 0 and ‖∇f(θ)‖ > 0. Therefore, we must have
that Condition 1 of Definition 3 holds, i.e., f(θ) − f(θ0) ≤ ε. Finally, a continuity

argument shows that f(θ)− f(θ0) ≤ ε whenever θ ∈ Bd(θ0, ε/κ) ∩Θ.

The following is the formal statement and proof of Lemma 1, which provides a
useful characterization of the gradient of (ε, κ, θ0)-SLQC functions outside the set

Bd(θ0, ε/κ). Refer to Fig. A.1 for a picture of the relevant quantities.

θ0θ

θ′

ρ

−∇f(θ)

ψ φ
δ

Figure A.1: A Companion Illustration for Lemma 1 Which Depicts the Relevant
Quantities Involved. Note That There Are Three Different Configurations of the
Angles δ, φ and ψ. Refer to Fig. A.2 for This Illustration.

A.2.5 Proof of Lemma 1

Suppose f : Rd → R is differentiable, θ0 ∈ Rd and ρ > 0. If θ ∈ Rd is such that
‖θ − θ0‖ > ρ and ‖∇f(θ)‖ > 0, then the following are equivalent:

(1) 〈−∇f(θ), θ′ − θ〉 > 0 for all θ′ ∈ Bd (θ0, ρ);

(2) 〈−∇f(θ), θ′ − θ〉 ≥ 0 for all θ′ ∈ Bd (θ0, ρ);

(3) 〈−∇f(θ), θ0 − θ〉 ≥ ρ‖∇f(θ)‖.

Clearly (1) ⇒ (2). (2) ⇒ (3): Let θ′ be the point of tangency of a line tangent to

Bd(θ0, ρ) passing through θ, as depicted in Fig. A.1. We define
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δ: the angle between θ0 − θ and θ′ − θ;

φ: the angle between −∇f(θ) and θ′ − θ;

ψ: the angle between −∇f(θ) and θ0 − θ.

Recall that the inner product satisfies that

〈u, v〉 = ‖u‖‖v‖ cos(ϕu,v), (A.71)

where ϕu,v ∈ [0, π] is the angle between u and v. By continuity and Condition (2),

‖∇f(θ)‖‖θ′ − θ‖ cos(φ) = 〈−∇f(θ), θ′ − θ〉 ≥ 0, (A.72)

which implies that φ ≤ π
2
. Observe that, by construction, we have φ = ψ + δ. In

particular, we have that ψ ≤ π
2
− δ. Since cos(·) is decreasing over [0, π], we have that

cos(ψ) ≥ cos
(π

2
− δ
)

= sin(δ). (A.73)

Since the triangle 4θθ′θ0 is a right triangle, we have that sin(δ) = ρ
‖θ0−θ‖ and thus

cos(ψ) ≥ ρ

‖θ0 − θ‖
. (A.74)

Therefore, we conclude that

〈−∇f(θ), θ0 − θ〉 = ‖∇f(θ)‖‖θ0 − θ‖ cos(ψ) (A.75)

≥ ρ‖∇f(θ)‖, (A.76)

as we wanted to prove.
(3) ⇒ (1): For a given θ′ ∈ Bd(θ0, ρ), we define ψ, φ and δ as above. By assump-

tion,

‖∇f(θ)‖‖θ0 − θ‖ cos(ψ) = 〈−∇f(θ), θ0 − θ〉 (A.77)

≥ ρ‖∇f(θ)‖ ≥ 0. (A.78)

Since cos−1(·) is decreasing over [−1, 1], (A.77) implies that

ψ ≤ cos−1

(
ρ

‖θ0 − θ‖

)
. (A.79)

Also, an immediate application of the law of cosines yields

δ = cos−1

(
‖θ0 − θ‖2 + ‖θ′ − θ‖2 − ‖θ′ − θ0‖2

2‖θ0 − θ‖‖θ′ − θ‖

)
. (A.80)

Since ‖θ′ − θ0‖ < ρ, we have that

δ < cos−1

(
‖θ0 − θ‖2 + ‖θ′ − θ‖2 − ρ2

2‖θ0 − θ‖‖θ′ − θ‖

)
. (A.81)
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a)

φ ψ

δ

b)

ψ δ

φ

c)

δ φ

ψ

Figure A.2: Three Different Configurations of the Angles δ, φ and ψ.

A routine minimization argument further implies that

δ < cos−1

√1−
(

ρ

‖θ0 − θ‖

)2
 = sin−1

(
ρ

‖θ0 − θ‖

)
, (A.82)

where the equality follows from the trigonometric identity cos(sin−1(x)) =
√

1− x2.
Observe that, in order to prove

〈−∇f(θ), θ′ − θ〉 = ‖∇f(θ)‖‖θ′ − θ‖ cos(φ) > 0, (A.83)

it is enough to show that φ < π
2
. Depending on the position of θ′, the angles δ, φ and

ψ can be arranged in three different configurations, as depicted in Fig. A.2.

a) Since ρ
‖θ0−θ‖ > 0, (A.79) implies that ψ < π

2
. Therefore, φ < π

2
as φ ≤ ψ.

b) Since ρ
‖θ0−θ‖ < 1, (A.82) implies that δ < π

2
. Therefore, φ < π

2
as φ ≤ δ.

c) Since sin−1(x) + cos−1(x) = π
2
, (A.79) and (A.82) imply that φ = ψ + δ < π

2
.

Since in all cases φ < π
2
, the result follows.

A.2.6 Lipschitz Inequalities in α−1 and Main SLQC Result for the α-risk

If α, α′ ∈ [1,∞], then, for all θ ∈ Bd(r),

|Rα(θ)−Rα′(θ)| ≤ Ld(θ)

∣∣∣∣α− α′αα′

∣∣∣∣ , (A.84a)

‖∇Rα(θ)−∇Rα′(θ)‖ ≤ Jd(θ)

∣∣∣∣α− α′αα′

∣∣∣∣ , (A.84b)

where,

Ld(θ) :=

(
log
(

1 + e‖θ‖
√
d
))2

2
, (A.85a)

Jd(θ) :=
√
d log

(
1 + e‖θ‖

√
d
)
σ(‖θ‖

√
d). (A.85b)
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Proof. Here, we present proofs for both Lipschitz inequalities.
Proof of First Inequality: For ease of notation, we denote β = 1/α. Thus, we
have that for α ∈ [1,∞], i.e., β ∈ [0, 1],

Rα(θ) = E[lα(Y, gθ(X))] (A.86)

= E
[

1

1− β
(
1− gθ(yx)1−β)] (A.87)

= Rβ(θ). (A.88)

To show that Rα is Lipschitz in α−1 = β ∈ [0, 1], it suffices to show
d

dβ
Rβ(θ) ≤ L for

some L > 0. Observe that

d

dβ
Rβ(θ) = E

[
d

dβ

1

1− β
(
1− gθ(yx)1−β)] , (A.89)

where the equality follows since we assume well-behaved integrals. Consider without
loss of generality the expression in the brackets; we denote this expression as

f(β, θ, yx) =
d

dβ

1

1− β
(
1− gθ(yx)1−β) . (A.90)

It can be shown that

f(β, θ, yx) =
gθ(yx)1−β log (gθ(yx))

1− β
+

1− gθ(yx)1−β

(1− β)2 , (A.91)

and

f(1, θ, yx) =
(log gθ(yx))2

2
. (A.92)

In addition, it can be shown that for any y ∈ {−1,+1}, x ∈ [0, 1]d, and θ ∈ Bd(r)
that f(β, θ, yx) is monotonically increasing in β ∈ [0, 1]. Therefore, for any β ∈ [0, 1],
y ∈ {−1,+1}, x ∈ [0, 1]d, and θ ∈ Bd(r),

f(β, θ, yx) ≤ f(1, θ, yx) (A.93)

=
(log gθ(yx))2

2
(A.94)

≤

(
log σ(−‖θ‖

√
d)
)2

2
. (A.95)

Proof of Second Inequality: For ease of notation, we let β = 1/α. Since α ∈ [1,∞],
β ∈ [0, 1]. Thus, we have that for α ∈ [1,∞], i.e., β ∈ [0, 1],

∇Rα(θ) = E[F1(α, θ,X, Y )X] (A.96)

= E[−Y gθ(Y X)1−β(1− gθ(Y X))X], (A.97)
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and we let F̃1(β, θ,X, Y ) := −Y gθ(Y X)1−β(1− gθ(Y X)). For any θ ∈ Bd(r) we have

‖∇Rα(θ)−∇Rα′(θ)‖
= ‖E[(F̃1(β, θ,X, Y )− F̃1(β′, θ,X, Y ))X]‖ (A.98)

≤ E[|(F̃1(β, θ,X, Y )− F̃1(β′, θ,X, Y ))|‖X‖] (A.99)

≤
√
dE[|(F̃1(β, θ,X, Y )− F̃1(β′, θ,X, Y ))|], (A.100)

where we used the fact that X has support [0, 1]d for the second inequality. Here, we
obtain a Lipschitz inequality on F̃1 by considering the variation of F̃1 with respect
to β for any θ ∈ Bd(r), x ∈ [0, 1]d, and y ∈ {−1,+1}. Taking the derivative of
F̃1(β, θ, x, y) with respect to β we obtain

d

dβ
F1(β, θ, x, y) =

d

dβ
− ygθ(yx)1−β(1− gθ(yx)) (A.101)

= y(1− gθ(yx))gθ(yx)1−β log gθ(yx), (A.102)

where we used the fact that
d

dx
a1−x = −a1−x log a. Continuing, we have

y(1− gθ(yx))gθ(yx)1−β log gθ(yx)

≤ log
(

1 + e‖θ‖
√
d
)
σ(‖θ‖

√
d)σ(‖θ‖

√
d)1−β (A.103)

= log
(

1 + e‖θ‖
√
d
)
σ(‖θ‖

√
d)2−β (A.104)

≤ log
(

1 + e‖θ‖
√
d
)
σ(‖θ‖

√
d). (A.105)

Thus, we have that, for any θ ∈ Bd(r),

‖∇Rα(θ)−∇Rα′(θ)‖ ≤ Jd(θ)|β − β′|, (A.106)

where β, β′ ∈ [0, 1] (α, α′ ∈ [1,∞]). Therefore, we have that, for any θ ∈ Bd(r),

‖∇Rα(θ)−∇Rα′(θ)‖ ≤ Jd(θ)

∣∣∣∣ 1α − 1

α′

∣∣∣∣ , (A.107)

where α, α′ ∈ [1,∞].

A.2.7 Proof of Theorem 3

For ease of notation let ρ0 =
ε0
κ0

and ρ =
ε

κ
, and consider the following two cases.

Case 1: Assume that Rα0(θ)−Rα0(θ0) ≤ ε0. Then,

Rα(θ)−Rα(θ0)

= Rα(θ)−Rα0(θ) +Rα0(θ)−Rα0(θ0) +Rα0(θ0)−Rα(θ0) (A.108)

≤ Ld(θ)

(
α− α0

αα0

)
+ ε0 + Ld(θ)

(
α− α0

αα0

)
. (A.109)
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Figure A.3: Another Illustration Highlighting the Saturation of α-loss (rα for α =
10,∞) in the Logistic Model for a 2D-GMM with P[Y = 1] = .5, µX|y=−1 = [.5, .5],
µX|y=1 = [1, 1], and Shared Covariance Matrix σ = [1, .5; .5, 3].

Since ε0 + 2Ld(θ)
(
α−α0

αα0

)
= ε, we have Rα(θ)−Rα(θ0) ≤ ε.

Case 2: Assume that Rα0(θ) − Rα0(θ0) > ε0. Since Rα0 is (ε0, κ0, θ0)-SLQC at θ
by assumption, we have that ‖∇Rα0(θ)‖ > 0 and 〈−∇Rα0(θ), θ′ − θ〉 ≥ 0 for every
θ′ ∈ B(θ0, ρ0).

Let ρ = ε/κ be given as in (2.43). If ‖θ − θ0‖ > ρ, ‖∇Rα(θ)‖ > 0 and

〈−∇Rα(θ), θ0 − θ〉 ≥ ρ‖∇Rα(θ)‖, (A.110)

then Lemma 1 would imply that Rα is (ε, κ, θ0)-SLQC at θ. In order to show these
three expressions, we make ample use of the following three inequalities: The first is
the reverse triangle inequality associated with ∇Rα and ∇Rα0 , i.e.,

‖∇Rα0(θ)−∇Rα(θ)‖ ≥ |‖∇Rα(θ)‖ − ‖∇Rα0(θ)‖|. (A.111)

The second is that ∇Rα(θ) is Jd(θ)-Lipschitz in α−1, i.e.,∣∣∣∣ 1

α0

− 1

α

∣∣∣∣ Jd(θ) ≥ ‖∇Rα0(θ)−∇Rα(θ)‖. (A.112)

The third follows from a manipulation of (2.42), i.e.,

‖∇Rα0(θ)‖ > 2Jd(θ)
(
1 + rρ−1

0

)
(α−1

0 − α−1) (A.113)

> Jd(θ)(α
−1
0 − α−1), (A.114)
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(a) α = .9 loss landscape (b) α = 1 loss landscape

(c) α = 2 loss landscape (d) α = 10 loss landscape

Figure A.4: Loss Landscape Visualizations Obtained Using Li et al. (2018a) for α ∈
{.9, 1, 2, 10} Training a Resnet-18 on the Mnist Dataset. The Visualization Technique
Finds Two “principal Directions” of the Model to Allow for a 3d Plot. We Note That
Similar Themes as Theoretically Articulated in Section 2.4.3 for the Simpler Logistic
Model Are Also Evident Here; I.E., Exploding Gradients for α Too Small, a Loss
of Convexity (and Increasing “flatness”) as α Increases Greater than 1, and Also
a Saturation Effect as Exhibited by the Visual Similarity Between the α = 2 and
α = 10 Loss Landscapes. This Hints at the Generality of the Theory Presented in
Section 2.4.3.

using the fact that α2
0 ≤ αα0 and since rρ−1

0 ≥ 1. With these inequalities in hand,
we are now in a position to complete the three steps required to show that Rα is
(ε, κ, θ0)-SLQC at θ.

First, we show that ‖θ−θ0‖ > ρ. Since Rα0 is (ε0, κ0, θ0)-SLQC at θ and Rα0(θ)−
Rα0(θ0) > ε0 by assumption, we have by the contrapositive of Proposition 10 that
θ /∈ Bd(θ0, ρ0). Thus, we have that ‖θ − θ0‖ > ρ0. Next, note that ρ is related
to ρ0 by (2.43). If we can show that ρ0 > ρ, then we have the desired conclusion.
Rearranging the left-hand-side of (A.113), we have that

‖∇Rα0(θ)‖(α−1
0 − α−1)−1 > 2Jd(θ)(1 + rρ−1

0 ), (A.115)
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which can be rewritten to obtain

‖∇Rα0(θ)‖(α−1
0 − α−1)−1 − Jd(θ) > Jd(θ)(1 + 2rρ−1

0 ). (A.116)

Since by the right-hand-side of (A.113) we have that

‖∇Rα0(θ)‖(α−1
0 − α−1)−1 − Jd(θ) > 0, (A.117)

it follows by (A.116) that

1 >
Jd(θ)(1 + 2rρ−1

0 )

‖∇Rα0(θ)‖(α−1
0 − α−1)−1 − Jd(θ)

. (A.118)

Thus examining (2.43) in light of (A.118), we have that ρ0 > ρ, which implies that
‖θ − θ0‖ > ρ, as desired.

Second, we show that ‖∇Rα(θ)‖ > 0. Applying (A.111) to (A.112) we obtain

‖∇Rα(θ)‖ ≥ ‖∇Rα0(θ)‖ − Jd(θ)(α−1
0 − α−1) > 0, (A.119)

where the right-hand-side inequality again follows by (A.113). Thus, we have that
‖∇Rα(θ)‖ > 0, as desired.

Finally, we show the expression in (A.110), i.e., 〈−∇Rα(θ), θ0− θ〉 ≥ ρ‖∇Rα(θ)‖.
By the Cauchy-Schwarz inequality, we have

〈−∇Rα(θ), θ0 − θ〉
≥ 〈−∇Rα0(θ), θ0 − θ〉 − ‖∇Rα(θ)−∇Rα0(θ)‖‖θ0 − θ‖ (A.120)

≥ ρ0‖∇Rα0(θ)‖ − Jd(θ)(α−1
0 − α−1)2r, (A.121)

where in (A.120) we apply Lemma 1 for the first term; for the second term we use
the fact that ∇Rα is Jd(θ)-Lipschitz in α−1 as given by (A.112) and the fact that
θ0 − θ ∈ Bd(2r). Continuing from (A.121), we have that

〈−∇Rα(θ), θ0 − θ〉
≥ ρ0‖∇Rα(θ)‖ − Jd(θ)(α−1

0 − α−1)2r − ρ0‖∇Rα0(θ)−∇Rα(θ)‖ (A.122)

≥ ρ0‖∇Rα(θ)‖ − Jd(θ)(α−1
0 − α−1)(ρ0 + 2r), (A.123)

where we first apply the reverse triangle inequality in (A.111) and then we use the fact
that ∇Rα(θ) is Jd(θ)-Lipschitz in α−1, i.e., the expression in (A.112). Rearranging
the expression in (A.123), we obtain

ρ0‖∇Rα(θ)‖ − Jd(θ)(α−1
0 − α−1)(ρ0 + 2r)

= ‖∇Rα(θ)‖
(
ρ0 −

Jd(θ)(α
−1
0 − α−1)(ρ0 + 2r)

‖∇Rα(θ)‖

)
(A.124)

≥ ‖∇Rα(θ)‖

ρ0 −
(ρ0 + 2r)Jd(θ)
‖∇Rα0 (θ)‖

( 1
α0
− 1
α

)
− Jd(θ)

 , (A.125)
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where we used the inequality in (A.119). Thus, we finally obtain

〈−∇Rα(θ), θ0 − θ〉 ≥ ρ‖∇Rα(θ)‖, (A.126)

where ρ > 0 is given by

ρ = ρ0

(
1− (1 + 2rρ−1

0 )Jd(θ)

‖∇Rα0(θ)‖(α−1
0 − α−1)−1 − Jd(θ)

)
, (A.127)

as desired. Therefore by collecting all three parts, we have by Lemma 1 that Rα is
(ε, κ, θ0)-SLQC at θ.

A.2.8 Bootstrapping SLQC

Recall that the floor function, denoted b·c : R+ → N, can alternatively be written
as bxc = x− q, for some q ∈ [0, 1).

Lemma 10. Fix θ ∈ Bd(r). Suppose that ρ0 > 0 and there exists gθ > 0 such that
‖∇Rα′(θ)‖ > gθ for all α′ ∈ [α0,∞]. Given N ∈ N, for each n ∈ [N ] we define

αn = αn−1 +
1

N
, (A.128a)

εn = εn−1 + 2Ld(θ)
1

αnαn−1

1

N
, (A.128b)

ρn = ρn−1 −
(ρn−1 + 2r)Jd(θ)

αnαn−1Gn−1 − Jd(θ)/N
1

N
, (A.128c)

where Gn−1 := ‖∇Rαn−1(θ)‖. If N > Jd(θ)
(
α2

0gθ
)−1

, then we have that {αn}Nn=0,

{εn}Nn=0, and {ρn}Nn=0 are well-defined. Furthermore, we have that ρn > 0 for all
n ≤

⌊
α2

0gθ(1 + 2rρ−1
0 )−1Jd(θ)

−1N
⌋
.

Proof. For ease of notation, let J := Jd(θ), L := Ld(θ), and g := gθ. Observe that

{αn}Nn=0 is well defined and so is {εn}Nn=0. It can be verified that if N > J
(
α2

0g
)−1

,

then αn−1αnGn−1 − J/N > 0 and thus {ρn}Nn=0 is well defined. Now we show by
induction that ρn > 0 for

n <

⌊
ρ0

ρ0 + 2r

α2
0g

J
N

⌋
. (A.129)

By assumption, ρ0 > 0. For the inductive hypothesis, assume that ρ0, . . . , ρn−1

are non-negative. Observe that, by definition, we have

ρk − ρk+1 =
(ρk + 2r)J

αkαk+1Gk − J/N
1

N
. (A.130)

The previous equation and a telescoping sum lead to

ρ0 − ρn =
n−1∑
k=0

(ρk + 2r)J

αkαk+1Gk − J/N
1

N
. (A.131)
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Since ρk > 0 for all k ∈ [n − 1], we have the following ordering ρ0 > ρ1 > · · · > ρn
and, as a result,

ρ0 − ρn <
(ρ0 + 2r)J

α2
0g − J/N

n

N
. (A.132)

It can be shown that our choice of n in (A.129) implies that

ρn > ρ0 −
(ρ0 + 2r)J

α2
0g − J/N

n

N
> 0, (A.133)

which implies that ρn > 0 as desired.

A.2.9 Proof of Theorem 4

For ease of notation, let J := Jd(θ), L := Ld(θ), and g := gθ. Let λ ∈ (0, 1) be
given. For each

N >
1 + 2rρ−1

0

1− λ
2J

α2
0g
, (A.134)

we define

Nλ =

⌊
λ

ρ0

ρ0 + 2r

α2
0g

J
N

⌋
. (A.135)

The bootstrapping proof strategy is as follows: 1) For fixed N ∈ N large enough (as
given above), we show by induction that Rαn is (εn, κn, θ0)-SLQC at θ with ρn = εn/κn
for n ≤ Nλ using Lemma 10 and Theorem 3; 2) We take the limit as N approaches
infinity in order to derive the largest range on α and the strongest SLQC parameters.

First, we show by induction that Rαn is (εn, κn, θ0)-SLQC at θ with ρn = εn/κn for
n ≤ Nλ. By assumption, Rα0 is (ε0, κ0, θ0)-SLQC at θ. For the inductive hypothesis,
assume that Rαk is (αk, εk, κk)-SLQC at θ for all k ∈ [n − 1]. In order to apply
Lemma 10 to show that

ρ0 > ρ1 > . . . > ρn > · · · > ρNλ > Cλ > 0, (A.136)

for all n ≤ Nλ and for some Cλ > 0, we first show that the assumptions of Lemma 10
are satisfied. Observe that, by our assumption on N ∈ N, we have that

N >
1 + 2rρ−1

0

1− λ
2J

α2
0g

>
1 + rρ−1

0

1− λ
J

α2
0g

>
J

α2
0g
, (A.137)

which is the first requirement of Lemma 10. Next, we want to show that

n ≤ Nλ <

⌊
ρ0

ρ0 + 2r

α2
0g

J
N

⌋
, (A.138)

which is the last requirement of Lemma 10. This is achieved by observing that

Nλ =

⌊
λ

ρ0

ρ0 + 2r

α2
0g

J
N

⌋
= λ

ρ0

ρ0 + 2r

α2
0g

J
N − q, (A.139)
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for some q ∈ [0, 1) and that⌊
ρ0

ρ0 + 2r

α2
0g

J
N

⌋
=

ρ0

ρ0 + 2r

α2
0g

J
N − w, (A.140)

also for some w ∈ [0, 1). Note that (A.138) is equivalent to

(q − w)
1 + rρ−1

0

1− λ
J

α2
0g

< N, (A.141)

which holds by the fact that N >
1 + rρ−1

0

1− λ
J

α2
0g

in (A.137) and q − w ≤ 1. Thus by

Lemma 10, we have that

ρn > ρ0 −
(ρ0 + 2r)J

α2
0g − J/N

n

N
> 0, (A.142)

for all n ≤ Nλ. In particular for n = Nλ, we have that

ρNλ > ρ0 −
(ρ0 + 2r)J

α2
0g − J/N

Nλ

N
(A.143)

> ρ0

(
1− λ− λJ

α2
0g − J/N

1

N

)
(A.144)

>
ρ0(1− λ)

2
, (A.145)

where the second inequality follows by plugging in Nλ and adding and subtracting

λJ/N in the fraction and the last inequality follows from N >
1 + 2rρ−1

0

1− λ
2J

α2
0g

>

1 + λ

1− λ
J

α2
0g

since 2rρ−1
0 ≥ λ for all λ ∈ (0, 1). Therefore, we have that Cλ =

ρ0(1− λ)

2
;

in other words,

ρ0 > ρ1 > . . . > ρn−1 > ρn > · · · > ρNλ >
ρ0(1− λ)

2
> 0. (A.146)

Also, observe that

αn − αn−1 =
1

N
<

α2
0g

2J(1 + 2rρ−1
0 (1− λ)−1)

, (A.147)

where the inequality follows from the fact that

N >
1 + 2rρ−1

0

1− λ
2J

α2
0g

>

(
1 +

2rρ−1
0

1− λ

)
2J

α2
0g
. (A.148)
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In particular, (A.146) and (A.147) leads to

αn − αn−1 <
α2

0g

2J(1 + 2rρ−1
0 (1− λ)−1)

<
α2
n−1Gn−1

2J(1 + rρ−1
n−1)

, (A.149)

where we use the fact that αn ≥ α0 and Gn−1 ≥ g. As a result, we can apply
Theorem 3 to conclude that Rαn is (εn, ρn, θ0)-SLQC at θ with αn, εn and ρn given as in
(A.128a). In particular by unfolding the recursion, we have that RαNλ

is (εNλ , ρNλ , θ0)-
SLQC at θ with

αNλ = α0 + λ(1 + 2rρ−1
0 )−1α

2
0g

J
− q

N
, (A.150)

εNλ = ε0 + 2L

Nλ−1∑
n=0

1

αn(αn + 1/N)

1

N
, (A.151)

ρNλ = ρ0

Nλ−1∏
n=0

(
1− (1 + 2rρ−1

n )J/N

αn+1αn‖∇Rαn(θ)‖ − J/N

)
, (A.152)

for some q ∈ [0, 1).
Finally, we take the limit as N approaches infinity in order to derive the largest

range on α and the strongest SLQC parameters. Recall that Nλ =
⌊
λ ρ0

ρ0+2r

α2
0g

J
N
⌋

=

λ ρ0

ρ0+2r

α2
0g

J
N − q, for some q ∈ [0, 1). Thus, we have the following relationship

1

N
=

λρ0α
2
0g

(Nλ + q)(ρ0 + r)J
. (A.153)

Observe that taking the limit as N approaches infinity is equivalent to taking the
limit as Nλ approaches infinity.

Examining (A.150) as Nλ approaches infinity, we have that

αλ := lim
Nλ→∞

αNλ = α0 + λ(1 + 2rρ−1
0 )−1α

2
0g

J
. (A.154)

Next considering (A.151), we rewrite to obtain

εNλ = ε0 + 2L

Nλ−1∑
n=0

1

αn(αn + 1/N)

1

N
(A.155)

= ε0 +
2L

N

Nλ−1∑
n=0

(
1

α2
n

+
1

N

1

α3
n − α2

n/N

)
, (A.156)

where we used a partial fraction decomposition. Let µNλ be the discrete measure
given by

µNλ =
1

Nλ

Nλ−1∑
n=0

δαn , (A.157)
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where δαn is the point mass at αn. In particular for large N , we can write (A.156) as

εNλ = ε0 +
2Lλα2

0g

(1 + rρ−1
0 )J

∫
1

x2
dµNλ(x) +O

(
1

Nλ

)
. (A.158)

Let µλ denote the uniform measure over (α0, αλ], i.e., the Lebesgue measure on the
interval (α0, αλ]. Note that µNλ converges in distribution to µλ as Nλ goes to infinity.
By taking limits, (A.158) becomes

ελ = lim
Nλ→∞

εNλ (A.159)

= ε0 +
2Lλα2

0g

(1 + rρ−1
0 )J

αλ∫
α0

1

x2
dx (A.160)

= ε0 +
2Lλα0g

(1 + rρ−1
0 )J

(
1− α0

αλ

)
. (A.161)

Finally, we consider (A.152). Observe that from (A.133) we have

ρNλ > ρ0 −
(ρ0 + 2r)J

α2
0g − J/N

Nλ

N
(A.162)

= ρ0 −
(ρ0 + 2r)J

α2
0g − J/N

λ
Nα2

0gρ0

J(ρ0+2r)
− q

N
(A.163)

= ρ0 −
[
Nλρ0α

2
0g

Nα2
0g − J

− q

N

(
(ρ0 + 2r)J

α2
0g − J/N

)]
, (A.164)

for q ∈ [0, 1), where we plugged in the definition of Nλ and simplified. Thus, taking
the limit as Nλ approaches infinity we have that

ρλ = lim
Nλ→∞

ρNλ (A.165)

> lim
Nλ→∞

(
ρ0 −

[
Nλρ0α

2
0g

Nα2
0g − J

− q

N

(
(ρ0 + 2r)J

α2
0g − J/N

)])
(A.166)

= ρ0(1− λ). (A.167)

Thus, we conclude that Rαλ is (ελ, κλ, θ0)-SLQC at θ with

αλ := α0 + λ(1 + 2rρ−1
0 )−1α

2
0g

J
, (A.168)

ελ := ε0 +
2Lλα0g

(1 + rρ−1
0 )J

(
1− α0

αλ

)
(A.169)

ρλ > ρ0(1− λ). (A.170)

A change of variables leads to the desired result.
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A.3 Rademacher Complexity Generalization and Asymptotic Optimality

Lemma 11. If α ∈ (0,∞], then l̃α(z) is Cr0(α)-Lipschitz in z ∈ [−r0, r0] for every
r0 > 0, where for α ∈ (0, 1],

Cr0(α) := σ(r0)σ(−r0)1−1/α; (A.171)

and, for α ∈ (1,∞],

Cr0(α) :=

{(
α−1
2α−1

)1− 1
α
(

α
2α−1

)
er0 ≥ α−1

α
,

σ(r0)σ(−r0)1− 1
α er0 < α−1

α
.

(A.172)

Proof. The proof is analogous to the proof in Proposition 5. In order to show that
l̃α(z) is Cr0(α)-Lipschitz, we take the derivative of l̃α(z) and seek to maximize it over
z ∈ [−r0, r0]. Specifically, we have that for α ∈ (0,∞],

d

dz
l̃α(z) =

d

dz

α

α− 1

(
1− σ(z)1−1/α

)
(A.173)

= σ(z)2−1/α − σ(z)1−1/α (A.174)

= (σ(z)− 1)σ(z)1−1/α (A.175)

≤ |(σ(z)− 1)σ(z)1−1/α| (A.176)

= σ(−z)σ(z)1−1/α, (A.177)

where we used the fact that σ(z) = 1− σ(−z). If α ≤ 1, it can be shown that

max
z∈[−r0,r0]

σ(−z)σ(z)1−1/α = σ(r0)σ(−r0)1−1/α. (A.178)

Similarly if α > 1 and if r0 ≥ log (1− 1/α), then it can be shown that

max
z∈[−r0,r0]

σ(−z)σ(z)1−1/α =

(
α− 1

2α− 1

)1−1/α(
α

2α− 1

)
, (A.179)

where z∗ = log (1− 1/α). Otherwise for α > 1, if we have r0 < log (1− 1/α), we
obtain using local monotonicity,

max
z∈[−r0,r0]

σ(−z)σ(z)1−1/α = σ(r0)σ(−r0)1−1/α, (A.180)

analogous to the case where α < 1. Thus, combining the two regimes of α, we have
the result.

A.3.1 Proof of Theorem 5

If α ∈ (0,∞], then, with probability at least 1− δ, for all θ ∈ Bd(r),

∣∣∣Rα(θ)− R̂α(θ)
∣∣∣ ≤ Cr

√
d (α)

r
√
d√
n

+Dr
√
d (α)

√
log
(

4
δ

)
n

, (A.181)
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where Cr
√
d (α) is given in (2.53) and (2.54) and whereDr

√
d (α) is given byDr

√
d (α) :=

4
√

2
α

α− 1

(
1− σ(−r

√
d)1−1/α

)
.

Proof. By Proposition 2, which gives a relation between α-loss and its margin-based
form, we have

R(lα ◦ G ◦ Sn) = E

(
sup
gθ∈G

1

n

n∑
i=1

σil
α(yi, gθ(xi))

)
= E

(
sup

θ∈Bd(r)

1

n

n∑
i=1

σil̃
α(yi〈θ, xi〉)

)
.

(A.182)

The right-hand-side of (A.182) can be rewritten as

E

(
sup

θ∈Bd(r)

1

n

n∑
i=1

σil̃
α(yi〈θ, xi〉)

)
= R({l̃α(y1〈θ, x1〉), . . . , l̃α(yn〈θ, xn〉) : θ ∈ Bd(r)}).

(A.183)

Observe that, for each i ∈ [n], yi〈θ, xi〉 ≤ r
√
d by the Cauchy-Schwarz inequality

since θ ∈ Bd(r) and for each i ∈ [n], xi ∈ [0, 1]d. Further, by Lemma 11, we know

that l̃α(z) is Cr0 (α)-Lipschitz in z ∈ [−r0, r0]. Thus setting r0 = r
√
d, we may apply

Lemma 3 (Contraction Lemma) to obtain

E

(
sup

θ∈Bd(r)

1

n

n∑
i=1

σil̃
α(yi〈θ, xi〉)

)
= R

(
{l̃α(y1〈θ, x1〉), . . . , l̃α(yn〈θ, xn〉) : θ ∈ Bd(r)}

)
(A.184)

≤ Cr
√
d (α)R ({(y1〈θ, x1〉, . . . , yn〈θ, xn〉) : θ ∈ Bd(r)}) . (A.185)

We absorb yi into its corresponding xi and apply Lemma 4 to obtain

Cr
√
d (α)R({(y1〈θ, x1〉, . . . , yn〈θ, xn〉) : θ ∈ Bd(r)}) ≤ Cr

√
d (α)

r
√
d√
n
, (A.186)

which follows since we assume that xi ∈ [0, 1]d for each i ∈ [n]. In order to apply
Proposition 6, it can readily be shown that for α ∈ (0,∞]

max
z∈[−r

√
d,r
√
d]
l̃α(z) ≤ Dr

√
d (α) , (A.187)

where Dr
√
d (α) = α

α−1

(
1− σ(−r

√
d)1−1/α

)
. Thus, we apply Proposition 6 to achieve

the desired result.

The following result attempts to quantify the uniform discrepancy between the
empirical α-risk and the probability of error (true ∞-risk); the technique is a com-
bination of Theorem 5 and Lemma 2. The result is most useful in the regime where
r
√
d ≤ α/

√
n; this prohibits the second term in the right-hand-side of (A.188) from

dominating the first, which is the most meaningful form of the bound.
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Corollary 3. If α ∈ [1,∞], then, with probability at least 1− δ, for all θ ∈ Bd(r),

∣∣∣R∞(θ)− R̂α(θ)
∣∣∣ ≤ σ

(
r
√
d
)(2r

√
d√
n

+ 4

√
2 log (4/δ)

n

)
+

(
log σ(−r

√
d)
)2

2α
.

(A.188)

Proof. Consider the expression, R∞(θ) − R̂α(θ). Since R̂∞(θ) ≤ R̂α(θ) for all θ ∈
Bd(r), the following holds

R∞(θ)− R̂α(θ) ≤ R∞(θ)− R̂∞(θ) ≤ σ
(
r
√
d
)(2r

√
d√
n

+ 4

√
2 log (4/δ)

n

)
, (A.189)

where we applied Theorem 5 for α =∞. Now, consider the reverse direction, R̂α(θ)−
R∞(θ). For any θ ∈ Bd(r), we add and subtract R̂∞(θ) such that

R̂α(θ)−R∞(θ) = R̂∞(θ)−R∞(θ) + R̂α(θ)− R̂∞(θ) (A.190)

≤ σ
(
r
√
d
)2r

√
d√
n

+ 4

√
2 log

(
4
δ

)
n

+

(
log σ(−r

√
d)
)2

2α
, (A.191)

where we apply Theorem 5 for the first term and Lemma 2 for the second term1 on
the maximum value of θ, i.e, ‖θ‖2 = r. Thus, combining the two cases we have the
desired statement for the corollary.

A.3.2 Proof of Theorem 6

Assume that the minimum α-risk is attained by the logistic model, i.e., (2.56)
holds. Let Sn be a training dataset with n ∈ N samples as before. If for each
n ∈ N, θ̂αn is a global minimizer of the associated empirical α-risk θ 7→ R̂α(θ), then

the sequence (θ̂αn)∞n=1 is asymptotically optimal for the 0-1 risk, i.e., almost surely,

lim
n→∞

R(fθ̂αn ) = R∗, (A.192)

where fθ̂αn (x) = 〈θ̂αn , x〉 for each n ∈ N and the Bayes risk R∗ is given by R∗ :=

min
f :X→R

P[Y 6= sign(f(X))].

We begin by recalling the following proposition which establishes an important
consequence of classification-calibration. In words, the following result assures that
minimizing a classification-calibrated loss to optimality also minimizes the 0-1 loss to
optimality.

1We apply Lemma 2 to the empirical distribution instead of the true distribution, leading to a
bound for the empirical α-risk.
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Proposition 11 (Thm. 3, Bartlett et al. (2006b)). Assume that φ is a classification-
calibrated margin-based loss function. Then, for every sequence of measurable func-
tions (fi)

∞
i=1 and every probability distribution on X × Y,

lim
i→∞

Rφ(fi) = R∗φ implies that lim
i→∞

R(fi) = R∗, (A.193)

where R∗φ := minf Rφ(f) and R∗ := minf R(f).

By the assumption that the minimum α-risk is obtained by the logistic model, we
have that

min
θ∈Bd(r)

Rα(θ) = min
f :X→R

Rα(f), (A.194)

where Rα(θ) is given in (2.26) and Rα(f) = E[l̃α(Y f(X))] for all measurable f . Thus,
the proof strategy is to show that

lim
n→∞

Rα(θ̂αn) = min
θ∈Bd(r)

Rα(θ), (A.195)

and then apply Proposition 11 to obtain the result.
Let θα∗ be a minimizer of the α-risk, i.e.,

Rα(θα∗ ) = min
θ∈Bd(r)

Rα(θ). (A.196)

Observe that
0 ≤ Rα(θ̂αn)−Rα(θα∗ ) = In + IIn, (A.197)

where In := Rα(θ̂αn)−R̂α(θ̂αn) and IIn := R̂α(θ̂αn)−Rα(θα∗ ). After some straightforward
manipulations of Theorem 5, (2.55) implies that, for every ε > 0,

P
(
|Rα(θ̂αn)− R̂α(θ̂αn)| > ε

)
≤ 4e

−n
(
ε−C

r
√
d

(α)2r
√
d/n

4
√

2D
r
√
d

(α)

)2

, (A.198)

whenever n is large enough. A routine application of the Borel-Cantelli lemma shows
that, almost surely,

lim
n→∞

In = lim
n→∞

Rα(θ̂αn)− R̂α(θ̂αn) = 0. (A.199)

Since θ̂αn is a minimizer of the empirical risk R̂α,

IIn = R̂α(θ̂αn)−Rα(θα∗ ) ≤ R̂α(θα∗ )−Rα(θα∗ ). (A.200)

Again by Theorem 5, for every ε > 0,

P
(
|R̂α(θα∗ )−Rα(θα∗ )| > ε

)
≤ 4e

−n
(
ε−C

r
√
d

(α)2r
√
d/n

4
√

2D
r
√
d

(α)

)2

, (A.201)

whenever n is large enough. Hence, the Borel-Cantelli lemma implies that, almost
surely,

lim
n→∞

|R̂α(θα∗ )−Rα(θα∗ )| = 0. (A.202)
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In particular, we have that, almost surely,

lim sup
n→∞

IIn ≤ 0. (A.203)

Plugging (A.199) and (A.203) in (A.197), we obtain, almost surely,

0 ≤ lim sup
n→∞

[
Rα(θ̂αn)−Rα(θα∗ )

]
≤ 0, (A.204)

from which (A.195) follows.

For each n ∈ N, let fθ̂αn : X → R be fθ̂αn (x) = 〈θ̂αn , x〉. Since we have

fθ̂αn (x) = σ−1(σ(θ̂αn · x)) = σ−1(gθ̂αn (x)), (A.205)

Proposition 2, (A.194), and (A.195) imply that

lim
n→∞

Rα(fθ̂αn ) = min
θ∈Bd(r)

Rα(fθ) = min
f :X→R

Rα(f) =: R∗α. (A.206)

Since l̃α is classification-calibrated as established in Theorem 1, Proposition 11 and
(A.206) imply that

lim
n→∞

R(fθ̂αn ) = min
f :X→R

P[Y 6= sign(f(X))] =: R∗, (A.207)

as required.

A.4 Further Experimental Results and Details

A.4.1 Brief Review of the F1 Score

In binary classification, the F1 score is a measure of a model’s accuracy and is
particularly useful when there is an imbalanced class, since it is known to give more
precise performance information for an imbalanced class than simply using accuracy
itself Sasaki (2007). In words, the F1 score is the harmonic mean of the precision
and recall, where precision is defined as the number of true positives divided by
the number of true positives plus false positives (all examples the model declares as
positive) and where recall is defined as the number of true positives divided by the
number of true positives plus false negatives (all the examples that the model should
have declared as positive). Formally, the definition of the F1 score is

F1 =
2

recall−1 + precision−1
=

TP

TP + 0.5(FP + FN)
, (A.208)

where tp, fp, fn denote true positives, false positive, and false negatives, respectively.
In practice, tp, fp, and fn are drawn from the confusion matrix of the model on test
data. Note that the use of the term “positive”, denoting the class name is arbitrarily
chosen; in practice, one lets “positive” class denote the imbalanced class.
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Figure A.5: A Synthetic Experiment Highlighting the Collapse in Trained Linear
Predictors of α-loss for α ∈ {.65, 1, 4} on Clean, Balanced Data. Specifically, α-loss
Is Trained Until Convergence Under the Logistic Model for a 2D-GMM With Mix-
ing Probability P[Y = −1] = P[Y = +1], Symmetric Means µX|y=−1 = [−1,−1] =
−µX|y=1, and Shared Covariance Matrix σ = I2. Averaged Linear Predictors Gener-
ated by Training of α-loss Averaged Over 100 Runs. Training Data Present in the
Figure Is Obtained From the Last Run.

A.4.2 Experiments for Section 2.3.3

In this section, we provide additional synthetic experiments, which follow the
same experiment protocol as Fig. 2.3. They highlight some of the main themes of
the paper, namely, α∗ < 1 in imbalanced experiments, α∗ > 1 in noisy experiments,
trade-offs between computational feasibility and accuracy (for both regimes of α),
and the saturation effect.

A.4.3 Commentary on Computational Feasibility of α-loss

In this section, we provide further commentary regarding the computational fea-
sibility of α-loss. In other words, we provide further reasoning for our choice of
α ∈ [.8, 8] as a sufficient search space of α in the experiments in Section 2.6.

For α→∞, we show through our theoretical landscape analysis (see Section 2.4.3,
Theorem 4, and for a visual, Fig. 2.4) that the computational complexity increases
because gradients tend to become “flatter”; another (perhaps simpler) way to see
that the gradients become “flatter” is through Fig. 2.1(a), where the loss itself has
smaller derivatives as α tends to ∞. Unfortunately, a standard gradient optimizer
will get stuck in such flat regions of the landscape and learning ceases. Indeed in deep
neural networks, the gradients are “back-propogated” through the network, and if the
gradient values are small (as is often the case for the very large α-losses), learning
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slows down or even stops. This motivates our choice of α = 8 as the upper limiting
point of our search space, and we argue that it is sufficient because of the saturation
effect (see (2.41)).

For α→ 0, we see the opposite effect, i.e., that the gradients explode as α decreases
from 1 (see Proposition 5 with following commentary and Fig. 2.7 for a visual).
Indeed, this motivated the choice of the lower limit of α = 0.65 in Fig. 2.3(a). This
issue was “pseudo-circumvented” in Tables A.1, A.2, and A.3 because if there was a
NaN, the code would disregard that run of the experiment for that small α and it
wouldn’t factor into that α’s averaged linear predictor. To give a sense for how many
NaNs occurred, for the 5% imbalance experiment, α = .4 “NaN-ed” out 51 times
out of the 100 runs. Thus, we argue that α = .8 in general is sufficient as the lower
limiting point of the α search space.

For another visual perspective of these considerations, see Fig. A.4 which was
obtained using Li et al. (2018a) on a ResNet-18 learning the MNIST dataset. In-
terestingly, we see exploding gradients for α = .9, loss of convexity (and increasing
flatness) as α increases greater than 1, and saturation between α = 2 and α = 8.
Thus, this visualization on a deep neural network hints at the generality of our theo-
retical results of the α-loss landscape in Section 2.4.3.
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← α’s →
.4 .5 .65 .8 1 2.5 4 8 1010 ∞

1 72.73 72.36 72.57 71.81 71.79 72.46 73.14 73.71 74.10 74.10
2 79.54 79.55 78.51 77.81 76.87 74.13 74.59 75.32 75.71 75.71
5 84.22 83.77 83.48 82.78 82.24 80.68 80.30 80.13 79.71 79.71

↑ 10 87.86 87.54 87.55 87.30 87.09 85.59 85.36 85.08 84.99 84.99
Imb % 15 89.01 88.98 88.74 88.66 88.63 88.32 88.09 88.14 87.97 87.97
↓ 20 90.09 90.11 89.96 89.88 89.79 89.61 89.59 89.73 89.60 89.60

30 91.55 91.36 91.30 91.27 91.24 91.16 91.10 90.90 90.75 90.75
40 92.00 91.97 91.98 91.97 91.98 92.05 92.07 92.08 92.08 92.08
50 92.08 92.09 92.08 92.08 92.08 92.08 92.07 92.06 92.06 92.06
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Table A.1: Further Quantitative Results Associated with Fig. 2.3(a) in Section 2.3.3 with Exactly the Same Experimental
Setup. Values Reported in the Table Are the Test Accuracy (in %) of a Linear Predictive Model Tested on 1 Million
Examples of Clean, Balanced Synthetic Test Data. The Linear Model Was Learned by Averaging Models for 100 Training
Examples over 100 Runs. Such Models Were Learned for Different Imbalance Levels of the Training Data as Shown in
the Table. We Found That the Bayes Accuracy of This Experiment Was 92.14%. In General, We Find That α∗ < 1,
Which Aligns with Our Theoretical Intuition. This Contrasts with the Notable Exception of 1% Imbalance, Where α∗ > 1,
Which Points Towards the Usefulness of Class Upweighting in Addition to Employing α-loss for Such a Highly Imbalanced
Class. Also of Note, We Find That Smaller α Is Not Always Better (See ¡5% Imbalance), Which Hints at a Trade-off
Between Emphasizing the Imbalanced Class and Computational Infeasibility (E.G., Exploding Gradients) as Discussed
after Proposition 5. Lastly, We Note the Closeness Between α = 8 and 1010 and∞; This Follows Our Theoretical Intuition
Derived from the Saturation Effect of α-loss as Depicted In (2.41).
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← α’s →
.4 .5 .65 .8 1 2.5 4 8 1010 ∞

1 0.6261 0.6192 0.6231 0.6084 0.6081 0.6209 0.6338 0.6445 0.6517 0.6517
2 0.7446 0.7448 0.7280 0.7165 0.7007 0.6524 0.6607 0.6739 0.6807 0.6807
5 0.8146 0.8083 0.8040 0.7938 0.7857 0.7619 0.7560 0.7534 0.7467 0.7467

↑ 10 0.8648 0.8605 0.8606 0.8573 0.8545 0.8341 0.8309 0.8270 0.8257 0.8257
Imb % 15 0.8800 0.8797 0.8765 0.8755 0.8751 0.8710 0.8680 0.8687 0.8665 0.8665
↓ 20 0.8937 0.8940 0.8920 0.8910 0.8899 0.8876 0.8872 0.8892 0.8875 0.8875

30 0.9124 0.9100 0.9092 0.9089 0.9084 0.9074 0.9066 0.9040 0.9021 0.9021
40 0.9187 0.9183 0.9184 0.9183 0.9183 0.9195 0.9199 0.9200 0.9201 0.9201
50 0.9207 0.9207 0.9207 0.9208 0.9208 0.9208 0.9207 0.9206 0.9205 0.9205
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Table A.2: A Twin Table of Table A.1, Except with F1 Scores Reported. For a Brief Review of the F1 Score, See
Appendix A.4.1. Gains of α∗ < 1 over Log-loss (α = 1) Are More Exaggerated by the F1 Score, in Particular See 2% and
5% Imbalance.
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← α’s →
.4 .5 .65 .8 1 2.5 4 8 1010 ∞

1 92.18 92.17 92.16 92.17 92.17 92.18 92.16 92.13 92.12 92.12
2 92.06 92.07 92.08 92.09 92.11 92.14 92.14 92.14 92.15 92.15
5 91.34 91.41 91.61 91.68 91.85 92.11 92.12 92.13 92.13 92.13

↑ 10 90.41 90.34 90.53 90.89 91.29 92.01 92.04 92.05 92.06 92.06
Noise % 15 88.45 88.72 89.03 89.53 90.14 91.95 92.02 92.02 92.03 92.03
↓ 20 87.84 86.21 86.52 87.38 88.85 91.17 91.53 91.91 91.46 91.54

30 80.43 80.34 81.48 82.36 83.55 90.15 90.68 90.86 90.98 90.98
40 75.02 75.20 75.11 75.38 75.89 83.00 84.51 85.59 85.82 85.82
50 67.66 67.45 67.26 67.22 67.08 70.61 73.33 75.67 76.89 76.89

168



Table A.3: Further Quantitative Results Associated with Fig. 2.3(B) in Section 2.3.3 with Exactly the Same Experimental
Setup (Training Data with Label Noise). Values Reported in the Table Are Percent Accuracy of Averaged Linear Pre-
dictors, Which Were Trained on Noisy Data, on 1 Million Examples of Clean, Balanced Synthetic Test Data. Similarly
as in Table A.1, We Observe a Saturation Effect. Further, Note That α = ∞ Does Not Always Outperform the Smaller
α’s, in Particular, See 20% Noise Where α∗ = 8. This Hints at a Trade-off Between α and Computational Feasibility in
the Large α Regime (α > 1), Which Also Follows from Our Theoretical Intuition as Stated at the End of Section 2.4.3.
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A.4.4 Multiclass Symmetric Label Flip Experiments

In this section, we present multiclass symmetric noisy label experiments for the
MNIST and FMNIST datasets. Our goal is to evaluate the robustness of α-loss over
log-loss (α = 1) to symmetric noisy labels in the training data. We generate noise in
the multiclass training data as follows:

1. For each run of an experiment, we randomly select 0-40% of the training data
in increments of 10%.

2. For each training sample in the selected group, we remove the true underlying
label number from a list of the ten classes, then we roll a fair nine-sided die over
the nine remaining classes in the list; once we have a new label, we replace the
true label with the new drawn label.

Note that the test data is clean, i.e., we do not flip the labels of the test dataset.
Thus, we consider the canonical scenario where the labels of the training data have
been flipped, but the test data is clean.

The results of the multiclass symmetric noisy label experiments are presented in
Tables A.4 and A.5. Note that we use the same fixed learning rates as the binary
symmetric noisy label experiments in Section 2.6.1. For the MNIST and FMNIST
datasets with label flips, we find very strong gains in the test accuracy, which continue
to improve as the percentage of label flips increases, through training α-loss for α > 1
over log-loss (α = 1). Once label flips are present in these two datasets, we note that
α∗ = 7 or 8 for the CNN 2+2 architecture.

Data Arch LF % LL Acc α* Acc α* Gain %
0 99.16 99.16 1 0.00
10 94.15 99.00 8 5.15

MNIST CNN 2+2 20 85.90 98.84 8 15.06
30 73.54 98.52 8 33.97
40 60.99 97.96 8 60.62

Table A.4: Multiclass Symmetric Noisy Label Experiment on Mnist. See Table 2.1
for Descriptions of Acronyms.

Data Arch LF % LL Acc α* Acc α* Gain %
0 90.45 90.45 1 0.00
10 84.69 89.81 8 6.05

CNN 2+2 20 77.51 89.27 7 15.18FMNIST
30 67.94 88.10 7 29.67
40 68.28 88.20 8 28.91

Table A.5: Multiclass Symmetric Noisy Label Experiment on the FMNIST Dataset.
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B.1 Proofs, Further Theoretical Results, and Additional Commentary

B.1.1 Illustration of Proper Loss to Surrogate through the Convex Conjugate

In this subsection, we provide a worked-out example for how picking the log-loss
as ` gives the binary entropy for L and the logistic loss for F .

From Reid and Williamson (2010b), we have that the log-loss has partial losses
`1(u) = − log u, `−1(u) = − log (1− u) and is a proper loss. In order to compute the
(pointwise) Bayes risk L for the log-loss, we first obtain from (3.2),

L(u, v) = v · `1(u) + (1− v) · `−1(u) = v · − log u+ (1− v) · − log (1− u). (B.1)

Recall that L(v)
.

= infu L(u, v). In (B.1), taking the derivative with respect to u and

setting the expression equal to zero, i.e.,
d

du
L(u, v) = 0, and solving for u, obtains

that u = v, in other words, the log-loss is indeed proper. Plugging u = v back
into (B.1), we find that the pointwise Bayes risk of the log-loss is

L(v) = −v log v − (1− v) · log (1− v), (B.2)

which is indeed the binary (Shannon) entropy (Thomas and Joy, 2006). Finally, to
obtain the logistic loss as the surrogate, we compute the convex conjugate of (B.2).
Formally, we have from (3.3) that ∀z ∈ R,

F (z) = (−L)?(−z) = (v log v + (1− v) · log (1− v))?(−z). (B.3)

Indeed, we have that ∀z ∈ R,

(v log v + (1− v) · log (1− v))? = sup
v
{z · v − v log v − (1− v) · log (1− v)}, (B.4)

which is similarly obtained by setting the derivative equal to zero and solving, i.e.,

d

dv
[z · v − v log v − (1− v) · log (1− v)] = 0 (B.5)

z + log (1− v)− log v = 0 (B.6)

z = log

(
v

1− v

)
(B.7)

v =
1

1 + e−z
, (B.8)

which is obtained after a few steps of algebra. Plugging (B.8) back into (B.4), we
obtain that

sup
v
{z · v − v log v − (1− v) · log (1− v)} =

z

1 + e−z
+

log (1 + e−z)

1 + e−z
+

log (1 + ez)

1 + ez
.

(B.9)
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Noticing that log (1 + e−z) = log ((e−z) · (1 + ez)), we have from (B.9) that

sup
v
{z · v − v log v − (1− v) · log (1− v)} = log (1 + ez). (B.10)

Plugging this back into (B.3), we have that for the log-loss, the surrogate is given by
∀z ∈ R,

F (z) = (−L)?(−z) = log (1 + e−z), (B.11)

which is indeed the logistic loss (cf. Bartlett et al. (2006a)), useful in the margin
setting.

B.1.2 Proof of Lemma 5

We study U
.

= (−L)?, which is convex by definition, and show that it is non-
decreasing. Monotonicity follows from the non-negativity of the argument of the
partial losses and the definition of the convex conjugate: suppose z′ ≥ z and let
u∗ ∈ arg supu zu+ L(u). We have

U(z′)
.

= sup
u∈[0,1]

z′u+ L(u) (B.12)

= sup
u∈[0,1]

(z′ − z)u+ zu+ L(u) (B.13)

≥ (z′ − z)u∗ + zu∗ + L(u∗) (B.14)

= (z′ − z)u∗ + U(z) (B.15)

≥ U(z), (B.16)

which completes the proof that U is non-decreasing and therefore F (z)
.

= U(−z)
non-increasing.

Concavity of L follows from definition. We show continuity of L, the continu-
ity of F then following from the definition of the convex conjugate F (Boyd and
Vandenberghe, 2004b). Let a, u ∈ (0, 1), let u∗ ∈ t`(u), a∗ ∈ t`(a). We get:

L(u)
.

= u`1(u∗) + (1− u)`−1(u∗) (B.17)

≤ u`1(a∗) + (1− u)`−1(a∗) (B.18)

= L(a) + (u− a)(`1(a∗)− `−1(a∗)), (B.19)

(the inequality holds since otherwise u∗ 6∈ t`(u)) Permuting the roles of u and a, we
also get

L(a) ≤ L(u) + (a− u)(`1(u∗)− `−1(u∗)), (B.20)

from which we get

|L(a)− L(u)| ≤ Z · |a− u|, (B.21)

with Z
.

= maxv∈{a,u} sup |`1(t`(v))− `−1(t`(v))| (where we use set differences if t`s are
not singletons). Since Z �∞, (B.21) is enough to show the continuity of L (we have
by assumption dom(L) = [0, 1]).
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B.1.3 Bayes Tilted Estimates

The proof of Lemma 6 readily follows from Definition 3.4 and standard properties
of convex functions, see e.g., Boyd and Vandenberghe (2004b).

Below, we also provide analysis of the properties of Bayes tilted estimates for more
general losses which induce set-valued functions. Following convention, we denote the
set valued inequality A ≤ B, such that, ∀a ∈ A, ∃b ∈ B, a ≤ b and the set-valued
(Minkowski) difference A−B .

= {a− b : a ∈ A, b ∈ B}.

Lemma 12. The following properties of t` follow from assumptions M, D or S on
partial losses:
(M) implies set-valued monotonicity: ∀u1 < u3 ∈ [0, 1], we have t`(u1) ≤ t`(u3) and
t`(u1) ∩ t`(u3) ⊆ t`(u2),∀u2 ∈ (u1, u3);
(D) and t` differentiable imply monotonicity: ∀u ∈ [0, 1], `′1(t`(u)) ≤ `′−1(t`(u)) ⇔
t′`(u) ≥ 0;
(S) implies set-valued symmetry: t`(1− u) = {1} − t`(u), ∀u ∈ [0, 1];
(E) Extreme values: `1(1) = `−1(0) = 0, `1([0, 1]) ⊆ R+, `−1([0, 1]) ⊆ R+. Further,
this implies properness on extreme values, as 0 ∈ t`(0), 1 ∈ t`(1).

Case (M) – Suppose t`(a) ∩ t`(a′) 6= ∅ for some a 6= a′ and let v∗ ∈ t`(a) ∩ t`(a′). It
means ∀v ∈ [0, 1],

a`1(v∗) + (1− a)`−1(v∗) ≤ a`1(v) + (1− a)`−1(v), (B.22)

a′`1(v∗) + (1− a′)`−1(v∗) ≤ a′`1(v) + (1− a′)`−1(v), (B.23)

and so ∀δ ∈ [0, 1], if we let aδ
.

= a+ δ(a′ − a), a 1− δ, δ convex combination of both
inequalities yields ∀v ∈ [0, 1],

aδ`1(v∗) + (1− aδ)`−1(v∗) ≤ aδ`1(v) + (1− aδ)`−1(v),∀v ∈ [0, 1], (B.24)

which implies v∗ ∈ t`(aδ) and shows the right part of Case (M).
To show show the left part of Case (M); we add to (B.22) and (B.23) we now add
the inequality:

a`1(v◦) + (1− a)`−1(v◦) ≤ a`1(v) + (1− a)`−1(v), (B.25)

with therefore v◦ ∈ t`(a), implying a`1(v◦) + (1− a)`−1(v◦) = a`1(v∗) + (1− a)`−1(v∗)
as otherwise one of v◦, v∗ would not be in t`(a). We then get

a′`1(v◦) + (1− a′)`−1(v◦) = a`1(v◦) + (1− a)`−1(v◦) + (a′ − a) · (`1(v◦)− `−1(v◦))

= a`1(v∗) + (1− a)`−1(v∗) + (a′ − a) · (`1(v◦)− `−1(v◦))

= a′`1(v∗) + (1− a′)`−1(v∗) + (a′ − a) ·∆, (B.26)

with ∆
.

= `1(v◦)− `−1(v◦)− (`1(v∗)− `−1(v∗)). Considering (B.26), we deduce from
(B.23) that to have v◦ ∈ t`(a

′), we equivalently need (a′ − a) · ∆ ≤ 0. We also
know by assumption that `1 is non-increasing and `−1 is non-decreasing, so g(u)

.
=

`1(u) − `−1(u) is non-increasing. We thus have (a′ − a) · ∆ ≤ 0 iff one of the two
possibilities hold:
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• a′ ≥ a and v◦ ≥ v∗, or

• a′ ≤ a and v◦ ≤ v∗,

which shows the right part of Case (M).

Case (E) – we have L(0) = infv∈[0,1] `−1(v) = 0 for v = 0, hence 0 ∈ t`(0). Similarly,
L(1) = infv∈[0,1] `1(v) = 0 for v = 1, hence 1 ∈ t`(1).

Case (D) – we have

d

du
L(u) = `1(t`(u)) + u`′1(t`(u))t′`(u)− `−1(t`(u)) + (1− u)`′−1(t`(u))t′`(u)

= `1(t`(u))− `−1(t`(u)) + t′`(u) · (u`′1(t`(u)) + (1− u)`′−1(t`(u))), (B.27)

but since v = t`(u) is the solution to (B.22) it satisfies u`′1(t`(u))+(1−u)`′−1(t`(u)) = 0,
so that (B.27) simplifies to

d

du
L(u) = `1(t`(u))− `−1(t`(u)), (B.28)

and since L is concave and the partial losses are differentiable,

d2

du2
L(u) = t′`(u) · (`′1(t`(u))− `′−1(t`(u))) ≤ 0,∀u, (B.29)

which proves the statement of the Lemma.

Case (S) – Suppose v∗ ∈ t`(a), which implies

a`1(v∗) + (1− a)`−1(v∗) ≤ a`1(v) + (1− a)`−1(v),∀v ∈ [0, 1]. (B.30)

We also note that since symmetry holds, a`1(v∗)+(1−a)`−1(v∗) = (1−a)`1(1−v∗)+
a`−1(1− v∗), which implies because of (B.30) 1− v∗ ∈ t`(1− a).

Remark: even if we assume the partial losses to be strictly monotonic, the tilted
estimate can still be set valued. To see this, craft the partial losses such that v ∈ t`(u)
and then for some w > v, replace the partial losses in the interval [v, w] by affine parts
w/ slope −a < 0 for `1, b > 0 for `−1 and such that b/a = u/(1−u) which guarantees
L(u, v) = L(u,w) and thus w ∈ t`(u);

B.1.4 Proof of Lemma 8

We recall the focal loss’ corresponding pointwise conditional risk in lieu of (3.2):

Lγ(u, v)
.

= −v · (1− u)γ log u− (1− v) · uγ log(1− u), (B.31)

and if it is twist proper, then for any ηt, ηc ∈ [0, 1], there exists γ ≥ 0 such that

∂

∂u
Lγ(u, ηt)

∣∣∣∣
u=ηc

= 0. (B.32)
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Equivalently, we must find γ ≥ 0 such that (keeping notations u
.

= ηc, v
.

= ηt for
clarity):

(1− v)uγ · (γ(1− u) log(1− u)− u) = v(1− u)γ · (γu log u+ u− 1) , (B.33)

and we see that twist properness implies the statement that for any K ≥ 0 (note that
K = v

1−v ) and any u ∈ [0, 1), there exists γ ≥ 0 such that

f(u, γ)

f(1− u, γ)
= K, (B.34)

f(u, γ)
.

= uγ · (γ(1− u) log(1− u)− u) . (B.35)

We study the ratio for u ∈ [0, 1/2]. We have f(u, γ) ≤ 0,∀u ∈ [0, 1],∀γ ≥ 0 and

∂

∂γ
f(u, γ) = uγ(γ · a(u)− b(u)), (B.36)

with a(u)
.

= (1 − u) log(1 − u) log(u) ≥ 0 and b(u)
.

= u log u − (1 − u) log(1 − u),
satisfying b(1−u) = −b(u) and ua(1−u) = (1−u)a(u). Hence, we arrive after some
derivations to

∂

∂γ

f(u, γ)

f(1− u, γ)
=

(u(1− u))γ

f 2(1− u, γ)
·
(
A(u)γ2 +B(u)γ + C(u)

)
, (B.37)

A(u)
.

= u(1− u) log(u) log(1− u) log(u(1− u)), (B.38)

B(u)
.

= −(u2 log2 u+ (1− u)2 log2(1− u) + (1− 2u)2 log u log(1− u)),
(B.39)

C(u)
.

= (1− 2u)b(u). (B.40)

All functions A,B,C are non positive for any fixed u ∈ [0, 1/2], so the ratio in (B.34)
is non-increasing over γ ≥ 0 and as a consequence, for any fixed u ∈ [0, 1/2],

f(u, γ)

f(1− u, γ)
≤ f(u, 0)

f(1− u, 0)
(B.41)

=
u

1− u
,∀γ ≥ 0, (B.42)

so we see that (B.34) cannot be satisfied when K > u/(1− u) and as a consequence,
the focal loss is not twist-proper.
Twist-improperness of the Super Loss The Super Loss (Castells et al., 2020)
works as a “wrapper” of a loss, its partial losses being defined as

Lb,λ(`, σi) = (`b − τ)σi + λ(log σi)
2, (B.43)

where b ∈ {−1, 1} indicates the partial loss of a loss of interest, τ ∈ Im`b, λ > 0 are
user-defined parameters. σi is a functional computed to minimize the partial losses,
and we get the optimal expression:

σ∗(`b) = exp (−W (1/2 max (−2/e, β))) , (B.44)

with β = `b−τ
λ

(notice this is also a function via the partial loss). W is called Lambert’s
function. It does not have an analytical form.
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Lemma 13. Suppose loss ` in the Super Loss is such that its partial loss `1 is strictly
decreasing and `−1 is strictly increasing. Then the corresponding Super Loss with
partial losses Lb,λ(`, σ

∗(`b)) (b ∈ {−1, 1}) is not twist proper.

Remark: the assumptions about the partial losses are very weak and would be
satisfied by all popular losses (e.g. log, square, Matusita, etc.).

Proof. The notable facts about W , useful for our proof are:

eW (z) =
z

W (z)
and

d

dz
W (z) =

1

z + eW (z)
and sup exp(−W (z)) = e. (B.45)

Simplifying notations above, we end up studing a loss with partial losses defined as

L∗λ(`b) = (`b − τ)σi + λ(log σ∗(`b))
2. (B.46)

Recall that a loss ` is twist-proper iff for any twist, there exists hyperparameters such
that ηc ∈ t`(ηt). Examining this for the Super Loss, we obtain

tL(v) = arginfu∈[0,1]L(u, v) (B.47)

= arginfu∈[0,1]v · L∗λ(`1(u)) + (1− v) · L∗λ(`−1(u)) (B.48)

= arginfu∈[0,1]

{
v · [(`1(u)− τ)σ∗(`1) + λ(log σ∗(`1))2]
+(1− v) · [(`−1(u)− τ)σ∗(`−1) + λ(log σ∗(`−1))2]

(B.49)

We note that if ` is proper, then v ∈ t`(v). Computing the minimum in (B.49), we
obtain

0 =
d

du
v ·
[
(`1(u)− τ)σ∗(`1) + λ(log σ∗(`1))2

]
+ (1− v) ·

[
(`−1(u)− τ)σ∗(`−1) + λ(log σ∗(`−1))2

]
. (B.50)

Similar to the computation of the focal loss, we need

d

du
(`1(u)− τ)σ∗(`1) + λ(log σ∗(`1))2

d

du
(`−1(u)− τ)σ∗(`−1) + λ(log σ∗(`−1))2

= −(1− v)

v
= −K, (B.51)

and this needs to hold (via the choice of parameters τ, λ) for any u ∈ [0, 1) and K > 0.
To save notations, define

βb(u) =
`b(u)− τ

2λ
.
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Remark that if `b(u) > τ − (2λ)/e, we have σ∗(`b(u)) = exp(−W (βb(u))) and so

d

du
(`b(u)− τ)σ∗(`b(u)) + λ(log σ∗(`b(u)))2 (B.52)

= 2λ · d
du

[
βb(u) exp(−W (βb(u))) +

W 2(βb(u))

2

]
(B.53)

= 2λ·
[
β′b(u) exp(−W (βb(u)))−βb(u)β′b(u)· exp(−W (βb(u)))

βb(u)+exp(W (βb(u)))
+

β′b(u)W (βb(u))

βb(u)+exp(W (βb(u)))

]
(B.54)

= 2λβ′b(u)· 1+βb(u) exp(−W (βb(u)))−βb(u) exp(−W (βb(u)))+W (βb(u))

βb(u)+exp(W (βb(u)))
(B.55)

= `′b(u) · 1 +W (βb(u))

βb(u) + exp(W (βb(u)))
(B.56)

= `′b(u) · exp(−W (βb(u))), (B.57)

since indeed it comes from (B.45),

1 +W (z))

z + exp(W (z))
= exp(−W (z)); (B.58)

also, if `b(u) ≤ τ − (2λ)/e, we have σ∗(`b(u)) = exp(−W (−1/e)) = e and so

d

du
(`b(u)− τ)σ∗(`b(u)) + λ(log σ∗(`b(u)))2 = `′b(u) · e. (B.59)

Since limz→−1/e+ exp(−W (z)) = e, we can summarize both (B.57) and (B.59) as

d

du
(`b(u)− τ)σ∗(`b(u)) + λ(log σ∗(`b(u)))2

= `′b(u) · exp(−W (max{−1/e, βb(u)})). (B.60)

Now consider a loss ` satisfying `−1 strictly increasing and `1 strictly decreasing. Pick
u so that we have simultaneously

`1(u) > τ − 2λ

e
, (B.61)

`−1(u) ≤ τ − 2λ

e
, (B.62)

which, assuming both inequalities fit in the range of the respective partial loss, that
u ∈ [0, γ] for some γ > 0. Rewriting (B.51), we need to show that for any such γ > 0
and u ∈ [0, γ] and K > 0, there exists a choice of τ, λ such that

`′1(u) · exp(−W (β1(u)))

`′−1(u) · e
= −K, (B.63)

which rewrites conveniently as

exp(−W (β1(u))) = −Ke ·
`′−1(u)

`′1(u)
, (B.64)
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or,

exp(−W (β1(u))) = K ′, (B.65)

for any K ′ > 0 (the RHS of (B.64) is indeed always strictly positive). But indeed we
have that sup exp(−W (z)) = e (B.45), so (B.65) cannot hold and the Super Loss is
not twist proper.

B.1.5 Proof of Lemma 9
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Figure B.1: A Plot of `α1 (u) for α > 0 as given in Definition 7.

For part (a): we cite Sypherd et al. (2022a) which demonstrates (M), (D), (S)
for α > 0. With our extension of α-loss, these can also be readily shown for α < 0,
since they are mapped back to the α > 0 losses.

For part (b): we know from Lemma 6 that α-loss, for α ∈ R \ {0,±∞}, due
to strict convexity, returns a singleton, i.e., |t`α(ηt)| = 1. With regards to that
singleton, we know from (Sypherd et al., 2022a; Liao et al., 2018b) for α > 0 that

t`α(ηt) =
ηαt

ηαt +(1−ηt)α
. A very similar calculation recovers t`α(ηt) =

η−αt

η−αt +(1−ηt)−α
for

α < 0. Multiplying the numerator and denominator of this expression by (1−ηt)
α, we

can simply write both expressions using
ηαt

ηαt +(1−ηt)α
. Regarding the limit as α→ ±∞

yielding t`±∞(ηt) = ±1 or ∓1, this was also already shown by Sypherd et al. (2022a)
for +∞ and is similarly (readily) extended for the α→ −∞ case.

For part (c): here, we break entirely new ground. Let α > 0. To obtain twist-
properness as stipulated in Definition 6, we seek to know for what α the following
holds

ηc =
ηαt

ηαt + (1− ηt)α
. (B.66)
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Solving for α, we obtain

ηc =
ηαt

ηαt + (1− ηt)α
(B.67)

1

ηc

= 1 +

(
1

ηt

− 1

)α
(B.68)

1

ηc

− 1 =

(
1

ηt

− 1

)α
(B.69)

log

(
1

ηc

− 1

)
= α log

(
1

ηt

− 1

)
(B.70)

α∗ =
log
(

1−ηc

ηc

)
log
(

1−ηt

ηt

) . (B.71)

After multiplying the numerator and denominator by−1, we obtain the desired result.
Namely, α-loss is twist-proper for

α∗ =
ι(ηc)

ι(ηt)
. (B.72)

Interestingly, (B.72) is the ratio of the logits (which is the link function −L′ of the
log-loss, α = 1) evaluated at the clean posterior and twisted posterior, in essence, a
kind of ratio test.

Figure B.2: A Plot of the Logit ι(u)
.

= log(u/(1− u)).

For part (d): we recall the definition of Bayes blunting twist from Definition 5:
a twist ηc 7→ ηt is Bayes blunting iff (ηc ≤ ηt ≤ 1/2) ∨ (ηc ≥ ηt ≥ 1/2). Also, recall
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that α∗ is given in (B.72), and see Figure B.2 for a plot of the logit function. Let
ηc ≥ 1/2. The Bayes blunting twist can take ηt from ηc ≥ ηt ≥ 1/2. If ηt = ηc, then
α∗ = 1. If ηt → 1/2, as can be seen in the figure, the sign crossover point is 1/2, so
α∗ →∞. Thus, by continuity, we have that α∗ ≥ 1. Finally, the case where ηc < 1/2
follows, mutatis mutandis.

B.1.6 Proof of Theorem 7

Figure B.3: Characteristic Plot of the Non-negative Part of fα,ηc(ηt), Where ηc = .9,
as a Function of ηt for Several Values of α. Recall That the Non-negative Region of f
Indicates Where Using Bayes Tilted α-estimate, as Measured with the Cross Entropy
for α given In (3.7), Is Strictly Less than the α = 1 Cross Entropy. Also Recall That
a Bayes Blunting Twist Has the Capability to Shift ηt Anywhere in [.5, ηc = .9]. We
See That for Small α, More Twisted Probabilities Are “covered”, Whereas for Large
α, Less Twisted Probabilities Are “covered”, However, the Large α’s Induce a Large
Positive Magnitude (Ultimately Measured by the Kl-divergence) Increase over the
Proper α = 1. A Key Takeaway Is That a Fixed α (Small Enough) Can Correct a
Bayes Blunting Twist for Almost All x ∈ X . However, It Is Not Necessarily Optimal
as a Perfectly Tuned α-mapping Will Use Larger α’s to Optimally Correct Strongly
Twisted Posteriors, Inducing More Gains over the α = 1 Cross Entropy.

We want to show that for any strictly Bayes blunting twist ηc 7→ ηt, there exists a
fixed α0 > 1 and an optimal α?-mapping, α? : X → R>1, which induces the following
ordering

Dkl(ηc, ηt; 1) > Dkl(ηc, ηt;α0) ≥ Dkl(ηc, ηt;α
?). (B.73)
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Figure B.4: Symmetric Image of Figure B.3 for ηc = .1.

Recalling (3.9), which is the identity

Dkl(ηc, ηt;α) = ce(ηc, ηt;α)−H(ηc) (B.74)

= EX∼M

[
ηc(X) log

(
ηc(X)

t`α(ηt(X))

)
+ (1− ηc(X)) log

(
1− ηc(X)

1− t`α(ηt(X))

)]
, (B.75)

by subtracting H(ηc) from both sides, we rewrite the desired statement (3.10) (also
given here in (B.73)) as

ce(ηc, ηt; 1) > ce(ηc, ηt;α0) ≥ ce(ηc, ηt;α
?). (B.76)

In essence, we want to show that

ce(ηc, ηt;α) < ce(ηc, ηt; 1) OR 0 < ce(ηc, ηt; 1)− ce(ηc, ηt;α), (B.77)

for some α0 > 1. Continuing with the right-hand-side of (B.77), we have

ce(ηc, ηt; 1)− ce(ηc, ηt;α) (B.78)

= EX∼M[ηc(X) · − log ηt(X) + (1− ηc(X)) · − log (1− ηt(X))]

− EX∼M[ηc(X) · − log t`α(ηt(X)) + (1− ηc(X)) · − log (1− t`α(ηt(X))] (B.79)

= EX∼M

[
ηc(X) log

(
t`α(ηt(X))

ηt(X)

)
+ (1− ηc(X)) log

(
1− t`α(ηt(X))

1− ηt(X)

)]
(B.80)

=EX∼M

[
ηc(X) log

(
ηt(X)α−1

ηt(X)α+(1−ηt(X))α

)
+(1−ηc(X)) log

(
(1−ηt(X))α−1

(1−ηt(X))α+ηt(X)α

)]
, (B.81)

where we used the linearity of the expectation and some algebra to combine the
expressions. We want to show that the expression in brackets in (B.81) is strictly
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positive as this implies that 0 < ce(ηc, ηt; 1) − ce(ηc, ηt;α), in words, that the α-
Bayes tilted estimate untwists the Bayes blunting twist. Continuing, we examine the
expression in brackets in (B.81)

fα,ηc(ηt) = ηc log
ηα−1

t

ηαt + (1− ηt)α
+ (1− ηc) log

(1− ηt)
α−1

ηαt + (1− ηt)α
(B.82)

= (α− 1)ηc log ηt + (α− 1)(1− ηc) log (1− ηt)− log (ηαt + (1− ηt)
α), (B.83)

where we implicitly fix X = x and consider scalar-valued ηc, ηt ∈ [0, 1] and α ∈
R+/{1}. We note that α < 0 does not need to be considered in this analysis since
that regime of α is primarily useful for very strong twists due to its symmetry property
(recall in Lemma 9 that t`α is symmetric upon permuting (ηt, α) and (1 − ηt,−α)),
i.e., not useful for Bayes blunting twists which reduce confidence in the posterior but
do not flip its sign across ηt − 1/2. To build intuition of f , see Figure B.3 for a plot
of this function. Formally, we take note of the following observations/properties of f :

1. CONTINUITY. From (B.83), it can be readily shown that for any fixed
ηc, ηt ∈ [0, 1], fα,ηc(ηt) is continuous in α ≥ 1.

2. CONCAVITY. For arbitrarily fixed ηc and for any α > 1, fα,ηc(·) is concave
in ηt, since (from (B.82)) the composition of a concave function with a non-
decreasing concave function yields a concave function. As a side note, observe
that fα,ηc(·) is convex for 0 < α < 1, thus this regime of α does not untwist
Bayes blunting twists. Regarding (increa/decrea)sing concavity of fα,ηc(·) for
any fixed ηc ∈ [0, 1] as a function of α, traditionally a second derivative argument
could indicate whether concavity is increasing or decreasing as a function of
α. Unfortunately, d2

dη2
t
fα,ηc(ηt) is an unwieldy analytical expression. However,

using a Taylor series approximation of d2

dη2
t
fα,ηc(ηt) near ηt = 1/2, we find that

the dominating term is ≈ −α2. Thus, while not a proof, this indicates that
concavity of fα,ηc(·) increases as α increases greater than 1, which is sufficient
for our purposes in the sequel.

3. ZEROES. It can be readily shown that for every ηc ∈ [0, 1], fα,ηc(1/2) = 0 for
any α > 1. Further, it can be shown that for any ηc ∈ [0, 1], lim

α→1+
fα,ηc(ηc)→ 0−.

Thus, the exact values of ηt for the other zero of fα,ηc(·) (not ηt = 1/2), for each
α > 1, are given by the solution to the following transcendental equation:

ηt =
((

(1− ηt)
α−1
)1− 1

ηc (ηαt + (1− ηt)
α)

1
ηc

) 1
α−1

, (B.84)

which can be rewritten as

log

(
ηt

(1− ηt)
1− 1

ηc

)
=

α

α− 1
log

(
η

1
ηc
t

)
+

1

ηc(α− 1)
log

(
1 +

(
1

ηt
− 1

)α)
,

(B.85)
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and can also be rewritten as(
ηt

1− ηt

)ηc(α−1)

= ηt

(
ηt

1− ηt

)α−1

+ (1− ηt). (B.86)

Suppose ηc > 1/2, then since we have a Bayes blunting twist, ηc ≥ ηt ≥ 1/2.
Letting α → ∞, note that the second term on the right-hand-side is 0. Thus,
we can solve for the zeroes from (B.85) when α =∞ by examining

log

(
ηt

(1− ηt)1−1/ηc

)
= log

(
η

1
ηc
t

)
. (B.87)

After some manipulations, we obtain log
(

1
ηt
− 1
)

= 0, which is only satisfied

when ηt = 1/2. Thus, for ηc > 1/2 and α→∞, both zeroes of (B.82) converge
at ηt = 1/2. For ηc < 1/2, the same argument holds, mutatis mutandis. Lastly,
from (B.86), it can be shown that given fixed ηc and ηt under a Bayes blunting
twist, a solution α > 1 must exist, through reasoning about the rate of increase

of
(

ηt

1−ηt

)α−1

as a function of α, which is common to both sides.

4. MAXIMUM. It can also be shown that the maximum of fα,ηc(·) for each α > 1
as a function of ηt is given by the following transcendental equation

α(1− ηc) + ηc − ηt

αηc − ηc + ηt

=

(
1

ηt

− 1

)α
. (B.88)

One key observation we can make from (B.88) is that as α increases, the term
on the right-hand-side grows (or decays) exponentially with α, whereas the term
on the left-hand-side is linear in α. With case-by-case analysis, i.e., for ηc > 1/2
or ηc < 1/2, it can be reasoned that as α increases, the solution to (B.88), ηt,
approaches 1/2. A second key observation we can make from (B.88) is that
as α → 1+, the solution to (B.88), ηt, approaches ηc/2 + 1/4. This is readily

observed by setting α = 1+ε, for some ε > 0, and ηt = ηc−1/2
2

+1/2 = ηc/2+1/4,

along with a Taylor series approximation of (1/ηt − 1)1+ε for ε near 0.

Intuitively, the remainder of the proof consists of a “covering” argument. In words,
we choose the least twisted ηc, i.e. η∗c , under ηc → ηt, via its associated α0 > 1 (as
given in Lemma 9(d)), then we notice that this induces non-negativity of fα0,η∗c (ηt)
given in (B.82). Next, we argue that this choice of α0 > 1 implies that all ηc are
“covered” - in the sense of inducing non-negativity of (B.82), i.e., fα0,ηc(ηt) > 0 for
all ηc under ηc → ηt. Finally, we use the non-negativity of the expectation to achieve
the desired result, i.e., the left-hand-side of (B.73).

Continuing, let ηc → ηt be a strictly Bayes blunting twist. Thus, we have that
there exists ε > 0 such that either (ηc + ε ≤ ηt ≤ 1/2) or (ηc − ε ≥ ηt ≥ 1/2) for all
ηc. By ZEROES of f , we have that for every ηc ∈ [0, 1], fα,ηc(1/2) = 0 for any α > 1
and limα→1+ fα,ηc(ηc) → 0−. We also have that as α → ∞, both zeroes of (B.82)
converge at ηt = 1/2. Thus, for every ηc, the second zero (the first one is at ηt = 1/2)
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continuously shifts (CONTINUITY) from being located at ηt = ηc (as α → 1) to
being located at ηt = 1/2 (as α→∞). In order to identify the least twisted ηc under
ηc → ηt, let

α∗(ηc, ηt) :=
ι(ηc)

ι(ηt)
, (B.89)

as stated in Lemma 9(c). By Lemma 9(d), we know that α∗(ηc, ηt) ≥ 1; further-
more, due to strictness of the Bayes blunting twist ηc → ηt, we indeed have a strict
inequality, i.e., α∗(ηc, ηt) > 1 for all ηc under ηc → ηt. Choose α0 := inf{α∗(ηc, ηt) :
∀ηc under ηc → ηt}, where we break ties arbitrarily, and note that α0 > 1, again by
strictness. Also note that there exists η∗c associated with α0 such that α0 = ι(η∗c )/ι(ηt)
under ηc → ηt, in other words, fα0,η∗c (ηt) > 0 (due to t`α(ηt) reversing the effects of
the Bayes blunting twist and tuning back to η∗c ). Thus, by CONTINUITY, CON-
CAVITY, and ZEROES of f above and this choice of α0 > 1, we have that for all
ηc, fα0,ηc(ηt) > 0 under ηc → ηt, i.e., that all ηc are “covered”, due to the ordering
of the relative zeroes of f induced by identifying η∗c through α0. Therefore, we ob-
tain from (B.81) and (B.82) (i.e., the non-negativity of the expectation) that for the
chosen α0 > 1, we have that 0 < ce(ηc, ηt; 1)− ce(ηc, ηt;α0), i.e.,

ce(ηc, ηt; 1) > ce(ηc, ηt;α0), (B.90)

as desired.
We now show that ce(ηc, ηt;α0) ≥ ce(ηc, ηt;α

?), where α? is a mapping such that
α? : X → R>1, i.e., returning an α > 1 for every x ∈ X . By MAXIMUM above,
we note that for a given ηc, the maximum of fα,ηc(·) moves from being achieved at
ηt = ηc/2 + 1/4, to being achieved at ηt = 1/2 in the limit as α increases greater
than 1. By CONCAVITY above, we also observe that fα,ηc(·) for a fixed ηc appears
(which is sufficient for the inequality) to become more strongly convex in general
as α increases greater than 1. We also note by CONTINUITY of f above that the
maximums are continuous in α > 1. Thus, under the strictly Bayes blunting twist
ηc → ηt, for every ηc, there may exist an α > 1 which induces a larger (positive)
magnitude in fα,ηc(ηt) than for the fixed α0 > 1 we found previously (for (B.90)).
Thus, there exists an optimal mapping α? : X → R>1, such that

ce(ηc, ηt;α0) ≥ ce(ηc, ηt;α
?). (B.91)

Note that in the degenerate case, α? = α0 for every x ∈ X . Therefore, combin-
ing (B.90) and (B.91), we obtain

ce(ηc, ηt; 1) > ce(ηc, ηt;α0) ≥ ce(ηc, ηt;α
?), (B.92)

which is the desired result. Lastly, note from Lemma 9(c) and (B.75) that α? : X →
R>1 is indeed given by α?(x) := ι(ηc(x))/ι(ηt(x)), for every x ∈ X , and hence note
that ce(ηc, ηt;α

?) = H(ηc), i.e., from (3.9) that Dkl(ηc, ηt;α
?) = 0.

B.1.7 Proof of Theorem 8

As explained in the main body, we prove a result more general than Theorem 8.
However, briefly note that (3.13), like the statement provided in Theorem 7 in (3.10),
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is proved for ce, but the statement provided in the main body as kl is readily
obtained by subtracting H(ηc) from both sides of the inequality.

First, we need a simple technical Lemma.

Lemma 14. For any B > 0, ∀|z| ≤ B, ∀α ∈ R,

log(1 + exp(αz)) ≤ log(1 + exp(αB))− B − z
2
· α. (B.93)

Proof. We first note that ∀|z| ≤ 1,∀α ∈ R,

log(1 + exp(αz)) ≤ 1 + z

2
· log(1 + exp(α)) +

1− z
2
· log(1 + exp(−α))(B.94)

= log(1 + exp(α))− 1− z
2
· α, (B.95)

which indeed holds as the LHS of (B.94) is convex and the RHS is the equation of a line
passing through the points (−1, log(1+exp(−α))) and (1, log(1+exp(α))). In (B.95),
we use log (1 + exp(−α)) = log (exp(−α) · (1 + exp(α))) on the second term in the
RHS. Hence if instead |z| ≤ B, then

log(1 + exp(αz)) = log
(

1 + exp
(
αB · z

B

))
(B.96)

≤ log(1 + exp(αB))− B − z
2
· α, (B.97)

as claimed.

We now show another Lemma which bounds the log quantities appearing in the
cross-entropy in (3.7), recalling that ι(u)

.
= log(u/(1− u)).

Lemma 15. Fix B > 0. For any x ∈ X such that

1

1 + expB
≤ ηt(x) ≤ expB

1 + expB
, (B.98)

the following properties hold for the Bayes tiltes estimate t` of α-loss:

− log t`α(ηt(x)) ≤ log(1 + exp(αB))− α · B + ι(ηt(x))

2
,

− log(1− t`α(ηt(x))) ≤ log(1 + exp(αB))− α · B − ι(ηt(x))

2
.

Proof. We note, using z
.

= − log
(

1−ηt(x)
ηt(x)

)
, which satisfies |z| ≤ B from (B.98) and

186



Lemma 14,

− log t`α(ηt(x)) = − log

(
ηt(x)α

ηt(x)α + (1− ηt(x))α

)

= − log

 1

1 +
(

1−ηt(x)
ηt(x)

)α


= log

(
1 +

(
1− ηt(x)

ηt(x)

)α)
= log

(
1 + exp

(
α log

(
1− ηt(x)

ηt(x)

)))
(B.99)

≤ log(1 + exp(αB))− α ·
B − log

(
1−ηt(x)
ηt(x)

)
2

(B.100)

= log(1 + exp(αB))− α · B + ι(ηt(x))

2
, (B.101)

and similarly,

− log(1− t`α(ηt(x))) = log

(
1 + exp

(
−α log

(
1− ηt(x)

ηt(x)

)))
(B.102)

≤ log(1 + exp(−αB)) + α · B + ι(ηt(x))

2

= log(1 + exp(αB))− αB + α · B + ι(ηt(x))

2

= log(1 + exp(αB))− α · B − ι(ηt(x))

2
, (B.103)

as claimed.

Denote M(B) the distribution restricted to the support for which we have a.s.
(B.98) and let p(B) be the weight of this support in M. Let M(B) denote the restric-
tion of M to the complement of this support. We let D(B) is the product distribution
on examples (X ×Y) over the support of M(B) induced by marginal M(B) and pos-
terior ηc (see Reid and Williamson (2011)). We are now in a position to show our
generalization to Theorem 8.

Theorem 16. For any fixed B > 0, let

e(B)
.

=
E(X,Y)∼D(B) [Y · ι(ηt(X))]

B
∈ [−1, 1]. (B.104)

and suppose we fix the scalar α
.

= α∗∗ with

α∗∗
.

=
ι
(

1+e(B)
2

)
B

. (B.105)
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then the following bound holds on the cross-entropy of the Bayes tilted estimate of the
α-loss:

ce(ηc, ηt;α) ≤ p(B) ·H
(

1 + e(B)

2

)
+(1− p(B)) ·

(
e(B) · log

(
1 + |e(B)|
1− |e(B)|

)
+

1− |e(B)|
1 + |e(B)|

)
,

where e(B)
.

= E(X,Y)∼D(B) [max {0,−sign(α∗∗) · Y · ι(ηt(X))}] /B and D(B) is is de-

fined analogously to D(B) with respect to M(B).

Remark: we notice this is indeed a generalization of Theorem 8, which corresponds
to case p(B) = 1. We also note |e(B)| ≥ 1.

Proof. We remark that the cross-entropy (3.7) can be split as:

ce(ηc, ηt;α)
.

= EX∼M

[
ηc(X) · − log t`α(ηt(X))

+(1− ηc(X)) · − log(1− t`α(ηt(X)))

]
= p(B) ·K(α) + (1− p(B)) · L(B), (B.106)

with

K(α)
.

= EX∼M(B)

[
ηc(X) · − log t`α(ηt(X))

+(1− ηc(X)) · − log(1− t`α(ηt(X)))

]
, (B.107)

J(B)
.

= EX∼M(B)

[
ηc(X) · − log t`α(ηt(X))

+(1− ηc(X)) · − log(1− t`α(ηt(X)))

]
. (B.108)

We now focus on a bound on K(α), which we achieve via Lemma 15:

K(α) ≤ EX∼M(B)

 ηc(X) ·
(

log(1 + exp(αB))− α · B+ι(ηt(X))
2

)
+(1− ηc(X)) ·

(
log(1 + exp(αB))− α · B−ι(ηt(X))

2

) 
= log(1+exp(αB))−α·

B+EX∼M(B)[ηc(X)ι(ηt(X))+(1−ηc(X))·−ι(ηt(X))]

2

= log(1 + exp(αB))− α ·
B + E(X,Y)∼D(B) [Y · ι(ηt(X))]

2
(B.109)

.
= log(1 + exp(αB))− α · B +B · e(B)

2︸ ︷︷ ︸
.
=L(α)

,

where we recall

e(B)
.

=
EX∼D(B) [Y · ι(ηt(X))]

B
∈ [−1, 1]. (B.110)
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Figure B.5: A Plot Illustrating the Closeness Of (B.109) Where k(α) Is given in Blue
and l(α) Is given in Red for a Toy Distribution: x ∼ Uniform([−b, B]) (Recall b > 0
Is the Clipping Threshold and We Set b = 2 Here) Where ηc(X) = (1+exp (−x/a))−1

and ηt(X) = (1 + exp (−x/b))−1 Such That a = 10 and b = .6.

Notice the change in distribution in (B.109), where D(B) is the product distribu-
tion on examples (X ×Y) over the support of M(B) induced by marginal M(B) and
posterior ηc (see Reid and Williamson (2011)). We have

L′(α) = B ·
(

exp(Bα)

1 + exp(Bα)
− 1 + e(B)

2

)
, (B.111)

which zeroes for

α∗∗ =
1

B
· log

(
1 + e(B)

1− e(B)

)
=
ι(q(B))

B
. (B.112)

Further, we have that

L′′(α) =
d

dα
L′(α) =

B2 exp (αB)

(exp (αB) + 1)2
, (B.113)

and plugging in (B.112) yields

L′′(α∗∗) = B2 1− e2

4
. (B.114)

Note that for fixed B > 0, as |α| increases in (B.113), L′′(α) decreases. Thus, when
the magnitude of α∗ is large (due to the distribution and twist), this implies that
there is more “flatness” near the choice of α∗. Hence, in these regimes, a choice of α0
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“close-enough” to α∗ should have similar performance in practice. Continuing with
the main line, plugging in (B.112) into (B.109) yields

K(α∗∗) ≤ log(1 + exp(Bα∗∗))−B · 1 + e(B)

2
· α∗∗ (B.115)

= − log

(
1− e(B)

2

)
− 1 + e(B)

2
· log

(
1 + e(B)

1− e(B)

)
(B.116)

= −1 + e(B)

2
log

(
1 + e(B)

2

)
− 1− e(B)

2
log

(
1− e(B)

2

)
(B.117)

= H

(
1 + e(B)

2

)
, (B.118)

which is the statement of Theorem 8. We now focus on J(B). Since log(1+exp(−z)) ≤
exp(−z),∀z via an order-1 Taylor expansion, it follows that if z ≥ C for some C > 0,
then log(1 + exp(−z)) ≤ exp(−C). Equivalently, we get

z ≥ C ⇒ log(1 + exp(z)) ≤ z + exp(−C). (B.119)

By symmetry, we have

z ≤ −C ⇒ log(1 + exp(z)) ≤ exp(−C), (B.120)

so we get

|z| ≥ C ⇒ log(1 + exp(z)) ≤ max{0, z}+ exp(−C). (B.121)

By definition, we have for any x in the support of M(B),∣∣∣∣log

(
1− ηt(x)

ηt(x)

)∣∣∣∣ ≥ B, (B.122)

so have, considering C
.

= B · |α∗|, from (B.99) and (B.102),

J(B)
.

= EX∼M(B)

[
ηc(X) · − log t`α(ηt(X))

+(1− ηc(X)) · − log(1− t`α(ηt(X)))

]
(B.123)

= E(X,Y)∼D(B)

[
log

(
1 + exp

(
Yα∗ log

(
1− ηt(X)

ηt(X)

)))]
≤ E(X,Y)∼D(B)

[
max

{
0,Yα∗∗ log

(
1− ηt(X)

ηt(X)

)}]
+ exp (−B · |α∗∗|)

= |α∗∗| · E(X,Y)∼D(B) [max {0,−sign(α∗∗) · Y · ι(ηt(X))}] +
1− |e(B)|
1 + |e(B)|

= e(B) log

(
1 + |η(B)|
1− |e(B)|

)
+

1− |e(B)|
1 + |e(B)|

, (B.124)

which completes the proof of Theorem 16 after replacing the expression of α∗.
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Figure B.6: Comparison Between the Cross-entropy of the Logistic Loss (α = 1) and
That of the α-loss for the Scalar Correction in (B.126) in Theorem 16.

Remarks: Theorem 16 calls for several remarks:
Suppose p(B) = 1 so the cross-entropy ce(ηc, ηt;α) in (B.106) reduces to K(.),

B = 1 and all logits take ±1 value a.e.,

z(x)
.

= log

(
ηt(x)

1− ηt(x)

)
= ±1, (B.125)

which can be achieved by clamping, and p
.

= P(X,Y)∼M(1)[Yz(X) = 1], which gives
e(1) = 2p− 1,

α∗∗ = log

(
p

1− p

)
,

and

ce(ηc, ηt;α
∗∗) ≤ H(p) (B.126)

from Theorem 16. The properness choice α∗ = 1 however gives

ce(ηc, ηt; 1) = K(1) = E(X,Y)∼M(1) [log (1 + exp (−Yz(X)))] (B.127)

= p log(1 + exp(−1)) + (1− p) log(1 + exp(1)).(B.128)

= log(1 + e)− p. (B.129)

Figure B.6 plots ce(ηc, ηt;α
∗∗) (B.126) vs ce(ηc, ηt; 1) (B.129). We remark that

ce(ηc, ηt;α
∗∗) ≤ ce(ηc, ηt; 1), and the difference is especially large as p → {0, 1},

for which ce(ηc, ηt;α
∗∗)→ 0 while we always have ce(ηc, ηt; 1) > 0.3,∀p.

Incidence of computing α∗ on an estimate of e(B): Theorem 16 can be refined
if, instead of the true value e(B) we have access to an estimate ê(B). In this case,
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we can refine the proof of the Theorem from the series of eqs in (B.118). We remark
that

H ′
(

1 + z

2

)
=

1

2
· log

(
1− z
1 + z

)
, (B.130)

so since H is concave, we have for any e(B), ê(B),

H

(
1 + e(B)

2

)
≤ H

(
1 + ê(B)

2

)
+

(
1 + e(B)

2
− 1 + ê(B)

2

)
· 1

2
· log

(
1− ê(B)

1 + ê(B)

)
= H

(
1 + ê(B)

2

)
+

e(B)− ê(B)

4
· log

(
1− ê(B)

1 + ê(B)

)
≤ H

(
1 + ê(B)

2

)
+
|e(B)− ê(B)|

4
· log

(
1 + |ê(B)|
1− |ê(B)|

)
= H

(
1 + ê(B)

2

)
+
|e(B)− ê(B)|

4
· log

(
1 +

2|ê(B)|
1− |ê(B)|

)
≤ H

(
1 + ê(B)

2

)
+
|e(B)− ê(B)||ê(B)|

2(1− |ê(B)|)
, (B.131)

where we have used log(1 + z) ≤ z for the last inequality.
Polarity of α∗∗: as presented in the main body, the state of the art defines the α-loss
only for α ≥ 0. The proof of Theorem 16, and more specifically its proof, hints at
why alleviating this constraint is important and corresponds to especially difficult
cases. We have the general rule α∗∗ ≤ 0 iff e(B) ≤ 0, which indicates that the twisted
posterior tends to be small when the clean posterior tends to be large. Since the
Bayes tilted estimate is symmetric if we switch the couple (α, ηt) for (−α, 1 − ηt),
α∗∗ ≤ 0 provokes a change of polarity in the Bayes tilted estimate compared to the
twisted posterior. It thus corrects the twisted posterior. We emphasize that such a
situation happens for especially damaging twists (in particular, not Bayes blunting).

B.1.8 Pseudo-Inverse Link

Derivation of (3.16): From the definition of F in (3.3), we have that

F (z) := (−L)?(−z),∀z ∈ R. (B.132)

Given L(u) associated with an underlying cpe loss, we have that

(−L)?(z) = sup
u∈[0,1]

[zu+ L(u)]. (B.133)

Taking the derivative of the expression in brackets and solving for u, we obtain (as-
suming strictly concave L)

z + L′(u) = 0 (B.134)

u∗ = (L′)−1(−z). (B.135)
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Figure B.7: The Pseudo-inverse Link Vs Inverse Link for the α = 5 Loss. Notice the
Quality of the Approximation.

Plugging (B.135) back into the expression in brackets in (B.133), we obtain

(−L)?(z) = z(L′)−1(−z) + L((L′)−1(−z)), (B.136)

and

F (z) = (−L)?(−z) = −z(L′)−1(z) + L((L′)−1(z)). (B.137)

Then, we have by the chain rule that

d

dz
F (z) =

d

dz

[
−z(L′)−1(z) + L((L′)−1(z))

]
(B.138)

= −(L′)−1(z)− z
(
(L′)−1(z)

)′
+ L′((L′)−1(z))

(
(L′)−1(z)

)′
(B.139)

= −(L′)−1(z), (B.140)

where the last step is obtained since L′((L′)−1(z)) ((L′)−1(z))
′
= z ((L′)−1(z))

′
. Thus,

we have that

F ′(z) := −(L′)−1(z) = −(−L′)−1(−z). (B.141)

From property (D) of Lemma 12 in Appendix B.1.3 in (B.28), namely that L′(u) =
`1(t`(u))− `−1(t`(u)), and from (B.141), we get that

−F ′(z) = (`−1 ◦ t` − `1 ◦ t`)−1(−z), (B.142)

as desired.
Pil Approximation: Let α ∈ [−∞,∞], and define the conjugate αc such that

1/αc + 1/α = 1, using by extension αc(∞) = 1, αc(1) = ∞. If we were to exactly
implement a boosting algorithm for the α-loss, we would have to find the exact inverse
of (3.16), which would require inverting −L′(v)

.
= αc · t`(v)α

c −αc · t`(1− v)α
c
. Owing

to the difficulty to carry out this step, we choose a sidestep that makes inversion
straightforward and can fall in the conditions to apply Theorem 9, thus making
PilBoost a boosting algorithm for the α-loss of interest. The trick does not just
hold for the α-loss, so we describe it for a general loss ` assuming for simplicity that
`1(1) = `−1(0) = 0 and t`, `1, `−1 are invertible with `1, `−1 non-negative, conditions
that would hold for many popular losses (log, square, Matusita, etc.), and the α-loss.
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We then approximate the link −L′ by using just one of `−1 or `1 depending on their

argument, while ensuring functions match in 0, 1/2, 1. We name f̃` the clipped inverse
link, cil. Letting a−`

.
= `1(0)/(`1(0)− `1(1/2)) and a+

`

.
= `−1(1)/(`−1(1)− `−1(1/2)),

our link approximation makes use of the following function: f`(u)
.

= f−` (u) if u ≤ 1/2
and f`(u)

.
= f+

` (u) otherwise, with the shorthands f−` (u)
.

= a−` · (`1(1/2)− `1(t`(u))),
f+
` (u)

.
= a+

` · (`−1(t`(u))− `−1(1/2)). The following Lemma shows, in addition to
properties of f`, the expression obtained for the clipped inverse link for a general
cpe loss.

Lemma 16. f`(u) = −L′(u),∀u ∈ {0, 1/2, 1}; furthermore, the clipped inverse link

f̃`
.

= f−1
` is: (i) f̃`(z) = 0 if z < −`1(0); (ii) f̃`(z) = t−1

` ◦`
−1
1

(
`1(1/2)−`1(0)

`1(0)
· z + `1(1/2)

)
if −`1(0) ≤ z < 0; (iii) f̃`(z) = t−1

` ◦ `
−1
−1

(
`−1(1)−`−1(1/2)

`−1(1)
· z + `−1(1/2)

)
if 0 ≤ z <

`−1(1); (iv) f̃`(z) = 1 if z ≥ `−1(1). Furthermore, f̃` is continuous and if (S) and (D)

hold, then f̃` is derivable on R (with the only possible exceptions of {−`1(0), `−1(1)}).
The proof is immediate once we remark that `1(1) = `−1(0) = 0 bring ”properness

for the extremes”, i.e. 0 ∈ t`(0), 1 ∈ t`(1). We now give the expression of the formulas
of interest regarding Lemma 16 for the α-loss.

Lemma 17. We have for the α-loss,

f`(u) = αc ·


(

2·uα
uα+(1−u)α

) 1
αc − 1 if u ≤ 1/2,

1−
(

2·(1−u)α

uα+(1−u)α

) 1
αc

if u ≥ 1/2
, (B.143)

f̃(z) =



0 if z ≤ −αc,
(αc+z)

αc
α

(αc+z)
αc
α +(2αcαc−(αc+z)α

c
)

1
α

if −αc ≤ z ≤ 0,

(2αcαc−(αc−z)α
c
)

1
α

(αc−z)
αc
α +(2αcαc−(αc−z)αc)

1
α

if 0 ≤ z ≤ αc,

1 if z ≥ αc.

. (B.144)

Rewritten, we have that

f̃(z) =



0 z ≤ − α
α−1

( α
α−1

+z)
1

α−1

( α
α−1

+z)
1

α−1 +

(
2( α

α−1)
α
α−1−( α

α−1
+z)

α
α−1

) 1
α
− α
α−1
≤ z ≤ 0

(
2( α

α−1)
α
α−1−( α

α−1
−z)

α
α−1

) 1
α

( α
α−1
−z)

1
α−1 +

(
2( α

α−1)
α
α−1−( α

α−1
−z)

α
α−1

) 1
α

0 ≤ z ≤ α
α−1

1 z ≥ α
α−1

(B.145)

Figure B.8 plots (B.145) for several values of α.
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Figure B.8: A Plot of f̃(z) as a Function of α as given In (B.145).

Remark 5. It could be tempting to think that the clipped inverse link trivially comes
from clipping the partial losses themselves such as replacing `1(u) by 0 if u ≥ 1/2 and
symmetrically for `−1(u). This is not the case as it would lead to L piecewise constant
and therefore −L′ = 0 when defined.

We turn to a result that authorizes us to use Thm 9 while virtually not needing
(E) and (C) for α-loss. Denote Iα

.
= ±αc · [1− (1/α4), 1] (See Fig. B.7).

Lemma 18. Suppose α ≥ 1.2. For f̃` defined as in Lemma 16, ∃K ≥ 0.133 such that
α-loss satisfies:

∀z 6∈ Iα, |(f̃` − (−L′)−1)(z)| . K/α. (B.146)

Remark the necessity of a trick as we do not compute (−L′)−1 in (B.146). The
proof, in Section B.1.9, bypasses the difficulty by bounding the horizontal distance
between the inverses. The Lemma can be read as: with the exception of an interval

vanishing rapidly with α, the difference between f̃` (that we can easily compute for the
α-loss) and (−L′)−1 (that we do not compute for the α-loss), in order or just pointwise
(typically for α < 10) is at most 0.14/α. We now show how we can virtually ”get
rid of” (E) and (C) in such a context to apply Theorem 9. Consider the following
assumptions: (i) no edge falls in Iα, (ii) the weak learner guarantees γ = 0.14, (iii)
the average weights, wj

.
= 1>wj/m, satisfies wj ≥ 0.4. Looking at Figure B.7, we

see that (i) is virtually not limiting at all; (ii) is a reasonable assumption on wl;

remembering that a weight has the form w = f̃`(−yH(x)), we see that (iii) requires
H to be not “too good”, see for example Figure B.7 in which case w = 0.4 implies an
edge yH ≤ 0.8. We now observe that given (i), it is trivial to find af to satisfy (C)
since we focus only on one α-loss. Suppose α ≥ 2.7, which approaches the average
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value of the αs in our experiments, and finally let ζ
.

= 2.5/2.7 ≈ 0.926. Then we get
the chain of inequalities:

∆(F ) ≤
Lem. 18

M · 0.14

α
=
(ii)
γM · 1

α
≤

(WLA)

1

α
· ẽj

.
=

1

αwj
· ej ≤

(iii)

2.5

α
· ej ≤

2.5

2.7
· ej

.
= ζ · ej, (B.147)

and so (E) is implied by the weak learning assumption. To summarise, PilBoost boosts
the convex surrogate of the α-loss without either computing it or its derivative,
and achieves boosting compliant convergence using only the classical assumptions
of boosting, (R, WLA). The proof of Lemma 18 being very conservative, we can ex-
pect that the smallest value of K of interest is smaller than the one we use, indicating
that (B.147) should hold for substantially smaller limit values in (ii, iii).

B.1.9 Proof of Lemma 18

Define for short

F (u)
.

=

(
uα

uα + (1− u)α

)αc

−
(

(1− u)α

uα + (1− u)α

)αc

(B.148)

G(u)
.

= 1−
(

2 · (1− u)α

uα + (1− u)α

) 1
αc

, (B.149)

that we study for u ≥ 1/2 (the bound also holds by construction for u < 1/2). Define
the following functions:

g(u)
.

= 1− (2u)
1
αc , (B.150)

h(z)
.

=
1

1 + z
, (B.151)

iα(u)
.

= uα, (B.152)

and uα
.

= h ◦ i−α ◦ h−1(u), f(u)
.

= iαc(1− u)− iαc(u). We remark that g is convex if
α ≥ 1 while f is concave. Both derivatives match in 1/2 if

(αc)221−αc

= 1, (B.153)

whose roots are αc < 6. It means if α ≥ 6/5 = 1.2, then (g − f)′ ≥ 0, and so if we
measure

k∗
.

= arg sup
k

sup
x,x′:g(x)=f(x′)=k

|x− x′|,

then k∗ is obtained for x = 1, for which g(x) = 1 − 2
1
αc = k∗. We then need to

lowerbound x′ such that f(x′) = 1 − 2
1
αc , which amounts to finding x∗ such that

f(x∗) ≥ 1− 2
1
αc , since f is strictly decreasing. Fix

x∗
.

= 1− K

α
, (B.154)
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A series expansion reveals that for x = x∗ and K = log 2,

f(x∗) = g(x∗) +O

(
1

α2

)
, (B.155)

and we thus get that there exists K ≥ log 2 such that

sup
k

sup
x,x′:g(x)=f(x′)=k

|x− x′| ≤ K

α
, (B.156)

or similarly for any ordinate value, the difference between the abscissae giving the
value for f and g are distant by at most K/α. The exact value of the constant is not
so much important than the dependence in 1/α: we now plug this in the uαs notation
and ask the following question: suppose f(uα) = g(vα) = k. Since |uα − vα| ≤ K/α,
what is the maximum difference |u− v| as a function of α ? We observe

∂

∂u
uα = − α(u(1− u))α−1

(uα + (1− u)α)2
, (B.157)

∂2

∂u2
uα = α · (u(1− u))α−2((α− 2u+ 1)uα − (α + 2u− 1)(1− u)α)

(uα + (1− u)α)3
,(B.158)

which shows the convexity of uα as long as(
u

1− u

)α
≥ α + 2u− 1

α− 2u+ 1
, (B.159)

a sufficient condition for which – given the RHS increases with u – is

u ≥
(

4
α−1

) 1
α

1 +
(

4
α−1

) 1
α

. (B.160)

Since u ≥ 1/2, we note the constraint quickly vanishes. In particular, if α ≥ 5, the
RHS is ≤ 1/2, so uα is strictly convex. Otherwise, scrutinising the maximal values of
the derivative for α ≥ 1 reveals that if we suppose v ≤ δ for some δ, then |u − v| is
maximal for v = δ. So, suppose vα = ε and we solve for uα = K/α + ε, which yields

u =

(
1− K

α
− ε
) 1
α(

K
α

+ ε
) 1
α +

(
1− K

α
− ε
) 1
α

(B.161)

=
((1− ε)α−K)

1
α

(K + εα)
1
α + ((1− ε)α−K)

1
α

, (B.162)

while the v producing the largest |u− v| is:

v =
(1− ε) 1

α

ε
1
α + (1− ε) 1

α

, (B.163)
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so

|v − u| = (v − u)(ε) (B.164)

=
(1− ε) 1

α

ε
1
α + (1− ε) 1

α

− ((1− ε)α−K)
1
α

(K + εα)
1
α + ((1− ε)α−K)

1
α

. (B.165)

If we fix

ε =
1

α4
, (B.166)

then we get after separate series are computed in α→ +∞,

|v − u| = (v − u)(ε) =
log(1 + logK)

4α
+O

(
1

α2

)
(B.167)

.
0.133

α
. (B.168)

The ”forbidden interval” for v is then[
(α4 − 1)

1
α

1 + (α4 − 1)
1
α

, 1

]
≈

[
1

2
+

logα

α
, 1

]
; (B.169)

what is more interesting for us is the corresponding forbidden images for g(vα), which
are thus

g 6∈ αc ·
[
1− 1

α4
, 1

]
.

= Iα, (B.170)

where we use shorthand z · [a, b] .
= [az, bz]. This, we note, translates directly into

observable edges since g is the function we invert. Summarizing, we have shown that
if (i) α ≥ 1.2 then for any u, v such that F (u) = G(v) 6∈ Iα, then |u−v| . 0.133/α. It
suffices to remark that Iα represents the set of forbidden weights to get the statement
of the Lemma.

B.1.10 Proof of Theorem 9

Remark 6. Consider the following setup: h. ∈ [−1, 1], use the logistic loss surrogate
for F and the derivative of Matusita’s loss (just for illustration as the pseudo-inverse-
link approximation of the logistic loss) for the weights (see e.g., Nock and Nielsen

(2008) Table 1), we get in the worst case that ∆j(F ) ≤ 2·sup
∣∣∣12 − x

2
√

1+x2 − 1
1+exp(x)

∣∣∣ <
0.24707. So, all we need is |ej| > 0.24707 to get ζ < 1 constant. Since |ej| ∈ [0, 1],
this constraint is more than reasonable and turns into a very reasonable penalty in
Q(F ) (Theorem 9).

Remark 7. PilBoost and its convergence analysis bring a side contribution of
ours: it is impossible to exactly encode in standard machine types the inverse link of
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losses like the log loss, so the implementation of classical boosting algorithms (Fried-
man, 2001; Friedman et al., 2000) can only rely on approximations of the inverse link
function. Our results yield convergence guarantees for the implementations of such al-
gorithms, and (E) can be interpreted and checked in the context of machine encoding.
Two additional remarks hold regarding convergence rate: first, the 1/γ2 dependence
meets the general optimum for boosting (Alon et al., 2021); second, the 1/ε2 depen-
dence parallels classical training convergence of convex optimization (Thekumparampil
et al., 2020) (and references therein). There is however a major difference with such
work: PilBoost requires no function oracles for F (function values, (sub)gradients,
etc.). This “sideways” fork to minimizing F pays (only) a 1/(1 − ζ)2 factor in con-
vergence.

We proceed in two steps, assuming (WLA) holds for wl and (R) holds for the
weak classifiers.

In Step 1, we show that for any loss defined by F twice differentiable, convex and
non-increasing, for any z∗ ∈ R, as long as F satisfies assumptions (E) and (C) for T
iterations such that

T∑
t=0

w̃2
t ≥

2F ∗(F (0)− F (z∗))

γ2(1− ζ)2(1− π2)
, (B.171)

we have the guarantee on the risk defined by F :

Ei∼S [F (yiHT (xi))] ≤ F (z∗). (B.172)

Let F be any twice differentiable, convex and non-increasing function. We wish
to find a lowerbound 4 on the decrease of the expected loss computed using F :

Ei∼S [F (yiHt(xi))]− Ei∼S [F (yiHt+1(xi))] ≥ 4, (B.173)

where with a slight abuse of notation we let Ht denote the learned real-valued classifier
at iteration t. We make use of a similar proof technique as in Nock and Williamson
(2019). Suppose

Ht+1 = Ht + βj · hj, (B.174)

index j being returned by wl at iteration t. For any such index j, any g : R → R+

and any H ∈ RX , let

e(j, g,H)
.

= Ei∼S [yihj(xi) · g(yiH(xi))] , (B.175)

denote the expected edge of hj on weights defined by the couple (g,H). Furthermore,
let

∆(g1, g2)
.

= |e(j, g1, Ht)− e(j, g2, Ht)| , (B.176)

denote the discrepancy between two expected edges defined by g1, g2, respectively.
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There are two quantities we consider. First, let

X
.

= Ei∼S [(yiHt(xi)− yiHt+1(xi))F
′(yiHt(xi))] (B.177)

= βj · Ei∼S [yihj(xi) · −F ′(yiHt(xi))] (B.178)

= βj · e(j,−F ′, Ht) (B.179)

≥ βj · Ei∼S
[
yihj(xi) · f̃(−yiHt(xi))

]
− βj ·∆(−F ′, f̃s) (B.180)

= afe
2(j, f̃s, Ht)− afe(j, f̃s, Ht) ·∆(−F ′, f̃s) (B.181)

≥ af (1− ζ)e2(j, f̃s, Ht), (B.182)

where f̃s(z)
.

= f̃s(−z) and finally (B.182) makes use of assumption (E). The second
quantity we define is:

Y (Z)
.

= Ei∼S
[
(yiHt(xi)− yiHt+1(xi))

2F ′′(zi)
]
, (B.183)

where Z .
= {z1, z2, ..., zm} ⊂ Rm. Using assumption (R) and letting F ∗ be any real

such that F ∗ ≥ supF ′′(z), we obtain:

Y (Z) ≤ F ∗ · Ei∼S
[
(yiHt(xi)− yiHt+1(xi))

2
]

= F ∗ · β2
j · Ei∼S

[
(yihj(xi))

2
]

≤ F ∗ · β2
j ·M2

= F ∗a2M2 · e2(j, f̃s, Ht). (B.184)

A second order Taylor expansion on F brings that there exists Z .
= {z1, z2, ..., zm} ⊂

Rm such that:

Ei∼S [F (yiHt(xi))] = Ei∼S [F (yiHt+1(xi))]+Ei∼S [(yiHt(xi)−yiHt+1(xi))F
′(yiHt(xi))]

+Ei∼S
[
(yiHt(xi)− yiHt+1(xi))

2 · F
′′(zi)

2

]
, (B.185)

So,

Ei∼S [F (yiHt(xi))]− Ei∼S [F (yiHt+1(xi))] = X − Y (Z)

2

≥
(

1− ζ − F ∗aM2

2

)
a︸ ︷︷ ︸

.
=Z(a)

·e2(j, f̃s, Ht). (B.186)

Suppose we fix π ∈ [0, 1] and choose any

a ∈ 1− ζ
F ∗M2

· [1− π, 1 + π] . (B.187)

We can check that

Z(a) ≥ (1− ζ)2(1− π2)

2F ∗M2
, (B.188)
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and so

Ei∼S [F (yiHt(xi))]−Ei∼S [F (yiHt+1(xi))] ≥
(1− ζ)2(1− π2)

2F ∗M2
· e2(j, f̃s, Ht). (B.189)

So, taking into account that for the first classifier, we have Ei∼S [F (yiH0(xi))] = F (0),
if we take any z∗ ∈ R and we boost for a number of iterations T satisfying (we use

notation et as a summary for e2(j, f̃s, Ht) with respect to PilBoost):

T∑
t=1

e2
t ≥

2F ∗M2(F (0)− F (z∗))

(1− ζ)2(1− π2)
, (B.190)

then Ei∼S [F (yiHT (xi))] ≤ F (z∗). We now assume (WLA) holds, the LHS of (B.190)
is ≥ Tγ2. Given that we choose a = af in PilBoost, we need to make sure (B.187)
is satisfied for the loss defined by F , which translates to

F ∗ ∈ 1− ζ
afM2

· [1− π, 1 + π] , (B.191)

and defines assumption (C). To complete Step 1, we normalize the edge. Letting
w̃i

.
= wi/

∑
k wk, w̃t

.
= 1>wt/m and

ẽt
.

=
et

w̃t
∈ [−M,M ], (B.192)

which is then properly normalized and such that (B.190) becomes equivalently:

T∑
t=0

w̃2
t ẽ

2
t ≥

2F ∗M2(F (0)− F (z∗))

(1− ζ)2(1− π2)
, (B.193)

and so under the (weak learning) assumption on ẽt that |ẽt| ≥ γ · M , a sufficient
condition for (B.193) is then

T∑
t=0

w̃2
t ≥

2F ∗(F (0)− F (z∗))

γ2(1− ζ)2(1− π2)
, (B.194)

completing step 1 of the proof.

In Step 2, we show a result on the distribution of edges, i.e. margins. (B.194) con-
tains all the intuition about how the rest of the proof unfolds, as we have two major
steps: in step 2.1, we translate the guarantee of (B.194) on margins, and in step
2.2, we translate the “margin” based (B.194) in a readable guarantee in the boosting
framework (we somehow “get rid” of the w̃2

t in the LHS of (B.194)).

Step 2.1. Let Z .
= {z1, z2, ..., zm} ⊂ R a set of reals. Since F is non-increasing, we

have ∀u ∈ [0, 1],∀θ ≥ 0,

Pi[zi ≤ θ] > u⇒ Ei[F (zi)] > (1− u) inf
z
F (z) + uF (θ)

.
= (1− u)F ◦ + uF (θ), (B.195)
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so if we pick z∗ in (B.194) such that

F (z∗)
.

= (1− u)F ◦ + uF (θ), (B.196)

then (B.194) implies Ei∼S [F (yiHT (xi))] ≤ (1− u)F ◦ + uF (θ) and so by the contra-
position of (B.195) yields:

Pi∼S [yiHT (xi) ≤ θ] ≤ u, (B.197)

which yields our margin based guarantee.

Step 2.2. At this point, the key (in)equalities are (B.194) (for boosting) and (B.197)
(for margins). Fix κ > 0. We have two cases:

• Case 1: w̃t never gets too small, say w̃t ≥ κ,∀t ≥ 0. In this case, granted the
weak learning assumption holds on ẽt, (B.194) yields a direct lowerbound on
iteration number T to get Pi∼S [yiHT (xi) ≤ θ] ≤ u;

• Case 2: w̃t ≤ κ at some iteration t. Since the smaller it is, the better classified
are the examples, if we pick κ small enough, then we can get Pi∼S [yiHT (xi) ≤ θ] ≤
u “straight”.

This suggests our use of the notion of “denseness” for weights (Bun et al., 2020).

Definition 9. The weights at iteration t is called κ-dense iff w̃t ≥ κ.

We now have the following Lemma.

Lemma 19. For any t ≥ 0, θ ∈ R, κ > 0, if weights produced in Step 2.1 of Pil-
Boost fail to be κ-dense, then

Pi∼S [yiHT (xi) ≤ θ] ≤ κ

f̃(−θ)
. (B.198)

Proof. Let Z .
= {z1, z2, ..., zm} ⊂ R a set of reals. Since f̃ is non-decreasing, we have

∀θ ∈ R,

Ei[f̃(zi)] ≥ Pi[zi < −θ] · inf
z
f̃(z) + Pi[zi ≥ −θ] · f̃(−θ)

= Pi[zi ≥ −θ] · f̃(−θ) (B.199)

since by assumption inf f̃ = 0. Pick zi
.

= −yiHT (xi). We get that if Pi∼S [−yiHT (xi) ≥
−θ] = Pi∼S [yiHT (xi) ≤ θ] ≥ ξ, then w̃t

.
= Ei∼S [f̃(−yiHT (xi))] ≥ ξ · f̃(−θ). If we fix

ξ =
κ

f̃(−θ)
, (B.200)

then w̃t < κ implies (B.198), which ends the proof of Lemma 19.
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From Lemma 19, we let κ
.

= ξ∗ · f̃(−θ) and u
.

= ξ∗ in (B.197). If at any iteration,
HT fails to be κ-dense, then Pi∼S [yiHβ(xi) ≤ θ] ≤ ξ∗ and classifier Hβ satisfies the
conditions of Theorem 9 (this is our Case 2 above).

Otherwise, suppose it is always κ-dense (this is our Case 1 above). We then

have at any iteration T
∑

t<T w̃
2
t ≥ Tξ2

∗ · f̃ 2(−θ) and so a sufficient condition to

get (B.194) is then T ≥ 2F ∗(F (0)−F (z∗))

ξ2
∗ f̃

2(−θ)γ2(1−ζ)2(1−π2)
, where we recall z∗ is chosen so that

F (z∗) = (1− ξ∗)F ◦ + ξ∗F (θ). This ends the proof of Theorem 9 (with the change of
notation ξ∗ ↔ ε).

B.2 Additional Experimental Results

In this section, we provide additional experimental results and discussion to ac-
company Section 4.5 in the main text. The code for all of our experiments (including
the implementation of PilBoost) can be found at the following github repository
link:

https://github.com/SankarLab/Being-Properly-Improper

B.2.1 General Details

Most of the experiments were performed over the course of a month on a 2015
MacBook Pro with a 2.2 GHz Quad-Core Intel Core i7 processor and 16GB of memory.
The Adaptive α experiments were performed on a computing cluster and each required
about 30 minutes of compute time. Code can be found in PILBoostExperiments.py,
AdaptiveAlphaMenon.py, AdaptiveAlphaALL.py. Averaged experiments employed 10-
fold cross validation, and when twisters were present, randomization occurred over the
twisted samples as well. All algorithms across all experiments ran for 1000 iterations.

B.2.2 Discussion of af and α

In general, we found that for most experiments, 0.1 ≤ af ≤ 15. From the theory,
we know that if af is too small, boosting needs to occur for a very long time, and
if af is too large, almost no loss fits to (C) (equivalently, (C) fails for us). We also
generally found that PilBoost was not particularly sensitive to the choice of af as
long as it was in the “right ballpark”, hence our use of integer or rational values of af
for all experiments. When there is twist present, we found that α > 1 performed best,
where α∗ increased as the amount of twist increased (both observations are conistent
with our theory, see for example Lemma 3.4). Regarding the relationship between af
and α, this appeared to depend on the dataset and depth of the decision trees.
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B.2.3 Random Class Noise Twister

Dataset Algorithm Random Class Noise Twister
p = 0 0.15 0.3

AdaBoost 0.97± 0.02 0.91± 0.03 0.86± 0.03
us (α = 1.1) 0.94± 0.03 0.91± 0.01 0.86± 0.04
us (α = 2.0) 0.96± 0.02 0.94± 0.02 0.91± 0.04cancer
us (α = 4.0) 0.96± 0.01 0.92± 0.01 0.92± 0.03

XGBoost 0.97± 0.01 0.86± 0.03 0.73± 0.03

Table B.1: Cancer Feature Random Class Noise. Accuracies Reported for Each Al-
gorithm and Level of Twister. Depth One Trees. For α = 1.1, af = 7, for α = 2,
af = 2, and for α = 4, af = 1.

Figure B.9: Random Class Noise Twister on the Diabetes Dataset. Depth 3 Trees.
af = .1 for All α.

Dataset Algorithm Random Class Noise Twister
p = 0 0.15 0.3

AdaBoost 1.000± 0.000 0.949± 0.016 0.830± 0.043
us (α = 1.1) 1.000± 0.000 0.981± 0.013 0.886± 0.033
us (α = 2.0) 1.000± 0.000 0.992± 0.009 0.900± 0.027xd6
us (α = 4.0) 1.000± 0.000 0.999± 0.003 0.927± 0.023

XGBoost 1.000± 0.000 0.912± 0.016 0.776± 0.041

Table B.2: Xd6 Random Class Noise. Accuracies Reported for Each Algorithm and
Level of Twister. Depth Three Trees. af = 8 for All α. Note That for 0% Noise
α = 4 Used af = .1.
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Dataset Algorithm Random Class Noise Twister
p = 0 0.10 0.20 0.30

AdaBoost 0.90± 0.00 0.90± 0.00 0.90± 0.01 0.89± 0.00
us (α = 1.1) 0.90± 0.01 0.90± 0.00 0.90± 0.00 0.89± 0.00
us (α = 2.0) 0.90± 0.00 0.90± 0.00 0.90± 0.00 0.89± 0.00Online Shopping
us (α = 4.0) 0.90± 0.00 0.87± 0.01 0.89± 0.01 0.89± 0.01

XGBoost 0.89± 0.01 0.87± 0.00 0.84± 0.01 0.78± 0.01

Table B.3: Accuracies Reported for Each Algorithm and Level of Twister. Random
Training Sample Selected with Probability p. Then, for Selected Training Sample,
Boolean Feature Flipped with Probability p for Each Feature, Independently. Depth
Three Trees. For α = 1.1, af = 7, for α = 2, af = 8, and for α = 4, af = 15.

B.2.4 Insider Twister

Figure B.10: Box and Whisker Visualization of Scores Associated with Figure 3.3.
For All Insider Twister Results, We Fixed af = 7. Under No Twister, α = 1.1, Has
Accuracy 0.901 ± .003, and Xgboost Has Accuracy 0.892 ± .003. Under the Insider
Twister, α = 1.1, Has Accuracy 0.850± .002, and Xgboost Has Accuracy 0.829± .016;
Under the Welch t-test, the Results Have a p-value of 0.004.
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B.2.5 Discussion of XGBoost

Algorithm Average Compute Times
cancer xd6 diabetes shoppers

AdaBoost 1.41 0.75 1.11 13.68
us (α = 1.1) 2.19 2.01 2.19 30.88
us (α = 2.0) 1.11 0.79 2.09 21.85
us (α = 4.0) 0.96 1.35 1.82 13.01

XGBoost 0.29 0.28 0.46 3.16

Table B.4: Average Compute times per Run (10 Runs) in Seconds Across the
Datasets. Note That the Values of aF Are Chosen Identically to Choices in Sec-
tion B.2.3.

XGBoost is a very fast, very well engineered boosting algorithm. It employs
many different hyperparameters and customizations. In order to report the fairest
comparison between AdaBoost, PilBoost , and XGBoost, we opted to keep as many
hyperparameters fixed (and similar, e.g., depth of decision trees) as possible. That
being said, it appears that XGBoost inherently uses pruning, so the algorithm pruned
while the other two did not. Further details regarding three other important points
related to XGBoost:

1. Please refer to Table B.4 for averaged compute times for the three different
algorithms. In general, XGBoost had the far faster computation time among
the three. However, note that PilBoost was not particularly engineered for
speed. Indeed, we estimate that the computation of f̃ accounts for 40− 50% of
the total computation time, which we believe can be improved. Thus, we leave
the further computational optimization of PilBoost for future work.

2. For details regarding regularization, refer to Figure B.11, where we report a
comparison of regularized XGBoost and PilBoost such that the training data
suffers from the insider twister. We find that regularization improves the ability
of XGBoost to combat the twister, but it is not as effective as PilBoost.

3. For details regarding early stopping, refer to Figure B.13, where we report
a comparison of early-stopped XGBoost (on un-twisted validation data, i.e.,
cheating) and PilBoost such that the training data suffers from the insider
twister. We find that even early-stopping does not improve XGBoost’s ability
to combat the insider twister as effectively as PilBoost.

Early stopping - on an untwisted hold-out set contradicts our experiment. With
early stopping enabled on a twisted hold-out set, XGBoost generally did not early
stop.

B.2.6 Adaptive α Experiment
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Figure B.11: With Regularization (Where λ = 20), We Still Observe That the Feature
Importance of Xgboost Is Perturbed. Note That PilBoost is Not Regularized.

Figure B.12: Scores Associated with Figure B.11.
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Figure B.13: With Early Stopping (Where Xgboost Has Access to Clean Validation
Data - Cheating Scenario), We Still Observe That the Feature Importance of Xgboost
Is Perturbed. Note That PilBoost is Not Early Stopped.

Figure B.14: Scores Associated with Figure B.13.
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Figure B.15: Extended Version of Figure 3.2 with Two Additional Adaptive α Meth-
ods. Original Learned PilBoost estimates Its Choice of α by Using Xgboost as an
Oracle. That Is, the Method Trains Xgboost on the Noisy Data, Then Computes Its
Confusion Matrix on a Clean Validation Set. From the Confusion Matrix, the Label

Flip Probability p Is Estimated Using p = Avg
(

Fp
Tp+Fp

, Fn
Fn+Tn

)
. Next, We Estimate

ηc and ηt with ηc = Fn+Tp
Fp+Tp+Fn+Tn

and ηt = Fp+Tp
Fp+Tp+Fn+Tn

, Respectively. Lastly Similar

to Menon PilBoost, Using the Estimates of p, ηc, and ηt, We Apply the Formula in
Lemma 9(c) and the SLN Formula given Just Before Lemma 7 to Obtain an Estimate
for α∗. Taylor Series PilBoost is Identical to Original Learned PilBoost except at
the Last Step, Where a Taylor Series Approximation of the Formula in Lemma 9(c)
Is Used Instead. We Find That Menon’s Method Also Outperforms Both of These
Methods on the Xd6 Dataset, Except for When Original Learned PilBoost slightly
Outperforms Menon’s Method in the Very High Noise Regime. Even Stronger, Note
That Both Original Learned PilBoost and Taylor Series PilBoost assume More
Information than “Menon’s Method”, Which Only Uses the Noisy Training Data.

Figure B.16: Companion Figure to Figures 3.2 And B.15 on the Diabetes Dataset.
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Figure B.17: Companion Figure to Figures 3.2 And B.15 on the Cancer Dataset.
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C.1 Further Theoretical Results, Commentary, and Proofs

Lemma 20. For α ∈ (0,∞], the first derivative of l̃α with respect to the margin is
given by

l̃α
′
(z) :=

d

dz
l̃α(z) = −σ′(z)σ(z)−

1
α , (C.1)

its second derivative is given by

l̃α
′′
(z) :=

d2

dz2
l̃α(z) =

ez (αez − α + 1)

α(e−z + 1)−
1
α (ez + 1)3

, (C.2)

and its third derivative is given by

l̃α
′′′

(z) :=
d3

dz3
l̃α(z) =

−e2z + 4ez − 1− 3ez−2
α
− 1

α2

e−z (1 + e−z)−
1
α (ez + 1)4

. (C.3)

Discussion of Algorithm 2 The weighting used for the weak learner in Algo-

rithm 2, namely that θt = 1
2

log
(

1−εt
εt

)
, is the expression commonly used in vanilla

AdaBoost (α = 1/2 for AdaBoost.α) (Schapire and Freund, 2013). However, there
are several other possibilities of θt for AdaBoost.α, due to its interpolating charac-

teristics. One possibility is to use θt = α log
(

1−εt
εt

)
, for α ∈ (0,∞], which is the

optimal classification function of the margin-based α-loss (Sypherd et al., 2022b).
Another possibility is to use a Wolfe line search (Telgarsky, 2013). Consideration of
the weighting of the weak learners, and the ensuing convergence (and consistency)
characteristics for Algorithm 2, is left for future work.

C.1.1 Proof of Theorem 10

The strategy of the proof is as follows:

1. First, we quantify what a perfect classification solution on the Long-Servedio
dataset looks like, namely, inequality requirements involving θ1 and θ2 derived
from the interaction of the “penalizers”, “puller”, and “large margin” examples
and the linear hypothesis class.

2. Next, we invoke the pathological result of (Long and Servedio, 2010), which
yields a “bad” margin γ for any noise level and the margin-based α-loss with
α ≤ 1 (i.e., convex losses as articulated in Proposition 7).

3. Then, we reduce the first order equation of the margin-based α-loss evaluated
at the four examples over the linear weights for α ∈ (1,∞), and through a
cancellation yield an equation which has a function of θ1 on the LHS and a
similar function of both θ1 and θ2 on the RHS, i.e., an asymmetric equation not
allowing full analytical solution but allowing reasoning about possible solutions.
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(a) α = 1.1 classification line. (b) α = 1.8 classification line.

(c) α = 2 classification line. (d) α = 10 classification line.

Figure C.1: Companion Figure of Figure 4.2 Where n = 2 (p = 1/3) and γ = 1/20
for α ∈ {1.1, 1.8, 2, 10}.

4. Finally, using continuity arguments exploiting the giving up properties of the
quasi-convex margin-based α-losses for α ∈ (1,∞), we guarantee the existence
of a solution (θ∗1, θ

∗
2) with perfect classification accuracy on the clean Long-

Servedio dataset under the given pathological margin γ.

By the construction of the hypothesis class (Long and Servedio, 2010), namely that
H = {h1(x) = x1, h2(x) = x2}, notice that the classification lines (constructed by the
boosting algorithm in this pathological example) are given by θ1x1+θ2x2 = 0 and must
pass through the origin. Rewriting this classification line, we have that x2 = − θ1

θ2
x1.

Reasoning about perfect classification weights (θ∗1, θ
∗
2), notice (see Figure 4.2) that the

“large margin” example forces θ∗1 > 0. Further, reasoning about the “penalizers”, we
find that we require θ∗1 > θ∗2, and reasoning about the “puller”, we also find that we
require θ∗1 > −5θ∗2. Thus, perfect classification weights on the Long-Servedio dataset
must satisfy all of the following:

θ∗1 > 0 and θ∗1 > θ∗2 and θ∗1 > −5θ∗2. (C.4)

We now examine the solutions to the first-order equation for α ∈ (0,∞].
As in (Long and Servedio, 2010), let 1 < N < ∞ be the noise parameter such

that the noise rate p = 1
N+1

, and hence 1− p = N
N+1

. Under the Long-Servedio setup
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with the margin-based α-loss (and recalling that all four examples have classification
label y = 1), we have that

Rp
α(θ1, θ2) =

1

4

∑
x∈S

[
(1− p)l̃α(θ1x1 + θ2x2) + pl̃α(−θ1x1 − θ2x2)

]
. (C.5)

It is clear that minimizing 4(N + 1)Rp
α is the same as minimizing Rp

α so we shall
henceforth work with 4(N + 1)Rp

α since it gives rise to cleaner expressions. We have
that

4(N + 1)Rp
α(θ1, θ2) =

∑
x∈S

[Nl̃α(θ1x1 + θ2x2) + l̃α(−θ1x1 − θ2x2)] (C.6)

= Nl̃α(θ1) + l̃α(−θ1) + 2Nl̃α(θ1γ − θ2γ) + 2l̃α(−θ1γ + θ2γ)

+Nl̃α(θ1γ + 5θ2γ) + l̃α(−θ1γ − 5θ2γ).
(C.7)

See Figure C.2 for a visualization of (C.7).
Again following notation in (Long and Servedio, 2010), let Pα

1 (θ1, θ2) and Pα
2 (θ1, θ2)

be defined as follows:

Pα
1 (θ1, θ2) :=

∂

∂θ1

4(N + 1)Rp
α(θ1, θ2) and Pα

2 (θ1, θ2) :=
∂

∂θ2

4(N + 1)Rp
α(θ1, θ2).

(C.8)

Thus, differentiating (C.7) by θ1 and θ2 respectively, we have

Pα
1 (θ1, θ2) = Nl̃α

′
(θ1)− l̃α′(−θ1) + 2γNl̃α

′
(θ1γ − θ2γ)

− 2γl̃α
′
(−θ1γ + θ2γ) +Nγl̃α

′
(θ1γ + 5θ2γ)− γl̃α′(−θ1γ − 5θ2γ),

(C.9)

and

Pα
2 (θ1, θ2) = −2γNl̃α

′
(θ1γ − θ2γ) + 2γl̃α

′
(−θ1γ + θ2γ)

+ 5γNl̃α
′
(θ1γ + 5θ2γ)− 5γl̃α

′
(−θ1γ − 5θ2γ). (C.10)

In order to reason about the quality of the solutions to (C.7) for α ∈ (1,∞),
we want to find where Pα

1 (θ1, θ2) = Pα
2 (θ1, θ2) = 0 for the margin-based α-loss. So,

rewriting Pα
1 (θ1, θ2) = 0, we obtain

Nl̃α
′
(θ1) + 2γNl̃α

′
(θ1γ − θ2γ) +Nγl̃α

′
(θ1γ + 5θ2γ)

= l̃α
′
(−θ1) + 2γl̃α

′
(−θ1γ + θ2γ) + γl̃α

′
(−θ1γ − 5θ2γ),

(C.11)

and rewriting Pα
2 (θ1, θ2) = 0, we obtain

2γl̃α
′
(−θ1γ + θ2γ) + 5γNl̃α

′
(θ1γ + 5θ2γ) = 2γNl̃α

′
(θ1γ − θ2γ) + 5γl̃α

′
(−θ1γ − 5θ2γ).

(C.12)
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(a) α = 1 Optimization Landscape. (b) α = 1.1 Optimization Landscape.

(c) α = 3 Optimization Landscape. (d) α = 10 Optimization Landscape.

Figure C.2: Plots of Optimization Landscapes on the Long-servedio Dataset,
I.E. (C.7), for α ∈ {1, 1.1, 3, 10}. Aligning with Figure 4.2, n = 2 and γ = 1/20.
For α = 1, the Landscape Is Convex, Which Was Formally Proved (for Any Distri-
bution) In (Sypherd et al., 2020). For α = 1.1, the Landscape Is Non-convex, but
Not Too Much, Which Was Also Quantified In (Sypherd et al., 2020). For α = 3,
the Landscape Is More Non-convex, and Notice That the Quality of the Solutions (in
the Sense Of (C.4)) Is Significantly Better for α = 3. For α = 10, the Landscape
Strongly Resembles the α = 3, but Is “flatter”.

Substituting (C.12) into (C.11), we are able to cancel a term and recover

Nl̃α
′
(θ1)− l̃α′(−θ1) = 6γl̃α

′
(−θ1γ − 5θ2γ)− 6Nγl̃α

′
(θ1γ + 5θ2γ). (C.13)

Rewriting, we obtain

Nl̃α
′
(θ1)− l̃α′(−θ1) = −6γ

[
Nl̃α

′
(γ(θ1 + 5θ2))− l̃α′(−γ(θ1 + 5θ2))

]
. (C.14)

Notice that Bα
N(x) = Nl̃α

′
(x)− l̃α′(−x), with x ∈ R, is common on both sides. From

Lemma 20, we have that l̃α
′
(x) := −σ′(x)σ(x)−1/α for α ∈ (0,∞]. Plugging this into
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Bα
N (and using the fact that σ′(x) is an even function), we have that

Bα
N(x) = N

(
−σ′(x)σ(x)−1/α

)
−
(
−σ′(−x)σ(−x)−1/α

)
(C.15)

= σ′(x)σ(−x)−1/α −Nσ′(x)σ(x)−1/α (C.16)

= σ′(x)
(
σ(−x)−1/α −Nσ(x)−1/α

)
. (C.17)

Using this, we can rewrite (C.14) as

Bα
N(θ1) = −6γBα

N(γ(θ1 + 5θ2)), (C.18)

which is equivalent to

σ′(θ1)
(
σ(−θ1)−1/α −Nσ(θ1)−1/α

)
= −6γσ′(γ(θ1 + 5θ2))

(
σ(−γ(θ1 + 5θ2))−1/α −Nσ(γ(θ1 + 5θ2))−1/α

)
, (C.19)

and both quantify solutions (θ∗1, θ
∗
2). Notice that it is unfortunately not possible to

analytically reduce (C.19) for general α ∈ (1,∞) because it is a difference of α power
expressions, i.e., a transcendental equation. However, while we cannot analytically
recover solutions (θ∗1, θ

∗
2) for α ∈ (1,∞), we can reason about the solutions themselves

(from the perspective of (C.4)), because we can utilize nice properties of Bα
N . For

instance, one key thing to notice in (C.18) is that Bα
N on the LHS depends only on

one component of the solution vector, namely θ1, whereas the RHS depends on both
components of the solution vector (θ1, θ2).

(a) Bα
N (x) for α = 1. (b) Bα

N (x) for α = 3.

Figure C.3: Plots of Bα
n (x) for α = 1 and 3, Where n = 2. For α = 1, Notice That

Bα
n (x) Is Non-decreasing in x. On the Other Hand, Notice That for α = 3, Bα

n (x)
Is Not Non-decreasing. One Can Also See Other Properties of Bα

n in Figure (b) as
Articulated in Lemma 21.

To this end, we take a detour from the main thread to aggregate some nice prop-
erties of Bα

N for α > 1. See Figure C.3 for a plot of Bα
N .

Lemma 21. Consider for α ∈ (0,∞] and 1 < N <∞,

Bα
N(x) := σ′(x)

(
σ(−x)−1/α −Nσ(x)−1/α

)
, (C.20)

where x ∈ R. The following are properties of Bα
N :
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1. For α ≤ 1, Bα
N(x) is non-decreasing in x.

2. For α > 1, Bα
N(x) is not non-decreasing in x.

3. Note that lim
α→∞

Bα
N(x) = σ′(x)(1−N).

4. For α > 1, lim
x→+∞

Bα
N(x)→ 0+ and lim

x→−∞
Bα
N(x)→ 0−.

5. For α > 1, the resulting limits of the previous property are reversed for −Bα
N .

6. For α > 1, Bα
N(x) > 0 if and only if x > α lnN .

The proof of the first property is obtained by invoking one of the results of Long
and Servedio (2010) for convex, classification-calibrated loss functions. The remaining
properties can be readily shown using standard techniques.

With these nice properties of Bα
N in hand, we now return to the main thread.

Using the properties in Lemma 21, we want to reason about the solutions of (C.18),
i.e.,

Bα
N(θ1) = −6γBα

N(γ(θ1 + 5θ2)), (C.21)

as a function of α ∈ (0,∞]. From Propositions 7 and (Sypherd et al., 2022b), we

know that l̃α is classification-calibrated for all α ∈ (0,∞], convex for α ≤ 1, and
quasi-convex for α > 1. Thus, via (Long and Servedio, 2010), for each α̂ ≤ 1, there
exists some 0 < γα̂ < 1/6 such that there exists a solution (θα̂1 , θ

α̂
2 ) of (C.21) which

has classification accuracy of 0.5 (fair coin) on the Long-Servedio dataset. Without
loss of generality, fix α̂ ≤ 1 and its associated pathological 0 < γα̂ < 1/6.

For α =∞, notice that there are no solutions to (C.21) since via the third property
in Lemma 21, (C.21) reduces to

σ′(θ1)(1−N) = −6γα̂σ
′(γα̂(θ1 + 5θ2))(1−N), (C.22)

which is not satisfied because σ′(θ1)(1−N) < 0 and −6γα̂σ
′(γα̂(θ1 +5θ2))(1−N) > 0

for all (θ1, θ2); intuitively, the LHS and RHS in (C.22) look like mirrored σ′(x) type
functions.

Now, we consider α ∈ (1,∞) in (C.21), which is the key region of α for the proof.
Examining the LHS of (C.21), i.e. Bα

N(θ1), we note from the fourth property of
Lemma 21 that lim

θ1→+∞
Bα
N(θ1)→ 0+. Furthermore, we note via the sixth property in

Lemma 21 that Bα
N(θ1) > 0 if and only if θ1 > α lnN . So, tuning α ∈ (1,∞) greater

moves the crossover (from negative to positive) of Bα
N further in θ1.

We now examine the RHS of (C.21), i.e., −6γα̂B
α
N(γα̂(θ1 +5θ2)). Set θ2 = 0, so we

reduce−6γα̂B
α
N(γα̂(θ1+5θ2)) to−6γα̂B

α
N(γα̂θ1). From the fifth property of Lemma 21,

we have that lim
θ1→∞

−6γα̂B
α
N(γα̂θ1)→ 0−. Furthermore, we note via the sixth property

in Lemma 21 that −6γα̂B
α
N(γα̂θ1) < 0 if and only if θ1 >

α lnN
γα̂

. So, tuning α ∈ (1,∞)

greater moves the crossover (from positive to negative) of −6γα̂B
α
N(γα̂θ1) further in

θ1.
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(a) Plot of LHS (green) and RHS (red)
of (C.21) for α = 1.

(b) Plot of LHS (green) and RHS (red)
of (C.21) for α = 1.1.

(c) Plot of LHS (green) and RHS (red)
of (C.21) for α = 3.

(d) Plot of LHS (green) and RHS (red)
of (C.21) for α = 10.

Figure C.4: Plots of LHS (Green) and RHS (Red) Of (C.21) for α ∈ {1, 1.1, 3, 10},
and N = 2 and γ = 1/20. The Intersections of the Surfaces Indicate Solutions
Of (C.21). One Can See That the Solutions for α = 1 Are Not “good” in the Sense
Of (C.4) Because θ1 Is Small and Fixed; This Phenomenon Was Proved By (Long
and Servedio, 2010) since α = 1 Is a Convex Loss. For α = 1.1, One Can See the
Resemblance of α = 1 and α = 3, and the Fact That “good” Solutions Are Starting to
Accumulate. For α = 3, There Are Many Solutions with Diverse (θ1, θ2) Values, since
the Loss Is No Longer Convex. “good” Solutions for α = 3 Can Be Seen Where θ1

Is Positive and Large with Respect to θ2, I.E., In the Middle/Right Side of the Plot.
For α = 10, One Can See That the “good” Solutions Have Been Pushed out Further
in the Parameter Space and the Two Surfaces Are Starting to Separate (Reflecting
the Fact That α = ∞ Has No Solutions). Viewing All Four Plots Together, One
Observes Smooth Transitions in α, Indicating That Finding a Good Solution Is Not
Difficult.
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Taking the limit and crossover behaviors in θ1 of Bα
N(θ1) (the LHS of (C.21)) and

−6γα̂B
α
N(γα̂θ1) (the reduced RHS of (C.21)) together, we have by continuity that

there must exist some θ̃1 > 0 which satisfies

Bα
N(θ̃1) = −6γα̂B

α
N(γα̂θ̃1), (C.23)

for each α ∈ (1,∞). Furthermore, the choice of α ∈ (1,∞) directly influences the

Figure C.5: A Plot of Lhs (Green) and Rhs (Red) Of (C.23) for α = 3, Where N = 2,

γ = 1/20. Notice That the Intersection Point θ̃1 (Dotted Line) Is Very Close to the
Crossover Point α lnN

γα̂
≈ 3×.69

1/20
≈ 41.59, and Also Notice That This Solution Nicely

Coincides with the Grid-search Solution Presented in Figure 4.2.

magnitude of θ̃1 > 0, with larger α increasing the value of θ̃1 because of the crossover
points, particularly that we require θ̃1 >

α lnN
γα̂

, which is more restrictive than the

requirement that θ̃1 > α lnN , since 0 < γα̂ < 1/6, i.e., Bα
N is more “expansive” when

its argument is multiplied by γα̂ < 1/6. See Figure C.5 for a plot.
Therefore, for each α ∈ (1,∞), there exists a solution (θα1 , θ

α
2 ) to (C.21), where

θα1 = θ̃1 > 0 (indeed, we have that θα1 = O
(
αγ−1

α̂ ln (p−1 − 1)
)
) and θα2 = 0, which is

a good solution in the sense of (C.4) and thus has perfect classification accuracy on
the clean LS dataset.

Next, while not necessary for the proof of Theorem 10, we also argue for the
existence of other optima near (θα1 , θ

α
2 ). Reconsidering the full (with θ2 included)

expression, −6γα̂B
α
N(γα̂(θ1+5θ2)) in (C.21), we take α ∈ (1,∞) large enough in (C.23)

and thus θ̃1 >
α lnN
γα̂

is large enough such that Bα
N(θ̃1) ≈ 0 and is locally very “flat”

(as given by the third property in Lemma 21). Hence, perturbing θ̃1 slightly induces

an extremely slight movement in Bα
N(θ̃1). Now, considering −6γα̂B

α
N(γα̂(θ̃1 + 5θ2)),

we fix θ∗2 to be very small (either positive or negative). We then “wiggle” θ̃1 slightly
to (potentially) recover a solution θ∗1 to

Bα
N(θ∗1) = −6γα̂B

α
N(γα̂(θ∗1 + 5θ∗2)), (C.24)
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(a) Rotated version of Figure C.4a. (b) Rotated version of Figure C.4b.

(c) Rotated version of Figure C.4c. (d) Rotated version of Figure C.4d.

Figure C.6: Companion Figures of Figure C.4 for α ∈ {1, 1.1, 3, 10}, and N = 2 and
γ = 1/20. The Contours Indicate Solutions Of (C.21). In Figure C.6c, One Can See
a Contour of “good” LS Solutions near Where θ1 ≈ 41.59 and θ2 Is Very Small.
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which (might) exist by continuity. See Figure C.6 for a plot; intuitively, the fact that
the LHS and RHS of (C.23) intersect, not merely “touch”, suggests the existence of
(θ∗1, θ

∗
2), indeed a “strip” of good solutions.

Figure C.7: Companion Figure of Figure C.6d, Again for α = 10, Where the Param-
eter Space Has Been Increased. One Can Again See “good” LS Solutions for Large
θ1 and Small θ2. This Is Indicative of a Trade off Between the Value of α and the
Range of the Parameter Space for the LS Dataset.

C.1.2 Proof of Theorem 11

In this section, we provide the proof of Theorem 11. First, however, we provide
lemmas useful in the proof of Theorem 11, which indicate useful bounds for α = 1
and ∞, and their respective proofs.

Lemma 22. For all z ∈ R, we have that∣∣∣∣ d2

dz2
l̃1(z)

∣∣∣∣ ≥ ∣∣∣∣ d2

dz2
l̃∞(z)

∣∣∣∣ , (C.25)

Proof. Examining

∣∣∣∣ d2

dz2
l̃1(z)

∣∣∣∣ =

∣∣∣∣ d2

dz2
l̃∞(z)

∣∣∣∣, we have that

∣∣∣∣ d2

dz2
l̃1(z)

∣∣∣∣ =

∣∣∣∣ d2

dz2
l̃∞(z)

∣∣∣∣ (C.26)∣∣∣∣ ez

(ez + 1)2

∣∣∣∣ =

∣∣∣∣ez(ez − 1)

(ez + 1)3

∣∣∣∣ (C.27)

ez =

∣∣∣∣ez(ez − 1)

ez + 1

∣∣∣∣ , (C.28)

221



however, there are no real solutions to this equation. Thus,

∣∣∣∣ d2

dz2
l̃1(z)

∣∣∣∣ and

∣∣∣∣ d2

dz2
l̃∞(z)

∣∣∣∣
do not intersect.

Considering the large z > 0 regime, we find that

ez ≥ ez − 1, (C.29)

for all z ∈ R, where we used the fact that lim
z→∞

ez(ez−1)
ez+1

= ez − 1. Thus, by the

Intermediate Value Theorem, we have the desired conclusion.

Lemma 23. For |z| > ln (2), we have that∣∣∣∣ d3

dz3
l̃∞(z)

∣∣∣∣ ≤ ∣∣∣∣ d3

dz3
l̃1(z)

∣∣∣∣ . (C.30)

Proof. Consider ∣∣∣∣ d3

dz3
l̃1(z)

∣∣∣∣ =

∣∣∣∣ ez − e2z

(ez + 1)3

∣∣∣∣ (C.31)

and ∣∣∣∣ d3

dz3
l̃∞(z)

∣∣∣∣ =

∣∣∣∣−e3z + 4e2z − ez

(ez + 1)4

∣∣∣∣ . (C.32)

Setting ∣∣∣∣ d3

dz3
l̃1(z)

∣∣∣∣ =

∣∣∣∣ d3

dz3
l̃∞(z)

∣∣∣∣ , (C.33)

after some algebra, we find that z∗ = ± ln (2). Furthermore, considering the large
z > 0 regime, we find that ∣∣∣∣ d3

dz3
l̃∞(z)

∣∣∣∣ ?

≤
∣∣∣∣ d3

dz3
l̃1(z)

∣∣∣∣ (C.34)∣∣∣∣−e3z + 4e2z − ez

(ez + 1)4

∣∣∣∣ ?

≤
∣∣∣∣ ez − e2z

(ez + 1)3

∣∣∣∣ (C.35)

e3z − 4e2z + ez

ez + 1

?

≤ e2z − ez (C.36)

e2z − 4ez ≤ e2z − ez, (C.37)

thus by the IVT and symmetry, we have the desired result.

With Lemmas 22 and 23 in hand, we now present the proof of Theorem 11.
Recall from (4.11) that for α ∈ (0,∞]

∇θ l̃
α(〈Y X, θ〉) = −σ(〈Y X, θ〉)1− 1

ασ(−〈Y X, θ〉)Y X = l̃α
′
(〈Y X, θ〉)Y X, (C.38)
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since for each i ∈ [d],
∂

∂θi
l̃α(〈Y X, θ〉) = l̃α

′
(〈Y X, θ〉)Y Xi.

Hence, the gradient of the noisy α-risk from (4.12) is

∇θR
p
α(θ) = EX,Y

[
(1− p)∇θ l̃

α(〈Y X, θ〉) + p∇θ l̃
α(〈−Y X, θ〉)

]
(C.39)

= EX,Y
[(

(1− p)l̃α′(〈Y X, θ〉)− pl̃α′(〈−Y X, θ〉)
)
Y X

]
, (C.40)

where we expanded the expression for clarity. Notice that for α = 1 (from Lemma 20),

l̃1
′
(−z) = −l̃1′(z)− 1, (C.41)

namely that l̃1
′

is almost an odd function, and for α =∞,

l̃∞
′
(−z) = l̃∞

′
(z), (C.42)

namely that l̃∞
′

is an even function.
Thus, we have by the definition of θ̂1 and θ̂∞ that for α = 1

0 = ∇θR
p
1(θ̂1) = EX,Y

[(
(1− p)l̃1′(〈Y X, θ̂1〉)− pl̃1′(〈−Y X, θ̂1〉)

)
Y X

]
(C.43)

= (1− p)EX,Y
[
l̃1
′
(〈Y X, θ̂1〉)Y X

]
− pEX,Y

[
l̃1
′
(〈−Y X, θ̂1〉)Y X

]
(C.44)

= (1− p)EX,Y
[
l̃1
′
(〈Y X, θ̂1〉)Y X

]
− pEX,Y

[(
−l̃1′(〈Y X, θ̂1〉)− 1

)
Y X

]
(C.45)

= EX,Y
[
l̃1
′
(〈Y X, θ̂1〉)Y X

]
+ pEX,Y [Y X], (C.46)

and for α =∞

0 = ∇θR
p
∞(θ̂∞) = EX,Y

[(
(1− p)l̃∞′(〈Y X, θ̂∞〉)− pl̃∞′(〈−Y X, θ̂∞〉)

)
Y X

]
(C.47)

= (1− p)EX,Y
[
l̃∞
′
(〈Y X, θ̂∞〉)Y X

]
− pEX,Y

[
l̃∞
′
(〈−Y X, θ̂∞〉)Y X

]
(C.48)

= (1− 2p)EX,Y
[
l̃∞
′
(〈Y X, θ̂∞〉)Y X

]
. (C.49)

And, thus we have that for each i ∈ [d],

EX,Y
[
l̃1
′
(〈Y X, θ̂1〉)Y Xi

]
+ pEX,Y [Y Xi] = 0, (C.50)

and

EX,Y
[
l̃∞
′
(〈Y X, θ̂∞〉)Y Xi

]
= 0. (C.51)
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In order to evaluate the efficacy of the gradient of the noisy α-risk at recovering
the data generating vector θ∗ ∈ Bd(r), we seek to upper bound ‖∇θR

p
1(θ∗)‖∞ and

‖∇θR
p
∞(θ∗)‖∞. To this end, recall the Taylor-Lagrange equality (Kline, 1998) for a

twice continuously differentiable f : R→ R,

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2
f ′′(c), (C.52)

where c ∈ [a, b].
Let i ∈ [d] be arbitrary, but fixed. From (C.40) (and the reductions from (C.46)

and (C.49)) we have that at θ∗ ∈ Bd(r)

∂

∂θi
Rp

1(θ∗) = EX,Y
[
l̃1
′
(〈Y X, θ∗〉)Y Xi

]
+ pEX,Y [Y Xi], (C.53)

and

∂

∂θi
Rp
∞(θ∗) = (1− 2p)EX,Y

[
l̃∞
′
(〈Y X, θ∗〉)Y Xi

]
. (C.54)

Using the Taylor-Lagrange equality, we let f = l̃α
′
(where α = 1 or∞ for simplicity

for the time being), and thus we have that for each (X, Y ) ∈ X × {−1,+1},

l̃α
′
(b(X,Y )) = l̃α

′
(a(X,Y )) + (b(X,Y ) − a(X,Y ))l̃

α′′(a(X,Y )) +
(b(X,Y ) − a(X,Y ))

2

2
l̃α
′′′

(cα(X,Y )),

(C.55)

where b(X,Y ) = 〈Y X, θ∗〉 and a(X,Y ) = 〈Y X, θ̂α〉, hence cα(X,Y ) ∈ [〈Y X, θ̂α〉, 〈Y X, θ∗〉].
Examining each of (C.53) (first term) and (C.54) (without coefficient) with the Taylor-
Lagrange equality, we have that

EX,Y
[
l̃α
′
(〈Y X,θ∗〉)Y Xi

]
=EX,Y

[(
l̃α
′
(a(X,Y ))+(b(X,Y )−a(X,Y ))l̃

α′′ (a(X,Y ))+
(b(X,Y )−a(X,Y ))2

2
l̃α
′′′

(cα
(X,Y )

)

)
Y Xi

]
.

(C.56)

Thus, for α = 1, we have that

∂

∂θi
Rp

1(θ∗) = EX,Y
[
l̃1
′
(〈Y X, θ∗〉)Y Xi

]
+ pEX,Y [Y Xi]

=pEX,Y [Y Xi]+EX,Y
[(
l̃1
′
(〈Y X,θ̂1〉)+(〈Y X,θ∗〉−〈Y X,θ̂1〉)l̃1′′ (〈Y X,θ̂1〉)+ (〈YX,θ∗〉−〈YX,θ̂1〉)2

2
l̃1
′′′

(c1
(X,Y )

)

)
Y Xi

]
,

(C.57)

where c1
(X,Y ) ∈ [〈Y X, θ̂1〉, 〈Y X, θ∗〉]. Noticing that

EX,Y
[
l̃1
′
(〈Y X, θ̂1〉)Y Xi

]
+ pEX,Y [Y Xi] = 0, (C.58)
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we thus obtain

∂

∂θi
Rp1(θ∗)=EX,Y

[(
(〈Y X,θ∗〉−〈Y X,θ̂1〉)l̃1′′ (〈Y X,θ̂1〉)+ (〈YX,θ∗〉−〈YX,θ̂1〉)2

2
l̃1
′′′

(c1
(X,Y )

)

)
Y Xi

]
. (C.59)

Using similar steps, we can also obtain

∂

∂θi
Rp∞(θ∗)=(1−2p)EX,Y

[(
(〈Y X,θ∗〉−〈Y X,θ̂∞〉)l̃∞′′ (〈Y X,θ̂∞〉)+ (〈YX,θ∗〉−〈YX,θ̂∞〉)2

2
l̃∞
′′′

(c∞
(X,Y )

)

)
Y Xi

]
,

(C.60)

where c∞(X,Y ) ∈ [〈Y X, θ̂∞〉, 〈Y X, θ∗〉] and we note a difference between (C.59) and (C.60),
i.e. the latter has the 1− 2p coefficient.

Now, we consider

∣∣∣∣ ∂∂θiRp
1(θ∗)

∣∣∣∣ and seek an upperbound. We have that from (C.59)

∣∣∣∣∣∣
∂

∂θi
Rp1(θ∗)

∣∣∣∣∣∣=
∣∣∣∣EX,Y [((〈Y X,θ∗〉−〈Y X,θ̂1〉)l̃1′′ (〈Y X,θ̂1〉)+ (〈YX,θ∗〉−〈YX,θ̂1〉)2

2
l̃1
′′′

(c1
(X,Y )

)

)
Y Xi

]∣∣∣∣ (C.61)

≤EX,Y
[∣∣∣∣((〈Y X,θ∗〉−〈Y X,θ̂1〉)l̃1′′ (〈Y X,θ̂1〉)+ (〈YX,θ∗〉−〈YX,θ̂1〉)2

2
l̃1
′′′

(c1
(X,Y )

)

)
Y Xi

∣∣∣∣] (C.62)

=EX,Y
[
|Xi|

∣∣∣∣(〈Y X,θ∗〉−〈Y X,θ̂1〉)l̃1′′ (〈Y X,θ̂1〉)+ (〈YX,θ∗〉−〈YX,θ̂1〉)2
2

l̃1
′′′

(c1
(X,Y )

)

∣∣∣∣] (C.63)

≤EX,Y
[
|Xi|

(∣∣∣(〈Y X,θ∗〉−〈Y X,θ̂1〉)l̃1′′ (〈Y X,θ̂1〉)
∣∣∣+∣∣∣∣ (〈YX,θ∗〉−〈YX,θ̂1〉)22

l̃1
′′′

(c1
(X,Y )

)

∣∣∣∣)], (C.64)

where we used Jensen’s inequality via the absolute value, the triangle inequality, and
the fact that |ab| = |a| · |b|. Continuing,

EX,Y
[
|Xi|

(∣∣∣(〈Y X,θ∗〉−〈Y X,θ̂1〉)l̃1′′ (〈Y X,θ̂1〉)
∣∣∣+∣∣∣∣ (〈YX,θ∗〉−〈YX,θ̂1〉)22

l̃1
′′′

(c1
(X,Y )

)

∣∣∣∣)] (C.65)

=EX,Y
[
|Xi|

(
|〈Y X,θ∗−θ̂1〉|

∣∣∣l̃1′′ (〈Y X,θ̂1〉)
∣∣∣+ 〈YX,θ∗−θ̂1〉22

∣∣∣l̃1′′′ (c1(X,Y )
)
∣∣∣)] (C.66)

≤EX,Y

|Xi|
‖Y X‖‖θ∗−θ̂1‖

∣∣∣l̃1′′ (〈Y X,θ̂1〉)
∣∣∣+ ‖YX‖2‖θ∗−θ̂1‖2

2

∣∣∣l̃1′′′ (c1(X,Y )
)
∣∣∣
, (C.67)

where we used the Cauchy-Schwarz inequality on both inner products. Next, we use
the observation that X ∈ [0, 1]d, and thus ‖X‖ ≤

√
d, and that θ∗ − θ ∈ Bd(2r), for

all θ ∈ Bd(r). Thus, we have that

EX,Y

|Xi|
‖Y X‖‖θ∗−θ̂1‖

∣∣∣l̃1′′ (〈Y X,θ̂1〉)
∣∣∣+ ‖YX‖2‖θ∗−θ̂1‖2

2

∣∣∣l̃1′′′ (c1(X,Y )
)
∣∣∣
 (C.68)

≤ EX,Y
[√

d2r
∣∣∣l̃1′′(〈Y X, θ̂1〉)

∣∣∣+
4dr2

2

∣∣∣l̃1′′′(c1
(X,Y ))

∣∣∣] (C.69)

= 2d1/2rEX,Y
[∣∣∣l̃1′′(〈Y X, θ̂1〉)

∣∣∣]+ 2dr2EX,Y
[∣∣∣l̃1′′′(c1

(X,Y ))
∣∣∣] . (C.70)

Thus, we obtain that∣∣∣∣ ∂∂θiRp
1(θ∗)

∣∣∣∣ ≤ 2d1/2rEX,Y
[∣∣∣l̃1′′(〈Y X, θ̂1〉)

∣∣∣]+ 2dr2EX,Y
[∣∣∣l̃1′′′(c1

(X,Y ))
∣∣∣] . (C.71)
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For α =∞, the exact same steps go through, so we also have that∣∣∣∣ ∂∂θiRp
∞(θ∗)

∣∣∣∣ ≤ (1− 2p)
(

2d1/2rEX,Y
[∣∣∣l̃∞′′(〈Y X, θ̂∞〉)∣∣∣]+ 2dr2EX,Y

[∣∣∣l̃∞′′′(c∞(X,Y ))
∣∣∣]) .

(C.72)

Considering EX,Y
[∣∣∣l̃1′′(〈Y X, θ̂1〉)

∣∣∣] in (C.71), we let

z∗1 = arg max
z∈{〈yx,θ̂1〉|(x,y)∈X×{−1,+1}}

∣∣∣l̃1′′(z)
∣∣∣ , (C.73)

and we thus obtain EX,Y
[∣∣∣l̃1′′(〈Y X, θ̂1〉)

∣∣∣] ≤ ∣∣∣l̃1′′(z∗1)
∣∣∣, where we note that z∗1 >

ln (2 +
√

3) by assumption. Similarly, considering EX,Y
[∣∣∣l̃∞′′(〈Y X, θ̂∞〉)∣∣∣] in (C.72),

we let

z∗∞ = arg max
z∈{〈yx,θ̂∞〉|(x,y)∈X×{−1,+1}}

∣∣∣l̃∞′′(z)
∣∣∣ , (C.74)

and we thus obtain EX,Y
[∣∣∣l̃∞′′(〈Y X, θ̂∞〉)∣∣∣] ≤ ∣∣∣l̃∞′′(z∗∞)

∣∣∣, where z∗∞ ≥ z∗1 > ln (2 +
√

3)

again by assumption.

Indeed, since
∣∣∣l̃1′′′(z)

∣∣∣ and
∣∣∣l̃∞′′′(z)

∣∣∣ are monotonically decreasing for z > ln (2 +
√

3)

we also have that

EX,Y
[∣∣∣l̃1′′′(c1

(X,Y ))
∣∣∣] ≤ ∣∣∣l̃1′′′(z∗1)

∣∣∣ , (C.75)

and

EX,Y
[∣∣∣l̃∞′′′(c∞(X,Y ))

∣∣∣] ≤ ∣∣∣l̃∞′′′(z∗∞)
∣∣∣ . (C.76)

Next, we invoke Lemma 22, i.e., that for all z ∈ R,∣∣∣∣ d2

dz2
l̃1(z)

∣∣∣∣ ≥ ∣∣∣∣ d2

dz2
l̃∞(z)

∣∣∣∣ , (C.77)

and Lemma 23, i.e., that for z > ln 2,∣∣∣∣ d3

dz3
l̃∞(z)

∣∣∣∣ ≤ ∣∣∣∣ d3

dz3
l̃1(z)

∣∣∣∣ . (C.78)

Thus, we have that (also by monotonically decreasing)∣∣∣l̃∞′′(z∗∞)
∣∣∣ ≤ ∣∣∣l̃1′′(z∗1)

∣∣∣ , (C.79)

and ∣∣∣l̃∞′′′(z∗∞)
∣∣∣ ≤ ∣∣∣l̃1′′′(z∗1)

∣∣∣ . (C.80)

Hence, since the bounds on (C.71) and (C.72) hold for all i ∈ [d], we obtain the
desired result.
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C.1.3 Proof of Theorem 12

The strategy of the proof is to upperbound and lowerbound ‖∇θR
p
α(θ)−E[X [1]]‖.

For the lowerbound, we use the reverse triangle inequality. Combining the upper and
lowerbounds, we then rewrite the bounded expressions to induce a lowerbound on
‖∇θR

p
α(θ)‖ itself. For notational convenience, we used γ = Cp,r

√
d,α in the main body.

Now, for each y ∈ {−1, 1}, let X [y] denote the random variable having the distribu-

tion of X conditioned on Y = y. We further assume that X [1] d
= −X [−1], E[X [1]] 6= 0,

namely, a skew-symmetric distribution. Examining the gradient of the noisy α-risk
(under the skew-symmetric distribution), we have that (P1 = P[Y = 1])

∇θR
p
α(θ)

= EX,Y
[(
pY gθ(−Y X)1−1/αgθ(Y X)− (1− p)Y gθ(Y X)1−1/αgθ(−Y X)

)
X

]
(C.81)

= P1EX[1]

[(
pgθ(−X [1])1−1/αgθ(X

[1])− (1− p)gθ(X [1])1−1/αgθ(−X [1])
)
X [1]

]
+ P−1EX[−1]

[(
−pgθ(X [−1])1− 1

α gθ(−X [−1]) + (1− p)gθ(−X [−1])1− 1
α gθ(X

[−1])
)
X [−1]

]
(C.82)

= EX[1]

[(
pgθ(−X [1])1−1/αgθ(X

[1])− (1− p)gθ(X [1])1−1/αgθ(−X [1])
)
X [1]

]
. (C.83)

First considering the upperbound on ‖∇θR
p
α(θ)− E[X [1]]‖, we have that

‖EX[1]

[(
pgθ(−X [1])1−1/αgθ(X

[1])− (1− p)gθ(X [1])1−1/αgθ(−X [1])
)
X [1]

]
− E[X [1]]‖

(C.84)

= ‖EX[1]

[(
pgθ(−X [1])1−1/αgθ(X

[1])− (1− p)gθ(X [1])1−1/αgθ(−X [1])− 1
)
X [1]

]
‖

(C.85)

=‖E
X[1] [(pgθ(−X[1])1−1/αgθ(X[1])−p−(1−p)gθ(X[1])1−1/αgθ(−X[1])−(1−p))X[1]]‖ (C.86)

=‖E
X[1] [(p(gθ(−X[1])1−1/αgθ(X[1])−1)−(1−p)(gθ(X[1])1−1/αgθ(−X[1])−1))X[1]]‖ (C.87)

≤E
X[1] [|p(gθ(−X[1])1−1/αgθ(X[1])−1)−(1−p)(gθ(X[1])1−1/αgθ(−X[1])−1)|‖X[1]‖], (C.88)

where we used Jensen’s inequality due to the convexity of the norm.
We now consider the term in absolute value above, which we rewrite for simplicity

as

fα,p(x) := p
(
σ(−x)1− 1

ασ(x)− 1
)
− (1− p)

(
σ(x)1− 1

ασ(−x)− 1
)
. (C.89)

We examine

∂

∂α
fα,p(x) = (1− p)σ(x)1− 1

α log (e−x + 1)

(ex + 1)α2
− pσ(−x)1− 1

α log (ex + 1)

(e−x + 1)α2
, (C.90)

which follows from the fact that

∂

∂α
σ(x)1− 1

ασ(−x) =
σ(x)1− 1

α log (σ(x))

(ex + 1)α2
. (C.91)
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Considering x > 0 and 0 < p < 1/2, one can show that

∂

∂α
fα,p(x) > 0 (C.92)

is equivalent to (
1

p
− 1

)
> e

x
α

log (ex + 1)

log (e−x + 1)
, (C.93)

and it can be shown that the term on the right-hand-side is monotonically increasing
in x > 0 for α ∈ [1,∞]. Hence choosing x > 0 (i.e., r > 0) small enough ensures that

fα,p(x) is monotonically increasing in α ∈ [1,∞]. Furthermore, since
∂

∂x
fα,p(x) > 0

for x > 0, p < 1/2, and α ∈ [1,∞], and X ∈ [0, 1]d, θ ∈ Bd(r), we have by the

Cauchy-Schwarz inequality (i.e., 〈θ,X〉 ≤ r
√
d) that

p
(
gθ(−X [1])1−1/αgθ(X

[1])− 1
)
− (1− p)

(
gθ(X

[1])1−1/αgθ(−X [1])− 1
)

(C.94)

≤ p
(
σ(−r

√
d)1− 1

ασ(r
√
d)− 1

)
− (1− p)

(
σ(r
√
d)1− 1

ασ(−r
√
d)− 1

)
=: Cp,r

√
d,α.

(C.95)

Note that Cp,r
√
d,1 := σ(r

√
d)− p > 0 (since r

√
d > 0 and p < 1/2), and Cp,r

√
d,∞ :=

(1 − 2p)(1 − σ′(r
√
d)), and by the restriction on r > 0 (C.93), we have that for

α ∈ (1,∞)

0 < Cp,r
√
d,1 ≤ Cp,r

√
d,α ≤ Cp,r

√
d,∞. (C.96)

Thus, considering the upperbound on ‖∇θR
p
α(θ)− E[X [1]]‖ in (C.88), we have that

‖∇θR
p
α(θ)− E[X [1]]‖ ≤ Cp,r

√
d,αEX[1] [‖X [1]‖], (C.97)

where Cp,r
√
d,α is given in (C.95).

Now, considering a lowerbound on ‖∇θR
p
α(θ) − E[X [1]]‖, via the reverse triangle

inequality we have that

‖∇θR
p
α(θ)− E[X [1]]‖ ≥ ‖E[X [1]]‖ − ‖∇θR

p
α(θ)‖. (C.98)

Combining this with our derived upperbound (C.97), we have that

Cp,r
√
d,αE[‖X [1]‖] ≥ ‖E[X [1]]‖ − ‖∇θR

p
α(θ)‖. (C.99)

Rewriting, we have that

‖∇θR
p
α(θ)‖ ≥ ‖E[X [1]]‖ − Cp,r√d,αE[‖X [1]‖]. (C.100)
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Using our observation earlier regarding the monotonically increasing property of
Cp,r

√
d,α in α ∈ [1,∞], we can write that

‖∇θR
p
α(θ)‖ ≥ ‖E[X [1]]‖ − Cp,r√d,αE[‖X [1]‖]

≥ ‖E[X [1]]‖ − (1− 2p)
(

1− σ′(r
√
d)
)
E[‖X [1]‖] > 0, (C.101)

which is nonnegative by distributional assumption on the skew-symmetric distribution
itself, namely we assume that

(1− 2p)(1− σ′(r
√
d)) <

‖E(X [1])‖
E(‖X [1]‖)

. (C.102)

C.2 Further Experimental Results and Details

C.2.1 Boosting Experiments

Long-Servedio

Dataset The Long-Servedio dataset is a synthetic dataset which was first suggested
in (Long and Servedio, 2010) and also considered in (Cheamanunkul et al., 2014). The
dataset has input x ∈ R21 (which differs from the two-dimensional theoretical version
in Section 4.3.2) with binary features xi ∈ {−1,+1} and label y ∈ {−1,+1}. Each
instance is generated as follows. First, the label y is chosen to be −1 or +1 with equal
probability. Given y, the features xi are chosen according to the following mixture
distribution:

• Large margin: with probability 1/4, we choose xi = y for all 1 ≤ i ≤ 21.

• Pullers: with probability 1/4, we choose xi = y for 1 ≤ i ≤ 11 and xi = −y for
12 ≤ i ≤ 21.

• Penalizers: with probability 1/2, we choose 5 random coordinates from the
first 11 and 6 from the last 10 to be equal to the label y. The remaining 10
coordinates are equal to −y.

Breast Cancer

Dataset The Wisconsin Breast Cancer dataset (Wolberg et al., 1995) is a widely
used medical dataset in the boosting community.

C.2.2 Logistic Model Experiments

GMM Setup

Dataset In order to evaluate the effect of generalizing log-loss with α-loss in the
logistic model, we first analyze its performance learning on a two-dimensional dataset
with Gaussian class-conditional distributions. The data was distributed as follows:

Y = 1 :X ∼ N [µ1, σ
2I],

Y = −1 :X ∼ N [µ2, σ
2I],
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Figure C.8: Accuracy of Adaboost.α on the Long-Servedio Dataset. We See That
Accuracy Levels off as α Increases, Implying That Tuning α Can Be as Simple as
Choosing α ≈ 5. The Thresholding Behavior Is Supported by Figure C.2.

Figure C.9: Clean Test Accuracy of Various Models on the Long-servedio Dataset
with No Added Label Noise. Models Trained for 100 Iterations. Vanilla Adaboost
Performs Well Here, but Note That Figure C.12 Implies That with a Larger Number
of Iterations, α = 1, 2 Would Have Similar Performance.
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Figure C.10: Clean Test Accuracy Vs the Depth of Weak Learners on the Long-
servedio Dataset with SLN. 100 Iterations of Boosting. We See That That for Low
Depth Weak Learners, α > 1 Outperforms Convex α in Terms of Clean Classification
Accuracy. This Benefit Diminishes with Growing Depth.

Figure C.11: Clean Test Accuracy Vs the Depth of Weak Learners on the Long-
Servedio Dataset with Sln. 100 Iterations of Boosting. In This Higher Noise Setting,
α Has Little Effect on the Clean Test Accuracy.
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Figure C.12: Clean Test Accuracy of Adaboost.α on the Long-servedio Dataset with
No Added Label Noise. In This Zero Noise Setting, Convex α Values Perform Well.
Performance Gains Slow with Increasing α Which Corresponds to Increasing Non-
convexity in the Optimization.

Figure C.13: Accuracy of Adaboost.α on the Long-servedio Dataset. We See That
Convex α < 1, Is Unable to Learn by Increasing the Number of Weak Learners,
Likely Because It Is Getting Stuck Trying to Learn on Large-margin Example. α > 1
Continues to Learn with Increasing Iterations, Though Growth Is Slower than in
Smaller Noise Levels.
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Figure C.14: Accuracy of Adaboost.α on the Long-servedio Dataset. We See That
Convex α < 1, Is Unable to Learn by Increasing the Number of Weak Learners,
Likely Because It Is Getting Stuck Trying to Learn on Large-margin Example. α > 1
Continues to Learn with Increasing Iterations, Though Growth Is Slower than in
Smaller Noise Levels.

Figure C.15: Accuracy of Various Models on the Breast Cancer Dataset. We See
That with Low Depth (and Thus Low Complexity) Weak Learners, the Use of a Non-
convex Loss, Namely α > 1, Permits Some Gains in Accuracy. These Diminish for
More Complex Weak Learners.
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Figure C.16: Accuracy of Various Models on the Breast Cancer Dataset. We See
That with Low Depth (and Thus Low Complexity) Weak Learners, the Use of a Non-
convex Loss, Namely α > 1, Permits Some Gains in Accuracy. These Diminish for
More Complex Weak Learners.

Figure C.17: Accuracy of Various Models on the Breast Cancer Dataset. We See
That with Low Depth (and Thus Low Complexity) Weak Learners, the Use of a Non-
convex Loss, Namely α > 1, Permits Some Gains in Accuracy. These Diminish for
More Complex Weak Learners.
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Figure C.18: Accuracy of Adaboost.α on the Wisconsin Breast Cancer Dataset. Non-
convex α Values Perform Significantly Better than Convex α Values. Unlike the Long-
servedio Dataset, Convex α Values Are Still Able to Learn as the Iterations Increase,
Though There Appears to Be Some Overfitting.

Figure C.19: Accuracy of Adaboost.α on the Wisconsin Breast Cancer Dataset. Non-
convex α Values Perform Significantly Better than Convex α Values. Unlike the Long-
servedio Dataset, Convex α Values Are Still Able to Learn as the Iterations Increase,
Though There Appears to Be Some Overfitting.
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Figure C.20: Accuracy of Adaboost.α on the Wisconsin Breast Cancer Dataset. Non-
convex α Values Perform Significantly Better than Convex α Values. Unlike the Long-
servedio Dataset, Convex α Values Are Still Able to Learn as the Iterations Increase,
Though There Appears to Be Some Overfitting.

Figure C.21: Accuracy of Adaboost.α on the Breast Cancer Dataset with 100 Itera-
tions. We See That Tuning α > 1 Permits Significant Gains of Convex α Values, but
That It Is Not Necessary to Tune α Too Large. Most of the Gains Are Realized with
Small α.
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where µi ∈ R2, σ ∈ R, and I is the 2× 2 identity matrix.
We evaluate this simple two-dimensional equivariant case for reasons of inter-

pretability and visualization. Additionally, we tune the prior of Y in order to control
the level of class imbalance in the dataset to demonstrate that α-loss works well even
under class imbalance conditions. Symmetric label noise is then added to this clean

Figure C.22: Sample Dataset Generated with Gaussian Class-conditional Distribu-
tions with p(Y = 1) = 0.14 and µ1 = [1, 1]t, µ2 = [−1,−1]t; We Use a Spherical
Covariance with σ = 1 for Both Classes.

data.
Under this scenario, the Bayes-optimal classifier is linear because the variances of

the two modes are equal and the features are uncorrelated. We can see this directly
through the likelihood ratio test. Thus, we can compare the separating line given by
training with α-loss on the logistic model and the optimal classifier.

Model A logistic model was trained on noisy data, then tested on clean data from
the same data generating distribution. Models were trained over a grid of possible
noise values, p ∈ [0, 0.4], and α ∈ [0.5, 10]. Learning rate was selected as 1e−2 and
models were trained until convergence. For each pair, 30 models were trained with
different noise seeds, and metrics were then averaged across models.

COVID-19 Logistic Setup

Model For better accuracy and a simpler, interpretable logistic model, we restrict
the model to predict using a smaller set of 8 features; we choose these as the features
with the largest odds ratio on the validation set and they are enumerated in Table 4.1.
The learning rate was selected as 1e−3 and models were trained until convergence.
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Figure C.23: Sensitivity of the Classifiers Trained on Noisy Covid-19 Data. We See
That α > 1 Yields Gains in Sensitivity. This Is Important to Note as the Mse Results
Do Not Come at the Cost of Sensitivity. Recall That Sensitivity = Tp

Tp+Fn
.

Models were trained over a grid of possible noise values, p, and α values, (p, α) ∈
[0, 0.15]× [0.6, 3]. For each pair (p, α), 5 models were trained with a different random
noise seed and results were averaged across these samples for every metric.

Baseline Because the underlying true statistics are not available as a ground truth,
a “clean” model is selected for a baseline comparison. We select this model to be
one with no added noise (p = 0) and log-loss (α = 1). Because log-loss (α = 1) is
calibrated, the “clean” posterior distribution will be the distribution with the smallest
KL divergence to the data-generating distribution.
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D.1 Proof of Theorem 13

For a fixed generator, Gθ, we first solve the optimization problem

sup
ω∈Ω

∫
X

α

α− 1

(
pr(x)Dω(x)

α−1
α + pGθ(x)(1−Dω(x))

α−1
α

)
. (D.1)

Consider the function

g(y) =
α

α− 1

(
ay

α−1
α + b(1− y)

α−1
α

)
, (D.2)

for a, b ∈ R+ and y ∈ [0, 1]. To show that the optimal discriminator is given by the
expression in (5.15), it suffices to show that g(y) achieves its maximum in [0, 1] at

y∗ = aα

aα+bα
. Notice that for α > 1, y

α−1
α is a concave function of y, meaning the

function g is concave. For 0 < α < 1, y
α−1
α is a convex function of y, but since α

α−1
is

negative, the overall function g is again concave. Consider the derivative g′(y∗) = 0,
which gives us

y∗ =
aα

aα + bα
. (D.3)

This gives (5.15). With this, the optimization problem in (5.14) can be written as
infθ∈ΘC(Gθ), where

C(Gθ) =
α

α− 1

[∫
X

(
pr(x)Dω∗(x)

α−1
α + pGθ(x)(1−Dω∗(x))

α−1
α

)
dx− 2

]
(D.4)

= α
α−1

[ ∫
X

(
pr(x)

(
pr(x)α

pr(x)α+pGθ
(x)α

)α−1
α

+pGθ (x)

(
pr(x)α

pr(x)α+pGθ
(x)α

)α−1
α

)
dx−2

]
(D.5)

=
α

α− 1

(∫
X

(pr(x)α + pGθ(x)α)
1
α dx− 2

)
(D.6)

= Dfα(Pr||PGθ) +
α

α− 1

(
2

1
α − 2

)
, (D.7)

where for the convex function fα in (5.17),

Dfα(Pr||PGθ) =

∫
X
pGθ(x)fα

(
pr(x)

pGθ(x)

)
dx (D.8)

=
α

α− 1

(∫
X

(pr(x)α + pGθ(x)α)
1
α dx− 2

1
α

)
. (D.9)

This gives us (5.16). Since Dfα(Pr||PGθ) ≥ 0 with equality if and only if Pr = PGθ ,

we have C(Gθ) ≥ α
α−1

(
2

1
α − 2

)
with equality if and only if Pr = PGθ . Proof of

Theorem 14 First, using L’Hôpital’s rule we can verify that, for a, b > 0,

lim
α→1

α

α− 1

(
(aα + bα)

1
α − 2

1
α
−1(a+ b)

)
= a log

(
a
a+b

2

)
+ b log

(
b
a+b

2

)
. (D.10)
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Using this, we have

Df1(Pr||PGθ) , lim
α→1

Dfα(Pr||PGθ) (D.11)

= lim
α→1

α

α− 1

(∫
X

(pr(x)α + pGθ(x)α)
1
α dx− 2

1
α

)
(D.12)

= lim
α→1

[
α

α− 1
×
∫
X

(
(pr(x)α + pGθ(x)α)

1
α − 2

1
α
−1(pr(x) + pGθ(x))

)
dx

]
(D.13)

=

∫
X
pr(x) log

pr(x)(
pr(x)+pGθ (x)

2

)dx+

∫
X
pGθ(x) log

pGθ(x)(
pr(x)+pGθ (x)

2

)dx (D.14)

=: 2DJS(Pr||PGθ), (D.15)

where DJS(·||·) is the Jensen-Shannon divergence. Now, as α → 1, (5.16) equals
infθ∈Θ 2DJS(Pr||PGθ)− log 4 recovering vanilla GAN.

Substituting α = 1
2

in (5.18), we get

Df 1
2

(Pr||PGθ) = −
∫
X

(√
pr(x) +

√
pGθ(x)

)2

dx+ 4 (D.16)

=

∫
X

(√
pr(x)−

√
pGθ(x)

)2

dx (D.17)

=: 2DH2(Pr||PGθ), (D.18)

where DH2(Pr||PGθ) is the squared Hellinger distance. For α = 1
2
, (5.16) gives

2 infθ∈ΘDH2(Pr||PGθ)− 2 recovering Hellinger GAN (up to a constant).

Noticing that, for a, b > 0, limα→∞ (aα + bα)
1
α = max{a, b} and defining A :=

{x ∈ X : pr(x) ≥ pGθ(x)}, we have

Df1(Pr||PGθ) , lim
α→∞

Dfα(Pr||PGθ) (D.19)

= lim
α→∞

α

α− 1

(∫
X

(pr(x)α + pGθ(x)α)
1
α dx− 2

1
α

)
(D.20)

=

∫
X

max{pr(x), pGθ(x)} dx− 1 (D.21)

=

∫
X

max{pr(x)− pGθ(x), 0} dx (D.22)

=

∫
A

(pr(x)− pGθ(x)) dx (D.23)

=

∫
A

pr(x)− pGθ(x)

2
dx+

∫
Ac

pGθ(x)− pr(x)

2
dx (D.24)

=
1

2

∫
X
|pr(x)− pGθ(x)| dx (D.25)

=: DTV(Pr||PGθ), (D.26)
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where DTV(Pr||PGθ) is the total variation distance between Pr and PGθ . Thus, as α→
∞, (5.16) equals infθ∈ΘDTV(Pr||PGθ)− 1 recovering TV-GAN (modulo a constant).

D.2 Proof of Theorem 15

We know from (Sypherd et al., 2019, Corollary 1) that for η ∈ [0, 1],

inf
t
η ˜̀

α(t) + (1− η)˜̀
α(−t) =

α

α− 1

(
1− (ηα + (1− η)α)

1
α

)
.

This implies that

inf
t

η

1− η
˜̀
α(t) + ˜̀

α(−t) =
α

α− 1

(
1 +

η

1− η
−
((

η

1− η

)α
+ 1

) 1
α

)
. (D.27)

Now substituting u for η
1−η and taking negation in (D.27), we get

− inf
t
u˜̀

α(t) + ˜̀
α(−t) =

α

α− 1

(
(uα + 1)

1
α − (1 + u)

)
for u ≥ 0, (D.28)

giving us (5.20).
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