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ABSTRACT

Floating trash objects are very commonly seen on water bodies such as lakes,

canals and rivers. With the increase of plastic goods and human activities near the

water bodies, these trash objects can pile up and cause great harm to the surrounding

environment. Using human workers to clear out these trash is a hazardous and time-

consuming task. Employing autonomous robots for these tasks is a better approach

since it is more efficient and faster than humans. However, for a robot to clean the

trash objects, a good detection algorithm is required. Real-time object detection on

water surfaces is a challenging issue due to nature of the environment and the volatility

of the water surface. In addition to this, running an object detection algorithm on

an on-board processor of a robot limits the amount of CPU consumption that the

algorithm can utilize. In this thesis, a computationally low cost object detection

approach for robust detection of trash objects that was run on an on-board processor of

a multirotor is presented. To account for specular reflections on the water surface, we

use a polarization filter and integrate a specularity removal algorithm on our approach

as well. The challenges faced during testing and the means taken to eliminate those

challenges are also discussed. The algorithm was compared with two other object

detectors using 4 different metrics. The testing was carried out using videos of 5

different objects collected at different illumination conditions over a lake using a

multirotor. The results indicate that our algorithm is much suitable to be employed

in real-time since it had the highest processing speed of 21 FPS, the lowest CPU

consumption of 37.5% and considerably high precision and recall values in detecting

the object.
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Chapter 1

INTRODUCTION

A major requirement for most autonomous robots is perception, which is gives

it the ability to see and interpret its environment. While visual perception comes

easily to humans, it is not the case for robots as they require a number of complex

sensors and computational capabilities. A heavily researched field in robot perception

is computer vision. It seeks to develop algorithms that enable computers to extract

high-level information using cameras as the primary sensors and images/ videos as

the data. These computers are usually integrated with robots such as manipulators,

Unmanned Aerial Vehicles (UAVs), Unmanned Surface Vehicles (USVs) and ground

vehicles for autonomously running tasks without a human operator. Object detection

is a commonly used computer vision technique that is used to recognize an object in

the frame and output its corresponding bounding box. This allows us to understand

where the object is located in the scene. The task of object detection is usually solved

by methods such as background subtraction [1], feature extraction [2], optical flow [3],

deep-learning detectors [4] and so on.

Real-time object detection is the task of doing object detection in real time with

fast processing speeds and good accuracy. [5] presents a visual system on a self-driving

car to detect pedestrians, bicyclists and other vehicles. The work demonstrated in [6]

shows the performance of a real-time people counting system using a set of virtual

lines on the image. It is also possible to employ detect faces and recognize facial

expression as seen in [7]. A deep learning detector is used for object detection on a

UAV [8] as a warning system during emergencies.
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Performing real-time object detection on challenging environments such as water

surfaces is a difficult task as discussed in [9]. Specular reflections on water surface pose

the most hindrance to object detection. A number of studies have been conducted to

eliminate these specular reflections from water surfaces for collection better images

and videos. In [10], specular reflections are removed from images collected by a UAV

over a ocean surface. It proposes a two step strategy of removing highlighted regions

in the images and then restoring them using a local information around those regions.

A model for elimination of reflections is proposed in [11]. However, these works require

multiple still images and are not practical for real-time applications. In this thesis, we

also use a specularity removal algorithm for better visibility of the floating objects.

However, there have been works conducted for real-time object detection on water

surfaces. [12] discusses a real-time floating object detection method on water surfaces

using Faster R-CNN. In this work, they use a gamma correction algorithm [13] to

enhance the contrast of images without affecting any information contained in the

images. However, the work here is employed on a still camera mounted on a high

processing GPU. Similarly, the work in [14] demonstrates water surface target detection

based using an improved YOLOv3 model on images collected by a UAV. A maritime

object detection approach using an electro-optical sensor for navigation of autonomous

ships is proposed in [15]. In this thesis, we develop a real-time object detection

algorithm using a monocular RGB camera mounted on an multirotor for autonomous

detection collection of trash objects on water surfaces. To the authors best knowledge,

this is the first presentation that combines specularity removal and object detection

in an algorithm.

Multirotors are classified as UAVs with two or more rotors. These extra rotors

provide added stability for tasks such as hovering and also the ability to perform
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quick and agile maneuvers. A multirotor is composed of different hardware and

software subsystems that transfer data within the flight controller to perform the

tasks necessary for its operation. There are three main sensors used in a multirotor.

Inertial Measurement Unit (IMU) is a fusion of a number of other sensors such as a

gyroscope, accelerometer and magnetometer. An IMU is generally used to measure the

angular rates, the orientation of the robot and can be used for attitude and position

estimation. A GPS is used to provide more precise information of the location and is

also used for position estimation. Light Detection and Ranging (LiDAR) sensors are

used for collision avoidance and navigation. Position control and attitude control are

performed by their respective controllers which uses the desired velocity commands

from the high level computer. [16] and [17] propose an attitude controller and a

precision controller in a multirotor with disturbance rejection.

Due to their performance capabilities, effective speed and access to tight-bound

areas, multirotors are increasingly being used for a number of operations where humans

cannot enter. [18] and [19] demonstrate modified multirotors with flexible arms for

maneuverability through narrow and cluttered environments. [20] utilizes a multirotor

to collect aerial photography and keep track of landscape changes. Another emerging

field of research is to use them for aerial package delivery [21]. During emergency

situations, they can also be employed for search and rescue operations to provide

better visual images and cover a wider area as discussed in [22].

Performing real-time object detection on a robot such as a multirotor increases the

difficulty of an already demanding task. This is because of the constraints and CPU

limitations when doing object detection on the on-board processor of a multirotor. If

the CPU consumption of the detection algorithm is quite high, the processing speed

of the algorithm would fail and it some cases, may even fry the processor.
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While there have been a number of works conducted for real-time object detection

strategies on water surfaces, they do not consider employing the algorithms on an

on-board processor with no GPU a limited CPU capability. In addition to this, none

of the works demonstrated the effective use of an object detection algorithm on a

moving camera over water surfaces. The emphasis of this thesis would be to develop

a real-time working detection strategy to be deployed on a robot with a down-facing

camera, specifically multirotors.

1.1 Problem Statement

One of the most common forms of pollution in water bodies such as lakes and

canals is floating plastic debris as seen in Figure 1. These debris can arise due to

littering, fishing activities and garbage disposals. While plastic in oceans get carried

to other places due to wind and ocean currents, trash in stagnant water bodies such

as lakes usually have nowhere to go and start accumulating over time. The plastic

debris are usually floating trash items in the form of bottles, caps, cartons, bags and

beverage cans.

While the trash are of great concern by themselves, they become more harmful

once the plastics start breaking down into microplastics. The microplastics are too

small to be effectively removed through sewage treatment and can have a ranging

impact from affecting the quality of drinking water to causing harm to the aquatic

organisms. Hence, it is of great importance to remove the plastic debris from the

water bodies before their decomposition starts. Using a human worker for such an

operation consumes more time, utilizes man power and can also prove to be fatal in

some cases.
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Figure 1: Floating plastic debris on a lake (File image courtesy Monica Volpin /
Pixabay)

Autonomous robots such as UAVs and USVs are potential vehicles that can be

used to collect trash objects and mitigate the problem of water surface pollution.

Considerable work has been done wherein UAVs have been used for aerial grasping of

objects from rigid surfaces. [23] demonstrates the control of a multitoror attached with

a 7-degree of freedom arm that can be used to carry out various missions. Similarly,

the work in [24] proposes aerial grasping of objects using a UAV with a gripper.

[25] demonstrates an origami-inspired foldable robotics arm mounted on a UAV to

retrieve objects located in deep and narrow spaces. An autonomous hexacopter with

a soft grasper for autonomous detection and collection of objects is also seen in [26].

The work in [27] presents an hybrid Unmanned Aerial-Ground Vehicle (UAGV) that

lands near the object and grasps it from the ground modality. However, a common

limitation of all these works is that the graspers used have a limited workspace.

Therefore, our proposed algorithm was run on a multirotor with an integrated net

system for autonomous collection of floating trash objects from lake surfaces with

an increased workspace [28]. The object detection algorithm is run on a high-level
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computer integrated with the multirotor, which is an Intel UpBoard with 4 cores.

The multirotor had a customized flotation system and a downward facing monocular

camera as shown in Figure 2. It was equipped with a PIXHAWK flight controller,

with an IMU used for attitude estimation and a GPS for position estimation. We

also integrated a Teraranger Evo (Terabee, France) single-shot LiDAR for height

estimation above the water surface for landing.

Figure 2: Isometric and Bottom view of the multirotor system with all the sensors
and other components labelled

1.2 Challenges

While it seems fairly simple to detect floating debris on water surfaces, it is quite

complicated and poses a lot of challenges when performed real-time. The major

challenges that was faced when developing and testing our algorithm is discussed in

detail below -
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1. Specular reflections

Heavy sunlight during morning and afternoons give rise to specular reflections on

the water surface. The reflections are random and unpredictable in shape, size

and intensities. In addition to this, Water currents due to the winds increases

the volatility of these reflections making it harder to predict. These reflections

are a cause of major concern during detection since some of these reflections

completely overwhelm the object, making it almost impossible to detect.

2. Illumination conditions

Another challenge in testing outdoors is the varying illuminations conditions

that are caused by various factors such as intensity of sunlight, position of the

sun and weather. Varying illumination conditions affects the reflective properties

of the water surface as well as the object being detected.

3. Presence of the shore

While the object detection looks for floating trash on the water surface, it should

also take into consideration that when the object may drift near the shore

and change the scene. During such cases, the frame changes from being in a

completely dynamic background of the water surface, to partially covered by

the static background of the shore .This implies that the algorithm should be

able to adapt and work with scene changes.

4. Water surface disturbance

The dynamic nature of water surface due to water currents, winds and propeller

downwash from the drone makes it so that the floating object drifts constantly

and is never static at one point. This also resulted in the object being drifted

out of the camera’s field of view for a few frames.

5. Properties of the object
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Different objects have different materialistic properties such as shape, size,

colour, reflectivity. Objects of darker colour are much difficult to detect since it

is difficult to distinguish it from the background. In the same manner, highly

reflective objects also pose a challenge to detection since they closely resemble

the specular reflections on the surface of the water.

6. Scale changes and occlusion

During the landing of the multirotor on the object, the object is subjected to a

lot of change in aspect ratio and rotations. Hence, we could not expect a fixed

scale and rotation angle to the object. In addition to this, partial occlusions of

the object due to drift and shadows were also a challenge to be overcome.

7. Moving camera

Since all the testing was performed by a camera mounted on a multirotor, the

collected videos were subjected to a lot of wobbling due to the chattering and

vibrations of the camera. The camera is never steady due to the motion of the

multirotor in addition to the vibrations due to the propellers. An unsteady

video feed would mean that the detection algorithm should be responsive to

small and random changes in the location of the object in the frame.

1.3 Organization of This Thesis

This thesis is divided into two halves. The first half consists of two chapters.

Chapter 2 gives a brief overview of the literature review on computer vision approaches

used for object detection and how to select the right one depending on the problem

statement. It is then followed by a detailed description of a preliminary tracker that
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was developed and its validation. We also describe the failure cases of this tracker,

reasons for failure and elaborate on why it was abandoned.

The second half deals with development of the object detection algorithm and its

experimental results. In Chapter 3, we describe the selection of our image sensor and

on why it was chosen. A detailed explanation of the collection of the dataset with

different objects is described. The steps taken to eliminate the challenges faced are

then discussed and the object detection algorithm is described in detail with its test

results. We demonstrate the experimental results of the detector when compared with

other existing detectors in Chapter 4. We also discuss the collection of the dataset

for comparison and the process by which ground truth labelling was performed. It is

then followed by the concluding remarks and a brief overview of the future work.

1.4 Research Objective and Contributions

The objective of this thesis is to come up with a robust object detection algorithm

with the following properties -

• It must accurately detect floating trash objects on the water surface and output

the corresponding location in the frame with no false detections. A wide variety

of floating trash objects can be found, and hence the detector must be perform

well on a diverse range of objects.

• Since we run the algorithm real-time on an onboard processor of an autonomous

robot, it must have a high rate of processing and also consume as little CPU as

possible. This allows for a smooth operation with necessary memory available

for other processes to run as well.

• Due to varying illumination conditions and nature of an outdoor environment,
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it must effectively handle specular reflections, occlusions, shadows and other

obstacles in a dynamic background such as water.

• Water currents produced by winds and the propeller downwash from the mul-

ticopter makes it so that the object never remains static at a position for an

extended period of time, and instead drifts constantly. Hence, it is of consid-

erable importance for the detector to be able to detect an object even after it

leaves the camera’s frame of view and comes back into the scene without any

failure.

With the above mentioned properties in mind, a reliable and robust object detection

algorithm was developed and is presented in this thesis. The two main contributions

of the thesis are as follows -

• A computationally efficient two-phase algorithm is developed for robust detection

of floating trash objects on water surfaces. An edge-based contour detection

approach is employed for effective detection of different objects under varying

illumination conditions.

• A specularity removal algorithm is implemented in the code for effective removal

of specular reflections on the water surface without affecting the features of the

floating object.

1.5 Assumptions Made in This Thesis

Two major assumptions were made in this thesis.

1. There is only one object in the scene to be picked up for each trial being
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conducted. This is stemmed from the fact that the multirotor that was used for

our tests was equipped with the facility to pick up one object for each launch.

2. The scene is observed from a bird’s-eye view perspective. A downward facing

monocular camera is used, which is mounted on the multirotor. This placement

of the camera had the best field of view and also made it easier to land the

multirotor exactly on top of the object.
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Chapter 2

LITERATURE REVIEW

2.1 Existing detection strategies

Object detection in computer vision is usually solved using two different strategies

- traditional computer vision and deep learning. It is highly recommended to consider

the advantages and disadvantages of both these approaches to decide on which can be

better employed for the given problem statement before proceeding further.

2.1.1 Traditional computer vision

This approach employs the use of existing feature extraction techniques for object

detection. Features are defined as small regions of interests in the images, with

necessary information contained within them. This extracted information is then

used to define and detect objects. Some traditional feature extraction techniques are

detailed below.

1. Edge detection

Edge detection is one of the oldest image processing technique developed to

identify information in an image. The idea behind edge detectors is that there

are sudden discontinuities in an image where there are edges. Hence, these

algorithms work by detecting sudden change in pixel brightness intensities, which

are characteristic of edges. Edges can provide a broad understanding of the

object detected, such as the shape, size and orientation. Some commonly used
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edge detection techniques are Sobel edge detector [29], Canny edge detector

[30] and the Laplacian edge detector [31]. The output of Sobel and Canny edge

detector for a given input image is shown in Figure 3 (b) and (c) respectively.

(a) (b) (c)

Figure 3: Edge detection. (a) Input image; (b) Sobel Edge detector; (c) Canny edge
detector

2. Feature detector and descriptors

Feature descriptors are algorithms that take an input image and output the

location points of interest, also called as keypoints, and their corresponding

descriptors based on some criterion. A descriptor is usually a vector of values that

describes the neighboring patches of the keypoint. These vector of values could

contain anything from raw pixel values to histogram of gradient orientations.

Most feature descriptors are invariant to changes in scale, translation and

rotations and hence are used for a wide range of applications such as object

detection, 3D reconstruction and image matching. Scale-Invariant Feature

Transform (SIFT) [32] is a feature detector and descriptor which detects centers

of blob-like structures in an image using a Difference-of-Gaussians method.

The SIFT descriptor on the other hand, is based on the histogram of gradient

13



orientations. A much faster working version of SIFT was developed, which is

called Speeded Up Robust Features (SURF) [33]. Another commonly feature

detector and descriptor is Binary Robust Invariant Scalable Keypoints (BRISK)

[34], which used a corner detector for its keypoints detection and has a descriptor

containing the signs of the difference between certain neighboring pixels. Oriented

FAST and Rotated BRIEF (ORB) [35] was proposed as an efficient alternative to

SIFT and SURF due to its resistance to noise and rotation invariance. ORB was

shown to be computationally efficient, and it some cases two-times faster than

SIFT. [36] proposed KAZE features which detects 2D features based on nonlinear

diffusion filtering [37] rather than approximating the Gaussian scale space [38]

as in the other feature detectors. KAZE features provided better accuracy and

performance than the previous methods, but with added computational expense.

Figure 4 (b) and (c) show the 20 strongest keypoints detected by SURF and

BRISK respectively. The size of the drawn keypoint represents the strength of

the feature that has been detected.

(a) (b) (c)

Figure 4: Feature detection. (a) Input image; (b) SURF Feature detector; (c) BRISK
Feature detector
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3. Haar Cascades

Haar Cascades [39] is a face detection algorithm that uses its own feature called

as haar features. These features are a set of rectangular blocks that are used

to find face segments such as the eyes, nose and the lips. The concepts behind

Haar Cascades is that there are areas within the face, such as the eyes, which

are significantly darker than other area, such as the cheeks. The haar feature

contains a set of adjacent rectangles which is transversed from the top-left of

the image to the bottom-right. It then computes the difference between the

sum of pixel intensities in each rectangle and compares it with a pre-defined

threshold to identify the face.

(a) (b) (c)

Figure 5: Hough Line Detection. (a) Input image; (b) Standard hough transform; (c)
Probabilistic hough transform

4. Hough transform

Hough transform [40] is a method that it used to detect lines, circles or ellipses

in an image. It is necessary to perform a binary edge detection or thresholding

on an image first, and then provide it to the Hough transform. To detect lines,

it used the parametric equation of a line: ρ = x cos(θ) + y sin(θ) to construct

the Hough space. The Hough Space is a 2D plane with ρ as the vertical axis

and θ as the horizontal axis. Depending on the resolution of the image, an

15



accumulator array is initialized to detect different kinds of lines. For every

edge pixel, the value of θ is varied from 0 to π and each corresponding ρ is

computed. The accumulator array is used to find the intersection of the curves

and it is incremented for each non-zero pixel that is close to the corresponding

line. Finally, a pre-defined threshold is used to find the lines in the image.

OpenCV implements two different types of Hough transform. The standard

hough transform is described above and it outputs a parametric equation for a

line. The probabilistic hough transform on the other hand, is a more efficient

version and can output the extreme ends of a line. Both versions of hough

transform are show in Figure 5.

2.1.2 Deep learning

Deep learning is a subset of machine learning that can be used for various computer

vision applications such as object detection and tracking, semantic segmentation,

Simultaneous Localization and Mapping (SLAM) and object classification. For deep

learning, the system is initially provided with a dataset of images which have been

labelled according to what each image contains. The deep learning model is then

“trained” on these images using neural networks that learn the patterns and features

of each of the classes in the dataset.

The concept of deep learning is derived from the use of neurons to extract high

level information i.e features from an image and then pass it on to a classifier that uses

the information to make predictions. This process also occurs in our brains wherein

the first set of neurons in our cortex extract simple features such as edges, whereas the

neurons further down help in extracting high level information. Each set of neurons
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Input Output

Input layer Hidden layer Output layer

Figure 6: A simple deep learning neural network model

in a deep-learning model is called as a layer. A layer takes in an input, performs

operations on it based on a set of functions and then passes it on to the next layer.

The first layer of a model is called as the input layer, the last layer is called output

layer and all the layers in between are part of the hidden layer. Usually, each layer

performs one operation such as convolution, pooling, padding etc.

With the development of Convolutional Neural Networks (CNN’s), deep learn-

ing saw a sudden jump is research and use due to its increased object recognition

capabilities as discussed in [41]. CNNs use a matrix of values, called as kernels, to

convolve the image and hence the name. There could be multiple convolutional layers,

each trained to detect a specific pattern or feature, in a deep learning model. The

kernel matrix transverses over the input image matrix and a dot product is carried out

between the kernel and the area which is overlapped. The output is summed and then

fed to an activation function. The output of the activation function indicates whether

a neuron would be ON or OFF. Some commonly used activation functions are Linear,

Sigmoid, TanH and ReLu, which is selected based on the task to be performed. A
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sample deep learning network is shown in Figure 6 with 1 input layer, 3 hidden layers

and 1 output layer.

At the end of a typical deep-learning model, a loss function is computed, which is

used to decide on the output of the model. It contains a set of weights or errors. The

more accurate a model is, the lesser its error would be and hence this loss function

is to be minimized. There are many optimization functions that seek to do this, the

most common of which is the gradient descent algorithm. The algorithm starts by a

set of random weights and the loss function is computed for it. The algorithm then

computes a slope for this function which indicates the set of values to be initialized to

the weights to attain a lower loss for the next iteration. A learning rate is used to

control the amount by which the weights can change for each iteration. The process

is repeated until the loss function is stabilized at its lowest number. This weights

used to get the minimized loss function is then used for testing the model with other

inputs.

2.2 Selecting the right approach

Both traditional computer vision and deep learning have their trade-offs to be

considered. Analyzing the problem statement thoroughly and having a clear under-

standing of its requirements will make it easier to choose the right approach.

One of the major drawbacks of the traditional approach is that as the number

of classes to be detected increase, it becomes difficult to identity features that best

describe all the different classes. Moreover, it is necessary to fine tune all the parameters

by trial and error approach to attain the best working detection. Using deep learning

models on the other hand, based on the input dataset, a wide variety of classes can
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be detected. The problem of fine tuning the parameters is also eliminated since the

training of the model is automatic and it fine tunes the parameters by itself. Deep

learning models are also generally seen to have better accuracy in detecting objects

than traditional approaches. The models can also be retrained on another dataset for

other purposes, contrary to traditional approaches which are very specific to a set of

features.

However, the above listed drawbacks do not mean that deep learning is the best

approach for all scenarios. Most deep learning models require a huge training dataset

before they are able to have a good accuracy. Training on a big dataset also entails

that it is time consuming before the model can be deployed for use. A large enough

dataset may not always be available and it consumes further time if a custom dataset

is to be prepared from scratch. The trained models are also very dependent on the

dataset they were trained on. Failure can occur if the image resolution of the training

images are different from the test images. Similarly, overfitting is a very common

issue that could happen wherein the deep learning models perform well on the train

images but have poor results on the test images due to overfitting of the parameters.

For our problem statement, we do not have multiple classes of objects and also

assume only one object in the scene at a given time. It would be a overkill to deploy

deep learning models to solve this problem. Additionally, traditional approaches have

higher processing speed than deep learning models. Since our tests were conducted

real-time, higher processing speeds is a priority. Moreover, deep learning models have

a higher CPU consumption which was not feasible for our case. Since we run all

our algorithms on an e UpBoard with 4 cores, we had to limit our CPU expense for

other processes to run. Hence, considering all the factors listed above, we employ a

traditional computer vision approach to detect the objects.
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2.3 Preliminary strategy

2.3.1 OpenCV

Open source Computer Vision library (OpenCV) is the most popular open-source

library that is used to solve computer vision applications in real-time. It has number

of image processing functions, detectors and trackers that can be used for almost

all computer vision applications. Tracking algorithms have a lower computational

expense than that of detectors since they do not process the entire image but only

the portion where it estimates the location of the object. However, a major drawback

of these trackers is that they do not recognize an object when it leaves the frame and

comes back again. In such cases, these trackers fail and should be initialized again.

Since trash objects on water surfaces can easily drift out of the field of view of the

camera, we required our tracker to be able to recognize the object after it comes back

into the scene.

2.3.2 Trackers in OpenCV

The OpenCV library contains a number of trackers that can be implemented

within a few lines of code. These trackers are the Boosting tracker [42], Multiple

Instance Learning (MIL) tracker [43], Kernelized Correlation Filter (KCF) tracker

[44], Tracking-Learning-Detection (TLD) tracker [45], Median Flow tracker [46],

Discriminative Correlation Filter with Channel and Spatial Reliability (CSRT) tracker

[47] and the Minimum Output Sum of Squared Error (MOSSE) tracker [48]. The

working of some of the most commonly used trackers is described below.
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The MIL tracker employs the concept of “tracking by detection” wherein an online

classifier is trained to segment the object from the background. The classifier uses

the current bounding box provided by the user and looks around the neighboring

patches to compute several positive examples. It the sets up a number of positive

and negative bags with each bag containing the corresponding potential positive and

negative examples. This is based on the intuition that even if the tracking is not

accurate, there may be a positive example inside the positive bag that contains the

correct bounding box. Although this tracker can handle partial occlusions of the

object, it cannot handle complete occlusions. In addition to this, this tracker does not

always report failure properly since even small inaccuracies during tracking can affect

the training of the classifier.

KCF tracker is a fast working tracker that utilizes concepts used by the Boosting

tracker and the MIL tracker. It looks for overlapping regions within the collected

positive examples and applies Discrete Fourier Transform [49] on the data, diagonalizing

it to reduce storage and computation. This is then applied on a kernel ridge regression

[50] to obtain the tracker. KCT tracker is one of the fastest tracker till date, running

at hundreds of frames-per-second while being accurate. However, this tracker is prone

to failure easily and does not recover from occlusions either.

TLD tracker, as the name suggests, divides the tracking problem into 3 sub-

components - tracking, learning and detection. The tracking keeps a track of the

object for each frame. The detector consider every frame as a separate image and

localizes all the features that are seen in the current image and the ones before. It then

uses these features to correct the tracker if necessary. The learning observes the false

positive and false negative errors of the detector and estimates them to avoid them in

the succeeding frames. TLD tracker has one of the best performance compared to the
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other tracker. It is also able to recover from full occlusions satisfactorily. However,

this tracker has the most computational expense due to all the processes running in

the background.

The CSRT tracker solved the problem of short-term tracking by employing the

use of Discriminative Correlation Filters (DCF). Both spatial and channel reliability

concepts are introduced to the DCF. The spatial reliability map updates the filter

support to the part of the object that is suitable for tracking. This enlarges and

localizes the selected region, which is used for tracking of circular and non-rectangular

objects. The channel reliability on the other hand, is estimated to weight the per-

channel filter responses in localization. This tracker offers a comparatively high

accuracy of tracking with decrease in processing speeds.

The trackers discussed above work differently than one another and have their pros

and cons. However, a major concern with all these trackers is that all of them except

for TLD tracker result in tracking failure during scenarios of complete occlusions.

These trackers do not recognize the object once they back in the scene and have to be

re-initialized again, which is not practical for real-time cases. While TLD tracker is

able to do so, it has a very high CPU consumption with a low processing speed which

makes it unsuitable to be run on a onboard processor. Hence, we had to look for a

tracker that does not fail under occlusions, can recognize objects that leave the scene

and come back again, and has good accuracy in tracking with significantly low CPU

usage.

22



2.3.3 CMT tracker

Clustering of Static-Adaptive Correspondences for Deformable Object (CMT)

tracker [51] is an open-source tracker which is compatible with OpenCV and can be

tested out easily after a simple download. The code is available in both Python and

C++. We prefer the later due to its lower CPU consumption. CMT tracker is a

keypoint-based tracker that can re-recognize an object if it leaves the scene and comes

back into the frame after a few moments. This makes it a very suitable tracker for our

purpose. The main idea of the CMT tracker is to use keypoints for breaking down the

object into multiple fragments. This allows it to be easier to compare the individual

fragments with a descriptor rather than using the entire object as a whole.

The working of the CMT tracker is as follows. Initially, in the first frame, a

bounding box containing the object to be tracked is defined. A set of foreground

and background keypoints are computed inside this bounding box. The keypoints

are their descriptors are detected using Binary Robust invariant scalable keypoints

(BRISK), since it is invariant to scale and rotation changes. These keypoints will

be later used for matching as the images iterate. A static appearance model is first

employed wherein a global search is used to match the keypoints between the initial

frame and the current frame. This model works well from re-detection of the object

after occlusions. However, to account for changes in object appearances, an adaptive

model is also updated after every frame. By assuming the time between consecutive

frames to be small, a sparse optic flow is used to establish correspondences from frame

t− 1 to frame t using Lucas-Kanade algorithm.

When both the models yield the correspondences, the result of the static model

is used since it is more robust. All the correspondences are then clustered by using
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a standard agglomerative clustering algorithm [52]. It is assumed that the largest

cluster of the correspondences contains the object whereas all other clusters are part

of a clutter. Since keypoints with similar descriptors are difficult to match, they

excluded the correspondences that are dissimilar to the largest cluster using a second

matching round. Once the outliers are removed, the remaining keypoints are used

to compute a rotated bounding box which contains the object being tracked and the

process continues.

Figure 7: Block diagram representing the initial algorithm for detection and tracking
of trash objects

2.4 Implementation of CMT tracker

Before initializing a tracker, it must be provided with the bounding box containing

the object to be tracked. This can be done manually by a user drawing the bounding

box over the frame or by providing the coordinates of the bounding box to the tracker.

However, this is not feasible for our case since we perform the tracking real-time

autonomously without any help from the operator. In such instances, a detector is

first run to get the bounding box which is then subsequently used to initialize the

tracker. Hence, the developed algorithm consists of two components - detection and

tracking. The detection component employs the use of a Bruteforce matcher and

SURF detector. The tracking is initiated using the CMT tracker once the object
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has been detected. This algorithm is discussed in detail below and is represented by

Algorithm 1. For better understanding, the flow diagram of the algorithm is shown

by Figure 7 and a visual representation is provided in Figure 8.

Figure 8: Visual representation of the algorithm. (a) Input image of the object to be
tracked; (b) Feature matching between the input image and the video feed; (c) Good

features have been matched i.e object has been detected; (d) Tracking starts

25



2.4.0.1 Detection

Detection is the first stage of this algorithm and is used to locate the object in the

frame. An image of the object to be detected is provided to the algorithm. Detection

of the object is done in two stages - matching the input image to video stream and

then using a feature detector to draw a bounding box around the object. The video

feed starts as soon as the multirotor takes off and until the collection of the object.

Matching the input image and video feed is done by using a Bruteforce matcher. It

is a simple feature matcher that compares descriptor of one feature in an image with

the descriptor of features in another image. Based on distance calculation, the closest

features are returned as matches. To generate the features of the input image and

video stream, we use Scale-Invariant Feature Transform (SIFT) to extract keypoints

and compute their descriptors. SIFT, while being computationally inexpensive, was

also able to detect features when the video stream contained only water and no objects

on its surface.

Since the matching process is run for as long as the object is not found, it becomes

essential to use the feature detector which gives a satisfactory amount of good matches

without having an adverse effect on the computational expense. Hence, we choose

SIFT to be our feature detector. Once all the matches has been found, a threshold

was applied to filter out only the good matches. Since a few matches could be false

positives, the algorithm was coded such that it confirms the presence of the trash in

the input image to be in the video stream only if good matches have been recorded

for six or more consecutive frames. Once this has been established, the matching is

stopped.

SURF Feature Detector and Descriptor is then applied on the consecutive frame
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Algorithm 1 Vision architecture for Detection and Tracking of trash item using
CMT tracker

Input: Image of object to be detected and tracked
bounding box← false
i← read input image
while bounding box == false do
f ← get frame
Matching(i,f)
if good matches found then

SURF(f)
bounding box← true

end if
end while
f ← get frame
initialize CMT
while true do
f ← get frame
Tracking(f)
if Tracking lost for more than 180 frames then
bounding box← false
while bounding box == false do
f ← get frame
Matching(i,f)
if good matches found then

SURF(f)
bounding box← true

end if
end while

end if
end while=0

to find all features and descriptors within it. SURF is a speeded up version of SIFT

and hence the name. While SIFT uses Difference of Gaussian to approximate Laplace

of Gaussian, SURF does the same by using Box Filter.

A threshold hessian is applied to eliminate features that have low strength. Once

the features and their corresponding descriptors have been computed, the feature
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whose descriptor has the largest radius is identified and inscribed by a bounding box

which is then passed on to the CMT tracker.

Since we are looking for objects on water surface, which is quite featureless, the

feature with the largest descriptor radius is usually the object that is to be detected

and tracked.Moreover, we consider the case where there is only one object in the

scene. When compared with other feature descriptors like SIFT, ORB and KAZE,

it was found that SURF provided the largest descriptor that encompasses the whole

object to be tracked. This is why we use SURF even though its computationally more

expensive than the alternatives.

SURF could also be used solely without the matching to find the largest object in

the scene. But this approach poses various problems. First, when there is no object in

the scene, using SURF to get the largest feature would usually result in some arbitrary

features such as dust particles or water ripples being detected. In addition to this, we

have no way of recognising an object once it comes back to the frame if only SURF

is used for detection. Hence, this is why an image of the object to be detected is

provided to the Bruteforce matcher.

2.4.0.2 Tracking

The CMT tracker is initialized using the bounding box computed by SURF. By

default, the CMT uses the Features from Accelerated Segment Test (FAST) [53]

feature detector and BRISK to detect the keypoints and compute the corresponding

descriptors respectively within the bounding box. This combination works well for our

purpose and hence they were not changed. The keypoints would be used for tracking

the object as the video progresses and to handle occlusions as well. The multirotor
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uses the bounding box coordinates of the CMT tracker to track the object and keep it

exactly below the multirotor for increased success of collection. If the object being

tracked is lost or occluded for a defined number of frames, the code reverts back to

the process of matching and continues doing so until the object reappears.

2.4.1 Validation of the feature matching and tracker

To compare and evaluate the matcher and tracker of this algorithm, we collected

a real-time video of bottle on a lake using a USB camera attached to a drone. The

video was then post-processed before being used for the experimental validation.

Table 1: Comparison of different feature detectors on various objects

Bottle SIFT ORB KAZE SURF
Number of good matches 14 8 6 15

CPU usage (in %) 47.05 66.67 55.88 75

Table 1 below compares the results of SIFT with other alternative such as ORB,

KAZE and SURF. For the water bottle, in terms of number of good matches, SIFT

performs comparatively well with 14 good matches. The only other detector which

yields better results is SURF which has 15 good matches. ORB and KAZE on the

other hand, give just 8 and 6 good matches respectively. SIFT has the lowest CPU

usage of 47.05% while ORB, KAZE and SURF take up 66.67%, 55.88% and 75%

respectively. We choose SIFT rather than SURF due to its considerably low CPU

usage with a slight trade off in number of keypoints detected.

We used two performance measures - precision and recall to evaluate the CMT
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Table 2: Comparison of different trackers

CMT KCF MIL TLD
Precision 0.675 0.5283 0.4782 0.5905
Recall 0.6304 0.45 0.5286 0.6232

tracker with other trackers such as KCF, MIL and TLD. The comparison is shown

in Table 2. CMT outperforms all other trackers when comparing both precision and

recall.It tracks the object efficiently and is also able to recognise and restart tracking if

the object comes back into the frame after a period of being hidden or disappearance.

While KCF tracker seems to start of well with the tracking, it fails as soon as the

object is slightly obscured. MIL tracker, on the other hand, fails in the sense that it

starts tracking the ROI where the object was last visible and doesn’t seem to recognise

the object when it comes back into the scene. The TLD tracker comes to closest to

performing as good as the CMT tracker. It even seems to recognise the object when

it comes back into the frame. The only issue in case of the TLD tracker is that it is

much more slower and computationally more expensive than the CMT tracker. While

CMT tracker had the best performance when compared with the rest, this algorithm

proved to have a lot of disadvantages which led to it not being used further.

2.5 Limitations and need for a better approach

Using the SIFT detector and descriptor with the CMT tracker had a successful

tracking output for the first few times. But on testing it real-time with different

objects and weather conditions, it failed. The issues with this algorithm is described

in detail below -
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1. Detection failure leads to tracker failure

The working of the tracker is dependent on the bounding box provided by the

detector. Although the feature matching runs until the object in the scene,

the SIFT keypoint detector draws the bounding box over the biggest keypoint

detected when the matching is satisfied. This may or may not be the object to

be tracked. The detector is initialized when the feature matching is satisfied,

but is independent of other features in the scene.

During our testing, the SIFT algorithm sometimes detects the water ripples

caused by winds and the propeller downwash, as the biggest object in the frame

and draws a bounding box around it instead, though the trash object is in the

frame. Subsequently, providing the bounding box of the water ripples to the

tracker causes it to fail and the object is not tracked at all.

2. Issue of reflections

A large number of specular reflections on the water surface that arise during

sunny weather conditions also lead to detection and tracking failure. The

reflections are so overwhelming that they are bigger than the object to be

detected and sometimes completely obscure the object so much that it becomes

impossible to detect it. We encountered failure of the tracking a number of

times when we conducted real-time testing in sunny conditions.

3. Need to provide an input image

Another major cause for concern of this algorithm is the need to provide an

image of the object to be detected. This is not always practicable since we the

algorithm needs an image of the exact object to be detected, which may not be

available in real-time. If the image is not as desired, the feature matching would

continue to run and the algorithm would never progress to tracking. In addition
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to this, there are a wide variety of trash objects that could be encountered. It is

not possible to have an image of every trash object that we need to pickup.

4. CPU consumption of the detector

Detection is computationally more expensive than tracking. Using feature

matching for detection consumes more CPU the longer it is run. For as long

as the object is not in the scene, the feature matching is run. During real-time

testing, the CPU consumption of the detector reached as high as 2 cores, which

is not desirable to be on a UpBoard with 4 cores.

5. CPU consumption of the tracker

Although the tracker is not more CPU expensive than the detector, there are

some cases where it consumes a lot of CPU. One of the main causes is when the

feature detector of the tracker detects a lot of keypoints and hence starts having

a frame rate drop and increase in computational expense as it has to keep track

of a lot of keypoints. This issue was seen when the tracker detects keypoints

over the water ripples inside the bounding box.

With the challenges and drawbacks of the CMT tracker, it became essential to

develop a better object detection algorithm that would be able to would be able to

work with better accuracy and low rate of failure. It should also handle the issues

faced by the previous algorithm, especially failure due to occlusions and out-of-view

scenarios. The approach to designing another algorithm is described in detail in the

next chapter.
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Chapter 3

DEVELOPMENT OF A 2-PHASE OBJECT DETECTOR WITH SPECULARITY

REMOVAL

This chapter will go over on how a better detection strategy was developed and

on how it was able to overcome the challenges and disadvantages of the previous one.

The first section of this chapter shall introduce the selection of the hardware setup and

their use in collection and processing of test videos. The second half of this chapter

will be used to discuss the development and working of the algorithm in detail.

3.1 Image sensors

Any sensor that is able to perceive an environment and convey the information in

the form of an image is called an image sensor. A camera is the most common image

sensor used for computer vision and machine vision applications. All of the videos

and images used for the completion of this thesis were collected and processed using

an oCam-1CGN-U (Withrobot, Rep. of Korea) 1 Mega Pixel USB 3.0 colour global

shutter monocular camera as seen in Figure 9.

This camera outputs images of Bayer RGB format which can be converted to RGB

by using a provided function that is integrated with OpenCV. The camera also has

it’s own viewer program that can be used for various purposes such as varying the

exposure and gain values, colour correction, switching between manual and automatic

auto-focus, and so on. The camera can process upto 54 fps at image resolutions of 1280

x 960 and 180 fps at resolutions of 640 x 480. In addition to having fast processing
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Figure 9: oCam-1CGN-U

speeds, it also has a low CPU usage since it writes data to the main memory of the

board without passing through the CPU using a USB 3.0 interface.

Based on the type of shutter, cameras can be classified into global shutter and

rolling shutter. In global shutter cameras, the active-pixel sensors inside the camera

scans the entire area of the image at the same time, whereas in rolling shutter, the

image is scanned from the top to bottom, line-by-line. We use a global shutter camera

for our purpose, since rolling shutter cameras have a lot of disadvantages when it

comes moving objects. Figure 10 demonstrated the difference between a rolling shutter

and a global shutter for a 4×4 pixels camera.

Rolling shutter effect is used to describe a list of the common issues found in rolling

shutter cameras. Some of these issues are wobbling, skew and aliasing. Wobbling

occurs when the image is taken from a unsteady support of when it is taken from a fast

moving vehicle, resulting in a very fuzzy image. The skew effect occurs when either

the camera or the object is moving from one side to another. Due to the nature of
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rolling shutter, it distorts the image such that the object is tilted towards the direction

of motion. Spatial and Temporal aliasing are caused due to parts of the object moving

faster than the rest and partial exposure of the image, respectively. Both these cases

cause portions of the image to be discontinuous with the rest. A global shutter camera

does not encounter these issues and also has the added advantage of better consistency

and accuracy in the image.

Rolling Shutter

Global Shutter

Figure 10: Difference between a rolling shutter and a global shutter camera

3.2 Collection of the videos

For testing the object detection algorithm, we require a good number of videos

containing different objects at varying light conditions. Five different objects of

different shapes, sizes and shades were used, namely - a white bottle, a white carton,

a silver can, a red carton and a dark can as shown in Figure 11 with their respective
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dimensions and weights. All of the videos were collected in a lake park at Gilbert,

Arizona (lat:33.3589, lon:-111.7685) at different times of the day.

Figure 11: Objects used for collection of the dataset

First, the objects were tied tautly with a rope to prevent them from drifting away

too much and loosing them. The objects were then thrown at a distance from the

shore manually. The multirotor with the downward facing camera is taken off from its

base station and then the video recording is started. The videos at 80 FPS with an

image resolution of 640×480. After multiple trails, we also found that the exposure

value of 15 and gain of 45 has the best output without making the videos too dark or

too bright, and hence we set those values manually before recording. The multirotor

takes the video from various angles and altitudes. A number of scenarios such as

partial occlusions and drift of the object away from the camera’s field of view is also

recorded.
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3.3 Eliminating the challenges

A key to coming up with a good object detection algorithm is to identify the

potential challenges that will be faced during testing and incorporate methods to

eliminate those challenges. In this section, we will describe how the algorithm tackled

the different hurdles faced when performing object detection on water surfaces.

Partial occlusions of the object and drift due to the water currents is one challenge

to be overcome. Tracking algorithms are not able to handle such occlusions and do

not recover successfully when the object momentarily leaves the scene and comes back.

A low-cost detection algorithm was developed instead. Generally, detectors are more

CPU expensive than tracker. However, since minimal processing techniques were used,

the CPU consumption was within the limits of the onboard computer.

Without Polarization filter

With Polarization filter

Figure 12: Reducing the effect of reflections using a linear polarization filter. Top:
Snapshots of videos collected without polarization filter; Bottom: Snapshots of videos

collected with polarization filter

As described in the first chapter, another major challenge when performing object
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detection on water surfaces is the surface reflections and the reflections on the object.

These reflections obscured the object and complicated the detection algorithm. To

prevent this, we attaches a linear polarization filter in front of the camera lens which

reduced the reflections and helped in enhancing the features of the object. The

difference between not using a polarization filter and using a polarization filter is

shown in Figure 12. The figure demonstrates two videos collected over a white bottle,

one without a polarization filter and the other with a polarization filter. However,

since the linear polarization filter could only subdue reflections coming in at a small

range of angle and hence a few specular reflections on the water surface remained,

especially during sunny days. To subdue these further, we incorporate a specularity

removal technique in our object detection pipeline.

Objects of lower reflectivity have a lower contrast with the background, making

them harder to detect. Additionally, when testing outdoors, multiple illumination

conditions will be encountered. This would mean that the object detection algorithm

must be independent of features that rely on the intensity of light, such as the

brightness pixels. As the multirotor starts descending for collection of the object, the

aspect ratio of the object changes. This called for the need of an algorithm that could

handle scale changes and rotations. To tackle all these issues, we needed to look for

features that would not be affected by changes in brightness, scale and rotations. Since

the objects that we had tested on had well defined shapes, we used an edge-based

detection method. The algorithm is further described in detail in the next section.
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3.4 The algorithm

A two-phase object detection algorithm was developed and tested in multiple test

videos. The algorithm had an estimation phase and a detection phase. The estimation

is initially run and it starts looking for the object to be detected. Once it confirms that

the object has been found, the algorithm proceeds to the second phase and performs

specularity removal along with detection. The detection is then used for tracking of

the object and to deliver the bounding box coordinates to the multirotor.

One of the hardest tasks was performing specularity removal in combination with

object detection. A literature survey on different reflection removal algorithms and

implemented them to test their performance and compatibility with our algorithm.

[54] is one of the first approaches that we implemented. This work treats specular

pixels as noise and attenuates them using a low-pass bilateral filter to remove them.

While this approach had a good performance, the iterative use of the bilateral filter

consumed too much of CPU resource and hence could not be used for real-time

applications on videos.

The approach developed in [55] was then implemented, which computes the local

intensity ratios of each pixel across the RGB channel and then, makes those ratio

equal in an iterative fashion. Since this approach also uses an iterative framework and

does not eliminate substantial reflections as we wanted, it is not feasible to implement

this approach with our algorithm for the similar reasons as described in the previous

paragraph.
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Algorithm 2 Object detection algorithm
0: while read polarized camera frame do
0: if Object detected == false then
0: f ← getframe
0: Canny_edge_detector(f)
0: contours(i) = FindContours(f)

0: Obj = max_area{contours(i)}
{Find contour with maximum area
as we assume only one object in the
scene}

0: if No contour jumps in a window of 10 frames then
0: Object detected← true {Store the initial bounding box coordinates}
0: else
0: Object detected← false
0: end if
0: end if
0: if Object detected == true then
0: f ← getframe

0: Imin(p) = min{fR(p), fG(p), fB(p)} {Minimum intensity value of each
pixel p across the RGB channels}

0: T = µv + η ∗ σv {Compute intensity threshold value}

0: τ(p) =

{
T, if Imin(p) > T

Imin(p), otherwise
{Compute offset to find pixels to be changed}

0: β̂(p) =

{
0, p within bounding box
Imin(p)− τ(p), otherwise

{Compute the specular component}

0: fsf (p) = merge{fR(p)− β̂(p), fG(p)− β̂(p), fB(p)− β̂(p)}

{Subtract specular compo-
nent from each of the three
channels and merge them
to get the specular-free im-
age}

0: Canny_edge_detector(fsf )
{Detect edges on the specular-free image
where object is not affected by specular re-
flections removal algorithm}

0: contours(i) = FindContours(fsf )
0: Obj = max_area{contours(i)} {Update the bounding box coordinates}
0: if Object not detected for more than 10 frames then
0: Object detected← false
0: end if
0: end if
0: end while=0

We then implemented the algorithm discussed in [56], which is based on the fact

that reflections can be separated into their diffuse and specular components. We

compute a specular component of the frame and then subtract it from the original

frame to get the specular free image, which is free of reflections. Subsequently, we

employed this algorithm in our code due to its low computational load and fast

processing speed. To account for objects of different reflective properties, we have

used an edge-based contour detection algorithm by initially estimating the edges of

40



the object to be detected. The complete algorithm is described in detail below and

the visual representation is given by Figure :

(a) (b) (c)

(d) (e) (f)

Figure 13: The two phase object detection algorithm. Top row: Estimation phase. (a)
Current polarized video frame; (b) Contours extracted from the frame; (c) Bounding
box drawn over largest consistently placed closed contour. Bottom row: Detection
phase. (d) Specularity removal from all pixels outside bounding box; (e) Extraction

of closed contours; (f) Detection of the object

• Read polarized video frame (Line 1): In the first phase of the algorithm,

a thin filament of polarization filter is still used in front of the camera lens to

suppress a major portion of the specular reflections. The polarized frame is

shown in Figure 13 (a).

• Estimate initial position of object (Line 3-11): The polarized video feed

is passed on to a canny edge detector which is used to extract closed contours

from the frame which is seen in Figure 13 (b). A dilation operation is performed
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on the edges detected by the canny edge detector. Dilation is a morphological

operation [57] that is used to increase the thickness of the edges for better

visibility. The operation consists of convolving the image with a kernel that

scans a over the image and computed the pixel with the maximum value inside

the overlap. It then replaces the value of the anchor pixel with the maximum

value within the overlap. The dilation operation is given by -

dst(x, y) = max
(x′,y′): element(x′,y′) 6=0

src(x+ x′, y + y′),

where dst is the output image, src is the input image, x and y represent the

pixel positions in the row and column respectively.

After this operation, a contour search method is employed to find the largest

closed contour. However, due to the presence of reflections on the water surface,

the largest closed contour can either be an object or a reflection. Since the

reflections are volatile, their contours aren’t consistently placed in the same

region. If the largest closed contour is consistently placed in the same region for

atleast 10 consecutive frames, it indicates the presence of an object in the scene,

as shown in Figure 13 (c).

• Store current bounding box coordinates (Line 8): Once we get the initial

closed contour of the object we compute its current bounding box coordinates.

To ensure reliable object detection, we remove reflections from the next frame by

considering the bounding box coordinates of the object in the current frame. By

doing this, we guarantee that the reflection removal algorithm removes specular

component of the entire image without affecting the features of the object.

• Removing specular reflections (Line 15-19): For the second phase of

the algorithm, we employ the work by [56] starts by computing the minimum
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intensity value Imin(p) across the RGB channel for each pixel in the frame. If

each RGB frame is of the size 640×480×3, Imin is of the size 640×480. An

intensity threshold value T is then calculated to distinguish highlighted pixels:

T = µv + η · σv (3.1)

where µv and σv are the mean and standard deviation of the minimum intensity

value matrix Imin over all the pixels. The variable η is a measure of the specular

degree of an image and is generally set to be 0.5. Based on the calculated

intensity threshold T , an offset τ is then computed to determine which pixels

have to be changed to suppress reflections.

τ(p) =


T, if Imin(p) > T

Imin(p), otherwise
(3.2)

The specular component β̂(p) of the frame is computed by subtracting the offset

from Imin. For any pixel inside the bounding box coordinates, we set β̂(p) to 0

to preserve the features of the object to be detected.

β̂(p) =


0, p within bounding box coordinates

Imin(p)− τ(p), otherwise
(3.3)

Finally, the specular component is subtracted from the frame to get the specular-

free image without removing reflections from the area where the object is located,

which is demonstrated in Figure 13 (d). Since the object moves due to drift

from one frame to the next, we scale the bounding box size by a small amount

before applying the specularity removal over the rest of the pixels in the frame.

The specularity removal is applied on the entire frame excluding the area where

the object has been estimated using the bounding box coordinated. This is
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because the objects have reflective surfaces as well. Since the specularity removal

algorithm is eliminates reflections on all surfaces, if applied on the object, it

affects the features of the object so much that it cannot be seen in the frame.

The specularity removal algorithm assumes that the object is also a reflective

surface to removed and tries to change the appearance of the object to match

the background, resulting in a dark colour. Figure 14 demonstrates an example

in which the specularity removal algorithm has been applied over the entire

frame.

(a) (b)

Figure 14: Result of removing specular reflections over the entire frame without
excluding the object. The object has been completely removed from the scene and
cannot be detected, although all the surface reflections have been removed. (a) Input

image (b) Output of the specularity removal algorithm.

• Detect object and update bounding box coordinates (Line 20-26):

Since reflections have been eliminated in the rest of the frame and assuming

that the object has not moved a lot within one frame, the region where the

object lies is highlighted when compared with rest of the image. The contours of

the specular-free image are again extracted using a canny edge detector,seen in

Figure 13 (e), and the object is detected as shown in Figure 13 (f). The object
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is easily detected in this phase since there are no reflections that are seen when

extracting the contours. The current bounding box coordinates of the object is

utilized for specularity-removal from the next frame, and the process iterates.

If no contours are detected for a pre-determined time window, the algorithm

reverts back to the maximum-area contour searching.

3.5 Testing

We carried out the testing of this algorithm using the videos collected in the

previous sections. Tests were also conducted in real-time with the multirotor wherein,

we deploy the multirotor with the net deactivated, manually fly it over the object and

then start the object detection algorithm. Once the object has been estimated and the

detection is initialized, we pass the bounding box coordinates of the detected object

to the multirotor, which uses it to autonomously descend and lands on top of the

object. The net system is then activated to pick up the object from underneath and

the multirotor carries it back to the shore. Using the two-phase detection algorithm,

we were able to achieve an overall success rate of 91.6%. A successful test run

demonstrating the object collection from a water surface using the multirotor is shown

in Figure 15.

Figure 16 demonstrates the working of the object detection algorithm for all the

5 objects at four different frames of the video. We can easily infer the accuracy of

our detection and the similarity of the bounding box with the ground truth. We can

also see the different environmental conditions such as the brightness of light, size of

the object and the water ripples which factored in the videos for each of the object.

The combined working of the polarization filter in front of the camera lens and the
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a) Object detected b) Multirotor descends c) Multirotor lands on object d) Object picked up

Figure 15: Successful collection of an object from water surface by the multirotor

specularity removal algorithm has decreased the contrast of the background water

surface by a lot, while also highlighting the features of the object. However, failure

cases were seen when testing dark can. Since the video collected using the dark can

was during a cloudy illumination condition, the edges object had low visibility, as

the background was also quite dark. In addition to this, using the polarization filter

and the specularity removal algorithm reduces the contrast of the image, which also

resulted in the dark can being masked by the background in a number of frames.

While the detector does not through any false positives, it failed to detect the object

for a number of frames and reverted back to estimation even though the object was in

the frame. This caused a decrease in the number of successful collection of the dark

can by the multirotor.
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Can Can Can Can

White Bottle White Bottle White Bottle White Bottle

White Carton White Carton White Carton White Carton

Dark
Carton

Dark
Carton

Dark
Carton

Dark
Carton

Dark Can Dark Can Dark Can Dark Can

Figure 16: Proposed object detection algorithm’s output on a cloudy day. Snapshots
from a video are shown at different time instances for the following objects: (a) Row
1: Can; (b) Row 2: White bottle, (c) Row 3: White Carton, (d) Row 4: Dark Carton

& (e) Row 5: Dark Can.

3.6 Limitations

Although the developed algorithm had a better accuracy and faster working than

the previous algorithm, it still has a few limitations that need to be overcome.
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1. Object estimation is not always reliable

The object estimation phase looks for closed contours that are placed consistently

in the scene for a pre-defined number of frames. This approach is not always

reliable and can cause failure. If there is no object in the scene but there are

other features that are consistently in the scene, the object estimation would

mistake those to be the object instead and initialize the detection.

2. Specularity removal can cause failure

The removal of specular reflections from the frame can cause a number of issues.

If the bounding box provided by the estimation does not overlap the object, the

specularity removal would regardless still be applied to all the rest of the pixels

in the frame. The contours of the features inside the bounding box, usually

the water ripples and reflections, would now be extracted and detected. The

detection would not terminate and would instead proceed detecting the ripples.

3. Darker objects are harder to detect

As was discussed in the previous section, because of the decrease in contrast of

the video due to the application of the polarization filter and the specularity

removal, the features of objects with darker shades becomes harder to detect

since they match the shade of the background. The estimation phase would

continue running for long periods until it has been able to extract the contours

of the object. If the detection phase is initialized and the object drifts away

from the field-of-view of the camera, the estimation phase is again run for a long

period when the object comes back into the scene.

4. Lack of tracking the object

As is the case with all detectors, they are quite different from tracking. Object

detection cannot remember the object being detected. For instance, if the object
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being detected drifts away from the frame and another object comes into the

scene instead, the detector would start detecting the new object in the scene

instead. This is not the case with object tracking since they remember the

features of the object being tracker and would not start tracking other objects.

Object trackers can be used to assign unique ID for different objects so as to

identify and distinguish them from one another.
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Chapter 4

EXPERIMENTAL RESULTS

In this chapter, we discuss our the performance comparison of our detection

algorithm with other detectors such as You Only Live Once v3 (YOLOv3) [58] and

Mobilenet Single Shot Detector (SSD) [59]. These deep-learning models are both used

widely in the field of computer vision for real-time object detection and hence they

were chosen for comparison with our algorithm. Both YOLOv3 and SSD have been

pre-trained on the COCO dataset [60], which is a large scale object detection dataset

containing over 200,000 labelled images and more than 80 classes. Using pre-trained

deep-learning models reduces the time it takes for it to be trained on a custom dataset

since it already has been updated with the model weights of the previous dataset.

4.1 The dataset

For choosing the dataset, we collected videos with 5 different objects namely - a

white bottle, a white carton, a silver can, a red carton and a dark can as shown in the

previous chapter under cloudy/ partially cloudy conditions. To maintain consistency,

we collected all the videos at 30 FPS. The exposure and gain of the camera were set

to 15 and 45 respectively. The videos were trimmed to 1 minute length to get equal

number of frames for each object. The videos were then converted into individual

frames. We use just the first 500 frames of each video for training and validation of

the detectors, which resulted in a total of 2500 frames. The frames are collected and
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then sorted randomly so that they can be split as 2000 images for the training dataset

and 500 for the validation dataset.

Figure 17: Annotating an image containing an object using LabelImg

The training and validation dataset were then labelled using LabelImg [61]. This

is an open source graphical image annotation software that is used to prepare training

dataset for deep-learning models. The images are loaded individually into LabelImg

and annotated by hand. Since the objective of our algorithm is to just detect the

object and not to classify it, we labelled all the frames under a single class called

“object”. Once the annotation is complete, the labels can be saved as XML files in

PASCAL VOC format, or TXT files in YOLO format depending on the model to be

trained. Annotating of an image using labelImg is shown in Figure 17.To increase

the size of the training dataset, we generated synthetic data by performing various

operations such as rotation, shearing and varying brightness on the training dataset.

The brightness of the images was varied to capture different illumination conditions.
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With the addition of the synthetic data, we increased the size of the training dataset

by an additional three times from 1500 to 6000 images.

4.2 Ground truth labelling

The ground truth for all the videos was generated using Matlab’s Ground Truth

Labeler App. An input video is loaded and a label is drawn over the object that is

to be tracked. The ground truth bounding box is then automated for the next few

frames using the Kanade-Lucas-Tomasi (KLT) point tracker algorithm [62]. It works

under two assumptions - The difference in time between two consecutive frames is

small such that there is no large displacement of the object and each frame contains

objects of different textures that smooth changing shades of gray on grayscaling it.

Under these assumptions, it uses the Shi-Tomasi [63] algorithm to detect a set of good

features to track in the frame. These features are then tracked over the frames by

using optical flow vectors.

However, this algorithm fails when the object leaves the frame and so we have

to annotate the ground truth manually for a few frames. The output is given as the

top-left x, y coordinates, the height and width of the ground truth bounding box.

This data is then compared with the bounding box parameters of the tracker output

for evaluation. The function takes three parameters - the output bounding boxes of

the tracker, the ground truth bounding box and a optional overlap threshold. The

metrics were computed by using a overlap ratio of 0.3 since the multirotor could detect

the object satisfactorily even when the overlap ratio is 0.3. Overlap ratio is computed

as the intersection over union (IoU) between the bounding boxes. Intersection over

union is defined as the ratio between the area of overlap between two bounding boxes
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and the total area of the bounding boxes. Figure 18 demonstrated the ground truth

generation for the video of the white bottle.

Figure 18: Labelling the ground truth using MATLAB’s Ground Truth Labeler App

4.3 Training of detectors for comparison

Using the custom training data described in the previous section, we again train

the COCO pre-trained YOLO and SSD. The training images were resized to 416×416

and the learning rate was set to 0.001. The momentum used was 0.9 and a batch size

of 64 was initialized. The learning rate of the optimization algorithm was decreased by

a fixed factor using a dacay rate of 0.0005. Both YOLO and SSD were trained on the

dataset until they reached their average losses stabilized at 0.13 and 3.1 respectively.

Once the training is complete, the models were validated against the validation images

to make sure its performance is ready for testing.
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4.4 Evaluation of the algorithm

We compare the algorithms by running them on a Intel Core i7-10750H CPU

with 10 GB RAM and 4 cores. We do not utilize GPU for any of the testing, as the

Intel Upboard embedded processor we utilize for real-time testing only uses CPU for

running these algorithms. The metrics used for comparison are the processing speed

in frames-per-second (FPS), the total CPU consumption in %, Precision, and Recall.

To ensure accurate detection of the object, the estimation should run at a high rate so

that the algorithm can track fast-moving objects efficiently. This can only be achieved

by a high FPS. For computing the FPS, we initiate a timer when the frame is first

processed, and the end where the processing is done. The difference between the

time taken from the start to the end is the time taken to process one frame. The

inverse of this is the FPS. We also need low CPU consumption to reduce the power

consumption and subsequently improving the flight time. To simulate the working on

real-time conditions, we restrict the CPU usage to just 1 CPU core. As is evident

from Table 1, our algorithm is a clear choice when comparing the CPU consumption

and processing speed. The average CPU consumption for our algorithm is 37.5%,

whereas the processing speed is 21 FPS. Our proposed algorithm has the lowest CPU

consumption and highest FPS in comparison because our detection algorithm neither

employs a large model or performs several complex operations on the input image, as

is the case in most deep-learning models. The YOLO framework on the other hand,

utilizes 86.25% of the total CPU availability. The processing speed of YOLO is also

not suitable for real-time since it is only 2.8 FPS. SSD had a better processing speed

of 11 FPS when compared to YOLO, but it also had a high CPU consumption of 75%.

Precision is defined as the ratio of true positives to all positive instances, based on
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Table 3: Performance comparison of different detectors

Objects
Average FPS Total CPU usage in % Precision & Recall

Ours YOLO SSD Ours YOLO SSD Ours YOLO SSD
White Bottle 21 2.8 11 37.5 86.25 75 0.96 0.97 0.57
Dark carton 21 2.8 11 37.5 86.25 75 0.91 0.96 0.52
Dark can 21 2.8 11 37.5 86.25 75 0.78 0.90 0.22
Silver can 21 2.8 11 37.5 86.25 75 0.91 0.90 0.86

Juice carton 21 2.8 11 37.5 86.25 75 0.97 0.96 0.80

the ground truth. Recall is defined as the ratio of true positives to the sum of true

positives and false negatices, based on the ground truth.

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

Precision and Recall are both equal in our case since the test videos and the

ground truth video had an equal number of frames. The YOLO model had the highest

precision and recall metrics for most of the objects. The precision and recall rates of

our algorithm are slightly lower than YOLO except in two cases. For the dark can,

the performance of our algorithm is lower since it doesn’t detect the object on all the

frames. This is because the visibility of the dark can had reduced since the background

was dark as well. In the case of the silver can and juice carton, our algorithm actually

has a slightly better performance. SSD had the lowest precision and recall metrics

due to its inability to detect the objects for a large number of frames. It is also to be

noted that the precision and recall values of none of the deep learning models is ever

equal to 1 because they also fail to detect the object for a few frames. Considering all

these metrics and the fact that testing has to be carried out in real-time on a portable

processor, our proposed method works best for this scenario.
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

To conclude, a two-phase detection strategy for robust detection of floating trash

objects on water surfaces has been developed. The algorithm has a fast processing

speed with low-computational expense, which is suitable to be deployed on on-board

processors of robots in real-time. To reduce the effect of reflections during detection, we

have used a linear polarization filter in front of the camera lens and have also applied

a specularity removal algorithm. It has been demonstrated that the combination of

both have eliminated the effect of reflections to the maximum.

The algorithm has an estimation phase to locate the object and a detection phase

to initialize the detection. In the estimation phase, we look for location of the object

by extracting out closed contours that stay in the scene for a defined number of frames.

The detection phase uses the bounding box coordinates provided by the estimation

phase to apply a specularity removal algorithm for all the pixels outside the bounding

box. The object is then detected by extracting the contours again and computing

the bounding box. The updated bounding box coordinates are stored for specularity

removal in the subsequent frame and the code is repeated.

The detection algorithm has been compared with other deep-learning detectors on

5 different objects of varying shapes and sizes, and the performance comparison was

shown. The performance metrics used were the FPS, CPU usage, precision and recall.

Our object detection algorithm had the highest FPS of 21 and the lowest average
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CPU consumption of 37.5%. The precision and recall metrics were also comparably

high at 90.6%. The above data demonstrated how our algorithm was the best suited

for real-time object detection than the rest.

5.2 Future work

Future work in the area method of object detection would be to increase the

robustness of the current algorithm. Testing the algorithm on more objects in presence

of harsher conditions and conducting real-time field testing with the multirotor would

bring up more challenges and solving them can lead to a development of a better

detector. Particularly, we need to look at eliminating the limitations of the algorithm

discussed in the previous chapter. [64] describes a method for automatically adjusting

camera exposure using the gradient information available in the scene. This was used

to solve the issue of under/over-saturation in outdoor robotics experiments. In our

case, such an auto-exposure algorithm can be applied to find the best exposure value

that suppresses reflections and also maximize the object features.

Using background subtraction techniques for motion estimation did not work for

our case since the water surface is a dynamic background and not static. However, the

work presented in [65] demonstrates the use of adaptive background mixture models

to model each pixel in the background as a mixture of Gaussians and updating the

model by an online approximation technique. The pixels are then classifies using a

Gaussian distribution to determine which fits the background the most. A real-time

tracker that can handle light changes, cluttering motion and scene changes has also

been demonstrated in this work.

Estimation of the object by extracting consistently placed contours is not always
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reliable and robust. Detecting specular reflections in the video feed and avoiding

those regions instead would be a more practical approach. [66] proposes a method for

detection of specular reflections by analysing the Intensity-Saturation (IS) histogram

obtained from a HSI color space of the image. Applying such a technique for our

algorithm can eliminate the use of an estimation phase and would increase the

robustness of our algorithm.

Using an RGB-D camera can also prove very beneficial for object detection of

a more diverse range of trash objects such as transparent objects and objects with

less defined features. The advantages of using depth cameras for computer vision

applications has been discussed in more detail in [67]. [68] proposes an classification

algorithm that uses SIFT features to recognize transparent objects in the scene using

a RealSense depth camera. A monocular camera on the other hand, cannot obtain

depth information from the frame and detect transparent objects. Since we see a

number of transparent objects such as plastic bottle and bags floating on the surface

of water, using a depth camera can improve the detection capabilities of the algorithm.

Another pressing issue to be considered, is the detection and tracking of multiple

objects. When employed on a multirotor, it is power and time consuming to detect

single objects and perform the entire process each time. Detection and tracking of mul-

tiple objects can save time and battery power. Most multi-object tracking approaches

have the disadvantage of applying the tracking-by-detection technique which uses

two models for target localization and data association respectively. However, having

two models causes issues in real-time due to the increased CPU consumption. The

proposed system in [69] uses one single model for both target localization and data

association for simultaneous learning, resulting in increased efficiency. It also works

at a relatively high FPS and has comparable accuracy to the state-of-the-art trackers.
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Incorporating such a multi-object tracker in our algorithm can drastically improve the

working of the system while also having a greater impact on the environment during

trash collection.
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