
Investigating the Utility of Agile and Lean Software Process Metrics for Open

Source Software Communities: An Exploratory Study

by

Disha Suresh

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved November 2022 by the

Graduate Supervisory Committee:

Kevin Gary, Chair

Srividya Bansal

Alexandra Mehlhase

ARIZONA STATE UNIVERSITY

December 2022

 i

ABSTRACT

The adoption of Open Source Software (OSS) by organizations has become a

strategic need in a wide variety of software applications and platforms. Open Source has

changed the way organizations develop, acquire, use, and commercialize software. Further,

OSS projects often incorporate similar principles and practices as Agile and Lean software

development projects. Contrary to traditional organizations, the environment in which

these projects function has an impact on process-related elements like the flow of work and

value definition. Process metrics are typically employed during Agile Software

Engineering projects as a means of providing meaningful feedback. Investigating these

metrics to see if OSS projects and communities can utilize them in a beneficial way thus

becomes an interesting research topic. In that context, this exploratory research investigates

whether well-established Agile and Lean software engineering metrics provide useful

feedback about OSS projects. This knowledge will assist in educating the Open Source

community about the applications of Agile Software Engineering and its variations in Open

Source projects. Each of the Open Source projects included in this analysis has a substantial

development team that maintains a mature, well-established codebase with process flow

information. These OSS projects listed on GitHub are investigated by applying process

flow metrics. The methodology used to collect these metrics and relevant findings are

discussed in this thesis. This study also compares the results to distinctive Open Source

project characteristics as part of the analysis. In this exploratory research best-fit versions

of published Agile and Lean software process metrics are applied to OSS, and following

these explorations, specific questions are further addressed using the data collected. This

 ii

research's original contribution is to determine whether Agile and Lean process metrics are

helpful in OSS, as well as the opportunities and obstacles that may arise when applying

Agile and Lean principles to OSS.

 iii

ACKNOWLEDGMENTS

First, I would like to sincerely thank my thesis advisor Dr. Kevin Gary for keeping

me motivated throughout my research tenure through constant guidance and support. He

not only guided me through regular technical discussions and meetings, but also cultivated

a sense of ownership and innovation by sharing several valuable ideas. The various aspects

of statistical analysis and data querying would not have been possible without Dr. Gary’s

expertise and the numerous hours he put in to augment my work.

I would like to express my sincere appreciation to my thesis committee members –

Dr. Srividya Bansal and Dr. Alexandra Mehlhase, for taking their valuable time out and

kindly agreeing to attend my thesis defense. Thank you for taking interest in my research.

With much love and gratitude, I want to thank my parents and friends for providing

constant support and encouragement throughout this journey.

 iv

TABLE OF CONTENTS

 Page

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

CHAPTER

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 4

2.1 Agile and Lean Metrics ... 4

2.2 Open Source Software and Its Characteristics .. 10

3. RESEARCH CONTEXT .. 15

3.1 Research Questions ... 15

3.2 Research Methodology ... 16

3.2.1 Representative Sample of OSS Projects .. 17

3.2.2 Included/Excluded Agile and Lean Metrics .. 22

3.2.3 Included OSS Characteristics .. 31

4. DESIGN AND IMPLEMENTATION ... 36

4.1 Retrieve Information of Kanban Project Board from GitHub REST APIs 36

4.2 Calculating Agile/Lean Process Metrics:.. 37

4.3 Use PostgreSQL to Store the Data Fetched from GitHub APIs 41

 v

CHAPTER Page

4.4 Establishing a Connection Between the Postgres Database and Metabase to Produce

Visualizations .. 43

5. RESULTS AND ANALYSIS ... 45

5.1 Inductive Reasoning.. 45

5.2 Deductive Reasoning .. 73

6. DISCUSSION ... 78

6.1 Key Takeaways from This Study .. 78

6.2 Limitations of This study .. 82

7. CONCLUSION AND FUTURE SCOPE OF WORK .. 84

REFERENCES ... 86

APPENDIX

A. LIST OF 40 OPEN SOURCE SOFTWARE COMMUNITIES OBTAINED

FROM THE GITHUB REPOSITORY ... 93

B. INCLUSION CRITERIA FOR SELECTED OPEN SOURCE PROJECTS ... 96

C. SPECIFIC DETAILS OF DATA RETRIVAL FROM THE GITHUB APIs

USING A CUSTOMIZED SCRAPER WRITTEN IN PYTHON 101

D. LINE CHARTS FOR DESCRIPTIVE STATISTICS OF ANSIBLE, SALT,

ASP.NET CORE, GATSBY, AND FLUTTER.. 104

 vi

LIST OF TABLES

Table Page

2.1: Review of Agile and Lean Metrics in Relevant State-of-the-art Studies 10

3.1: Characteristics of the Software Projects Considered in the Study, as Extracted from

GitHub in April 2022 .. 18

3.2: Proof of Popularity of Shortlisted Projects Based on Total Number of Contributors,

Total Number of Commits, Number of Forks and Number of Stars 20

3.3: Proof of Activity of Shortlisted Projects Based on Commits from September 1, 2022,

to October 1, 2022... 21

3.4: Proof of Activity of Shortlisted Projects Based on Number of Releases, Comments,

Merged Pull Requests and Closed Issues.. 21

3.5: List of Shortlisted Metrics and How Each of Them are Computed. 31

3.6: Distinct Characteristics of OSS Compared to Commercially Developed Software .. 35

5.1: Exploratory Questions and Observations .. 46

5.2: Release Classification and Cadence of All the Included OSS Projects 49

5.3: Developer Turnover Rate... 54

5.4: Overall Change in the Contributors to the Community ... 54

5.5: Percentage of Developers with One or More Years of Experience 55

5.6: Card Counts Negatively Affecting Flow Efficiency of OSS Projects 62

5.7: Descriptive Statistics for the Cycle Time and Lead Time for OSS Projects Included

... 65

5.8: Severity and Priority Levels of the Work .. 75

file://///Users/dishasuresh/Downloads/REV_1_Thesis_Disha_KGedits1.docx%23_Toc118829696
file://///Users/dishasuresh/Downloads/REV_1_Thesis_Disha_KGedits1.docx%23_Toc118829696
file://///Users/dishasuresh/Downloads/REV_1_Thesis_Disha_KGedits1.docx%23_Toc118829697
file://///Users/dishasuresh/Downloads/REV_1_Thesis_Disha_KGedits1.docx%23_Toc118829697
file://///Users/dishasuresh/Downloads/REV_1_Thesis_Disha_KGedits1.docx%23_Toc118829698
file://///Users/dishasuresh/Downloads/REV_1_Thesis_Disha_KGedits1.docx%23_Toc118829698
file://///Users/dishasuresh/Downloads/REV_1_Thesis_Disha_KGedits1.docx%23_Toc118829699
file://///Users/dishasuresh/Downloads/REV_1_Thesis_Disha_KGedits1.docx%23_Toc118829700
file://///Users/dishasuresh/Downloads/REV_1_Thesis_Disha_KGedits1.docx%23_Toc118829708

 vii

LIST OF FIGURES

Figure Page

3.1: Process of Data Collection ... 16

4.1: ASP.NET Core’s Continuous Improvement Project Board....................................... 37

4.2.: Database ER Diagram ... 42

5.1: Flow Time and Cycle Time for the Included OSS Projects 48

5.2: WIP and Throughput for Ansible, ASP.NET Core and Flutter. 49

5.3: Major and Minor Releases Marked for Throughput in Ansible, ASP.NET Core and

Flutter .. 50

5.4: Major and Minor Releases Marked for WIP in Ansible, ASP.NET Core and Flutter51

5.5: Developer Count Retained Over Years ... 53

5.6: Developers with Highest Contributions to ASP.NET Core. 55

5.7: Developers with Highest Contributions to a) Ansible, b) Flutter, c) Salt and d) Gatsby

... 56

5.8: Flow Time After Filtering on Project Board Servicing in ASP.NET Core 58

5.9: Representation of Aging WIP and Flow Time for Gatsby .. 59

5.10: Representation of Flow Time for Releases .NET 6.0.4 and .NET 6.0.5 60

5.11: Cycle Time and Aging WIP for Ansible, ASP.NET Core, Flutter and Gatsby 62

5.12: Visual Representation of Flow Time for Salt and Gatsby. 64

5.13: CFDs for All the OSS Projects Included in this Study. ... 66

5.14: Throughput and Overall Commits for Flutter. ... 67

5.15: Time in Product Backlog for All the Included Projects... 69

5.16: Major and Minor Releases Marked on Flow Time for ASP.NET Core. 70

https://arizonastateu-my.sharepoint.com/personal/dsuresh5_sundevils_asu_edu/Documents/Thesis_Disha.docx#_Toc118239828
https://arizonastateu-my.sharepoint.com/personal/dsuresh5_sundevils_asu_edu/Documents/Thesis_Disha.docx#_Toc118239829
https://arizonastateu-my.sharepoint.com/personal/dsuresh5_sundevils_asu_edu/Documents/Thesis_Disha.docx#_Toc118239830

 viii

Figure Page

5.17: Major and Minor Releases Flow Time for a) Ansible, b) Salt, c) Flutter and d) Gatsby

... 71

5.18: Lead Time and Flow Time for the Included OSS Projects. 72

5.19:Flow Time for High Priority Work Items ... 76

5.20: Flow Time for Low Priority Work Items... 76

 1

CHAPTER 1

INTRODUCTION

Software development is the process of building a software program designed to

perform a specific task [1]. Given the tremendous shift in the adoption of software by

traditional businesses, the software development industry has perhaps the fastest growth

rate [2]. A process or set of processes used in software development is referred to as

software development methodology. Over the past 15 years, Agile has raised itself to the

top of software development methodologies [3]. The Agile Manifesto [4] describes Agile

as adaptive and iterative, in contrast to Waterfall's sequential and non-iterative approach

[5, 6]. The very foundation of Agile development is the expectation that both the processes

and the final product will evolve in response to customer feedback. Agile methodology has

a fair amount of overlap with Lean [7, 8] as both the product and process are continuously

improved through learning cycles and development. According to 15th Annual State of

Agile Report [9], Agile adoption within software development teams increased from 37%

in 2020 to 86% in 2021. With increased popularity, more organizations are being drawn to

Agile. However, in order to effectively apply Agile, it is important to understand how to

evaluate its success. This can be accomplished by using Agile metrics as they provide

insight that helps in evaluating the quality of a product and monitoring team performance

[10]. Although quality metrics are crucial, in this study emphasis is laid on the Agile/Lean

process metrics that use the flow of work data to offer insightful information.

Open Source Software (OSS) [11, 12] has become the foundation for almost all

modern software today. According to Forrester Research in 2017 [13], only 10 to 20% of

new application code within a corporation is proprietary and the remainder is open source.

 2

OSS has gained enormous popularity and organizations are becoming more aware of the

benefits and flexibility that can be obtained by utilizing and funding it. According to the

survey from The New Stack in 2021 [14], 63% of organizations that use OSS said that

these programs are incredibly valuable to the success of their engineering and product

teams. OSS communities also have tremendous economic impact. $55 billion was spent on

Open Source mergers and acquisitions in 2018 alone [15].

OSS initiatives frequently share the same values and principles as Agile and Lean

software developmental projects [16]. Some of these shared principles include the

emphasis on people over process, frequent communication, building product around highly

skilled personnel at the heart of a self-organizing development team, the acceptance of

change by employing short feedback loops with frequent releases of functional code, and

the close collaboration with clients and users [4, 17]. On the other hand, there are some key

distinctions between them and commercial organizations, such as the lack of rigid release

deadlines, typically relying on resources from volunteers and part-time personnel, and the

ability to transition over time in ways that are different from commercial organizations.

The team co-location demanded by Agile development is not seen as a precondition in

Open Source development as they are usually distributed [17]. Therefore, examining the

effectiveness of Open Source communities is worthwhile. The first step in achieving that

is to determine whether or not the ways we use to measure success using Agile/Lean

process metrics can be applied to OSS.

In this exploratory study, well established Agile/Lean software process metrics are

applied to OSS development projects. Following these investigations and observations,

specific questions are further answered utilizing the data collected. The primary

 3

contribution of this research is to investigate the usefulness of Agile/Lean process metrics

in OSS, as well as the potential benefits and drawbacks of adopting Agile and Lean

principles to OSS.

The rest of the thesis is divided into 6 chapters. Chapter 2 focuses on literature

review related to this research. The first section emphasizes the study of various well-

established software process metrics, and their importance in the field of software

engineering. The second portion of the chapter focuses on the literature and characteristics

of OSS initiatives. Research questions, research methodology, and techniques of data

collection used in this study are described in Chapter 3. Based on their relevance to the

OSS ecosystem, OSS projects and characteristics, as well as Agile/Lean software

development metrics included in this study is discussed in this chapter. The design and

implementation of this thesis are discussed in Chapter 4. It focuses on gathering all the

essential data from GitHub and integrating it with a report generator to assist visualize the

utility of Agile/Lean software process metrics. As each of the shortlisted metrics is

analyzed against the previously chosen OSS projects, Chapter 5 summarizes the

observations of what these metrics tell us. This chapter also focuses on the exploratory

queries that emerge from the findings of our study's visualizations. For a few of these

queries, further drill downs are made to investigate if the Agile/Lean development process

metrics provide any insight into how OSS communities operate. Chapter 6 focuses on the

the implications and limitations of using the Agile/Lean metrics in the context of OSS

development communities. Finally, Chapter 7 summarizes the technical findings of this

work, along with the future scope in this research.

 4

CHAPTER 2

LITERATURE REVIEW

This chapter specifically focuses on literature related to this research. The first

section emphasizes the literature that establishes various important metrics, and their

importance in the field of software engineering. The second section focuses on the

literature available for OSS projects and its characteristics.

2.1 Agile and Lean Metrics

Software metrics can be used to acquire a great deal of information such as the scale

and complexity of a software system as well as the quality of the product that is provided

to the client along with the progression of a software project [18]. Product, process, and

project metrics are the three categories of software metrics involved in the traditional

software development process [19]. Product metrics are used to define a product's

attributes, such as its size, complexity, design features, performance, and level of quality

[20]. To optimize software development and its maintenance, process metrics can be used.

Examples include the efficiency with which defects are eliminated during development,

the pattern of testing defect occurrence, and the turnaround time of the fix process [21].

Project execution and characteristics are described by project metrics [19, 22]. Examples

include the quantity of software developers, the pattern of staffing across the software's life

cycle, cost, schedule, and productivity. This research mainly focuses on process metrics

and the flow of work in a project.

 5

One of the fundamental issues that arise during the software development process

is change in requirements. As a result, while choosing these software process metrics, care

must be taken to fully comprehend the iterative and incremental development process,

which is flexible to accepting changes [18]. Agile Software Development (ASD)

effectively manages the reality of change unlike traditional software development. Further,

the limitations imposed by traditional metrics [19] such as planned capacity and schedule

variance regarding their flexibility in changing requirements hamper their suitability for

ASD. Thus, it is crucial to find a set of process metrics that are better suited for the ASD

given that adaptation into the ASD process is fast growing.

The key to a successful metric strategy is to identify the right set of metrics that

provide the information to act and support decision making [23]. For the past 30 years,

traditional software development metrics have been used in various practices. Booch [24]

introduced software metrics for process improvement and project management in 1992.

Putman et al. [25] identifies size, productivity, time, effort, and dependability as the five

core parameters necessary for successful software development. The study in Pulford et al.

[26] provides the following motivations for the usage of metrics: a) planning and estimation

of a project, b) managing and monitoring a project, c) identifying quality corporate goals,

and d) improved processes, tools, and communication in software development. Although

this set of core measurements are still relevant, the increasing scope of research and interest

in the field of Software Engineering facilitated the inception of several important metrics

to this list.

Oza and Korkala [27]] characterizes the indicators utilized in the ASD process as

code level, productivity/effort level, and economic metrics. The code-level metrics attempt

 6

to provide insight into the quality of the code. For instance, running tested features,

Leffingwell’s [79] iteration and release perspectives, and code quality and design metrics.

The economic metrics such as earned business value and break-even point help with

decision-making. To track team progress, productivity measures like burn-down charts and

project size units are useful. Eventually, these metrics are classified into seven categories

including strategic, testing, iteration, automation, code, engineer, and project management.

While the categorization of these metrics was done in consideration of ASD practices, the

proposed research highlights how their applicability is equally relevant to OSS projects.

Although Agile and Lean development organizations appear to have compelling

reasons for needing metrics, it is unclear which metrics Agile teams are utilizing in reality,

why they are using them, and how they are benefiting from it. Agile and Lean are examined

together since a comparison shows that they have similar objectives and rely on similar

underlying ideas [28].

The concept of waste reduction is fundamental to the optimization of all operations

that produce inefficiencies. Lean software development [29] solves this problem by

improving the development processes. This point of view complements Agile principles

by focusing on all activities that add value to the customer. Lean concepts described in

Poppendieck et al. [30] can be applied to scale-up Agile software development processes

or to adapt already-existing Agile practices. In that context, Kišš et al. [31] review and

categorize the following seven metrics that have been used to measure the Lean

transformation: Lead time, Number of defects, Fix time for defect, Velocity, Lines of Code,

Story rate per iteration and Release Frequency. These metrics can be broadly categorized

as either relating to processes or to quality. The proposed study concentrates on measures

 7

that are relevant to processes, such as Lead time, Velocity, Story rate per iteration, and

Release Frequency.

In his book Project to Product [28], Mik Kersten proposes the Flow Framework.

This framework delineates four flow items: features, defects, risks, and debts. The

proportional time spent on each type of flow item is the flow distribution. Flow metrics

are used to measure the flow in the system, with each representing an intersecting

perspective on the nature of value stream flow in software development. Of these metrics

in the Flow Framework, Kersten states that Flow Time is the most meaningful, and that

alternate interpretations of Lead Time (namely the lifecycle of an issue) are not as

important. On the contrary, in my work I will demonstrate that both these measures are

meaningful in the context of OSS development teams.

K. V. J. Padmini et al. [18] conducted survey and interview-based analysis of 24

development companies in their work, in which they identified metrics that could be

beneficial to the ASD process. In their study, they describe how software metrics proved

to be useful for forecasting projects and project management, keeping track of quality of

product, and reviewing progress of a project. Among those the top ten metrics are Delivery

on time, Work capacity, Unit test coverage for the developed code, Percentage of adopted

work, Bug correction time from new-to-closed state, Sprint-level effort burndown,

Velocity, Percentage of found work, Open defect severity index, Focus factor, and Cost of

quality. However, after examining the correlation between the presented research and this

study, it became clear that several of these metrics needed to be redefined in the context of

OSS, the study's main focus.

 8

According to Kupiainen et al., [32], software metrics are employed to achieve clear

objectives such as project planning and regulating the running of sprints, reviewing project

progress, understanding, and increasing quality, identifying solutions to challenges, and

encouraging teams. In general, software metrics are used to characterize project

performance by tracking team members' engagement intensity, improving communication

among team members, and measuring software quality. They use both qualitative and

quantitative perspectives to highlight the importance of these high influence metrics.

Downey and Sutherland [33] identify nine essential metrics which are meaningful

and can be used for managerial decision making. Those metrics include Velocity, Work

Capacity, Focus Factor, Percentage of Adopted Work, Percentage of Found Work,

Accuracy of Forecast, Targeted Value Increase (TVI+), Success at Scale, and Win/Loss

Record. The authors contend that these metrics are more valuable than Story Points because

they allow management to compare the performance of many teams, rather than just the

performance of the original team. Given that all of the proposed metrics in this work are

utilized to improve project's flow efficiency, the topics discussed in this work are pertinent

to the current research's field of study.

Based on 13 selected studies, relevant Scrum software metrics for each of the four

scrum events (sprint planning, daily scrum meetings, sprint review and sprint retrospective)

are highlighted in Kurnia et al. [34]. The study by Sambinelli et al. [35] proposes a set of

customer values metrics including Number of escaped defects, Work in progress, Cycle

time, Business value points, Points for user history, Cost, Average time to stabilize a

software, Benefit or cost performance index and Function points. The proposed study

contrasts with this work by categorizing Escaped Defects and Work in Progress as Lean

 9

metrics that are predominately used to measure waste since both metrics provide little

explanation about the value perceived by the customers.

Since the main goal of the Lean methodology is to reduce and eliminate waste

in non-value-adding operations, it constantly highlights the value of quality. According to

Deming [36], we must uphold a high standard of quality all through the process cycle. To

continue focusing on initiatives that aim for continuous improvement [37] and to quantify

the organization's progress, quality metrics are required. Escaped Defects, Cyclomatic

Complexity, Comment Percentage, Size, Cohesion, and Coupling are some of the crucial

quality metrics. However, for the sake of this study, we are more interested in metrics that

are associated with the process. Table 2.1. provides a summarized list of Agile and Lean

metrics in relevant state of the art studies.

 10

Table 2.1: Review of Agile and Lean Metrics in Relevant State-of-the-art Studies

2.2 Open Source Software and Its Characteristics

Open Source Software (OSS) has become crucial to modern software engineering

[38,39]. Numerous quantitative analyses have demonstrated that utilizing OSS is

frequently a rational strategy than proprietary alternatives [40]. The history of Open Source

may be traced back to the creation of computer software. Early software, albeit not known

Authors Agile and Lean Process Metrics

Kišš et al. [31] Lead time, Number of defects, Fix time for defect, Velocity, Lines

of Code, Story rate per iteration and Release Frequency.

Kupianinen et

al. [32]

Velocity, Work in progress, Lead time, Burndown chart, Cycle

time, Effort estimate, Story percent complete, Queue time,

Processing time, Check-ins per day, Variance in handovers,

Deferred defects, Predicted number of defects in backlog, Test

coverage, Test-growth ratio

Kurnia et al.

[34]

Velocity, Story point, Sprint burndown, Release burnup, Value

delivered, Customer satisfaction, EVM, Job satisfaction

Sambinelli et

al. [35]

Number of defects per period, Work in progress, Cycle time,

Business value points, Points for user history, Cost, Average time

to stabilize a software, Benefit or cost performance index, Function

points

Padmini et al.

[18]

Delivery on time, Work capacity, Unit test coverage for the

developed code, Percentage of adopted work, Bug correction time

from new-to-closed state, Sprint-level effort burndown, Velocity,

Percentage of found work, Focus factor, and Cost of quality.

Downey and

Sutherland

[33]

Velocity, Work Capacity, Focus Factor, Percentage of Adopted

Work, Percentage of Found Work, Accuracy of Forecast, Targeted

Value Increase, Success at Scale, and Win/Loss Record.

Mik Kersten

[28]

Flow Velocity, Flow Load, Flow Time, Flow Efficiency, Flow

Distribution

Donald G.

Reinertsen [74]

Cumulative Flow Diagram

 11

as Open Source at the time, was freely shared among developers and not regarded as a

commercial product [41]. In the present, the Open Source Initiative provides a 10-point

Open Source Definition [42], a detailed definition giving ten criteria that a license must

comply with to be recognized as Open Source. The major components of this definition

include a) The instructions for running the software are contained in the lines of code that

make up the source code. A person often needs access to the source code if they want to

modify a piece of software; b) Without paying a fee or a royalty, a person may use all or

parts of OSS as a component in another, larger software program; c) OSS may be modified

or expanded, and the newly produced software may be distributed.

The idea of Open Source also implies a team-based method of invention where a

software program is created by a virtual team of programmers. The team members often

participate in projects as volunteers without being necessarily employed in the same

organization [43]. Open Source communities typically form and grow organically [44],

adhering to governance systems that are frequently only loosely defined [45, 46].

Not all Open Source initiatives are founded in a community. They could also be

started and managed by an organization. It is the firm’s challenge to get outside developers

to work on a project that the company is leading [47]. Many organizations also compensate

staff members for their contributions to both company-led and community-led projects, as

is the case with IBM's participation in the Apache project. In addition to getting free testing

and enhancement advice from volunteers, businesses also save money by employing OSS

[48]. Organizations are an active player in the Open Source movement [49]. More than a

quarter of OSS engineers received compensation from a for-profit organization, according

to a thorough survey in 2003 [50].

 12

It is important to understand that large projects frequently have a small core team

who dedicate significantly both in time and output [51]. According to surveys, developers

devote more than 25% of a typical work week—11 hours on average per week, or a median

of 7 hours—to Open Source work [50,52]. Furthermore, programmers who are employed

full-time to contribute will have participation rates that are above average. However, the

bulk of programmers are infrequent contributors, and their contributions may be made with

little to no work.

One must gain a deeper understanding of the Open Source phenomenon before

examining how process metrics apply to OSS. There is a need to understand the

differentiating characteristics that set OSS projects apart from the traditional software

engineering projects. The significance of Open Source characteristics has been covered in

several studies in the past. Tamburri et al. [53] studies the community regulatory aspects

behind Open Source work and proposes YOSHI (Yielding Open Source

Health Information), a tool that can plot Open Source communities against observable

community patterns, groups of well-known organizational and social structure types, and

traits with quantifiable core properties. The present effort has been motivated by this

study's robust model for comprehending the metrics in OSS projects. YOSHI’s attempt to

describe a community is significant as it influences how one evaluates the flow of work.

The 6 characteristics computed in the study are: community engagement, community

structure, community formality, community longevity, community cohesion and

community geographical dispersion.

According to Gezici et al. [54], there are five distinct types of OSS success criteria:

market success, developer activity, quality, organization friendliness, and adaptation. The

 13

findings demonstrate that most of the time, OSS success is ultimately regarded as market

success. Additionally, the authors assert that developer involvement is just as useful as

market success. This claim is supported by most of the success metrics that include the size

of contributors.

DeLone and McLean in their comprehensive model [55] for information system

(IS) success suggest six measures of success: system quality, information quality, use, user

satisfaction, individual impact, and organizational impact. However, in an OSS context,

some of the measures are inapplicable, while others are challenging to implement. Many

of these metrics do not factor in the unique characteristics of the OSS development.

DeLone and McLean’s success model is reexamined in Crowston et al. [56] to find

additional measures for OSS project success. The authors identified Project output, the

Process of Systems Development and Outcome of project members as the new measures

of success.

Capiluppi et al. [57] presents a horizontal study aimed at characterizing OSS. The

study examined a representative sample of about 400 projects from a well-known OS

project repository. Numerous characteristics are defined for each project. However, the

attributes related to product quality are not included as it deviates from the scope of this

study. Some of the characteristics described in the study are age, application domain,

programming language and size of the source code, developer community, number of users

who use the code along with population and vitality of the project. While some of these

metrics can be consolidated into a single characteristic, some of the others need to be

changed to meet the needs of the OSS communities as they currently stand.

 14

Ewusi-Mensah [58] states how the mere completion of a project might be taken as

an indicator of success, considering the high number of abandoned projects. But it is hard

to define when OSS projects are finished because many of them are constantly under

development. In response to this issue, Crowston et al. [56] propose that success can instead

be assessed when a project transitions from alpha to beta phase. The interval between

releases is another metric relevant to community activities. The phrase "release early and

release often" [59] has become a well-established norm in Open Source development,

suggesting that an active release cycle is an indication of a sound development method and

project.

The literature discussed in this chapter introduced concepts like Agile/Lean metrics

and characteristics of OSS that play an important role in this thesis. The papers discussed

in the literature provide an explanation of the significance of metrics in measuring

Agile/Lean software development success. In contrast to the papers mentioned above, this

research focuses on the use of Agile/Lean metrics for OSS. The context for this research is

given in the following chapter. It provides a summary of the research questions that guide

this thesis work and briefly describes the methodology. Additionally, it provides a brief

summary of the problem and the validation process.

 15

CHAPTER 3

RESEARCH CONTEXT

The purpose of this exploratory study is to determine whether adopting the same

metrics employed by Agile and Lean communities can enhance and increase the efficiency

of OSS processes. Our analysis starts by selecting projects that we considered to be

large and likely to have a tracked flow of work. There are millions of Open Source projects

on GitHub. Population sampling is not the focus of this methodology. It is crucial to

remember that this is not an exhaustive list, merely a representative one. On the other hand,

from a metrics viewpoint, we followed a precise procedure to find the literature around

well-established metrics and their meaning in industry practices (represented in Chapter 2,

Table 2.1) Incorporating a few of those process metrics in order to assess process efficiency

is the primary objective. Quality measurements are unquestionably crucial, but they were

merely excluded because they were not the focus of this study. Other process metrics were

excluded because there is no practical way to calculate them all in the scope of the current

study. Instead, we focused on those metrics that are the most impactful and practical to

measure.

3.1 Research Questions

With an objective to evaluate the usefulness of Agile and Lean software process

metrics for OSS communities, and to understand the extent of coherence of the proposed

method for Open Source projects portraying diverse characteristics, a qualitative and

descriptive data analysis methodology is proposed in this study. To achieve this goal, two

main research questions are explored:

 16

RQ1: Can Agile/Lean metrics provide useful insights about the efficiency of Open Source

Software Development communities?

RQ2: Is there a consistent interpretation of Agile/Lean metrics based on the distinct

characteristics of Open Source Software projects?

3.2 Research Methodology

Figure 3.1 elucidates the data collection process employed in this study. A set of

metrics used in both Agile and Lean software development along with various OSS projects

and characteristics are found by conducting an analysis of relevant studies. In Stage 2, a

representative sample of OSS projects and characteristics are filtered in order to perform

an exploratory study. Similarly, the process metrics are also included based on the

relevance to the OSS ecosystem. In Stage 3, metrics included in this study are

parameterized by processing each of them against the pre-selected OSS projects as shown

in Chapter 5.

Figure 3.1: Process of Data Collection

 17

3.2.1 Representative Sample of OSS Projects

In order to represent stable software projects, we want to evaluate projects with a

large enough data set, sufficient activity, and adequate history. Therefore, the methodology

of the study starts with a search for Open Source Projects with a well-established, mature

codebase maintained by a large development team. Project inclusion was based on the

number of commits and a fixed boundary of no less than 20,000 commits is adopted. For

discarding the selection of trivial communities, the selected projects are then filtered based

on the number of contributors, defining the limit to at least 30 contributors in each project.

The adopted projects are further refined to have at least 100,000 LOC; in this way, only

large codebases are dealt with. After the initial inclusion criteria, we wound up with 40

OSS projects from GitHub and these are listed in appendix A.

With the intent to calculate the Agile process metrics accurately, retrieving the

history of flow of work is necessary and hence the presence of a Scrum/Kanban board is

critical. Therefore, in the next stage we tried to reduce the set of projects by filtering based

on the presence of a project board. Among the list of 40 projects, 13 projects had a project

board associated with them. Further refining is performed based on the age of the project.

Given that every project undergoes a ramp-up phase, the early developmental trait of an

OSS is different from when it matures. Compared to a mature project, the nature of work

is different during the ramp up period. Therefore, projects that are 5 years or older are

selected as evidence to prove that these projects have undergone several iterations in the

Open Source ecosystem and have a set of differentiating characteristics. The chosen

projects are thoroughly checked to ensure that they are all non-academic projects. Table

 18

3.1. reports the characteristics of the subject projects in terms of a) their size measured as

number of public releases issued, b) number of LOC, c) project start date and d) most recent

stable release to prove that the project is still active.

Table 3.1: Characteristics of the Software Projects Considered in the Study, as Extracted

from GitHub in April 2022

Project Name Project State Date Major | Minor

Releases

Stable Release LOC

Ansible Feb 5, 2012 3 | 32 June 21, 2022 160K

Gatsby May 17, 2015 5 | 103 February 8, 2022 400K

TensorFlow Nov 1, 2015 3 | 35 May 16, 2022 3.09M

ASP.NET Core Dec 8, 2013 6 | 10 November 8, 2021 1.47M

Flutter Oct 19, 2014 4 | 58 July 1, 2022 1.85M

Salt Feb 20, 2011 3 | 21 August 25, 2022 768K

React-Native Jan 25, 2015 0 | 70 March 30, 2022 405K

Bootstrap April 24, 2011 5 | 24 July 19, 2022 186K

Kubernetes June 1, 2014 2 | 46 August 23, 2022 1.77M

Scikit-Learn Jan 3, 2010 2 | 11 December 25, 2021 176K

Electron March 10, 2013 22 | 47 August 25, 2022 132K

Netty Aug 3, 2008 2 | 12 August 26, 2022 12.7M

PDF-JS April 24, 2011 3 | 33 May 14, 2022 134K

 19

13 projects were still too many, therefore additional screening of repositories is

made based on the information gathered by carefully inspecting the project board, where

the age of the project board is measured by the age of the cards it consists of. Project boards

that are created after July 2021 are excluded from the list as they do not have sufficient

information regarding the flow of work. Based on this exclusion criteria, PDF-JS, which

was created in February 2022, is eliminated from the list of pre-selected projects. Similarly,

repositories with less than 100 cards across all the projects are also removed due to limited

data needed to measure the process metrics. Netty and Electron are hence removed as they

consisted of 94 and 76 cards, respectively. Furthermore, any repository that does not have

consistent creation of issue cards is also eliminated from the list. This results in the

exclusion of React-Native, Bootstrap, Scikit-Learn and Kubernetes as there are no records

of new cards created for at least a year since the beginning of the project board. TensorFlow

was removed from the list because it only has one project board for tracking the status of

pull requests (PR). This falls short of providing the entire flow work required to compute

the process metrics. For the same reason, one of the Salt projects (PRs to port to master) is

also disregarded when calculating the metrics.

It is essential to have adequate data with detailed information in order to measure

the process metrics against the preselected projects. This requires a substantial number of

cards on the project board used by numerous users thus highlighting the popularity of the

candidate projects to be taken into consideration. To begin with, these projects are filtered

based on the total number of Contributors, total number of Commits, number of Forks and

number of Stars on a particular project. A fork is a replica of a repository and is frequently

employed to either suggest changes to another person's project for which one does not have

 20

write access or to use another person's project as the basis for a new proposal. A repository

can be forked such that a copy can be made, and necessary modifications are done without

impacting the original repository. Star counts are routinely used by researchers as a proxy

for project popularity [60]. In the study conducted by Munaiah et al. [61], the stargazers-

based classifiers exhibit high precision of 97% in identifying popular projects. Table 3.2

provides a summary of the classifiers mentioned above as of October 1, 2022. A limit of

1K verified contributors, 20K number of commits, 5K Forks and 10K Stars is applied in

the study.

Given that the current research involves the study of Process metrics related to the

flow of work, it is important to ensure that these 6 selected projects are active. The criteria

to verify that includes a) authentic commits in the recent past, b) releases generated in a

timely manner, c) communication between users and developers in the form of comments,

d) number of issues closed and e) number of merged pull requests. Table 3.3 and Table 3.4

provide a summary of the measures mentioned above as of October 1, 2022. This data

confirms our assumption that the nominated projects are active at the time of the research.

Table 3.2: Proof of Popularity of Shortlisted Projects Based on Total Number of

Contributors, Total Number of Commits, Number of Forks and Number of Stars

Project Name Total number of

Contributors

Total number of

Commits

Stars Forks

Ansible 5.3K 53K 54.7K 22.4K

Gatsby 3.9K 20.6K 53.6K 10.4K

ASP.NET Core 1.06K 50.3K 29.7K 8.3K

Flutter 1.07K 31.4K 145K 23.4K

Salt 2.3K 114.4K 12.8K 5.3K

 21

Finally, this results in a list of 5 projects namely Ansible, Gatsby, ASP.NET Core,

Flutter and Salt are chosen for this study. Given that there are millions of OSS projects on

Table 3.3: Proof of Activity of Shortlisted Projects Based on Commits from

September 1, 2022, to October 1, 2022.

Project

Name

Number of Scrum/

Kanban boards

Number of

overall cards

Commit Summary

Ansible 14 1053 Excluding merges, 48 authors

have pushed 161 commits.

Gatsby 4 143 Excluding merges, 37 authors

have pushed 309 commits.

ASP.NET

Core

6 527 Excluding merges, 42 authors

have pushed 324 commits.

Flutter 173 4,284 Excluding merges, 94 authors

have pushed 649 commits.

Salt 6 280 Excluding merges, 51 authors

have pushed 296 commits.

Table 3.4: Proof of Activity of Shortlisted Projects Based on Number of Releases,

Comments, Merged Pull Requests and Closed Issues.

Project

Name

Releases

from 01-Jul-

2022 to 01-

Oct-2022

Pull Request

Comments from

01-Sept-2022 to

01-Oct-2022

Merged Pull

Requests during

01-Sept-2022 to

01-Oct-2022

Closed Issues

during 01-

Sept-2022 to

01-Oct-2022

Ansible 11 199 160 124

Gatsby 7 99 110 34

ASP.NET Core 9 419 280 335

Flutter 5 101 642 1133

Salt 3 95 127 96

 22

GitHub, the search was for stable, large projects with a good flow of work. It is important

to remember that this is not an exhaustive list, merely a representative one.

Black Duck Open Hub [62] is a website which provides a web services suite and

online community platform that aims to index the OSS development community.

Comprehensive details and attributes of all the chosen projects used in this study based on

the information available from OpenHub are shown in Appendix B.

3.2.2 Included/Excluded Agile and Lean Metrics

Various metrics have been identified in the studies where their benefits outweigh

the overhead involved to track them. The emphasis is on research and experience reports

that provide empirical evidence regarding actual use of metrics in Agile contexts. Metrics

that are utilized solely for academic or comparative reasons, i.e., metrics which are not

used to help software development activity, are excluded. Studying metrics, their

applications, and their advantages in an Agile context is crucial since failing to grasp the

context would restrict the understanding and use of the findings in many situations [63].

Thirty-five metrics were identified during our review of prevalent Agile/Lean

process metrics (see Chapter 2). The method for identifying metrics of high influence is

based on the number of instances a particular metric occurs in the original research. Out of

those 32 metrics, 13 metrics namely, Lead Time, Cycle Time, Escaped Defects, Work in

Progress (WIP), Velocity, Work Capacity, Focus Factor, Adopted Work, Found Work,

Delivery on Time, Throughput/Story Rate per Iteration, Burndown Chart and Release

Frequency appear to be recurring in more than one primary study. The purpose of this study

is to determine whether OSS software practices may be improved and made more effective.

 23

I wanted to test if the same measures that are used in Agile communities and Lean to

promote efficiency would work with OSS.

With regard to the development of OSS projects, it is necessary to confirm the

relevancy of these metrics. Referring back to the most prominent and prevalent process

metrics in Agile/Lean Software Engineering as given in table 2.1 of chapter 2, the list of

those included or excluded, along with their justifications, follows below.

1. Lead Time [31]:

Lead Time, in the context of Lean, is described as the period between the

appearance of a new work in a workflow and its final departure from the system [38]. In

other words, it is the amount of the time from when a customer makes a request to when it

is delivered. With the use of this metric, benchmarks for the duration it takes for a task to

complete from beginning to end can be established. With the use of this information, one

can determine which development phases—including the time the work item spent in the

Product Backlog—take the longest. The same reasoning is used to determine how much

time has passed between when a work item was initially created on an OSS project and

when it was completed. For lead time calculations, we use an interpretation of the GitHub

project board, which is described in implementation chapter.

2. Flow Time [28]:

Flow Time is a key metric in identifying waste. In a traditional software

development project, Flow Time has several advantages, including the use of it to schedule

high priority features, to establish client demo dates and to evaluate if the release date will

allow for the completion of all scheduled fixes. It is equally significant when referring to

 24

its relevance and applicability to OSS projects. Flow Time is the time spent on a work item

from the point in time that the team has committed to completing the work. Kersten [28]

uses DeGrandis' [64] understanding to create this interpretation of the concept of Lead

Time. This metric is very important for us as it corresponds to the time when an Open

Source team commits to proposed work, which in our dataset will correspond to when a

project board card is created for an issue. We also compute “traditional” Lead Time and

the time spent in the backlog but as Kersten points out in Open Source projects a huge

volume of issues may be proposed that the team simply cannot groom all of those issues

effectively.

3. Cycle Time [32]:

Cycle time in software development, whether it be traditional or Open Source, begins

at the moment when the new arrival enters the “in progress” stage, and somebody is

actually working on it [38]. Cycle time examines those parts of the process when teams are

actively adding value to the current task, whereas lead time monitors the entire process

since the arrival of work. It is a metric adopted from Lean principles and is one of the most

essential KPIs for software development teams. Agile teams visualize the complexity or

value of work using story points. Story points, however, do not communicate the complete

picture as the team delays are not accounted for in the story points. Cycle time, which

includes delays, is a measurement of how long it takes a team to finish a whole cycle. The

complexity of the stories is irrelevant in this case. Teams can estimate what they can

accomplish in a cycle or how quickly they can complete features by measuring their cycle

 25

times and using its average. Longer software development cycles result in ineffective

development teams and delayed client deliveries.

4. Escaped Defects [32]:

Defects result in waste since they raise operating expenses without delivering value

to the client [39]. Escaped defects is a simple metric that counts the defects for a given

release that were found after the release date. These are defects not found by or escaped

from the quality assurance team. Usually, end users identify these issues after being given

access to the released version. Escaped defects are a crucial metric to track even in the

context of OSS. However, the scope of our investigation is restricted to processing metrics

that assess task flow. The future scope of work will therefore include quality measures like

escaped defect.

5. Work in Progress (WIP) [35]:

WIP is the number of features or feature level integrations that a team is currently

working on [38]. It provides a frame for the current workflow capability of the team. Larger

WIPs are indications of significant inefficiencies in a team’s workflow. One of the

advantages of tracking WIP is that the bottlenecks in a team’s delivery pipeline are

immediately evident before a problem gets critical. WIP restrictions insist that working

through the initial issue is preferable to beginning (but not finishing) new tasks. In other

words, it discourages impeding the flow of work. WIP can also be referred to as Flow Load.

Kersten’s Flow Framework aggregates work items into four states: new, active, waiting,

and done. This metric calculates the flow items in active or waiting states. In our work

however, we aggregate work items into three states: To Do, In Progress, and Done. We do

 26

not have a way to identify work items in a waiting state, and in the context of an Open

Source project, given the irregular nature of development team participation, it is both

unimportant and impractical to expect waiting states to be identified.

6. Aging WIP [38]:

Aging WIP is another important indicator to consider in order to know how the

team performed in similar circumstances in the past. Flow analysis is the foundation of

Aging WIP management [38]. It enables users to see how work items are moving from the

Requested column to the Done column on the Kanban board. In each of the sub-columns,

work items spend varying amounts of time. To ascertain the cause and suggest

improvements, it is critical to understand where the process is sluggish. For calculations of

aging Work in Progress, we analyze the project board. This is provided in chapter 4

implementation.

7. Velocity [33]:

Velocity is calculated by measuring units of work completed in a given timeframe.

Agile velocity measures how much work a single team completes in a sprint or iteration of

software development. It can be represented as the slope in a typical burndown chart and

indicates the number of story points accomplished over time. However, Flow Velocity [28]

related to Agile velocity, is the number of flow items completed over a period of time.

These are broken out by flow item type, but they do not have a weighted value such as

story points. Related to our work, Flow Velocity is most closely related to throughput,

though in our present research we have not filtered out by different work items (namely

features and bugs).

 27

8. Work Capacity [33]:

Work Capacity is the sum of all work reported during the Sprint, whether the Sprint

Backlog Item toward which the work is applied finished or not. It is calculated based on

the sum of actual work reported while Velocity is calculated based on the Original

Estimates of work. Like Velocity, Work Capacity is calculated by estimating work. As

work items are not estimated in a traditional way in OSS, it is challenging to acquire the

data necessary to compute this metric.

9. Focus Factor [33]:

The number of deliverables that can be produced in an iteration is forecasted using

the focus factor. The work capacity and velocity of a development team can be considered

when calculating this number in an Agile environment. Focus Factor is excluded from the

current analysis because it is a derived metric that is generated from the ratio of Velocity

and Work Capacity.

10. Adopted Work [18]:

Adopted Work is any work that is moved from the Product Backlog to the Sprint

as a result of the team meeting their original forecasted deadline earlier than expected.

According to Downey and Sutherland [3] percentage of Adopted Work is calculated using

the formulation: ∑ (Original Estimates of Adopted Work) ÷ (Original Forecast for the

Sprint). An OSS context for Adopted Work necessitates a little update where it is looked

to see if a work item is transferred from the Product Backlog to the current project board

during a release period. Even though there is not any formal planning prior to the start of a

 28

release, adopted work can be utilized as a sign of either the effectiveness or existence of

informal planning.

11. Found Work [18]:

Found Work is additional, unanticipated work that is connected to a part of

forecasted work that must be finished in order to deliver the original work item. The

formula shown below is used by Downey and Sutherland [33] to calculate the percentage

of found work: (Original Estimates of Found Work) / (Original Forecast for the Sprint).

However, this metric is inapplicable in the context of an OSS project as the release serves

as the sprint alternative. Releases, however, typically are not time-boxed like Sprints.

Consequently, the initial work forecast is not officially documented. Simply said, as a result

of this variation, there is no good enough approximation of found work to measure it at this

time. This measure is yet another viable choice for future work.

12. Throughput [28, 18]:

Throughput is the number of tasks finished per time unit and represents the

productivity level of the team in the past. In other words, the quantity of work items moving

through a system or process in a certain amount of time is regarded as throughput.

Considering a situation where it is necessary to know how many tasks a team can do each

week, the delivered work items in the workflow must be calculated each day in order to

obtain this data. If the team finishes two tasks on Monday, two on Tuesday, five on

Wednesday, four on Thursday, and three on Friday, the formula for a team's average

throughput rate is (2+2+5+4+3)/5 = 3.2 tasks. This suggests that the team can complete

three jobs per day, or that this is the workflow's typical daily throughput rate. A team's past

 29

productivity is visually illustrated using the throughput histogram where the number of

daily tasks that are completed and the time it took for those to occur are taken into

consideration.

13. Burndown Chart [34]:

The project progress is displayed using a burndown chart (sprint and release) based

on the overall effort and length of the remaining sprints. It represents the effectiveness of

the team throughout the development process. The burndown chart also offers a summary

of the project trend that may be used as a guide to estimate when the project will be

finished. A burndown chart is a straightforward visual representation of how work

advances. It identifies if the actual bulk of the work remaining (represented by the vertical

bars) is behind (above) or ahead of (below) the optimum work remaining (the straight

line) with only one glance. The accuracy of estimates has a direct impact on the value of

burndown charts. Not only are time estimates frequently inaccurate, but estimation in an

OSS project functions notably different from estimation in a typical Agile project. This

necessitates the creation of a modified burndown chart that shows the flow of work items

across a release timeframe. Given that OSS projects are believed to be feature-boxed rather

than time-boxed, the ideal work remaining line estimate is generated using the tentative

release window period. This updated burndown chart compares the progression of To-Do,

WIP and Done work items over a release period in the form of a Cumulative Flow Diagram

(CFD) [74]. A forecast can be obtained based on how work develops in OSS projects when

this is implemented for a handful of significant releases in the past.

 30

14. Delivery on Time [18]:

Delivery on Time is described as the ratio of features done in a planned release

schedule. This metric measures whether the organization has been capable of delivering all

features in a release which have been promised to customers, and what is the ratio of the

promised content. In the context of OSS, it is the percentage of work items that are

completed at the end of each release cycle when compared to the beginning of a

release. Here, Delivery on Time is calculated as the percentage of completed work items

at the end of each release cycle when compared to the beginning of a release.

15. Release Frequency [31]:

Frequent releases lower technical and market risks, and the client may evaluate a

real product in smaller increments rather than only seeing transitory outcomes from

progress reports. This gives indicative of an improvement in configuration management

discipline and capabilities. Early and frequent product releases are crucial for OSS projects.

For the creation of these releases, it is crucial to have a clear procedure in place. This is

required to make sure that all legal concerns are resolved and that a release is of sufficient

quality to be helpful to users. The distribution of releases is also an essential component of

any Open Source project as it makes it easier for individuals to try out the project, which

raises the possibility of finding new contributors. Given the community in Open Source is

linked to product innovation and adoption and that the involvement of the community is

ultimately what propels Open Source activities, this becomes a crucial indicator to monitor.

For the sake of this study, this metric is used as a primary filter on the other metrics stated

above to gather more specific information on a granular level.

 31

Table 3.5 provides a brief explanation of how these metrics are calculated. The

implementation chapter (chapter 4) that follows explains how we interpret the data from

the GitHub project board and the GitHub API to measure the metrics we've included in this

study.

3.2.3 Included OSS Characteristics

Eric Raymond's [65] The Cathedral and the Bazaar model provides a solid

foundation for understanding the various OSS development styles used. While traditional

software engineering projects and OSS projects share some similarities, understanding

Table 3.5: List of Shortlisted Metrics and How Each of Them are Computed.

Metric Name How to Compute

Flow Time Number of days spent on a work item from the point in

time that the team has committed to completing the work

Lead Time Number of days from when a customer makes a request

to when it is delivered

Cycle time Number of days between when work is started and when

it is completed

Work in Progress

(WIP)

Count of active items on the project board.

Aging WIP Count of number of days work items sit in the active

state.

Throughput Number of work items completed for each day for the

entire timeline of the project

Time on Product

Backlog

Amount of time a work item typically spends on the

Product Backlog before getting on a project board

Cumulative Flow

Diagram
Progression of work items in To-Do, WIP and Done over

a release period.

 32

their distinctive qualities is the main goal of this section. Some of the key differentiators

are: (a) Time-boxed versus feature-boxed releases, (b) the project governance model and

the structure of the developer community, (c) the regularity and trend of the release

schedule, (d) the makeup of the target audience, and (e) monetization are some of the key

differentiators.

Agile time-boxes encompass more than just splitting lengthy projects into smaller

chunks of time. It supports product development in an iterative yet regulated way through

a well-defined Agile approach. The purpose of time-boxing is to specify and establish a

time restriction for each task. Scrum has a time-box for each of its five events. The duration

of the Sprint is governed by time-boxing. The timeframe for the Sprint Planning meeting

is set when a team starts. The time-box for Sprint Planning should be as brief as possible

given the length of the Sprint. The Daily Scrum, a time-box of 15 minutes for every 24-

hour period, aids the Scrum Team in synchronizing operations and highlighting any

obstacles to reaching the Sprint Goal. Similarly, both Sprint Review and Sprint

Retrospective are also time-boxed. By focusing on accomplishing the task or goal before

the time restriction runs out, the time-box essentially promotes team productivity.

It is worthwhile to point out the uniqueness of functioning of the OSS community,

where instead of time-boxes, the tasks are accomplished in a feature-boxed manner.

Generally, with OSS, it is easy to become distracted with nice-to-haves or development

tools instead of focusing on creating value. However, feature-boxing solves this problem

as the team is committed to delivering high-quality software on time and within budget.

The core team meets informally to develop a list of features that must be finished before

the project’s next release. Additionally, feature-boxing adheres to the OSS principle of

 33

early and frequent release. Bug reporting or contribution of ideas are not considered as

development during this phase. The OSS projects release their latest version after the

predetermined set of features is complete.

Many OSS projects are developed by hundreds or even thousands of developers.

An OSS project, however, cannot depend on such a sizable developer population. In

contrast to traditional projects where each developer contributes the same amount of effort,

the developer community in an OSS project can be classified into stable and transient

developers [57]. A stable developer consistently provides code to the project, whereas a

transient developer only makes isolated code fixes, both from trivial to considerable ones.

One can instantly notice that most projects only have a small number of stable developers

based on developer contribution. As a result, the developer community in OSS can be

divided into three groups: i) a core team that initiates the project, manages the architectural

style, and directs the development, ii) a larger group that uses the deliverables and

recommends updates and enhancements and iii) an extended group that simply uses the

deliverables. With the aid of this classification, it is possible to handle important aspects

like the existence and quantity of a core team and the role of developers in the project.

Numerous details about an Open Source project are revealed by the releases'

variability. If the project's rate of evolution is measured in terms of new releases per period,

one can deduce that aged projects that do not evolve are likely to have been abandoned,

OSS projects are required to be released regularly because of this, which also reveals

information about the project's health. The pattern of release distribution can reveal key

facts, including the interval between every version and the significant software

development activities completed in-between each release.

 34

The intended audience for OSS projects is another attribute that needs to be

discussed. With over 25 million other Open Source projects, an OSS project must compete

for both support and attention in order to succeed. That fact alone implies that marketing

is essential for the Open Source initiative to succeed. The target audience will differ

depending on the project, but a typical target audience will include both the project's end

users and other community members. The goal is for the community to embrace the

concepts, demonstrate the same enthusiasm, and participate in the project. It is necessary

to draw contributors to the project because they are the foundation of the Open Source

community and are essential to its growth. Some of these contributors may be freelancers

who work alone in their spare time, while others may be employees of an enterprise or

software firms. Some may be free to work on any project they choose, while others may

have been tasked by their employer with contributing to a particular project. Additionally,

organizations engage developers to collaborate on specific OSS projects so that they can

be incorporated in other projects the company is working on.

Understanding OSS's monetization model is especially crucial considering that it is

free and open. Businesses may use Open Source in a variety of ways while developing their

business models. There are multiple ways an OSS project could be monetized. Large OSS

projects are often owned by a non-profit organization. In the case of Mozilla, the Mozilla

Corporation receives royalties from the contracts created using the open-licensed software.

Some OSS projects have Open SaaS model where they offer a paid Software-as-a-Service

alternative built on Open Source code. The OSS project is also funded using the multi-

licensing idea. Table 3.6 provides a list of distinct characteristics of OSS projects when

compared to commercially developed software projects.

 35

In summary, this chapter set the context for this research by providing details about

the research questions, research method for including the software process metrics along

with OSS projects and its characteristics. The next chapter will talk about the design

process and the implementation of the applying Agile/Lean software process metrics to the

included projects.

Table 3.6: Distinct Characteristics of OSS Compared to Commercially Developed

Software

Characteristic OSS Projects Commercially

developed software

Software development

and delivery approach

Feature-boxed Time-boxed

Target audience End users and other

community members

Customers

Governance model Stable/Core developers versus

Transient developers

Commercial developers

Project’s health depends

on the regularity of

releases

Yes No

Monetization model Rely on royalties from the

contracts, Software-as-a-

Service model, multi-licensing

Software Licensing or

sales

 36

CHAPTER 4

DESIGN AND IMPLEMENTATION

The primary focus of the implementation is to integrate the data with a report

generator that helps in visualizing the utility of the Agile/Lean software process metrics as

discussed in Chapter 3. The reader should be aware that this thesis did not primarily focus

on creating an algorithm to retrieve data from GitHub. Python scripts are created to access

the GitHub APIs to fetch all the essential data from the repository. This chapter describes

the report generation tool's implementation process and outlines its key features.

4.1 Retrieve Information of Kanban Project Board from GitHub REST APIs

The Open Source projects dataset is compiled from GitHub, a social programming

environment that provides source code management and collaboration capabilities for each

project, including bug tracking, feature requests, task management, and wiki. GitHub

boasts of having one of the largest developer communities in the world. As of January

2020, there are more than 190 million repositories and over 40 million users [66].

GitHub projects is an adaptable, flexible tool for planning and tracking work on

GitHub [67]. A project is a flexible spreadsheet that connects with GitHub pull requests

and issues to help in properly organizing and tracking the work. By filtering, sorting, and

grouping the issues and pull requests, adding custom fields to maintain metadata unique to

the team, and visualizing work with configurable charts, one can create and configure

numerous perspectives. Instead of imposing a certain methodology, a project offers flexible

 37

features you can tailor to your team's goals and procedures. Figure 4.1 gives a visual

representation of one of the projects in ASP.NET Core for reference.

Appendix C has all the specifics on how data was obtained from the GitHub APIs

using a customized scraper that was created in Python.

4.2 Calculating Agile/Lean Process Metrics:

Here is a detailed explanation of how these metrics were calculated using the

GitHub APIs, scraper, and a database. The focus of this study is on the data that was created

from 2018, therefore it is necessary to note that all events performed on issues prior to 2017

are not documented. Every card on the project board corresponds to a single issue, which

Figure 4.1: ASP.NET Core’s Continuous Improvement Project Board

 38

may be a pull request or a conventional issue. According to GitHub, every pull request is

an issue, but not every issue is a pull request. Additionally, it is true that one issue may be

associated with multiple cards. As a result, if an issue is added to multiple projects, the

project in which the card is completed first, along with its associated start date, is taken

into account since it signifies the first instance when the work was completed.

The date a card is added to a project is considered as the date the work is created,

with the state being to-do. The work started date is when a card is moved to the in-progress

state or to a state that indicates a similar work. Likewise, the date a card moves to the

done state is taken into account as the date of work completion.

A card is believed to have completed two different items of work if it is moved

from the to-do state to the done state and returned to the to-do state. The work was marked

as completed when the card initially moved to the done state. The second iteration of a

work is considered to be new work or rework. Like it does on an Agile project, rework can

occur in one of two ways. One, requirements change after the work is completed, or two,

software development teams discover better ways to design the system. But this is not

applicable if a card is unintentionally moved to done. This can be detected by observing

the time a card remains in the in-progress state. This is the reason it is important to have a

ready-to-test column to which a card should be moved to as it signifies that the work is

tested, and peer reviewed prior to being considered completed.

When a card is added straight to the in-progress state, the to-do state is also updated

with this date resulting in both work created, and work started to have the same date. As a

result of this, the Cycle Time and Lead Time for that specific issue will be equal. Similarly,

 39

if an issue is added directly to the done state, the same date is considered as when the work

was added to the project.

Another consideration to note is when a card is placed in the deferred or suspended

state, it is presumed that it was not finished, and there is no work connected with such a

card. Such entries are not included in the study since they do not reflect what has been

accomplished. This suggests that the study will only take into account the cards that are

either finished, ongoing, or still active in the to-do state.

The fact that more than 25% of the cards were moved directly from to-do to done

is one of the difficulties encountered when computing the Cycle Time metric. These cards

were never moved to the in-progress state. The Cycle Time for such cards will be identical

to the Lead Time. This variation should be taken into consideration as it could be the reason

for why OSS communities are unable to precisely track the flow of work.

In this study work items are aggregated into three states: To Do, In Progress, and

Done. These states important for metrics calculation. The implementation of all the metrics

included in Chapter 3 is as follows.

1. Flow Time: The Lead Time in the current investigation is computed using the flow

of work in the project board. It is assumed that the work is created when it enters

the project board in the framework of the current study. The start time is the date

that a specific card is newly added to a column in the board. This is determined

using the help of GitHub events. The flow of work within the project board can be

tracked with the help of GitHub events. When a card is added to a project board, an

event type called ‘added to project’ is recorded. The end date for said card is the

date at which the card is moved to the ‘Done’ column indicating that the work is

 40

completed and ready to be shipped. An event called ‘moved columns in project" is

used to track card movement inside project boards. The difference between the end

date and the start date is referred to as the Lead Time.

2. Lead Time: Lead Time is the interval between the time a work item entered the

project (rather than the project board). With the use of this metric, benchmarks for

the duration it takes for a task to complete from beginning to end can be established.

With the use of this information, one can determine which development phases—

including the time the work item spent in the Product Backlog—take the longest.

The same reasoning is used to determine how much time has passed between when

a work item was initially created on an OSS project and when it was added to the

project board.

3. Cycle time: The time the card was moved to the in-progress state is used to calculate

the Cycle Time. The start time is the time when a particular card is either moved to

or freshly added to the in-progress column on the board. This indicates that the

work on a particular task has begun. The date when a card is moved to the ‘Done’

column, indicating that the job is finished and ready to be dispatched, is the end

date for that card. The Cycle Time is the interval between the End Date and the

Start Date.

4. Work in Progress: The number of work items that are in progress or in any other

similar active states on the project board is used to calculate the WIP in this study.

5. Aging WIP: Aging WIP is calculated by measuring the number of days work items

sit in any of the active states once the work has started.

 41

6. Throughput: In this study, Throughput is calculated by counting the number of

work items completed over a release period. It indicates the total value-added work

output by the team over a period of time.

7. Cumulative Flow Diagram: is the progression of work items in To-Do, WIP and

Done over a release period.

8. Time on Product Backlog: Amount of time a work item typically spends on the

Product Backlog before getting on a project board

9. Adopted Work: Number of cards were created during a release period

4.3 Use PostgreSQL to Store the Data Fetched from GitHub APIs

PostgreSQL, commonly known as Postgres, is a relational database management

system that is free and Open Source, with an emphasis on extensibility and SQL

conformance. One can securely store complex and enormous volumes of information using

Postgres. It aids programmers in creating crucial settings, managing administrative

activities, and creating even the most complex programs. PostgreSQL, MariaDB, and

CUBRID are just a few examples of free Open Source RDBMS. PostgreSQL supports the

ANSI: SQL2011 database standard and most of its features, including transactions. Due to

separation of client and server in PostgreSQL, any changes in the database engine does not

affect the client. Using an RDBMS like PostgreSQL produces better performance for a

precise and structured data model. [68].

 42

SQL is a declarative programming language used to create and operate data in a

relational database. Typically, SQL uses data tables to store information. These tables are

interconnected and have a predefined data template. The schemas, records, logs, and

constraints of the table are all contained in the PostgreSQL database. Because databases

are rigorously segregated, the user is unable to access two databases simultaneously. DML

(Data Manipulation Language) commands are used to manipulate the data in the

PostgreSQL database. The PostgreSQL Schema specifies the general layout of the

database's logical data structure, which includes all the necessary tables, data types,

indexes, functions, stored procedures, and other components. For each user accessing the

program, a separate Schema is defined in the database, preventing conflicts and unneeded

interference. The database ER Diagram for our implementation is given in Figure 4.2.

Figure 4.2.2: Database ER Diagram

 43

Information regarding repositories, projects, columns in each project, cards in each column,

the issue each card is associated with, all the events performed on these issues along with

the data related to overall releases and commits in the repository is stored in the Postgres

database for this study.

4.4 Establishing a Connection Between the Postgres Database and Metabase to Produce

Visualizations

The Postgres database is then connected to Metabase, an Open Source business

intelligence application that allows users to create charts and dashboards using data from a

variety of databases and data sources. Data visualization tools such as Metabase offer a

straightforward way to predict and understand trends and patterns in data by employing

visual elements like graphs, charts, and maps. They assist in categorizing and organizing

data based on subjects and themes, which makes it simpler to interpret.

Figure 4.4.1: Dashboard for ASP.NET Core

 44

My database (discussed above) was uploaded to Metabase. SQL queries were

written based on this. Many visualizations generated using Metabase are presented below

in Chapter 5. Dashboard for ASP.NET Core is given in Figure 4.4.1. Exploratory questions

will be formed around metrics outcomes based on the observations made using these

dashboards.

 45

CHAPTER 5

RESULTS AND ANALYSIS

The process for applying Agile/Lean metrics to the OSS projects included in this

study is described in Chapter 4. In the upcoming section 5.1, exploratory questions will be

formed around metrics outcomes and for completeness additional questions have been

pursued that are presented in section 5.2.

5.1 Inductive Reasoning

As exploratory research, my approach is to gather observations about the data by

examining visualizations of flow metrics and coalesce these observations to form

exploratory questions. From there, detailed data-driven queries drill down to root causes

behind these phenomena. This inductive research process demonstrates the efficacy of

applying Agile/Lean process flow metrics to OSS development processes. In this chapter,

metric outcomes are examined, and observations made that prompt exploratory questions

about the behavior to these projects. These questions will help in determining whether

Agile/Lean metrics offer insight into the project's flow efficiency. For some of the

explorations, additional drill down investigations is conducted to identify the root causes

of such behavior. Table 5.1 provides a guide for the exploratory questions that were

formulated during this analysis, and the narratives below present the drill-down

investigations and conclusions drawn from them.

 46

Table 5.1: Exploratory Questions and Observations

OSS, GitHub, and Agile/Lean have particular terminology that we map between

these spaces detailed in Chapter 4 and summarized here for understanding. Issues are a list

Exploratory Question Metrics Observations

EQ1. Is flow of work

periodic in most OSS

projects?

Flow Time,

Cycle Time,

Throughput,

WIP, Aging WIP,

Lead Time

Three of the five OSS projects

we looked at appear to have a

flow-of-work cadence based on

the periodic pattern we can

visually observe for Cycle Time

and Flow Time.

EQ2. Can the structure of

the development team and

the governance model

influence the regularity of

work?

Throughput,

WIP, Flow Time

ASP.NET Core has a higher

consistent cadency of flow of

work than other projects

EQ3. Do OSS communities

have a concept of Adopted

Work?

Flow Time,

Cycle Time,

Throughput,

Aging WIP

Team is investing time into

closing issues that have been

around for a significant amount

of time, particularly after clusters

of shorter-term work

EQ4. Do OSS project boards

on GitHub represent the

flow of work accurately? Or

do they just use the project

board as records of past

activity?

Flow Time,

Cycle Time, WIP

There are various issues with

Cycle Time and Flow Time are

almost zero, suggesting the board

is not representing reality.

EQ5. Do OSS projects' left-

skewed distribution patterns

reveal anything significant

about the work being done?

Flow Time,

Throughput

The spread of cards we see

visually in Flow Time and Cycle

Time suggests that 4 of the 5

projects we examined has a left-

skew distribution pattern

EQ6. Can visualizations

such as Cumulative Flow

Diagrams help OSS project

teams to find out bottlenecks

in their process?

Cycle Time,

Throughput, WIP

Inconsistencies such as drastic

growth in the work items added

to the To Do state that does not

correlate with the number of

work items completed both in

Salt and Flutter's flow of work

EQ7. What can be inferred

about the success of OSS

project's release lifecycle

from work completed

schedule?

Flow Time,

Cycle Time,

Throughput,

WIP, Aging WIP

Several issues were resolved

during a small window of time

 47

of all the modifications to the product while a card is composed of one issue that is on the

project board. As described in the Scrum Guide [53], a Product Backlog is an evolving,

ordered list of everything that is needed to improve the product and is the single source of

requirements for any changes to be made [69] and a Sprint Backlog is a subset of the

Product Backlog items selected with an actionable plan for delivering the increment. In the

context of this study Product Backlog is the Issues tab on GitHub and Sprint Backlog are

the cards associated with an issue that are part of the project board.

In previous chapters the definition of included metrics (Chapter 3), its interpretation

in relation to OSS, and their calculations (Chapter 4) are covered. Next, I present and

discuss the Exploratory Questions (EQs). In the first 3 cases I also present drill-down

analyses and conclusions to demonstrate how Agile/Lean metrics may be impactful for

OSS projects and communities, and also situations where these metrics may need re-

interpretation or perhaps are not as meaningful compared to commercial software

development processes.

EQ1: Is the flow of work periodic in most OSS projects?

This EQ presented itself through the visual patterns of flow-related metrics.

Observation: The scatter plot representation of Flow Time and Cycle Time for

Ansible, ASP.NET Core and Flutter is shown in Figure 5.1. Three of the five OSS projects

we looked at appear to have a flow-of-work cadence based on the periodic pattern we can

visually observe for Cycle time and Flow time.

 48

Figure 5.1: Flow Time and Cycle Time for the Included OSS Projects

Drill Down: Further investigation involves looking at Work in Progress and

Throughput to check if there are similar collections of work done periodically. Figure 5.2

provides the representation for WIP and Throughput for Ansible, ASP.NET Core and

Flutter.

 49

Figure 5.2: WIP and Throughput for Ansible, ASP.NET Core and Flutter.

After examination, it is apparent that there are spikes of completed work at periodic

levels in all these projects. ASP.NET Core shows a regular periodicity while others have

values occurring in abrupt bursts. There is no predictable periodicity in this intermittent

nature. To further investigate the hypothesis of periodic cadence in these projects, release

timelines are plotted on these charts. The Release Classification and Release Cadence of

all the included OSS projects is provided in Table 5.2.

Table 5.2: Release Classification and Cadence of All the Included OSS Projects

Project Release Classification Release Cadence

Ansible 1.Major Release

2. Minor Release

3. Release Candidate

Team typically releases two major

versions of the community package

per year

ASP.NET

Core

1. Long Term Support (LTS)

2. Current

3. Preview

New major .NET versions are released

annually in November

Gatsby 1. Major

2. Minor

Typically releases 1 major version per

year and 2 minor versions per month

Salt 1. Major

2. Feature

Goal is to cut a new feature release

every three to four months.

Flutter 1. Stable Releases

2. Beta Release

Flutter ships updates on a roughly

quarterly cadence

 50

Figure 5.3: Major and Minor Releases Marked for Throughput in Ansible, ASP.NET

Core and Flutter

 51

Figure 5.4: Major and Minor Releases Marked for WIP in Ansible, ASP.NET Core and

Flutter

Figure 5.3 and Figure 5.4 shows the major and minor releases (gray vertical lines)

marked for Throughput and WIP. It is quite evident that ASP.NET Core has a consistent

release cadence, in contrast to the other projects, which do not provide a clear proof of

consistency. According to ASP.NET Core, there is no regular or pre-defined schedule for

minor releases. However, visualizations like these aids in our understanding of project

 52

workflows. When minor releases are highlighted on the Throughput chart, it demonstrates

that the project has a periodic pattern. The number of WIP items increases over the course

of the release before drastically decreasing at its completion. Nearly all release cycles

exhibit this pattern. The continuous rise of WIP count within a release could be an

indication that an informal release planning meeting was held during the beginning of a

release. The periodic increase in the number of work items completed per day in the

Throughput chart corresponds to the data in Flow Time and Cycle Time. For the majority

of the releases, a significant percentage of work is finished just before the release's

conclusion. If there is some consistency in the flow of work, the metrics we included can

provide valuable feedback, and ASP.NET Core is an ideal illustration of that.

EQ 2: Can the structure of the development team and the governance model

influence the regularity of work?

This EQ was established as a result of future investigations that was prompted by the study

in EQ1.

Observation: The analysis of Drill Down from EQ1 demonstrates that ASP.NET

Core has a higher consistent cadency of flow of work than other projects. This raises the

question of whether the development team and governance model impact the flow of

efficiency.

Drill Down: One of the ways of answering this question is by investigating the

developer turnover. Developer turnover is a measurement of the number of developers

(including part-time and volunteer, stable and transient contributors) who stop contributing

to the project over a given period. Developer turnover is crucial for commercial software

because it has financial repercussions, particularly in terms of the costs associated with

 53

hiring new personnel. In the context of OSS, large OSS projects typically have a distributed

development team. According to studies, the success of a project is significantly impacted

by developer turnover [70]. Frequent developer turnover may result in lost productivity

due to a lack of relevant expertise and extra time spent understanding how projects work.

As a result, emphasis has been placed on determining aspects associated with developer

retention such as early participation, team collaboration and code over documentation.

Figure 5.5: Developer Count Retained Over Years

The developer count retained for the 5 OSS projects included in this study is given

in Figure 5.5. The headers of each table represent the calendar year along with the number

of overall contributors to the community. The cells represent the number of developers

common between two calendar years. Developer Turnover Rate (Table 5.3) is calculated

by comparing the last cell of each column using the formula: Developer Turnover rate =

[(# of developers who left) / (total # developers that year)] x 100 [71].

 54

Developer Turnover rate is important with respect to people leaving the

community, but at the same time many of these communities are actually scaling up. This

creates a two-pronged problem – there is a loss of experienced people while trying to scale

up with new people. This can lead to a host of maturity problems for organizations and

their processes and products, such as architectural drift, knowledge loss, and especially in

OSS projects, a loss of focus or direction.

Table 5.3: Developer Turnover Rate

OSS Project 2018 2019 2020 2021

Gatsby 72.72% 87.03% 93.18% 89.53%

Salt 83.6% 59.09% 78.71% 68.13%

ASP.NET Core 69.58% 76.57% 73.70% 73.73%

Ansible 77.15% 85.73% 87.20% 79.35%

Flutter 62.03% 64.08% 65.27% 67.07%

Table 5.4 shows the increase or decrease in the number of contributors who made at least

one code commit to the open source project.

Table 5.4: Overall Change in the Contributors to the Community

OSS Project 2018 2019 2020 2021 2022

Gatsby X X -33.72% -67.88% -50.46%

Salt -21.51% -58.6% 31.16% -54.95% -12.08%

ASP.NET Core 26.31% -7.5% 4.5% -14.65% -30.8%

Ansible 21.62% -9.17% -59.16% -46.42% -31.57%

Flutter 83.33% 51.87% 34.85% -15.14% -25.23%

 55

Table 5.5: Percentage of Developers with One or More Years of Experience

OSS Project 2018 2019 2020 2021 2022

Gatsby X 0.19% 19.56% 21.23% 21.11%

Salt 31.72% 39.61% 31.18% 47.25% 48.33%

ASP.NET Core 25.83% 32.88% 22.41% 30.80% 37.95%

Ansible 19.62% 25.15% 34.92% 23.88% 30.17%

Flutter 27.27% 25% 26.63% 40.92% 44.03%

Table 5.5 is the number of developers with one or more years of experience and

can be calculated for any number of years of experience since the inception of the project.

This data makes it quite evident that Flutter has the lowest developer turnover rate, with

ASP.NET Core coming in second. Therefore, in response to the EQ 2, this may be one of

the factors that influenced the regularity of work in ASP.NET Core.

Drill Down: This inquiry can also be answered by examining the core developers

of the project. Microsoft offers support for ASP.NET Core. How many core contributors

are Microsoft employees? Based on GitHub commits, Figure 5.6 shows the developers who

have made the most contributions to the project.

Figure 5.6: Developers with Highest Contributions to ASP.NET Core.

 56

The following inquiry is whether these contributors are for-profit developers or

volunteers. Investigation reveals that all 20 of the top developers listed here work for

Microsoft. So ASP.NET Core is a perfect example of OSS project where the governance

model is skewed towards industry practitioners paid on their job to develop and maintain

this project. This explains why the project may have a regular, consistent behavior.

Figure 5.7: Developers with Highest Contributions to a) Ansible, b) Flutter, c) Salt and d)

Gatsby

Like ASP.NET Core, Gatsby (created and supported by Gatsby JS), Salt (created

and supported by VMware), Ansible (created and supported by Red Hat) and Flutter

(created and supported by Google) are also prominently developed and maintained by a

group of commercial developers. This proves that the governance model is most likely not

the cause for the lack of rhythm in the flow of work.

 57

EQ 3: Do OSS communities have a concept of Adopted Work?

Adopted Work [33] is the work that is moved from the Product Backlog to the

Sprint/Release (in this case, project board) after Sprint/Release planning has occurred.

Observation: We can observe that the team is investing time into closing issues that

have been around for a significant amount of time, particularly after clusters of shorter-

term work, which may suggest a pattern of new product development versus "maintenance

mode". This can be interpreted as a modified version of Adopted Work [33], as a result of

the team meeting their original forecasted deadline earlier than expected.

Drill-Down: We can verify this by identifying which project these cards belong to

and what type of work the project accomplishes. We can begin this inspection by first

looking at ASP.NET Core. After filtering the Flow Time based on different projects, we

identify that these issues belong to the project board named Servicing. This board is used

for tracking all servicing fixes planned for in-support products. In other words, this is the

maintenance board for issues which are part of the older LTS release. Further examination

reveals that these issues were present in the 6.0.x releases. This shows that the team took

the time to finish some of the more dated maintenance work from the 6.0.x releases now

that the 7.0.x release development is underway. This can be interpreted as a modified

version of Adopted work, which is the work that is moved from the Product Backlog to the

Sprint (in this case, project board) as a result of the team meeting their original forecast

deadline earlier than expected. The Metabase chart for Flow Time after filtering on project

board Servicing is given in Figure 5.8.

 58

Figure 5.8: Flow Time After Filtering on Project Board Servicing in ASP.NET Core

We consider Gatsby as the next step in the drill down process. Figure 5.9 provides

a representation of Aging WIP and Flow Time for Gatsby. It can be easily identified that

the reason aging WIP plummeted on January 10, 2022, was because the team closed cards

that were around for nearly 3 years. On further investigation, we identify that these cards

belong to the project board named Bug Triage. The team uses this project to communicate

the order in which they will address the confirmed bugs. A closer look at the

communication surrounding the issue reveals that it was resolved in a more recent upgrade

to the product, making the earlier issue obsolete. This demonstrates that the team spent the

time necessary to clean the backlog. This effort can be considered as a modified version of

Adopted Work.

 59

Figure 5.9: Representation of Aging WIP and Flow Time for Gatsby

This investigation aligns with a fundamental difference between OSS and

commercial software development. The nature of Adopted Work differs in OSS as such

projects are feature-boxed not time-boxed. Given the open-ended “free flow” of value built

into an OSS release contrasted with a mature industry-driven team (with a mature cadence

and velocity), new work flowing into a release that was not planned at the outset is an

expected occurrence, which is validated by this investigation.

EQ 4: Do OSS project boards on GitHub represent the flow of work accurately? Or

do they just use the project board as records of past activity?

This EQ presented itself through the visualization of discrepancies between Flow Time and

Cycle Time

Observation: There is evidence of a “feature freeze” before OSS releases

Let's now focus on the two most recent releases to determine the flow of work in

each release cycle. Figure 5.10 shows releases .NET 6.0.4 and .NET 6.0.5

 60

Figure 5.10: Representation of Flow Time for Releases .NET 6.0.4 and .NET 6.0.5

It is important to note that most of the work is completed a little over a week before

the release ends. This suggests that before completing the work and releasing it to the client,

the team performs some form of “feature freeze”. A feature freeze [72] halts all new feature

development in order to focus all effort on identifying and fixing bugs and enhancing the

user experience. By restricting the introduction of new, untested source code and related

interactions, a feature freeze increases the program's stability. Additionally, each release

begins with a cluster of issues that have been completed with shorter Flow times,

suggesting that most of the work on them was done after the feature freeze of the previous

release. Similarly, in their official documentation [73], Ansible discusses the idea of a

feature freeze two months before an official release. But in order to conduct additional

research, we need a list of all the issues to compare if the card closed after feature freeze is

connected to the feature that has already been developed. Considering that not all issues

published on GitHub are included in the current data collection method, the data we

presently have is insufficient.

 61

Observation: Based on Figure 5.1, it is apparent that in comparison to Flow time,

Cycle time has fewer data points. This is problematic as there are several cards that

apparently never went to In Progress state. There are two reasonable theories in this

situation. One, issues added to the project board are directly moved from To Do state to

the Done state without entering the In Progress state. Two, issue is added straight to the In

Progress state and later moved to the Done state. This shows that the project board is not

being used efficiently or even effectively.

Observation: There are various issues with Cycle Time and Flow Time are almost

zero, suggesting the board is not representing reality. This discrepancy in flow of work can

be verified based on the engagement on the issue.

Drill-Down: Further investigation is based on querying the database to

a) find the number of cards that were directly moved from To Do state to the Done

state. This impacts the flow efficiently. There will be no Cycle Time connected

with these cards because they were never in In Progress state.

b) number of cards that were directly added to In Progress state. In this scenario, the

Flow Time and Cycle Time will be the same.

c) Number of cards whose Flow Time is less than a day. While some of these issues

may fairly indicate the amount of effort required to resolve them, the majority of

those that were resolved in a single day may not accurately reflect the flow.

 62

Table 5.6: Card Counts Negatively Affecting Flow Efficiency of OSS Projects

Project Ansible ASP.NET

Core

Flutter Gatsby Salt

Total number of cards in the

project board

1053 527 4,284 143 280

Number of cards that never

went to the In Progress state

515 68 969 71 43

Number of cards is added

straight to the In Progress state

200 250 92 37 9

Number of cards whose Flow

Time is less than a day

282 79 218 9 4

The results of this inquiry demonstrate that the approach using which work was

tracked in these projects had a flaw. If the work is not adequately tracked, using a project

board is futile. A recommendation would be to better diligence in working the process

rather than perhaps using the boards as glorified to-do lists or records of past activity.

Observation: Cycle Time exhibits the same increasing trend as Flow Time,

indicating that issues are not only on the project boards for an extended period of time, but

also remaining in "In Progress" for a significant amount of time. This is consistent with an

increase in Aging WIP as shown in Figure 5.11.

Figure 5.11: Cycle Time and Aging WIP for Ansible, ASP.NET Core, Flutter and Gatsby

 63

The team makes an effort to lower the Aging WIP during each release cycle. The

drop in Aging WIP is a result of closed cards. Issues represented in the Cycle time chart

indicate that they are in the In Progress state. And when these issues with higher Cycle

Time are closed, the Aging WIP illustrates a sharper drop. If we narrow the search to obtain

all WIP items with a length of more than six months as of August 2022, each project has

the following number of cards a) Ansible - 8, b) ASP.NET – 17, c) Flutter - 36, d) Gatsby

- 7, e) Salt – 9.

EQ 5: Do OSS projects' distribution patterns reveal anything significant about the

work being done?

Examining the flow distributions suggest that as OSS projects age the team takes on

incomplete “older” work, or ideas that have been in the issues list for a long time. This

reflects on how an Open Source “Product Backlog” is (or is not) refined.

Observation: Scatter plot representation of Flow Time and Cycle Time of Ansible,

ASP.NET Core and Flutter is shown in Figure 5.1. The spread of cards we see visually in

Flow Time and Cycle Time suggests that 4 of the 5 projects we examined has a cluster

distribution pattern. This suggest that the Flow time has larger values as time progress.

Drill Down: These charts in Figure 5.1 contain several issues with lower Flow

Times on the left while the Flow Time increases as years progress for Ansible, ASP.NET

Core and Flutter. However, the average Flow Time is nearly constant over the years despite

the higher Flow Times. The teams in these projects are working more efficiently in 2022,

which results in shorter average Flow times than in 2021. In addition to closing

numerous recent cards, the teams also invested time closing older cards. This assertion is

supported by the descriptive statistics generated for all the included OSS projects as given

 64

in Table 5.7. This measure can be used by organizations and volunteers to determine the

project's current stage of development and serves as a proof that the project is still active.

Figure 5.12: Visual Representation of Flow Time for Salt and Gatsby.

Figure 5.12 represents the Flow Time of Salt and Gatsby. The evidence of

consistent rhythm in the project mentioned above does not apply to Salt and Gatsby

because they operate in a different manner. The average Flow Time in salt grew

drastically over time. This could indicate that the project is no longer as active as it once

was or that the team is focusing all their efforts on closing older tickets. On the other hand,

since there is no strong correlation, no conclusions are drawn about Gatsby based on these

visualizations.

To further this analysis, we computed descriptive statistics for each project at each

major release point in time. Cycle Time, Lead Time, and Time in Product Backlog were

computed, Table 5.6 shows the results for Cycle Time and Lead Time as these are under

question here. Visual representation of these descriptive statistics for each of the included

project is provided in Appendix D.

 65

Table 5.7: Descriptive Statistics for the Cycle Time and Lead Time for OSS Projects

Included

Cycle Time Lead Time

Release

start date

Release

end date

Average S.D. Median IQR Average S.D. Median IQR

Ansible

1/12/16 3/23/18 25.94 31.6 13.5 38.5 19.39 33.18 1 21.25

3/24/18 10/4/18 25.06 46.84 9 32 19.53 42.23 4 11.5

10/5/18 5/16/19 70.73 116.6 16.5 61.5 69.46 113.6 17 67

5/17/19 10/31/19 2.31 5.73 0 1 16.78 50.87 1 7

11/1/19 8/13/20 76.7 192.7 1 10.5 259.57 259.6 201.5 531

8/14/20 4/26/21 267.55 335.3 55.5 460.5 434.21 381.6 439 760

4/27/21 11/8/21 428.91 544.2 78 943 373.08 514.3 39.5 901

11/9/21 5/16/22 91.54 296.1 20.5 40.5 261.38 415.5 47 309.5

Gatsby

11/12/20 3/2/21 51.5 56.39 35 32.5 89.88 85.18 42.5 118

3/3/21 10/25/21 27.41 57.57 3 12.75 48.14 88.8 8 41.5

10/26/21 7/5/22 149.6 204.2 108 193 123 174.5 23 225

ASP.NET Core

11/11/20 11/8/21 9.05 14.86 4 7.5 18.1 24.15 8 23

11/9/21 6/15/22 7.27 17.83 2 8 17.01 36.54 4 14

Salt

2/11/20 6/17/20

75

75

6/18/20 9/2/21 31.13 37.37 20.5 35.25 60.86 74.18 32 83.5

10/23/20 6/21/22 85.92 137.2 28.5 50.25 137.39 143.3 81 221.5

4/1/21 6/21/22 113.41 161.4 28.5 160 169.57 152.3 141 274

Flutter

2/9/18 11/30/18 14.07 25.51 2 10 32.03 35.92 24 40

12/1/18 11/9/19 33.8 53.07 11.5 27 47.86 83.21 19 35

11/10/19 9/29/20 24.71 42.61 7 26.75 47.47 76.18 16.5 64

9/30/20 3/3/21 63.05 100.1 18 75 103.86 121.3 83.5 129.5

3/4/21 5/9/22 90.87 139.6 27 102.5 160.8 220.1 59 236

This data shows, for all projects except ASP.NET Core, that Cycle Time and Lead

Time distribution spread increases, suggesting that a higher percentage of older work is

now taken on by the team since the product matured. ASP.NET Core already demonstrated

(EQ1 and EQ2) a more consistent approach to flow, and the consistency shown here (albeit

only for 2 consecutive major releases) also shows this consistency.

 66

EQ 6: Can visualizations such as Cumulative Flow Diagrams help OSS project

teams to find bottlenecks in their process?

The Cumulative Flow Diagram (CFD) [74], provides a concise visualization of the three

most important metrics of flow of work: a) Cycle time, b) Throughput, and c) Work in

progress. All three metrics are discussed in previous subsections.

Observation: Ideally, CFDs should maintain a low to-do and in-progress counts

while substantially rising done counts over the course of the project. This indicates that, in

comparison to the amount of work entering the system, more work is being

completed. Figure 5.13 provides the CFD for all the OSS projects included in this study.

Figure 5.13: CFDs for All the OSS Projects Included in this Study.

Drill Down: Ansible, Gatsby, and ASP.NET Core all exhibit healthy flow

efficiency, but Salt and Flutter's flow of work is inconsistent, as can be seen simply by

glancing at the CFDs. Without CFDs, this identification would have been considerably

more difficult. To comprehend the usefulness of a visualization like CFD, we shall further

 67

examine what caused this inconsistency. Starting with flutter, the number of issues added

to the project boards are gradually rising, but there is a notable rise on January 11, 2020.

We first examine releases to see if there is any data there that can help explain this increase.

Releases v1.13.9 and v1.14.0 were made available on January 9 and 14, respectively, 2020.

However, there is no mention of the reason for the spike [75]. Next, we look at the issues

added to the project boards during January 2020. Based on the results of this investigation,

we can infer that a Google developer working on the flutter project added several dated

cards to the Awaiting Triage Column in various project boards. Engineers from other

disciplines later pick up these cards to review.

Figure 5.14: Throughput and Overall Commits for Flutter.

There are overall 173 project boards in Flutter. The amount of work added to the

project is much higher than the amount of work completed. This indicates that Flutter's

throughput is declining over time, as the graph in Figure 5.14 confirms. Yet, we see that

there are typically the same number of commits made to the project. This most likely

 68

suggests that the dashboard for Flutter does not accurately reflect the project's flow of work.

Figure 5.14 displays the throughput and commits for Flutter.

EQ 7: What can be inferred about the success of OSS project's release lifecycle

from work completed schedule?

OSS projects sometimes have regular release cycles, but typically they are not time-boxed,

and work and value delivery may be sporadic due to external constraints. However, it is

useful investigating whether these feature-boxed projects often end up with a fairly regular

release cycle, even if unplanned. This would speak to expectations created in the

marketplace.

Observation: As Kersten [76] points out, in Open Source projects a huge volume

of issues may be proposed that the team simply cannot groom all of those issues effectively.

Issues with highest priority is added to the project board after refinement. Product backlog

refinement's objective [77] is to keep the backlog filled with work items that are detailed,

relevant and in line with the current knowledge about the product and its goals. An OSS

project is also subjected to “scope creep” like any other traditional Agile project, in the

form of forgotten issues which do not yield substantial value or issues that do not align

with project objectives. Without deliberate efforts aimed at managing this inflation,

it could lead to the common problems of schedule and budget overruns. Figure 5.15

represents the time each Git issue is created until the time a new card for it is created for

that issue.

 69

Figure 5.15: Time in Product Backlog for All the Included Projects

These fluctuations in scatter plots are used to represent the addition of new cards to

the project board over time. For instance, ASP.NET Core’s peak period is represented by

the third spike, which occurs in November 2021. A consistent periodic cadence emerged

for the project after this point. After this period, the Time in PB is virtually at zero,

indicating that the issues that entered the system were almost immediately added to the

project board. The last spike denotes Adopted Work, where the team devotes effort to

adding issues to the project board that have been present for about a year.

Observation: It appears that several issues were resolved during a small window of

time. For example, according to the Flow Time chart of ASP.NET Core (Figure 5.1), since

November 2021, several scatter plots have been aligned one over the other approximately

every single month, showing that numerous issues were closed almost on the same day.

This may suggest that the schedule of a release window may overlap with these collections

of cards with short Flow Times, but further research is necessary.

 70

Drill Down: To further investigate the hypothesis of work done within a release

window in these projects, releases are plotted on the Flow Time chart. The initial project

for this drill down is ASP.NET Core. LTS releases are annotated on the Flow time graph

as a first drill down to see if this offers more details. Only one LTS release (.NET 6.0.)

coincides with the timeline of the dashboard and unfortunately, this information is

insufficient to draw any conclusions. The chart is then highlighted with Current Releases.

But both previous Current Release (occurred in November 2020) and the next planned

Current Release (November 2022) is outside the range of this research. Adding minor

releases (apart from Preview releases) to the Flow time chart is the next step in the drill

down process. Figure 5.16 shows all the minor releases (gray vertical lines) marked on

Flow Time for ASP.NET Core.

Figure 5.16: Major and Minor Releases Marked on Flow Time for ASP.NET Core.

This filtering offers valuable information. According to this chart, it appears that

several issues are completed within a small window for the majority of minor releases. This

demonstrates that the project has a successful release schedule planning. The goal of

release planning in the Agile approach is to ensure that logical releases happen regularly,

and that the product is headed in the right direction [78]. The team is using the project

 71

board in the same manner as a typical Agile/Lean project. While some of the issues are

completed during the release, most of them are moved to ‘Done’ near the end of the release.

Releases are marked for the rest of the projects to examine if they provide similar

information regarding the success of release schedule planning. Figure 5.17 shows all the

releases marked on Flow Time.

Figure 5.17: Major and Minor Releases Flow Time for a) Ansible, b) Salt, c) Flutter and

d) Gatsby

The above graphic shows that Ansible has an effective release planning process as

well. We can infer that the release was preceded by some form of ad hoc sprint planning

followed by consistent work throughout the release. All planned work was closed within

the window of the release. Flutter, Gatsby, and Salt, on the other hand, do not adhere to

this pattern. The work distribution within the release appears uncorrelated with the release

 72

timeframe. This suggests one of two things: either the team does not consistently adhere

to the release dates, or the work performed for the release is not included on the project

board.

Observation: The similarity between Lead Time and Flow Time visualizations tells

us that the cards were created as soon as the issues entered the system. The Time in PB

values for such entries will be close to zero. In such cases both Lead Time and Flow Time

will have the same value. But in reality, issues are raised in the user community, this is

then triaged and prioritized before entering the project board. This process is known as the

backlog refinement. This metric is important as it impacts Aging WIP as Open Source

community evaluates when to deliver on issues raised. Figure 5.18 should the comparisons

between Lead Time and Flow Time for the included OSS projects.

Figure 5.18: Lead Time and Flow Time for the Included OSS Projects.

In terms of the flow efficiency of the included OSS projects, the metrics included

in this analysis provide a significant amount of highly relevant information. But it's vital

to keep in mind that these investigations and drill downs are not just restricted to the 5

projects covered by this analysis. These projects are merely illustrative. The purpose of this

 73

study is to apply these metrics and the knowledge gained to various OSS development

projects. The next chapter will go into more detail on how the project's health can be

further improved by applying the insights and recommendations gained from these metrics.

5.2 Deductive Reasoning

In addition to the inductive method employed to develop exploratory questions

from metric observations, there is also room for us to come up with our own queries about

the nature of Open Source and the utility of Agile/Lean metrics in this context. In this

section I discuss some investigations I conducted for questions that were of interest.

In Open Source communities, categorization of work is quite intriguing since it

reveals how they prioritize the work that provides the most value. In essence, no Open

Source projects we have seen attempt to assign value using story points or any other typical

Agile measure. I am interested in issue significance and issue type as proxies for value in

Open Source projects. I examined Q1 and Q2 presented here in greater detail using a

deductive approach to obtain insights into the project.

Q1: How does an OSS community characterize work?

Q2: What is the flow time for high priority work on an OSS project compared to a

low priority work? Do Open Source communities exhibit different attitudes towards high

priority work?

Addressing Q1: In the OSS projects that included for this study, note that not all

the work added in the system is added to the project board. One of the presumptions would

be that the work items not included to the project board are less significant than those that

are. The idea that the project board's work items are only worked on by core developers

may be another factor. Investigating the root of this raises an interesting question about the

 74

work prioritization practices used by OSS project teams. While characterizing the nature

of work, it is necessary to note that different types of work have distinct values. It is

essential to distinguish between work items that are bugs and work items that are new

features or product enhancements. The next step is to determine how Open Source

communities classify these work items. While there are many distinct levels of value that

an OSS project might have, for the purposes of this study it is assumed that all work items

are categorized into three levels of severity—high, medium, and low. For instance, major

new capabilities of an application differ from incremental improvements in terms of

features. Prioritizing work according to their severity is how a product backlog is

evaluated.

Determining the severity of bugs and the priority of features is necessary to

understand how an OSS project characterizes work. This indicator serves as a proxy for

story point estimation since there is no standard way to assign story points in OSS. The

Priority/Severity labels defined in Table 5.7 are described as follows:

High Priority/Severity work items are those: a) that requires immediate attention,

b) that need to be released immediately after fixed, c) issues/pending fixes that block a

release, d) issues that impact most of the customers, e) crashes that terminate the process,

f) issue currently blocking a tier-1 customer, and g) bugs that breaks functionality known

to work in previous releases.

Medium Priority/Severity work items are those: a) although essential for the

release, it could likely be shipped without, b) that is important, but not critical for the

release, c) that was better in the past than it is now, d) issues seen by most users, e) issues

causing major problems, f) that are incorrect or poor functionality, unclear, and without a

 75

workaround, g) issue that impact approximately half of our customers and h) issues that

will soon block a tier-1 customer.

Low Priority/Severity work items are those: a) approved but has no time limitation

to fix, b) issues considered easy to fix by aspiring contributors, c) issues that impacts only

small number of customers, d) fixes or features that are nice to have, e) issues that are likely

to work on after high and medium level issues are completed, f) new feature requests, g)

that only take a few minutes to fix, and h) cosmetic problems that have a work around.

It is clear from the data in Table 5.8 that OSS development communities categorize

work by attaching values to it depending on the priority and severity of work. In Q2, it is

discussed whether the mindset toward completing such tasks is impacted by their value.

Table 5.8 also shows that Gatsby lacks this prioritization of work classification. This

absence of information still reveals something about the project and how it operates. It is

conceivable that this OSS project failed to exhibit the type of work as they were unaware

Table 5.8: Severity and Priority Levels of the Work

Severity/Priority

Projects High Medium Low

Ansible hang, P1 P2 P3, easyfix, small_patch

ASP.NET

Core

affected-most,

Priority:0, severity-

blocking, severity-

major

affected-medium,

Priority:1,

Priority:2,

severity-minor

affected-few, good first

issue, severity-nice-to-

have

Gatsby No categorization based on priority/severity

Salt P1, Regression,

severity-critical

P2, severity-high,

severity-medium

P3, P4, severity-low,

good first issue

Flutter P0, P1, severe: API

break, severe: crash,

severe: fatal crash

P2, severe:

regression

P3, P4, P5, good first

contribution, easy fix

 76

of it. Considering this, it is advised that OSS project teams become more systematic in their

approach to prioritize their work and begin to understand their efficiencies.

Figure 5.19:Flow Time for High Priority Work Items

Figure 5.20: Flow Time for Low Priority Work Items

 77

Addressing Q2: The OSS projects present a variety of findings based on the data

Figures 5.19 and 5.20 offer. When compared to low priority items, high priority work have

much shorter flow times according to Ansible, however for ASP.NET Core, low priority

items have shorter flow times. With Salt, there is no obvious distinction in the amount of

time work takes based on priority. However, it is crucial to keep in mind that in none of

the three cases have sufficient evidence to form firm conclusions. At first appearance,

Flutter appears to have lower flow times for high priority work, but the data points for low

priority work are noticeably higher, making this comparison unfair. Therefore, while it is

true that OSS development communities have a system in place to categorize work

according to value, greater care should be taken to ensure that these labels are appropriately

applied. An alternative explanation is that the project board may not provide the most

accurate picture of all the work that has been assigned a priority. In order to answer this

question, we must thus examine all issues; however, as of right now, not all issues listed

on GitHub are included in our data collection process. The future scope of work will

therefore include retrieving information related to all the issues on GitHub.

To understand the key takeaways from the validation shown in this chapter, the

following Discussion chapter emphasizes on the multifarious findings obtained from this

work.

 78

CHAPTER 6

DISCUSSION

The previous chapter discusses the results of applying Agile/Lean metrics to the

OSS projects included in this study. An inductive approach was used to examine metric

outcomes and make observations. To determine what the metric results mean, exploratory

questions were created, and drill downs were carried out. Insights drawn from these results

are discussed in this chapter, along with the best practices that Open Source communities

can adopt to enable better feedback.

The main aim of this study is to examine the usefulness of Agile/Lean software

process metrics in OSS development, as well as the limitations associated with their

implementation.

6.1 Key Takeaways from This Study:

The results from Chapter 5 demonstrate that Agile/Lean process metrics employed

in the context of OSS aid in our understanding of the performance of development teams

as well as the effectiveness of flow of work. While the bulk of OSS projects experience

values that come in abrupt bursts, it has been observed that some of them show consistent

periodicity. We find that the metrics we added can offer helpful feedback if the flow of

work and is somewhat consistent.

Revisiting the research questions presented in Chapter 3:

RQ1: Can Agile/Lean metrics provide useful insights about the efficiency of Open Source

Software Development communities?

 79

Yes, this study offers numerous insights on the effectiveness of OSS development

communities, therefore providing a conclusive positive response to RQ1. The following

are some insights produced by this study and reasons why they are important in improving

the health of OSS projects. The regularity of the flow-of-work cadence is explained by

using metrics like Cycle Time, Flow Time, and Throughput. This is significant because

OSS teams can find inefficiencies in their process by comparing these metrics outcomes

against the set standards. The uniformity of spikes in the WIP count that occur within each

release can provide information regarding the possibility of an informal release planning

meeting held during the beginning of a release. Best practices like planning provide clear

expectations for all team members by ensuring that their goals are aligned with the project's

goals.

For projects with regular throughput cadence, these metrics also aid in determining

a release's velocity. By identifying and eliminating bottlenecks, the team will be able to

improve velocity with each release, and such release management boosts an organization's

number of successful releases while decreasing risk. Flow Type is also used to gain

understanding regarding the lifecycle stages adopted by the project. For example, lack of

activity in Throughput might suggest the team is taking measures to stabilize the codebase

by employing practices such a feature freeze where the code will be thoroughly tested and

made bug free before delivering it to the customers. These best practices applied to the

projects can serve as a predictor of the quality of the project for the organizations before it

is integrated into their system.

Rising trends in Cycle Time and Aging WIP indicates that the project boards may

include stale or forgotten work. The fact that OSS initiatives are equally susceptible to

 80

scope creep necessitates deliberate measures to manage this inflation. This could lead to

the common problems of schedule and budget overruns. These metrics can also be used to

get a deeper understanding of the developer community and governance model. This can

help volunteers in choosing the right project that is still active and offer support. The

descriptive statistics employed in this study allows for data to be presented in a meaningful

and understandable way, which, in turn, permits a more straightforward analysis of the

study's data set. The teams working on OSS projects can also identify process bottlenecks

with the aid of visualization tools like CDFs. Without CFDs, it would have been far more

challenging to identify these discrepancies. These are merely a few of the insights

presented here. These metrics can be used to a variety of projects to examine how they are

interpreted. RQ2 addressed the degree of consistency of various interpretations.

RQ2: Is there a consistent interpretation of Agile/Lean metrics based on the distinct

characteristics of Open Source Software projects?

In this investigation, RQ2 was partially resolved. We have a good number of in-

depth narratives here that are backed up by data. This entire exercise demonstrates that

there is no limitation to the number of exploratory questions we can ask to investigate what

additional information this data can reveal. However, going back to the initial research

objective, we can see that these measures are significant and that they can be interpreted in

a variety of ways. There are several interesting interpretations that may further suggest a

potential for a pattern to emerge, albeit we are unsure if there is a consistent interpretation.

There are undeniable early encouraging exploratory results, but further study is required to

 81

fully comprehend whether we can arrive at a consistent interpretation of these Agile/Lean

metrics that can be beneficial across the majority of Open Source projects.

While these metrics provide us with a wealth of useful data, their efficacy can be

improved if OSS projects adopt a few strategies. The disparities in the number of data

points between Flow Time and Cycle Time indicate that the project board is not being used

effectively or even efficiently. Therefore, the first and most recommendation here would

be to better diligence in working the process rather than perhaps using the boards as

glorified to-do lists or records of past activity. As the work items progress, it is equally

crucial to add them in proper states. The metrics result can be substantially hindered by

adding work directly to the Done state or skipping the In Progress state. Hence, it is

important to move work to relevant states as and when they are completed. The team's use

of the project board to track release-related activity is a crucial additional factor. We can

observe that a large portion of the work documented in the project boards does not

contribute to the release during the release timeframe. This also leads to the expectation

that the OSS team either describes their method for refining the Product Backlog or

classifies work based on priority and severity using labels, and then assigns these labels

with more diligence.

As demonstrated in Chapter 5, Agile/Lean metrics may easily be adapted for OSS

projects in many of these situations. For instance, in an OSS context, Adopted Work was

adapted to check whether a work item was moved from the Product Backlog to the current

project board during a release period. Burndown charts were also altered because the way

estimating works in an OSS project differ from how it does in a typical Agile project. This

modified burndown chart depicts the progression of work items over the course of a release

 82

timeframe. In addition to these, metrics like Fix time for defects [31], Check-ins per day

[21], Delivery on Time [18], and more can be modified so that they can adapt for OSS

projects, and this can be the focus of future work.

6.2 Limitations of This Study:

There are certain limitations to this study and confounding factors that might affect

the authenticity of the findings.

Internal Validity:

Exploratory research is a type of study done on a subject that has not yet been

precisely defined. The focus of such research is to grasp and formulate a better

understanding of the issue at hand. These research insights cannot be relied upon for

effective decision-making as exploratory research brings up tentative results and so is

inconclusive.

We just take into account a portion of the Agile/Lean software process metrics in

this study. We took the best representative sample of data from GitHub. However, OSS

may make use of a variety of different software process metrics, including Velocity, Work

Capacity, Found Work, and more. Quality metrics are very important in relation to process

flow because defects are a form of waste in Lean [7]. Although we emphasized the value

of quality measures, they were not part of the work's intended scope. The overall narrative

of issues (reason why most issues were not on the project board, listing all issues that are

included in releases, issues core developers worked on, etc.) cannot be comprehended due

to limitations in the data collection procedure. Furthermore, some human characteristics,

such as the reasons for a higher developer turnover rate, cannot be seen from our datasets.

 83

External Validity:

Although the study included five projects from different organizations, the findings

may not be applicable to other OSS project types, such as small scale OSS projects.

Besides, a small sample used for exploratory research increases the risk of the sample

responses being non-representative of the target audience and may lead to bias while also

limiting the applicability of the conclusions

This analysis successfully addressed both research questions. The next chapter

provide some pertinent concluding comments while outlining the future score of work in

order to summarize the findings presented in Chapter 5 and its related discussion in Chapter

6.

 84

CHAPTER 7

CONCLUSION AND FUTURE WORK

Open Source has significantly altered how businesses create software. Examining

the efficiency of Open Source communities is important since OSS projects have a massive

economic impact on the market and have recently experienced considerable growth in

popularity. Since OSS initiatives frequently adopt similar principles and practices as Agile

projects, in this study the usefulness and applicability of Agile/Lean process metrics in

OSS is examined, while investigating the opportunities and challenges that may occur

when adopting Agile and Lean principles to OSS. The analysis was conducted by applying

adapted versions of nine Agile/Lean software process metrics, including Lead time, Flow

time, Cycle time, Throughput, Work in Progress, Aging Work in Progress, Cumulative

Flow Diagram, Time in Product Backlog, and Adopter Work, to five global OSS projects

that have a sizable development team that maintains a mature, well-established codebase

with process flow information. An inductive approach was used to examine metric

outcomes. This study offers numerous insights on the effectiveness of OSS development

communities and also reveals that there are many interesting interpretations that can be

inferred. However, at the moment these interpretations proved to be inconsistent.

Given that this research is exploratory, there are numerous potential research

opportunities corresponding to this area of study, that are listed here. Impending research

on this topic will focus on determining whether it is possible to arrive at a consistent

interpretation of these Agile/Lean metrics that can be useful for the majority of Open

Source projects. Even in the context of Open Source projects, as quality metrics are crucial,

 85

the future scope of work will also include quality measures like escaped defects. Due to

restrictions faced in the data collecting process, the overall narrative of issues, including

the reasons why the majority of issues were not on the project board, which list of issues

were included in releases, which issues core developers worked on, etc., could not be

comprehended. In addition to that, understanding the difference between lead time and

flow time in terms of metric outcomes will be beneficial. However, to achieve that, a closer

look would be required at all the issues listed in the project that were not included in the

referenced database. Therefore, retrieving data pertaining to all issues listed on GitHub will

be included in the work's future scope. Further, the prospective work may also concentrate

on modifying metrics such as Fix time for defects, Check-ins per day, Delivery on Time,

Found Work, and more in order to adapt them for OSS projects.

 86

REFERENCES

[1] Atlassian. (n.d.). Learn the essentials of software development. Atlassian. Retrieved

October 23, 2022, from https://www.atlassian.com/software-development

[2] Software development statistics - truelist 2022. TrueList. (2022, October 12).

Retrieved November 1, 2022, from https://truelist.co/blog/software-development-

statistics/

[3] 14th Annual State of Agile Report. Digital.ai. (n.d.). Retrieved November 1, 2022,

from https://digital.ai/resource-center/guides/14th-annual-state-of-Agile-report

[4] Manifesto for Agile Software Development. (n.d.). Retrieved November 1, 2022,

from https://Agilemanifesto.org/

[5] Stickland, B. (2021, October 26). Using Agile methodology for software

development. Alliance Software. Retrieved November 1, 2022, from

https://www.alliancesoftware.com.au/Agile-methodology-software-development/

[6] Hoory, L. (2022, August 10). Agile vs. waterfall: Which project management

methodology is best for you? Forbes. Retrieved November 1, 2022, from

https://www.forbes.com/advisor/business/Agile-vs-waterfall-methodology/

[7] M. Poppendieck, T. Poppendieck and T. Poppendieck, Lean Software Development:

An Agile Toolkit, Addison-Wesley, 2003, ISBN 9780321150783.

[8] Lean thinking and Practice. Lean Enterprise Institute. (2021, August 3). Retrieved

November 1, 2022, from https://www.lean.org/lexicon-terms/lean-thinking-and-

practice/

[9] 15th Annual State of Agile Report. Digital.ai. (2022, October 17). Retrieved

November 1, 2022, from https://digital.ai/resource-center/analyst-reports/state-of-

Agile-report

[10] A comprehensive guide to Agile metrics: Hubstaff tasks. Hubstaff. (n.d.). Retrieved

November 1, 2022, from https://hubstaff.com/tasks/Agile-metrics

[11] Wheeler, D. A. (2007). Why Open Source Software/free software (OSS/FS, FLOSS,

or FOSS)? Look at the numbers.

[12] Fitzgerald, B. (2006). The transformation of Open Source Software. MIS quarterly,

587-598.

[13] The forrester wave™: Software composition analysis, Q1 2017. Forrester. Retrieved

October 31, 2022, from https://www.forrester.com/report/The-Forrester-Wave-

Software-Composition-Analysis-Q1-2017/RES136463

https://digital.ai/resource-center/guides/14th-annual-state-of-agile-report
https://agilemanifesto.org/
https://www.alliancesoftware.com.au/agile-methodology-software-development/
https://www.forbes.com/advisor/business/agile-vs-waterfall-methodology/
https://www.lean.org/lexicon-terms/lean-thinking-and-practice/
https://www.lean.org/lexicon-terms/lean-thinking-and-practice/
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://hubstaff.com/tasks/agile-metrics

 87

[14] Osposurvey/results_2021.pdf at master · todogroup/osposurvey · github. (n.d.).

Retrieved November 2, 2022, from

https://github.com/todogroup/osposurvey/blob/master/2021/results_2021.pdf

[15] Asay, M., Staff, T. R., Branscombe, M., Crouse, M., & Kimachia, K. (2018, October

29). IBM's acquisition of Red Hat Takes Open Source's 2018 tally to nearly $55

billion. TechRepublic. Retrieved October 31, 2022, from

https://www.techrepublic.com/article/ibms-acquisition-of-red-hat-takes-open-

sources-2018-tally-to-nearly-55-billion/

[16] Koch, S. (2004, June). Agile principles and Open Source Software development: A

theoretical and empirical discussion. In International Conference on Extreme

Programming and Agile Processes in Software Engineering (pp. 85-93). Springer,

Berlin, Heidelberg.

[17] 12 principles behind the Agile Manifesto: Agile Alliance. Agile Alliance |. (2022,

October 11). Retrieved November 1, 2022, from

https://www.Agilealliance.org/Agile101/12-principles-behind-the-Agile-manifesto/

[18] K. V. J. Padmini, H. M. N. Dilum Bandara and I. Perera, "Use of software metrics in

Agile software development process," 2015 Moratuwa Engineering Research

Conference (MERCon), 2015, pp. 312-317, Doi: 10.1109/MERCon.2015.7112365.

[19] S. H. Kan, "Metrics and models in software quality engineering" in, Boston, MA:

Longman Publishing, 2002.

[20] Bansiya, J., & Davis, C. G. (2002). A hierarchical model for object-oriented design

quality assessment. IEEE Transactions on software engineering, 28(1), 4-17.

[21] Kupiainen, E., Mäntylä, M. V., & Itkonen, J. (2015). Using metrics in Agile and Lean

Software Development–A systematic literature review of industrial studies.

Information and software technology, 62, 143-163.

[22] Vesra, A. (2015). A study of various static and dynamic metrics for Open Source

Software. International Journal of Computer Applications, 122(10).

[23] Department of Defense, "Agile Metrics Guide, Strategic Considerations and Sample

Metrics for Agile Development Solutions”, Version 1.1, 23 September 2019.

[24] G. Booch, “Practical Software metrics for Project Management and Process

Improvement,” Prentice Hall, 1992.

[25] L. Putnam and W. Myers, Ware. “Five Core Metrics: The Intelligence Behind

Successful Software Management,” Dorset House Publishing, 2003.

https://github.com/todogroup/osposurvey/blob/master/2021/results_2021.pdf
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/

 88

[26] K. Pulford, A. Kuntzmann-Combelles, S. Shirlaw, A Quantitative Approach to

Software Management: the AMI Handbook, Addison-Wesley Longman Publishing

Co., Inc., 1995.

[27] N. Oza and M. Korkala, "Lessons learned in implementing Agile software

development metrics", Proc. UK Academy for Information Systems Conf., 2012.

[28] Kersten, M. (2018). Project to product: How to survive and thrive in the age of digital

disruption with the flow framework. IT Revolution.

[29] Racheva, Z., Daneva, M., Sikkel, K., & Buglione, L. (2010, June). Business value is

not only dollars–results from case study research on Agile software projects. In

International Conference on Product Focused Software Process Improvement (pp.

131-145). Springer, Berlin, Heidelberg.

[30] M. Poppendieck, T. Poppendieck and T. Poppendieck, Lean Software Development:

An Agile Toolkit, Addison-Wesley, 2003, ISBN 9780321150783.

[31] F. Kišš and B. Rossi, "Agile to Lean Software Development Transformation: A

Systematic Literature Review," 2018 Federated Conference on Computer Science

and Information Systems (FedCSIS), 2018, pp. 969-973.

[32] Kupiainen, E., Mäntylä, M. V., & Itkonen, J. (2015). Using metrics in Agile and Lean

Software Development–A systematic literature review of industrial studies.

Information and software technology, 62, 143-163.

[33] S. Downey and J. Sutherland, "Scrum metrics for hyper productive teams: How they

fly like fighter aircraft", Proc. 46th Hawaii Intl. Conf. on System Sciences, pp. 4870-

4878, 2013.

[34] Kurnia, R., Ferdiana, R., & Wibirama, S. (2018, November). Software metrics

classification for Agile scrum process: a literature review. In 2018 International

Seminar on Research of Information Technology and Intelligent Systems (ISRITI)

(pp. 174-179). IEEE.

[35] Sambinelli, F. and Borges, M. A. F. (2019). The Strategies to Increase Customer

Value in Agile: A Survey of Brazilian Software Industry. Journal of Information

Systems Engineering & Management, 4(2), em0090.

[36] Anderson, J. C., Rungtusanatham, M., & Schroeder, R. G. (1994). A theory of quality

management underlying the Deming management method. Academy of management

Review, 19(3), 472-509.

[37] J. Humble, Continuous Delivery vs Continuous Deployment, Mar. 2016

 89

[38] Lead time vs cycle time in Kanban: The Complete Guide. Kanban Software for Agile

Project Management. (n.d.). Retrieved October 31, 2022, from

https://kanbanize.com/kanban-resources/kanban-software/kanban-lead-cycle-time

[39] The 8 wastes of Lean. The Lean Way. (n.d.). Retrieved November 1, 2022, from

https://theleanway.net/The-8-Wastes-of-Lean

[40] Wheeler, D. A. (2006). How to evaluate Open Source Software/free software

(OSS/FS) programs (2009).

[41] Feller J, Fitzgerald B: Understanding Open Source Software development Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA; 2002.

[42] The Open Source definition. The Open Source Definition | Open Source Initiative.

(n.d.). Retrieved November 1, 2022, from http://www.opensource.org/docs/osd

[43] Årdal, C., Alstadsæter, A., & Røttingen, J. A. (2011). Common characteristics of

Open Source Software development and applicability for drug discovery: a

systematic review. Health Research Policy and Systems, 9(1), 1-16.

[44] Sadowski, B. M., Sadowski-Rasters, G., & Duysters, G. (2008). Transition of

governance in a mature open software source community: Evidence from the Debian

case. Information Economics and Policy, 20(4), 323-332.

[45] Di Tullio, D., & Staples, D. S. (2013). The governance and control of Open Source

Software projects. Journal of Management Information Systems, 30(3), 49-80.

[46] Capra, E., Francalanci, C., & Merlo, F. (2008). An empirical study on the relationship

between software design quality, development effort and governance in Open Source

projects. IEEE Transactions on Software Engineering, 34(6), 765-782.

[47] Capra E, Francalanci C, Merlo F, Lamastra CR: A survey on firms’ participation in

Open Source community projects. IFIP International Federation for Information

Processing 2009, 225-236.

[48] Hagen S: A comparison of motivation and openness in hybrid Open Source and Open

Source Software projects. Master Thesis Norwegian University of Science and

Technology, Department of Computer, and Information Science; 2011.

[49] Schweik CM, English R, Haire S: Factors leading to success or abandonment of Open

Source commons: An empirical analysis of Source Forge. net projects. The Free and

Open Source Software for Geospatial Conference 2008.

[50] David PA, Waterman A, Arora S: FLOSS-US: The free/libre/Open Source Software

survey for 2003. Stanford Institute for Economic Policy Research 2004, 20.

https://kanbanize.com/kanban-resources/kanban-software/kanban-lead-cycle-time
http://www.opensource.org/docs/osd

 90

[51] Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, Ahmed E. Hassan, and

Naoyasu Ubayashi. 2015. Revisiting the applicability of the pareto principle to core

development teams in Open Source Software projects. In Proceedings of the 14th

International Workshop on Principles of Software Evolution (IWPSE 2015).

Association for Computing Machinery, New York, NY, USA, 46–55.

https://doi.org/10.1145/2804360.2804366

[52] Lakhani K, Wolf RG: Why hackers do what they do: Understanding motivation and

effort in free/Open Source Software projects. In Perspectives on free and Open

Source Software. Edited by: Feller J, et al. Cambridge: MIT Press; 2005:3-22.

[53] Tamburri, D.A., Palomba, F., Serebrenik, A. et al. Discovering community patterns

in open source: a systematic approach and its evaluation. Empir Software Eng 24,

1369–1417 (2019). https://doi.org/10.1007/s10664-018-9659-9

[54] B. Gezici, N. Özdemir, N. Yılmaz, E. Coşkun, A. Tarhan and O. Chouseinoglou,

"Quality and Success in Open Source Software: A Systematic Mapping," 2019 45th

Euromicro Conference on Software Engineering and Advanced Applications

(SEAA), 2019, pp. 363-370, doi: 10.1109/SEAA.2019.00062.

[55] DeLone, W. H., and McLean., E. R “Information Systems Success: The Quest for the

Dependent Variable,” Information Systems Research (3:1), 1992, pp. 60-95.

[56] Crowston, K., Annabi, H., & Howison, J. Defining Open Source Software project

success. In Proceedings of the International Conference on Information Systems

(ICIS 2003).

[57] Crowston, K., Annabi, H., & Howison, J. Defining Open Source Software project

success. In Proceedings of the International Conference on Information Systems

(ICIS 2003).

[58] Ewusi-Mensah, K. “Critical Issues in Abandoned Information Systems Development

Projects.,” Communication of the ACM (40:9), 1997, pp. 74-80.

[59] Raymond, E. S. “The Cathedral and the Bazaar,” First Monday (3:3), 1998.

[60] M. Papamichail, T. Diamantopoulos and A. Symeonidis, "User-Perceived Source

Code Quality Estimation Based on Static Analysis Metrics," 2016 IEEE International

Conference on Software Quality, Reliability and Security (QRS), 2016, pp. 100-107.

[61] Munaiah, N., Kroh, S., Cabrey, C. et al. Curating GitHub for engineered software

projects. Empir Software Eng 22, 3219–3253 (2017).

[62] Openhub.net. Open Hub, the Open Source network. Retrieved October 1, 2022, from

https://openhub.net/

https://doi.org/10.1145/2804360.2804366
https://doi.org/10.1007/s10664-018-9659-9

 91

[63] B. Kitchenham, what is up with software metrics? – A preliminary mapping study, J.

Syst. Softw. 83 (1) (2010) 37–51.

[64] DeGrandis D. (2017). Making Work Visible: Exposing Time Theft to Optimize Work

& Flow. IT Revolution.

[65] Raymond, E. S. “The Cathedral and the Bazaar,” First Monday (3:3), 1998.

[66] Zhang, M., Liu, H., Chen, C., Liu, Y., & Bai, S. (2022). Consistent or not? An

investigation of using Pull Request Template in GitHub. Information and Software

Technology, 144, 106797.

[67] About projects. GitHub Docs. (n.d.). Retrieved November 1, 2022, from

https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-

about-projects/about-projects

[68] M. -G. Jung, S. -A. Youn, J. Bae, and Y. -L. Choi, "A Study on Data Input and Output

Performance Comparison of MongoDB and PostgreSQL in the Big Data

Environment," 2015 8th International Conference on Database Theory and

Application (DTA), 2015, pp. 14-17, doi: 10.1109/DTA.2015.14.

[69] What is a product backlog? Scrum.org. (n.d.). Retrieved November 1, 2022, from

https://www.scrum.org/resources/what-is-a-product-backlog

[70] Lin, B., Robles, G., & Serebrenik, A. (2017, May). Developer turnover in global,

industrial Open Source projects: Insights from applying survival analysis. In 2017

IEEE 12th International Conference on Global Software Engineering (ICGSE) (pp.

66-75). IEEE

[71] How to calculate employee turnover rate and what it means. Built In. (n.d.).

Retrieved November 1, 2022, from https://builtin.com/recruiting/turnover-rate

[72] Segal, D. (2022, June 11). Is code freeze still relevant? Medium. Retrieved November

1, 2022, from https://medium.com/geekculture/is-code-freeze-still-relevant-

9c077495b64

[73] Core 2.13. Ansible. (2022, October 18). Retrieved November 1, 2022, from

https://docs.ansible.com/ansible/latest/roadmap/ROADMAP_2_13.html

[74] Reinertsen, D. G. (2009). The principles of product development flow: second

generation Lean product development (Vol. 62). Redondo Beach: Celeritas.

[75] Flutter release notes. Flutter. (n.d.). Retrieved November 1, 2022, from

https://docs.flutter.dev/development/tools/sdk/release-notes

[76] Kersten, M. (2018). Project to product: How to survive and thrive in the age of digital

disruption with the flow framework. IT Revolution.

https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects
https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-about-projects/about-projects
https://www.scrum.org/resources/what-is-a-product-backlog
https://builtin.com/recruiting/turnover-rate
https://medium.com/geekculture/is-code-freeze-still-relevant-9c077495b64
https://medium.com/geekculture/is-code-freeze-still-relevant-9c077495b64
https://docs.ansible.com/ansible/latest/roadmap/ROADMAP_2_13.html
https://docs.flutter.dev/development/tools/sdk/release-notes

 92

[77] What is backlog grooming? Agile Alliance |. (2022, June 10). Retrieved November

1, 2022, from https://www.Agilealliance.org/glossary/backlog-refinement/

[78] monday.com, A. of us at. (2022, June 15). Everything you need to know about Agile

release planning. monday.com Blog. Retrieved November 1, 2022, from

https://monday.com/blog/rnd/Agile-release-planning/

[79] Leffingwell, D. (2010). Agile software requirements: lean requirements practices for

teams, programs, and the enterprise. Addison-Wesley Professional.

https://www.agilealliance.org/glossary/backlog-refinement/
https://monday.com/blog/rnd/agile-release-planning/

 93

APPENDIX A

LIST OF 40 OPEN SOURCE SOFTWARE COMMUNITIES OBTAINED FROM THE

GITHUB REPOSITORY

 94

Sl.

No.

Project

Name

Domain Presence of Project

Board on GitHub

Number of

Contributors

1 Amplify-js Web libraries and fw. No 345

2 Android Library No 34

3 Ansible Software Tools Yes 5366

4 Arduino Rapid prototyping No 210

5 ASP.NET Core App. and fw. Yes 1060

6 Boilerplate Web libraries and fw. No 48

7 Bootstrap Web libraries and fw. Yes 1300

8 Boto Web libraries and fw. No 495

9 Bundler Web libraries and fw. No 549

10 Cloud9 Application software No 64

11 Composer Software Tools No 629

12 Cucumber Software Tools No 35

13 Cypress Software Tools No 344

14 Electron App. and fw. Yes 1130

15 Ember-JS Web libraries and fw. No 407

16 Flutter Web libraries and fw. Yes 1073

17 freeCodeCamp App. and fw. No 4424

18 Gatsby App. and fw. Yes 3901

19 Gollum App. fw. No 143

20 Hammer Web libraries and fw. No 84

21 Hawkthorne Software Tools No 62

22 Heroku Software Tools No 40

23 Kubernetes App. and fw. Yes 3194

24 Modernizr Web libraries and fw. No 220

25 Mongoid App. fw. No 317

26 Monodroid App. fw. No 61

27 Netty Software Tools Yes 576

28 ohmyzsh Web libraries and fw. No 2045

29 PDF-JS Web libraries and fw. Yes 361

30 React-Native Web libraries and fw. Yes 2319

31 Refinery Software Tools No 385

 95

32 Salt Software Tools Yes 2366

33 Scikit-Learn App. and fw. Yes 2370

34 Scrapy App. fw. No 242

35 SimpleCV App. and fw. No 69

36 SocketRocket App. fw. No 67

37 Storybook Software Tools No 1484

38 Swift App. fw. No 942

39 TensorFlow Web libraries and fw. Yes 3195

40 VS Code App. fw. No 1629

 96

APPENDIX B

INCLUSION CRITERIA FOR SELECTED OPEN SOURCE PROJECTS

 97

1. Ansible:

Ansible is a radically simple deployment, configuration management, and ad-hoc

task execution tool. It uses the GNU General Public License v3.0 or later [93]. Users can

start using it right away, and it supports a wide range of distributions. It also does not

require any software to be installed on managed devices and any language may be used to

write extension modules. The first lines of source code were added to Ansible in 2012.

Recent activity on projects with a code base older than ten years indicates that these

projects are likely to tackle critical issues and provide consistent value. Ansible is

organized to reward sustained effort by an engaged team of contributors. A long source

control history, combined with recent engagement, may imply that this code and ecosystem

are significant enough to entice long-term commitment, as well as a mature and reasonably

bug-free code base. As of October 1, 2022, 48 developers contributed new code to Ansible

in the last one month proving that they have a large, active development team. Ansible is

mostly written in Python and 32% of all source code lines are comments, highlighting the

project’s well-commented source code. A high number of comments might indicate that

the code is well-documented and organized, that could be a sign of a helpful and disciplined

development team. Over the last twelve months, Ansible has seen a substantial decrease in

development activity. This may be a warning sign that interest in this project is waning, or

it may indicate a maturing code base that requires fewer fixes and changes.

 98

2. Gatsby:

Gatsby is a static site generator for React. It uses the MIT License [95]. The first

lines of source code were added to gatsbyjs/gatsby in 2015. Recent activity on projects

with a code base older than eight years indicates that these projects are likely to tackle

critical issues and provide consistent value. Gatsby is organized to reward sustained effort

by an engaged team of contributors. A long source control history, combined with recent

engagement, may imply that this code and ecosystem are significant enough to entice long-

term commitment, as well as a mature and reasonably bug-free code base. As of October

1, 2022, 37 developers contributed new code to Gatsby in the last one month highlighting

that they have a large, active development team. Gatsby is mostly written in JavaScript and

11% of all source code lines are comments, proving the project has few source code

comments indicating that the code is not well-documented and organized. Over the last

twelve months, Gatsby has seen a substantial decrease in development activity. This may

be a warning sign that interest in this project is waning, or it may indicate a maturing code

base that requires fewer fixes and changes.

3. ASP Netcore:

ASP.NET Core is a cross-platform .NET framework for building modern cloud-

based web applications on Windows, Mac, or Linux. It uses the MIT License. The first

lines of source code were added to dotnet/aspnetcore in 2014. Recent activity on projects

with a code base older than eight years indicates that these projects are likely to tackle

critical issues and provide consistent value. ASP.NET Core is organized to reward

 99

sustained effort by an engaged team of contributors. As of October 1, 2022, 42 developers

contributed new code to ASP.NET Core in the last one month proving that they have a

large, active development team. ASP.NET Core is mostly written in C# and 15% of all

source code lines are comments, indicating the project has few source code comments

indicating that the code is not well-documented and organized. Over the last twelve

months, dotnet/aspnetcore has seen a substantial decrease in development activity.

4. Flutter:

Flutter framework for building high-performance, high-fidelity iOS and Android

apps. It uses the Chromium License [97]. The first lines of source code were added to

Flutter in 2005. Recent activity on projects with a code base older than ten years indicates

that these projects are likely to tackle critical issues and provide consistent value. A long

source control history, combined with recent engagement, may imply that this code and

ecosystem are significant enough to entice long-term commitment, as well as a mature and

reasonably bug-free code base. As of October 1, 2022, 94 developers contributed new code

to Flutter in the last one month highlighting that they have a large, active development

team. Flutter is mostly written in Dart and 9% of all source code lines are comments,

proving the project is not well-commented. Over the last twelve months, Flutter has seen a

substantial increase in development activity. This may be a sign that interest in this project

is rising, and that the Open Source community has embraced this project.

 100

5. Salt:

Salt is a unified infrastructure management tool. Building on top of it offers a

singular approach to managing the cloud, private, public and multi. It uses the Apache

License 2.0 [96]. The first lines of source code were added to Salt in 2011. Recent activity

on projects with a code base older than ten years indicates that these projects are likely to

tackle critical issues and provide consistent value. A long source control history, combined

with recent engagement, may imply that this code and ecosystem are significant enough to

entice long-term commitment, as well as a mature and reasonably bug-free code base. As

of October 1, 2022, 51 developers contributed new code to Salt in the last one month

proving that they have a large, active development team. Salt is mostly written in Python

and 30% of all source code lines are comments, highlighting the project’s well-commented

source code. A high number of comments might indicate that the code is well-documented

and organized and could be a sign of a helpful and disciplined development team. Over the

last twelve months, Salt has seen a substantial decrease in development activity.

 101

APPENDIX C

SPECIFIC DETAILS OF DATA RETRIVAL FROM THE GITHUB APIS USING A

CUSTOMIZED SCRAPER WRITTEN IN PYTHON

 102

Data is made available by GitHub via their REST APIs. With this API, the required

information is obtained by sending a request to a distant web server. The simplest way to

utilize the GitHub REST API from the command line is through the GitHub CLI. To sign

into the GitHub CLI, the auth login subcommand is used. The API request is then made

using the Api subcommand. An HTTP method and a path are supplied in a request to the

REST API. It is also possible to specify request headers, path, query, or body parameters.

The operation path is modified by path parameters. The "Get a repository" path, for

instance, is /repos/{owner}/{repo}. The required path parameters are shown by the curly

brackets {}. The repository owner and name are given in this instance. The data that is

returned for a request can be managed using query parameters. The number of items that

are returned when the response is paginated, for instance, could be specified by a query

parameter. Additional data can be sent to the API via body parameters. For instance, the

"Create an organization repository" function needs a title for the new repository. Additional

information is also described, such as text that should go in the repository body. The

response status code, response headers, and a response body are all returned by the API.

Every request will have an HTTP status code that denotes if the response is successful. A

response body is the result of many operations. The response body, unless otherwise stated,

is in JSON format. Usually, the REST API provides more details than are required. To

extract necessary information, the response can be parsed, if needed.

The requests library is the most widely used library in Python for sending requests

and interacting with APIs. For the Python programming language, there is an HTTP library

called Requests. This is used in the project to provide easier, more approachable HTTP

 103

requests. Since the requests library is not a component of the default Python library, it must

be installed first. Requests come in a wide variety of forms. Data retrieval is done through

the most used one, the GET request. The emphasis will primarily be on making "get"

requests because the main task will include retrieval of data. To make a ‘GET’ request, the

requests.get() function is used. This requires one argument, that is the URL where the

request is made to.

The following GitHub APIs are accessed for each of the included projects to gather

information. The python script started by fetching the repository and all the projects

(classic) in them. The list projects API returns a 404 Not Found status if projects are

disabled in the repository. Insufficient privileges to perform this action, a 401 Unauthorized

or 410 Gone status is returned. After that, columns in each of the projects are obtained.

Each column is further examined to fetch all the cards in them. Later, the timeline for each

of the cards on the project board is fetched. The Timeline events API can return several

types of events triggered by timeline activity in issues and pull requests. Every pull request

is an issue, but not every issue is a pull request. For this reason, "shared" actions for both

features, like managing assignees, labels, and milestones, are provided within Issues API.

Along with this, information about the releases for each of the projects is also saved.

 104

APPENDIX D

LINE CHARTS FOR DESCRIPTIVE STATISTICS OF ANSIBLE, SALT, ASP.NET

CORE, GATSBY, AND FLUTTER

 105

Descriptive Statistics for Ansible

Descriptive Statistics for ASP.NET Core

Descriptive Statistics for Flutter

 106

Descriptive Statistics for Gatsby

Descriptive Statistics for Salt

	Abstract
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.1 Agile and Lean Metrics
	2.2 Open Source Software and Its Characteristics

	3. RESEARCH CONTEXT
	3.1 Research Questions
	3.2 Research Methodology
	3.2.1 Representative Sample of OSS Projects
	3.2.2 Included/Excluded Agile and Lean Metrics
	3.2.3 Included OSS Characteristics

	4. DESIGN AND IMPLEMENTATION
	4.1 Retrieve Information of Kanban Project Board from GitHub REST APIs
	4.2 Calculating Agile/Lean Process Metrics:
	4.3 Use PostgreSQL to Store the Data Fetched from GitHub APIs
	4.4 Establishing a Connection Between the Postgres Database and Metabase to Produce Visualizations

	5. RESULTS AND ANALYSIS
	5.1 Inductive Reasoning
	5.2 Deductive Reasoning

	6. DISCUSSION
	6.1 Key Takeaways from This Study:
	6.2 Limitations of This Study:

	7. CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D

