
A Secure Protocol for Contact Tracing and Hotspots Histogram Computation

by

Chetan Surana Rajender Kumar Surana

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2021 by the
Graduate Supervisory Committee:

Ni Trieu, Chair
Lalitha Sankar
Visar Berisha
Ming Zhao

ARIZONA STATE UNIVERSITY

May 2021



ABSTRACT

Contact tracing has been shown to be effective in limiting the rate of spread

of infectious diseases like COVID-19. Several solutions based on the exchange of

random, anonymous tokens between users’ mobile devices via Bluetooth, or using

users’ location traces have been proposed and deployed. These solutions require the

user device to download the tokens (or traces) of infected users from the server. The

user tokens are matched with infected users’ tokens to determine an exposure event.

These solutions are vulnerable to a range of security and privacy issues, and require

large downloads, thus warranting the need for an efficient protocol with strong privacy

guarantees. Moreover, these solutions are based solely on proximity between user

devices, while COVID-19 can spread from common surfaces as well. Knowledge of

areas with a large number of visits by infected users (hotspots) can help inform users

to avoid those areas and thereby reduce surface transmission. This thesis proposes a

strong secure system for contact tracing and hotspots histogram computation. The

contact tracing protocol uses a combination of Bluetooth Low Energy and Global

Positioning System (GPS) location data. A novel and deployment-friendly Delegated

Private Set Intersection Cardinality protocol is proposed for efficient and secure server

aided matching of tokens. Secure aggregation techniques are used to allow the server

to learn areas of high risk from location traces of diagnosed users, without revealing

any individual user’s location history.
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Chapter 1

INTRODUCTION

1.1 Overview

Our world has been plagued by a pandemic, namely COVID-19, for over a year

now, since the first case was reported on November 17th, 2019 [1], [2]. The disease is

highly infectious, with a record high number of infections globally [3]. It is an airborne

disease that transmits from person to person or from surfaces to persons. Contact

tracing (CT), both manual and automated, are effective in limiting the rate of spread

of an infectious disease [4]. In CT, people who may have come into contact with an

infected person are determined and instructed to self-isolate, to prevent them from

transmitting the disease to other people. A large number of CT mobile applications

(apps) have been developed and deployed, with most of them based on the exchange

of random and anonymous tokens using Bluetooth (BT) [5]–[9]. These are generally

decentralized systems that alert users if they may have come in close proximity with

other positively diagnosed users (infected users). A high adoption rate is critical for

the success of CT apps in helping curb the spread of COVID-19. However, adoption

is low as these systems are prone to a host of attacks, like linkage, relay, and replay

attacks [10]–[12].

Most CT apps have a service provider(server) in the loop which stores tokens of

infected users. User devices periodically query the server and download tokens of

infected users. They compute the size of intersection between the set of downloaded

tokens and the set of tokens received from other users they were in close contact
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with. This involves download of a huge set of data from the server, periodically, hence

making it computationally inefficient for client mobile devices.

Moreover, COVID-19 spreads through common surfaces that have been touched by

infected users. Informing users to avoid geographical areas where many positively

diagnosed users have visited (hotspots) can help lessen the spread of COVID-19

through surface transmission. Decentralized, BT-based systems based on proximity of

devices cannot handle this case. GPS based methods that match location traces of

users may not be as accurate as BT-based systems, and are vulnerable to dictionary

attacks [13]. Hence a secure, efficient, and scalable protocol for CT that considers

both contact transmission and surface transmission is essential.

Although several vaccines are available, production is yet to meet demand. Their

effectiveness against new mutations of the strain is unknown, and people may still

contract the disease, yet suffer a milder case. Thus, there is a need for a framework

that is robust against attacks and information leakage, is computationally light and

efficient, and allows for valuable insights from anonymous, aggregate data. The

study is relevant and advances contact tracing technology to combat highly infectious,

airborne diseases and helps prepare for future pandemics.

1.2 Contribution

This thesis proposes, implements and evaluates an end-to-end, secure and efficient

Contact Tracing system, with three-fold contributions:

• A secure contact tracing protocol, using a combination of Bluetooth Low Energy

(BLE) and GPS, which is efficient, scalable and robust against attacks and

information leaks.
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• A novel, deployment-friendly protocol with strong privacy guarantees called

Delegated Private Set Intersection - Cardinality (DPSI-CA), which allows client

devices to offload the computation of matching tokens to detect exposure to an

untrusted cloud server.

• A secure and efficient protocol that allows a server to learn geographic infection

clusters or hotspots from aggregate user location traces without revealing any

individual user’s information.

1.3 Outline

Chapter 2 describes related work in the domain of digital contact tracing and server

aided private set intersection. Chapter 3 explains relevant background about COVID-

19 and contact tracing, as well as defines and elucidates important data structures,

cryptographic primitives. Chapter 3 also describes relevant, existing contact tracing

frameworks which the proposed work extends and improves. Chapter 4 proposes and

explains the secure end to end Contact Tracing framework and the protocols. Chapter

5 provides implementation details and discusses performance of proposed framework.

Chapter 6 summarizes the work and discusses future directions for improvement.
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Chapter 2

RELATED WORK

2.1 Contact Tracing

Most contact tracing systems based on Bluetooth either assume a trusted central

authority or take a distributed approach, depicted in figures 1 and 2. The TraceTo-

gether app [9] launched by the Singapore Government belongs to the former category.

In this protocol, the central authority (the government server) registers and stores

user details and unique identifiers, and assigns a set of contact tokens to be broadcast

at specific times. An infected user I shares all received broadcast tokens with the

central authority, who then uses the tokens to identify and follow up with users who

have come in contact with I. This system could be misused as a surveillance system,

where the central authority can learn graphs of user interaction.

Figure 1. Centralized Bluetooth based Contact Tracing
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Figure 2. Deentralized Bluetooth based Contact Tracing

Decentralized approaches, including Covid-Watch [6], Decentralized Privacy Pre-

serving Proximity Tracing (DP3T)[7], Temporary Contact Number -Coalition (TCN

-Coalition) [8], PACT [14], and the Google/Apple Exposure Notification (GAEN) solu-

tion [5], do not trust the central server. These approaches have a common underlying

protocol with some differences and can be broadly described as follows. Let’s suppose

that Alice and Bob are two users of the CT app.

1. Setup: Alice and Bob register and download the app on their devices.

2. Token generation and broadcast: Both Alice and Bob generate contact tokens

and broadcast them via Bluetooth Low Energy (BLE). The device rotates

the contact token periodically. These tokens/contact tokens are termed as

Temporary Contact Numbers (TCN) [8], Ephemeral IDs (EphID)[7], Rotating

Proximity Identifiers (RPI)[5], and others.

3. Token exchange: When Alice and Bob are in close proximity, Alice stores Bob’s

contact token, and Bob stores Alice’s contact token. Other metadata including

signal strength, duration, timestamp, and others, may be stored with the contact

token.
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4. Positive diagnosis: Suppose Bob is positively diagnosed. He shares the list of

contact tokens broadcast, or the seed used to generate them, with a central,

untrusted server that maintains a private database or public list. A health

provider may be in the loop to validate or certify Bob’s positive diagnosis to the

server.

5. Exposure notification: If the server maintains a private database of infected users’

tokens, users submit the contact tokens they’ve encountered to the server. If the

server maintains a public list, users download the list. The size of intersection

between set of tokens received by the user and set of infected users’ tokens gives

the number of potential exposure events.

The aforementioned approaches based on this scheme are all susceptible to relay

attacks, linkage attacks by users or servers, and also false reporting by users.

• Linkage Attack - Tracking people: In a centralized system, the contact token can

be mapped to a long-term psuedonym of the user using a trapdoor. The central

authority has access to the trapdoor, and can link all collected or observed

ephemeral identifiers. In a decentralized system, the contact tokens are derived

from a key k. Diagnosed users submit keys k of several consecutive days. With

a public list of contact tokens, an adversary can collect ephemeral identifiers

and associated data like time and place of collection, and thereby link k’s of a

user from different days [15].

• Social graph reconstruction: A determined malicious adversary can learn a part

of the social graph in a centralized system. The server can learn the social

subgraphs with contacts between diagnosed users and the people they have

come in contact with. A determined user can obtain proof of encounter with a

diagnosed person in a decentralized system [15].
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• Replay and relay attack - Identification of diagnosed users: An adversary,

whether an individual, group or organization, can collect contact tokens, from

the app or using strong Bluetooth receivers, along with the time and place of

collection. In a decentralized system, the tokens of diagnosed users are public.

The adversary can use this to a posteriori identify the user that was diagnosed

[15].

• False encounter and false reporting: An adversary may install artificial broad-

casters, and/or falsely report as positively diagnosed, to increase false positive

exposure alerts.

Safe Paths [16], extended to Path Check [17], is one contact tracing approach

that is based on GPS location traces of users. The app logs the user’s GPS location

periodically. The location is quantized to a geographical area using geohash [18]. The

app then uses a one way hash function to mask the geohash and timestamp. An

infected user’s hashes are shared to a central server maintaining a public list. Other

devices can download this list and detect an exposure using set intersection. This

approach may not be as effective as BT based techniques, and involves a large amount

of hashes to be stored locally and downloaded from a server. It is susceptible to

dictionary attacks [13], where a one-way deterministic hash used to mask private

information can be potentially reversed.

2.2 Private Set Intersection

Private Set Intersection is a multiparty computation (MPC) protocol in which two

parties, each holding a dataset, learn the intersection of their sets without revealing

any other information. Works on efficient and secure PSI include [19], [20], [21], [22],
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[23], [24]. f -PSI refers to protocols for computing a function f on the intersection set.

PSI-CA is a special case of f -PSI where the function computed is the size of the

intersection set. [20] present a garbled circuit approach for f -PSI based on sort-

compare-shuffle construction, which is communication-expensive. [25] propose a

Diffie-Hellman Homomorphic encryption approach that has better communication

complexity, but is computation intensive and thus exspensive in the mobile setting.

Private Set Intersection Cardinality (PSI-CA) [26] refers to a variant of PSI where

the two parties only learn the size of the intersection set and nothing else. [26]–[28]

propose contact tracing frameworks utilizing PSI protocols. [26] proposes Epione,

a decentralized contact tracing system with PSI-CA that is robust against linkage

attacks and false reporting, and is compatible with Bluetooth based systems. Their

PSI-CA protocol works for asymmetric sets and is linear in the size of the smaller set.

Epione uses Diffie Hellman based PSI-CA protocol in the matching process when a

user device queries the server to learn any potential exposures. [26] then proposes a

PSI-CA protocol extensible to asymmetric sets using Multi -query Keyword - Private

Information Retreival (PIR) and two servers. PIR allows a client to query information

from one or more servers without the server learning which information was queried.

[27] proposes Catalic, another contact tracing framework utilizing delegated PSI-CA

protocol, which utilizes oblivious distributed key psuedorandom function (Odk-PRF).

Odk-PRF is a distributed version of oblivious PRF (OPRF) protocol. OPRF protocol

comprises a sender and receiver. The sender chooses a PRF key k, and receiver learns

F (k, r) where r is the receiver’s input and F is a psuedorandom function. The sender

learns only k, receiver only learns F (k, r) and nothing else respectively. Odk-PRF

comprises one sender and multiple receivers, where the input r and output F (k, r) is

secret shared among the m receivers. Refer [27] for details on construction of delegated

8



PSI-CA using Odk-PRf, Cuckoo and Simple hashing scheme, and a pack and unpack

message protocol.

[28] takes an approach similar to [26], using Function Secret Sharing (FSS) based

on Distributed Point Functions (DPFs) for Private Set Intersection - Cardinality,

and a weighted case called PSI with weighted cardinality (PSI-WCA). Two servers

hold the keywords X, the infected tokens, and the client holds keywords Y. FSS

natively supports secure search of keywords from Y on the set of keywords X. In

PSI-WCA, the client obtains sum of weights associated with keywords in the set of

intersection between X and Y. While Epione [26] is two-round protocol secure under

DDH assumption, [28] proposes a one round protocol with minimal cryptographic

assumptions.

9



Chapter 3

BACKGROUND

3.1 COVID-19 and Contact Tracing

COVID-19 is a highly infectious, airborne disease caused by a coronavirus called

SARS-CoV-2 [29]. Its most common symptoms are fever, cough, fatigue and other

respiratory issues like loss of taste, smell, sore throat and headache. Severe cases may

exhibit symptoms such as shortness of breath, high fever, and persistent pain and

pressure in the chest [29]. While most recover, about 15% require hospital treatment

and oxygen, and 5% require intensive care. As of April 4th, 2021, over 13 million

people worldwide have been diagnosed with the disease, with close to 3 million deaths

[3]. Apart from the direct deaths and illness, COVID-19 and the response to handle it

indirectly impacted people’s mental health and daily lives. It put major strain on the

world’s economy, with several people losing their jobs and small business struggling to

survive [30].

Ways to prevent and slow down transmission include physical distancing measures,

wearing masks, keeping areas clean and practicing personal hygiene. Several coun-

tries across the globe imposed measures of varying strictness, including lockdowns,

mandatory masks, sanitization and so on. Contact tracing (CT) was used with these

guidelines to reduce rate of transmission. In CT, the people that may have been in

contact with an infected person are determined and alerted of potential exposure.

They are advised to isolate themselves to prevent further transmission and may even be

required to take a test. CT is effective in reducing transmission of a highly infectious,

10



airborne disease [4].

Manual contact tracing, however, is tedious and not optimal. It’s hard to gather

all the people an infected person may have met or visited the same places within a

certain time duration after the infected person visited those same places. Following

up, alerting them, while at the same time respecting privacy is even more challenging.

Digital contact tracing tackles these challenges, leveraging technology to replace or

augment manual contact tracing efforts. Section 2.1 describes several digital contact

tracing frameworks deployed during the pandemic.

3.2 Threat Model

The protocols in this work are scrutinized under specific security and adversarial

models. Consider that multiple parties agree to cooperatively compute a function

f , and also agree to share the evaluation result to a particular party. Two classical

security models are the colluding and non-colluding models [26]. In a colluding model,

a subset of parties may be dishonest and collude during the execution of the protocol.

In a non-colluding model, the parties are independent and do not collude.

There are two adversarial model definitions. In the honest but curious or semi-honest

model, the parties strictly follow the protocol without deviation, but may attempt to

learn extra information from the execution script apart from that intended by the

protocol. In the malicious setting, the adversary or dishonest party may attempt

any polynomial time strategy such as supplying invalid inputs, deviate and execute

different computation, so as to disrupt the protocol and/or leak information. In this

work, the non-colluding and semi-honest setting is considered, where the parties are

assumed not to collude and follow the protocol.

11



3.3 Data Structures and Cryptographic Primitives

3.3.1 Geohash

Geohashing [18], [31] is a convenient geocoding system that can encode a location

latitude and longitude into a string of letters and digits, with the length of encoding

defining the precision. It is a hierarchical spatial data structure that divides geograph-

ical areas into grid like buckets. A useful property of a geohash is arbitrary precision,

allowing one to gradually remove characters from the end, reducing the length while

losing precision. The longer the prefix of geohashes of two locations, the closer they

are spatially.

A geohash from GPS coordinates is computed by interleaving two binary strings, one

each for the latitude and longitude, with bits recursively splitting grid into intervals.

The calculation of a geohash can be elucidated with an example. The interval is

between -90 to 90 degrees for latitude, and between -180 to 180 degrees for longitude.

Say for a GPS coordinate with latitude 19.5, it lies in the second half of the interval,

corresponding to bit 1. Then, 0 is noted for it lies in the first half of the interval 0 to

90, followed by 0 for the interval 0 to 45, 1 for interval 0 to 22.5, and so on recursively,

until desired accuracy is reached. The interleaved binary strings for longitude and

latitude are represented as letters and digits using the base 32 encoding. The precision

for geohash of given length is summarized in table 1. In the implementation of

the BT plus GPS protocol proposed in this work, geohash of length 8 is chosen, to

accommodate for reasonable accuracy of proximity detection.

12



Table 1. Geohash precision
Geohash Length Cell width x Cell Height
1 5,009.4km x 4,992.6km
2 1,252.3km x 624.1km
3 156.5km x 156km
4 39.1km x 19.5km
5 4.9km x 4.9km
6 1.2km x 609.4m
7 152.9m x 152.4m
8 38.2m x 19m
9 4.8m x 4.8m
10 1.2m x 59.5cm
11 14.9cm x 1.9 cm
12 3.7cm x 1.9cm

Cell width and height of grid based on length of geohash. (Units in Kilometer (Km),
Meter(m) and Centimeter(cm)

3.3.2 Advanced Encryption Standard (AES)

AES is a symmetric block cipher encryption-decryption algorithm specified as

an encryption standard by the U.S. National Institute of Standards and Technology

(NIST). AES used in the implementation of proposed work as a one-way hash to

mask data. AES is used for hashing in this work over alternate hashing schemes like

Secure Hashing Algorithm family (SHA)[32] as it is faster. AES takes a cipher key

and plaintext as input and ouputs an encrypted ciphertext. It has a fixed block size

of 128 bits, but takes keys of length 128, 192, or 256 bits. Block cipher modes include

Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher FeedBack (CFB),

Output FeedBack (OFB) and Counter (CTR) [33].

13



3.3.3 Hash Table Data Structures

• Cuckoo Hashing

In basic Cuckoo hashing, there are β bins denoted B[1 . . . β], a stash, and k

random hash functions h1, . . . , hk : {0, 1}? → [β]. It is a scheme with worst

case constant lookup and deletion time, and amortised constant insertion time.

On inserting an item, it uses the first hash function. If an item already exists

there, the curent item replaces it, and the evicted item is re-inserted using the

subsequent hash function. Repeat till the process settles. If there’s a cycle, a

rehash is performed by choosing new hash functions h1, . . . , hk : {0, 1}? → [β].

The client uses a variant of Cuckoo hashing such that each item x ∈ X is placed

in exactly one of β bins. Using the Cuckoo analysis [34] based on the set size

|X|, the parameters β, k are chosen so that with high probability (1− 2−λ) every

bin contains at most one item, and no item has to be placed in the stash during

the Cuckoo eviction (.i.e. no stash is required).

• Simple Hashing

With simple hashing, items in the input set Y are inserted into β bins using

the same set of k Cuckoo hash functions (i.e, each item y ∈ Y appears k times

in the hash table). Using a standard ball-and-bin analysis based on k, β, and

the input size of client |X|, one can deduce an upper bound η such that no bin

contains more than η items with high probability (1− 2−λ).
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3.3.4 Pack and Unpack Message

A pack and unpack message protocol consists two algorithms, pack and unpack.

Pack takes a set S of key-value pairs and outputs a representation Π. Unpack takes

the representation Π and a key a. It returns the corresponding value associated with

the key if and only if a ∈ S, else returns a random value. These algorithms, as stated

in [27], are:

• pack(S)→ Π: Takes a set S of size n with key-value pairs (ai, bi) and outputs a

representation Π

• unpack(Π, a)→ v: Takes a representation Π, key a and outputs v

• Correctness: If (a, b) ∈ S and Π← pack(S) then (a, unpack(Π, a)) ∈ S

• Obliviousness: For pack(a1, b1, . . . , (an, bn)), The distributions of unpack(Π, a)

and unpack(Π, a′) are indistinguishable

[22] present several techniques for pack and unpack constructions, of which two are

Polynomial-based construction and Garbled Bloom filter construction. In this work,

the polynomial based approach for pack and unpack is used to make the protocol

cryptographically simple and efficient. In polynomial-based construction, Pack(S)

carries out polynomial interpolation, returning a polynomial Π of degree n−1 over the

points (ai, bi),∀i ∈ n. Given a set of points (x1, y1), (x2, y2)...(xn, yn), the Lagrange’s

interpolating polynomial P (x) of degree n− 1 is determined as:

P (x) =
n∑
j=1

Pj(x)

Pj(x) = yj

n∏
k=1
k 6=j

x− xk
xj − xk
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Unpack(Π, a) returns the value on evaluating the polynomial at a. It returns

v = P (a). Both pack and unpack satisfy correctness and obliviousness properties.

3.4 Relevant Contact Tracing Deployment

3.4.1 Decentralized Privacy Preserving Proximity Tracing (DP3T)

DP3T is an open protocol for contact tracing using BLE, produced by a core

team of researchers and scientists across Europe. [7] proposes three designs - low

cost, unlinkable and hybrid design. In all three designs, phones generate frequently

changing ephemeral identifiers (EphIDs). A backend server distributes anonymous

exposure information to the app running on each phone [7]. The low cost design is

similar to the overview decentralized BT based contact tracing systems described

in related work. In low cost design, the EphIDs of an infected user are linkable

from start of contagious window until the time of window, allowing local tracking of

infected patients during the past window, using Bluetooth receivers and recording

devices to store EphIDs. In unlinkable design, the list of seeds of infected users is

not distributed. The EphIDs of COVID positive users are hashed and stored in a

Cuckoo filter. This prevents linkage of EphIDs and allows the infected users to redact

identifiers that they do not want to disclose.

If a user is diagnosed as positive, they have option to choose set I of epochs for which

to reveal their identifiers. Then the device uploads the set (i, seedi) for all epochs i

in I. Requiring seedi rather than EphID ensures that malicious users cannot claim

somebody else’s EphID as their own.

The Server creates a new Cuckoo Filter F periodically and for each pair (i, seedi),
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it inserts H(LEFTMOST128(H(seedi))||i) into F , that is, the hashed string

H(EphID||i) where EphID = LEFTMOST128(H(seedi)). All devices download

the filter F . Each device checks if any of the EphIDs observed are in F . Using Cuckoo

Filter F hides the set of EphIDs of Covid 19 positive users from general public.

However, this design requires more bandwidth and storage.

In the hybrid design, devices generate a random seed seedw for each time window w

and uses these seeds to generate EphIDs similar to low cost design. It enables user

to redact time windows, but has weaker protection against tracking, compared to

the unlinkable design. The Google Apple Exposure Notification (GAEN) design is a

special case of the hybrid design where w corresponds to 1 day.

3.4.2 Safe Paths

Safe Paths is a GPS location trail based contact tracing solution developed at

Massachusetts Institute of Technology, which evolved into the PrivateKit solution.

[13] Proximity based solutions using BT are ineffective in that they do not handle

the surface and airborne transmission. Coronaviruses can transmit not only through

human-to-human transmission but through commonly touched surfaces and environ-

ments as well. Safe paths handles this case by checking adjacent time periods as well

to accommodate the case when two users may have occupied same space one after the

other. The protocol can be said to comprise the following steps:

1. Data collection - User’s app logs timestamped GPS points every t minutes

2. Redaction and transformation - All location trails are redacted, transformed

and encrypted before upload. Sensitive location details can be redacted through

automatic inference and manually by the user. Precise locations are replaced by
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a larger geographical areas (geohash) that contain them. Moreover, timestamped

GPS points are transformed into “point intervals”. These point intervals are

encrypted with a one-way hash function.

3. Secure data exchange - User app establishes a secure channel with the designated

server and requests point interval data of infected carriers for a specific duration

of time for a given region.

4. Risk assessment and notification: The app assesses risk by matching local point

interval data with point interval data obtained via (3) and notifies user of any

exposure risk.

The GPS points are collected as tuples of latitude, longitude and time. GPS points

are mapped to a 3D grid, one with one dimension each for latitude, longitude, and time.

These 3D grid cells are called ‘point intervals’. These point intervals are obfuscated

with a one way hash function. The geographic space is partitioned with geohashes

or hexagonal global geospatial indexing system of H3 grid. Time is partitioned into

intervals, like every 2 or 5 minutes.

An infected user provides redacted, anonymized and hashed point intervals (NI) to

server. Other apps periodically exchange information about their own hashed point

intervals with server to detect if their hashed point intervals (NU ) match those shared

by diagnosed carriers, using Private Set Intersection protocol.

Geographical space is partitioned into intervals. Two points may be close but fall into

different intervals. Thus, a user’s app check each of their collected point intervals as

well as their adjacent point intervals against diagnosed carriers’ point intervals. If H3

hexagonal grid is used, there are 6 surrounding hexagons in grid against each data

point. Comparisons required thus become 7NUxNI rather than NUxNI
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Chapter 4

PROPOSED CONTACT TRACING FRAMEWORK

COVID-19 and other airborne diseases can be curbed by limiting the rate of

transmission from person to person. Digital contact tracing efforts utilize technology

to identify and alert persons potentially exposed to an infected user. Bluetooth

on mobile devices is effective in identifying people in close proximity. Specifically,

Bluetooth Low Energy (BLE) is a radio specification for short range communication

and well suited for proximity detection due to its accuracy and feasibility. All

mobile devices come equipped with Bluetooth functionality, with some rare exceptions.

Decentralized BT - based contact tracing systems comprise apps running on users’

mobile devices and a service provider (server). Users’ apps use BLE to broadcast and

receive anonymous tokens. Say two users, Alice and Bob, were in close proximity.

Alice stores the token broadcast by Bob and vice versa. This way each user’s app

stores a list of tokens it has received from other users who were in close proximity.

When a user, say Bob, is infected, he uploads the seed used to generate the tokens, or

all the tokens, to the server. Other user’s download or query the server to determine

if they have come in contact with an infected user. Since Alice was in contact with

Bob, she will be alerted because the intersection between the set of tokens she has

received from other users and the set of tokens of infected users maintained by the

server is non-zero.

The potential vulnerabilities associated with solely BT-based contact tracing systems,

including linkage and replay attacks, identification of diagnosed users, false reporting

and false encounters, are covered in Chapter 2. This chapter proposes a secure,
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scalable and efficient contact tracing system with strong privacy guarantees, which

is robust against these vulnerabilities. The framework takes a step further to aid

in prevention of contacts between users and infected users. It defines a protocol

using secure aggregation techniques to identify geographical areas deemed high-risk or

hotspots due to several visits by infected users. Users can avoid these areas or exercise

increased caution. Moreover, existing systems can easily be extended to incorporate

or adopt the secure protocols described.

4.1 End-to-end Framework

An end to end framework for digital contact tracing that is efficient, scalable and

has strong privacy guarantees is diagrammed in Figure 3 and explained as follows. The

framework comprises an app on users’ mobile devices, and three types of untrustworthy

servers - backend, cloud and healthcare providers.

1. Setup

During initialization, the cloud server randomly chooses a permutation function

Π : [N ] → [N ], provides it to the healthcare provider. The healthcare provider

randomly chooses N certificates Ci and gives the backend server Π(Ci) in order. The

healthcare provider randomly chooses a PRG seed c for generating valid certificates,

and sends the seed to the backend server, which can locally compute certificate

Ci ← PRG(c||i). The backend server generates a public-private key pair (pk, sk) and

sends the public key to every user. Each user/phone ui randomly chooses a PRG seed

si which is used to generate the bluetooth tokens. As long as the server’s configuration

does not change, this phase does not need to be run more than once. Whenever a
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Figure 3. End to End Contact Tracing Framework

(I) Tokens (RPIs) are exchanged when two users are in close proximity. (II) When a
user is diagnosed by a healthcare provider, the user receives a certificate which
indicates that (s)he tested positive with the disease. (III) the diagnosed user encrypts
a pair of their PRG seed or all tokens and the certificate using the public key of the
backend server, and sends the encrypted values to the cloud server, who then
permutates and transmits them to the backend server. Using its private key, the
backend server decrypts the received ciphertexts and obtains a set of pairs including
the PRG seed (or all tokens) and associated certificate. The backend server checks
whether the certificate is valid using the hospital key. (IV) Each user invokes the
DPSI-CA algorithm with the backend server via the cloud server, where the user’s
input is its received tokens and the server’s input is the list of diagnosis tokens. The
user learns only whether (or how many) tokens there are in common between the two
sets.
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new user registers, they only need to generate their own PRG seed and to receive the

public key from the backend server.

2. At Contact

The Bluetooth plus GPS protocol described in section 4.2 is used to exchange tokens

whenever users are in close proximity. The user can generate the τ tokens to be

broadcast by using a PRG as ti,1|| . . . ||ti,τ = PRG(si||d), where si is the user’s secret

PRG seed, d is the current day, τ is an upper bound on the number of RPIs needed

for that day, and || is string concatenation. Figure (3, I) illustrates the “At contact”

phase of token exchange and storage, as explained in section 4.2.

3. At Test

When a user ui is diagnosed by the healthcare provider, the healthcare provider

computes a certificate Ci ← PRG(c||i) using their own secret PRG seed, and gives it

to the user ui. The certificate validates that this user tested positive for the disease and

is used to detect false-positive claims, if any. Note that before adding the user’s tokens

to the infected tokens database, the backend server checks whether the certificate is

valid. If not, the backend server has permission to ask the cloud server to reveal the

identify (e.g. the IP address) of this nefarious user. Figure (3, II) presents the “At

Test” phase.

4. Token Collection

Figure (3, III) describes the process of collecting diagnosis tokens, which involves the

computation and communication of every user, the cloud server, and the backend

server. The goal is to have the backend server collect all diagnostic tokens in a

privacy-preserving manner. This phase contains three steps as follows:

a) At the beginning of the phase, every ith diagnosed user encrypts their PRG
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seed si together with their received certificate Ci using the public key pk of the

backend server as Enc(pk, si||Ci).

b) After receiving the encrypted values from diagnosed users, the cloud server

permutes and then forwards them to the backend server.

c) Using its secret key, the backend server decrypts ciphertexts to obtain plaintexts

as si||Ci. First, the backend server verifies whether Ci is valid. This can be

done as follows. The backend server uses the PRG seed c of the healthcare

provider, generates all possible certificates as C = {Ci ← PRG(c||i),∀i ∈ [N ]},

and checks whether Ci ∈ C. If so, the backend server computes all diagnosis

tokens as ti,1|| . . . ||ti,n = PRG(si||d), for every d in the infection period, and

adds them to the list of diagnosis RPIs T. Otherwise, a false-positive claim is

easily detected. A nefarious actor has been caught by communicating with the

cloud server and can be held accountable to law.

These steps can be followed when legacy BT based approach is used to exchange

tokens. When BT+GPS based approach is used, all hashed tokens combined with

location and timestamp rather than just the seed need to be uploaded to the server.

The privacy of diagnosed users can be enhanced by allowing every user, including

those who have not tested positive yet, to send an encrypted zero value and an “empty”

certificate as Enc(pk, 0||⊥) to the cloud server in Step 1. Then, at Step 3, the backend

server decrypts ciphertexts and removes all zero values, which belong to non-diagnosed

users. By doing so, the cloud server will not know whether a message it receives has

come from a diagnosed user. We only require a random subset of the non-diagnosed

users, as large as the set of diagnosed users, to be involved. If 1 percent of users test

positive, each non-infected user should decide with probability 1/100 to send a zero

value to the cloud server.
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5. Model Compute and Release

Finally, the backend server holds the uploaded tokens of infected users T while the ith

user holds the received tokens T̃i obtained from the “contact” phase. In the “model

compute and release” phase, the user securely compares T̃i with T by invoking the

DPSI-CA protocol. If there is a match, the ith user was in close proximity to a user

that has since been diagnosed with the disease. This phase is depicted in (3, IV).

Sections 4.2, 4.3 and 4.4 explain the protocols for BT plus GPS based contact

tracing, DPSI-CA for secure matching and the secure aggregation protocol to compute

hotspots.

4.2 Bluetooth plus GPS based Contact Tracing

The Bluetooth plus GPS based contact tracing protocol uses the decentralized

BT based contact tracing protocol as a baseline and makes it robust against attacks

by utilizing GPS location and timestamp data. Linkage attacks exploit the fact that

tokens broadcast by user devices can be captured and linked, to reveal the seed used

to generate the tokens and thereby track a diagnosed user retroactively when list of

infected users’ tokens is available. This can be avoided by augmenting the tokens with

location and timestamp. The BT plus GPS protocol comprises apps on users’ devices

equipped with BT and GPS, as well as an untrusted backend server (service provider).

The protocol is described as follows:

1. App on user’s device continuously broadcasts anonymous tokens TB that are

rotated periodically. The app also listens for any tokens received TR from other

users within a valid range (similar to decentralized BT based CT systems).

2. The app logs the location loc and timestamp t of the user periodically.
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3. Let’s say Alice and Bob are in close proximity. Alice broadcasts TAlice and Bob

broadcasts TBob. They are at location loc at time t. Both Alice and Bob do the

following:

a) Store H(TR + loc + t) in list LR, where TR is received token, H is a

hash function and LR is the list/table of tokens received. Alice stores

H(TBob + loc+ t) and Bob stores H(TAlice + loc+ t) in their respective LR

b) Store H(TB + loc + t) in list LB, where TB is broadcast token, H is a

hash function and LB is the list/table of tokens broadcast. Alice stores

H(TAlice + loc+ t) and Bob stores H(TBob + loc+ t) in their respective LB

4. Suppose Bob is positively diagnosed with the disease. Bob is called an infected

user, and his broadcast tokens are called infected tokens. Bob then collects all

tokens in his list LB and uploads to backend server. Note that these tokens are

the hash of broadcast BT token, location and timestamp combined.

5. Backend server maintains a public list of infected tokens.

6. Alice invokes DPSI-CA protocol to securely match tokens in her list LR with the

tokens stored by backend server, receiving a count denoting number of potential

exposures. If DPSI-CA is not used, Alice downloads the list of infected tokens

from server and matches with toekens in LR. Since token received from Bob

is stored in Alice’s LR and with the backend server, Alice receives a non-zero

count indicating number of potential exposure events.

When a user is positively diagnosed, the list LB of tokens that are a hash of broadcast

tokens combined with location and timestamp, is required for upload to the backend

server. The list LB may be prepared in two ways:

• Store H(TB + loc+ t) in LB with periodicity of location logs
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• {loc, t} entries in a separate table. Compute hash of TB and {loc, t} entries and

prepare LB only when user is positively diagnosed

The list of tokens broadcast, received and infected tokens can be maintained for

a certain time period and then deleted, depending on the infectious period of the

pathogen.

Security Discussion. The fact that location and timestamp features are incorporated

along with the tokens makes it impossible for an adversary, whether the untrusted

server or external, to capture and link broadcast BT tokens and attempt to track an

infected user. Replay attacks by attempting to rebroadcast a captured BT token at

another location to cause false exposure events are avoided as well, since the location

mismatch would result in an entirely different token that would not be uploaded to

the backend server.

4.3 Delegated Private Set Intersection - Cardinality (DPSI-CA)

Figure 4. Delegated Private Set Intersection Cardinality (DPSI-CA) Overview

Decentralized BT-based systems require user devices to download list of infected
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tokens. The cost and computation analysis in [26] justifies offloading and delegating

the matching process from user device to another untrusted server. The DPSI-CA

protocol proposed has the following advantages:

• Offloads and delegates matching of tokens, reducing computation cost and avoids

large downloads on user device

• Obviates need for a publicly available list of infected tokens, thus removing

vulnerabilities such as tracking, identification and determination of social graph

• Compatible with legacy BT-based systems, and BT+GPS protocol described in

section 4.1

The DPSI-CA protocol, outlined in figure 5, is a two-server protocol that computes

size of intersection set between the dataset of items X held by one party and the

dataset of items Y held by another party by using an untrusted server to delegate

computation and communication cost from one party. The participants, diagrammed

in figure 4, are client (with set X), backend server (with set Y ) and cloud server. The

client learns |X ∩ Y |, while backend server learns nothing about X, and the cloud

server learns nothing about both X and Y . The complete construction of the protocol

is described in 5. The essence of the protocol is a shared secret seed s from which

both client and server can generate secret values si. Client receives a secret value si if

and only if xi == yi,∃yi ∈ Y . The cloud server inserts items from X into a Cuckoo

hash table with β bins such that in each bin there is at most one item. The backend

server inserts items from Y into a Simple hashing table with β bins using the same

hash functions used by the Cuckoo hash table, such that an item is placed in each

bin resulting from each hash function used. The backend server uses the polynomial

based construction to pack the secret values. It generates polynomials for each bin

and returns the polynomial coefficients to cloud server. The cloud server obtains the
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secret value or a random value on evaluating for each item from client set, and returns

all results of evaluation to the client. The client learns the size of intersection by

counting the number of correct secret values received.

Security Discussion. From the client’s view, they receive a set of values, of which

some are secret values generated from the secret seed, and the others a random. Since

the client does not know how the cloud server hashes tokens uploaded, it cannot learn

which bin, and by extension token, matched with a token held by the server. Hence

the client learns only the size of intersection set by counting the number of correct

secret values received and nothing else.

The cloud server receives encrypted tokens from the client and polynomial coefficients

from the backend server. The cloud server cannot learn or associate client tokens.

The backend server pads its bins with a certain number of dummy tokens. Thus the

cloud server cannot infer tokens or the count of tokens held by backend server in

corresponding bins from the polynomial coefficients. The evaluation of the polynomials

on tokens provided by the client appear uniformly random. The backend server obtains

tokens from infected users and generates polynomial coefficients after hashing them

into Simple Hash Table bins. It learns nothing about client tokens and thus cannot

learn a social graph of interaction between users.

4.4 Hotspots Histogram Computation

The hotspots histogram computation protocol determines geographical areas which

are visited at least a threshold number of times by infected users. With knowledge

of such hotspots, users can avoid such areas, thereby assisting in limiting the spread

through exposure prevention. The complete protocol specification is described in
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Parameters:
• Set size n and N .
• A client C, a backend server S, and a cloud server H
• One-way hash functions H : {0, 1}? → {0, 1}?, and Cuckoo and Simple hashing scheme

described in 3.3.3.
• pack() and unpack() functions using polynomial interpolation and evaluation described

in 3.3.4
• An encryption scheme Enc(data, key) where data is the data to be encrypted and key

is the encryption key.

Inputs:
• Client C has input X = {x1, . . . , xn}
• Backend server S has input Y = {y1, . . . , yN}
• Cloud server H has no input.

Protocol:
I. Backend server and client setup

– The client and backend server share a secret key k and seed s, which is mapped
by the client id.

– Fk is a shared function between cloud and backend server. Secret values si can
be generated by seeding a Psuedo-random generator (PRG) with the seed s.

II. Tokens distribution phase
– Client device computes x′i ← Enc(xi, k),∀xi ∈ X, and sends X ′, id to the cloud

server H.
III. Cloud server computation phase

– Cloud server inserts the items from X ′ into a Cuckoo Hash Table CHT with β
bins, such that each bin b has no more than one item.

– Cloud server requests polynomial coefficients for each bin from backend server,
while sharing the client id with backend server.

IV. Backend server computation phase
– Backend server computes y′i ← Enc(Yi, k), ∀yi ∈ Y by obtaining k associated

with client id and inserts items from Y into Simple Hash Table SHT
– Backend server generates the polynomials per bin b as follows:

1. The bin is padded with random items such that all bins have m items
2. The interpolating points for the polynomial Pb are {(y′i, FK(y′i) + sb)} for

i ∈ [1, . . . ,m]
3. Backend server returns the coefficients of polynomials Pb for each bin to

cloud server
V. Cloud server evaluation phase

– For each item x′b in bin b, cloud server determines Pb(x′b) and gets the result
rb = Pb(x

′
b)− FK(x′b). rb = sb iff xb == yj ,∃yj ∈ SHT [b] else φ (random)

– Cloud server returns the results R = {r1, ..., rb, ..., rβ} to client.
– Client checks the count of correct secret values received from cloud server.

Output:
Client outputs |S ∩R|, where S = {s1, ..., sb, ..., sβ} and R = {r1, ..., rb, ..., rβ}

Figure 5. DPSI-CA construction
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figure 6. The protocol involves three parties - a client, cloud server and backend server.

The protocol involves each user’s device maintaining a count vector V representing

the number of times a user visited a location. The vector V associates each index

with a predetermined location of interest. Additive secret sharing is used to distribute

shares of V to the servers. The servers then aggregate shares received from multiple

users.

Security Discussion. From each server’s view, it obtains a share of the count vector

from each client. The share reveals nothing about the count vector, and hence, the

server cannot learn an individual user’s location trace or visits. The aggregate of

shares received from multiple users are uniformly random. The recombination of

aggregate shares results in the correct aggregate of count vectors, the intended result

of the protocol, available to servers and clients. Neither the client nor the servers

can deduce anything more than the histogram of hotspots, as the aggregate does not

reveal the count vector of an individual or subset of clients.
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Parameters:

• Count vector V of size n
• A client C, a backend server S, and a cloud server H
• Additive secret sharing scheme: If a is the original item, [a] represents the set

of shares. A two-out-of-two secret sharing scheme results in [a] = {a1, a2} such
that a1 + a2 = a

Inputs:

• Client C has count vector V
• Backend server and Cloud server H have no input.

Protocol:

1. Each user device maintains count vector V from location logs. If user visits
location loc associated with index i in V , then increment V [i]

2. If user is positively diagnosed, obtain shares of V, [V ] = {V1, V2} such that
V1[i] + V2[i] = V [i],∀i ∈ [1, . . . , n]. Send V1 to backend server S and V2 to cloud
server H

3. Each server, S and H, maintains an aggregate of shares received, VS and VH
respectively. VS = VS + V1 and VH = VH + V2

4. On aggregating a threshold number of shares, cloud server sends VH to backend
server S. Backend server recovers and outputs hotspots histogram, the correct
aggregate, by recombining the aggregate of shares as VHist = VS + VH

Output:
Hotspots histogram VHist

Figure 6. Hotspots histogram construction
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Chapter 5

DISCUSSION AND ANALYSIS

The end-to-end contact tracing framework is implemented and tested. Section 5.1

describes relevant implementation considerations, algorithm choices, and parameter

values for the protocols described in sections 4.2, 4.3 and 4.4. Section 5.2 describes

the platform used for evaluation, the tests carried out, and analyses the performance.

5.1 Implementation Details

The three protocols, BT plus GPS based contact tracing, DPSI-CA protocol, and

hotspots histogram computation, described in sections 4.2, 4.3 and 4.4, involve three

parties - client app on mobile device, cloud server and backend server. The client

functionality for the protocols is developed in Java as an Android mobile application.

The backend and cloud servers are implemented in Java using the Spring framework.

5.1.1 BT plus GPS Contact Tracing Protocol

The BT plus GPS protocol extends and augments legacy decentralized BT

based contact tracing approaches with location features. The implementation

of proposed protocol builds on the legacy DP3T [7] Android app and server

code available on Github at http://github.com/dp-3T/dp3t-sdk-backend and http:

//github.com/DP-3T/dp3t-sdk-android. The location module is inspired with ideas

from the Safe Paths approach [13], whose code is available at https://github.com/
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Path-Check/safeplaces-dct-app. The code for BT plus GPS protocol is available at

http://github.com/ASU-FACT.

The client application involves the following major modules:

• Bluetooth server - to broadcast rotating proximity identifiers/tokens, register

handshakes

• Bluetooth client - to scan for nearby devices, receive rotating proximity iden-

tifiers/tokens and store associated metadata like signal strength, duration of

handshake

• Sync - to sync with backend server periodically to get exposure alerts, either

through download of infected users tokens, or using Delegated Private Set In-

tersection - Cardinality protocol, as well as to upload tokens when positively

diagnosed with the disease

• Cryptography - to help with key generation, rotation, psuedo random generation,

encryption and hashing

• Database - to assist in create, read, update of delete of data in relevant tables,

including tokens broadcast, tokens received, infected users tokens and associated

metadata.

• Location - module to periodically log user’s location and get associated geohashes

Similar to the Safe Paths approach [13], When a user is at a given set of coordinates,

there is a radius r within which another user is said to be in close proximity. Points in

the circle of radius r may lie in a neighboring geohash. Hence, for a given location, the

geohash of the exact coordinates, as well as a set of neighboring geohashes covering

the circle of proximity, is determined. This is done by considering the set of nearby

points at a distance r along the cardinal and ordinal directions and determining the

geohash of these points as well. The geohash of nearby points may overlap, and thus
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there may be upto N+1 geohashes for a given location.

The broadcast bluetooth tokens are rotated every fifteen minutes. Location logs are

recorded every five minutes. When storing hash of received token with geohash and

timestamp, AES is chosen over SHA-256 as it is faster. The resulting hash has 128

bits. The app syncs with the backend server every two hours to receive tokens of

infected users (legacy approach). The app can instead invoke DPSI-CA protocol to

securely match tokens and receive exposure alerts. The app deletes tokens broadcast

and received that are older than 14 days, which is the infectious period of COVID-19.

The backend server exposes API endpoints, handling user requests to fetch and upload

infected users’ tokens. It maintains a database to store tokens, where tokens older

than 14 days are deleted.

5.1.2 DPSI-CA Protocol

The implementation for DPSI-CA protocol is available at www.github.com/ASU-SC.

In the DPSI-CA protocol, the client app only needs to upload the tokens received from

other users in close proximity. Both cloud and backend servers are implemented in

Java using Spring framework. The servers expose RESTful APIs to communicate

and consume services. The Cloud server exposes a getMatches API, used by client

device to provide its list of received tokens and to get count of matches/exposures in

return. The backend server exposes a getPolynomials API used by the cloud server to

provide the CHT hash functions and get the polynomial coefficients for each bin of

the hash tables. The tokens are 128 bits long. To support polynomial interpolation

and evaluation for such large data, the Java library implementations for polynomial

interpolation using Lagrange’s algorithm, and polynomial evaluation using Neville’s
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algorithm, are modified and extended to support the Java BigDecimal datatype. The

cuckoo hashing implementation utilizes two hash functions to insert the user uploaded

tokens into bins such that there is at the most one item per bin. The same two hash

functions are used by the backend server to insert infected tokens into the simple hash

table. AES is used as the hash function algorithm.

5.2 Performance

The performance of BT plus GPS based contact tracing when carried out using

the legacy approach to determine matches by downloading infected tokens from the

backend server is analysed. The major costs involve storage of tokens, upload and

download of tokens and time taken for matching tokens to get exposure alerts. If a

user generates a new token every 15 minutes and runs the proximity tracing process

for approximately 18 hours a day, then each user sends 72 distinct, 128-bit tokens per

day. Assuming that the user meets people and receives the same number of tokens,

then each user device has a total of n = 1008 ≈ 1000 tokens over a 14-day period.

With 1,000 new cases per day, the backend server will receive N ≈ 1000× 1000 = 106

new tokens per day.

Token storage: Storing both broadcast and received tokens for a 14 day period

requires ≈ 31KB on client device. Assuming the server stores tokens for 15 days

to accommodate for offline clients, the total storage needed is ≈ 0.25GB for 1000

daily new cases, and ≈ 1.25GB for 5000 daily new cases. If the client uses legacy

approach to download new infected tokens uploaded for that day and match with

received tokens on device, the client incurs download and storage costs.

Testing platform configuration: The client application is installed as a Java
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Android app on a Google Pixel 3 device with Snapdragon 845 processor, 4 GB RAM

and 64 GB storage. The backend server and cloud server are deployed on an AWS

m5.2xlarge instance with 8 vCPUs, 32 GB memory and upto 10 Gbps network

bandwidth.

Table 2 summarizes the time taken for the contact tracing framework, specifically

token matching process, when using the BT plus GPS protocol without DPSI-CA

protocol for token matching. The process involves the app on client device sending

a request to fetch infected users’ tokens from backend server and then matching

with the received tokens stored on the device. The matching takes O(n), where

n is the number of tokens on device. The time complexity is linear as the server

tokens are stored in a hashset and only membership test for each item in received

tokens’ list is required. The major cost of BT plus GPS based contact tracing without

DPSI-CA involves bandwidth and storage, with 0.25 GB required if 1000 new cases

are encountered daily.

Table 2. BT plus GPS Contact Tracing

#Client tokens(n) #Server tokens(N)

500,000 750,000 1,000,000

1000 13.3 17.05 25.2
2000 13.4 17.06 25.3
3000 13.4 17.06 25.3

Time taken to match tokens in seconds (s)
n = Number of tokens on client device, N = Number of tokens on server

Table 3 lists the time it takes to interpolate for different number of tokens, each of

size 128 bits. The interpolation is carried out by the backend server, and the results
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reported are for the time taken on AWS m5.2xlarge instance with 8vCPUs and 32

GB memory.

Table 3. Time taken for polynomial interpolation in milliseconds (ms)
#Tokens Time (ms)

5 0.048
10 0.137
50 6.118
100 49.27
250 871
500 8159

Table 4 summarizes the time taken by the backend server, deployed on AWS

m5.2xlarge instance, to generate the polynomials for all bins, the major computation

invovled in the DPSI-CA protocol. The code has been parallelized to run the polyno-

mial interpolation on 7 threads. With 2 hash functions, the number of tokens in the

hash table is doubled. The number of tokens per bin varies as per the hash function

distribution. The polynomial interpolation for separate bins can be parallelized on

more threads, resulting in α times speedup with α threads for parallel interpolation.

Table 4. Time taken by backend server to generate all polynomials in Seconds (ms)
# Bins (β) # Server tokens (N) Time (s)

40,000 500,000 19.2
80,000 500,000 14.2
80,000 1,000,000 37.7
100,000 1,000,000 34.7

The DPSI-CA protocol performance is compared with other works, including

the Google Apple approach [5], DP3T [7], PACT [14], Epione [26] and Catalic [27],

with respect to security and privacy guarantees, infrastructure requirements and

client side cost in terms of computation and communication. The comparison is
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presented in Tables 5 and 6. The method of evaluation followed is as explained in [27],

and outlined briefly here. The Google Apple approach, DP3T and PACT publicly

release tokens of diagnosed users, and hence they are all vulnerable to identification

of diagnosed user. In the Google Apple approach, keys or seeds used to generate the

tokens are publicly available, and hence allowing an adversary to learn the travel

route of an infected user. Epione and Catalic keep the tokens private and hence

secure against these vulnerabilities, similar to DPSI-CA protocol proposed in this work.

Table 5. DPSI-CA protocol comparison with other approaches

Protocols Linkage Attack System Req.

Travel Route Infection Status #Rounds #Servers

Google Apple yes yes 1/2 1
DP3T no yes 1/2 1
PACT no yes 1/2 1
Epione no no 2 2
Catalic no no 1 3

DPSI-CA no no 1 2

Comparison of DPSI-CA with other contact tracing systems, in terms of privacy and
infrastructure requirements. Travel route refers to learning the travel route of
diagnosed user, while infection status refers to identification of diagnosed user.
#Rounds is the number of interaction rounds between client and server.

Each user has k = 144 new tokens per day and receives a total of n = 211 tokens

approximately over the 14 day infection window, according to the Google Apple

approach. Also, with K = 215 = 32768 new cases per day, N = 226 new tokens are

added daily.

In the Google Apple approach, the client device downloads 14K keys per day. Each

key is 128 bits long, resulting in 7.34 MB of communication cost. The device needs to
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compute 14Kk = 66, 060, 288 AES operations, taking 0.33 seconds to complete the

contact tracing query on a phone with 1.99 GHz processor.

The DP3T approach utilizes a Cuckoo filter to share the tokens of diagnosed users.

They store a 56-bit fingerprint with each item. With N = 226 new diagnosed tokens,

the client incurs a communication cost is 226× 56 = 469.76 MB when downloading the

Cuckoo filter. For computation, the device computes 2n AES hash functions, taking

0.02 milliseconds.

For the PACT approach, the client device downloads 226 × 128(bits) = 1073.74 MB

for N = 226 new diagnosis tokens. Its running time is considered negligible as it does

not carry out any cryptographic operations.

In Epione, private set intersection using Private Information Retrieval is used, for

which the client device incurs 1.79 MB and takes 394 milliseconds. For Catalic, with 1

backend and 2 cloud servers, each running with a single thread, the protocol requires

0.86 milliseconds 96 KB.

For the DPSI-CA protocol proposed using one cloud server and backend server, the

client device has 1 round of interaction with the cloud server and backend server, and

is required to download n results from the cloud server, equal to the number of tokens

that it sends in the query. Thus the communication cost is 0.032MB. The client

device computes n AES hash functions to encrypt the tokens and generates β = n

secret values, where β is the number of bins, taking a total of 208 ms.
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Table 6. DPSI-CA protocol client performance comparison with other approaches

Protocols Client

Runtime (ms) Comm. Cost (MB)

Google Apple 331.96 7.34
DP3T 0.02 469.76
PACT neg 1073.74
Epione 394.01 1.27
Catalic 0.86 0.095

DPSI-CA 208 0.032

Comparison of DPSI-CA with other contact tracing systems, in terms of client
runtime and communication costs. Travel route refers to learning the travel route of
diagnosed user, while infection status refers to identification of diagnosed user. Each
user has 211 tokens. neg refers to negligible cost
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Chapter 6

CONCLUSION AND FUTURE WORK

In this work, a secure, scalable and efficient Contact Tracing framework is proposed

and evaluated. A hybrid, Bluetooth plus GPS based protocol for proximity detection

is described, which is secure and robust against the vulnerabilities present in several

existing Contact tracing applications already deployed. DPSI-CA, a novel protocol

for private matching of tokens for exposure detection is proposed. DPSI-CA leverages

server-aided computation to reduce computation cost on client devices. Moreover,

a protocol to utilize location data collected on user devices without compromising

individual user privacy so as to determine hotspots, areas of high-risk, is presented.

The framework proposed can be improved with insights from further analysis and

tests, including testing with multiple devices, different configurations and in scenarios

reflecting real-world deployment. The DPSI-CA protocol can be made faster and more

efficient by improving the polynomial interpolation. Further evaluation is required to

determine optimal number of bins in a parallel processing environment. With further

evaluation and testing, the proposed work can then be compared with existing work.

Using Counting Bloom Filter and Perfect Hashing in place of polynomial interpolation

will be explored. A more robust implementation of the hotspots histogram computation

is required, followed by evaluation of utility. Techniques to avoid a predetermined of

list of places of interest will be explored.
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