
Statics with Robotics to Get the Least-squares Fit of Profiles for Evaluating FEA

Simulations of Flexible Components and Assemblies

by

Sai Chandu Sunkara

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2023 by the

Graduate Supervisory Committee:

Joseph Davidson, Chair

Jami Shah

Yi Ren

ARIZONA STATE UNIVERSITY

May 2023

i

ABSTRACT

Least squares fitting in 3D is applied to produce higher level geometric

parameters that describe the optimum location of a line-profile through many nodal

points that are derived from Finite Element Analysis (FEA) simulations of elastic spring-

back of features both on stamped sheet metal components after they have been plasticly

deformed in a press and released, and on simple assemblies made from them. Although

the traditional Moore-Penrose inverse was used to solve the superabundant linear

equations, the formulation of these equations was distinct and based on virtual work and

statics applied to parallel-actuated robots in order to allow for both more complex

profiles and a change in profile size. The output, a small displacement torsor (SDT) is

used to describe the displacement of the profile from its nominal location. It may be

regarded as a generalization of the slope and intercept parameters of a line which result

from a Gauss-Markov regression fit of points in a plane. Additionally, minimum zone-

magnitudes were computed that just capture the points along the profile. And finally,

algorithms were created to compute simple parameters for cross-sectional shapes of

components were also computed from sprung-back data points according to the protocol

of simulations and benchmark experiments conducted by the metal forming community

30 years ago, although it was necessary to modify their protocol for some geometries that

differed from the benchmark.

ii

ACKNOWLEDGEMENTS

 My most sincere appreciation goes to my advisor and committee chair, Dr. Joseph

K. Davidson, for his guidance, support, and belief in me, which made this work possible.

 I would also like to thank other committee members, Dr. Jami J. Shah and Dr. Yi

Ren for their time and guidance.

 I would also like to thank former student Abhishek Joshi who undertook the

Finite Element Analysis simulation for a J-section welded profile and who did the

preliminary work to extract from it the data points for fitting.

 Finally, I wish to acknowledge my appreciation for funding provided by the

National Science Foundation, GOALI Award No. 2029905.

iii

TABLE OF CONTENTS

LIST OF TABLES ..v

LIST OF FIGURES ... vii

NOMENCLATURE ...x

CHAPTER

1. Introduction and Problem Statement ..1

1.1. Problem Statement and Methods ...3

1.2. Literature Review ...4

2. Plücker Coordinates of a Line and Coordinates of a Small Displacement Torsor

(SDT) ...7

3. Least Squares Fits using Virtual Work Applied to Platform Robots10

3.1. Planar Example to Validate the Virtual Work Method.11

4. Fitting of Line-profiles in 3d ...16

4.1. Straight Line Fitting in 3d Space with Least Squares17

4.2. Least Squares Fitting of Arc Profile in 3d Space. ..21

4.3. Least Squares Fitting of Arc with Size Change. ...23

4.4. Least Squares Fitting of J-shaped Profile in 3d Space.25

4.5. Least Squares Fitting of J-shaped Profile with Size Change.27

5. Least Squares Zone and True Minimum Zone of a Profile29

5.1. Finding the Coordinates of the Nodal Point in the Least Squares Fit Frame. 29

5.2. Least Squares Zone Magnitude. ...30

5.3. Unwrapping of Points along the Arc Profile. ...30

5.4. True Minimum Zone. ..32

iv

CHAPTER Page

6. Numi-sheet Parameters to Validate the FEA Stamping Model Created at the Ohio

State University ..34

6.1. Extracting Numi-sheet Parameters (Inverted Hat Section) for FEA and

Experimental Parts ..34

6.2. 3d Line Fitting for the Edges Profiles of Stamped Components 40

6.3. Effect of Perturbation ...40

7. Results and Conclusion ..42

REFERENCES ..57

APPENDIX ..60

A. 11-POINT LINE PROFILE FITTING ..61

B. 9-POINT ARC FITTING ...65

C. 9-POINT ARC WITH SIZE CHANGE ...69

D. 19-POINT J SHAPED PROFILE FITTING..73

E. J SHAPED PROFILE WITH SIZE CHANGE ..78

F. TRUE MINIMUM ZONE ..83

G. PARAMETERS FROM STAMPED COMPONENTS89

H. FITTING OF EDGE PROFILES OF STAMPED COMPONENTS97

v

LIST OF TABLES

Table Page

2.1. Entities That Can Be Interpreted Using the Plücker Coordinates Method.7

3.1. The Uniformly Distributed Sample Points for Fitting a Line in 2d Space.11

3.2. The Inputs and the Results of 2d Least Squares Fitting Using Line Coordinates.14

4.1. Sample Points from the Inner Sprung Back 3d Line Profile.19

4.2 Sample Entries for Matrix [K’] along the Inner Straight Profile.19

7.1 Sample Point for Inner Assembly Profile. ...43

7.2 Sample Point for Outer Assembly Profile. ..43

7.3 Results of Least Squares Fit of Sampling Points for Different Profiles along the Inner

Assembly Profile. ...44

7.4 Line Coordinates of the Least Squares Fit of Sampling Points along Inner Profile. ...44

7.5 Results of Least Squares Fit of Sampling Points for Different Profiles along the Outer

Assembly Profile. ...45

7.6 Line Coordinates of the Least Squares Fit of Sampling Points along Outer Profile. ..45

7.7 Results of Least Squares Fit of Total Points for Different Profiles along the Inner

Assembly Profile. ...45

7.8 Line Coordinates of the Least Squares Fit of Total Points along Inner Profile.46

7.9 Results of Least Squares Fit of Total Points for Different Profiles along the Outer

Assembly Profile. ...46

7.10 Line Coordinates of the Least Squares Fit of Total Points along Outer Profile.46

7.11 Least Squares Zone Size of Different Profiles ...46

7.12 True Minimum Zone Size of Different Profiles ..47

vi

Table Page

G.1(A). Sample List of the Parameters Generated in an Excel Document for Stamped

Components. ..96

G.1(B). Sample List of the Parameters Generated in an Excel Document for Stamped

Components. ..96

vii

LIST OF FIGURES

Figures Page

1.1. Common Types of Assembly Structures ..2

1.2(A). Nominal Dimensions of Assembly..3

1.2(B). Small Displacement Coordinates ...3

1.2(C). LSF Zone of the Profile ...3

2.1. Line Coordinates ...8

3.1. The Regression Fit of Line in 2d Using Line Coordinates. ..11

3.2 Force Balance for the Actuator at One Nodal Point ..12

4.1. The Partitioned Points from the Assembly of Straight and Curved Hat-section

Components and the Global Coordinate Frame. The Ending Coordinates Are for Zero

Spring-back (Nominal Profiles). ..16

4.2. The Regression Fit of Line in 3d. ...18

4.3(A). The XZ - Plane View of the Straight-line Profile. ..18

4.3(B). The YZ - Plane View of the Straight-line Profile. ...18

4.4. The Arrangement of Actuator for an Arc Profile. ...21

4.5. An Array of Selected Data Points Along One Edge Profile of the Assembled

Structure with Component Linear Actuators at One Point. ...25

4.6. Forming a Matched Pair Assembly by Joining Two Frame Subassemblies.27

5.1. Unwrapping of the LSF Profile onto a Straight-line Profile.31

5.2. Minimum Cylinder Fit for Points in Space. ..33

6.1. Parameters to Be Extracted from the Stamped Components.35

6.2. The Origin of the Stamped Component Obtained from FEA Simulation.35

6.3. The Points Found Using Numi-sheet 93 to Extract the Parameters.36

6.4. Finding Point C Using Numi-sheet ...37

viii

Figures Page

6.5. Point Where Structure Leaves the Die. ...38

6.6. Parameters Extracted from the Stamped Profile. ..38

 6.7. Showing the Perturbation Points at Point B for Half Depth Stamping41

6.8. Showing the Perturbation Points at Point B for Full Depth Stamping41

7.1. Figure Showing the Inner and Outer Assembly Profile. ...42

7.2. Figure Showing the Sampling Points along the Inner Assembly Profile....................43

7.3. Figure Showing the Sampling Points along the Outer Assembly Profile.44

7.4. Least Squares Zone Boundary for 11 Points on the Straight Portion of the Inner

Profile. ...47

7.5. True Minimum Zone Boundary for 11 Points on the Straight Portion of the Inner

Profile. ..48

7.6. Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc Portion

of the Inner Profile. ..49

7.7. Projection of Toroidal True Minimum Zone Boundary for 9 Points on the Arc

Portion of the Inner Profile. ...50

7.8. Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc Portion

of the Inner Profile with Size Change. ...51

7.9. Projection of Toroidal True Minimum Zone Boundary for 9 Points on the Arc

Portion of the Inner Profile with Size Change. ..52

7.10. Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with Size

Change. ..53

7.11. True Minimum Zone Boundary for 19 Points on the J-shaped Inner Profile When

Unwrapped onto a Straight Line. ...54

ix

Figures Page

7.12. Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with Size

Change When Unwrapped onto a Straight Line. ...55

7.13. True Minimum Zone Boundary for 19 Points on J-shaped Inner Profile with Size

Change When Unwrapped onto a Straight Line. ...56

A.1. Least Squares Zone Boundary for 11 Points on the Straight Portion of the Inner

Profile. ..65

B.1. Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc Portion

of the Inner Profile. ..69

C.1. Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc Portion

of the Inner Profile with Size Change. ...73

D.1. Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with Size

Change. ..78

E.1. Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with Size

Change When Unwrapped onto a Straight Line. ...82

F.1. XY-view of the True Minimum Zone of 19-point Profile with Size Change.88

F.2. YZ-view of the True Minimum Zone of 19-point Profile with Size Change.88

F.3. XZ-view of the True Minimum Zone of 19-point Profile with Size Change.89

G.1. Parameter to Be Extracted from the Cross-sectional Profile of Stamped Component.89

G.2. The Points Obtained from the Program. ..95

H.1. The XZ-view of the Least Squares Fitted Edge of Stamped Component.101

H.2. The XY-view of the Least Squares Fitted Edge of Stamped Component.102

x

LIST OF NOMENCLATURE

SDT: Small Displacement Torsor

LSF: Least Squares Fit

FEA: Finite Element Analysis

1

CHAPTER 1. Introduction and Problem Statement

Large assemblies, such as an automobile body or door, are made from flexible parts,

usually sheet metal stampings. Each assembly is made of many flexible subassemblies

that are assembled and joined progressively. These subassemblies are also built

progressively, as shown in Figure 1.1. When two individually stamped parts are brought

together to be joined into a subassembly, they often do not match up exactly, and so

special tooling and clamping are required to bring them into alignment. Thus, for good

design, variable gaps between proximal assemblies must be predicted precisely and be

related to input variables to be controlled. As subassemblies of parts are stacked, errors

accumulate to cause larger variations in the gaps. Sources of manufacturing variations in

sheet metal assemblies include non-isotropic material properties from cold rolling, spring

back from stamping, and distortion from residual stresses when components are clamped,

then spot welded. The workflow of FE simulations to capture these sequential events are:

(1) component stamping that captures spring back, (2) clamping of the components for

assembly, and (3) assembly joining, then release to the free state.

Variations in the gaps between assemblies depend on the geometric spring back

variations of nodal points along each of two matching line profiles, such as the edge of an

auto door and its matching opening in the body. As a first step in producing extracted

geometric parameters related to a gap, this thesis utilizes data along the profiles located at

the extreme longitudinal edges for the simple assembly shown in Fig. 1.1. (See the

highlighted edges in Fig. 1.2(A).) The data are from the FEA analysis conducted by A.

Joshi [1] in 2020. In addition to getting parameters for the two J-shaped profiles (edges)

of the assembly, data for each profile were partitioned so points confined to a straight part

2

could be used to simulate spring-back for the edges of a straight component, and points

confined to an arc could be used to simulate spring-back, including change in radius, for

the edges of an arc component. Spring-back for each of these six profiles is quantified

with a zone magnitude and with six coordinates of small displacement (Fig. 1.2(B)) to

give its overall geometric location relative to its nominal location (zero spring-back).

Two zone magnitudes were computed: a zone constrained to the location of the LS

profile, and an unconstrained zone. (See Chap. 5.)

The parameters are being used as part of curated data that represent a design space for

flexible two-part assemblies which will be available for machine learning (ML)

algorithms so optimal designs of subassembly fixtures and weld patterns can be predicted

computationally, instead of empirically (Adrian, et al., 2022) [2]. The parameters will

also be used in the future for more elaborate assemblies [3].

Simple Assembly Closed Loop Assembly Matched Pair Assembly

Fig 1.1 Common Types of Assembly Structures

Some simple parameters for cross-sectional shapes of components were also

computed from sprung-back data points according to the protocol of the NUMISHEET

3

93 simulations and benchmark experiments [4], although it was necessary to modify the

protocol for some of our geometries that differed from the one in NUMISHEET 93. (See

sect. 6.1.)

Fig 1.2(A) Nominal Dimensions of Assembly, mm Fig 1.2(B) Small Displacement

Coordinates

Fig 1.2(C) LSF Zone of the Profile

1.1 Problem Statement and Methods

The novel contribution in this thesis is the application of virtual work, in

combination with parallel (platform) robotics to construct the set of linear equations for

which the least squares (LS) best-fit solution may be obtained. This construction allows

for both size change and the line-profiles to be of any shape. For any profile, the linear

equations in the LSF formulation are derived from force balances applied to the virtual

4

work expressions at the linear actuators of a parallel-actuated robot. Every actuator is

linear, i.e., can only extend or contract, and so is represented geometrically with the six

coordinates of a line [5]. Inputs to the fitting are the deviations of the sprung-back nodal

points from the nominal profile (shape with zero spring-back). The output is a small

displacement torsor (SDT) that describes the displacement of the profile from its nominal

location. The SDT coordinates $ = (δθx δθy δθz δx δy δz) represent the small

displacement of the robot platform that has etched in it the profile of interest. The

coordinates also are a generalization of the slope and intercept parameters of a line which

result from a Gauss-Markov regression fit of points in a plane. The relatively small

displacements of different profiles, e.g., opposite edges on a component or subassembly,

may be used to correlate different combinations of inputs (e.g., material thickness,

strength, blank orientation, and both spot weld locations and quantity) with the final

shape of the component or subassembly in its free state.

By converting the SDT to an equivalent transformation matrix, it is then used to

express the coordinates of the sprung-back nodal points in a new reference frame that is

aligned with the LS profile. From these new coordinates, the magnitude of a LS

envelope, centered on the LSF profile, is computed that just captures all the sprung back

points. As an alternative, we also computed the magnitude of the true minimum zone

using the minimum circumscribing cylinder algorithm from Mohan, et al. [6].

1.2 Literature Review

 There has been a lot of development and research going on the fitting of the

various shapes like polynomial curves, circles, planes, cylinders, spheres [7,8,9,10], and

other surfaces [11] to an array of points. One of the ways to fit a straight line in 3D space

5

is using the Singular Value Decomposition (SVD) which gives the average point and

direction of a fitted straight line [12]. These methods work well when the point sampling

is controlled and can be made uniform but when dealing with non-uniformly sampled

points this doesn’t work well, so there is a need to incorporate the weighted least squares

fit that accounts for that discontinuities in the sampled points [13]. An example 3D fitting

application, which is relevant to this NSF project [3], is included in [14]: the fitting of an

auto body opening (the profile) to points measured around a prospective door in order to

determine optimum hinge-mounting adjustments when assembling the door to the auto

body.

Change in size of an arc or a closed planar profile was included with least-squares

fitting by Davidson, et al. [15,16,17]. The linear equations to be solved were created

using virtual work applied to parallel actuated platform robots, the method used in this

thesis (see section 5.1). When the Moore-Penrose inverse (pseudoinverse) [12,17] is

applied to the matrix form of these equations, the optimum LS solution is the set of small

displacement torsor (SDT) coordinates that represent the displacement of a point on the

robot platform and its angular orientation.

Additional parameters that will be important potentially are the true minimum zone

for a set of points arrayed along a straight line. Both the zone magnitude and the location

of the corresponding axis are of potential use. The method for getting these results is

iterative, but it begins from the LSF of a line to the points [6]. Further, by transforming

points along a curved profile to a line, the method may be applied to line-profiles

containing curved portions also (See Sect. 5.2- Fig 5.1).

6

 This thesis also contains software for computing geometric parameters to validate

the Ohio State University FEA simulations [2] for stamping hat-section components.

Verification was achieved when the parameters agreed with experimental values

presented in the NUMISHEET 1993 U-draw/bending benchmark [4]. Since the sprung-

back points defining the radius parameter were often ill-conditioned, a refined algorithm

[18] was used for it.

7

CHAPTER 2. Plücker Coordinates of a Line and Coordinates of a Small

Displacement Torsor (SDT)

The entities lines, screws, wrenches, and small displacement torsors (SDTs) are used

in the following chapters both to characterize locations of LSF profiles and to create the

linear equations needed for a matrix optimization. All may be represented in 3D space

with two vectors, or six scalar coordinates (L, M, N; P, Q, R). For all four of them, the

first vector gives the direction i.e., a spatial field of parallel lines. When a line is

represented, the two vectors are at right angles and the second vector selects a specific

line from the spatial field. When a screw is represented, the second vector P*, Q*, R*

contains additional information (vector τ in Fig. 2.1) and so violates the right-angle

property. For wrenches and SDTs, the entire set of six coordinates also contains

amplitude information (Table 2.1 So, one of the prominent ways to do this is to use

Plücker coordinates. The Plücker coordinates (L, M, N; P, Q, R) are usually used to

locate a line or a screw axis in space. They comprise a pair of three-dimensional vectors

of which the first vector (L, M, N) determines the direction of the axis, and the second

vector (P, Q, R) locates the line in space. Table 2.1 shows the different interpretations of

these coordinates as used in this thesis.

Table 2.1 Entities That Can Be Interpreted Using the Plücker Coordinates

Method. [5]

Entity Symbol Coordinates

Line $ (L, M, N; P, Q, R)

Screw $ (L, M, N; P*, Q*, R*)

Wrench F $ F (L, M, N; P*, Q*, R*)

Small Displacement Torsor (SDT) δθ$ δ𝜃 (L, M, N; P*, Q*, R*)

8

We are currently using the wrench coordinates to represent forces, line

coordinates to represent actuators, and SDT coordinates to describe the displacement of

the profile from its nominal location (Chap. 3).

Fig 2.1 Line Coordinates [5].

In general, the (P, Q, R) coordinates of the SDT will include the vector parallel to the

twist $(h) = δ𝜃$ = δ𝜃 (L, M, N; P*, Q*, R*) in Fig. 2.1. Therefore, using equations from

[5], pitch h may be extracted from the coordinates as the ratio,

ℎ =
𝐿𝑃∗ + 𝑀𝑄∗ + 𝑁𝑅∗

𝐿2 + 𝑀2 + 𝑁2

and amplitude δ𝜃 = (𝐿2 + 𝑀2 + 𝑁2)1/2. (2.1)

9

 It often is helpful to identify the location of the line that carries the SDT. This

may be found by computing 𝑃 = 𝑃∗ − ℎ𝐿, 𝑄 = 𝑄∗ − ℎ𝑀, and 𝑅 = 𝑅∗ − ℎ𝑁 for the line,

then using twice the condition

[
𝑃

𝑄

𝑅

] = [
0 – 𝑧 𝑦
𝑧 0 – 𝑥

– 𝑦 𝑥 0
] [

𝐿
𝑀
𝑁

] (2.2)

that a point (x, y, z) lies on the line (L, M, N; P, Q, R). Helpful points lie on the

coordinate planes x=0, y=0, and z=0.

10

CHAPTER 3. Least Squares Fits using Virtual Work Applied to Platform Robots.

Several geometric characteristics of nodal points from FEA simulations of plastic

forming and elastic spring-back may be represented by using, or in some cases

extrapolating, measures and methods already established for scanned points on surfaces

of machined parts. The methods that are used in this thesis are (1) the computation of a

minimum zone, which just captures all partitioned set of points; (2) the substitute feature

associated with the zone; (3) least-squares fits (LSFs) of substitute features for the same

points; and (4) the boundaries parallel to them which just capture all the points. The

computations for minimum zones and their associated substitute features follow the

methods from metrology described in Mohan, et al. [6].

 However, several features for the components, and for assemblies of them, are line

profiles, some of them with changing curvature. Examples are the free edges of

components and assemblies. For these reasons, we have not found a satisfactory LSF

model. One approach to this was undertaken by Nassef & ElMaraghy, [14] in which they

minimized the squares of the closest proximities of pairs of opposite points on two

similar 3D line profiles, one on the edge of the door of an automobile and the other

around the corresponding opening in the auto body. The resulting profile was used to

optimize the mounting location for the door. It is not clear from the paper whether these

distances were treated as scalar values or vectors, but, as seen in what follows, for points

arranged in 3D around a nominal profile, the closest distances need to be treated as

vectors [7,8,9,10]. To incorporate the vector feature in combination with changing in

curvature in this thesis, an alternative method is suggested: virtual work applied to a

11

platform robot that is customized to the specific profile [15,16,17]. The method also

allows the fitted profile to include change in size.

3.1 Planar Example to Validate the Virtual Work Method.

Fig 3.1 The Regression fit of line in 2D using line coordinates.

To validate LSFs using the method of virtual work applied to a parallel robot,

consider the slope fit of a straight line to the five nodal points shown in Fig. 3.1 and

which have coordinates listed in Table 3.1. The five nodes are shown deviating from the

x-axis,

Table 3.1. The Uniformly Distributed Sample Points for Fitting a Line in 2d Space.

Points 1 2 3 4 5

X, mm 1 5 8 10 12

Y, mm 1 -1 -2 0 2

here taken to be the nominal profile shape (straight) and location. Their positions

are fixed in the XY-plane. Coinciding with the nominal profile is a line etched in the

platform of a virtual planar robot that is actuated redundantly and in-parallel with five

12

actuators, one for each of the five points. Each actuator is linear (can only extend or

contract), acts through one of the points, exerts force between the base and the platform

(hence, act in-parallel on the platform), and, for small displacements of the platform,

exerts force only in the y-direction. For the geometry in Fig. 3.1, the platform

displacement is constrained to be only the rotation in the plane δθz and the vertical

translation δy of that point on the platform initially coincident with the origin O. Also, all

the actuators are connected to both the platform and the base with rotary joints except for

the first actuator, which is rigidly attached to the base (Fig. 3.1).

Fig 3.2 Force Balance for the Actuator at one Nodal Point

Each actuator, represented by its line $i, exerts a force of magnitude Fi on the

robotic platform, and, when each act alone, the platform is a two-force member and

exerts the same force on the environment. Therefore, presuming temporarily that the

actuator at $1 acts alone and the other actuators are unconstrained, the force F1$1 is the

same as the wrench (Tz1 Fy1) that the platform exerts on the environment (Fig. 3.2), where

Fy1 = F1 and Tz1 = x1F1. Putting this together 𝐹1 ∗ $1 = [𝑇𝑧1 𝐹𝑦1] = 𝐹1[𝑥1 1], and the

force magnitude cancels to leave $1 = [𝑥1 1] to represent $1. When this result is

compared to the representation of a wrench in chapter 2, R1 = x1 and M1 = 1 are the

normalized line coordinates for $1 in F1 $1 = F1 [P1 Q1 R1; L1 M1 N1]. Since all the nodal

13

points lie in a plane and the x-axis of the coordinates system is aligned with the nominal

profile in Fig.1, P1 = Q1 = L1 = N1 = 0. Resuming the special case when the actuator at $1

acts alone, the input virtual work is the scalar product F1 d1 because the vector deviation

d1 is measured on the line of action for F1. Further the output virtual work is the matrix

product of the wrench representation of 𝐹1 = [𝑇𝑧1 𝐹𝑦1] = 𝐹1[𝑥1 1] and the SDT [$] =

[δθ𝑧 δ𝑦]𝑇, where δθ𝑧 is the rotation of the platform and δ𝑦 is the y-displacement of the

point on the platform initially coincident with the origin of coordinates. Equating these

two forms of virtual work gives 𝐹1 𝑑1 = 𝐹1 [𝑥1 1] [δθ𝑧  δ𝑦]𝑇 at the actuator $1.

Cancelling force F1 now leaves the geometric equation 𝑑1 = [𝑥1 1] [δθ𝑧 δ𝑦]𝑇.

Corresponding equations occur for the remaining nodes. So, the set of linear equations

that formulate the least-squares fit profile are.

[di] = [

𝑑1

𝑑2

⋮
𝑑𝑛

] ≡ [K'][$] = [

𝑅1 1
𝑅2 1
⋮ ⋮

𝑅𝑛 1

] [$] (3.1)

where the [di] are the deviations measured at right angles to the nominal profile, which is

the x-axis, the matrix [k’] lists the unit forces acting along the linear actuators and the

moment of each about the origin of coordinates (each pair representing the normalized

line coordinates of a $i), and [$] represents the SDT of the platform. Since, the fine linear

equations (3.1) are superabundant and inconsistent set of linear equation, so there is no

single vector [$] that satisfies them all. Hence, we go for the least squares fit solution,

$LS, which minimizes the sum of the deviations of the points from the least squares

profile. This best possible vector for [$L-S] can be found by the pseudoinverse equation

[12]

14

[$ L−S] = [𝑘′]#[𝑑] = (([𝑘′]𝑇[𝑘′])−1[𝑘′]𝑇)[𝑑] (3.2)

Table 3.2. The Inputs and the Results of 2d Least Squares Fitting Using Line

Coordinates.

Point Ri = xi Mi di (mm) Δdi (mm) Di (mm)

1 1 1 1 -0.331 1.331

2 5 1 -1 -0.117 -0.882

3 8 1 -2 0.043 -2.043

4 10 1 0 0.150 -0.150

5 12 1 2 0.257 1.7433

After substituting Ri, Mi, and di from Table 3.2 into Eqs. (3.2), we get the $L-S value to be

(δθz δy) = (3.0639, -0.385). From the values of the $𝐿−𝑆 found from solving the above

equations we get a new set of deflection values Δd with which we can find the change in

deflections D by finding the difference between the original deflections d and the

deflections found from the least squares fit result Δd.

 One measure of zone magnitude is the LSF minimum zone that is obtained as the

perpendicular distance between the pair of lines parallel to the LSF line (Fig. 3.1) that

just capture all the nodal points. This zone may be found in two stages. First, when the

SDT [$L-S] is substituted into Eq. (3.1), the new values of di that result, here called Δdi,

measure the distances between the LSF profile and the nominal profile at the respective

nodal points (Fig. 3.1). The accuracy of these distances presumes that the original

deviations di are small relative to profile dimensions, an assumption that is valid for the

FEA springback data used in this thesis. (It is not valid for the example shown in Fig.

3.1, but this example is included so definitions and terminology may be shown visually

nearly at scale.) Second, it evident in Fig. 3.1 that the deviation Di from the LSF profile

15

at each nodal point i is Di = di – Δdi. Therefore, the L-S minimum zone MZ L-S is found

to be the difference between the algebraically largest and smallest values of Di which are

obtained from the array of values at all the points, i.e.

MZ L-S = 𝐷𝑖,𝑚𝑎𝑥 − 𝐷𝑖,𝑚𝑖𝑛 .

For the nominal profile and five nodal points shown in Fig. 1, MZ L-S =3.786 mm.

16

CHAPTER 4. Fitting of Line-profiles in 3d

In this study we are fitting the sprung back points along two profiles from the

FEA simulations of component stamping and subsequent spot welding into a J-Shaped

assembly (Fig. 4.1). The image below are the parts that were simulated by A. Joshi [1].

The two profiles are the outer line-profile that includes the larger arc with 60 points (59

intervals) and the inner profile that contains the smaller arc with 40 points (39 intervals).

The number of nodal points on each edge of the profile are shown in Figure 4.1, and

these are distributed uniformly along each profile. The data is taken from [1] for the case

of five spot welds made one at a time, progressing from the smaller arc to the larger arc.

Each weld is in one of the five straight portions of the hat-shaped cross-section.

Fig 4.1 The Partitioned Points from the Assembly of Straight and Curved Hat-section

Components and the Global Coordinate Frame. The Ending Coordinates Are for Zero

Spring-back (Nominal Profiles) [1].

All the points in this chapter are taken from the J-shaped spot-welded assembly in

Fig. 4.1. To apply the statics with robotics method for generating the linear equations, the

points of the two profiles are partitioned into sets of points for edges of the straight hat

section and sets for the inner and outer arcs. Then, for the assembly, these are combined

for each profile. The straight component is 500mm long, but to simulate the spot-welding

of the two components together for the assembly, there is an overlap of 10mm along both

17

profiles. Consequently, there are 49 intervals for the straight profiles, and in the

coordinate-frame shown in Fig. 4.1, the points at the ends are z = 0 and z = 490 mm.

Three least-squares fits were undertaken for each profile: the straight part, to

simulate fitting edges to a component; the arc, another component, and the full J-shape

for the welded assembly. Note, however, that the 50th point for each straight profile is

also the first point for the respective arc. Therefore, for fitting each of the J-shaped

assembly profiles, this duplicated point is used just once.

Two quantities of points were used for the same data: one was to use all 89 points

for the inner profile containing the smaller radius arc and 109 points for the outer arc.

The other quantity, to reduce computation time for use with large amounts of simulation

data, was to use a sampling method that leads to 19 points for the inner profile and 23

points for the outer profile. For both profiles with sampling, 11 points were used for the

straight portions with nine intervals of nominally 50mm each and the last interval (at the

490mm limit) of 40mm.

4.1 Straight Line Fitting in 3d Space with Least Squares

For points arranged along a nominal straight line-profile, such as those shown in

Fig 4.2, the displacement of the LSF profile will be in the x- and y-directions with

allowance for rotations about these axes also. Consequently, actuators are required in

these two directions (Figs. 4.2 and 4.3) at each nodal point to produce the required

displacements of the robot platform that carries the duplicate movable line-profile.

18

Fig 4.2. The Regression Fit of Line in 3d.

Fig 4.3(a) The XZ - Plane View of the Straight Line Profile

Fig 4.3(b) The YZ - Plane View of the Straight Line Profile

19

To capture all the deviations in 3D we need to find the line coordinates (P, Q, R,

L, M, N) for each of the two perpendicular linear actuators in Fig. 4.2. The results are (0,

Zi, 0, 1, 0, 0) and (-Zi, 0, 0, 0, 1, 0) for actuators lying in the XZ and YZ planes,

respectively. Since the R and N coordinates are consistently zero, they may be ignored,

and we get (P, Q, L, M) = (0, Zi, 1, 0) and (-Zi, 0, 0, 1) as the line coordinates for all the

actuators at the nodal points along the straight portion of the profile.

Table 4.1. Sample Points from the Inner Sprung Back 3d Line Profile

Points X, mm Y, mm Z, mm di, mm

1 -241.90 0.743 490.02 8.10

2 -241.84 0.535 451.02 8.16

3 -241.79 0.303 401.03 8.21

4 -241.75 0.010 351.03 8.25

Table 4.2. Sample Entries for Matrix [K’] along the Inner Straight Profile

Points P Q L M di

1x 0 490.2 1 0 8.10

1y -490.2 0 0 1 0.743

2x 0 451.02 1 0 8.16

2y -451.02 0 0 1 0.535

3x 0 401.03 1 0 8.21

3y -401.03 0 0 1 0.303

4x 0 351.03 1 0 8.25

4y -351.03 0 0 1 0.010

Using Fig 4.3(a) for actuators in the ZX-plane, we can deduce the virtual work balance

equations at each node to be:

𝐹𝑖𝑥𝑑𝑖𝑥 = [0 𝑇𝑖𝑦 𝐹𝑖𝑥 0][∆𝜃𝑥 ∆𝜃𝑦 ∆𝑥 ∆𝑦]T

 = 𝐹𝑖𝑥[0 𝑧𝑖 1 0][∆𝜃𝑥 ∆𝜃𝑦 ∆𝑥 ∆𝑦]T
 (4.1)

And using Fig. 4.3(b) for actuators in the YZ-plane, each is

20

𝐹𝑖𝑦𝑑𝑖𝑦 = [𝑇𝑖𝑥 0 0 𝐹𝑖𝑦][∆𝜃𝑥 ∆𝜃𝑦 ∆𝑥 ∆𝑦]T

 = 𝐹𝑖𝑦[−𝑧𝑖 0 0 1][∆𝜃𝑥 ∆𝜃𝑦 ∆𝑥 ∆𝑦]T
 (4.2)

 These Eq. (4.1) and Eq. (4.2) at each node can be formulated into the single matrix

expression.

[di] =

[

𝑑1𝑥

⋮
𝑑𝑖𝑥

𝑑𝑖𝑦

⋮
𝑑𝑛𝑦]

≡ [K'][$] =

[

0 𝑍1 1 0
⋮ ⋮ ⋮ ⋮
0 𝑍𝑖 1 0

−𝑍𝑖 0 0 1
⋮ ⋮ ⋮ ⋮

−𝑍𝑛 0 0 1]

[$] (4.3)

that captures all the linear equations. The matrix [d] is a list of deviations measured at

right angles in x- and y-directions from the nominal profile at the respective nodal points,

the [K'] gives the line coordinates of the nodal points, and [$]SDT = [𝛿𝜃x, 𝛿𝜃y, 𝛿x, 𝛿y] T is

the SDT of the platform. Sample values of these are given in the table [4.2]. When these

and all the remaining values are substituted in Expression (4.3), we end up with this

superabundant and inconsistent set of linear equations formed from all the nodal points.

There is no single vector [$] that satisfies all the linear equations (4.3). However, we can

get an optimum least-squares solution, [$L-S], by using the pseudoinverse [K']# of the

rectangular matrix [K'], defined as

[$𝐿−𝑆] = [K']#[𝑑] = (([K']𝑇[K'])−1[K']𝑇)[𝑑] (4.4)

For the 11 points of the sample data along the straight part of the inner profile, we

get the $L-S value to be [𝛿𝜃𝑥 𝛿𝜃𝑦 𝛿𝑥 𝛿𝑦] = (-0.054, -0.045, 8.516, -0.140) in units of

radians and mm. Using these we can find (see Chap. 2) the magnitude of rotation δθ =

(δθx
2 + δθy

2)
1/2

 = 0.070 radians and pitch h = -91.808 mm/rad for the small displacement

torsor (SDT). Then the axial progression of the platform along $L-S is s = h Δθ. (See

21

Chap. 2) Using these we can find the line coordinates (L, M, N; P, Q, R) on which the

SDT lies. (See Chap. 2 and Tables 7.7 – 7.10.)

In Section 5.1 the SDT coordinates are converted to a 4x4 homogeneous

transformation matrix [5] that is used to transform the nominal profile to its least squares

location relative to the original sprung back points. This result will then be used to find

the boundaries for the least squares zone and true minimum zone that just captures all the

points.

4.2 Least Squares fitting of an arc profile in 3D space.

Fig 4.4. The arrangement of actuator for an Arc Profile

When the coordinate system in Fig. 4.5 is used to represent the arc, the two

actuators normal to the nominal profile at a sprung-back data point must lie in a plane

that contains both the y-axis and the point. We will use the arc of nominal radius 250 mm

on the inner J-shaped profile as an example (Fig. 4.1). To formulate the linear equations,

we first need angle α as

𝛼 = atan2(𝑥𝑖 𝑧𝑖⁄) (4.5)

22

where both the x and z arguments of the atan2 function are signed. The necessary

components of each deviation vector d = 𝐴𝐵⃑⃑⃑⃑ ⃑ (Fig. 4.5) are obtained from its projections

onto the zx-plane and on the y-axis. Now the corresponding torques and forces in each

row (P, Q, R; L, M, N) of matrix [K'] are given by 𝑘𝑧𝑥 = (0, 0, 0; L, 0, N) and 𝑘𝑦= (P, 0,

R; 0, 1, 0). Since coordinates Q (the y-component of moment of an actuator force in the

y-direction) is consistently zero, we can neglect the Q coordinate and just consider the (P,

R, L, M, N) values to represent the actuator forces at each node of the profile. The

representation for these are My = 1 for every point, and

𝑃𝑦 = −250 cos(α), 𝑅𝑦 = 250 sin(𝛼),

𝐿𝑖𝑧𝑥 = − 𝑥𝑖/√𝑥𝑖
2 + 𝑧𝑖

2, 𝑁𝑖𝑧𝑥 = − 𝑧𝑖/√𝑥𝑖
2 + 𝑧𝑖

2 (4.6)

The force balance at each node in the ZX-plane and the y direction leads to

𝐹𝑖𝑧𝑥𝑑𝑖𝑧𝑥 = [0 0 𝐹𝑖𝑥 0 𝐹𝑖𝑧][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T

 = 𝐹𝑖𝑧𝑥[0 0 𝐿𝑧𝑥 0 𝑁𝑧𝑥][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T

and

𝐹𝑖𝑦𝑑𝑖𝑦 = [𝑇𝑖𝑥 𝑇𝑖𝑧 0 𝐹𝑖𝑦 0][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T

 = 𝐹𝑖𝑦[𝑃𝑦 𝑅𝑦 0 1 0][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T
 (4.7)

where the input virtual work terms on the left are dependent on values diy = yi and diz =

(𝑥𝑖
2 + 𝑧𝑖

2)1/2. Representing the above equations Eq (4.6) for all the nodes in a matrix

form gives us

[di] =

[

d1zx

⋮
dizx

diy

⋮
dny]

≡ [K'][$] =

[

0 0 L1zx 0 N1zx

⋮ ⋮ ⋮ ⋮ ⋮
0 0 Lizx 0 Nizx

Piy Riy 0 1 0

⋮ ⋮ ⋮ ⋮ ⋮
Pny Rny 0 1 0]

[$] (4.8)

23

where [d𝑖] is a column list of small normal distances at the respective actuators which are

measured from the nominal profile to the points along both the directions of force applied

by the actuators, matrix [K'] contains the pertinent line coordinates for the unit forces

acting along those linear actuators and their moments about the origin, and [$] =

[δθx δθz δx δy δz]
𝑇 is the SDT of the platform that carries the nominal profile shape and

all other arcs concentric to it. (Note that the actuators all still exert force on the nominal

profile (Fig 4.5)). The matrix expression (4.7) is a set of linear equations without a

solution for [$]. But an optimum LSF solution is given by the Moore-Penrose

pseudoinverse.

[$𝐿−𝑆] = [𝑘′]#[𝑑] = (([𝑘′]𝑇[𝑘′])−1[𝑘′]𝑇)[𝑑]

to Eq. (4.7) gives the SDT [$] = [δθx δθz δx δy δz] which minimizes the least squares sum

of the deviations. From the coordinates in [$] we can find the values of δθ and pitch h for

the equivalent SDT and the line coordinates (L, M, N; P, Q, R) on which it lies. (See

Chap. 2).

In section 5.1 the SDT coordinates are converted to a transformation matrix [5]

that is used to obtain the coordinates of all the nodal points relative to the LSF profile.

The result is used to find the boundaries of the least squares and true minimum zones that

just captures all the points.

4.3 Least Squares Fitting of an Arc with Size Change.

Since the FEA model of forming the curved hat-section component constrained

the median radius r = 315 mm (Fig. 4.1) to move straight down, the smaller radius flange

was plastically deformed in tension and then sprang back to a smaller radius upon release

24

from the press. In a like manner, the larger radius flange was plastically deformed in

compression and then sprang back to a larger radius. Consequently, any curved

component in its free state has a more open hat-section than the die where it was formed,

and all of the sprung back nodal points of an arc-profile will be at a radius further from

the median radius than its nominal radius. Since only those actuators in the zx-plane

include the change in radius 𝛿r, values of deviations dizx all contain a change in radius 𝛿r

between that of the nominal profile and the least-squares profile. A distinct advantage of the

statics-with-robotics method is that it allows radius change to be included selectively at actuators

$izx in the zx-plane, while leaving actuators $y unaffected. Therefore, the first of Eqs. (4.6) should

be modified to

𝑑𝑖𝑧𝑥 = [0 0 𝐿𝑖𝑧𝑥 0 𝑁𝑖𝑧𝑥][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T − δ𝑟

 = [0 0 𝐿𝑖𝑧𝑥 0 𝑁𝑖𝑧𝑥 − 1][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧 𝛿𝑟]T

𝑑𝑖𝑦 = [𝑇𝑖𝑥 𝑇𝑖𝑧 0 𝐹𝑖𝑦 0][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T - 0

 = [𝑇𝑖𝑥 𝑇𝑖𝑧 0 𝐹𝑖𝑦 0 0][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧 𝛿𝑟]T (4.9)

The radius change is inserted in Eq. (4.6) with a negative sign because all the dizx-values

are directed inward in Fig. 4.5, corresponding to a reduction in size. Now the SDT

contains the added element 𝛿r and becomes [$] = [𝛿𝜃x, 𝛿𝜃z, 𝛿x, 𝛿y, 𝛿z, 𝛿r]T , and, for each

data point, the new row-pairs of [K'] are augmented to kzx = (0, 0; L, 0, N, -1) and ky = (P,

R; 0, 1, 0, 0). As an example, for the inner arc-radius of 250 mm, the full array of linear

equations takes the form,

[di] =

[

d1zx

⋮
dizx

diy

⋮
dny]

≡ [K'][$] =

[

0 0 L1zx 0 N1zx −1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 Lizx 0 Nizx −1

Piy Riy 0 1 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Pny Rny 0 1 0 0]

[$] (4.10)

25

Lastly, the least-squares (pseudoinverse) solution to (Eqs 4.9) minimizes the sum.

∑
[𝑑𝑖𝑧𝑥 − { + 𝐿𝑖𝛿𝑥 + 𝑁𝑖𝛿𝑧 – 𝛿𝑟 }]2

+[𝑑𝑖𝑦 − {𝑃𝑖𝑦𝛿𝜃𝑥 + 𝑅𝑖𝑦𝛿𝜃𝑧 + 𝑀𝑖𝛿𝑦 }]
2

𝑛
𝑖=1] . (4.11)

4.4 Least Squares Fitting of the J-shaped Profile in 3d Space.

Fig 4.5. An Array of Selected Data Points Along One Edge Profile of the Assembled

Structure with Component Linear Actuators at One Point.

The SDT for the J-shaped profile is represented with the Boolean union of the

coordinates for the straight profile (∆𝜃𝑥 ∆𝜃𝑦 ∆𝑥 ∆𝑦) and the coordinates for the arc

profile (∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧) . Consequently, the SDT [$] of this profile requires

contains all six coordinates (∆𝜃𝑥, ∆𝜃𝑦, ∆𝜃𝑧; ∆𝑥, ∆𝑦, ∆𝑧). Further, the six coordinates for

each of the actuator forces Fizx$izx and Fy$y now must all take values. Therefore, in matrix

[K'] we need to include a value for every coordinate (P, Q, R; L, M, N) at each actuator,

some of which will be zero. For the straight profile, the entries are K′x = (0, Q, 0; 1, 0, 0)

and K′y = (-P, 0, 0; 0, 1, 0), and, for the arc profile, the entries are K′zx = (0, 0, 0; L, 0, N)

and K′y = (P, 0, R; 0, 1, 0). Both sets describe unit actuator forces depending on the

geometry of the structure.

26

As a reminder, the force-balance equations at nodes of the straight part of one J-

shaped profile then becomes.

𝐹𝑖𝑥𝑑𝑖𝑥 = [0 𝑇𝑖𝑦 0 𝐹𝑖𝑥 0 0][∆𝜃𝑥 ∆𝜃𝑦 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T

 = 𝐹𝑖𝑥[0 𝑧𝑖 0 1 0 0][∆𝜃𝑥 ∆𝜃𝑦 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T

𝐹𝑖𝑦𝑑𝑖𝑦 = [𝑇𝑖𝑥 0 0 0 𝐹𝑖𝑦 0][∆𝜃𝑥 ∆𝜃𝑦 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T

 = 𝐹𝑖𝑦[−𝑧𝑖 0 0 0 1 0][∆𝜃𝑥 ∆𝜃𝑦 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T
 (4.12)

and, for the curved portion,

𝐹𝑖𝑧𝑥𝑑𝑖𝑧𝑥 = [0 0 𝐹𝑖𝑥 0 𝐹𝑖𝑧][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T

 = 𝐹𝑖𝑧𝑥[0 0 𝐿𝑖𝑧𝑥 0 𝑁𝑖𝑧𝑥][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T

𝐹𝑖𝑦𝑑𝑖𝑦 = [𝑇𝑖𝑥 𝑇𝑖𝑧 0 𝐹𝑖𝑦 0][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T

 = 𝐹𝑖𝑦[−250 C𝛼𝑖 250 S𝛼𝑖 0 1 0][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T
 (4.13)

where Lizx and Nizx are defined in Eqs. (4.5). Here dix, diy, dizx, and diy are an ordered list

of deviations, measured from the nominal profile, of nodal points that form vector [di].

When the force amplitudes are cancelled out, the pairs of rows in matrix [K'] for each

nodal point result. Substituting the equations, we get the matrix [K'] and, again applying

the Gauss-Markov theorem, we get the $L-S which minimizes the least squares sum.

[$𝐿−𝑆] = [𝑘′]#[𝑑] = (([𝑘′]𝑇[𝑘′])−1[𝑘′]𝑇)[𝑑] .

the SDT now consists of the six coordinates [∆𝜃𝑥 ∆𝜃𝑦 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧] from which

we can find the values of δθ and pitch h, and even further, we can compute the line

coordinates (L, M, N; P, Q, R) of the small displacement torsor (SDT) (See Chap. 2).

In Section 5.1 methods are described (a) for transforming the given original points

to a reference frame attached to the LSF profile and, from the points in this new frame,

27

(b) for finding the boundaries for the least squares and true minimum zones that just

capture the nodal points along an arc-profile.

4.5 Least Squares Fitting of J-shaped Profile with Size Change.

Looking to the time when simulations exist for the frames of a matched pair

assembly (Fig. 4.7), each of which includes the straight-and-arc subassembly in Fig. 4.1,

values of deviations in the ZX-plane of Fig. 4.6 would all contain a change in feature size

𝛿r (radius 𝛿r along the arc) between that of the nominal profile and the least-squares

profile. Deviations affected are dizx along the arc in Fig. 4.5 and dix along the straight

portion of the profile (Fig. 4.2). Focusing on the J-shaped subassembly in Fig. 4.7 and

the parallel robot model for LS fitting, the platform carries the entire nominal profile and

all profiles a constant distance from it and lying in the same plane. On one side of the

nominal profile are J-shaped profiles with larger radius arcs, and on the other side lie

profiles with smaller arc-radii.

Fig. 4.6. Forming a Matched Pair Assembly by Joining Two Frame Subassemblies

[2].

28

To include the change in size in the linear equations, the SDT in Sect. 4.4 is

augmented to [$] = [∆θx ∆θy ∆θz ∆x ∆y ∆z ∆r], and the rows of [K'] must also be

augmented with a seventh element. For all actuators lying in the zx-plane, the seventh

element is -1, resulting in K′izx = (Pizx Qizx Rizx Lizx Mizx Nizx -1), and for all the actuators

parallel to the y-axis, the seventh element is zero, resulting in K′iy =(Piy Qiy Riy Liy Miy Niy

0). Now substituting these equations, we get the matrix to which Gauss Markov theorem

is applied and the $L-S could be obtained.

This SDT would now consist of 7 coordinates which account for the angular

orientation, position, and the size change (from the nominal profile) of the least squares

profile.

29

CHAPTER 5. Least Squares Zone and True Minimum Zone of a Profile

5.1 Finding the Coordinates of the Nodal Points in the Least Squares Fit Frame.

As mentioned above to find the coordinates of the nodal points in a reference

frame attached to the least squares profile, we first need to find the homogeneous

transformation matrix [A𝑛𝐿] relating the frame of least squares profile to the frame of the

original nominal profile. Given the SDT $L-S in terms of its small rotation and amplitude

ϕ and small axial translation 𝑠 = ℎ ϕ, and given the normalized coordinates

(𝐿 , 𝑀, 𝑁; 𝑃ℓ, 𝑄ℓ, 𝑅ℓ) of the line on which it lies, the required transformation is

[A𝑛𝐿] = [

 𝑥𝑛𝐿

 [R𝑛𝐿] 𝑦𝑛𝐿

 𝑧𝑛𝐿

0 0 0 1

] (5.1)

in which in which [R𝑛𝐿] is the 3𝗑3 rotation matrix

[R𝑛𝐿] = [

𝐿2𝑉𝜙 + C𝜙 𝑀𝐿𝑉𝜙 − 𝑁S𝜙 𝑁𝐿𝑉𝜙 + 𝑀S𝜙

𝐿𝑀𝑉𝜙 + 𝑁S𝜙 𝑀𝐿2𝑉𝜙 + C𝜙 𝑁𝑀𝑉𝜙 − 𝐿S𝜙

𝐿𝑁𝑉𝜙 − 𝑀S𝜙 𝑀𝑁𝑉𝜙 + 𝐿S𝜙 𝑁2𝑉𝜙 + C𝜙

] (5.2)

and

𝑥𝑛𝐿 = 𝑉𝜙(𝑀𝑅ℓ − 𝑁𝑄ℓ) + 𝑃ℓS𝜙 + 𝐿𝑠

𝑦𝑛𝐿 = 𝑉𝜙(𝑁𝑃ℓ − 𝐿𝑅ℓ) + 𝑄ℓS𝜙 + 𝑀𝑠

𝑧𝑛𝐿 = 𝑉𝜙(𝐿𝑄ℓ − 𝑀𝑃ℓ) + 𝑅ℓS𝜙 + 𝑁𝑠

} (5.3)

in which 𝑉𝜙 = versine ϕ = 1– cos ϕ, 𝑆𝜙 = sin ϕ, and 𝐶𝜙 = cos ϕ. (5.4)

See equations (4.62) and (4.63) in §4.6.3 of [5].) Matrix [AnL] transforms any point (xL,

yL, zL) in the LS frame to its representation (xn, yn, zn) in the nominal frame. So, the

original points can be represented relative to the new LSF profile by transforming them

all with the inverse matrix [ALn].

30

5.2 Least Squares Zone Magnitude

Two single-parameter measures for spring-back variation along the LSF line-

profile for a circular-arc, or for the J-shape in Fig. 4.6, are the least-squares (LS)

minimum zone and the true minimum zone. The magnitude of the LS minimum zone is

the largest deviation (radius) of any nodal point i from the LSF profile, and, is obtained as

the largest of values (𝑥𝑖𝐿
2 + 𝑦𝑖𝐿

2 + 𝑧𝑖𝐿
2 − (𝑟𝑛 + Δr)2)1/2 from any arc portion, and (𝑥𝑖𝐿

2 +

𝑦𝑖𝐿
2 − (𝑟𝑛 + Δr)2)1/2 from any straight portion of a J-profile, for all points i. If every

nodal point, together with its distance to closest point on the LS profile, were projected

along the LS profile to one plane with all the closest points on the profile coinciding, the

largest distance becomes the radius of the LS minimum zone.

The second parameter is the true minimum zone that is an unconstrained

cylindrical metrological zone, the magnitude for which may be found using a traditional

metrological algorithm. However, for both the arc-profile and the J-shaped profile, a

preliminary transformation must take place to unwrap the LS profile and associated nodal

points to a straight line.

5.3 Unwrapping of the Points along the Arc Profile

The unwrapping transformation is obtained by unwrapping the LS profile, with all

the nodal points attached, until the profile is straight (Fig. 5.1). This amounts to

projecting the arc portion, together with associated nodal points, to the single straight line

that (a) is obtained from the SDT, (b) is parallel to the ZL-axis (Fig. 5.1) and (c) is tangent

to the LSF arc of radius 𝑟𝑛 + Δ𝑟. The projection is accomplished by representing the

nodal points in the reference frame O′x′y′z′ that is (a) parallel to frame Oxyz in Fig. 5.1

and (b) with its origin O′ at the tangent point. The transformation equations are

31

XL′ = (𝑟𝑛 + Δ𝑟) − (𝑥𝑖𝐿
2 + 𝑧𝑖𝐿

2)1/2

YL′ = 𝑦𝑖𝐿

ZL′ = (𝑟𝑛 + Δ𝑟)(𝜋 2⁄ − 𝛼) (5.1)

where, 𝛼 = atan2(𝑥𝑖𝐿 𝑧𝑖𝐿⁄). (5.2)

 These equations were found by first getting the angle as given in Eq. (5.2), then

multiplying this angle with the radius of the Least Squares fit profile to get the ZL′

coordinate, i.e., the distance of the points along the arc. The YL′ values remain the same as

they are unaffected by the unwrapping and projecting of points, The XL′ values are taken

by finding the distance of the given points from the origin along the zx-plane, and these

points are used to find the least squares zone size.

 The next section shows how a minimum circumscribing cylinder may be found as

a parameter for points along an edge of a straight component, an arc component, and the

J-shaped assembly.

Fig 5.1. Unwrapping of the LSF Arc Profile onto a Straight-line Profile

32

5.4 True Minimum Zone

Known metrological methods [6] may be applied to obtain the unconstrained

minimum circumscribing cylinder whose radius is the true minimum zone. The true

minimum zone is always smaller than the least squares zone magnitude. To find the true

minimum zone for sprung back points along the edge of a component (e.g., the 500 mm

straight edge in Fig. 4.1), or any unwrapped arc-profile, we can use an algorithm listed in

the Section 5.2.4 of [6] and first developed by [21]. The algorithm first finds the least

squares axis to the points (ZL′ -axis for the arc or the J-shaped profile). Then, at each end

of the least squares line, one creates hexagons (Fig. 5.3(b)) that are circumscribed by

circles of radius 10% of the least squares zone radius. Next, 36 tentative axes are formed

by joining every vertex on one hexagon to every vertex on the other hexagon (Fig.

5.3(c)). A new coordinate frame is established with its z-axis on each of the 36 axes, the

coordinates for all the points are transformed to each new frame, and 36 new zone radii

are produced (largest radius from all the points to each axis). Of the 36 axis-and-zone-

radius pairs, retain only the one with the smallest zone radius. The process is repeated

with the size of hexagons being reduced by half until the total size of the hexagon is less

than the 0.01% of the least squares zone magnitude. Thus, we can find the true minimum

zone radius and axis. We can directly incorporate it for the 11-point straight line

mentioned above but, while doing it for the curved portion, we need first to unwrap the

arc to straight line, then apply the algorithm.

 For this thesis, a few modifications were made to the algorithm for it to be written

as a program. The first is we have shifted the coordinate frame origin to one of the ends

of the Least Squares Fit (LSF) line to the origin so it would be easier to find the

33

transformation matrix during the rotation of axis to make it parallel to the z-axis and to

transform the point with it, which can be translated back to the original position once we

end up with the resultant true minimum zone radius and axis. Also, a change was made to

the rate at which the size of the hexagons decreases at the rate of 10:11 instead of 1:2.

Specifics of the algorithm are mentioned in the appendix portion [Appendix. F].

Fig 5.2. Minimum Cylindrical Fit for Points in Space. [6]

34

CHAPTER 6. Numi-sheet Parameters to Validate the FEA Stamping Model

Created at The Ohio State University

As a part of NSF Goali project in collaboration with Ohio State university a lot of

Stamping FEA simulations were done for hat-shaped components having different

properties such as Shapes, Channel Width, Material, Thickness, Draw depth and Blank

holding forces. To validate the OSU FEA model for forming components, software was

created as a part of this thesis to compute the geometric parameters from the

NUMISHEET 1993 benchmark [4] and consistent with more recent existing experimental

and simulated results [20].

To gain confidence in the forming-stage simulations, the process was first

validated against an existing set of experimental and simulated results [2] based on the

NUMISHEET 1993 benchmark [4].

6.1 Extracting Numi-Sheet Parameters (Inverted Hat Section) for FEA and

Experimental Parts

The computations to obtain the Numi-sheet benchmark parameters for stamped

sheet-metal components were undertaken using, as closely as practicable, procedures

outlined in the Numi-sheet 93 research paper [4]. The Numi-sheet parameters are the

angles θ1, θ2, and radius ρ, and these, along with the original Numi procedures, are shown

in Fig. 6.1. Two modifications were made to the original procedures. First, since three

points on a straight line do not define an arc, we modified somewhat the identification of

point C to be consistent with the desired parameter ρ. Second, the FEA points in the

region of point D did not always exhibit an inflection, so D was identified as the highest

35

point (maximum y-value) in the list of points. With these modifications, our procedures

are as follows.

Fig 6.1. Parameters to be Extracted from the Stamped Components

Fig 6.2. The Origin of the Stamped Component Obtained from FEA Simulation.

36

Figures 6.2 and 6.3 show a typical point-set in its original coordinates and a set of

computational coordinates that were used in computing the Numi-parameters. The

computational coordinates were obtained by shifting the origin so the point with least y-

coordinate in Fig. 6.2 becomes the origin.

Fig 6.3. The Points Found Using Numi-sheet 93 [4] to Extract the Parameters.

Now the first point A is chosen at a distance of y = 15 mm from the base (Fig.

6.3), a location typically between two data points A1 and A2 that are the closest points

above and below the 15mm height. The coordinates of A are then obtained by

interpolating linearly between these. The second point B is chosen where an arc of 35mm

radius centered at point A intersects the data between points B1 and B2. Once again,

linear interpolation leads to the desired location for the point B. Next, find the

perpendicular bisector to line AB and, where it passes through the sprung back points,

identify the two points closest to it. These are C1 and C2. Use linear interpolation again to

obtain the point C as shown in the figure 6.4.

37

Fig 6.4. Finding Point C Using Numi-sheet [4]

The point D is, the point where the sheet leaves the die since we can’t exactly find

the point from the profile given the idea is to find the inflection for which choose a point

about 10mm along the profile from the peak point in the given data set and choose

another point which is about 50mm along the profile and form a line with these two

points and we can find the distance of each point from the line we have generated now if

we observe the change in distances as shown if the Figure Fig 6.5 below the points tend

to go down and starts to move up at a particular point and the point until where the

distance decreases without any increases is taken to be the point where the stamping

leaves the die. It works best in the case of dense data structure where this phenomenon

can be clearly observed. But this is not the case if the simulation data doesn’t contain the

die end in the mesh. So, to prevent all this mess and to standardize we assumed point ‘D’

to be at a maximum position and chose point ‘E’ to be at 15mm from point ‘D’.

38

Fig 6.5. Point Where Structure Leaves the Die.

Now for point F find the point at 40mm from E by interpolation.

Fig 6.6. Parameters Extracted from the Stamped Profile.

39

Use the points obtained to find the curvature ⍴ and the slopes of both the line θ1

and θ2. The ⍴ can be found by applying the algorithm from He, et al. [18] Appendix. If i-

1, i and i+1 are the points then the radius of curvature is given by,

A = (𝑥𝑖+1, 𝑦𝑖+1), 𝐵 = (𝑥𝑖−1, 𝑦𝑖−1), 𝐶 = (𝑥𝑖, 𝑦𝑖)

ρ = √(𝑥i − 𝑥c)2 + (𝑦i − 𝑦c) (6.1)

where 𝑥𝑐 = {1/𝑑}{𝑅𝐴(𝑦𝑖+1 − 𝑦𝑖) − 𝑅𝐵(𝑦𝑖 − 𝑦𝑖−1)} ,

𝑦𝑐 = {−1/𝑑}{𝑅𝐴(𝑥𝑖+1 − 𝑥𝑖) − 𝑅𝐵(𝑥𝑖 − 𝑥𝑖−1)}

are the coordinates of the center of curvature and the values of Ra, Rb and d are,

𝑅𝐴 = (1/2)(𝑥𝑖
2 − 𝑥𝑖−1

2 + 𝑦𝑖
2 − 𝑦𝑖−1

2),

 𝑅𝐵 = (1/2)(𝑥𝑖+1
2 − 𝑥𝑖

2 + 𝑦𝑖+1
2 − 𝑦𝑖

2) and

𝑑 = (𝑥𝑖 − 𝑥𝑖−1)(𝑦𝑖+1 − 𝑦𝑖) − (𝑦𝑖 − 𝑦𝑖−1)(𝑥𝑖+1 − 𝑥𝑖)

This algorithm is robust even for ill conditioned points that all lie nearly on a line.

When dealing with the half depth stampings we changed the distance to A from

ground as 10mm and the point B to be at 15mm from point A. and changed these

parameters for different depths accordingly and extracted the values of ⍴, θ1 and θ2. We

developed a few programs to make this finding of the parameters automatically so we can

test all the stamped parts instead of choosing few components and testing them.

When practical experiments of the half-depth stampings were done to compare

with the simulations, then we noticed inconsistencies for the center of curvature: for some

40

specimens, the center of curvature was to the left of the array of points between points A

and B, yet for other specimens it was to the right of the array. By introducing a little

perturbation along the x-axis at point B in the computations, it was found that the center

of curvature would flip from side to side. So, for points scanned along the half-depth

experimental specimens, the radius parameter was not useful (see 6.3).

The program is written to extract parameters from all the stamping simulations by

taking their naming format to determine the depth and choose the proper distances for

depths and save the resulting parameters into an excel sheet. Those values were then

used to analyze the fittings of the stamped components.

6.2 3d Line Fitting for the Edge Profiles of Stamped Components

This is to fit the edges of the stamped profiles to a line using Least Squares. This

is done in the same fashion mentioned in chapter 4.

6.3 Effect of Perturbation

While extracting the parameters from the stamped components using the Numi-

Sheet methods there were a lot of inconsistencies for the value of radius ρ even for same

stampings at different time points when done in practical test. So as hypothesis have been

made to test the sensitivity of the ρ which is to implement a small perturbation of 0.1mm

along the x-axis in either direction and calculated the value of ρ. These perturbations

seem to affect the parameters of the stamped components by a considerable amount. The

x-coordinate value of point B is varied by +0.1mm and -0.1mm and found the changes in

the radius of curvatures for 55mm (full depth stamping) and found an average change of

about 4% along both directions and for 35mm (half depth stamping) the average change

is around 17% along the positive direction and about 26% along the negative direction.

41

Fig 6.7. Showing the Perturbation Points at Point B for Half Depth Stamping

Fig 6.8. Showing the Perturbation Points at Point B for Full Depth Stamping

42

CHAPTER 7. Results and Conclusion

This chapter contains cross-sectional views of data points, axes, and zone boundaries

for the least-squares fit zones and True Minimum zones for different profiles: the straight

(Fig. 4.2), the arc-segment (Fig. 4.4), and the joined J-shaped profiles in Fig.4.5, all for

both the shorter and longer edges of the assembly shown in Fig. 4.1. The coordinates for

sample points of inner profile are in Table 7.1. The first 11 points represent the straight-

line profile, the last 9 points are used for the arc profile, and all 19 are used to evaluate

the J-shaped profile. Although points #11 was used to evaluate both the straight and arc-

profiles, it was used only once for the J-shaped profile. The coordinates for sample points

of outer profile are in Table 7.2. The first 11 points represent the straight-line profile, the

last 12 points are used for the arc profile, and all 23 are used to evaluate the J-shaped

profile. Although points #11 was used to evaluate both the straight and arc-profiles, it

was used only once for the J-shaped profile.

 The results of fitting for the inner J-section profile are given in the table 7.2 and the

same operations are performed for the outer profiles and the results of those are given in

the table 7.3.

Fig 7.1 Figure Showing the Inner Assembly Profile and Outer Assembly Profile [1]

43

Table 7.1 Sample Points for Inner Assembly Profile

X

coordinates

Y

coordinates

Z

coordinates

-241.899 0.743 490.025

-241.842 0.535 451.025

-241.789 0.303 401.025

-241.745 0.099 351.026

-241.709 -0.067 301.028

-241.669 -0.196 251.03

-241.633 -0.305 201.023

-241.599 -0.394 151.027

-241.564 -0.444 101.031

-241.53 -0.204 51.037

-241.501 0.982 1.042

X

coordinates

Y

coordinates

Z

coordinates

-239.119 1.754 -45.512

-226.11 1.52 -95.784

-207.026 1.314 -135.018

-175.072 1.224 -176.908

-141.82 1.304 -205.99

-95.55 1.605 -232.311

-53.224 2.048 -246.172

-0.024 2.748 -252.122

Fig 7.2 Figure Showing the Sampling Points along the Inner Assembly Profile.

Table 7.2 Sample Point for Outer Assembly Profile

X

coordinates

Y

coordinates

Z

coordinates

-388.068 0.886 490.027

-388.122 0.658 451.028

-388.183 0.398 401.028

-388.235 0.161 351.029

-388.289 -0.037 301.031

-388.327 -0.2 251.033

-388.371 -0.343 201.036

-388.413 -0.458 151.03

-388.456 -0.512 101.034

-388.5 -0.279 51.046

-388.549 1.258 1.045

X

coordinates

Y

coordinates

Z

coordinates

-385.449 3.099 -50.236

-376.946 3.298 -101.361

-361.442 3.038 -151.013

-339.32 2.718 -198.293

-310.977 2.339 -242.296

-276.835 1.934 -282.171

-237.514 1.546 -317.146

-193.715 1.189 -346.51

-146.271 0.876 -369.694

-96.042 0.626 -386.218

-43.959 0.446 -395.582

-1.683 0.385 -398.098

44

Fig 7.3 Figure Showing the Sampling Points along the Outer Assembly Profile.

Table 7.3 Results of Least Squares Fit of Sampling Points for Different Profiles along the

Inner Assembly Profile.

$L-S Straight
Arc Arc Assembly Assembly

Δ𝑟 = 0 Δr ≠ 0 Δ𝑟 = 0 Δ𝑟 ≠ 0
Δθ𝑥 , 𝑟𝑎𝑑 -0.054 -0.238 -0.238 0.125 0.125

Δ𝜃𝑦, 𝑟𝑎𝑑 -0.045 0 0 0.12 -0.042

Δ𝜃𝑧, 𝑟𝑎𝑑 —— 0.478 0.478 -0.119 -0.119

Δ𝑥,mm 8.516 6.825 0.443 7.514 0.353

Δ𝑦,mm -0.14 3.549 3.549 0.797 0.797

Δ𝑧,mm 0 -3.812 -10.132 -4.199 -10.271

Δ𝑟,mm —— 0 7.993 0 8.146

ϕ, deg 0.07 0.534 0.534 0.21 0.177

h, mm/deg -91.809 -12.1 -17.367 34.78 39.112

s, mm -6.454 -6.456 -9.266 7.298 6.931

LS zone radius, mm 1.121 1.715 0.609 2.413 1.51

Min zone rad, mm 0.689 1.35 0.444 1.621 1.214

Table 7.4 Line Coordinates of the Least Squares Fit of Sampling Points along Inner

Profile.

Line Coordinates Straight Arc, ∆𝑟 = 0 Arc, ∆𝑟 ≠ 0 Assy, ∆𝑟 = 0 Assy, ∆𝑟 ≠ 0

L, radians -0.768 -0.446 -0.446 0.595 0.704

M, radians -0.64 0 0 0.572 -0.238

N, radians 0 0.895 0.895 -0.565 -0.669

𝑃l, mm 2899.958 423.715 -396.226 866.659 -1464.046

𝑄l, mm -3481.04 381.122 381.122 -921.858 790.287

𝑅l, mm 0 211.137 -197.439 -20.753 -1821.911

Z-intercept, mm 4531.2 —— —— —— ——

45

Table 7.5 Results of Least Squares Fit of Sampling Points for Different Profiles along the

outer Assembly Profile.

$L-S Straight
Arc Arc Assembly Assembly

Δ𝑟 = 0 Δ𝑟 ≠ 0 Δ𝑟 = 0 Δ𝑟 ≠ 0
Δθ𝑥 , 𝑟𝑎𝑑 -0.064 0.165 0.165 -0.028 -0.028

Δ𝜃𝑦, 𝑟𝑎𝑑 0.054 0 0 -0.206 0.003

Δ𝜃𝑧, 𝑟𝑎𝑑 —— -0.546 -0.546 -0.471 -0.471

Δ𝑥,mm -8.556 -6.214 0.171 -6.977 0.644

Δ𝑦,mm -0.139 -1.178 -1.178 0.052 0.052

Δ𝑧,mm 0 -16.565 -10.134 -16.13 -9.425

Δ𝑟,mm —— 0 -8.099 0 -8.887

ϕ, deg 0.084 0.57 0.57 0.515 0.472

h, mm/deg 76.636 24.652 17.102 29.361 19.853

s, mm 6.419 14.053 9.749 15.116 9.371

LS zone radius, mm 1.396 2.995 1.472 3.928 3.817

Min zone rad, mm 0.847 1.50 0.981 1.743 1.643

Table 7.6 Line Coordinates of the Least Square Fit of Sampling Points along Outer

Profile.

Line Coordinates Straight Arc, ∆𝑟 = 0 Arc, ∆𝑟 ≠ 0 Assy, ∆𝑟 = 0 Assy, ∆𝑟 ≠ 0

L, radians -0.761 0.29 0.29 -0.054 -0.059

M, radians 0.649 0 0 -0.399 0.006

N, radians 0 -0.957 -0.957 -0.915 -0.998

𝑃l, mm -2512.56 -1033.81 -266.719 -685.93 144.862

𝑄l, mm -2944.88 -118.359 -118.359 677.717 -0.527

𝑅l, mm 0 -313 -80.753 -255.492 -8.517

Z-intercept, mm 3871.4 —— —— —— ——

Table 7.7 Results of Least Squares Fit of Total Points for Different Profiles along the

Inner Assembly Profile.

$L-S Straight
Arc Arc Assembly Assembly

Δ𝑟 = 0 Δ𝑟 ≠ 0 Δ𝑟 = 0 Δ𝑟 ≠ 0
Δθ𝑥, 𝑟𝑎𝑑 -0.056 -0.463 -0.476 0.121 0.121

Δ𝜃𝑦, 𝑟𝑎𝑑 -0.044 0 0 0.124 -0.04

Δ𝜃𝑧, 𝑟𝑎𝑑 —— 0.609 0.618 -0.159 -0.159

Δ𝑥,mm 8.514 6.517 0.484 7.543 0.312

Δ𝑦,mm -0.203 4.588 4.649 0.675 0.675

Δ𝑧,mm 0 -3.772 -10.046 -4.422 -10.29

Δ𝑟,mm —— 0 7.905 0 8.182

ϕ, deg 0.072 0.766 0.78 0.235 0.204

h, mm/deg -91.976 -9.074 -10.579 30.691 39.6

s, mm -6.578 -6.948 -8.253 7.224 8.077

LS zone radius, mm 1.547 2.191 1.12 2.673 1.578

Min zone rad, mm 0.825 1.35 0.505 1.65 1.267

46

Table 7.8 Line Coordinates of the Least Square Fit of Total Points along Inner Profile.

Line Coordinates Straight Arc, ∆𝑟 = 0 Arc, ∆𝑟 ≠ 0 Assy, ∆𝑟 = 0 Assy, ∆𝑟 ≠ 0

L, radians -0.787 -0.605 -0.61 0.514 0.593

M, radians -0.616 0 0 0.528 -0.198

N, radians 0 0.796 0.792 -0.676 -0.78

𝑃l, mm 2671.309 172.939 -334.461 931.736 -1259.054

𝑄l, mm -3411.71 343.319 341.464 -764.156 639.913

𝑅l, mm 0 131.53 -257.747 112.024 -1120.866

Z-intercept, mm 2860.3 —— —— —— ——

Table 7.9 Results of Least Squares Fit of Total Points for Different Profiles along the

Outer Assembly Profile.

$L-S Straight
Arc Arc Assembly Assembly

Δ𝑟 = 0 Δ𝑟 ≠ 0 Δ𝑟 = 0 Δ𝑟 ≠ 0
Δθ𝑥 , 𝑟𝑎𝑑 -0.069 0.094 0.094 -0.021 -0.021

Δ𝜃𝑦, 𝑟𝑎𝑑 0.054 0 0 -0.209 -0.021

Δ𝜃𝑧, 𝑟𝑎𝑑 —— -0.513 -0.513 -0.457 -0.457

Δ𝑥,mm -8.557 -6.008 -0.491 -7.042 0.582

Δ𝑦,mm -0.224 -0.721 -0.721 -0.004 -0.004

Δ𝑧,mm 0 -16.596 -11.119 -15.897 -9.636

Δ𝑟,mm —— 0 -7.007 0 -8.706

ϕ, deg 0.087 0.521 0.521 0.502 0.457

h, mm/deg 75.692 29.255 20.818 29.326 20.963

s, mm 6.6 15.247 10.85 14.734 9.59

LS zone radius, mm 2.034 3.286 1.935 3.752 3.655

Min zone rad, mm 1.059 1.501 1.029 1.77 1.686

Table 7.10 Line Coordinates of the Least Square Fit of Total Points along Outer Profile.

Line Coordinates Straight Arc, ∆𝑟 = 0 Arc, ∆𝑟 ≠ 0 Assy, ∆𝑟 = 0 Assy, ∆𝑟 ≠ 0

L, radians -0.787 0.18 0.18 -0.041 -0.045

M, radians 0.616 0 0 -0.416 -0.046

N, radians 0 -0.984 -0.984 -0.909 -0.998

𝑃l, mm -2207.68 -961.558 -268.157 -734.369 126.734

𝑄l, mm -2820.54 -79.255 -79.255 697.796 54.878

𝑅l, mm 0 -175.558 -48.959 -286.143 -8.235

Z-intercept, mm 2311.5 —— —— —— ——

Table 7.11 Least Square Zone Size of Different Profiles.

Least squares zone

(Radius, mm)

Inner

Sampling

Outer

Sampling

Inner

Total

Outer

Total

Straight Profile 1.121 1.396 1.547 2.034

Arc Profile 1.715 2.995 2.191 3.286

Arc with size change 0.609 1.472 1.12 1.935

Assembly Profile 2.413 3.928 2.673 3.752

47

Assembly with size change 1.51 3.817 1.578 3.655

Table 7.12 True Minimum Zone Size of Different Profiles.

True minimum zone

(Radius, mm)

Inner

Sampling

Outer

Sampling

Inner

Total

Outer

Total

Straight Profile 0.689 0.847 0.825 1.059

Arc Profile 1.350 1.500 1.351 1.501

Arc with size change 0.444 0.981 0.505 1.029

Assembly Profile 1.621 1.743 1.65 1.77

Assembly with size change 1.214 1.643 1.267 1.686

11 Point Straight Line Profile

Fig 7.4 Least Squares Zone Boundary for 11 Points on the Straight Portion of the Inner

Profile.

48

The screw coordinates of the SDT for the Least Squares Fit are L = -

0.8676816753875916, M = -0.4971202170467245, N = 0, P = 1036.699263691128, Q =

-1809.4716793786192, and R = 0. The zone magnitude (radius in mm) is

0.9781767537409084

Fig 7.5 True Minimum Zone Boundary for 11 Points on the Straight Portion of the Inner

Profile.

For True Minimum Zone fit the zone magnitude (radius in mm) is

0.6143731306047372 and the line coordinates of the true minimum zone axis is

49

[0.0986587098, 0.23447333435999998, -499.15010329853556, 114.08398211599791,

12.278273535654483, 0.028316745057440418]

50

9 Point Arc Profile

Fig 7.6 Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc

Portion of the Inner Profile.

The screw coordinates of the SDT for the Least Squares Fit are L = -

0.6810376565080728, M = 0, N = 0.7322483939333648, P = 168.2171450051991, Q =

271.51507039120753, and R = 156.45266164864367. The zone magnitude (radius in

mm) is 1.6342358007856808

51

Fig 7.7 Projection of Toroidal True Minimum Zone Boundary for 9 Points on the Arc

Portion of the Inner Profile.

For True Minimum Zone fit the zone magnitude (radius in mm) is

1.3081461525525635 and the line coordiantes of the true minimum zone axis is [-

0.322208176, 1.263710878, -386.19293186126146, 182.99174177142638,

94.00693285842485, 0.15493848640106325]

52

9 Point Arc Profile with Size Change

Fig 7.8 Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc

Portion of the Inner Profile with Size Change.

The screw coordinates of the SDT for the Least Squares Fit are L = -

0.6810376565080728, M = 0, N = 0.7322483939333648, P = -425.28231911758354, Q =

271.51507039120753, and R = -395.5396507056241. The zone magnitude (radius in

mm) is 0.6087075040987826

53

Fig 7.9 Projection of Toroidal True Minimum Zone Boundary for 9 Points on the Arc

Portion of the Inner Profile with Size Change.

For True Minimum Zone fit the zone magnitude (radius in mm) is

0.4038519137982327 and the line coordinates of the true minimum zone axis is

[0.409833541, 0.609878762, -398.99300613250654, 69.86577447600716, -

88.65369719531978, -0.06374715584750915]

54

19 Point J-shape Profile

Fig 7.10 Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with

Size Change.

The screw coordinates of the SDT for the Least Squares Fit are L =

0.0236007377696814, M = 0.62019014063756, N = -0.784096419219396, P =

2971.90601742116, Q = -814.554362251714, and R = -554.82897157168. The zone

magnitude (radius in mm) is 2.1721925461560327

55

Fig 7.11 True Minimum Zone Boundary for 19 Points on the J-shaped Inner Profile

When Unwrapped onto a Straight Line.

The true minimum zone fit magnitude (radius in mm) is 1.5127055727360417

and the line coordinates of the true minimum zone axis is [3.05001632, 2.49843188, -

884.988161426439, 876.0182223181955, -1142.7886289042638, -

0.20713233900502792]

56

19 Point J-shape Profile with Size Change

Fig 7.12 Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with

Size Change When Unwrapped onto a Straight Line.

The screw coordinates of the SDT for the Least Squares Fit are L =

0.026503637579415, M = -0.47322916679475, N = -0.88054057992224, P =

163.864006522574, Q = 1912.6525655547, and R = -1022.98520734124. The zone

magnitude (radius in mm) is 1.2666840840111688.

57

Fig 7.13 True Minimum Zone Boundary for 19 Points on J-shaped Inner Profile with Size

Change When Unwrapped onto a Straight Line.

For True Minimum Zone fit the zone magnitude (radius in mm) is

0.9758224692007229 and the line coordiantes of the true minimum zone axis is

[0.23889283760000002, 1.57789168, -897.9557096779063, 616.80679705544, -

59.71919153901355, 0.05915693832255892]

58

REFERENCES

[1]. Joshi, A. (2020). Quantifying Deformations in Flexible Assemblies Using Least

Square Fit and Capture Zone Techniques (MS Thesis, Arizona State University).

[2]. Adrian, A., Ramnath, S., Sunkara, S. C., Korkolis, Y., Davidson, J. K., & Shah, J. J.

(2022). Curating datasets of flexible assemblies to predict spring-back behavior for

machine learning purposes. Volume 2: Manufacturing Processes; Manufacturing

Systems. https://doi.org/10.1115/msec2022-85718

[3]. Shah, J.J., Detwiler, D.T., Korkolis, Y., and Davidson, J. K., 2001, “Collaborative

Research, GOALI: Mapping Design Space with Distributed Machine Learning

Networks for Precision Engineering of Flexible Assemblies”, NSF GOALI Award

No. 2029905 to Ohio State University and Arizona State University.

[4]. A. Makinouchi, E. Nakamchi, E. Onate, and R. Wagoner, “NUMISHEET ’93,” 1993.

[5]. Davidson, J. K., & Hunt, K. H. (2004). Robots and screw theory: Applications of

kinematics and statics to robotics. Oxford University Press.

[6]. Mohan, P., Haghighi, P., Shah, J. J., and Davidson, J. K. (2015). Development of a

library of feature fitting algorithms for CMMs. International Journal of Precision

Engineering and Manufacturing, 16(10), 2101–2113. https://doi.org/10.1007/s12541-

015-0272-1

[7]. Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1986).

Numerical Recipes. Cambridge University Press.

[8]. Hansen, P. C., Pereyra, V. and Scherer, G. (2014). Least squares data fitting with

applications. Johns Hopkins University Press.

https://doi.org/10.1115/msec2022-85718
https://doi.org/10.1007/s12541-015-0272-1
https://doi.org/10.1007/s12541-015-0272-1

59

[9]. Srinivasan, V., Shakarji, C.M. and Morse, E.P. (2013). On the Enduring Appeal of

Least-squares Fitting in Computational Coordinate Metrology. Journal of Computing

and Information Science in Engineering, https://doi.org/10.1115/1.3647877

[10]. Eberly, D. (2017). Least squares fitting of data.

https://www.cse.iitb.ac.in/~cs749/spr2017/handouts/eberly_least_square_fitting.pdf

Last accessed, April, 2023.

[11]. Gohari, H. and Barari, A. (2016). A quick deviation zone fitting in coordinate

metrology of NURBS surfaces using principle component analysis. Measurement, 92,

352–364. https://doi.org/10.1016/j.measurement.2016.05.050

[12]. Strang, G. (2021). Introduction to linear algebra. Cambridge University Press.

[13]. Shakarji, C. M. and Srinivasan, V. (2013). Theory and algorithms for weighted total

least-squares fitting of lines, planes, and parallel planes to support tolerancing

standards. Journal of Computing and Information Science in Engineering, 13(3).

https://doi.org/10.1115/1.4024854.

[14]. Nassef, A. O. and ElMaraghy, H. A. (1999). Determination of best objective

function for evaluating geometric deviations. The International Journal of Advanced

Manufacturing Technology, 15(2), 90–95. https://doi.org/10.1007/s001700050044.

[15]. Davidson, J. K., Savaliya, S. B., He, Y. and Shah, J. J. (2012). Methods of robotics

and the pseudoinverse to obtain the least-squares fit of measured points on line-

profiles. Volume 5: 6th International Conference on Micro- and Nanosystems; 17th

Design for Manufacturing and the Life Cycle Conference.

https://doi.org/10.1115/detc2012-70203

https://doi.org/10.1115/1.3647877
https://www.cse.iitb.ac.in/~cs749/spr2017/handouts/eberly_least_square_fitting.pdf
https://doi.org/10.1016/j.measurement.2016.05.050
https://doi.org/10.1115/1.4024854
https://doi.org/10.1007/s001700050044
https://doi.org/10.1115/detc2012-70203

60

[16]. Davidson, J., Savaliya, S. and Shah, J. J. (2013). Least-squares fit of measured

points for square line-profiles. Procedia CIRP, 10, 203–210.

https://doi.org/10.1016/j.procir.2013.08.032

[17]. Davidson, J.K., Savaliya, S., and Shah, J.J. (2013). Screws and Robotics for

Metrology. In Advances in Mechanisms, Robotics and Design Education and

Research (eds V. Kumar, J. Schmiedeler, S.V. Sreenivasan, and H-J Su).

[18]. He, Y., Kalish, N.J., Davidson, J.K., and Shah, J.J. (2016). Tolerance-Maps for

Line-Profiles Formed by Intersecting Kinematically Transformed Primitive T-Map

Elements. J. of Computing and Information Science in Engrg., Vol. 16(2),

https://doi.org/10.1115/1.4033236.

[19]. Liu, S. C., Hu, S. J., and Woo, T. C. (1996). Tolerance analysis for Sheet Metal

Assemblies. Journal of Mechanical Design, 118(1), 62–67.

https://doi.org/10.1115/1.2826857

[20]. J. Y. Lee, M.-G. Lee, and F. Barlat, “Evaluation of Constitutive Models for

Springback Prediction in U-draw∕bending of DP and TRIP Steel Sheets,” in AIP

Conference Proceedings, 2011, pp. 571–578.

[21]. Lei, X., Song, H., Xue, Y., Li, J., Zhou, J., and Duan, M. (2011). Method for

cylindricity error evaluation using geometry optimization searching algorithm.

Measurement, 44(9), 1556–1563. https://doi.org/10.1016/j.measurement.2011.06.010

https://doi.org/10.1016/j.procir.2013.08.032
https://doi.org/10.1115/1.4033236
https://doi.org/10.1115/1.2826857
https://doi.org/10.1016/j.measurement.2011.06.010

61

APPENDIX

62

A. 11 – POINT LINE PROFILE FITTING

A program has been developed to find the least squares fit of points along a 3D line

profile. The way of implementations is first we need to take the points along the nominal

profile in our case the points are along the nominal profile which is the Z-axis we first

change the Origin by -250mm along the axis which changes the points and now we find

the line coordinates for each point which is [0, Z, 0; 1, 0, 0] when taken along the XZ

plane and [-Z, 0, 0; 0, 1, 0] along the YZ plane and these line coordinates of each point

we can find a set of equations which doesn’t have a definite solution so we go for least

squares method. which gives the SDT of the LSF line with the nominal profile.

The equations involve are.

[$𝐿−𝑆] = [𝑘′]#[𝑑] = (([𝑘′]𝑇[𝑘′])−1[𝑘′]𝑇)[𝑑]

Where the $L-S is the angular and positional components which are used to find the

small displacement torsor (SDT) which gives the location of the Least Squares line with

respect to the nominal profile. The K is the matrix developed with the line coordinates of

each actuator to node along the profile and the d is the deflections of the points along the

axis in this based on the view the deflection values are given by the X and Y coordinates

of the points. Using the values of $L-S we can find the phi which is the angular orientation

and h which is pitch of the line and using these we can find the [L, M, N; P, Q, R] of the

SDT using these values we can generate a transformation matrix as mentioned in [4]

using which we can find the transformed points which lies on the least squares line.

Using which we can find the zone magnitude. The below program deals with these.

import numpy as np

63

import matplotlib.pyplot as plt

Initialization of the parameters

OrignalPoints = np.array([[-2.4190e+02, 7.4250e-01, 4.9002e+02],

 [-2.4184e+02, 5.3490e-01, 4.5102e+02],

 [-2.4179e+02, 3.0300e-01, 4.0103e+02],

 [-2.4175e+02, 9.9200e-02, 3.5103e+02],

 [-2.4171e+02, -6.6700e-02, 3.0103e+02],

 [-2.4167e+02, -1.9560e-01, 2.5103e+02],

 [-2.4163e+02, -3.0480e-01, 2.0102e+02],

 [-2.4160e+02, -3.9400e-01, 1.5103e+02],

 [-2.4156e+02, -4.4430e-01, 1.0103e+02],

 [-2.4153e+02, -2.0430e-01, 5.1040e+01],

 [-2.4150e+02, 9.8220e-01, 1.0420e+00]])

dist_from_origin_to_pts = 250 # To transform the origin to (-250,0,0)

itrsize = len(OrignalPoints)

di = []

kprime = []

Creating a Deflection 'd' Matrix

for i in range (itrsize):

 di.append(dist_from_origin_to_pts+OrignalPoints[i][0])

 di.append(OrignalPoints[i][1])

di = np.transpose(np.reshape(di,(2*itrsize)))

Creating a K matrix

for i in range (itrsize):

 kprime.append([0,OrignalPoints[i][2],1,0])

 kprime.append([-OrignalPoints[i][2],0,0,1])

kprime = np.reshape(kprime,(2*itrsize,4))

Applying Least squares fit for the equations

kprTranspose=np.transpose(kprime)

intermediate=np.linalg.inv(np.matmul(kprTranspose,kprime))

kmoorePenrose=np.matmul(intermediate,kprTranspose)

pd=np.matmul(kmoorePenrose,di)

deltatheta_x=pd[0]*(180/np.pi)

deltatheta_y=pd[1]*(180/np.pi)

deltatheta_z=0

delta_x=pd[2]

delta_y=pd[3]

delta_z=0

delta_r=0

print("deltatheta_x={}, deltatheta_y={}, delta_x={},

delta_y={}".format(deltatheta_x,deltatheta_y,delta_x,delta_y))

Finding the values of PHI, h(pitch) and s

phi=np.sqrt((np.power(pd[0],2))+(np.power(pd[1],2)))

h=((pd[0]*pd[2])+(pd[1]*pd[3]))/((np.power(pd[0],2))+(np.power(pd[1],2)))

s=phi*h

print("Phi={}, Pitch(h)={}, s={}".format(phi*(180/np.pi), h*(np.pi)/180, s))

64

Finding the Plucker Coordinates [L, M, N; P, Q, R]

l=pd[0]/phi

m=pd[1]/phi

n=0

p=(delta_x-(h*pd[0]))/phi

q=(delta_y-(h*pd[1]))/phi

r=0

print("L={}, M={}, N={}".format(l,m,n))

print("P={}, Q={}, R={}".format(p,q,r))

Distance of the SDT line coordinates on the nominal profile axis

zt1=-p/m

zt2=q/l

print("Distance of the least squares line in the coordinate axis is {}".format(zt1))

Finding the Nominal X,Y and Z of the Least Squares fit Line

vphi=1-np.cos(phi)

x_nom=vphi*(m*r-n*q)+p*np.sin(phi)+l*s

y_nom=vphi*(n*p-l*r)+q*np.sin(phi)+m*s

z_nom=vphi*(l*q-m*p)+r*np.sin(phi)+n*s

print("vphi={}, X_nom={}, Y_nom={}, Z_nom={}".format(vphi,x_nom,y_nom,z_nom))

Creating a Matrix to find the trasformed points

trnomls1=np.array([(vphi*np.power(l,2)+np.cos(phi)), (vphi*l*m-n*np.sin(phi)),

(vphi*l*n+m*np.sin(phi)), x_nom])

trnomls2=np.array([(vphi*l*m+n*np.sin(phi)), (vphi*np.power(m,2)+np.cos(phi)), (vphi*m*n-

l*np.sin(phi)), y_nom])

trnomls3=np.array([(vphi*l*n-m*np.sin(phi)), (vphi*n*m+l*np.sin(phi)),

(vphi*np.power(n,2)+np.cos(phi)), z_nom])

trnomls4=np.array([0,0,0,1])

trnomls=np.vstack([trnomls1,trnomls2,trnomls3,trnomls4])

invtrnomls=np.linalg.inv(trnomls)

print("The trasformation matrix is \n{}".format(invtrnomls))

Original points transformed along the Leasts squares line

origptset=[]

for i in range (itrsize):

origptset.append([dist_from_origin_to_pts+OrignalPoints[i][0],OrignalPoints[i][1],OrignalPoints[

i][2],1])

origptset=np.reshape(origptset,(itrsize,4)) # The origin is translated to (-250,0,0)

origptsetCol=np.transpose(origptset)

ptset = np.matmul(invtrnomls,origptsetCol)

print("The transformed points of the original points along the Least squares line is

\n{}".format(repr(np.transpose(ptset[0:3])))) # Transformed Points

Finding the least Squares Sum

lssum=0

for i in range (itrsize):

 lssum=lssum+np.power((ptset[0,i]),2)+np.power((ptset[1,i]),2)

print("The least squares sum value is {}".format(lssum))

65

Finding the Zone magnitude

ptlsdist=[]

for i in range (itrsize):

 ptls=np.sqrt((np.power(ptset[0,i],2))+(np.power(ptset[1,i],2)))

 ptlsdist.append(ptls)

Ptlstdist=np.hstack(ptlsdist)

zonemag=np.max(ptlsdist)

print("The zone magnitude (radius) is {}".format(zonemag))

Plotting of points along the z-axis

center=(0,0)

circledist=[]

XCords=ptset[0]

YCords=ptset[1]

ZCords=ptset[2]

for i in range (itrsize):

 circledist.append(np.sqrt(np.square(XCords[i])+np.square(YCords[i])))

plt.figure(figsize=(10, 10))

plt.axis('equal')

plt.plot(center[0],center[1],'go')

plt.title('Least Squares Fit of 11 Points')

plt.xlabel('X - Axis')

plt.ylabel('Y - Axis')

plt.axis('equal')

plt.gca().add_patch(plt.Circle((center[0],center[1]),max(circledist),fill=False))

for i in range (itrsize):

 plt.plot([center[0],XCords[i]],[center[1],YCords[i]],'r')

 plt.plot(XCords[i],YCords[i],'ro')

 plt.text(XCords[i],YCords[i],i+1)

plt.show()

The output of the program is as follows:

deltatheta_x=-0.0540075905907143, deltatheta_y=-0.045283898104306164,

delta_x=8.517611415805774, delta_y=-0.14003470744737345

Phi=0.07048014804847813, Pitch(h)=-91.32940177382942, s=-6.436909758198438

L=-0.76628089023829, M=-0.6425057176832076, N=0

P=2914.478061710077, Q=-3475.936139152482, R=0

The zone magnitude (radius) is 1.1213798503766341.

66

Fig A.1. Least Squares Zone Boundary for 11 Points on the Straight Portion of the Inner

Profile.

B. 9 POINT ARC FITTING

For dealing with the Least squares fit for an arc which is spanned over the XZ plane

with the arc of 250mm radius as the nominal profile. We first found the angles the points

have been making along the XZ plane and the magnitude of length in the XZ plane from

the origin now using these values. We need to find the forces and torques applied by the

actuators of assumed platform robot and find the line coordinates and the deflections

caused by them and using these we can find the matrices K and d and using these by

applying the least squares we can find the angular movement and displacement of the

nominal profile we can also find the line coordinates of the Small Displacement Torsor

67

(SDT). We can find the transformation matrix which gives the transformed coordinates

along the Least squares fit line we could determine the zone size using these coordinates.

The Program to find this least square profile is give below.

import numpy as np

import matplotlib.pyplot as plt

Initialization of the parameters

OriginalPoints=np.array([[-2.4150e+02, 9.8220e-01, 1.0420e+00],

 [-2.3920e+02, 1.7540e+00, -4.5510e+01],

 [-2.2611e+02, 1.5195e+00, -9.5780e+01],

 [-2.0703e+02, 1.3136e+00, -1.3502e+02],

 [-1.7507e+02, 1.2240e+00, -1.7691e+02],

 [-1.4182e+02, 1.3043e+00, -2.0599e+02],

 [-9.5550e+01, 1.6049e+00, -2.3231e+02],

 [-5.3220e+01, 2.0476e+00, -2.4617e+02],

 [-2.4100e-02, 2.7479e+00, -2.5212e+02]])

itrsize = len(OriginalPoints)

Finding the Angles made by the points along the xz plane

alpha=[]

for i in range (itrsize):

 alphas=np.arctan2(OriginalPoints[i,0],OriginalPoints[i,2])

 alpha.append(alphas)

alp=np.hstack(alpha)

print("The alpha values are {}".format(alp))

Finding the magnitudes of the coordinates in the xz plane

magnitude=[]

for i in range (itrsize):

 magnitudes=np.sqrt(np.power(OriginalPoints[i,0],2)+np.power(OriginalPoints[i,2],2))

 magnitude.append(magnitudes)

mag=np.hstack(magnitude)

Initializing the Deflection Values (d matrix)

dlvalue=[]

for i in range (itrsize):

 dlvalue.append((250-mag[i]))

 dlvalue.append(OriginalPoints[i,1])

di=np.hstack(dlvalue)

Initializing of the Kprime matrix

kprime=[]

for i in range (itrsize):

 kprime.append([0,0,-OriginalPoints[i,0]/mag[i],0,-OriginalPoints[i,2]/mag[i]])

 kprime.append([-250*np.cos(alp[i]),250*np.sin(alp[i]),0,1,0])

kprime=np.reshape(kprime,((itrsize*2),5))

Applying least squares fit to the equations

68

kprTranspose=np.transpose(kprime)

intermediate=np.linalg.inv(np.matmul(kprTranspose,kprime))

kmoorePenrose=np.matmul(intermediate,kprTranspose)

pd=np.matmul(kmoorePenrose,di)

deltatheta_x=((180*pd[0])/np.pi)

deltatheta_y=0

deltatheta_z=((180*pd[1])/np.pi)

delta_x=pd[2]

delta_y=pd[3]

delta_z=pd[4]

delta_r=0

print ("deltatheta_x = {}, deltatheta_z = {}".format(deltatheta_x,deltatheta_z))

print("delta_x = {}, delta_y = {}, delta_z = {}".format(delta_x,delta_y,delta_z))

Finding the values of PHI, h(pitch) and S

phi=np.sqrt(np.power(pd[0],2)+np.power(pd[1],2))

h=((pd[0]*pd[2])+(pd[1]*pd[4]))/(np.power(pd[0],2)+np.power(pd[1],2))

s=phi*h

print("Phi={}, Pitch(h)={}, s={}".format(phi*(180/np.pi), h*(np.pi)/180, s))

Finding the Plucker Coordinates

l=pd[0]/phi

m=0

n=pd[1]/phi

p=(delta_x - h*pd[0])/phi

q=delta_y/phi

r=(delta_z - h*pd[1])/phi

print("L={}, M={}, N={}, P={}, Q={}, R={}".format(l,m,n,p,q,r))

Finding the Nominal X,Y and Z of the least squares fit line

x_nomls=p*np.sin(phi)+l*s

y_nomls=q*np.sin(phi)+m*s

z_nomls=r*np.sin(phi)+n*s

print("The Nominal X, Y and Z of the least squares line are

{},{},{}".format(x_nomls,y_nomls,z_nomls))

Creating a Matrix to find the trasformed points

tr1=np.array([np.cos(phi), -n*np.sin(phi), m*np.sin(phi), x_nomls])

tr2=np.array([n*np.sin(phi), np.cos(phi), -l*np.sin(phi), y_nomls])

tr3=np.array([-m*np.sin(phi), l*np.sin(phi), np.cos(phi), z_nomls])

tr4=np.array([0,0,0,1])

tr_nomls=np.vstack([tr1,tr2,tr3,tr4])

invtrnomls=np.linalg.inv(tr_nomls)

print("The trasformation matrix is \n{}".format(invtrnomls))

Original points transformed along hte least squares line

origptset=np.append(OriginalPoints,np.ones((itrsize,1)),axis=1)

origptsetCol=np.transpose(origptset)

ptset = np.matmul(invtrnomls,origptsetCol)

TransformedPoints=np.transpose(ptset[0:3])

69

print("The transformed points of the original points along the Least squares line is

\n{}".format(TransformedPoints)) # Transformed Points

Finding the zone magnitude

pltsdist=[]

for i in range (itrsize):

 magnitudels=np.sqrt(np.power(ptset[0,i],2)+np.power(ptset[2,i],2))

 pltsdist.append(np.sqrt(np.power((250-magnitudels),2)+np.power(ptset[1,i],2)))

zonemag=np.max(pltsdist)

print("The zone magnitude (radius) is {}".format(zonemag))

Unwrapping of points on the least squares fit arc

newcords=[]

for i in range (itrsize):

 alp=np.arctan2(TransformedPoints[i,0],TransformedPoints[i,2])

 mag=np.sqrt(np.power(TransformedPoints[i,0],2)+np.power(TransformedPoints[i,2],2))

 newcords.append([250-mag, TransformedPoints[i,1], 250*((np.pi/2)+alp)])

newcords=np.reshape(newcords,(itrsize,3))

print("The unwrapped coordinates are {}".format(repr(newcords)))

Plotting of points along the z-axis

center=(0,0)

circledist=[]

XCords=newcords[:,0]

YCords=newcords[:,1]

ZCords=newcords[:,2]

for i in range (len(XCords)):

 circledist.append(np.sqrt(np.square(XCords[i])+np.square(YCords[i])))

plt.figure(figsize=(10, 10))

plt.plot(center[0],center[1],'go')

plt.axis('equal')

plt.title('Least Squares Fit of 9 Points Arc')

plt.xlabel('X - Axis')

plt.ylabel('Y - Axis')

plt.gca().add_patch(plt.Circle((center[0],center[1]),max(circledist),fill=False))

for i in range (len(newcords)):

 plt.plot([center[0],XCords[i]],[center[1],YCords[i]],'r')

 plt.plot(XCords[i],YCords[i],'ro')

 plt.text(XCords[i],YCords[i],i+1)

plt.show()

The Output of the above program is:

deltatheta_x = -0.2379620481478811, deltatheta_z = 0.47753821566048144 delta_x =

6.823709569304667, delta_y = 3.549024554723155, delta_z = -3.8105229466022563

70

Phi=0.533543516289844, Pitch(h)=-12.096357730920312, s=-6.453933238055062

L=-0.446003073568623, M=0, N=0.8950314287036748, P=423.668055036129,

Q=381.12004394308434, R=211.1180106743644

The zone magnitude (radius) is 1.6947389152410268.

Fig B.1. Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc

Portion of the Inner Profile.

C. 9 POINT ARC WITH SIZE CHANGE

This program is like the previous 9-point arc program, but this includes the size

change. The nominal shape in the previous case is fixed which is an arc of 250mm radius

in the xz plane. This code allows the flexibility of nominal shape to be of suitable

appropriate radius for better fitting options. The code for this is as follows.

71

import numpy as np

import matplotlib.pyplot as plt

Initialization of the parameters

OriginalPoints=np.array([[-2.4150e+02, 9.8220e-01, 1.0420e+00],

 [-2.3920e+02, 1.7540e+00, -4.5510e+01],

 [-2.2611e+02, 1.5195e+00, -9.5780e+01],

 [-2.0703e+02, 1.3136e+00, -1.3502e+02],

 [-1.7507e+02, 1.2240e+00, -1.7691e+02],

 [-1.4182e+02, 1.3043e+00, -2.0599e+02],

 [-9.5550e+01, 1.6049e+00, -2.3231e+02],

 [-5.3220e+01, 2.0476e+00, -2.4617e+02],

 [-2.4100e-02, 2.7479e+00, -2.5212e+02]])

itrsize = len(OriginalPoints) ## for looping through the points and creation of matrices

Finding the Angles made by the points along the xz plane

alpha=[]

for i in range (itrsize):

 alphas=np.arctan2(OriginalPoints[i,0],OriginalPoints[i,2])

 alpha.append(alphas)

alp=np.hstack(alpha)

Finding the magnitudes of the coordinates in the xz plane

magnitude=[]

for i in range (itrsize):

 magnitudes=np.sqrt(np.power(OriginalPoints[i,0],2)+np.power(OriginalPoints[i,2],2))

 magnitude.append(magnitudes)

mag=np.hstack(magnitude)

Initializing the Deflection Values (d matrix)

dlvalue=[]

for i in range (itrsize):

 dlvalue.append((250-mag[i]))

 dlvalue.append(OriginalPoints[i,1])

di=np.hstack(dlvalue)

Initializing of the Kprime matrix

kprime=[]

for i in range (itrsize):

 kprime.append([0,0,-OriginalPoints[i,0]/mag[i],0,-OriginalPoints[i,2]/mag[i], -1])

 kprime.append([-250*np.cos(alp[i]),250*np.sin(alp[i]),0,1,0,0])

kprime=np.reshape(kprime,((itrsize*2),6))

Applying least squares fit to the equations to get the angular displacement and location of the

Nominal shape with respect to Least squares line

kprTranspose=np.transpose(kprime)

intermediate=np.linalg.inv(np.matmul(kprTranspose,kprime))

kmoorePenrose=np.matmul(intermediate,kprTranspose)

pd=np.matmul(kmoorePenrose,di)

72

deltatheta_x=((180*pd[0])/np.pi)

deltatheta_y=0

deltatheta_z=((180*pd[1])/np.pi)

delta_x=pd[2]

delta_y=pd[3]

delta_z=pd[4]

delta_r=pd[5]

print ("deltatheta_x = {}, deltatheta_z = {}".format(deltatheta_x,deltatheta_z))

print("delta_x = {}, delta_y = {}, delta_z = {}, delta_r = {}".format(delta_x,delta_y,delta_z,delta_r))

Finding the values of PHI, h(pitch) and S

phi=np.sqrt(np.power(pd[0],2)+np.power(pd[1],2))

h=((pd[0]*pd[2])+(pd[1]*pd[4]))/(np.power(pd[0],2)+np.power(pd[1],2))

s=phi*h

print("Phi={}, Pitch(h)={}, s={}".format(phi*(180/np.pi), h*(np.pi)/180, s))

Finding the Plucker Coordinates [L, M, N; P, Q, R]

l=pd[0]/phi

m=0

n=pd[1]/phi

p=(delta_x - h*pd[0])/phi

q=delta_y/phi

r=(delta_z - h*pd[1])/phi

print("L={}, M={}, N={}, P={}, Q={}, R={}".format(l,m,n,p,q,r))

Finding the Nominal X,Y and Z of the least squares fit line

vp=1-np.cos(phi)

x_nomls=p*np.sin(phi)+l*s+vp*(m*r-n*q)

y_nomls=q*np.sin(phi)+m*s+vp*(n*p-l*r)

z_nomls=r*np.sin(phi)+n*s+vp*(l*q-m*p)

print("The Nominal X, Y and Z of the least squares line are

{},{},{}".format(x_nomls,y_nomls,z_nomls))

Creating a Matrix to find the trasformed points

tr1=np.array([vp*(np.square(l))+np.cos(phi), vp*m*l-n*np.sin(phi), vp*l*n+m*np.sin(phi), x_nomls])

tr2=np.array([vp*m*l+n*np.sin(phi), vp*(np.square(m))+np.cos(phi), vp*m*n-l*np.sin(phi),

y_nomls])

tr3=np.array([vp*n*l-m*np.sin(phi), vp*m*n+l*np.sin(phi), vp*(np.square(n))+np.cos(phi),

z_nomls])

tr4=np.array([0,0,0,1])

tr_nomls=np.vstack([tr1,tr2,tr3,tr4])

invtrnomls=np.linalg.inv(tr_nomls)

print("The trasformation matrix is \n{}".format(invtrnomls))

Original points transformed along hte least squares line

origptset=np.append(OriginalPoints,np.ones((itrsize,1)),axis=1)

origptsetCol=np.transpose(origptset)

ptset = np.matmul(invtrnomls,origptsetCol)

TransformedPoints=np.transpose(ptset[0:3])

73

print("The transformed points of the original points along the Least squares line is

\n{}".format(TransformedPoints)) # Transformed Points

Finding the zone magnitude

pltsdist=[]

for i in range (itrsize):

 magnitudels=np.sqrt(np.power(ptset[0,i],2)+np.power(ptset[2,i],2))

 pltsdist.append(np.sqrt(np.power((250+delta_r-magnitudels),2)+np.power(ptset[1,i],2)))

zonemag=np.max(pltsdist)

print("The zone magnitude (radius) is {}".format(zonemag))

Unwrapping of points on the least squares fit arc

newcords=[]

for i in range (itrsize):

 alp=np.arctan2(TransformedPoints[i,0],TransformedPoints[i,2])

mag=np.sqrt(np.power(TransformedPoints[i,0],2)+np.power(TransformedPoints[i,2],2))

 newcords.append([250+delta_r-mag, TransformedPoints[i,1], (250+delta_r)*((np.pi/2)+alp)])

newcords=np.reshape(newcords,(itrsize,3))

print("The unwrapped points are {}".format(repr(newcords)))

Plotting of points along the z-axis

center=(0,0)

circledist=[]

XCords=newcords[:,0]

YCords=newcords[:,1]

ZCords=newcords[:,2]

for i in range (len(XCords)):

 circledist.append(np.sqrt(np.square(XCords[i])+np.square(YCords[i])))

plt.figure(figsize=(25, 25))

plt.plot(center[0],center[1],'go')

plt.axis('equal')

plt.title('Least Squares Fit of 9 Points Arc with size change')

plt.xlabel('X - Axis')

plt.ylabel('Y - Axis')

plt.gca().add_patch(plt.Circle((center[0],center[1]),max(circledist),fill=False))

for i in range (len(newcords)):

 plt.plot([center[0],XCords[i]],[center[1],YCords[i]],'r')

 plt.plot(XCords[i],YCords[i],'ro')

 plt.text(XCords[i],YCords[i],i+1)

plt.show()

The output of the above code is:

deltatheta_x = -0.2379620481478811, deltatheta_z = 0.47753821566048144 delta_x =

0.43504684441878094, delta_y = 3.549024554723155, delta_z = -10.137169495160746,

delta_r = -8.001115119283417

74

Fig C.1. Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc

Portion of the Inner Profile with Size Change.

Phi=0.533543516289844, Pitch(h)=-17.36900035907819, s=-9.26711752602214

L=-0.446003073568623, M=0, N=0.8950314287036748, P=-397.1305725766778,

Q=381.12004394308434, R=-197.89411890686418

The zone magnitude (radius) is 0.6088761796412765.

D. 19 POINTS J SHAPED PROFILE FITTING

The J-Shaped profile is the combination of both the straight line and the arc profile

we have delt in the previous cases. The program is to find the Least Squares fit of the

given profile in the 3D space. Similar to the others we assume a nominal profile for the J-

75

section and take the screw coordinates of the points as described in the chapter 2 using

which we form a set of equations which doesn’t have a definite solution and so we go for

the least squares solution. Which gives the angular orientation and location of the least

squares fit profile with respect to the Nominal profile. The program is given below.

import numpy as np

import matplotlib.pyplot as plt

Initialization of the parameters

OriginalPoints=np.array([[-2.4190e+02, 7.4250e-01, 4.9002e+02],

 [-2.4184e+02, 5.3490e-01, 4.5102e+02],

 [-2.4179e+02, 3.0300e-01, 4.0103e+02],

 [-2.4175e+02, 9.9200e-02, 3.5103e+02],

 [-2.4171e+02, -6.6700e-02, 3.0103e+02],

 [-2.4167e+02, -1.9560e-01, 2.5103e+02],

 [-2.4163e+02, -3.0480e-01, 2.0102e+02],

 [-2.4160e+02, -3.9400e-01, 1.5103e+02],

 [-2.4156e+02, -4.4430e-01, 1.0103e+02],

 [-2.4153e+02, -2.0430e-01, 5.1040e+01],

 [-2.4150e+02, 9.8220e-01, 1.0420e+00],

 [-2.3920e+02, 1.7540e+00, -4.5510e+01],

 [-2.2611e+02, 1.5195e+00, -9.5780e+01],

 [-2.0703e+02, 1.3136e+00, -1.3502e+02],

 [-1.7507e+02, 1.2240e+00, -1.7691e+02],

 [-1.4182e+02, 1.3043e+00, -2.0599e+02],

 [-9.5550e+01, 1.6049e+00, -2.3231e+02],

 [-5.3220e+01, 2.0476e+00, -2.4617e+02],

 [-2.4100e-02, 2.7479e+00, -2.5212e+02]])

dist_from_origin_to_pts=250 # To transform the origin to (-250,0,0)

itrsize=len(OriginalPoints)

Creation of the deflections (d) matrix

deflections1 = []

deflections2 = []

for i in range (itrsize):

 if (OriginalPoints[i,2]>0):

 deflections1.append(dist_from_origin_to_pts+OriginalPoints[i,0])

 deflections1.append(OriginalPoints[i,1])

 else:

 deflections2.append(dist_from_origin_to_pts-

np.sqrt(np.square(OriginalPoints[i,0])+np.square(OriginalPoints[i,2])))

 deflections2.append(OriginalPoints[i,1])

di=np.transpose(np.append(deflections1,deflections2))

Creation of the K matrix

76

kprime1=[]

kprime2=[]

for i in range (itrsize):

 if (OriginalPoints[i,2]>0):

 kprime1.append(np.array([0,OriginalPoints[i,2],0,1,0,0]))

 kprime1.append(np.array([-OriginalPoints[i,2],0,0,0,1,0]))

 else: mag=np.sqrt(np.square(OriginalPoints[i,0])+np.square(OriginalPoints[i,2]))

 alp=np.arctan2(OriginalPoints[i,0],OriginalPoints[i,2])

 kprime2.append(np.array([0,0,0,-OriginalPoints[i,0]/mag,0,-OriginalPoints[i,2]/mag]))

 kprime2.append(np.array([-250*np.cos(alp),0,250*np.sin(alp),0,1,0]))

kprime=np.append(kprime1,kprime2).reshape(2*len(OriginalPoints),6)

Application of Least Squares fit to the equations

kprTranspose=np.transpose(kprime)

intermediate=np.linalg.inv(np.matmul(kprTranspose,kprime))

kmoorePenrose=np.matmul(intermediate,kprTranspose)

pd=np.matmul(kmoorePenrose,di)

deltatheta_x=pd[0]*(180/np.pi)

deltatheta_y=pd[1]*(180/np.pi)

deltatheta_z=pd[2]*(180/np.pi)

delta_x=pd[3]

delta_y=pd[4]

delta_z=pd[5]

delta_r=0

print("deltatheta_x = {}, deltatheta_y = {}, deltatheta_z = {}, delta_x = {}, delta_y = {},

delta_z={}".format(deltatheta_x,deltatheta_y,deltatheta_z,delta_x,delta_y,delta_z))

Finding the values of PHI, h(pitch) and s

phi=np.sqrt((np.power(pd[0],2))+(np.power(pd[1],2))+(np.power(pd[2],2)))

h=((pd[0]*pd[3])+(pd[1]*pd[4])+(pd[2]*pd[5]))/((np.power(pd[0],2))+(np.power(pd[1],2))+(np.powe

r(pd[2],2)))

s=phi*h

print("Phi = {}, Pitch(h) = {}, s = {}".format(phi*(180/np.pi), h*(np.pi)/180, s))

Finding the Plucker coordinates [L, M, N; P, Q, R]

l=pd[0]/phi

m=pd[1]/phi

n=pd[2]/phi

p=(delta_x-(h*pd[0]))/phi

q=(delta_y-(h*pd[1]))/phi

r=(delta_z-(h*pd[2]))/phi

print("L = {}, M = {}, N = {}".format(l,m,n))

print("P = {}, Q = {}, R = {}".format(p,q,r))

Finding the nominal x,y and z of the least squares fit line

vphi=1-np.cos(phi)

x_nom=vphi*(m*r-n*q)+p*np.sin(phi)+l*s

y_nom=vphi*(n*p-l*r)+q*np.sin(phi)+m*s

z_nom=vphi*(l*q-m*p)+r*np.sin(phi)+n*s

77

print("vphi = {}, X_nom = {}, Y_nom = {}, Z_nom = {}".format(vphi,x_nom,y_nom,z_nom))

Creation of matrix to find the transformed points

trnomls1=np.array([(vphi*np.power(l,2)+np.cos(phi)), (vphi*l*m-n*np.sin(phi)),

(vphi*l*n+m*np.sin(phi)), x_nom])

trnomls2=np.array([(vphi*l*m+n*np.sin(phi)), (vphi*np.power(m,2)+np.cos(phi)), (vphi*m*n-

l*np.sin(phi)), y_nom])

trnomls3=np.array([(vphi*l*n-m*np.sin(phi)), (vphi*n*m+l*np.sin(phi)),

(vphi*np.power(n,2)+np.cos(phi)), z_nom])

trnomls4=np.array([0,0,0,1])

trnomls=np.vstack([trnomls1,trnomls2,trnomls3,trnomls4])

invtrnomls=np.linalg.inv(trnomls)

print("The trasformation matrix is \n{}".format(invtrnomls))

Finding the Original points transformed along the Least Squares Line

origptset=np.append(OriginalPoints,np.ones((itrsize,1)),axis=1)

origptsetCol=np.transpose(origptset)

ptset = np.matmul(invtrnomls,origptsetCol)

print("The transformed points are \n{}".format(repr(np.transpose(ptset[0:3]))))

Finding the Least Squares fit zone magnitude

ptlsdistofl=[]

pltsdistofa=[]

for i in range (itrsize):

 if(OriginalPoints[i,2]>0):

 ptls=np.sqrt((np.power((dist_from_origin_to_pts+ptset[0,i]),2))+(np.power(ptset[1,i],2)))

 ptlsdistofl.append(ptls)

 else:

 magnitudels=np.sqrt(np.power(ptset[0,i],2)+np.power(ptset[2,i],2))

 pltsdistofa.append(np.sqrt(np.power((dist_from_origin_to_pts-

magnitudels),2)+np.power(ptset[1,i],2)))

pltsdist=np.append(ptlsdistofl,pltsdistofa)

zonemag=np.max(pltsdist)

print("The zone magnitude (radius) is {}".format(zonemag))

unwrapping of points along the straight line with the (-250,0,0) as the origin

plot=(np.transpose(ptset[0:3]))

transformedline=[]

transformedarc=[]

for i in range (itrsize):

 if (OriginalPoints[i,2]>0):

 transformedline.append([plot[i,0]+dist_from_origin_to_pts, plot[i,1], plot[i,2]])

 else:

 alpha=np.arctan2(plot[i,0],plot[i,2])

 if alpha>0:

 alpha=alpha-(2*np.pi)

 magnitude=np.sqrt((plot[i,0]**2)+(plot[i,2]**2))

 transformedarc.append([dist_from_origin_to_pts-magnitude, plot[i,1],

dist_from_origin_to_pts*((np.pi/2)+alpha)])

78

transformedpoints=np.concatenate((transformedline,np.array(transformedarc)),axis=0)

print("The unwrapped points are {}".format(repr(transformedpoints)))

Plotting of the transformed points along the z-axis

center=(0,0)

circledist=[]

XCords=transformedpoints[:,0]

YCords=transformedpoints[:,1]

ZCords=transformedpoints[:,2]

for i in range (len(XCords)):

 circledist.append(np.sqrt(np.square(XCords[i])+np.square(YCords[i])))

plt.figure(figsize=(25, 25))

plt.plot(center[0],center[1],'go')

plt.axis('equal')

plt.title('J-section profile (LSF)')

plt.xlabel('X - Axis')

plt.ylabel('Y - Axis')

plt.gca().add_patch(plt.Circle((center[0],center[1]),max(circledist),fill=False))

for i in range (len(transformedpoints)):

 plt.plot([center[0],XCords[i]],[center[1],YCords[i]],'r')

 plt.plot(XCords[i],YCords[i],'ro')

 plt.text(XCords[i],YCords[i],i+1)

plt.show()

The Output of the above program is:

deltatheta_x = 0.12479789780800658, deltatheta_y = 0.11991271915090945,

deltatheta_z = -0.11854568354822141, delta_x = 7.514101176990379, delta_y =

0.7973663292438798, delta_z=-4.198184893128284

Phi = 0.20977763131320173, Pitch(h) = 34.79099030044069, s = 7.298371536267024

L = 0.5949056485516375, M = 0.5716182340331493, N = -0.5651016402756049

P = 866.4271558359096, Q = -921.66890666297, R = -20.173970330501866

vphi = 6.702589301244011e-06, X_nom = 7.510525842660261, Y_nom =

0.7941725926354621, Z_nom = -4.205179359940644

The zone magnitude (radius) is 2.4135391159007806.

79

Fig D.1. Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with

Size Change.

E. J-SHAPED PROFILE WITH SIZE CHANGE

This program is like the previous least squares fit of the J-Shaped profile, but it

incorporates size change which allows the total profile to move instead of fixing it at

250mm from the origin for both the straight-line profile and the arc section. The code for

this is also pretty much like the previous program with a very small change.

import numpy as np

import matplotlib.pyplot as plt

Initialization of the parameters

OriginalPoints=np.array([[-2.4190e+02, 7.4250e-01, 4.9002e+02],

 [-2.4184e+02, 5.3490e-01, 4.5102e+02],

 [-2.4179e+02, 3.0300e-01, 4.0103e+02],

 [-2.4175e+02, 9.9200e-02, 3.5103e+02],

 [-2.4171e+02, -6.6700e-02, 3.0103e+02],

80

 [-2.4167e+02, -1.9560e-01, 2.5103e+02],

 [-2.4163e+02, -3.0480e-01, 2.0102e+02],

 [-2.4160e+02, -3.9400e-01, 1.5103e+02],

 [-2.4156e+02, -4.4430e-01, 1.0103e+02],

 [-2.4153e+02, -2.0430e-01, 5.1040e+01],

 [-2.4150e+02, 9.8220e-01, 1.0420e+00],

 [-2.3920e+02, 1.7540e+00, -4.5510e+01],

 [-2.2611e+02, 1.5195e+00, -9.5780e+01],

 [-2.0703e+02, 1.3136e+00, -1.3502e+02],

 [-1.7507e+02, 1.2240e+00, -1.7691e+02],

 [-1.4182e+02, 1.3043e+00, -2.0599e+02],

 [-9.5550e+01, 1.6049e+00, -2.3231e+02],

 [-5.3220e+01, 2.0476e+00, -2.4617e+02],

 [-2.4100e-02, 2.7479e+00, -2.5212e+02]])

dist_from_origin_to_pts=250 # To transform the origin to (-250,0,0)

itrsize=len(OriginalPoints)

Creation of the deflections (d) matrix

deflections1=[]

deflections2=[]

for i in range (itrsize):

 if (OriginalPoints[i,2]>0):

 deflections1.append(dist_from_origin_to_pts+OriginalPoints[i,0])

 deflections1.append(OriginalPoints[i,1])

 else:

 deflections2.append(dist_from_origin_to_pts-

np.sqrt(np.square(OriginalPoints[i,0])+np.square(OriginalPoints[i,2])))

 deflections2.append(OriginalPoints[i,1])

di=np.transpose(np.append(deflections1,deflections2))

Creation of the K matrix

kprime1=[]

kprime2=[]

for i in range (itrsize):

 if (OriginalPoints[i,2]>0):

 kprime1.append(np.array([0,OriginalPoints[i,2],0,1,0,0,-1]))

 kprime1.append(np.array([-OriginalPoints[i,2],0,0,0,1,0,0]))

 else:

 mag=np.sqrt(np.square(OriginalPoints[i,0])+np.square(OriginalPoints[i,2]))

 alp=np.arctan2(OriginalPoints[i,0],OriginalPoints[i,2])

 kprime2.append(np.array([0,0,0,-OriginalPoints[i,0]/mag,0,-OriginalPoints[i,2]/mag,-1]))

 kprime2.append(np.array([-250*np.cos(alp),0,250*np.sin(alp),0,1,0,0]))

kprime=np.append(kprime1,kprime2).reshape(2*itrsize,7)

Application of Least Squares fit to the equations

kprTranspose=np.transpose(kprime)

intermediate=np.linalg.inv(np.matmul(kprTranspose,kprime))

kmoorePenrose=np.matmul(intermediate,kprTranspose)

81

pd=np.matmul(kmoorePenrose,di)

deltatheta_x=pd[0]*(180/np.pi)

deltatheta_y=pd[1]*(180/np.pi)

deltatheta_z=pd[2]*(180/np.pi)

delta_x=pd[3]

delta_y=pd[4]

delta_z=pd[5]

delta_r=pd[6]

print("deltatheta_x = {}, deltatheta_y = {}, deltatheta_z = {}, delta_x = {}, delta_y = {}, delta_z = {},

delta_r = {}".format(deltatheta_x,deltatheta_y,deltatheta_z,delta_x,delta_y,delta_z,-delta_r))

Finding the values of PHI, h(pitch) and s

phi=np.sqrt((np.power(pd[0],2))+(np.power(pd[1],2))+(np.power(pd[2],2)))

h=((pd[0]*pd[3])+(pd[1]*pd[4])+(pd[2]*pd[5]))/((np.power(pd[0],2))+(np.power(pd[1],2))+(np.powe

r(pd[2],2)))

s=phi*h

print("Phi = {}, Pitch(h) = {}, s = {}".format(phi*(180/np.pi), h*(np.pi)/180, s))

Finding the Plucker coordinates [L, M, N; P, Q, R]

l=pd[0]/phi

m=pd[1]/phi

n=pd[2]/phi

p=(delta_x-(h*pd[0]))/phi

q=(delta_y-(h*pd[1]))/phi

r=(delta_z-(h*pd[2]))/phi

print("L = {}, M = {}, N = {}".format(l,m,n))

print("P = {}, Q = {}, R = {}".format(p,q,r))

Finding the nominal x,y and z of the least squares fit line

vphi=1-np.cos(phi)

x_nom=vphi*(m*r-n*q)+p*np.sin(phi)+l*s

y_nom=vphi*(n*p-l*r)+q*np.sin(phi)+m*s

z_nom=vphi*(l*q-m*p)+r*np.sin(phi)+n*s

print("vphi = {}, X_nom = {}, Y_nom = {}, Z_nom = {}".format(vphi,x_nom,y_nom,z_nom))

Creation of matrix to find the transformed points

trnomls1=np.array([(vphi*np.power(l,2)+np.cos(phi)), (vphi*l*m-n*np.sin(phi)),

(vphi*l*n+m*np.sin(phi)), x_nom])

trnomls2=np.array([(vphi*l*m+n*np.sin(phi)), (vphi*np.power(m,2)+np.cos(phi)), (vphi*m*n-

l*np.sin(phi)), y_nom])

trnomls3=np.array([(vphi*l*n-m*np.sin(phi)), (vphi*n*m+l*np.sin(phi)),

(vphi*np.power(n,2)+np.cos(phi)), z_nom])

trnomls4=np.array([0,0,0,1])

trnomls=np.vstack([trnomls1,trnomls2,trnomls3,trnomls4])

invtrnomls=np.linalg.inv(trnomls)

print("The trasformation matrix is \n{}".format(invtrnomls))

Finding the Original points transformed along the Least Squares Line

origptset=np.append(OriginalPoints,np.ones((itrsize,1)),axis=1)

origptsetCol=np.transpose(origptset)

82

ptset = np.matmul(invtrnomls,origptsetCol)

print("The transformed points are \n{}".format(np.transpose(ptset[0:3])))

Finding the Least Squares fit zone magnitude

ptlsdistofl=[]

pltsdistofa=[]

for i in range (itrsize):

 if (OriginalPoints[i,2]>0):

 ptls=np.sqrt((np.power((dist_from_origin_to_pts+ptset[0,i]+delta_r),2))+(np.power(ptset[1,i],2)))

 ptlsdistofl.append(ptls)

 else:

 magnitudels=np.sqrt(np.power(ptset[0,i],2)+np.power(ptset[2,i],2))

 pltsdistofa.append(np.sqrt(np.power((dist_from_origin_to_pts+delta_r-

magnitudels),2)+np.power(ptset[1,i],2)))

pltsdist=np.append(ptlsdistofl,pltsdistofa)

zonemag=np.max(pltsdist)

print("The zone magnitude (radius) is {}".format(zonemag))

unwrapping of points along the straight line with the (-250,0,0) as the origin

plot=(np.transpose(ptset[0:3]))

transformedline=[]

transformedarc=[]

for i in range (itrsize):

 if (OriginalPoints[i,2]>0):

 transformedline.append([plot[i,0]+dist_from_origin_to_pts+delta_r, plot[i,1], plot[i,2]])

 else:

 alpha=np.arctan2(plot[i,0],plot[i,2])

 magnitude=np.sqrt((plot[i,0]**2)+(plot[i,2]**2))

 transformedarc.append([dist_from_origin_to_pts+delta_r-magnitude, plot[i,1],

(dist_from_origin_to_pts+delta_r)*((np.pi/2)+alpha)])

transformedpoints=np.concatenate((transformedline,np.array(transformedarc)),axis=0)

print("The unwrapped points are {}".format(repr(transformedpoints)))

Plotting of the transformed points along the z-axis

center=(0,0)

circledist=[]

XCords=transformedpoints[:,0]

YCords=transformedpoints[:,1]

ZCords=transformedpoints[:,2]

for i in range (len(XCords)):

 circledist.append(np.sqrt(np.square(XCords[i])+np.square(YCords[i])))

plt.figure(figsize=(25, 25))

plt.plot(center[0],center[1],'go')

plt.axis('equal')

plt.title('J-section Profile with size change (LSF)')

plt.xlabel('X - Axis')

plt.ylabel('Y - Axis')

plt.gca().add_patch(plt.Circle((center[0],center[1]),max(circledist),fill=False))

83

for i in range (len(transformedpoints)):

 plt.plot([center[0],XCords[i]],[center[1],YCords[i]],'r')

 plt.plot(XCords[i],YCords[i],'ro')

 plt.text(XCords[i],YCords[i],i+1)

plt.show()

The output for the above program is as follows:

Fig E.1. Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with

Size Change When Unwrapped onto a Straight Line.

deltatheta_x = 0.0034782233100175055, deltatheta_y = -0.053106244593978745,

deltatheta_z = -0.115176810248895, delta_x = 0.6412404097483266, delta_y =

0.13925630663394217, delta_z = -10.152524761857135, delta_r = 7.977072615073124

84

Phi = 0.1268781654634863, Pitch(h) = 72.31739565809166, s = 9.175498492195759

L = 0.027413883998965036, M = -0.4185609430904166, N = -0.9077748707049301

P = 175.98311668131896, Q = 1797.1850619249476, R = -823.3397043701374

The zone magnitude (radius) is 1.2668170345224004.

F. TRUE MINIMUM ZONE (Prashant Mohan’s algorithm [6])

To find the True Minimum Zone of the Least square points there is an algorithm

developed by Mohan, et al. [6] in the way this algorithm works is it creates two hexagons

at each ends of the LSF line and gives the combinations of the hexagons which forms 6x6

which is 36 lines and the hexagon radius is 10% of the original True minimum zone then

find distances from points to each of the lines formed during combination and find the

maximum distance among all the distances to points from lines which gives us 36

distances of these maximum distances the minimum distance is chosen and the True

minimum zone axis is transformed to this line which is transformed to be parallel to z-

axis and the iteration continues with a change of 10/11 in radius size and until the radius

is greater than the 0.001% of the original zone size we have started with. The way it is

implemented in the program is that a lot of function are created which deals with each

part of the iterations. The functions of the created functions are to find the distance

between two points, to find the distance from a point to line in 3D space, to find the

rotation matrix with transforms the true minimum zone axis parallel to the z-axis, to

rotate the points according to the rotation of the True minimum zone axis with the

rotation matrix generated in the previous case, to generate hexagons with distance and to

find the distance from lines generated by the combinations of the hexagons to the LSF

points. The program that implements this finding of True minimum zone is as follows it

85

is done for the results from J-section profile with size change (it can also be done for any

of the LSF points obtained).

import numpy as np

import matplotlib.pyplot as plt

PointsFromLeastSquares=np.array([[5.89415668e-02, 2.89197559e-01, 5.10576681e+02],

 [-2.60952053e-02, 2.00869488e-02, 4.61406755e+02],

 [-1.19235933e-02, -2.37873825e-01, 4.11406736e+02],

 [-7.79618197e-03, -4.73854745e-01, 3.61406725e+02],

 [-3.73309840e-03, -6.77835730e-01, 3.11406712e+02],

 [2.78946114e-04, -8.51816159e-01, 2.61416698e+02],

 [4.24632115e-03, -1.01279785e+00, 2.11406683e+02],

 [8.20006867e-03, -1.15777834e+00, 1.61416666e+02],

 [1.20721793e-02, -1.26675951e+00, 1.11416648e+02],

 [2.52961849e-02, -1.04872063e+00, 6.14266005e+01],

 [3.70893686e-02, -1.21683556e-01, 1.14305109e+01],

 [-2.52306885e-01, 3.99620881e-01, -3.73755187e+01],

 [-2.29489170e-01, 1.79179095e-01, -8.06975259e+01],

 [-1.43104565e-01, -2.18149905e-01, -1.44034761e+02],

 [-1.06954765e-01, -3.71020007e-01, -1.92469624e+02],

 [-6.44077268e-02, -3.48491481e-01, -2.30093506e+02],

 [-2.16764430e-02, -6.46147015e-02, -2.83417904e+02],

 [-5.00976501e-02, 4.67259818e-01, -3.30249003e+02],

 [3.45346728e-03, 1.17412341e+00, -3.74945502e+02]])

lengthtotal=(PointsFromLeastSquares[-1,2]-PointsFromLeastSquares[0,2])

itrsize=len(PointsFromLeastSquares)

Function to find the distance between two points a,b

def dbtp(a,b):

 return np.sqrt(np.square(a[0]-b[0])+np.square(a[1]-b[1])+np.square(a[2]-b[2]))

Function to find the distance to point x from line formed by a,b

def distpttl(a,b,x):

 l=b[0]-a[0]

 m=b[1]-a[1]

 n=b[2]-a[2]

 t=((l*x[0]+m*x[1]+n*x[2])-(l*a[0]+m*a[1]+n*a[2]))/(np.square(l)+np.square(m)+np.square(n))

 nc=[(t*l+a[0]),(t*m+a[1]),(t*n+a[2])]

 return dbtp(nc,x)

Function to generate matrix that rotate the least squares line to be parallel to the z-axis

def rotmat(initialpoint,finalpoint):

 number=finalpoint-initialpoint

 x=number[0]

 y=number[1]

 z=number[2]

 a=np.arctan(y/z)

86

 b=np.arctan(-x/((y*np.sin(a)+(z*np.cos(a)))))

 trmat=np.array([[np.cos(b), np.sin(a)*np.sin(b), np.sin(b)*np.cos(a)],[0,np.cos(a),-np.sin(a)],[-

np.sin(b),np.sin(a)*np.cos(b),np.cos(a)*np.cos(b)]])

 return trmat

Function to rotate points with the least squares line

def rotpts(temcords,PointsFromLeastSquares,Q):

 return (np.transpose(np.matmul(Q,np.transpose(PointsFromLeastSquares))))

Function to create a hexagon with a distance d from the origin

def hexagon(d):

 return np.array([[0,d,0],[d*((np.sqrt(3))/2),d/2,0],[d*((np.sqrt(3))/2),-d/2,0],[0,-d,0],[-

d*((np.sqrt(3))/2),-d/2,0],[-d*((np.sqrt(3))/2),d/2,0]])

Function to create two different hexagons of distance d at ends of the given points 'temcords' and

find the maximum distances to points from each line that joins the coordinates of the hexagons

def disthex(temcords,d,rotatedpoints):

 hex1pts=hexagon(d)+temcords[0]

 hex2pts=hexagon(d)+temcords[1]

 distvals=[]

 for i in range (6):

 for j in range (6):

 for k in range (itrsize):

 distvals.append(distpttl(hex1pts[i],hex2pts[j],rotatedpoints[k]))

 return distvals

Main code

PointsFromLeastSquares[:,2]=PointsFromLeastSquares[:,2]-PointsFromLeastSquares[0,2] #

Translate coordinates along the z-axis such that all the rotations can be done with respect to the origin

temcords=np.array([[0,0,0],[0,0,PointsFromLeastSquares[itrsize-1,2]]]) # Starting position of the true

minimum zone axis

To find the zone magnitude to determine number of iterations to do

distance=[]

for i in range (itrsize):

 distance.append(distpttl(temcords[0],temcords[1],PointsFromLeastSquares[i]))

d=max(distance)/10

print(max(distance))

origtransform=[0,0,0]

Iterations to find the True minimum zone

while d>0.00001*(max(distance)):

 Q=rotmat(temcords[0],temcords[1]) # Finding the rotation matrix to make the line parallel to z-axis

 latestpoint=np.transpose(np.matmul(Q,np.transpose(temcords[1]))) # Finding the new point of the

current true minimum zone line which is parallel to the z-axis

 print("The initial points that the least squares line passes through are {}".format(temcords)) #

Prints the starting line taken to find the true minimum zone axis

 temcords[1]=latestpoint # Changing the true minimum zone line coordinates parallel to Z-axis

 print("The least squares line points after rotation are {}".format(temcords)) # Transformed true

minimum zone line coordinates parallel to z-axis

 rotatedpoints=rotpts(temcords,PointsFromLeastSquares,Q) # Rotation of Points with the current

true minimum zone axis

87

calc=np.reshape(np.array(disthex(temcords,d,rotatedpoints)),(36,itrsize)) # List of distances from

lines formed with hexagon to LSF points

 print("The maximum radius with each line of all 36 lines are {}".format(np.amax(calc,axis=1))) #

Prints the maximum distances form each line to Points

 print("The least most value is located at {} and the distance is

{}".format(np.argmin(np.amax(calc,axis=1)),min(np.amax(calc,axis=1)))) # Prints the least distance

among the maximum distances

newstart=(hexagon(d)+temcords[0])[int(np.argmin(np.amax(calc,axis=1))/6)] # Changing the

Current true minimum zone axis coordinates Starting point

 newend=(hexagon(d)+temcords[1])[np.argmin(np.amax(calc,axis=1))%6] # Changing the Current

true minimum zone axis coordinates Ending point

 temcords=np.array([newstart,newend]) # New true minimum zone axis coordinates

 origtransform += (newend-newstart)

 print("The new coordinates are {}".format(temcords)) # Printing the new true minimum zone axis

coordinates

 d=d/1.1 # changed to enclosure radius of the minimum zone circle

 PointsFromLeastSquares=rotatedpoints # Replacing the Transformed points for the

PointsFromLeastSquares to continue the iterations

print(origtransform)

Plotting of the True minimum zone of the least squares Points in different orientations

center=[temcords[0][0],temcords[0][1]]

plt.figure(figsize=(10, 10))

plt.axis('equal')

for i in range (itrsize):

plt.plot([center[0],rotatedpoints[i,0]],[center[1],rotatedpoints[i,1]],'r')

 plt.plot(rotatedpoints[i,0],rotatedpoints[i,1],'ro')

 plt.text(rotatedpoints[i,0],rotatedpoints[i,1],i+1)

plt.plot(temcords[0][0],temcords[0][1],'go')

plt.title("zone size={}".format(min(np.amax(calc,axis=1))))

plt.xlabel('X - Axis')

plt.ylabel('Y - Axis')

plt.gca().add_patch(plt.Circle((center[0],center[1]),min(np.amax(calc,axis=1)),fill=False))

plt.show()

plt.figure(figsize=(15,5))

for i in range (itrsize):

 plt.plot(rotatedpoints[i,2],rotatedpoints[i,1],'r')

 # plt.gca().add_patch(plt.Circle((center[0],center[1]),min(np.amax(calc,axis=1)),fill=False))

 plt.plot(rotatedpoints[i,2],rotatedpoints[i,1],'ro')

 plt.text(rotatedpoints[i,2],rotatedpoints[i,1],i+1)

plt.title("zone size={}".format(min(np.amax(calc,axis=1))))

plt.xlabel('z - Axis')

plt.ylabel('Y - Axis')

plt.show()

plt.figure(figsize=(15,5))

for i in range (itrsize):

88

 plt.plot(rotatedpoints[i,2],rotatedpoints[i,1],'r')

 # plt.gca().add_patch(plt.Circle((center[0],center[1]),min(np.amax(calc,axis=1)),fill=False))

 plt.plot(rotatedpoints[i,2],rotatedpoints[i,0],'ro')

 plt.text(rotatedpoints[i,2],rotatedpoints[i,0],i+1)

plt.title("zone size={}".format(min(np.amax(calc,axis=1))))

plt.xlabel('z - Axis')

plt.ylabel('x - Axis')

plt.show()

The output of the above program is as follows (only for the last iteration):

The new coordinates are [[-5.31982027e-02 -6.84447028e-01 0.00000000e+00]

 [-5.31982027e-02 -6.84461833e-01 -8.85521901e+02]]

The initial points that the least squares line passes through are [[-5.31982027e-02 -

6.84447028e-01 0.00000000e+00]

 [-5.31982027e-02 -6.84461833e-01 -8.85521901e+02]]

The least squares line points after rotation are [[-5.31982027e-02 -6.84447028e-01

0.00000000e+00]

 [-5.31982027e-02 -6.84447028e-01 -8.85521901e+02]]

The maximum radius with each line of all 36 lines are [0.98010516 0.98010213

0.98009738 0.98010303 0.98009606 0.98010213

 0.98010147 0.98009843 0.98009738 0.98010303 0.98009528 0.98009843

 0.98009407 0.98009104 0.98009738 0.98010303 0.98009528 0.98009104

 0.9800944 0.9800944 0.98009738 0.98010303 0.98009528 0.9800944

 0.98009407 0.98009104 0.98009738 0.98010303 0.98009528 0.98009104

 0.98010147 0.98009843 0.98009738 0.98010303 0.98009528 0.98009843]

The least most value is located at 29 and the distance is 0.9800910392132668

The new coordinates are [[-5.32098587e-02, -6.84453758e-01, 0.00000000e+00]

 [-5.32098587e-02, -6.84440299e-01, -8.85521901e+02]]

89

Fig F.1. XY-view of the True Minimum Zone of 19-point Profile with Size Change.

Fig F.2. YZ-view of the True Minimum Zone of 19-point Profile with Size Change.

90

Fig F.3. XZ-view of the True Minimum Zone of 19-point Profile with Size Change.

G. PARAMETERS FROM STAMPED COMPONENTS.

The code developed can extract the Numi-Sheet parameters [4] from the list of

stamped components available of different depths and takes the parameters from each

sheet that contains the front, center and back profile coordinates of the stamped

component and could save all the parameters to an excel file for easy reference. The code

is as follows

Fig G.1. Parameter to Be Extracted from the Cross-sectional Profile of Stamped

Component.

91

NSF GOALI Project File Naming Convention

Last Updated 3/8/2022

Component-Level Results: [Shape]_[Channel Width]_[Material]_[Thickness]_[Draw

Depth]_[Blank Holding Force]

- Ex: S_50_80DP590_120_55_25700.xlsx

Assembly-Level Results: [T]_[Top Component Code]-[B]_[Bottom Component Code]-[Weld

Count]_[Weld Pattern]

- Ex: T_S_50_80DP590_120_55_25700-B_S_50_100DP590_80_70_25700-3_L.xlsx

(Edge # within assembly does not go into filename - denotes Excel sheet; see below)

Shapes:

S - Straight hat section

C - Curved hat section

T - Tapered hat section

Channel Width:

val[mm]

--> 50mm => 50

Material:

[100*MISO scale factor][Nominal]

--> 0.8 scale factor for nominal material DP590 Steel => 80DP590

--> 1.2 scale factor for nominal material DP590 Steel => 120DP590

Thicknesses:

t[mm]*100

--> 1.2mm => 120

0.80mm => 80

Draw Depth:

val[mm]

--> 55mm => 55

--> 0mm => 00 [Flat sheet]

Blank Holding Force:

val[N]

--> 25700N => 25700

(Flat sheet will always be 00)

Weld Count:

Integer number of welds per flange

--> 3 welds per flange => 3

92

Weld Pattern:

L - Linear; welds in straight line along each flange

Edge (Excel Sheet #):

Sheet1 - Upr Front Profile (rename "Upr Front")

Sheet2 - Lwr Front Profile (rename "Lwr Front")

Sheet3 - Upr Back Profile (rename "Upr Back")

Sheet4 - Lwr Back Profile (rename "Lwr Back")

Sheet5 - Upr Left Flange (rename "Upr L")

Sheet6 - Lwr Left Flange (rename "Lwr L")

Sheet7 - Upr Right Flange (rename "Upr R")

Sheet8 - Lwr Right Flange (rename "Lwr R")

import os

import pandas as pd

import numpy as np

from openpyxl import Workbook

import matplotlib.pyplot as plt

os.chdir("e:/Downloads/OSU research/Components/Profiles") # Changes the directiory to the current

folder

arr=os.listdir() # Gets list of all the files in the directory

Function to find the distance between two points

def dist(a,b):

 return np.sqrt((a[0]-b[0])**2+(a[1]-b[1])**2)

Function to find the roots of a quadratic equation

def quadeq(a,b,c):

 ans=[]

 dis = (b**2)-(4*a*c)

 ans.append((-b-np.sqrt(dis))/(2 * a))

 ans.append((-b+np.sqrt(dis))/(2 * a))

 return ans

Function to find the required parameters from the stamped component

def distancesfordepths(Adist,Bdist,Edist,Fdist,source,sheetname):

 excel=pd.read_excel(source,sheet_name=sheetname) # To read the xlsx file in the folder

 reqcol=excel.columns.get_indexer(['Xf (mm)','Yf (mm)']) # To find the required columns in the

excel sheet

d=pd.read_excel(source,sheet_name=sheetname,usecols=reqcol,names=[0,1],header=None,skiprows=

[0]) # Read only the required columns from the excel sheet

 d=d.dropna() # To remove any missing values from the columns

 change=d[d[1]==d[1].min()].head(1).index.tolist()[0] # Finding the lowest point in the stamped

profile

 changeval=d.loc[change][1] # Finding the location of the lowest point

 d[1]=d[1]-changeval # Transform the points so that the minimum value will be on the x-axis

Assumption if excel contains only right side values or the values are in reversed

 if(d.loc[0][0]>50):

93

 old = pd.DataFrame()

 for i in range (len(d)-1,-1,-1):

 old.at[len(d)-1-i,0]=d.loc[i][0]

 old.at[len(d)-1-i,1]=d.loc[i][1]

 d=old

 par=d[(d[1]>=Adist) & (d[0]>0.0)].head(1).index.tolist()[0] # To find the point above the line

y=15mm

 a1=d.loc[par-1] # Location of point below y=15mm line

 a2=d.loc[par] # Location of point above y=15mm line

 Ax=a1[0]+(Adist-a1[1])*((a2[0]-a1[0])/(a2[1]-a1[1])) # Interpolating of points to find the optimal

value of point A

 A=[Ax,Adist] # Assignment of the required point

 tempb=d[(d[1]>=A[1]+(Bdist/2)) & (d[0]>0.0)].head(1).index.tolist()[0] # Finding the point at a

distance between A and B

 # Iterating through each point from the point choosen above to find the points for B to interpolate

 while (dist(A,d.loc[tempb])<Bdist):

 tempb=tempb+1

 b1=d.loc[tempb-1] # Location of point around the distance AB towards A

 b2=d.loc[tempb] # Location of point around the distance AB away from A

 # Interpolation

 n=((b2[0]-b1[0])/(b2[1]-b1[1])) # Creating quadratic equation for interpolation

 q=(b1[0])-(n*(b1[1]))

 a=n**2+1

 b=2*((n*(q-Ax))-(A[1]))

 c=(q-Ax)**2+(A[1]**2)+-(Bdist**2)

 By=max(quadeq(a,b,c))

 Bx=(b1[0]+((b2[0]-b1[0])/(b2[1]-b1[1]))*(By-b1[1])) # To check for the sensitivity of the rho value

we can add +0.1 implement perturbation

 B=[Bx,By] # Assignment of required point B

 tempc=d[(d[1]>=A[1]) & (d[0]>0.0)].head(1).index.tolist()[0] # Starting to find the points around C

to interpolate and find the point c

 # Finding the points around the equidistant point form A and B

 while (dist(B,d.loc[tempc])-dist(A,d.loc[tempc])>0):

 tempc=tempc+1

 c1=d.loc[tempc] # Point equidistant from A and B close to B

 c2=d.loc[tempc-1] # Point equidistant from A and B close to A

 # Finding the optimal point (perpendicular bisector cutting through between the points c1 and c2)

 a1=B[0]-A[0]

 b1=B[1]-A[1]

 ct=(B[0]**2+B[1]**2-A[0]**2-A[1]**2)/2

 d1=A[0]*B[1]-A[1]*B[0]

 cy=(b1*ct-a1*d1)/(a1**2+b1**2)

 cx=(a1*ct+b1*d1)/(a1**2+b1**2)

 cm=-(a1/b1)

 mc=((c2[1]-c1[1])/(c2[0]-c1[0]))

 tempcx=(c1[1]+cm*cx-cy-mc*c1[0])/(cm-mc)

94

 tempcy=cy+cm*(tempcx-cx)

 C=[tempcx,tempcy] # Assignment of required point C

 ### Finding the rho value from the points A, B and C

 tempd=(C[0]-B[0])*(A[1]-C[1])+(B[1]-C[1])*(A[0]-C[0])

 ra=(C[0]**2+C[1]**2-B[0]**2-B[1]**2)/2

 rb=(A[0]**2+A[1]**2-C[0]**2-C[1]**2)/2

 rx=(ra*(A[1]-C[1])-rb*(C[1]-B[1]))/tempd

 ry=(rb*(C[0]-B[0])-ra*(A[0]-C[0]))/tempd

 coc=[rx,ry]

 ### Determine the direction of center of curvature

 if rx>0:

 direction="Right"

 else:

 direction="Left"

 rho=dist(coc,C)

 ### Selecting the top point along the positive x axis as the point D

 posd=d[d[0]>0.0]

 maxpt=posd[posd[1]==posd[1].max()].head(1).index.tolist()[0]

 mxpt=d.loc[maxpt]

 D=[d.loc[maxpt][0],d.loc[maxpt][1]] # Assignment of required point D

 dieend=D

 ### Finding the point E starting from the point D

 tempe=maxpt

 while(dist(dieend,d.loc[tempe])<Edist): # Works till the distance DE is the required distance from

D

 tempe+=1

 e1=d.loc[tempe-1] # Location of point just before the required distance DE form D

 e2=d.loc[tempe] # Location of point just after the required distance DE form D

 # Interpolation

 en=((e2[0]-e1[0])/(e2[1]-e1[1]))

 eq=(e1[0])-(en*(e1[1]))

 ea=en**2+1

 eb=2*((en*(eq-dieend[0]))-(dieend[1]))

 ec=(eq-dieend[0])**2+(dieend[1]**2)+-(Edist**2) # for change in distance DE

 Ey=min(quadeq(ea,eb,ec))

 Ex=e1[0]+((e2[0]-e1[0])/(e2[1]-e1[1]))*(Ey-e1[1])

 E=[Ex,Ey] # Assignment of required point E

 ### Finding the point F starting from the point E

 tempf=d[d[0]>E[0]+(Fdist/2)].head(1).index.tolist()[0]

 while(dist(E,d.loc[tempf])<Fdist): # Works till the distance EF is the required distance form E

 tempf+=1

 f1=d.loc[tempf-1] # Location of point just before the required distance EF form E

 f2=d.loc[tempf] # Location of point just after the required distance EF form E

 # Interpolation

 fn=((f2[0]-f1[0])/(f2[1]-f1[1]))

 fq=(f1[0])-(fn*(f1[1]))

95

 fa=fn**2+1

 fb=2*((fn*(fq-E[0]))-(E[1]))

 fc=(fq-E[0])**2+(E[1]**2)+-(Fdist**2) # for change in distance EF

 Fy=min(quadeq(fa,fb,fc))

 Fx=f1[0]+((f2[0]-f1[0])/(f2[1]-f1[1]))*(Fy-f1[1])

 F=[Fx,Fy] # Assignment of required point F

 ### Finding of the angle theta1 using the point A and B

 angleAB=np.arctan2((B[1]-A[1]),(B[0]-A[0]))

 theta1=np.arctan2((B[1]-A[1]),(A[0]-B[0]))

 t1=(theta1*(180/np.pi))

 ### Finding of the angle theta2 using the point E and F

 angleEF=np.arctan2((E[1]-F[1]),(E[0]-F[0]))

 theta2=angleEF-angleAB

 t2=(theta2*(180/np.pi))

 [A[1],B[1],C[1],D[1],E[1],F[1]]=[A[1],B[1],C[1],D[1],E[1],F[1]]+changeval

 ### Printing the results for reference

 print("\n\nThe points are (original points not with x-Axis as datum) \nA={} \nB={} \nC={} \nD={}

\nE={} \nF={}".format(A,B,C,D,E,F))

 print("The values of \u03F41, \u03F42 and \u03C1 are {}\u00b0, {}\u00b0 and

{}mm".format(t1,t2,rho))

 ### Plotting graph of the profile with point A, B, C, D, E and F

 mx=[A[0],B[0],C[0],D[0],E[0],F[0]]

 my=[A[1],B[1],C[1],D[1],E[1],F[1]]-changeval

 plt.rcParams['figure.dpi'] = 150

 plt.scatter(d[0],d[1],3)

 plt.plot(mx,my,'ro')

 plt.grid()

 plt.show()

 return [A,B,C,D,E,F,t1,t2,rho,direction] # Returns the required values accordingly

Main program

output = pd.DataFrame(columns=["FileName","sheetname","Point A","Point B","Point C","Point

D","Point E","Point F","Theta 1 (deg)","Theta 2 (deg)","Radius of Curvature (mm)","Direction of

curvature"]) # Creates a new pandas dataframe to store the results

for i in arr: # Loop through all the files

 source=i # Assigning the file name to source

 sheets=["front","center","back"] # Sheets in each excel file

 string = source # To take data from the file name to detrmine conditions to take

 string=string.replace(".xlsx","") # Removes the .xlsx extenision from the string

 req=string.split("_") # Splits the string to read each parameter and take appropriate conditions

 distdict = {

 ### "format": [A from base, B from A, E from D, F from E]

 "35": [10,15,15,40],

 "45": [10,25,15,40],

 "55": [15,35,15,40],

 "70": [10,50,15,40]

 } # This is a dictionary of suitable conditions to choose based on the Draw Depth of the stamping

96

 rds=(distdict[req[4]])

 for sheetname in sheets: # Looping through each sheet of the file

 print("{0}, {1}, {2}mm".format(source,sheetname,req[4])) # Prints the filename, sheetname

and Drawdepth before print out the results.

 [A,B,C,D,E,F,t1,t2,rho,direction]=

distancesfordepths(rds[0],rds[1],rds[2],rds[3],source,sheetname) # Reading outputs form the

function to append to the pandas dataframe

 output.loc[output.shape[0]]=[source,sheetname,A,B,C,D,E,F,t1,t2,rho,direction] # Appending

the data to pandas dataframe

output.to_excel('../Outputswithpandas.xlsx', header=True, index=False) # Writing the outputs to an

excel file

The output for the above code is as follows (reduced to one part of the result):

S_50_100DP590_100_35_15500.xlsx, front, 35mm

The points are (original points not with x-Axis as datum)

A = [26.0244333976834, -16.288]

B = [27.234399772474156, -1.336880263609828]

C = [26.615856122161862, -8.811342708705812]

Fig G.2 The Points Obtained from the Program.

97

D = [34.379, 9.249300000000002]

E = [49.29227253039767, 7.638616159491729]

F = [88.9923534229796, 2.7494876970301156]

The values of ϴ1, ϴ2 and ρ are 94.62675791558097°, 87.60604141025006° and

2067.2923867836153mm

The output sheet has been modified a little for further ease of reference.

Table G.1(a). Sample list of the parameters generated in an excel document for

stamped components.
File Name Shape Channe

l Width

Materi

al

Thicknes

s

Draw

Depth

Blank

Holdin

g Force

Sheet

Name

Point A Point B

S_50_100DP590_1

00_35_15500.xlsx S 50

100DP5

90 100 35 15500 front

[26.0244333976834

, -16.288]

[27.234399772474156,

-1.336880263609828]

S_50_100DP590_1

00_35_15500.xlsx S 50

100DP5

90 100 35 15500 back

[26.0552456038647

34, -16.292]

[27.265645962747058,

-

1.3409153914768623]

S_50_100DP590_1

00_35_15500.xlsx S 50

100DP5

90 100 35 15500 center

[25.8442133462282

4, -16.18]

[27.146128559538937,

-

1.2366062496717234]

S_50_100DP590_1

00_35_25700.xlsx S 50

100DP5

90 100 35 25700 front

[25.9510787162162

16, -18.704]

[26.858764322903117,

-3.731488292226537]

S_50_100DP590_1

00_35_25700.xlsx S 50

100DP5

90 100 35 25700 back

[25.9036234442836

46, -18.787]

[26.869474130785886,

-3.818127883124152]

S_50_100DP590_1

00_35_25700.xlsx S 50

100DP5

90 100 35 25700 center

[25.6455595549105

, -18.62]

[26.657955312819734,

-

3.6542038357671274]

Table G.1(b). Sample list of the parameters generated in an excel document for

stamped components.
Point C Point D Point E Point F Theta1

(deg)

Theta

2

(deg)

Radius of

Curvature

(mm)

Direction

of center

[26.615856122161862, -

8.811342708705812]

[34.379,

9.24930000000000

2]

[49.29227253039767

,

7.638616159491729]

[88.9923534229796,

2.7494876970301156

]

94.6267

5792

87.60

60414

1

2067.29238

7 Right

[26.65332596032008, -

8.815881293656386]

[34.379,

9.26330000000000

1]

[49.28536231363366

,

7.589871610528853]

[89.00089548910036

,

2.8278946483411325

]

94.6284

2103

87.79

11757

1

3937.36039

9 Right

[26.371364020604567, -

8.697516677570903]

[34.398,

9.17559999999999

6]

[49.31484270889775

,

7.598322726335098]

[89.03957677884222

,

2.9137199606545856

]

94.9792

1481

88.25

35807

3

226.373078

4 Right

[26.447660424158276, -

11.220335126792186]

[33.6919999999999

9, 7.116]

[48.62174975028151

6,

5.665975036764642]

[88.44138775089519

,

1.8717123283916202

]

93.4692

2306

88.02

61586 656.881001 Left

[26.41857176658813, -

11.30463019051264]

[33.69,

7.16060000000000

2]

[48.61963104765967

,

5.7093533701151244

]

[88.43264658936776

,

1.8462207713464274

]

93.6918

3197

88.14

96636

1

876.469018

5 Left

[26.051810961355883, -

11.130340808506162]

[33.71,

7.06659999999999

76]

[48.65576696530311

6,

5.792217867795554]

[88.47836856421847

, 2.02918692265861]

93.8700

0893

88.47

18816

2

280.809048

8 Right

98

H. FITTING OF EDGE PROFILES OF STAMPED COMPONENTS

This Edge profile is like the 11 points straight line profile least squares fit. This

program also finds the Least squares fit line along the edges of the stamped components

by taking the inputs from the excel sheets that contain the data about the stamped profile

and plot the least square points for all the components available. The code for this is as

follows

import os

import pandas as pd

import numpy as np

from openpyxl import Workbook

import matplotlib.pyplot as plt

os.chdir("e:/Downloads/OSU research/Components/Profiles") # To change the current working

directory to the path give

arr = os. listdir() # List all the files in the folder specified

Function to print the edge profile of the stamped component

def edges(source,sheetname):

 point= lambda pt : [d.loc[pt][0],d.loc[pt][1],d.loc[pt][2]] # This returns the point coordiantes at the

point location

 excel=pd.read_excel(source,sheet_name=sheetname) # Reads the excel sheet in the folder

 reqcol=excel.columns.get_indexer(['Xf (mm)','Yf (mm)','Zf (mm)']) # Finds the columns from which

the data needs to be taken

d=pd.read_excel(source,sheet_name=sheetname,usecols=reqcol,names=[0,1,2],header=None,skiprows

=[0]) # Read the required columns into a pandas dataframe

 d=d.dropna() # Remove any of the empty rows in the data

 temporary=(np.average(d[0])) # Finding the average of x-axis to translate the origin to that point

 d[0]=d[0]-(temporary) # Translate points to the new origin

 print("The offset for the x-coordiantes are {}".format(temporary))

 ## Choosing the points equidistant in the set of points

 req_points=[]

 for i in range (len(d)):

 if i%6==0:

 req_points.append(point(i))

 ### Creating the d and K matrix to find the SDT of the least square matrix

 tempa=np.array([])

 tempb=np.array([])

 origptset=[]

 for i in range (len(req_points)):

 tempa=np.append(tempa,req_points[i][0])

 tempa=np.append(tempa,req_points[i][1])

 tempb=np.append(tempb,np.array([0,req_points[i][2],1,0]),axis=0)

99

 tempb=np.append(tempb,np.array([-req_points[i][2],0,0,1]),axis=0)

 origptset.append([req_points[i][0],req_points[i][1],req_points[i][2],1])

 di=np.array(tempa)

 kprime=np.hstack(tempb).reshape(int(np.size(tempb)/4),4)

 ### Least squares for the equations and finding the angular orientaion and position

 kprTranspose=np.transpose(kprime)

 intermediate=np.linalg.inv(np.matmul(kprTranspose,kprime))

 kmoorePenrose=np.matmul(intermediate,kprTranspose)

 pdi=np.matmul(kmoorePenrose,di)

 deltatheta_x=pdi[0]*(180/np.pi)

 deltatheta_y=pdi[1]*(180/np.pi)

 delta_x=pdi[2]

 delta_y=pdi[3]

 print("deltatheta_x = {}, deltatheta_y = {}, delta_x = {}, delta_y =

{}".format(deltatheta_x,deltatheta_y,delta_x,delta_y))

 ### Finding the values of PHI, h(pitch) and s

 phi=np.sqrt((np.power(pdi[0],2))+(np.power(pdi[1],2)))

 h=((pdi[0]*pdi[2])+(pdi[1]*pdi[3]))/((np.power(pdi[0],2))+(np.power(pdi[1],2)))

 s=phi*h

 print("Phi = {}, Pitch(h) = {}, s = {}".format(phi*(180/np.pi), h*(np.pi)/180, s))

 ### Finding the values of PHI, h(pitch) and s

 l=pdi[0]/phi

 m=pdi[1]/phi

 n=0

 p=(delta_x-(h*pdi[0]))/phi

 q=(delta_y-(h*pdi[1]))/phi

 r=0

 print("L = {}, M = {}, N = {}".format(l,m,n))

 print("P = {}, Q = {}, R = {}".format(p,q,r))

 Lt,Mt,Nt,Pt,Qt,Rt=l,m,n,p,q,r

 ### Finding the Nominal X,Y and Z of the Least Squares fit Line

 vphi=1-np.cos(phi)

 x_nom=vphi*(m*r-n*q)+p*np.sin(phi)+l*s

 y_nom=vphi*(n*p-l*r)+q*np.sin(phi)+m*s

 z_nom=vphi*(l*q-m*p)+r*np.sin(phi)+n*s

 print("X_nom = {}, Y_nom = {}, Z_nom = {}".format(x_nom,y_nom,z_nom))

 ### Creating a Matrix to find the transformed points

 trnomls1=np.array([(vphi*np.power(l,2)+np.cos(phi)), (vphi*l*m-n*np.sin(phi)),

(vphi*l*n+m*np.sin(phi)), x_nom])

 trnomls2=np.array([(vphi*l*m+n*np.sin(phi)), (vphi*np.power(m,2)+np.cos(phi)), (vphi*m*n-

l*np.sin(phi)), y_nom])

 trnomls3=np.array([(vphi*l*n-m*np.sin(phi)), (vphi*n*m+l*np.sin(phi)),

(vphi*np.power(n,2)+np.cos(phi)), z_nom])

 trnomls4=np.array([0,0,0,1])

 trnomls=np.vstack([trnomls1,trnomls2,trnomls3,trnomls4])

 invtrnomls=np.linalg.inv(trnomls)

100

 print("The trasformation matrix is \n{}".format(invtrnomls))

 ### Original points transformed along the Leasts squares line

 origptsetCol=np.transpose(origptset)

 ptset = np.matmul(invtrnomls,origptsetCol)

 newcords=(np.transpose(np.delete(ptset,3,0)))

 print("The Transformed Least squares coordinates are \n{}".format(newcords))

 ### Plotting of the least squares points in different orientaions

 x_coordinates=ptset[0]

 y_coordinates=ptset[1]

 z_coordinates=ptset[2]

 ### Ploting of the least square point along y axis

 plt.figure(figsize=(10, 10))

 plt.text(0,-0.00025,"origin")

 plt.xlim([-0.01,0.01])

 for i in range (len(x_coordinates)):

 plt.plot(x_coordinates[i],z_coordinates[i],'ro')

 plt.text(x_coordinates[i],z_coordinates[i]+5,i+1)

 plt.plot(0,0,'go')

 plt.title("Component Name: {}, ({} free edge)".format(source.replace(".xlsx",""),sheetname))

 plt.xlabel('x - axis')

 plt.ylabel('z - axis')

 plt.show()

 ### Ploting of the least squre points along the z axis

 plt.figure(figsize=(10, 2))

 plt.axis('equal')

 plt.ylim([-0.0001,0.0001])

 for i in range (len(x_coordinates)):

 x=[0,x_coordinates[i]]

 y=[0,y_coordinates[i]]

 plt.plot(x,y,'r')

 plt.text(x_coordinates[i],y_coordinates[i]+0.0001,i+1)

 plt.plot(x_coordinates[i],y_coordinates[i],'ro')

 plt.plot(0,0,'go')

 plt.title("Component Name: {}, ({} free edge)".format(source.replace(".xlsx",""),sheetname))

 plt.xlabel("X - axis")

 plt.ylabel("Y - axis")

 plt.show()

 lssum=0

 for i in range (int((np.size(di))/2)):

 lssum=lssum+np.power((ptset[0,i]),2)+np.power((ptset[1,i]),2)

 print("The leastsqures sum is {}".format(lssum))

 ptlsdist=[]

 for i in range (int((np.size(di))/2)):

 ptls=np.sqrt((np.power(ptset[0,i],2))+(np.power(ptset[1,i],2)))

 ptlsdist.append(ptls)

 Ptlstdist=np.hstack(ptlsdist)

101

 zonemag=np.max(ptlsdist)

 print("the Zone mag is {}\n\n".format(zonemag))

 return [deltatheta_x,deltatheta_y,delta_x,delta_y,phi,h,s,Lt,Mt,Nt,Pt,Qt,Rt,zonemag]

Main program

output =

pd.DataFrame(columns=["FileName","sheetname","deltatheta_x","deltatheta_y","delta_x","delta_y","

PHI","pitch (h)","S","L","M","N","P","Q","R","LS zone radius"]) # Creates a pandas dataframe with

the following titles

for i in arr: # Loop through the files in the folder

 source=i

 sheets=["left","right"]

 for sheetname in sheets: # Loop through each sheet in the excel file

[deltatheta_x,deltatheta_y,delta_x,delta_y,phi,h,s,Lt,Mt,Nt,Pt,Qt,Rt,zonemag]=edges(source,sheetnam

e) # Reading outputs from the function

output.loc[output.shape[0]]=[source,sheetname,deltatheta_x,deltatheta_y,delta_x,delta_y,phi,h,s,Lt,Mt

,Nt,Pt,Qt,Rt,zonemag] # writing the values to the pandas dataframe

output.to_excel('../Edgeswithpandas2.xlsx', header=True, index=False) # Converts the pandas

dataframe and saves it in excel format.

The output of the above program is (Only one output for example):

The offset for the x-coordinates is -113.09076712328768

deltatheta_x = -7.209670798812664e-16, deltatheta_y = -0.004412272070600839,

delta_x = -0.011353787608870425, delta_y = 2.786194537136048e-15

Phi = 0.004412272070600839, Pitch(h) = -2.1099808319849559e-13, s = -

9.309809494470342e-16

L = -1.6340041328935752e-13, M = -1.0, N = 0

P = -147.43517649572803, Q = 2.4090968772791326e-11, R = 0

X_nom = -0.011353787597648463, Y_nom = 2.786194535302374e-15, Z_nom = -

4.371700674230559e-07

The Transformed Least squares coordinates are

[[2.12086214e-03 2.58413429e-16 -6.33006157e-04]

102

 [-8.35179200e-04 -1.25168607e-16 -2.54009056e+01]

 [-7.91241707e-04 4.00075282e-15 -5.08014531e+01]

 [-7.47292901e-04 -2.54686761e-15 -7.62018536e+01]

 [2.96703778e-04 7.77184140e-16 -1.01601633e+02]

 [3.40689301e-04 -1.91477229e-15 -1.27001556e+02]

 [3.84788805e-04 -8.55344337e-16 -1.52400000e+02]

 [-5.71371376e-04 -1.24690995e-15 -1.77801816e+02]

 [-5.27552707e-04 -2.15951117e-16 -2.03203906e+02]

 [-4.83580113e-04 -6.09493430e-16 -2.28603998e+02]

 [-4.39571087e-04 4.22862303e-16 -2.54003617e+02]

 [-1.39557617e-03 1.58939834e-15 -2.79403418e+02]

 [2.64832122e-03 4.65896317e-16 -3.04804487e+02]]

Fig H.1. The XZ-view of the Least Squares Fitted Edge of Stamped Component.

103

Fig H.2 The XY-view of the Least Squares Fitted Edge of Stamped Component.

