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ABSTRACT 

Least squares fitting in 3D is applied to produce higher level geometric 

parameters that describe the optimum location of a line-profile through many nodal 

points that are derived from Finite Element Analysis (FEA) simulations of elastic spring-

back of features both on stamped sheet metal components after they have been plasticly 

deformed in a press and released, and on simple assemblies made from them.  Although 

the traditional Moore-Penrose inverse was used to solve the superabundant linear 

equations, the formulation of these equations was distinct and based on virtual work and 

statics applied to parallel-actuated robots in order to allow for both more complex 

profiles and a change in profile size.  The output, a small displacement torsor (SDT) is 

used to describe the displacement of the profile from its nominal location.  It may be 

regarded as a generalization of the slope and intercept parameters of a line which result 

from a Gauss-Markov regression fit of points in a plane.  Additionally, minimum zone-

magnitudes were computed that just capture the points along the profile.  And finally, 

algorithms were created to compute simple parameters for cross-sectional shapes of 

components were also computed from sprung-back data points according to the protocol 

of simulations and benchmark experiments conducted by the metal forming community 

30 years ago, although it was necessary to modify their protocol for some geometries that 

differed from the benchmark. 

 

  



ii 
 

ACKNOWLEDGEMENTS 

 My most sincere appreciation goes to my advisor and committee chair, Dr. Joseph 

K. Davidson, for his guidance, support, and belief in me, which made this work possible. 

 I would also like to thank other committee members, Dr. Jami J. Shah and Dr. Yi 

Ren for their time and guidance.  

 I would also like to thank former student Abhishek Joshi who undertook the 

Finite Element Analysis simulation for a J-section welded profile and who did the 

preliminary work to extract from it the data points for fitting. 

 Finally, I wish to acknowledge my appreciation for funding provided by the 

National Science Foundation, GOALI Award No. 2029905.  



iii 
 

TABLE OF CONTENTS 

 

LIST OF TABLES  ..............................................................................................................v 

LIST OF FIGURES  ......................................................................................................... vii 

NOMENCLATURE  ...........................................................................................................x 

CHAPTER 

1. Introduction and Problem Statement  ......................................................................1 

1.1. Problem Statement and Methods  .....................................................................3 

1.2. Literature Review .............................................................................................4 

2. Plücker Coordinates of a Line and Coordinates of a Small Displacement Torsor 

(SDT) .......................................................................................................................7 

3. Least Squares Fits using Virtual Work Applied to Platform Robots .....................10 

3.1. Planar Example to Validate the Virtual Work Method. .................................11 

4. Fitting of Line-profiles in 3d .................................................................................16 

4.1. Straight Line Fitting in 3d Space with Least Squares .....................................17 

4.2. Least Squares Fitting of Arc Profile in 3d Space. ..........................................21 

4.3. Least Squares Fitting of Arc with Size Change. .............................................23 

4.4. Least Squares Fitting of J-shaped Profile in 3d Space. ..................................25 

4.5. Least Squares Fitting of J-shaped Profile with Size Change. .........................27 

5. Least Squares Zone and True Minimum Zone of a Profile ...................................29 

5.1. Finding the Coordinates of the Nodal Point in the Least Squares Fit Frame. 29 

5.2. Least Squares Zone Magnitude. .....................................................................30 

5.3. Unwrapping of Points along the Arc Profile. .................................................30 

5.4. True Minimum Zone. ......................................................................................32 



iv 
 

CHAPTER Page 

6. Numi-sheet Parameters to Validate the FEA Stamping Model Created at the Ohio 

State University ......................................................................................................34 

6.1. Extracting Numi-sheet Parameters (Inverted Hat Section) for FEA and 

Experimental Parts ..........................................................................................34 

6.2. 3d Line Fitting for the Edges Profiles of Stamped Components  ...................40 

6.3. Effect of Perturbation .....................................................................................40 

7. Results and Conclusion ..........................................................................................42 

REFERENCES ............................................................................................................57 

APPENDIX ..................................................................................................................60 

A. 11-POINT LINE PROFILE FITTING ............................................................61 

B. 9-POINT ARC FITTING .................................................................................65 

C. 9-POINT ARC WITH SIZE CHANGE ...........................................................69 

D. 19-POINT J SHAPED PROFILE FITTING....................................................73 

E. J SHAPED PROFILE WITH SIZE CHANGE ................................................78 

F. TRUE MINIMUM ZONE  ..............................................................................83 

G. PARAMETERS FROM STAMPED COMPONENTS ...................................89 

H. FITTING OF EDGE PROFILES OF STAMPED COMPONENTS ...............97 

 

 

  



v 
 

LIST OF TABLES 

Table  Page 

2.1. Entities That Can Be Interpreted Using the Plücker Coordinates Method. ..................7 

3.1. The Uniformly Distributed Sample Points for Fitting a Line in 2d Space. ................11 

3.2. The Inputs and the Results of 2d Least Squares Fitting Using Line Coordinates. .....14 

4.1. Sample Points from the Inner Sprung Back 3d Line Profile. .....................................19 

4.2 Sample Entries for Matrix [K’] along the Inner Straight Profile. ................................19 

7.1 Sample Point for Inner Assembly Profile. ...................................................................43 

7.2 Sample Point for Outer Assembly Profile. ..................................................................43 

7.3 Results of Least Squares Fit of Sampling Points for Different Profiles along the Inner 

Assembly Profile. ...............................................................................................................44 

7.4 Line Coordinates of the Least Squares Fit of Sampling Points along Inner Profile. ...44 

7.5 Results of Least Squares Fit of Sampling Points for Different Profiles along the Outer 

Assembly Profile. ...............................................................................................................45 

7.6 Line Coordinates of the Least Squares Fit of Sampling Points along Outer Profile. ..45 

7.7 Results of Least Squares Fit of Total Points for Different Profiles along the Inner 

Assembly Profile. ...............................................................................................................45 

7.8 Line Coordinates of the Least Squares Fit of Total Points along Inner Profile. ..........46 

7.9 Results of Least Squares Fit of Total Points for Different Profiles along the Outer 

Assembly Profile. ...............................................................................................................46 

7.10 Line Coordinates of the Least Squares Fit of Total Points along Outer Profile. .......46 

7.11 Least Squares Zone Size of Different Profiles ...........................................................46 

7.12 True Minimum Zone Size of Different Profiles ........................................................47 



vi 
 

Table  Page 

G.1(A). Sample List of the Parameters Generated in an Excel Document for Stamped 

Components. ......................................................................................................................96 

G.1(B). Sample List of the Parameters Generated in an Excel Document for Stamped 

Components. ......................................................................................................................96 

 

 

 

 

 

 

  



vii 
 

LIST OF FIGURES 

Figures  Page 

1.1. Common Types of Assembly Structures ......................................................................2 

1.2(A). Nominal Dimensions of Assembly..........................................................................3 

1.2(B). Small Displacement Coordinates .............................................................................3 

1.2(C). LSF Zone of the Profile ...........................................................................................3 

2.1. Line Coordinates ...........................................................................................................8 

3.1. The Regression Fit of Line in 2d Using Line Coordinates. ........................................11 

3.2 Force Balance for the Actuator at One Nodal Point ....................................................12 

4.1. The Partitioned Points from the Assembly of Straight and Curved Hat-section 

Components and the Global Coordinate Frame. The Ending Coordinates Are for Zero 

Spring-back (Nominal Profiles). ........................................................................................16 

4.2. The Regression Fit of Line in 3d. ...............................................................................18 

4.3(A). The XZ - Plane View of the Straight-line Profile. ................................................18 

4.3(B). The YZ - Plane View of the Straight-line Profile. .................................................18 

4.4. The Arrangement of Actuator for an Arc Profile. .......................................................21 

4.5. An Array of Selected Data Points Along One Edge Profile of the Assembled 

Structure with Component Linear Actuators at One Point. ...............................................25 

4.6. Forming a Matched Pair Assembly by Joining Two Frame Subassemblies. ..............27 

5.1. Unwrapping of the LSF Profile onto a Straight-line Profile. ......................................31 

5.2. Minimum Cylinder Fit for Points in Space. ................................................................33 

6.1. Parameters to Be Extracted from the Stamped Components. .....................................35 

6.2. The Origin of the Stamped Component Obtained from FEA Simulation. .................35 

6.3. The Points Found Using Numi-sheet 93 to Extract the Parameters. ...........................36 

6.4. Finding Point C Using Numi-sheet .............................................................................37 



viii 
 

Figures  Page 

6.5. Point Where Structure Leaves the Die. .......................................................................38 

6.6. Parameters Extracted from the Stamped Profile. ........................................................38 

 6.7. Showing the Perturbation Points at Point B for Half Depth Stamping ......................41 

6.8. Showing the Perturbation Points at Point B for Full Depth Stamping .......................41 

7.1. Figure Showing the Inner and Outer Assembly Profile. .............................................42 

7.2. Figure Showing the Sampling Points along the Inner Assembly Profile....................43 

7.3. Figure Showing the Sampling Points along the Outer Assembly Profile. ..................44 

7.4. Least Squares Zone Boundary for 11 Points on the Straight Portion of the Inner 

Profile.  ...............................................................................................................................47 

7.5. True Minimum Zone Boundary for 11 Points on the Straight Portion of the Inner 

Profile. ................................................................................................................................48 

7.6. Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc Portion 

of the Inner Profile. ............................................................................................................49 

7.7. Projection of Toroidal True Minimum Zone Boundary for 9 Points on the Arc 

Portion of the Inner Profile. ...............................................................................................50 

7.8. Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc Portion 

of the Inner Profile with Size Change. ...............................................................................51 

7.9. Projection of Toroidal True Minimum Zone Boundary for 9 Points on the Arc 

Portion of the Inner Profile with Size Change. ..................................................................52 

7.10. Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with Size 

Change. ..............................................................................................................................53 

7.11. True Minimum Zone Boundary for 19 Points on the J-shaped Inner Profile When 

Unwrapped onto a Straight Line. .......................................................................................54 



ix 
 

Figures  Page 

7.12. Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with Size 

Change When Unwrapped onto a Straight Line. ...............................................................55 

7.13. True Minimum Zone Boundary for 19 Points on J-shaped Inner Profile with Size 

Change When Unwrapped onto a Straight Line. ...............................................................56 

A.1. Least Squares Zone Boundary for 11 Points on the Straight Portion of the Inner 

Profile. ................................................................................................................................65 

B.1. Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc Portion 

of the Inner Profile. ............................................................................................................69 

C.1. Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc Portion 

of the Inner Profile with Size Change. ...............................................................................73 

D.1. Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with Size 

Change. ..............................................................................................................................78 

E.1. Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with Size 

Change When Unwrapped onto a Straight Line. ...............................................................82 

F.1. XY-view of the True Minimum Zone of 19-point Profile with Size Change. ...........88 

F.2. YZ-view of the True Minimum Zone of 19-point Profile with Size Change. ............88 

F.3. XZ-view of the True Minimum Zone of 19-point Profile with Size Change. ............89 

G.1. Parameter to Be Extracted from the Cross-sectional Profile of Stamped Component.89 

G.2. The Points Obtained from the Program. ....................................................................95 

H.1. The XZ-view of the Least Squares Fitted Edge of Stamped Component. ...............101 

H.2. The XY-view of the Least Squares Fitted Edge of Stamped Component. ..............102 

 

  



x 
 

LIST OF NOMENCLATURE 

 

SDT: Small Displacement Torsor 

LSF: Least Squares Fit 

FEA: Finite Element Analysis 

 

 

 

 



1 
 

CHAPTER 1. Introduction and Problem Statement 

Large assemblies, such as an automobile body or door, are made from flexible parts, 

usually sheet metal stampings. Each assembly is made of many flexible subassemblies 

that are assembled and joined progressively. These subassemblies are also built 

progressively, as shown in Figure 1.1. When two individually stamped parts are brought 

together to be joined into a subassembly, they often do not match up exactly, and so 

special tooling and clamping are required to bring them into alignment. Thus, for good 

design, variable gaps between proximal assemblies must be predicted precisely and be 

related to input variables to be controlled.  As subassemblies of parts are stacked, errors 

accumulate to cause larger variations in the gaps.  Sources of manufacturing variations in 

sheet metal assemblies include non-isotropic material properties from cold rolling, spring 

back from stamping, and distortion from residual stresses when components are clamped, 

then spot welded.  The workflow of FE simulations to capture these sequential events are: 

(1) component stamping that captures spring back, (2) clamping of the components for 

assembly, and (3) assembly joining, then release to the free state.  

Variations in the gaps between assemblies depend on the geometric spring back 

variations of nodal points along each of two matching line profiles, such as the edge of an 

auto door and its matching opening in the body.  As a first step in producing extracted 

geometric parameters related to a gap, this thesis utilizes data along the profiles located at 

the extreme longitudinal edges for the simple assembly shown in Fig. 1.1.  (See the 

highlighted edges in Fig. 1.2(A).)  The data are from the FEA analysis conducted by A. 

Joshi [1] in 2020.  In addition to getting parameters for the two J-shaped profiles (edges) 

of the assembly, data for each profile were partitioned so points confined to a straight part 
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could be used to simulate spring-back for the edges of a straight component, and points 

confined to an arc could be used to simulate spring-back, including change in radius, for 

the edges of an arc component.  Spring-back for each of these six profiles is quantified 

with a zone magnitude and with six coordinates of small displacement (Fig. 1.2(B)) to 

give its overall geometric location relative to its nominal location (zero spring-back).  

Two zone magnitudes were computed: a zone constrained to the location of the LS 

profile, and an unconstrained zone.  (See Chap. 5.) 

The parameters are being used as part of curated data that represent a design space for 

flexible two-part assemblies which will be available for machine learning (ML) 

algorithms so optimal designs of subassembly fixtures and weld patterns can be predicted 

computationally, instead of empirically (Adrian, et al., 2022) [2].  The parameters will 

also be used in the future for more elaborate assemblies [3].   

 

 

 

 

Simple Assembly Closed Loop Assembly Matched Pair Assembly 

Fig 1.1 Common Types of Assembly Structures 

Some simple parameters for cross-sectional shapes of components were also 

computed from sprung-back data points according to the protocol of the NUMISHEET 
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93 simulations and benchmark experiments [4], although it was necessary to modify the 

protocol for some of our geometries that differed from the one in NUMISHEET 93.  (See 

sect. 6.1.)   

   

Fig 1.2(A) Nominal Dimensions of Assembly, mm    Fig 1.2(B) Small Displacement  

Coordinates 

 

Fig 1.2(C) LSF Zone of the Profile 

1.1 Problem Statement and Methods 

The novel contribution in this thesis is the application of virtual work, in 

combination with parallel (platform) robotics to construct the set of linear equations for 

which the least squares (LS) best-fit solution may be obtained.  This construction allows 

for both size change and the line-profiles to be of any shape.  For any profile, the linear 

equations in the LSF formulation are derived from force balances applied to the virtual 
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work expressions at the linear actuators of a parallel-actuated robot.  Every actuator is 

linear, i.e., can only extend or contract, and so is represented geometrically with the six 

coordinates of a line [5].  Inputs to the fitting are the deviations of the sprung-back nodal 

points from the nominal profile (shape with zero spring-back).  The output is a small 

displacement torsor (SDT) that describes the displacement of the profile from its nominal 

location. The SDT coordinates $ = (δθx δθy δθz δx δy δz) represent the small 

displacement of the robot platform that has etched in it the profile of interest. The 

coordinates also are a generalization of the slope and intercept parameters of a line which 

result from a Gauss-Markov regression fit of points in a plane.  The relatively small 

displacements of different profiles, e.g., opposite edges on a component or subassembly, 

may be used to correlate different combinations of inputs (e.g., material thickness, 

strength, blank orientation, and both spot weld locations and quantity) with the final 

shape of the component or subassembly in its free state. 

By converting the SDT to an equivalent transformation matrix, it is then used to 

express the coordinates of the sprung-back nodal points in a new reference frame that is 

aligned with the LS profile.  From these new coordinates, the magnitude of a LS 

envelope, centered on the LSF profile, is computed that just captures all the sprung back 

points. As an alternative, we also computed the magnitude of the true minimum zone 

using the minimum circumscribing cylinder algorithm from Mohan, et al. [6].   

1.2 Literature Review 

 There has been a lot of development and research going on the fitting of the 

various shapes like polynomial curves, circles, planes, cylinders, spheres [7,8,9,10], and 

other surfaces [11] to an array of points.  One of the ways to fit a straight line in 3D space 



5 
 

is using the Singular Value Decomposition (SVD) which gives the average point and 

direction of a fitted straight line [12].  These methods work well when the point sampling 

is controlled and can be made uniform but when dealing with non-uniformly sampled 

points this doesn’t work well, so there is a need to incorporate the weighted least squares 

fit that accounts for that discontinuities in the sampled points [13]. An example 3D fitting 

application, which is relevant to this NSF project [3], is included in [14]: the fitting of an 

auto body opening (the profile) to points measured around a prospective door in order to 

determine optimum hinge-mounting adjustments when assembling the door to the auto 

body.   

Change in size of an arc or a closed planar profile was included with least-squares 

fitting by Davidson, et al. [15,16,17].  The linear equations to be solved were created 

using virtual work applied to parallel actuated platform robots, the method used in this 

thesis (see section 5.1).  When the Moore-Penrose inverse (pseudoinverse) [12,17] is 

applied to the matrix form of these equations, the optimum LS solution is the set of small 

displacement torsor (SDT) coordinates that represent the displacement of a point on the 

robot platform and its angular orientation. 

Additional parameters that will be important potentially are the true minimum zone 

for a set of points arrayed along a straight line.  Both the zone magnitude and the location 

of the corresponding axis are of potential use.  The method for getting these results is 

iterative, but it begins from the LSF of a line to the points [6].  Further, by transforming 

points along a curved profile to a line, the method may be applied to line-profiles 

containing curved portions also (See Sect. 5.2- Fig 5.1). 
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 This thesis also contains software for computing geometric parameters to validate 

the Ohio State University FEA simulations [2] for stamping hat-section components.  

Verification was achieved when the parameters agreed with experimental values 

presented in the NUMISHEET 1993 U-draw/bending benchmark [4].  Since the sprung-

back points defining the radius parameter were often ill-conditioned, a refined algorithm 

[18] was used for it. 
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CHAPTER 2. Plücker Coordinates of a Line and Coordinates of a Small 

Displacement Torsor (SDT) 

The entities lines, screws, wrenches, and small displacement torsors (SDTs) are used 

in the following chapters both to characterize locations of LSF profiles and to create the 

linear equations needed for a matrix optimization. All may be represented in 3D space 

with two vectors, or six scalar coordinates (L, M, N; P, Q, R). For all four of them, the 

first vector gives the direction i.e., a spatial field of parallel lines.  When a line is 

represented, the two vectors are at right angles and the second vector selects a specific 

line from the spatial field.  When a screw is represented, the second vector P*, Q*, R* 

contains additional information (vector τ in Fig. 2.1) and so violates the right-angle 

property.  For wrenches and SDTs, the entire set of six coordinates also contains 

amplitude information (Table 2.1 So, one of the prominent ways to do this is to use 

Plücker coordinates. The Plücker coordinates (L, M, N; P, Q, R) are usually used to 

locate a line or a screw axis in space. They comprise a pair of three-dimensional vectors 

of which the first vector (L, M, N) determines the direction of the axis, and the second 

vector (P, Q, R) locates the line in space. Table 2.1 shows the different interpretations of 

these coordinates as used in this thesis.   

Table 2.1 Entities That Can Be Interpreted Using the Plücker Coordinates  

Method. [5] 

Entity Symbol Coordinates 

Line $ (L, M, N; P, Q, R) 

Screw $ (L, M, N; P*, Q*, R*) 

Wrench F $ F (L, M, N; P*, Q*, R*) 

Small Displacement Torsor (SDT)  δθ$ δ𝜃 (L, M, N; P*, Q*, R*) 
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We are currently using the wrench coordinates to represent forces, line 

coordinates to represent actuators, and SDT coordinates to describe the displacement of 

the profile from its nominal location (Chap. 3). 

 

Fig 2.1 Line Coordinates [5]. 

In general, the (P, Q, R) coordinates of the SDT will include the vector parallel to the 

twist $(h) = δ𝜃$ = δ𝜃 (L, M, N; P*, Q*, R*) in Fig. 2.1.  Therefore, using equations from 

[5], pitch h may be extracted from the coordinates as the ratio,   

ℎ =
𝐿𝑃∗ + 𝑀𝑄∗ + 𝑁𝑅∗

𝐿2 + 𝑀2 + 𝑁2
 

and amplitude δ𝜃 = (𝐿2 + 𝑀2 + 𝑁2)1/2.    (2.1) 
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 It often is helpful to identify the location of the line that carries the SDT.  This 

may be found by computing 𝑃 = 𝑃∗ − ℎ𝐿, 𝑄 = 𝑄∗ − ℎ𝑀, and 𝑅 = 𝑅∗ − ℎ𝑁 for the line,  

then using twice the condition  

[
𝑃 

𝑄 

𝑅 

] = [
0 – 𝑧 𝑦
𝑧 0 – 𝑥

– 𝑦 𝑥 0
] [

𝐿
𝑀
𝑁

]         (2.2) 

that a point (x, y, z) lies on the line (L, M, N; P, Q, R).  Helpful points lie on the 

coordinate planes x=0, y=0, and z=0. 
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CHAPTER 3. Least Squares Fits using Virtual Work Applied to Platform Robots. 

 

Several geometric characteristics of nodal points from FEA simulations of plastic 

forming and elastic spring-back may be represented by using, or in some cases 

extrapolating, measures and methods already established for scanned points on surfaces 

of machined parts.  The methods that are used in this thesis are (1) the computation of a 

minimum zone, which just captures all partitioned set of points; (2) the substitute feature 

associated with the zone; (3) least-squares fits (LSFs) of substitute features for the same 

points; and (4) the boundaries parallel to them which just capture all the points.  The 

computations for minimum zones and their associated substitute features follow the 

methods from metrology described in Mohan, et al. [6].  

 However, several features for the components, and for assemblies of them, are line 

profiles, some of them with changing curvature.  Examples are the free edges of 

components and assemblies.  For these reasons, we have not found a satisfactory LSF 

model.  One approach to this was undertaken by Nassef & ElMaraghy, [14] in which they 

minimized the squares of the closest proximities of pairs of opposite points on two 

similar 3D line profiles, one on the edge of the door of an automobile and the other 

around the corresponding opening in the auto body. The resulting profile was used to 

optimize the mounting location for the door. It is not clear from the paper whether these 

distances were treated as scalar values or vectors, but, as seen in what follows, for points 

arranged in 3D around a nominal profile, the closest distances need to be treated as 

vectors [7,8,9,10].  To incorporate the vector feature in combination with changing in 

curvature in this thesis, an alternative method is suggested:  virtual work applied to a 
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platform robot that is customized to the specific profile [15,16,17]. The method also 

allows the fitted profile to include change in size. 

3.1 Planar Example to Validate the Virtual Work Method. 

 

Fig 3.1 The Regression fit of line in 2D using line coordinates. 

To validate LSFs using the method of virtual work applied to a parallel robot, 

consider the slope fit of a straight line to the five nodal points shown in Fig. 3.1 and 

which have coordinates listed in Table 3.1. The five nodes are shown deviating from the 

x-axis, 

Table 3.1. The Uniformly Distributed Sample Points for Fitting a Line in 2d Space. 

Points 1 2 3 4 5 

X, mm 1 5 8 10 12 

Y, mm 1 -1 -2 0 2 

here taken to be the nominal profile shape (straight) and location.  Their positions 

are fixed in the XY-plane.  Coinciding with the nominal profile is a line etched in the 

platform of a virtual planar robot that is actuated redundantly and in-parallel with five 
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actuators, one for each of the five points.  Each actuator is linear (can only extend or 

contract), acts through one of the points, exerts force between the base and the platform 

(hence, act in-parallel on the platform), and, for small displacements of the platform, 

exerts force only in the y-direction.  For the geometry in Fig. 3.1, the platform 

displacement is constrained to be only the rotation in the plane δθz and the vertical 

translation δy of that point on the platform initially coincident with the origin O.  Also, all 

the actuators are connected to both the platform and the base with rotary joints except for 

the first actuator, which is rigidly attached to the base (Fig. 3.1). 

 

Fig 3.2 Force Balance for the Actuator at one Nodal Point 

Each actuator, represented by its line $i, exerts a force of magnitude Fi on the 

robotic platform, and, when each act alone, the platform is a two-force member and 

exerts the same force on the environment. Therefore, presuming temporarily that the 

actuator at $1 acts alone and the other actuators are unconstrained, the force F1$1 is the 

same as the wrench (Tz1 Fy1) that the platform exerts on the environment (Fig. 3.2), where 

Fy1 = F1 and Tz1 = x1F1. Putting this together 𝐹1 ∗  $1 = [𝑇𝑧1 𝐹𝑦1] = 𝐹1[𝑥1 1], and the 

force magnitude cancels to leave $1 = [𝑥1 1] to represent $1. When this result is 

compared to the representation of a wrench in chapter 2, R1 = x1 and M1 = 1 are the 

normalized line coordinates for $1 in F1 $1 = F1 [P1 Q1 R1; L1 M1 N1]. Since all the nodal 
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points lie in a plane and the x-axis of the coordinates system is aligned with the nominal 

profile in Fig.1, P1 = Q1 = L1 = N1 = 0. Resuming the special case when the actuator at $1 

acts alone, the input virtual work is the scalar product F1 d1 because the vector deviation 

d1 is measured on the line of action for F1. Further the output virtual work is the matrix 

product of the wrench representation of 𝐹1 = [𝑇𝑧1 𝐹𝑦1] = 𝐹1[𝑥1 1] and the SDT [$] = 

[δθ𝑧 δ𝑦]𝑇, where δθ𝑧 is the rotation of the platform and δ𝑦 is the y-displacement of the 

point on the platform initially coincident with the origin of coordinates. Equating these 

two forms of virtual work gives 𝐹1 𝑑1 = 𝐹1 [𝑥1 1] [δθ𝑧  δ𝑦]𝑇 at the actuator $1. 

Cancelling force F1 now leaves the geometric equation 𝑑1 = [𝑥1 1] [δθ𝑧 δ𝑦]𝑇. 

Corresponding equations occur for the remaining nodes. So, the set of linear equations 

that formulate the least-squares fit profile are.  

[di] = [

𝑑1

𝑑2

⋮
𝑑𝑛

] ≡ [K'][$] = [

𝑅1 1
𝑅2 1
⋮ ⋮

𝑅𝑛 1

] [$]   (3.1) 

where the [di] are the deviations measured at right angles to the nominal profile, which is 

the x-axis, the matrix [k’] lists the unit forces acting along the linear actuators and the 

moment of each about the origin of coordinates (each pair representing the normalized 

line coordinates of a $i), and [$] represents the SDT of the platform. Since, the fine linear 

equations (3.1) are superabundant and inconsistent set of linear equation, so there is no 

single vector [$] that satisfies them all. Hence, we go for the least squares fit solution, 

$LS, which minimizes the sum of the deviations of the points from the least squares 

profile. This best possible vector for [$L-S] can be found by the pseudoinverse equation 

[12] 
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[$ L−S] = [𝑘′]#[𝑑] = (([𝑘′]𝑇[𝑘′])−1[𝑘′]𝑇)[𝑑]   (3.2) 

Table 3.2. The Inputs and the Results of 2d Least Squares Fitting Using Line 

Coordinates. 

Point Ri  = xi Mi di (mm) Δdi (mm) Di (mm) 

1 1 1 1 -0.331 1.331 

2 5 1 -1 -0.117 -0.882 

3 8 1 -2 0.043 -2.043 

4 10 1 0 0.150 -0.150 

5 12 1 2 0.257 1.7433 

After substituting Ri, Mi, and di from Table 3.2 into Eqs. (3.2), we get the $L-S value to be 

(δθz δy) = (3.0639, -0.385). From the values of the $𝐿−𝑆 found from solving the above 

equations we get a new set of deflection values Δd with which we can find the change in 

deflections D by finding the difference between the original deflections d and the 

deflections found from the least squares fit result Δd. 

 One measure of zone magnitude is the LSF minimum zone that is obtained as the 

perpendicular distance between the pair of lines parallel to the LSF line (Fig. 3.1) that 

just capture all the nodal points.  This zone may be found in two stages.  First, when the 

SDT [$L-S] is substituted into Eq. (3.1), the new values of di that result, here called Δdi, 

measure the distances between the LSF profile and the nominal profile at the respective 

nodal points (Fig. 3.1).  The accuracy of these distances presumes that the original 

deviations di are small relative to profile dimensions, an assumption that is valid for the 

FEA springback data used in this thesis.  (It is not valid for the example shown in Fig. 

3.1, but this example is included so definitions and terminology may be shown visually 

nearly at scale.)  Second, it evident in Fig. 3.1 that the deviation Di from the LSF profile 
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at each nodal point i is Di = di – Δdi.  Therefore, the L-S minimum zone MZ L-S is found 

to be the difference between the algebraically largest and smallest values of Di which are 

obtained from the array of values at all the points, i.e. 

MZ L-S = 𝐷𝑖,𝑚𝑎𝑥 − 𝐷𝑖,𝑚𝑖𝑛 . 

For the nominal profile and five nodal points shown in Fig. 1, MZ L-S =3.786 mm.  
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CHAPTER 4. Fitting of Line-profiles in 3d 

In this study we are fitting the sprung back points along two profiles from the 

FEA simulations of component stamping and subsequent spot welding into a J-Shaped 

assembly (Fig. 4.1). The image below are the parts that were simulated by A. Joshi [1]. 

The two profiles are the outer line-profile that includes the larger arc with 60 points (59 

intervals) and the inner profile that contains the smaller arc with 40 points (39 intervals). 

The number of nodal points on each edge of the profile are shown in Figure 4.1, and 

these are distributed uniformly along each profile. The data is taken from [1] for the case 

of five spot welds made one at a time, progressing from the smaller arc to the larger arc. 

Each weld is in one of the five straight portions of the hat-shaped cross-section. 

 

Fig 4.1 The Partitioned Points from the Assembly of Straight and Curved Hat-section 

Components and the Global Coordinate Frame. The Ending Coordinates Are for Zero 

Spring-back (Nominal Profiles) [1]. 

All the points in this chapter are taken from the J-shaped spot-welded assembly in 

Fig. 4.1. To apply the statics with robotics method for generating the linear equations, the 

points of the two profiles are partitioned into sets of points for edges of the straight hat 

section and sets for the inner and outer arcs. Then, for the assembly, these are combined 

for each profile. The straight component is 500mm long, but to simulate the spot-welding 

of the two components together for the assembly, there is an overlap of 10mm along both 
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profiles. Consequently, there are 49 intervals for the straight profiles, and in the 

coordinate-frame shown in Fig. 4.1, the points at the ends are z = 0 and z = 490 mm. 

Three least-squares fits were undertaken for each profile: the straight part, to 

simulate fitting edges to a component; the arc, another component, and the full J-shape 

for the welded assembly. Note, however, that the 50th point for each straight profile is 

also the first point for the respective arc. Therefore, for fitting each of the J-shaped 

assembly profiles, this duplicated point is used just once.  

Two quantities of points were used for the same data: one was to use all 89 points 

for the inner profile containing the smaller radius arc and 109 points for the outer arc. 

The other quantity, to reduce computation time for use with large amounts of simulation 

data, was to use a sampling method that leads to 19 points for the inner profile and 23 

points for the outer profile. For both profiles with sampling, 11 points were used for the 

straight portions with nine intervals of nominally 50mm each and the last interval (at the 

490mm limit) of 40mm. 

4.1 Straight Line Fitting in 3d Space with Least Squares 

For points arranged along a nominal straight line-profile, such as those shown in 

Fig 4.2, the displacement of the LSF profile will be in the x- and y-directions with 

allowance for rotations about these axes also. Consequently, actuators are required in 

these two directions (Figs. 4.2 and 4.3) at each nodal point to produce the required 

displacements of the robot platform that carries the duplicate movable line-profile. 
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Fig 4.2. The Regression Fit of Line in 3d.  

  

Fig 4.3(a) The XZ - Plane View of the Straight Line Profile  

 

Fig 4.3(b) The YZ - Plane View of the Straight Line Profile  
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To capture all the deviations in 3D we need to find the line coordinates (P, Q, R, 

L, M, N) for each of the two perpendicular linear actuators in Fig. 4.2. The results are (0, 

Zi, 0, 1, 0, 0) and (-Zi, 0, 0, 0, 1, 0) for actuators lying in the XZ and YZ planes, 

respectively. Since the R and N coordinates are consistently zero, they may be ignored, 

and we get (P, Q, L, M) = (0, Zi, 1, 0) and (-Zi, 0, 0, 1) as the line coordinates for all the 

actuators at the nodal points along the straight portion of the profile. 

Table 4.1. Sample Points from the Inner Sprung Back 3d Line Profile 

Points X, mm Y, mm Z, mm di, mm 

1 -241.90 0.743 490.02 8.10 

2 -241.84 0.535 451.02 8.16 

3 -241.79 0.303 401.03 8.21 

4 -241.75 0.010 351.03 8.25 

Table 4.2. Sample Entries for Matrix [K’] along the Inner Straight Profile 

Points P Q L M di 

1x 0 490.2 1 0 8.10 

1y -490.2 0 0 1 0.743 

2x 0 451.02 1 0 8.16 

2y -451.02 0 0 1 0.535 

3x 0 401.03 1 0 8.21 

3y -401.03 0 0 1 0.303 

4x 0 351.03 1 0 8.25 

4y -351.03 0 0 1 0.010 

Using Fig 4.3(a) for actuators in the ZX-plane, we can deduce the virtual work balance 

equations at each node to be:  

𝐹𝑖𝑥𝑑𝑖𝑥 = [0 𝑇𝑖𝑦 𝐹𝑖𝑥 0][∆𝜃𝑥 ∆𝜃𝑦 ∆𝑥 ∆𝑦]T

           = 𝐹𝑖𝑥[0 𝑧𝑖 1 0][∆𝜃𝑥 ∆𝜃𝑦 ∆𝑥 ∆𝑦]T
   (4.1) 

And using Fig. 4.3(b) for actuators in the YZ-plane, each is 
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𝐹𝑖𝑦𝑑𝑖𝑦 = [𝑇𝑖𝑥 0 0 𝐹𝑖𝑦][∆𝜃𝑥 ∆𝜃𝑦 ∆𝑥 ∆𝑦]T

           = 𝐹𝑖𝑦[−𝑧𝑖 0 0 1][∆𝜃𝑥 ∆𝜃𝑦 ∆𝑥 ∆𝑦]T
    (4.2) 

 These Eq. (4.1) and Eq. (4.2) at each node can be formulated into the single matrix 

expression. 

[di] =

[
 
 
 
 
 
𝑑1𝑥

⋮
𝑑𝑖𝑥

𝑑𝑖𝑦

⋮
𝑑𝑛𝑦]

 
 
 
 
 

≡ [K'][$] =

[
 
 
 
 
 

0 𝑍1 1 0
⋮ ⋮ ⋮ ⋮
0 𝑍𝑖 1 0

−𝑍𝑖 0 0 1
⋮ ⋮ ⋮ ⋮

−𝑍𝑛 0 0 1]
 
 
 
 
 

[$]    (4.3) 

that captures all the linear equations. The matrix [d] is a list of deviations measured at 

right angles in x- and y-directions from the nominal profile at the respective nodal points, 

the [K'] gives the line coordinates of the nodal points, and [$]SDT = [𝛿𝜃x, 𝛿𝜃y, 𝛿x, 𝛿y] T is 

the SDT of the platform. Sample values of these are given in the table [4.2]. When these 

and all the remaining values are substituted in Expression (4.3), we end up with this 

superabundant and inconsistent set of linear equations formed from all the nodal points. 

There is no single vector [$] that satisfies all the linear equations (4.3).  However, we can 

get an optimum least-squares solution, [$L-S], by using the pseudoinverse [K']# of the 

rectangular matrix [K'], defined as   

[$𝐿−𝑆] = [K']#[𝑑] = (([K']𝑇[K'])−1[K']𝑇)[𝑑]                                  (4.4) 

For the 11 points of the sample data along the straight part of the inner profile, we 

get the $L-S value to be [𝛿𝜃𝑥 𝛿𝜃𝑦 𝛿𝑥 𝛿𝑦] = (-0.054, -0.045, 8.516, -0.140) in units of 

radians and mm. Using these we can find (see Chap. 2) the magnitude of rotation δθ =

(δθx
2 + δθy

2)
1/2

 = 0.070 radians and pitch h = -91.808 mm/rad for the small displacement 

torsor (SDT).  Then the axial progression of the platform along $L-S is s = h Δθ. (See 
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Chap. 2) Using these we can find the line coordinates (L, M, N; P, Q, R) on which the 

SDT lies.  (See Chap. 2 and Tables 7.7 – 7.10.)  

In Section 5.1 the SDT coordinates are converted to a 4x4 homogeneous 

transformation matrix [5] that is used to transform the nominal profile to its least squares 

location relative to the original sprung back points. This result will then be used to find 

the boundaries for the least squares zone and true minimum zone that just captures all the 

points. 

4.2 Least Squares fitting of an arc profile in 3D space. 

 

Fig 4.4. The arrangement of actuator for an Arc Profile 

When the coordinate system in Fig. 4.5 is used to represent the arc, the two 

actuators normal to the nominal profile at a sprung-back data point must lie in a plane 

that contains both the y-axis and the point. We will use the arc of nominal radius 250 mm 

on the inner J-shaped profile as an example (Fig. 4.1). To formulate the linear equations, 

we first need angle α as  

𝛼 = atan2(𝑥𝑖 𝑧𝑖⁄ )    (4.5) 
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where both the x and z arguments of the atan2 function are signed. The necessary 

components of each deviation vector d = 𝐴𝐵⃑⃑⃑⃑  ⃑ (Fig. 4.5) are obtained from its projections 

onto the zx-plane and on the y-axis. Now the corresponding torques and forces in each 

row (P, Q, R; L, M, N) of matrix [K'] are given by 𝑘𝑧𝑥  = (0, 0, 0; L, 0, N) and 𝑘𝑦= (P, 0, 

R; 0, 1, 0). Since coordinates Q (the y-component of moment of an actuator force in the 

y-direction) is consistently zero, we can neglect the Q coordinate and just consider the (P, 

R, L, M, N) values to represent the actuator forces at each node of the profile. The 

representation for these are My = 1 for every point, and 

𝑃𝑦 = −250 cos(α),  𝑅𝑦 = 250 sin(𝛼),     

𝐿𝑖𝑧𝑥 = − 𝑥𝑖/√𝑥𝑖
2 + 𝑧𝑖

2, 𝑁𝑖𝑧𝑥 = − 𝑧𝑖/√𝑥𝑖
2 + 𝑧𝑖

2  (4.6) 

The force balance at each node in the ZX-plane and the y direction leads to  

𝐹𝑖𝑧𝑥𝑑𝑖𝑧𝑥 = [0 0 𝐹𝑖𝑥 0 𝐹𝑖𝑧][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T                                 

           = 𝐹𝑖𝑧𝑥[0 0 𝐿𝑧𝑥 0 𝑁𝑧𝑥][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T
                      

and 

𝐹𝑖𝑦𝑑𝑖𝑦 = [𝑇𝑖𝑥 𝑇𝑖𝑧 0 𝐹𝑖𝑦 0][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T                        

           = 𝐹𝑖𝑦[𝑃𝑦 𝑅𝑦 0 1 0][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T
       (4.7)                         

where the input virtual work terms on the left are dependent on values diy = yi and diz = 

(𝑥𝑖
2 + 𝑧𝑖

2)1/2. Representing the above equations Eq (4.6) for all the nodes in a matrix 

form gives us 

[di] =

[
 
 
 
 
 
d1zx

⋮
dizx

diy

⋮
dny ]

 
 
 
 
 

≡ [K'][$] =

[
 
 
 
 
 

0 0 L1zx 0 N1zx

⋮ ⋮ ⋮ ⋮ ⋮
0 0 Lizx 0 Nizx

Piy  Riy 0 1 0

⋮ ⋮ ⋮ ⋮ ⋮
Pny  Rny 0 1 0 ]

 
 
 
 
 

[$]  (4.8) 
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where [d𝑖] is a column list of small normal distances at the respective actuators which are 

measured from the nominal profile to the points along both the directions of force applied 

by the actuators, matrix [K'] contains the pertinent line coordinates for the unit forces 

acting along those linear actuators and their moments about the origin, and [$] = 

[δθx δθz δx δy δz]
𝑇  is the SDT of the platform that carries the nominal profile shape and 

all other arcs concentric to it. (Note that the actuators all still exert force on the nominal 

profile (Fig 4.5)). The matrix expression (4.7) is a set of linear equations without a 

solution for [$]. But an optimum LSF solution is given by the Moore-Penrose 

pseudoinverse.  

[$𝐿−𝑆] = [𝑘′]#[𝑑] = (([𝑘′]𝑇[𝑘′])−1[𝑘′]𝑇)[𝑑] 

to Eq. (4.7) gives the SDT [$] = [δθx δθz δx δy δz] which minimizes the least squares sum 

of the deviations.  From the coordinates in [$] we can find the values of δθ and pitch h for 

the equivalent SDT and the line coordinates (L, M, N; P, Q, R) on which it lies.  (See 

Chap. 2).   

In section 5.1 the SDT coordinates are converted to a transformation matrix [5] 

that is used to obtain the coordinates of all the nodal points relative to the LSF profile. 

The result is used to find the boundaries of the least squares and true minimum zones that 

just captures all the points. 

4.3 Least Squares Fitting of an Arc with Size Change. 

Since the FEA model of forming the curved hat-section component constrained 

the median radius r = 315 mm (Fig. 4.1) to move straight down, the smaller radius flange 

was plastically deformed in tension and then sprang back to a smaller radius upon release 
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from the press. In a like manner, the larger radius flange was plastically deformed in 

compression and then sprang back to a larger radius. Consequently, any curved 

component in its free state has a more open hat-section than the die where it was formed, 

and all of the sprung back nodal points of an arc-profile will be at a radius further from 

the median radius than its nominal radius. Since only those actuators in the zx-plane 

include the change in radius 𝛿r, values of deviations dizx all contain a change in radius 𝛿r 

between that of the nominal profile and the least-squares profile. A distinct advantage of  the 

statics-with-robotics method is that it allows radius change to be included selectively at actuators 

$izx in the zx-plane, while leaving actuators $y unaffected. Therefore, the first of Eqs. (4.6) should 

be modified to 

𝑑𝑖𝑧𝑥 = [0 0 𝐿𝑖𝑧𝑥 0 𝑁𝑖𝑧𝑥][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T  −  δ𝑟  

   = [0 0 𝐿𝑖𝑧𝑥 0 𝑁𝑖𝑧𝑥     − 1][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧    𝛿𝑟]T 

𝑑𝑖𝑦 = [𝑇𝑖𝑥 𝑇𝑖𝑧 0 𝐹𝑖𝑦 0][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T   - 0 

   = [𝑇𝑖𝑥 𝑇𝑖𝑧 0 𝐹𝑖𝑦 0     0][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧    𝛿𝑟 ]T      (4.9) 

The radius change is inserted in Eq. (4.6) with a negative sign because all the dizx-values 

are directed inward in Fig. 4.5, corresponding to a reduction in size.  Now the SDT 

contains the added element 𝛿r and becomes [$] = [𝛿𝜃x, 𝛿𝜃z, 𝛿x, 𝛿y, 𝛿z, 𝛿r]T , and, for each 

data point, the new row-pairs of [K'] are augmented to kzx = (0, 0; L, 0, N, -1) and ky = (P, 

R; 0, 1, 0, 0).  As an example, for the inner arc-radius of 250 mm, the full array of linear 

equations takes the form, 

[di] =

[
 
 
 
 
 
d1zx

⋮
dizx

diy

⋮
dny ]

 
 
 
 
 

≡ [K'][$] =

[
 
 
 
 
 

0 0 L1zx 0 N1zx −1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 Lizx 0 Nizx −1

Piy  Riy 0 1 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Pny  Rny 0 1 0 0 ]
 
 
 
 
 

[$]  (4.10) 
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Lastly, the least-squares (pseudoinverse) solution to (Eqs 4.9) minimizes the sum. 

∑
[𝑑𝑖𝑧𝑥 − { + 𝐿𝑖𝛿𝑥  + 𝑁𝑖𝛿𝑧 –  𝛿𝑟 }]2      

+[𝑑𝑖𝑦 − {𝑃𝑖𝑦𝛿𝜃𝑥  +  𝑅𝑖𝑦𝛿𝜃𝑧  +   𝑀𝑖𝛿𝑦 }]
2

𝑛
𝑖=1 ] .    (4.11) 

4.4 Least Squares Fitting of the J-shaped Profile in 3d Space. 

 

Fig 4.5. An Array of Selected Data Points Along One Edge Profile of the Assembled 

Structure with Component Linear Actuators at One Point. 

The SDT for the J-shaped profile is represented with the Boolean union of the 

coordinates for the straight profile (∆𝜃𝑥 ∆𝜃𝑦 ∆𝑥 ∆𝑦) and the coordinates for the arc 

profile (∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧) . Consequently, the SDT [$] of this profile requires 

contains all six coordinates (∆𝜃𝑥, ∆𝜃𝑦, ∆𝜃𝑧; ∆𝑥, ∆𝑦, ∆𝑧). Further, the six coordinates for 

each of the actuator forces Fizx$izx and Fy$y now must all take values.  Therefore, in matrix 

[K'] we need to include a value for every coordinate (P, Q, R; L, M, N) at each actuator, 

some of which will be zero.  For the straight profile, the entries are K′x = (0, Q, 0; 1, 0, 0) 

and K′y = (-P, 0, 0; 0, 1, 0), and, for the arc profile, the entries are K′zx = (0, 0, 0; L, 0, N) 

and K′y = (P, 0, R; 0, 1, 0).  Both sets describe unit actuator forces depending on the 

geometry of the structure.  
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As a reminder, the force-balance equations at nodes of the straight part of one J-

shaped profile then becomes. 

𝐹𝑖𝑥𝑑𝑖𝑥 = [0 𝑇𝑖𝑦 0 𝐹𝑖𝑥 0 0][∆𝜃𝑥 ∆𝜃𝑦 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T

           = 𝐹𝑖𝑥[0 𝑧𝑖 0 1 0 0][∆𝜃𝑥 ∆𝜃𝑦 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T
 

𝐹𝑖𝑦𝑑𝑖𝑦 = [𝑇𝑖𝑥 0 0 0 𝐹𝑖𝑦 0][∆𝜃𝑥 ∆𝜃𝑦 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T

           = 𝐹𝑖𝑦[−𝑧𝑖 0 0 0 1 0][∆𝜃𝑥 ∆𝜃𝑦 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T
   (4.12) 

and, for the curved portion,  

𝐹𝑖𝑧𝑥𝑑𝑖𝑧𝑥 = [0 0 𝐹𝑖𝑥 0 𝐹𝑖𝑧][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T                                 

           = 𝐹𝑖𝑧𝑥[0 0 𝐿𝑖𝑧𝑥 0 𝑁𝑖𝑧𝑥][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T
 

 

𝐹𝑖𝑦𝑑𝑖𝑦 = [𝑇𝑖𝑥 𝑇𝑖𝑧 0 𝐹𝑖𝑦 0][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T                        

           = 𝐹𝑖𝑦[−250 C𝛼𝑖 250 S𝛼𝑖 0 1 0][∆𝜃𝑥 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧]T
 (4.13) 

where Lizx and Nizx are defined in Eqs. (4.5).   Here dix, diy, dizx, and diy are an ordered list 

of deviations, measured from the nominal profile, of nodal points that form vector [di].  

When the force amplitudes are cancelled out, the pairs of rows in matrix [K'] for each 

nodal point result.  Substituting the equations, we get the matrix [K'] and, again applying 

the Gauss-Markov theorem, we get the $L-S which minimizes the least squares sum. 

[$𝐿−𝑆] = [𝑘′]#[𝑑] = (([𝑘′]𝑇[𝑘′])−1[𝑘′]𝑇)[𝑑] . 

the SDT now consists of the six coordinates [∆𝜃𝑥 ∆𝜃𝑦 ∆𝜃𝑧 ∆𝑥 ∆𝑦 ∆𝑧] from which 

we can find the values of δθ and pitch h, and even further, we can compute the line 

coordinates (L, M, N; P, Q, R) of the small displacement torsor (SDT) (See Chap. 2).   

In Section 5.1 methods are described (a) for transforming the given original points 

to a reference frame attached to the LSF profile and, from the points in this new frame, 
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(b) for finding the boundaries for the least squares and true minimum zones that just 

capture the nodal points along an arc-profile. 

4.5 Least Squares Fitting of J-shaped Profile with Size Change. 

Looking to the time when simulations exist for the frames of a matched pair 

assembly (Fig. 4.7), each of which includes the straight-and-arc subassembly in Fig. 4.1, 

values of deviations in the ZX-plane of Fig. 4.6 would all contain a change in feature size 

𝛿r (radius 𝛿r along the arc) between that of the nominal profile and the least-squares 

profile.  Deviations affected are dizx along the arc in Fig. 4.5 and dix along the straight 

portion of the profile (Fig. 4.2).  Focusing on the J-shaped subassembly in Fig. 4.7 and 

the parallel robot model for LS fitting, the platform carries the entire nominal profile and 

all profiles a constant distance from it and lying in the same plane.  On one side of the 

nominal profile are J-shaped profiles with larger radius arcs, and on the other side lie 

profiles with smaller arc-radii.  

 

Fig. 4.6.  Forming a Matched Pair Assembly by Joining Two Frame Subassemblies 

[2]. 
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To include the change in size in the linear equations, the SDT in Sect. 4.4 is 

augmented to [$] = [∆θx ∆θy ∆θz ∆x ∆y ∆z ∆r], and the rows of [K'] must also be 

augmented with a seventh element.  For all actuators lying in the zx-plane, the seventh 

element is -1, resulting in K′izx = (Pizx Qizx Rizx Lizx Mizx Nizx -1), and for all the actuators 

parallel to the y-axis, the seventh element is zero, resulting in K′iy =(Piy Qiy Riy Liy Miy Niy 

0). Now substituting these equations, we get the matrix to which Gauss Markov theorem 

is applied and the $L-S could be obtained. 

This SDT would now consist of 7 coordinates which account for the angular 

orientation, position, and the size change (from the nominal profile) of the least squares 

profile. 
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CHAPTER 5. Least Squares Zone and True Minimum Zone of a Profile 

 

5.1 Finding the Coordinates of the Nodal Points in the Least Squares Fit Frame. 

As mentioned above to find the coordinates of the nodal points in a reference 

frame attached to the least squares profile, we first need to find the homogeneous 

transformation matrix [A𝑛𝐿] relating the frame of least squares profile to the frame of the 

original nominal profile. Given the SDT $L-S in terms of its small rotation and amplitude 

ϕ and small axial translation 𝑠 =  ℎ ϕ, and given the normalized coordinates 

(𝐿 ,  𝑀,  𝑁;  𝑃ℓ,  𝑄ℓ,  𝑅ℓ) of the line on which it lies, the required transformation is  

[A𝑛𝐿] = [

   𝑥𝑛𝐿

 [R𝑛𝐿]  𝑦𝑛𝐿

   𝑧𝑛𝐿

0 0 0 1

]     (5.1) 

in which in which [R𝑛𝐿] is the 3𝗑3 rotation matrix 

[R𝑛𝐿] = [

𝐿2𝑉𝜙 + C𝜙 𝑀𝐿𝑉𝜙 − 𝑁S𝜙 𝑁𝐿𝑉𝜙 + 𝑀S𝜙

𝐿𝑀𝑉𝜙 + 𝑁S𝜙 𝑀𝐿2𝑉𝜙 + C𝜙 𝑁𝑀𝑉𝜙 − 𝐿S𝜙

𝐿𝑁𝑉𝜙 − 𝑀S𝜙 𝑀𝑁𝑉𝜙 + 𝐿S𝜙 𝑁2𝑉𝜙 + C𝜙

]   (5.2) 

and 

𝑥𝑛𝐿 = 𝑉𝜙(𝑀𝑅ℓ − 𝑁𝑄ℓ) + 𝑃ℓS𝜙 + 𝐿𝑠

𝑦𝑛𝐿 = 𝑉𝜙(𝑁𝑃ℓ − 𝐿𝑅ℓ) + 𝑄ℓS𝜙 + 𝑀𝑠

𝑧𝑛𝐿 = 𝑉𝜙(𝐿𝑄ℓ − 𝑀𝑃ℓ) + 𝑅ℓS𝜙 + 𝑁𝑠

}   (5.3) 

in which 𝑉𝜙 = versine ϕ = 1– cos ϕ, 𝑆𝜙 = sin ϕ, and 𝐶𝜙 = cos ϕ.   (5.4) 

See equations (4.62) and (4.63) in §4.6.3 of [5].)  Matrix [AnL] transforms any point ( xL, 

yL, zL) in the LS frame to its representation (xn, yn, zn) in the nominal frame.  So, the 

original points can be represented relative to the new LSF profile by transforming them 

all with the inverse matrix [ALn].  
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5.2 Least Squares Zone Magnitude 

Two single-parameter measures for spring-back variation along the LSF line-

profile for a circular-arc, or for the J-shape in Fig. 4.6, are the least-squares (LS) 

minimum zone and the true minimum zone.  The magnitude of the LS minimum zone is 

the largest deviation (radius) of any nodal point i from the LSF profile, and, is obtained as 

the largest of values (𝑥𝑖𝐿
2 + 𝑦𝑖𝐿

2 + 𝑧𝑖𝐿
2 − (𝑟𝑛 + Δr)2)1/2 from any arc portion, and (𝑥𝑖𝐿

2 +

𝑦𝑖𝐿
2 − (𝑟𝑛 + Δr)2)1/2 from any straight portion of a J-profile, for all points i.  If every 

nodal point, together with its distance to closest point on the LS profile, were projected 

along the LS profile to one plane with all the closest points on the profile coinciding, the 

largest distance becomes the radius of the LS minimum zone.  

The second parameter is the true minimum zone that is an unconstrained 

cylindrical metrological zone, the magnitude for which may be found using a traditional 

metrological algorithm.  However, for both the arc-profile and the J-shaped profile, a 

preliminary transformation must take place to unwrap the LS profile and associated nodal 

points to a straight line.  

5.3 Unwrapping of the Points along the Arc Profile  

The unwrapping transformation is obtained by unwrapping the LS profile, with all 

the nodal points attached, until the profile is straight (Fig. 5.1).  This amounts to 

projecting the arc portion, together with associated nodal points, to the single straight line 

that (a) is obtained from the SDT, (b) is parallel to the ZL-axis (Fig. 5.1) and (c) is tangent 

to the LSF arc of radius 𝑟𝑛 + Δ𝑟.  The projection is accomplished by representing the 

nodal points in the reference frame O′x′y′z′ that is (a) parallel to frame Oxyz in Fig. 5.1 

and (b) with its origin O′ at the tangent point. The transformation equations are   
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XL′ = (𝑟𝑛 + Δ𝑟) − (𝑥𝑖𝐿
2 + 𝑧𝑖𝐿

2)1/2 

YL′ = 𝑦𝑖𝐿 

ZL′  = (𝑟𝑛 + Δ𝑟)(𝜋 2⁄ − 𝛼)     (5.1) 

where, 𝛼 = atan2(𝑥𝑖𝐿 𝑧𝑖𝐿⁄ ).      (5.2) 

 These equations were found by first getting the angle as given in Eq. (5.2), then 

multiplying this angle with the radius of the Least Squares fit profile to get the ZL′   

coordinate, i.e., the distance of the points along the arc. The YL′ values remain the same as 

they are unaffected by the unwrapping and projecting of points, The XL′ values are taken 

by finding the distance of the given points from the origin along the zx-plane, and these 

points are used to find the least squares zone size.   

 The next section shows how a minimum circumscribing cylinder may be found as 

a parameter for points along an edge of a straight component, an arc component, and the 

J-shaped assembly. 

 

Fig 5.1. Unwrapping of the LSF Arc Profile onto a Straight-line Profile 
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5.4 True Minimum Zone 

Known metrological methods [6] may be applied to obtain the unconstrained 

minimum circumscribing cylinder whose radius is the true minimum zone. The true 

minimum zone is always smaller than the least squares zone magnitude. To find the true 

minimum zone for sprung back points along the edge of a component (e.g., the 500 mm 

straight edge in Fig. 4.1), or any unwrapped arc-profile, we can use an algorithm listed in 

the Section 5.2.4 of [6] and first developed by [21]. The algorithm first finds the least 

squares axis to the points (ZL′ -axis for the arc or the J-shaped profile).  Then, at each end 

of the least squares line, one creates hexagons (Fig. 5.3(b)) that are circumscribed by 

circles of radius 10% of the least squares zone radius. Next, 36 tentative axes are formed 

by joining every vertex on one hexagon to every vertex on the other hexagon (Fig. 

5.3(c)). A new coordinate frame is established with its z-axis on each of the 36 axes, the 

coordinates for all the points are transformed to each new frame, and 36 new zone radii 

are produced (largest radius from all the points to each axis). Of the 36 axis-and-zone-

radius pairs, retain only the one with the smallest zone radius. The process is repeated 

with the size of hexagons being reduced by half until the total size of the hexagon is less 

than the 0.01% of the least squares zone magnitude. Thus, we can find the true minimum 

zone radius and axis. We can directly incorporate it for the 11-point straight line 

mentioned above but, while doing it for the curved portion, we need first to unwrap the 

arc to straight line, then apply the algorithm. 

 For this thesis, a few modifications were made to the algorithm for it to be written 

as a program. The first is we have shifted the coordinate frame origin to one of the ends 

of the Least Squares Fit (LSF) line to the origin so it would be easier to find the 
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transformation matrix during the rotation of axis to make it parallel to the z-axis and to 

transform the point with it, which can be translated back to the original position once we 

end up with the resultant true minimum zone radius and axis. Also, a change was made to 

the rate at which the size of the hexagons decreases at the rate of 10:11 instead of 1:2.   

Specifics of the algorithm are mentioned in the appendix portion [Appendix. F]. 

 

Fig 5.2. Minimum Cylindrical Fit for Points in Space. [6]  
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CHAPTER 6. Numi-sheet Parameters to Validate the FEA Stamping Model 

Created at The Ohio State University 

As a part of NSF Goali project in collaboration with Ohio State university a lot of 

Stamping FEA simulations were done for hat-shaped components having different 

properties such as Shapes, Channel Width, Material, Thickness, Draw depth and Blank 

holding forces. To validate the OSU FEA model for forming components, software was 

created as a part of this thesis to compute the geometric parameters from the 

NUMISHEET 1993 benchmark [4] and consistent with more recent existing experimental 

and simulated results [20]. 

To gain confidence in the forming-stage simulations, the process was first 

validated against an existing set of experimental and simulated results [2] based on the 

NUMISHEET 1993 benchmark [4]. 

6.1 Extracting Numi-Sheet Parameters (Inverted Hat Section) for FEA and 

Experimental Parts 

The computations to obtain the Numi-sheet benchmark parameters for stamped 

sheet-metal components were undertaken using, as closely as practicable, procedures 

outlined in the Numi-sheet 93 research paper [4]. The Numi-sheet parameters are the 

angles θ1, θ2, and radius ρ, and these, along with the original Numi procedures, are shown 

in Fig. 6.1.  Two modifications were made to the original procedures.  First, since three 

points on a straight line do not define an arc, we modified somewhat the identification of 

point C to be consistent with the desired parameter ρ.  Second, the FEA points in the 

region of point D did not always exhibit an inflection, so D was identified as the highest 
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point (maximum y-value) in the list of points.  With these modifications, our procedures 

are as follows. 

 

Fig 6.1. Parameters to be Extracted from the Stamped Components 

 

Fig 6.2. The Origin of the Stamped Component Obtained from FEA Simulation. 
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Figures 6.2 and 6.3 show a typical point-set in its original coordinates and a set of 

computational coordinates that were used in computing the Numi-parameters.  The 

computational coordinates were obtained by shifting the origin so the point with least y-

coordinate in Fig. 6.2 becomes the origin. 

 

Fig 6.3. The Points Found Using Numi-sheet 93 [4] to Extract the Parameters. 

Now the first point A is chosen at a distance of y = 15 mm from the base (Fig. 

6.3), a location typically between two data points A1 and A2 that are the closest points 

above and below the 15mm height. The coordinates of A are then obtained by 

interpolating linearly between these.  The second point B is chosen where an arc of 35mm 

radius centered at point A intersects the data between points B1 and B2.  Once again, 

linear interpolation leads to the desired location for the point B. Next, find the 

perpendicular bisector to line AB and, where it passes through the sprung back points, 

identify the two points closest to it. These are C1 and C2. Use linear interpolation again to 

obtain the point C as shown in the figure 6.4.   
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Fig 6.4. Finding Point C Using Numi-sheet [4] 

The point D is, the point where the sheet leaves the die since we can’t exactly find 

the point from the profile given the idea is to find the inflection for which choose a point 

about 10mm along the profile from the peak point in the given data set  and choose 

another point which is about 50mm along the profile and form a line with these two 

points and we can find the distance of each point from the line we have generated now if 

we observe the change in distances as shown if the Figure Fig 6.5 below the points tend 

to go down and starts to move up at a particular point and the point until where the 

distance decreases without any increases is taken to be the point where the stamping 

leaves the die. It works best in the case of dense data structure where this phenomenon 

can be clearly observed. But this is not the case if the simulation data doesn’t contain the 

die end in the mesh. So, to prevent all this mess and to standardize we assumed point ‘D’ 

to be at a maximum position and chose point ‘E’ to be at 15mm from point ‘D’. 
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Fig 6.5. Point Where Structure Leaves the Die. 

Now for point F find the point at 40mm from E by interpolation.  

 

Fig 6.6. Parameters Extracted from the Stamped Profile. 



39 
 

Use the points obtained to find the curvature ⍴ and the slopes of both the line θ1 

and θ2. The ⍴ can be found by applying the algorithm from He, et al. [18] Appendix. If i-

1, i and i+1 are the points then the radius of curvature is given by,  

A = (𝑥𝑖+1, 𝑦𝑖+1), 𝐵 = (𝑥𝑖−1, 𝑦𝑖−1), 𝐶 = (𝑥𝑖, 𝑦𝑖)  

ρ = √(𝑥i − 𝑥c)2 + (𝑦i − 𝑦c)    (6.1) 

where 𝑥𝑐 = {1/𝑑}{𝑅𝐴(𝑦𝑖+1 − 𝑦𝑖) − 𝑅𝐵(𝑦𝑖 − 𝑦𝑖−1)} , 

𝑦𝑐 = {−1/𝑑}{𝑅𝐴(𝑥𝑖+1 − 𝑥𝑖) − 𝑅𝐵(𝑥𝑖 − 𝑥𝑖−1)} 

are the coordinates of the center of curvature and the values of Ra, Rb and d are, 

𝑅𝐴 = (1/2)(𝑥𝑖
2 − 𝑥𝑖−1

2 + 𝑦𝑖
2 − 𝑦𝑖−1

2 ), 

 𝑅𝐵 = (1/2)(𝑥𝑖+1
2 − 𝑥𝑖

2 + 𝑦𝑖+1
2 − 𝑦𝑖

2) and 

𝑑 = (𝑥𝑖 − 𝑥𝑖−1)(𝑦𝑖+1 − 𝑦𝑖) − (𝑦𝑖 − 𝑦𝑖−1)(𝑥𝑖+1 − 𝑥𝑖) 

This algorithm is robust even for ill conditioned points that all lie nearly on a line. 

When dealing with the half depth stampings we changed the distance to A from 

ground as 10mm and the point B to be at 15mm from point A. and changed these 

parameters for different depths accordingly and extracted the values of ⍴, θ1 and θ2. We 

developed a few programs to make this finding of the parameters automatically so we can 

test all the stamped parts instead of choosing few components and testing them. 

When practical experiments of the half-depth stampings were done to compare 

with the simulations, then we noticed inconsistencies for the center of curvature: for some 
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specimens, the center of curvature was to the left of the array of points between points A 

and B, yet for other specimens it was to the right of the array. By introducing a little 

perturbation along the x-axis at point B in the computations, it was found that the center 

of curvature would flip from side to side.  So, for points scanned along the half-depth 

experimental specimens, the radius parameter was not useful (see 6.3).   

The program is written to extract parameters from all the stamping simulations by 

taking their naming format to determine the depth and choose the proper distances for 

depths and save the resulting parameters into an excel sheet.  Those values were then 

used to analyze the fittings of the stamped components. 

6.2 3d Line Fitting for the Edge Profiles of Stamped Components 

This is to fit the edges of the stamped profiles to a line using Least Squares. This 

is done in the same fashion mentioned in chapter 4. 

6.3 Effect of Perturbation 

While extracting the parameters from the stamped components using the Numi-

Sheet methods there were a lot of inconsistencies for the value of radius ρ even for same 

stampings at different time points when done in practical test. So as hypothesis have been 

made to test the sensitivity of the ρ which is to implement a small perturbation of 0.1mm 

along the x-axis in either direction and calculated the value of ρ. These perturbations 

seem to affect the parameters of the stamped components by a considerable amount. The 

x-coordinate value of point B is varied by +0.1mm and -0.1mm and found the changes in 

the radius of curvatures for 55mm (full depth stamping) and found an average change of 

about 4% along both directions and for 35mm (half depth stamping) the average change 

is around 17% along the positive direction and about 26% along the negative direction. 
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Fig 6.7. Showing the Perturbation Points at Point B for Half Depth Stamping 

 

 

Fig 6.8. Showing the Perturbation Points at Point B for Full Depth Stamping 
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CHAPTER 7. Results and Conclusion 

This chapter contains cross-sectional views of data points, axes, and zone boundaries 

for the least-squares fit zones and True Minimum zones for different profiles:  the straight 

(Fig. 4.2), the arc-segment (Fig. 4.4), and the joined J-shaped profiles in Fig.4.5, all for 

both the shorter and longer edges of the assembly shown in Fig. 4.1. The coordinates for 

sample points of inner profile are in Table 7.1. The first 11 points represent the straight-

line profile, the last 9 points are used for the arc profile, and all 19 are used to evaluate 

the J-shaped profile. Although points #11 was used to evaluate both the straight and arc-

profiles, it was used only once for the J-shaped profile. The coordinates for sample points 

of outer profile are in Table 7.2. The first 11 points represent the straight-line profile, the 

last 12 points are used for the arc profile, and all 23 are used to evaluate the J-shaped 

profile. Although points #11 was used to evaluate both the straight and arc-profiles, it 

was used only once for the J-shaped profile. 

 The results of fitting for the inner J-section profile are given in the table 7.2 and the 

same operations are performed for the outer profiles and the results of those are given in 

the table 7.3.  

 

 

Fig 7.1 Figure Showing the Inner Assembly Profile and Outer Assembly Profile [1] 
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Table 7.1 Sample Points for Inner Assembly Profile 

X 

coordinates 

Y 

coordinates 

Z 

coordinates 

-241.899 0.743 490.025 

-241.842 0.535 451.025 

-241.789 0.303 401.025 

-241.745 0.099 351.026 

-241.709 -0.067 301.028 

-241.669 -0.196 251.03 

-241.633 -0.305 201.023 

-241.599 -0.394 151.027 

-241.564 -0.444 101.031 

-241.53 -0.204 51.037 

-241.501 0.982 1.042 
 

X 

coordinates 

Y 

coordinates 

Z 

coordinates 

-239.119 1.754 -45.512 

-226.11 1.52 -95.784 

-207.026 1.314 -135.018 

-175.072 1.224 -176.908 

-141.82 1.304 -205.99 

-95.55 1.605 -232.311 

-53.224 2.048 -246.172 

-0.024 2.748 -252.122 
 

 

 

Fig 7.2 Figure Showing the Sampling Points along the Inner Assembly Profile. 

Table 7.2 Sample Point for Outer Assembly Profile 

X 

coordinates 

Y 

coordinates 

Z 

coordinates 

-388.068 0.886 490.027 

-388.122 0.658 451.028 

-388.183 0.398 401.028 

-388.235 0.161 351.029 

-388.289 -0.037 301.031 

-388.327 -0.2 251.033 

-388.371 -0.343 201.036 

-388.413 -0.458 151.03 

-388.456 -0.512 101.034 

-388.5 -0.279 51.046 

-388.549 1.258 1.045 
 

X 

coordinates 

Y 

coordinates 

Z 

coordinates 

-385.449 3.099 -50.236 

-376.946 3.298 -101.361 

-361.442 3.038 -151.013 

-339.32 2.718 -198.293 

-310.977 2.339 -242.296 

-276.835 1.934 -282.171 

-237.514 1.546 -317.146 

-193.715 1.189 -346.51 

-146.271 0.876 -369.694 

-96.042 0.626 -386.218 

-43.959 0.446 -395.582 

-1.683 0.385 -398.098 
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Fig 7.3 Figure Showing the Sampling Points along the Outer Assembly Profile. 

Table 7.3 Results of Least Squares Fit of Sampling Points for Different Profiles along the 

Inner Assembly Profile.  

$L-S Straight  
Arc  Arc  Assembly Assembly  

Δ𝑟 = 0  Δr ≠ 0  Δ𝑟 = 0  Δ𝑟 ≠ 0  
Δθ𝑥 , 𝑟𝑎𝑑  -0.054 -0.238 -0.238 0.125 0.125 

Δ𝜃𝑦, 𝑟𝑎𝑑 -0.045 0 0 0.12 -0.042 

Δ𝜃𝑧, 𝑟𝑎𝑑 —— 0.478 0.478 -0.119 -0.119 

Δ𝑥,mm 8.516 6.825 0.443 7.514 0.353 

Δ𝑦,mm -0.14 3.549 3.549 0.797 0.797 

Δ𝑧,mm 0 -3.812 -10.132 -4.199 -10.271 

Δ𝑟,mm —— 0 7.993 0 8.146 

ϕ, deg 0.07 0.534 0.534 0.21 0.177 

h, mm/deg -91.809 -12.1 -17.367 34.78 39.112 

s, mm -6.454 -6.456 -9.266 7.298 6.931 

LS zone radius, mm 1.121 1.715 0.609 2.413 1.51 

Min zone rad, mm 0.689 1.35 0.444 1.621 1.214 

Table 7.4 Line Coordinates of the Least Squares Fit of Sampling Points along Inner 

Profile. 

Line Coordinates Straight Arc, ∆𝑟 = 0 Arc, ∆𝑟 ≠ 0 Assy, ∆𝑟 = 0 Assy, ∆𝑟 ≠ 0 

L, radians -0.768 -0.446 -0.446 0.595 0.704 

M, radians -0.64 0 0 0.572 -0.238 

N, radians 0 0.895 0.895 -0.565 -0.669 

𝑃l, mm 2899.958 423.715 -396.226 866.659 -1464.046 

𝑄l, mm -3481.04 381.122 381.122 -921.858 790.287 

𝑅l, mm 0 211.137 -197.439 -20.753 -1821.911 

Z-intercept, mm 4531.2 —— —— —— —— 
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Table 7.5 Results of Least Squares Fit of Sampling Points for Different Profiles along the 

outer Assembly Profile. 

$L-S Straight 
Arc Arc  Assembly Assembly  

Δ𝑟 = 0  Δ𝑟 ≠ 0  Δ𝑟 = 0  Δ𝑟 ≠ 0  
Δθ𝑥 , 𝑟𝑎𝑑  -0.064 0.165 0.165 -0.028 -0.028 

Δ𝜃𝑦, 𝑟𝑎𝑑 0.054 0 0 -0.206 0.003 

Δ𝜃𝑧, 𝑟𝑎𝑑 —— -0.546 -0.546 -0.471 -0.471 

Δ𝑥,mm -8.556 -6.214 0.171 -6.977 0.644 

Δ𝑦,mm -0.139 -1.178 -1.178 0.052 0.052 

Δ𝑧,mm 0 -16.565 -10.134 -16.13 -9.425 

Δ𝑟,mm —— 0 -8.099 0 -8.887 

ϕ, deg 0.084 0.57 0.57 0.515 0.472 

h, mm/deg 76.636 24.652 17.102 29.361 19.853 

s, mm 6.419 14.053 9.749 15.116 9.371 

LS zone radius, mm 1.396 2.995 1.472 3.928 3.817 

Min zone rad, mm 0.847 1.50 0.981 1.743 1.643 

Table 7.6 Line Coordinates of the Least Square Fit of Sampling Points along Outer 

Profile. 

Line Coordinates Straight Arc, ∆𝑟 = 0 Arc, ∆𝑟 ≠ 0 Assy, ∆𝑟 = 0 Assy, ∆𝑟 ≠ 0 

L, radians -0.761 0.29 0.29 -0.054 -0.059 

M, radians 0.649 0 0 -0.399 0.006 

N, radians 0 -0.957 -0.957 -0.915 -0.998 

𝑃l, mm -2512.56 -1033.81 -266.719 -685.93 144.862 

𝑄l, mm -2944.88 -118.359 -118.359 677.717 -0.527 

𝑅l, mm 0 -313 -80.753 -255.492 -8.517 

Z-intercept, mm 3871.4 —— —— —— —— 

Table 7.7 Results of Least Squares Fit of Total Points for Different Profiles along the 

Inner Assembly Profile. 

$L-S Straight 
Arc Arc  Assembly Assembly  

Δ𝑟 = 0  Δ𝑟 ≠ 0  Δ𝑟 = 0  Δ𝑟 ≠ 0  
Δθ𝑥, 𝑟𝑎𝑑  -0.056 -0.463 -0.476 0.121 0.121 

Δ𝜃𝑦, 𝑟𝑎𝑑 -0.044 0 0 0.124 -0.04 

Δ𝜃𝑧, 𝑟𝑎𝑑 —— 0.609 0.618 -0.159 -0.159 

Δ𝑥,mm 8.514 6.517 0.484 7.543 0.312 

Δ𝑦,mm -0.203 4.588 4.649 0.675 0.675 

Δ𝑧,mm 0 -3.772 -10.046 -4.422 -10.29 

Δ𝑟,mm —— 0 7.905 0 8.182 

ϕ, deg 0.072 0.766 0.78 0.235 0.204 

h, mm/deg -91.976 -9.074 -10.579 30.691 39.6 

s, mm -6.578 -6.948 -8.253 7.224 8.077 

LS zone radius, mm 1.547 2.191 1.12 2.673 1.578 

Min zone rad, mm 0.825 1.35 0.505 1.65 1.267 
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Table 7.8 Line Coordinates of the Least Square Fit of Total Points along Inner Profile. 

Line Coordinates Straight Arc, ∆𝑟 = 0 Arc, ∆𝑟 ≠ 0 Assy, ∆𝑟 = 0 Assy, ∆𝑟 ≠ 0 

L, radians -0.787 -0.605 -0.61 0.514 0.593 

M, radians -0.616 0 0 0.528 -0.198 

N, radians 0 0.796 0.792 -0.676 -0.78 

𝑃l, mm 2671.309 172.939 -334.461 931.736 -1259.054 

𝑄l, mm -3411.71 343.319 341.464 -764.156 639.913 

𝑅l, mm 0 131.53 -257.747 112.024 -1120.866 

Z-intercept, mm 2860.3 —— —— —— —— 

Table 7.9 Results of Least Squares Fit of Total Points for Different Profiles along the 

Outer Assembly Profile. 

$L-S Straight 
Arc Arc  Assembly Assembly  

Δ𝑟 = 0  Δ𝑟 ≠ 0  Δ𝑟 = 0  Δ𝑟 ≠ 0  
Δθ𝑥 , 𝑟𝑎𝑑  -0.069 0.094 0.094 -0.021 -0.021 

Δ𝜃𝑦, 𝑟𝑎𝑑 0.054 0 0 -0.209 -0.021 

Δ𝜃𝑧, 𝑟𝑎𝑑 —— -0.513 -0.513 -0.457 -0.457 

Δ𝑥,mm -8.557 -6.008 -0.491 -7.042 0.582 

Δ𝑦,mm -0.224 -0.721 -0.721 -0.004 -0.004 

Δ𝑧,mm 0 -16.596 -11.119 -15.897 -9.636 

Δ𝑟,mm —— 0 -7.007 0 -8.706 

ϕ, deg 0.087 0.521 0.521 0.502 0.457 

h, mm/deg 75.692 29.255 20.818 29.326 20.963 

s, mm 6.6 15.247 10.85 14.734 9.59 

LS zone radius, mm 2.034 3.286 1.935 3.752 3.655 

Min zone rad, mm 1.059 1.501 1.029 1.77 1.686 

Table 7.10 Line Coordinates of the Least Square Fit of Total Points along Outer Profile. 

Line Coordinates Straight Arc, ∆𝑟 = 0 Arc, ∆𝑟 ≠ 0 Assy, ∆𝑟 = 0 Assy, ∆𝑟 ≠ 0 

L, radians -0.787 0.18 0.18 -0.041 -0.045 

M, radians 0.616 0 0 -0.416 -0.046 

N, radians 0 -0.984 -0.984 -0.909 -0.998 

𝑃l, mm -2207.68 -961.558 -268.157 -734.369 126.734 

𝑄l, mm -2820.54 -79.255 -79.255 697.796 54.878 

𝑅l, mm 0 -175.558 -48.959 -286.143 -8.235 

Z-intercept, mm 2311.5 —— —— —— —— 

Table 7.11 Least Square Zone Size of Different Profiles. 

Least squares zone  

(Radius, mm) 

Inner 

Sampling  

Outer 

Sampling 

Inner 

Total 

Outer 

Total 

Straight Profile 1.121 1.396 1.547 2.034 

Arc Profile 1.715 2.995 2.191 3.286 

Arc with size change 0.609 1.472 1.12 1.935 

Assembly Profile 2.413 3.928 2.673 3.752 
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Assembly with size change 1.51 3.817 1.578 3.655 

Table 7.12 True Minimum Zone Size of Different Profiles. 

True minimum zone 

(Radius, mm) 

Inner 

Sampling  

Outer 

Sampling 

Inner 

Total 

Outer 

Total 

Straight Profile 0.689 0.847 0.825 1.059 

Arc Profile 1.350 1.500 1.351 1.501 

Arc with size change 0.444 0.981 0.505 1.029 

Assembly Profile 1.621 1.743 1.65 1.77 

Assembly with size change 1.214 1.643 1.267 1.686 

11 Point Straight Line Profile 

 

Fig 7.4 Least Squares Zone Boundary for 11 Points on the Straight Portion of the Inner 

Profile. 
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The screw coordinates of the SDT for the Least Squares Fit are L = -

0.8676816753875916, M = -0.4971202170467245, N = 0, P = 1036.699263691128, Q = 

-1809.4716793786192, and R = 0. The zone magnitude (radius in mm) is 

0.9781767537409084 

 

Fig 7.5 True Minimum Zone Boundary for 11 Points on the Straight Portion of the Inner 

Profile. 

For True Minimum Zone fit the zone magnitude (radius in mm) is 

0.6143731306047372 and the line coordinates of the true minimum zone axis is 
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[0.0986587098, 0.23447333435999998, -499.15010329853556, 114.08398211599791, 

12.278273535654483, 0.028316745057440418]   
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9 Point Arc Profile 

 

Fig 7.6 Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc 

Portion of the Inner Profile. 

The screw coordinates of the SDT for the Least Squares Fit are L = -

0.6810376565080728, M = 0, N = 0.7322483939333648, P = 168.2171450051991, Q = 

271.51507039120753, and R = 156.45266164864367. The zone magnitude (radius in 

mm) is 1.6342358007856808 
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Fig 7.7 Projection of Toroidal True Minimum Zone Boundary for 9 Points on the Arc 

Portion of the Inner Profile. 

For True Minimum Zone fit the zone magnitude (radius in mm) is 

1.3081461525525635 and the line coordiantes of the true minimum zone axis is [-

0.322208176, 1.263710878, -386.19293186126146, 182.99174177142638, 

94.00693285842485, 0.15493848640106325] 
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9 Point Arc Profile with Size Change 

 

Fig 7.8 Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc 

Portion of the Inner Profile with Size Change. 

The screw coordinates of the SDT for the Least Squares Fit are L = -

0.6810376565080728, M = 0, N = 0.7322483939333648, P = -425.28231911758354, Q = 

271.51507039120753, and R = -395.5396507056241. The zone magnitude (radius in 

mm) is 0.6087075040987826 
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Fig 7.9 Projection of Toroidal True Minimum Zone Boundary for 9 Points on the Arc 

Portion of the Inner Profile with Size Change. 

For True Minimum Zone fit the zone magnitude (radius in mm) is 

0.4038519137982327 and the line coordinates of the true minimum zone axis is 

[0.409833541, 0.609878762, -398.99300613250654, 69.86577447600716, -

88.65369719531978, -0.06374715584750915]  
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19 Point J-shape Profile 

 

Fig 7.10 Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with 

Size Change. 

The screw coordinates of the SDT for the Least Squares Fit are L = 

0.0236007377696814, M = 0.62019014063756, N = -0.784096419219396, P = 

2971.90601742116, Q = -814.554362251714, and R = -554.82897157168. The zone 

magnitude (radius in mm) is 2.1721925461560327 
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Fig 7.11 True Minimum Zone Boundary for 19 Points on the J-shaped Inner Profile 

When Unwrapped onto a Straight Line. 

The true minimum zone fit magnitude (radius in mm) is 1.5127055727360417 

and the line coordinates of the true minimum zone axis is [3.05001632, 2.49843188, -

884.988161426439, 876.0182223181955, -1142.7886289042638, -

0.20713233900502792]  
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19 Point J-shape Profile with Size Change 

 

Fig 7.12 Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with 

Size Change When Unwrapped onto a Straight Line. 

The screw coordinates of the SDT for the Least Squares Fit are L = 

0.026503637579415, M = -0.47322916679475, N = -0.88054057992224, P = 

163.864006522574, Q = 1912.6525655547, and R = -1022.98520734124. The zone 

magnitude (radius in mm) is 1.2666840840111688. 
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Fig 7.13 True Minimum Zone Boundary for 19 Points on J-shaped Inner Profile with Size 

Change When Unwrapped onto a Straight Line. 

For True Minimum Zone fit the zone magnitude (radius in mm) is 

0.9758224692007229 and the line coordiantes of the true minimum zone axis is 

[0.23889283760000002, 1.57789168, -897.9557096779063, 616.80679705544, -

59.71919153901355, 0.05915693832255892] 
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A. 11 – POINT LINE PROFILE FITTING  

 

A program has been developed to find the least squares fit of points along a 3D line 

profile. The way of implementations is first we need to take the points along the nominal 

profile in our case the points are along the nominal profile which is the Z-axis we first 

change the Origin by -250mm along the axis which changes the points and now we find 

the line coordinates for each point which is [0, Z, 0; 1, 0, 0] when taken along the XZ 

plane and [-Z, 0, 0; 0, 1, 0] along the YZ plane and these line coordinates of each point 

we can find a set of equations which doesn’t have a definite solution so we go for least 

squares method. which gives the SDT of the LSF line with the nominal profile.  

The equations involve are.  

[$𝐿−𝑆] = [𝑘′]#[𝑑] = (([𝑘′]𝑇[𝑘′])−1[𝑘′]𝑇)[𝑑] 

Where the $L-S is the angular and positional components which are used to find the 

small displacement torsor (SDT) which gives the location of the Least Squares line with 

respect to the nominal profile. The K is the matrix developed with the line coordinates of 

each actuator to node along the profile and the d is the deflections of the points along the 

axis in this based on the view the deflection values are given by the X and Y coordinates 

of the points. Using the values of $L-S we can find the phi which is the angular orientation 

and h which is pitch of the line and using these we can find the [L, M, N; P, Q, R] of the 

SDT using these values we can generate a transformation matrix as mentioned in [4] 

using which we can find the transformed points which lies on the least squares line. 

Using which we can find the zone magnitude. The below program deals with these. 

import numpy as np 
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import matplotlib.pyplot as plt 

### Initialization of the parameters 

OrignalPoints = np.array([[-2.4190e+02, 7.4250e-01, 4.9002e+02], 

       [-2.4184e+02, 5.3490e-01, 4.5102e+02], 

       [-2.4179e+02, 3.0300e-01, 4.0103e+02], 

       [-2.4175e+02, 9.9200e-02, 3.5103e+02], 

       [-2.4171e+02, -6.6700e-02, 3.0103e+02], 

       [-2.4167e+02, -1.9560e-01, 2.5103e+02], 

       [-2.4163e+02, -3.0480e-01, 2.0102e+02], 

       [-2.4160e+02, -3.9400e-01, 1.5103e+02], 

       [-2.4156e+02, -4.4430e-01, 1.0103e+02], 

       [-2.4153e+02, -2.0430e-01, 5.1040e+01], 

       [-2.4150e+02, 9.8220e-01, 1.0420e+00]]) 

dist_from_origin_to_pts = 250 # To transform the origin to (-250,0,0) 

itrsize = len(OrignalPoints) 

di = [] 

kprime = [] 

### Creating a Deflection 'd' Matrix 

for i in range (itrsize): 

  di.append(dist_from_origin_to_pts+OrignalPoints[i][0]) 

  di.append(OrignalPoints[i][1]) 

di = np.transpose(np.reshape(di,(2*itrsize))) 

### Creating a K matrix 

for i in range (itrsize): 

  kprime.append([0,OrignalPoints[i][2],1,0]) 

  kprime.append([-OrignalPoints[i][2],0,0,1]) 

kprime = np.reshape(kprime,(2*itrsize,4)) 

### Applying Least squares fit for the equations 

kprTranspose=np.transpose(kprime) 

intermediate=np.linalg.inv(np.matmul(kprTranspose,kprime)) 

kmoorePenrose=np.matmul(intermediate,kprTranspose) 

pd=np.matmul(kmoorePenrose,di) 

deltatheta_x=pd[0]*(180/np.pi) 

deltatheta_y=pd[1]*(180/np.pi) 

deltatheta_z=0 

delta_x=pd[2] 

delta_y=pd[3] 

delta_z=0 

delta_r=0 

print("deltatheta_x={},   deltatheta_y={},   delta_x={}, 

delta_y={}".format(deltatheta_x,deltatheta_y,delta_x,delta_y)) 

### Finding the values of PHI, h(pitch) and s 

phi=np.sqrt((np.power(pd[0],2))+(np.power(pd[1],2))) 

h=((pd[0]*pd[2])+(pd[1]*pd[3]))/((np.power(pd[0],2))+(np.power(pd[1],2))) 

s=phi*h 

print("Phi={}, Pitch(h)={}, s={}".format(phi*(180/np.pi), h*(np.pi)/180, s)) 
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### Finding the Plucker Coordinates [L, M, N; P, Q, R] 

l=pd[0]/phi 

m=pd[1]/phi 

n=0 

p=(delta_x-(h*pd[0]))/phi 

q=(delta_y-(h*pd[1]))/phi 

r=0 

print("L={},   M={},   N={}".format(l,m,n)) 

print("P={},   Q={},   R={}".format(p,q,r)) 

### Distance of the SDT line coordinates on the nominal profile axis 

zt1=-p/m 

zt2=q/l 

print("Distance of the least squares line in the coordinate axis is {}".format(zt1)) 

### Finding the Nominal X,Y and Z of the Least Squares fit Line 

vphi=1-np.cos(phi) 

x_nom=vphi*(m*r-n*q)+p*np.sin(phi)+l*s 

y_nom=vphi*(n*p-l*r)+q*np.sin(phi)+m*s 

z_nom=vphi*(l*q-m*p)+r*np.sin(phi)+n*s 

# print("vphi={},   X_nom={},   Y_nom={},   Z_nom={}".format(vphi,x_nom,y_nom,z_nom)) 

### Creating a Matrix to find the trasformed points 

trnomls1=np.array([(vphi*np.power(l,2)+np.cos(phi)), (vphi*l*m-n*np.sin(phi)), 

(vphi*l*n+m*np.sin(phi)), x_nom]) 

trnomls2=np.array([(vphi*l*m+n*np.sin(phi)), (vphi*np.power(m,2)+np.cos(phi)), (vphi*m*n-

l*np.sin(phi)), y_nom]) 

trnomls3=np.array([(vphi*l*n-m*np.sin(phi)), (vphi*n*m+l*np.sin(phi)), 

(vphi*np.power(n,2)+np.cos(phi)), z_nom]) 

trnomls4=np.array([0,0,0,1]) 

trnomls=np.vstack([trnomls1,trnomls2,trnomls3,trnomls4]) 

invtrnomls=np.linalg.inv(trnomls) 

# print("The trasformation matrix is \n{}".format(invtrnomls)) 

### Original points transformed along the Leasts squares line 

origptset=[] 

for i in range (itrsize): 

origptset.append([dist_from_origin_to_pts+OrignalPoints[i][0],OrignalPoints[i][1],OrignalPoints[

i][2],1]) 

origptset=np.reshape(origptset,(itrsize,4))  # The origin is translated to (-250,0,0) 

origptsetCol=np.transpose(origptset) 

ptset = np.matmul(invtrnomls,origptsetCol) 

print("The transformed points of the original points along the Least squares line is 

\n{}".format(repr(np.transpose(ptset[0:3])))) # Transformed Points 

### Finding the least Squares Sum 

lssum=0 

for i in range (itrsize): 

    lssum=lssum+np.power((ptset[0,i]),2)+np.power((ptset[1,i]),2) 

print("The least squares sum value is {}".format(lssum)) 
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### Finding the Zone magnitude 

ptlsdist=[] 

for i in range (itrsize): 

    ptls=np.sqrt((np.power(ptset[0,i],2))+(np.power(ptset[1,i],2))) 

    ptlsdist.append(ptls) 

Ptlstdist=np.hstack(ptlsdist) 

zonemag=np.max(ptlsdist) 

print("The zone magnitude (radius) is {}".format(zonemag)) 

### Plotting of points along the z-axis 

center=(0,0) 

circledist=[] 

XCords=ptset[0] 

YCords=ptset[1] 

ZCords=ptset[2] 

for i in range (itrsize): 

  circledist.append(np.sqrt(np.square(XCords[i])+np.square(YCords[i]))) 

plt.figure(figsize=(10, 10)) 

plt.axis('equal') 

plt.plot(center[0],center[1],'go') 

plt.title('Least Squares Fit of 11 Points') 

plt.xlabel('X - Axis') 

plt.ylabel('Y - Axis') 

plt.axis('equal') 

plt.gca().add_patch(plt.Circle((center[0],center[1]),max(circledist),fill=False)) 

for i in range (itrsize): 

  plt.plot([center[0],XCords[i]],[center[1],YCords[i]],'r') 

  plt.plot(XCords[i],YCords[i],'ro') 

  plt.text(XCords[i],YCords[i],i+1) 

plt.show() 

The output of the program is as follows: 

deltatheta_x=-0.0540075905907143, deltatheta_y=-0.045283898104306164,   

delta_x=8.517611415805774,   delta_y=-0.14003470744737345 

Phi=0.07048014804847813, Pitch(h)=-91.32940177382942, s=-6.436909758198438 

L=-0.76628089023829, M=-0.6425057176832076, N=0 

P=2914.478061710077, Q=-3475.936139152482, R=0 

The zone magnitude (radius) is 1.1213798503766341. 
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Fig A.1. Least Squares Zone Boundary for 11 Points on the Straight Portion of the Inner 

Profile. 

 

B. 9 POINT ARC FITTING 

 

For dealing with the Least squares fit for an arc which is spanned over the XZ plane 

with the arc of 250mm radius as the nominal profile. We first found the angles the points 

have been making along the XZ plane and the magnitude of length in the XZ plane from 

the origin now using these values. We need to find the forces and torques applied by the 

actuators of assumed platform robot and find the line coordinates and the deflections 

caused by them and using these we can find the matrices K and d and using these by 

applying the least squares we can find the angular movement and displacement of the 

nominal profile we can also find the line coordinates of the Small Displacement Torsor 
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(SDT). We can find the transformation matrix which gives the transformed coordinates 

along the Least squares fit line we could determine the zone size using these coordinates. 

The Program to find this least square profile is give below. 

import numpy as np 

import matplotlib.pyplot as plt 

### Initialization of the parameters 

OriginalPoints=np.array([[-2.4150e+02, 9.8220e-01, 1.0420e+00], 

       [-2.3920e+02, 1.7540e+00, -4.5510e+01], 

       [-2.2611e+02, 1.5195e+00, -9.5780e+01], 

       [-2.0703e+02, 1.3136e+00, -1.3502e+02], 

       [-1.7507e+02, 1.2240e+00, -1.7691e+02], 

       [-1.4182e+02, 1.3043e+00, -2.0599e+02], 

       [-9.5550e+01, 1.6049e+00, -2.3231e+02], 

       [-5.3220e+01, 2.0476e+00, -2.4617e+02], 

       [-2.4100e-02, 2.7479e+00, -2.5212e+02]]) 

itrsize = len(OriginalPoints) 

### Finding the Angles made by the points along the xz plane 

alpha=[] 

for i in range (itrsize): 

    alphas=np.arctan2(OriginalPoints[i,0],OriginalPoints[i,2]) 

    alpha.append(alphas) 

alp=np.hstack(alpha) 

print("The alpha values are {}".format(alp)) 

### Finding the magnitudes of the coordinates in the xz plane 

magnitude=[] 

for i in range (itrsize): 

    magnitudes=np.sqrt(np.power(OriginalPoints[i,0],2)+np.power(OriginalPoints[i,2],2)) 

    magnitude.append(magnitudes) 

mag=np.hstack(magnitude) 

### Initializing the Deflection Values (d matrix) 

dlvalue=[] 

for i in range (itrsize): 

    dlvalue.append((250-mag[i])) 

    dlvalue.append(OriginalPoints[i,1]) 

di=np.hstack(dlvalue) 

### Initializing of the Kprime matrix 

kprime=[] 

for i in range (itrsize): 

    kprime.append([0,0,-OriginalPoints[i,0]/mag[i],0,-OriginalPoints[i,2]/mag[i]]) 

    kprime.append([-250*np.cos(alp[i]),250*np.sin(alp[i]),0,1,0]) 

kprime=np.reshape(kprime,((itrsize*2),5)) 

### Applying least squares fit to the equations 
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kprTranspose=np.transpose(kprime) 

intermediate=np.linalg.inv(np.matmul(kprTranspose,kprime)) 

kmoorePenrose=np.matmul(intermediate,kprTranspose) 

pd=np.matmul(kmoorePenrose,di) 

deltatheta_x=((180*pd[0])/np.pi) 

deltatheta_y=0 

deltatheta_z=((180*pd[1])/np.pi) 

delta_x=pd[2] 

delta_y=pd[3] 

delta_z=pd[4] 

delta_r=0 

print ("deltatheta_x = {}, deltatheta_z = {}".format(deltatheta_x,deltatheta_z)) 

print("delta_x = {}, delta_y = {}, delta_z = {}".format(delta_x,delta_y,delta_z)) 

### Finding the values of PHI, h(pitch) and S 

phi=np.sqrt(np.power(pd[0],2)+np.power(pd[1],2)) 

h=((pd[0]*pd[2])+(pd[1]*pd[4]))/(np.power(pd[0],2)+np.power(pd[1],2)) 

s=phi*h 

print("Phi={}, Pitch(h)={}, s={}".format(phi*(180/np.pi), h*(np.pi)/180, s)) 

### Finding the Plucker Coordinates  

l=pd[0]/phi 

m=0 

n=pd[1]/phi 

p=(delta_x - h*pd[0])/phi 

q=delta_y/phi 

r=(delta_z - h*pd[1])/phi 

print("L={},   M={},   N={},   P={},   Q={},   R={}".format(l,m,n,p,q,r)) 

### Finding the Nominal X,Y and Z of the least squares fit line 

x_nomls=p*np.sin(phi)+l*s 

y_nomls=q*np.sin(phi)+m*s 

z_nomls=r*np.sin(phi)+n*s 

# print("The Nominal X, Y and Z of the least squares line are 

{},{},{}".format(x_nomls,y_nomls,z_nomls)) 

### Creating a Matrix to find the trasformed points 

tr1=np.array([np.cos(phi), -n*np.sin(phi), m*np.sin(phi), x_nomls]) 

tr2=np.array([n*np.sin(phi), np.cos(phi), -l*np.sin(phi), y_nomls]) 

tr3=np.array([-m*np.sin(phi), l*np.sin(phi), np.cos(phi), z_nomls]) 

tr4=np.array([0,0,0,1]) 

tr_nomls=np.vstack([tr1,tr2,tr3,tr4]) 

invtrnomls=np.linalg.inv(tr_nomls) 

# print("The trasformation matrix is \n{}".format(invtrnomls)) 

### Original points transformed along hte least squares line 

origptset=np.append(OriginalPoints,np.ones((itrsize,1)),axis=1) 

origptsetCol=np.transpose(origptset) 

ptset = np.matmul(invtrnomls,origptsetCol) 

TransformedPoints=np.transpose(ptset[0:3]) 
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# print("The transformed points of the original points along the Least squares line is 

\n{}".format(TransformedPoints)) # Transformed Points 

### Finding the zone magnitude 

pltsdist=[] 

for i in range (itrsize): 

    magnitudels=np.sqrt(np.power(ptset[0,i],2)+np.power(ptset[2,i],2)) 

    pltsdist.append(np.sqrt(np.power((250-magnitudels),2)+np.power(ptset[1,i],2))) 

zonemag=np.max(pltsdist) 

print("The zone magnitude (radius) is {}".format(zonemag)) 

### Unwrapping of points on the least squares fit arc 

newcords=[] 

for i in range (itrsize): 

    alp=np.arctan2(TransformedPoints[i,0],TransformedPoints[i,2]) 

    mag=np.sqrt(np.power(TransformedPoints[i,0],2)+np.power(TransformedPoints[i,2],2)) 

    newcords.append([250-mag, TransformedPoints[i,1], 250*((np.pi/2)+alp)]) 

newcords=np.reshape(newcords,(itrsize,3)) 

print("The unwrapped coordinates are {}".format(repr(newcords))) 

### Plotting of points along the z-axis 

center=(0,0) 

circledist=[] 

XCords=newcords[:,0] 

YCords=newcords[:,1] 

ZCords=newcords[:,2] 

for i in range (len(XCords)): 

  circledist.append(np.sqrt(np.square(XCords[i])+np.square(YCords[i]))) 

plt.figure(figsize=(10, 10)) 

plt.plot(center[0],center[1],'go') 

plt.axis('equal') 

plt.title('Least Squares Fit of 9 Points Arc') 

plt.xlabel('X - Axis') 

plt.ylabel('Y - Axis') 

plt.gca().add_patch(plt.Circle((center[0],center[1]),max(circledist),fill=False)) 

 

for i in range (len(newcords)): 

  plt.plot([center[0],XCords[i]],[center[1],YCords[i]],'r') 

  plt.plot(XCords[i],YCords[i],'ro') 

  plt.text(XCords[i],YCords[i],i+1) 

plt.show() 

The Output of the above program is: 

deltatheta_x = -0.2379620481478811, deltatheta_z = 0.47753821566048144 delta_x = 

6.823709569304667, delta_y = 3.549024554723155, delta_z = -3.8105229466022563 
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Phi=0.533543516289844, Pitch(h)=-12.096357730920312, s=-6.453933238055062 

L=-0.446003073568623,  M=0,   N=0.8950314287036748,   P=423.668055036129,   

Q=381.12004394308434,   R=211.1180106743644 

The zone magnitude (radius) is 1.6947389152410268. 

 

Fig B.1. Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc 

Portion of the Inner Profile. 

C. 9 POINT ARC WITH SIZE CHANGE 

 

This program is like the previous 9-point arc program, but this includes the size 

change. The nominal shape in the previous case is fixed which is an arc of 250mm radius 

in the xz plane. This code allows the flexibility of nominal shape to be of suitable 

appropriate radius for better fitting options. The code for this is as follows. 
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import numpy as np 

import matplotlib.pyplot as plt 

 

### Initialization of the parameters 

OriginalPoints=np.array([[-2.4150e+02, 9.8220e-01, 1.0420e+00], 

       [-2.3920e+02, 1.7540e+00, -4.5510e+01], 

       [-2.2611e+02, 1.5195e+00, -9.5780e+01], 

       [-2.0703e+02, 1.3136e+00, -1.3502e+02], 

       [-1.7507e+02, 1.2240e+00, -1.7691e+02], 

       [-1.4182e+02, 1.3043e+00, -2.0599e+02], 

       [-9.5550e+01, 1.6049e+00, -2.3231e+02], 

       [-5.3220e+01, 2.0476e+00, -2.4617e+02], 

       [-2.4100e-02, 2.7479e+00, -2.5212e+02]]) 

itrsize = len(OriginalPoints) ## for looping through the points and creation of matrices 

### Finding the Angles made by the points along the xz plane 

alpha=[] 

for i in range (itrsize): 

    alphas=np.arctan2(OriginalPoints[i,0],OriginalPoints[i,2]) 

    alpha.append(alphas) 

alp=np.hstack(alpha) 

### Finding the magnitudes of the coordinates in the xz plane 

magnitude=[] 

for i in range (itrsize): 

    magnitudes=np.sqrt(np.power(OriginalPoints[i,0],2)+np.power(OriginalPoints[i,2],2)) 

    magnitude.append(magnitudes) 

mag=np.hstack(magnitude) 

### Initializing the Deflection Values (d matrix) 

dlvalue=[] 

for i in range (itrsize): 

    dlvalue.append((250-mag[i])) 

    dlvalue.append(OriginalPoints[i,1]) 

di=np.hstack(dlvalue) 

### Initializing of the Kprime matrix 

kprime=[] 

for i in range (itrsize): 

    kprime.append([0,0,-OriginalPoints[i,0]/mag[i],0,-OriginalPoints[i,2]/mag[i], -1]) 

    kprime.append([-250*np.cos(alp[i]),250*np.sin(alp[i]),0,1,0,0]) 

kprime=np.reshape(kprime,((itrsize*2),6)) 

### Applying least squares fit to the equations to get the angular displacement and location of the 

Nominal shape with respect to Least squares line 

kprTranspose=np.transpose(kprime) 

intermediate=np.linalg.inv(np.matmul(kprTranspose,kprime)) 

kmoorePenrose=np.matmul(intermediate,kprTranspose) 

pd=np.matmul(kmoorePenrose,di) 
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deltatheta_x=((180*pd[0])/np.pi) 

deltatheta_y=0 

deltatheta_z=((180*pd[1])/np.pi) 

delta_x=pd[2] 

delta_y=pd[3] 

delta_z=pd[4] 

delta_r=pd[5] 

print ("deltatheta_x = {}, deltatheta_z = {}".format(deltatheta_x,deltatheta_z)) 

print("delta_x = {}, delta_y = {}, delta_z = {}, delta_r = {}".format(delta_x,delta_y,delta_z,delta_r)) 

### Finding the values of PHI, h(pitch) and S 

phi=np.sqrt(np.power(pd[0],2)+np.power(pd[1],2)) 

h=((pd[0]*pd[2])+(pd[1]*pd[4]))/(np.power(pd[0],2)+np.power(pd[1],2)) 

s=phi*h 

print("Phi={}, Pitch(h)={}, s={}".format(phi*(180/np.pi), h*(np.pi)/180, s)) 

### Finding the Plucker Coordinates [L, M, N; P, Q, R] 

l=pd[0]/phi 

m=0 

n=pd[1]/phi 

p=(delta_x - h*pd[0])/phi 

q=delta_y/phi 

r=(delta_z - h*pd[1])/phi 

print("L={},   M={},   N={},   P={},   Q={},   R={}".format(l,m,n,p,q,r)) 

### Finding the Nominal X,Y and Z of the least squares fit line 

vp=1-np.cos(phi) 

x_nomls=p*np.sin(phi)+l*s+vp*(m*r-n*q) 

y_nomls=q*np.sin(phi)+m*s+vp*(n*p-l*r) 

z_nomls=r*np.sin(phi)+n*s+vp*(l*q-m*p) 

# print("The Nominal X, Y and Z of the least squares line are 

{},{},{}".format(x_nomls,y_nomls,z_nomls)) 

### Creating a Matrix to find the trasformed points 

tr1=np.array([vp*(np.square(l))+np.cos(phi), vp*m*l-n*np.sin(phi), vp*l*n+m*np.sin(phi), x_nomls]) 

tr2=np.array([vp*m*l+n*np.sin(phi), vp*(np.square(m))+np.cos(phi), vp*m*n-l*np.sin(phi), 

y_nomls]) 

tr3=np.array([vp*n*l-m*np.sin(phi), vp*m*n+l*np.sin(phi), vp*(np.square(n))+np.cos(phi), 

z_nomls]) 

tr4=np.array([0,0,0,1]) 

tr_nomls=np.vstack([tr1,tr2,tr3,tr4]) 

invtrnomls=np.linalg.inv(tr_nomls) 

# print("The trasformation matrix is \n{}".format(invtrnomls)) 

### Original points transformed along hte least squares line 

origptset=np.append(OriginalPoints,np.ones((itrsize,1)),axis=1) 

origptsetCol=np.transpose(origptset) 

ptset = np.matmul(invtrnomls,origptsetCol) 

TransformedPoints=np.transpose(ptset[0:3]) 
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# print("The transformed points of the original points along the Least squares line is 

\n{}".format(TransformedPoints)) # Transformed Points 

### Finding the zone magnitude 

pltsdist=[] 

for i in range (itrsize): 

    magnitudels=np.sqrt(np.power(ptset[0,i],2)+np.power(ptset[2,i],2)) 

    pltsdist.append(np.sqrt(np.power((250+delta_r-magnitudels),2)+np.power(ptset[1,i],2))) 

zonemag=np.max(pltsdist) 

print("The zone magnitude (radius) is {}".format(zonemag)) 

### Unwrapping of points on the least squares fit arc 

newcords=[] 

for i in range (itrsize): 

    alp=np.arctan2(TransformedPoints[i,0],TransformedPoints[i,2])  

mag=np.sqrt(np.power(TransformedPoints[i,0],2)+np.power(TransformedPoints[i,2],2)) 

    newcords.append([250+delta_r-mag, TransformedPoints[i,1], (250+delta_r)*((np.pi/2)+alp)]) 

newcords=np.reshape(newcords,(itrsize,3)) 

print("The unwrapped points are {}".format(repr(newcords))) 

### Plotting of points along the z-axis 

center=(0,0) 

circledist=[] 

XCords=newcords[:,0] 

YCords=newcords[:,1] 

ZCords=newcords[:,2] 

for i in range (len(XCords)): 

  circledist.append(np.sqrt(np.square(XCords[i])+np.square(YCords[i]))) 

plt.figure(figsize=(25, 25)) 

plt.plot(center[0],center[1],'go') 

plt.axis('equal') 

plt.title('Least Squares Fit of 9 Points Arc with size change') 

plt.xlabel('X - Axis') 

plt.ylabel('Y - Axis') 

plt.gca().add_patch(plt.Circle((center[0],center[1]),max(circledist),fill=False)) 

for i in range (len(newcords)): 

  plt.plot([center[0],XCords[i]],[center[1],YCords[i]],'r') 

  plt.plot(XCords[i],YCords[i],'ro') 

  plt.text(XCords[i],YCords[i],i+1) 

plt.show() 

The output of the above code is: 

deltatheta_x = -0.2379620481478811, deltatheta_z = 0.47753821566048144 delta_x = 

0.43504684441878094, delta_y = 3.549024554723155, delta_z = -10.137169495160746, 

delta_r = -8.001115119283417 
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Fig C.1. Projection of Toroidal Least Squares Zone Boundary for 9 Points on the Arc 

Portion of the Inner Profile with Size Change. 

Phi=0.533543516289844, Pitch(h)=-17.36900035907819, s=-9.26711752602214 

L=-0.446003073568623, M=0, N=0.8950314287036748, P=-397.1305725766778,  

Q=381.12004394308434, R=-197.89411890686418 

The zone magnitude (radius) is 0.6088761796412765. 

D. 19 POINTS J SHAPED PROFILE FITTING 

The J-Shaped profile is the combination of both the straight line and the arc profile 

we have delt in the previous cases. The program is to find the Least Squares fit of the 

given profile in the 3D space. Similar to the others we assume a nominal profile for the J-
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section and take the screw coordinates of the points as described in the chapter 2 using 

which we form a set of equations which doesn’t have a definite solution and so we go for 

the least squares solution. Which gives the angular orientation and location of the least 

squares fit profile with respect to the Nominal profile. The program is given below. 

import numpy as np 

import matplotlib.pyplot as plt 

### Initialization of the parameters 

OriginalPoints=np.array([[-2.4190e+02, 7.4250e-01, 4.9002e+02], 

       [-2.4184e+02, 5.3490e-01, 4.5102e+02], 

       [-2.4179e+02, 3.0300e-01, 4.0103e+02], 

       [-2.4175e+02, 9.9200e-02, 3.5103e+02], 

       [-2.4171e+02, -6.6700e-02, 3.0103e+02], 

       [-2.4167e+02, -1.9560e-01, 2.5103e+02], 

       [-2.4163e+02, -3.0480e-01, 2.0102e+02], 

       [-2.4160e+02, -3.9400e-01, 1.5103e+02], 

       [-2.4156e+02, -4.4430e-01, 1.0103e+02], 

       [-2.4153e+02, -2.0430e-01, 5.1040e+01], 

       [-2.4150e+02, 9.8220e-01, 1.0420e+00], 

       [-2.3920e+02, 1.7540e+00, -4.5510e+01], 

       [-2.2611e+02, 1.5195e+00, -9.5780e+01], 

       [-2.0703e+02, 1.3136e+00, -1.3502e+02], 

       [-1.7507e+02, 1.2240e+00, -1.7691e+02], 

       [-1.4182e+02, 1.3043e+00, -2.0599e+02], 

       [-9.5550e+01, 1.6049e+00, -2.3231e+02], 

       [-5.3220e+01, 2.0476e+00, -2.4617e+02], 

       [-2.4100e-02, 2.7479e+00, -2.5212e+02]]) 

dist_from_origin_to_pts=250 # To transform the origin to (-250,0,0) 

itrsize=len(OriginalPoints) 

### Creation of the deflections (d) matrix 

deflections1 = [] 

deflections2 = [] 

for i in range (itrsize): 

    if (OriginalPoints[i,2]>0): 

        deflections1.append(dist_from_origin_to_pts+OriginalPoints[i,0]) 

        deflections1.append(OriginalPoints[i,1]) 

    else: 

        deflections2.append(dist_from_origin_to_pts-

np.sqrt(np.square(OriginalPoints[i,0])+np.square(OriginalPoints[i,2]))) 

        deflections2.append(OriginalPoints[i,1]) 

di=np.transpose(np.append(deflections1,deflections2)) 

### Creation of the K matrix 
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kprime1=[] 

kprime2=[] 

for i in range (itrsize): 

    if (OriginalPoints[i,2]>0): 

        kprime1.append(np.array([0,OriginalPoints[i,2],0,1,0,0])) 

        kprime1.append(np.array([-OriginalPoints[i,2],0,0,0,1,0])) 

    else: mag=np.sqrt(np.square(OriginalPoints[i,0])+np.square(OriginalPoints[i,2])) 

        alp=np.arctan2(OriginalPoints[i,0],OriginalPoints[i,2]) 

        kprime2.append(np.array([0,0,0,-OriginalPoints[i,0]/mag,0,-OriginalPoints[i,2]/mag])) 

        kprime2.append(np.array([-250*np.cos(alp),0,250*np.sin(alp),0,1,0])) 

kprime=np.append(kprime1,kprime2).reshape(2*len(OriginalPoints),6) 

### Application of Least Squares fit to the equations 

kprTranspose=np.transpose(kprime) 

intermediate=np.linalg.inv(np.matmul(kprTranspose,kprime)) 

kmoorePenrose=np.matmul(intermediate,kprTranspose) 

pd=np.matmul(kmoorePenrose,di) 

deltatheta_x=pd[0]*(180/np.pi) 

deltatheta_y=pd[1]*(180/np.pi) 

deltatheta_z=pd[2]*(180/np.pi) 

delta_x=pd[3] 

delta_y=pd[4] 

delta_z=pd[5] 

delta_r=0 

print("deltatheta_x = {}, deltatheta_y = {}, deltatheta_z = {}, delta_x = {}, delta_y = {}, 

delta_z={}".format(deltatheta_x,deltatheta_y,deltatheta_z,delta_x,delta_y,delta_z)) 

### Finding the values of PHI, h(pitch) and s 

phi=np.sqrt((np.power(pd[0],2))+(np.power(pd[1],2))+(np.power(pd[2],2))) 

h=((pd[0]*pd[3])+(pd[1]*pd[4])+(pd[2]*pd[5]))/((np.power(pd[0],2))+(np.power(pd[1],2))+(np.powe

r(pd[2],2))) 

s=phi*h 

print("Phi = {}, Pitch(h) = {}, s = {}".format(phi*(180/np.pi), h*(np.pi)/180, s)) 

### Finding the Plucker coordinates [L, M, N; P, Q, R] 

l=pd[0]/phi 

m=pd[1]/phi 

n=pd[2]/phi 

p=(delta_x-(h*pd[0]))/phi 

q=(delta_y-(h*pd[1]))/phi 

r=(delta_z-(h*pd[2]))/phi 

print("L = {}, M = {}, N = {}".format(l,m,n)) 

print("P = {}, Q = {}, R = {}".format(p,q,r)) 

### Finding the nominal x,y and z of the least squares fit line 

vphi=1-np.cos(phi) 

x_nom=vphi*(m*r-n*q)+p*np.sin(phi)+l*s 

y_nom=vphi*(n*p-l*r)+q*np.sin(phi)+m*s 

z_nom=vphi*(l*q-m*p)+r*np.sin(phi)+n*s 



77 
 

print("vphi = {}, X_nom = {}, Y_nom = {}, Z_nom = {}".format(vphi,x_nom,y_nom,z_nom)) 

### Creation of matrix to find the transformed points 

trnomls1=np.array([(vphi*np.power(l,2)+np.cos(phi)), (vphi*l*m-n*np.sin(phi)), 

(vphi*l*n+m*np.sin(phi)), x_nom]) 

trnomls2=np.array([(vphi*l*m+n*np.sin(phi)), (vphi*np.power(m,2)+np.cos(phi)), (vphi*m*n-

l*np.sin(phi)), y_nom]) 

trnomls3=np.array([(vphi*l*n-m*np.sin(phi)), (vphi*n*m+l*np.sin(phi)), 

(vphi*np.power(n,2)+np.cos(phi)), z_nom]) 

trnomls4=np.array([0,0,0,1]) 

trnomls=np.vstack([trnomls1,trnomls2,trnomls3,trnomls4]) 

invtrnomls=np.linalg.inv(trnomls) 

# print("The trasformation matrix is \n{}".format(invtrnomls)) 

### Finding the Original points transformed along the Least Squares Line 

origptset=np.append(OriginalPoints,np.ones((itrsize,1)),axis=1) 

origptsetCol=np.transpose(origptset) 

ptset = np.matmul(invtrnomls,origptsetCol) 

# print("The transformed points are \n{}".format(repr(np.transpose(ptset[0:3])))) 

### Finding the Least Squares fit zone magnitude 

ptlsdistofl=[] 

pltsdistofa=[] 

for i in range (itrsize): 

    if(OriginalPoints[i,2]>0): 

        ptls=np.sqrt((np.power((dist_from_origin_to_pts+ptset[0,i]),2))+(np.power(ptset[1,i],2))) 

        ptlsdistofl.append(ptls) 

    else: 

        magnitudels=np.sqrt(np.power(ptset[0,i],2)+np.power(ptset[2,i],2)) 

        pltsdistofa.append(np.sqrt(np.power((dist_from_origin_to_pts-

magnitudels),2)+np.power(ptset[1,i],2))) 

pltsdist=np.append(ptlsdistofl,pltsdistofa) 

zonemag=np.max(pltsdist) 

print("The zone magnitude (radius) is {}".format(zonemag)) 

### unwrapping of points along the straight line with the (-250,0,0) as the origin  

plot=(np.transpose(ptset[0:3])) 

transformedline=[] 

transformedarc=[] 

for i in range (itrsize): 

    if (OriginalPoints[i,2]>0): 

        transformedline.append([plot[i,0]+dist_from_origin_to_pts, plot[i,1], plot[i,2]]) 

    else: 

        alpha=np.arctan2(plot[i,0],plot[i,2]) 

        if alpha>0: 

            alpha=alpha-(2*np.pi) 

        magnitude=np.sqrt((plot[i,0]**2)+(plot[i,2]**2)) 

        transformedarc.append([dist_from_origin_to_pts-magnitude, plot[i,1], 

dist_from_origin_to_pts*((np.pi/2)+alpha)]) 
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transformedpoints=np.concatenate((transformedline,np.array(transformedarc)),axis=0) 

print("The unwrapped points are {}".format(repr(transformedpoints))) 

### Plotting of the transformed points along the z-axis 

center=(0,0) 

circledist=[] 

XCords=transformedpoints[:,0] 

YCords=transformedpoints[:,1] 

ZCords=transformedpoints[:,2] 

for i in range (len(XCords)): 

  circledist.append(np.sqrt(np.square(XCords[i])+np.square(YCords[i]))) 

plt.figure(figsize=(25, 25)) 

plt.plot(center[0],center[1],'go') 

plt.axis('equal') 

plt.title('J-section profile (LSF)') 

plt.xlabel('X - Axis') 

plt.ylabel('Y - Axis') 

plt.gca().add_patch(plt.Circle((center[0],center[1]),max(circledist),fill=False)) 

for i in range (len(transformedpoints)): 

  plt.plot([center[0],XCords[i]],[center[1],YCords[i]],'r') 

  plt.plot(XCords[i],YCords[i],'ro') 

  plt.text(XCords[i],YCords[i],i+1) 

plt.show() 

The Output of the above program is: 

deltatheta_x = 0.12479789780800658, deltatheta_y = 0.11991271915090945, 

deltatheta_z = -0.11854568354822141, delta_x = 7.514101176990379, delta_y = 

0.7973663292438798, delta_z=-4.198184893128284 

Phi = 0.20977763131320173, Pitch(h) = 34.79099030044069, s = 7.298371536267024 

L = 0.5949056485516375, M = 0.5716182340331493, N = -0.5651016402756049 

P = 866.4271558359096, Q = -921.66890666297, R = -20.173970330501866 

vphi = 6.702589301244011e-06, X_nom = 7.510525842660261, Y_nom = 

0.7941725926354621, Z_nom = -4.205179359940644 

The zone magnitude (radius) is 2.4135391159007806. 
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Fig D.1. Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with 

Size Change. 

E. J-SHAPED PROFILE WITH SIZE CHANGE 

 

This program is like the previous least squares fit of the J-Shaped profile, but it 

incorporates size change which allows the total profile to move instead of fixing it at 

250mm from the origin for both the straight-line profile and the arc section. The code for 

this is also pretty much like the previous program with a very small change.  

import numpy as np 

import matplotlib.pyplot as plt 

### Initialization of the parameters 

OriginalPoints=np.array([[-2.4190e+02, 7.4250e-01, 4.9002e+02], 

       [-2.4184e+02, 5.3490e-01, 4.5102e+02], 

       [-2.4179e+02, 3.0300e-01, 4.0103e+02], 

       [-2.4175e+02, 9.9200e-02, 3.5103e+02], 

       [-2.4171e+02, -6.6700e-02, 3.0103e+02], 
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       [-2.4167e+02, -1.9560e-01, 2.5103e+02], 

       [-2.4163e+02, -3.0480e-01, 2.0102e+02], 

       [-2.4160e+02, -3.9400e-01, 1.5103e+02], 

       [-2.4156e+02, -4.4430e-01, 1.0103e+02], 

       [-2.4153e+02, -2.0430e-01, 5.1040e+01], 

       [-2.4150e+02, 9.8220e-01, 1.0420e+00], 

       [-2.3920e+02, 1.7540e+00, -4.5510e+01], 

       [-2.2611e+02, 1.5195e+00, -9.5780e+01], 

       [-2.0703e+02, 1.3136e+00, -1.3502e+02], 

       [-1.7507e+02, 1.2240e+00, -1.7691e+02], 

       [-1.4182e+02, 1.3043e+00, -2.0599e+02], 

       [-9.5550e+01, 1.6049e+00, -2.3231e+02], 

       [-5.3220e+01, 2.0476e+00, -2.4617e+02], 

       [-2.4100e-02, 2.7479e+00, -2.5212e+02]]) 

dist_from_origin_to_pts=250 # To transform the origin to (-250,0,0) 

itrsize=len(OriginalPoints) 

### Creation of the deflections (d) matrix 

deflections1=[] 

deflections2=[] 

for i in range (itrsize): 

    if (OriginalPoints[i,2]>0): 

        deflections1.append(dist_from_origin_to_pts+OriginalPoints[i,0]) 

        deflections1.append(OriginalPoints[i,1]) 

    else: 

        deflections2.append(dist_from_origin_to_pts-

np.sqrt(np.square(OriginalPoints[i,0])+np.square(OriginalPoints[i,2]))) 

        deflections2.append(OriginalPoints[i,1]) 

di=np.transpose(np.append(deflections1,deflections2)) 

### Creation of the K matrix 

kprime1=[] 

kprime2=[] 

for i in range (itrsize): 

    if (OriginalPoints[i,2]>0): 

        kprime1.append(np.array([0,OriginalPoints[i,2],0,1,0,0,-1])) 

        kprime1.append(np.array([-OriginalPoints[i,2],0,0,0,1,0,0])) 

    else: 

        mag=np.sqrt(np.square(OriginalPoints[i,0])+np.square(OriginalPoints[i,2])) 

        alp=np.arctan2(OriginalPoints[i,0],OriginalPoints[i,2]) 

        kprime2.append(np.array([0,0,0,-OriginalPoints[i,0]/mag,0,-OriginalPoints[i,2]/mag,-1])) 

        kprime2.append(np.array([-250*np.cos(alp),0,250*np.sin(alp),0,1,0,0])) 

kprime=np.append(kprime1,kprime2).reshape(2*itrsize,7) 

### Application of Least Squares fit to the equations 

kprTranspose=np.transpose(kprime) 

intermediate=np.linalg.inv(np.matmul(kprTranspose,kprime)) 

kmoorePenrose=np.matmul(intermediate,kprTranspose) 
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pd=np.matmul(kmoorePenrose,di) 

deltatheta_x=pd[0]*(180/np.pi) 

deltatheta_y=pd[1]*(180/np.pi) 

deltatheta_z=pd[2]*(180/np.pi) 

delta_x=pd[3] 

delta_y=pd[4] 

delta_z=pd[5] 

delta_r=pd[6] 

print("deltatheta_x = {}, deltatheta_y = {}, deltatheta_z = {}, delta_x = {}, delta_y = {}, delta_z = {}, 

delta_r = {}".format(deltatheta_x,deltatheta_y,deltatheta_z,delta_x,delta_y,delta_z,-delta_r)) 

### Finding the values of PHI, h(pitch) and s 

phi=np.sqrt((np.power(pd[0],2))+(np.power(pd[1],2))+(np.power(pd[2],2))) 

h=((pd[0]*pd[3])+(pd[1]*pd[4])+(pd[2]*pd[5]))/((np.power(pd[0],2))+(np.power(pd[1],2))+(np.powe

r(pd[2],2))) 

s=phi*h 

print("Phi = {}, Pitch(h) = {}, s = {}".format(phi*(180/np.pi), h*(np.pi)/180, s)) 

### Finding the Plucker coordinates [L, M, N; P, Q, R] 

l=pd[0]/phi 

m=pd[1]/phi 

n=pd[2]/phi 

p=(delta_x-(h*pd[0]))/phi 

q=(delta_y-(h*pd[1]))/phi 

r=(delta_z-(h*pd[2]))/phi 

print("L = {}, M = {}, N = {}".format(l,m,n)) 

print("P = {}, Q = {}, R = {}".format(p,q,r)) 

### Finding the nominal x,y and z of the least squares fit line 

vphi=1-np.cos(phi) 

x_nom=vphi*(m*r-n*q)+p*np.sin(phi)+l*s 

y_nom=vphi*(n*p-l*r)+q*np.sin(phi)+m*s 

z_nom=vphi*(l*q-m*p)+r*np.sin(phi)+n*s 

# print("vphi = {}, X_nom = {}, Y_nom = {}, Z_nom = {}".format(vphi,x_nom,y_nom,z_nom)) 

### Creation of matrix to find the transformed points 

trnomls1=np.array([(vphi*np.power(l,2)+np.cos(phi)), (vphi*l*m-n*np.sin(phi)), 

(vphi*l*n+m*np.sin(phi)), x_nom]) 

trnomls2=np.array([(vphi*l*m+n*np.sin(phi)), (vphi*np.power(m,2)+np.cos(phi)), (vphi*m*n-

l*np.sin(phi)), y_nom]) 

trnomls3=np.array([(vphi*l*n-m*np.sin(phi)), (vphi*n*m+l*np.sin(phi)), 

(vphi*np.power(n,2)+np.cos(phi)), z_nom]) 

trnomls4=np.array([0,0,0,1]) 

trnomls=np.vstack([trnomls1,trnomls2,trnomls3,trnomls4]) 

invtrnomls=np.linalg.inv(trnomls) 

# print("The trasformation matrix is \n{}".format(invtrnomls)) 

### Finding the Original points transformed along the Least Squares Line 

origptset=np.append(OriginalPoints,np.ones((itrsize,1)),axis=1) 

origptsetCol=np.transpose(origptset) 
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ptset = np.matmul(invtrnomls,origptsetCol) 

# print("The transformed points are \n{}".format(np.transpose(ptset[0:3]))) 

### Finding the Least Squares fit zone magnitude 

ptlsdistofl=[] 

pltsdistofa=[] 

for i in range (itrsize): 

    if (OriginalPoints[i,2]>0): 

        ptls=np.sqrt((np.power((dist_from_origin_to_pts+ptset[0,i]+delta_r),2))+(np.power(ptset[1,i],2))) 

        ptlsdistofl.append(ptls) 

    else: 

        magnitudels=np.sqrt(np.power(ptset[0,i],2)+np.power(ptset[2,i],2)) 

        pltsdistofa.append(np.sqrt(np.power((dist_from_origin_to_pts+delta_r-

magnitudels),2)+np.power(ptset[1,i],2))) 

pltsdist=np.append(ptlsdistofl,pltsdistofa) 

zonemag=np.max(pltsdist) 

print("The zone magnitude (radius) is {}".format(zonemag)) 

### unwrapping of points along the straight line with the (-250,0,0) as the origin  

plot=(np.transpose(ptset[0:3])) 

transformedline=[] 

transformedarc=[] 

for i in range (itrsize): 

    if (OriginalPoints[i,2]>0): 

        transformedline.append([plot[i,0]+dist_from_origin_to_pts+delta_r, plot[i,1], plot[i,2]]) 

    else: 

        alpha=np.arctan2(plot[i,0],plot[i,2]) 

        magnitude=np.sqrt((plot[i,0]**2)+(plot[i,2]**2)) 

        transformedarc.append([dist_from_origin_to_pts+delta_r-magnitude, plot[i,1], 

(dist_from_origin_to_pts+delta_r)*((np.pi/2)+alpha)]) 

transformedpoints=np.concatenate((transformedline,np.array(transformedarc)),axis=0) 

print("The unwrapped points are {}".format(repr(transformedpoints))) 

### Plotting of the transformed points along the z-axis 

center=(0,0) 

circledist=[] 

XCords=transformedpoints[:,0] 

YCords=transformedpoints[:,1] 

ZCords=transformedpoints[:,2] 

for i in range (len(XCords)): 

  circledist.append(np.sqrt(np.square(XCords[i])+np.square(YCords[i]))) 

plt.figure(figsize=(25, 25)) 

plt.plot(center[0],center[1],'go') 

plt.axis('equal') 

plt.title('J-section Profile with size change (LSF)') 

plt.xlabel('X - Axis') 

plt.ylabel('Y - Axis') 

plt.gca().add_patch(plt.Circle((center[0],center[1]),max(circledist),fill=False)) 
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for i in range (len(transformedpoints)): 

  plt.plot([center[0],XCords[i]],[center[1],YCords[i]],'r') 

  plt.plot(XCords[i],YCords[i],'ro') 

  plt.text(XCords[i],YCords[i],i+1) 

plt.show() 

The output for the above program is as follows: 

 
Fig E.1. Least Squares Zone Boundary for 19 Points on the J-shaped Inner Profile with 

Size Change When Unwrapped onto a Straight Line. 

 

deltatheta_x = 0.0034782233100175055, deltatheta_y = -0.053106244593978745, 

deltatheta_z = -0.115176810248895, delta_x = 0.6412404097483266, delta_y = 

0.13925630663394217, delta_z = -10.152524761857135, delta_r = 7.977072615073124 
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Phi = 0.1268781654634863, Pitch(h) = 72.31739565809166, s = 9.175498492195759 

L = 0.027413883998965036, M = -0.4185609430904166, N = -0.9077748707049301 

P = 175.98311668131896, Q = 1797.1850619249476, R = -823.3397043701374 

The zone magnitude (radius) is 1.2668170345224004. 

F. TRUE MINIMUM ZONE (Prashant Mohan’s algorithm [6]) 

 

To find the True Minimum Zone of the Least square points there is an algorithm 

developed by Mohan, et al. [6] in the way this algorithm works is it creates two hexagons 

at each ends of the LSF line and gives the combinations of the hexagons which forms 6x6 

which is 36 lines and the hexagon radius is 10% of the original True minimum zone then 

find distances from points to each of the lines formed during combination and find the 

maximum distance among all the distances to points from lines which gives us 36 

distances of these maximum distances the minimum distance is chosen and the True 

minimum zone axis is transformed to this line which is transformed to be parallel to z-

axis and the iteration continues with a change of 10/11 in radius size and until the radius 

is greater than the 0.001% of the original zone size we have started with. The way it is 

implemented in the program is that a lot of function are created which deals with each 

part of the iterations. The functions of the created functions are to find the distance 

between two points, to find the distance from a point to line in 3D space, to find the 

rotation matrix with transforms the true minimum zone axis parallel to the z-axis, to 

rotate the points according to the rotation of the True minimum zone axis with the 

rotation matrix generated in the previous case, to generate hexagons with distance and to 

find the distance from lines generated by the combinations of the hexagons to the LSF 

points. The program that implements this finding of True minimum zone is as follows it 
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is done for the results from J-section profile with size change (it can also be done for any 

of the LSF points obtained). 

import numpy as np 

import matplotlib.pyplot as plt 

 

PointsFromLeastSquares=np.array([[ 5.89415668e-02,  2.89197559e-01,  5.10576681e+02], 

       [-2.60952053e-02,  2.00869488e-02,  4.61406755e+02], 

       [-1.19235933e-02, -2.37873825e-01,  4.11406736e+02], 

       [-7.79618197e-03, -4.73854745e-01,  3.61406725e+02], 

       [-3.73309840e-03, -6.77835730e-01,  3.11406712e+02], 

       [ 2.78946114e-04, -8.51816159e-01,  2.61416698e+02], 

       [ 4.24632115e-03, -1.01279785e+00,  2.11406683e+02], 

       [ 8.20006867e-03, -1.15777834e+00,  1.61416666e+02], 

       [ 1.20721793e-02, -1.26675951e+00,  1.11416648e+02], 

       [ 2.52961849e-02, -1.04872063e+00,  6.14266005e+01], 

       [ 3.70893686e-02, -1.21683556e-01,  1.14305109e+01], 

       [-2.52306885e-01,  3.99620881e-01, -3.73755187e+01], 

       [-2.29489170e-01,  1.79179095e-01, -8.06975259e+01], 

       [-1.43104565e-01, -2.18149905e-01, -1.44034761e+02], 

       [-1.06954765e-01, -3.71020007e-01, -1.92469624e+02], 

       [-6.44077268e-02, -3.48491481e-01, -2.30093506e+02], 

       [-2.16764430e-02, -6.46147015e-02, -2.83417904e+02], 

       [-5.00976501e-02,  4.67259818e-01, -3.30249003e+02], 

       [ 3.45346728e-03,  1.17412341e+00, -3.74945502e+02]]) 

lengthtotal=(PointsFromLeastSquares[-1,2]-PointsFromLeastSquares[0,2]) 

itrsize=len(PointsFromLeastSquares) 

### Function to find the distance between two points a,b 

def dbtp(a,b): 

      return np.sqrt(np.square(a[0]-b[0])+np.square(a[1]-b[1])+np.square(a[2]-b[2])) 

### Function to find the distance to point x from line formed by a,b 

def distpttl(a,b,x): 

  l=b[0]-a[0] 

  m=b[1]-a[1] 

  n=b[2]-a[2] 

  t=((l*x[0]+m*x[1]+n*x[2])-(l*a[0]+m*a[1]+n*a[2]))/(np.square(l)+np.square(m)+np.square(n)) 

  nc=[(t*l+a[0]),(t*m+a[1]),(t*n+a[2])] 

  return dbtp(nc,x) 

### Function to generate matrix that rotate the least squares line to be parallel to the z-axis 

def rotmat(initialpoint,finalpoint): 

  number=finalpoint-initialpoint 

  x=number[0] 

  y=number[1] 

  z=number[2] 

  a=np.arctan(y/z) 
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  b=np.arctan(-x/((y*np.sin(a)+(z*np.cos(a))))) 

  trmat=np.array([[np.cos(b), np.sin(a)*np.sin(b), np.sin(b)*np.cos(a)],[0,np.cos(a),-np.sin(a)],[-

np.sin(b),np.sin(a)*np.cos(b),np.cos(a)*np.cos(b)]]) 

  return trmat 

### Function to rotate points with the least squares line 

def rotpts(temcords,PointsFromLeastSquares,Q):   

  return (np.transpose(np.matmul(Q,np.transpose(PointsFromLeastSquares)))) 

### Function to create a hexagon with a distance d from the origin 

def hexagon(d): 

  return np.array([[0,d,0],[d*((np.sqrt(3))/2),d/2,0],[d*((np.sqrt(3))/2),-d/2,0],[0,-d,0],[-

d*((np.sqrt(3))/2),-d/2,0],[-d*((np.sqrt(3))/2),d/2,0]]) 

### Function to create two different hexagons of distance d at ends of the given points 'temcords' and 

find the maximum distances to points from each line that joins the coordinates of the hexagons 

def disthex(temcords,d,rotatedpoints): 

  hex1pts=hexagon(d)+temcords[0] 

  hex2pts=hexagon(d)+temcords[1] 

  distvals=[] 

  for i in range (6): 

    for j in range (6): 

      for k in range (itrsize): 

        distvals.append(distpttl(hex1pts[i],hex2pts[j],rotatedpoints[k])) 

  return distvals 

### Main code 

PointsFromLeastSquares[:,2]=PointsFromLeastSquares[:,2]-PointsFromLeastSquares[0,2]     # 

Translate coordinates along the z-axis such that all the rotations can be done with respect to the origin 

temcords=np.array([[0,0,0],[0,0,PointsFromLeastSquares[itrsize-1,2]]])  # Starting position of the true 

minimum zone axis 

### To find the zone magnitude to determine number of iterations to do 

distance=[] 

for i in range (itrsize): 

   distance.append(distpttl(temcords[0],temcords[1],PointsFromLeastSquares[i])) 

d=max(distance)/10 

print(max(distance)) 

origtransform=[0,0,0] 

### Iterations to find the True minimum zone  

while d>0.00001*(max(distance)):  

  Q=rotmat(temcords[0],temcords[1]) #   Finding the rotation matrix to make the line parallel to z-axis 

  latestpoint=np.transpose(np.matmul(Q,np.transpose(temcords[1]))) #    Finding the new point of the 

current true minimum zone line which is parallel to the z-axis 

  print("The initial points that the least squares line passes through are {}".format(temcords))    # 

Prints the starting line taken to find the true minimum zone axis 

  temcords[1]=latestpoint   # Changing the true minimum zone line coordinates parallel to Z-axis 

  print("The least squares line points after rotation are {}".format(temcords))     # Transformed true 

minimum zone line coordinates parallel to z-axis 

  rotatedpoints=rotpts(temcords,PointsFromLeastSquares,Q)   # Rotation of Points with the current 

true minimum zone axis 
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calc=np.reshape(np.array(disthex(temcords,d,rotatedpoints)),(36,itrsize))     # List of distances from 

lines formed with hexagon to LSF points 

  print("The maximum radius with each line of all 36 lines are {}".format(np.amax(calc,axis=1)))    # 

Prints the maximum distances form each line to Points 

  print("The least most value is located at {} and the distance is 

{}".format(np.argmin(np.amax(calc,axis=1)),min(np.amax(calc,axis=1))))   # Prints the least distance 

among the maximum distances 

newstart=(hexagon(d)+temcords[0])[int(np.argmin(np.amax(calc,axis=1))/6)]     # Changing the 

Current true minimum zone axis coordinates Starting point 

  newend=(hexagon(d)+temcords[1])[np.argmin(np.amax(calc,axis=1))%6]    # Changing the Current 

true minimum zone axis coordinates Ending point 

  temcords=np.array([newstart,newend])  # New true minimum zone axis coordinates 

  origtransform += (newend-newstart) 

  print("The new coordinates are {}".format(temcords)) # Printing the new true minimum zone axis 

coordinates 

  d=d/1.1   # changed to enclosure radius of the minimum zone circle 

  PointsFromLeastSquares=rotatedpoints  # Replacing the Transformed points for the 

PointsFromLeastSquares to continue the iterations  

print(origtransform) 

### Plotting of the True minimum zone of the least squares Points in different orientations 

center=[temcords[0][0],temcords[0][1]] 

plt.figure(figsize=(10, 10)) 

plt.axis('equal') 

for i in range (itrsize): 

plt.plot([center[0],rotatedpoints[i,0]],[center[1],rotatedpoints[i,1]],'r') 

    plt.plot(rotatedpoints[i,0],rotatedpoints[i,1],'ro') 

    plt.text(rotatedpoints[i,0],rotatedpoints[i,1],i+1) 

plt.plot(temcords[0][0],temcords[0][1],'go') 

plt.title("zone size={}".format(min(np.amax(calc,axis=1)))) 

plt.xlabel('X - Axis') 

plt.ylabel('Y - Axis') 

plt.gca().add_patch(plt.Circle((center[0],center[1]),min(np.amax(calc,axis=1)),fill=False)) 

plt.show() 

plt.figure(figsize=(15,5)) 

for i in range (itrsize): 

    plt.plot(rotatedpoints[i,2],rotatedpoints[i,1],'r') 

    # plt.gca().add_patch(plt.Circle((center[0],center[1]),min(np.amax(calc,axis=1)),fill=False)) 

    plt.plot(rotatedpoints[i,2],rotatedpoints[i,1],'ro') 

    plt.text(rotatedpoints[i,2],rotatedpoints[i,1],i+1) 

plt.title("zone size={}".format(min(np.amax(calc,axis=1)))) 

plt.xlabel('z - Axis') 

plt.ylabel('Y - Axis') 

plt.show() 

 

plt.figure(figsize=(15,5)) 

for i in range (itrsize): 
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    plt.plot(rotatedpoints[i,2],rotatedpoints[i,1],'r') 

    # plt.gca().add_patch(plt.Circle((center[0],center[1]),min(np.amax(calc,axis=1)),fill=False)) 

    plt.plot(rotatedpoints[i,2],rotatedpoints[i,0],'ro') 

    plt.text(rotatedpoints[i,2],rotatedpoints[i,0],i+1) 

plt.title("zone size={}".format(min(np.amax(calc,axis=1)))) 

plt.xlabel('z - Axis') 

plt.ylabel('x - Axis') 

plt.show() 

 

The output of the above program is as follows (only for the last iteration): 

The new coordinates are [[-5.31982027e-02 -6.84447028e-01  0.00000000e+00] 

 [-5.31982027e-02 -6.84461833e-01 -8.85521901e+02]] 

The initial points that the least squares line passes through are [[-5.31982027e-02 -

6.84447028e-01  0.00000000e+00] 

 [-5.31982027e-02 -6.84461833e-01 -8.85521901e+02]] 

The least squares line points after rotation are [[-5.31982027e-02 -6.84447028e-01  

0.00000000e+00] 

 [-5.31982027e-02 -6.84447028e-01 -8.85521901e+02]] 

The maximum radius with each line of all 36 lines are [0.98010516 0.98010213 

0.98009738 0.98010303 0.98009606 0.98010213 

 0.98010147 0.98009843 0.98009738 0.98010303 0.98009528 0.98009843 

 0.98009407 0.98009104 0.98009738 0.98010303 0.98009528 0.98009104 

 0.9800944  0.9800944  0.98009738 0.98010303 0.98009528 0.9800944 

 0.98009407 0.98009104 0.98009738 0.98010303 0.98009528 0.98009104 

 0.98010147 0.98009843 0.98009738 0.98010303 0.98009528 0.98009843] 

The least most value is located at 29 and the distance is 0.9800910392132668 

The new coordinates are [[-5.32098587e-02, -6.84453758e-01,  0.00000000e+00] 

 [-5.32098587e-02, -6.84440299e-01, -8.85521901e+02]] 
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Fig F.1. XY-view of the True Minimum Zone of 19-point Profile with Size Change. 

  

Fig F.2. YZ-view of the True Minimum Zone of 19-point Profile with Size Change. 
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Fig F.3. XZ-view of the True Minimum Zone of 19-point Profile with Size Change. 

G. PARAMETERS FROM STAMPED COMPONENTS. 

The code developed can extract the Numi-Sheet parameters [4] from the list of 

stamped components available of different depths and takes the parameters from each 

sheet that contains the front, center and back profile coordinates of the stamped 

component and could save all the parameters to an excel file for easy reference. The code 

is as follows 

 

Fig G.1. Parameter to Be Extracted from the Cross-sectional Profile of Stamped 

Component. 
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# NSF GOALI Project File Naming Convention 

# Last Updated 3/8/2022 

 

# ------------------------------------------------------------------------------------------- 

# Component-Level Results: [Shape]_[Channel Width]_[Material]_[Thickness]_[Draw 

Depth]_[Blank Holding Force] 

#   - Ex: S_50_80DP590_120_55_25700.xlsx 

 

# Assembly-Level Results: [T]_[Top Component Code]-[B]_[Bottom Component Code]-[Weld 

Count]_[Weld Pattern] 

#   - Ex: T_S_50_80DP590_120_55_25700-B_S_50_100DP590_80_70_25700-3_L.xlsx 

#   (Edge # within assembly does not go into filename - denotes Excel sheet; see below) 

# ------------------------------------------------------------------------------------------- 

# Shapes: 

#   S - Straight hat section 

#   C - Curved hat section 

#   T - Tapered hat section 

 

# Channel Width: 

#   val[mm] 

#       --> 50mm => 50 

 

# Material: 

#   [100*MISO scale factor][Nominal] 

#       --> 0.8 scale factor for nominal material DP590 Steel => 80DP590 

#       --> 1.2 scale factor for nominal material DP590 Steel => 120DP590 

 

# Thicknesses: 

#   t[mm]*100 

#        --> 1.2mm => 120 

#            0.80mm => 80 

 

# Draw Depth: 

#   val[mm] 

#       --> 55mm => 55 

#       --> 0mm => 00 [Flat sheet] 

 

# Blank Holding Force: 

#   val[N] 

#       --> 25700N => 25700 

#       (Flat sheet will always be 00) 

 

# Weld Count: 

#   Integer number of welds per flange 

#       --> 3 welds per flange => 3 
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# Weld Pattern: 

#   L - Linear; welds in straight line along each flange 

 

# Edge (Excel Sheet #): 

#   Sheet1 - Upr Front Profile (rename "Upr Front") 

#   Sheet2 - Lwr Front Profile (rename "Lwr Front") 

#   Sheet3 - Upr Back Profile (rename "Upr Back") 

#   Sheet4 - Lwr Back Profile (rename "Lwr Back") 

#   Sheet5 - Upr Left Flange (rename "Upr L") 

#   Sheet6 - Lwr Left Flange (rename "Lwr L") 

#   Sheet7 - Upr Right Flange (rename "Upr R") 

#   Sheet8 - Lwr Right Flange (rename "Lwr R") 

 

import os  

import pandas as pd 

import numpy as np  

from openpyxl import Workbook 

import matplotlib.pyplot as plt 

os.chdir("e:/Downloads/OSU research/Components/Profiles")   # Changes the directiory to the current 

folder 

arr=os.listdir()    # Gets list of all the files in the directory 

### Function to find the distance between two points 

def dist(a,b): 

    return np.sqrt((a[0]-b[0])**2+(a[1]-b[1])**2) 

### Function to find the roots of a quadratic equation 

def quadeq(a,b,c): 

    ans=[] 

    dis = (b**2)-(4*a*c) 

    ans.append((-b-np.sqrt(dis))/(2 * a)) 

    ans.append((-b+np.sqrt(dis))/(2 * a)) 

    return ans 

### Function to find the required parameters from the stamped component 

def distancesfordepths(Adist,Bdist,Edist,Fdist,source,sheetname):  

  excel=pd.read_excel(source,sheet_name=sheetname)  # To read the xlsx file in the folder 

  reqcol=excel.columns.get_indexer(['Xf (mm)','Yf (mm)'])   # To find the required columns in the 

excel sheet 

d=pd.read_excel(source,sheet_name=sheetname,usecols=reqcol,names=[0,1],header=None,skiprows=

[0])  # Read only the required columns from the excel sheet 

  d=d.dropna()  # To remove any missing values from the columns 

  change=d[d[1]==d[1].min()].head(1).index.tolist()[0]  # Finding the lowest point in the stamped 

profile 

  changeval=d.loc[change][1]    # Finding the location of the lowest point 

  d[1]=d[1]-changeval   # Transform the points so that the minimum value will be on the x-axis 

### Assumption if excel contains only right side values or the values are in reversed 

  if(d.loc[0][0]>50):  
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    old = pd.DataFrame() 

    for i in range (len(d)-1,-1,-1): 

      old.at[len(d)-1-i,0]=d.loc[i][0] 

      old.at[len(d)-1-i,1]=d.loc[i][1] 

    d=old 

  par=d[(d[1]>=Adist) & (d[0]>0.0)].head(1).index.tolist()[0]    # To find the point above the line 

y=15mm 

  a1=d.loc[par-1]   # Location of point below y=15mm line 

  a2=d.loc[par]   # Location of point above y=15mm line 

  Ax=a1[0]+(Adist-a1[1])*((a2[0]-a1[0])/(a2[1]-a1[1]))   # Interpolating of points to find the optimal 

value of point A 

  A=[Ax,Adist]  # Assignment of the required point  

  tempb=d[(d[1]>=A[1]+(Bdist/2)) & (d[0]>0.0)].head(1).index.tolist()[0]    # Finding the point at a 

distance between A and B 

  # Iterating through each point from the point choosen above to find the points for B to interpolate 

  while (dist(A,d.loc[tempb])<Bdist):    

    tempb=tempb+1 

  b1=d.loc[tempb-1]     # Location of point around the distance AB towards A 

  b2=d.loc[tempb]   # Location of point around the distance AB away from A 

  # Interpolation 

  n=((b2[0]-b1[0])/(b2[1]-b1[1]))   # Creating quadratic equation for interpolation 

  q=(b1[0])-(n*(b1[1])) 

  a=n**2+1 

  b=2*((n*(q-Ax))-(A[1])) 

  c=(q-Ax)**2+(A[1]**2)+-(Bdist**2)                                 

  By=max(quadeq(a,b,c)) 

  Bx=(b1[0]+((b2[0]-b1[0])/(b2[1]-b1[1]))*(By-b1[1]))   # To check for the sensitivity of the rho value 

we can add +0.1 implement perturbation 

  B=[Bx,By]     # Assignment of required point B 

  tempc=d[(d[1]>=A[1]) & (d[0]>0.0)].head(1).index.tolist()[0]  # Starting to find the points around C 

to interpolate and find the point c 

  # Finding the points around the equidistant point form A and B 

  while (dist(B,d.loc[tempc])-dist(A,d.loc[tempc])>0): 

    tempc=tempc+1 

  c1=d.loc[tempc]   # Point equidistant from A and B close to B 

  c2=d.loc[tempc-1]     # Point equidistant from A and B close to A 

  # Finding the optimal point (perpendicular bisector cutting through between the points c1 and c2)  

  a1=B[0]-A[0] 

  b1=B[1]-A[1] 

  ct=(B[0]**2+B[1]**2-A[0]**2-A[1]**2)/2 

  d1=A[0]*B[1]-A[1]*B[0] 

  cy=(b1*ct-a1*d1)/(a1**2+b1**2) 

  cx=(a1*ct+b1*d1)/(a1**2+b1**2) 

  cm=-(a1/b1) 

  mc=((c2[1]-c1[1])/(c2[0]-c1[0])) 

  tempcx=(c1[1]+cm*cx-cy-mc*c1[0])/(cm-mc) 
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  tempcy=cy+cm*(tempcx-cx) 

  C=[tempcx,tempcy]     # Assignment of required point C 

  ### Finding the rho value from the points A, B and C 

  tempd=(C[0]-B[0])*(A[1]-C[1])+(B[1]-C[1])*(A[0]-C[0]) 

  ra=(C[0]**2+C[1]**2-B[0]**2-B[1]**2)/2 

  rb=(A[0]**2+A[1]**2-C[0]**2-C[1]**2)/2 

  rx=(ra*(A[1]-C[1])-rb*(C[1]-B[1]))/tempd 

  ry=(rb*(C[0]-B[0])-ra*(A[0]-C[0]))/tempd 

  coc=[rx,ry] 

  ### Determine the direction of center of curvature 

  if rx>0: 

    direction="Right" 

  else: 

    direction="Left" 

  rho=dist(coc,C) 

  ### Selecting the top point along the positive x axis as the point D 

  posd=d[d[0]>0.0] 

  maxpt=posd[posd[1]==posd[1].max()].head(1).index.tolist()[0] 

  mxpt=d.loc[maxpt] 

  D=[d.loc[maxpt][0],d.loc[maxpt][1]]   # Assignment of required point D 

  dieend=D 

  ### Finding the point E starting from the point D 

  tempe=maxpt 

  while(dist(dieend,d.loc[tempe])<Edist):   # Works till the distance DE is the required distance from 

D 

    tempe+=1 

  e1=d.loc[tempe-1]     # Location of point just before the required distance DE form D 

  e2=d.loc[tempe]   # Location of point just after the required distance DE form D 

  # Interpolation 

  en=((e2[0]-e1[0])/(e2[1]-e1[1])) 

  eq=(e1[0])-(en*(e1[1])) 

  ea=en**2+1 

  eb=2*((en*(eq-dieend[0]))-(dieend[1])) 

  ec=(eq-dieend[0])**2+(dieend[1]**2)+-(Edist**2)      # for change in distance DE 

  Ey=min(quadeq(ea,eb,ec)) 

  Ex=e1[0]+((e2[0]-e1[0])/(e2[1]-e1[1]))*(Ey-e1[1]) 

  E=[Ex,Ey]     # Assignment of required point E 

  ### Finding the point F starting from the point E 

  tempf=d[d[0]>E[0]+(Fdist/2)].head(1).index.tolist()[0] 

  while(dist(E,d.loc[tempf])<Fdist):    # Works till the distance EF is the required distance form E 

    tempf+=1 

  f1=d.loc[tempf-1]     # Location of point just before the required distance EF form E 

  f2=d.loc[tempf]   # Location of point just after the required distance EF form E 

  # Interpolation 

  fn=((f2[0]-f1[0])/(f2[1]-f1[1])) 

  fq=(f1[0])-(fn*(f1[1])) 
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  fa=fn**2+1 

  fb=2*((fn*(fq-E[0]))-(E[1])) 

  fc=(fq-E[0])**2+(E[1]**2)+-(Fdist**2)      # for change in distance EF 

  Fy=min(quadeq(fa,fb,fc)) 

  Fx=f1[0]+((f2[0]-f1[0])/(f2[1]-f1[1]))*(Fy-f1[1]) 

  F=[Fx,Fy]     # Assignment of required point F 

  ### Finding of the angle theta1 using the point A and B 

  angleAB=np.arctan2((B[1]-A[1]),(B[0]-A[0])) 

  theta1=np.arctan2((B[1]-A[1]),(A[0]-B[0])) 

  t1=(theta1*(180/np.pi)) 

  ### Finding of the angle theta2 using the point E and F 

  angleEF=np.arctan2((E[1]-F[1]),(E[0]-F[0])) 

  theta2=angleEF-angleAB 

  t2=(theta2*(180/np.pi)) 

  [A[1],B[1],C[1],D[1],E[1],F[1]]=[A[1],B[1],C[1],D[1],E[1],F[1]]+changeval 

  ### Printing the results for reference 

  print("\n\nThe points are (original points not with x-Axis as datum) \nA={} \nB={} \nC={} \nD={} 

\nE={} \nF={}".format(A,B,C,D,E,F)) 

  print("The values of \u03F41, \u03F42 and \u03C1 are {}\u00b0, {}\u00b0 and 

{}mm".format(t1,t2,rho)) 

  ### Plotting graph of the profile with point A, B, C, D, E and F  

  mx=[A[0],B[0],C[0],D[0],E[0],F[0]] 

  my=[A[1],B[1],C[1],D[1],E[1],F[1]]-changeval 

  plt.rcParams['figure.dpi'] = 150 

  plt.scatter(d[0],d[1],3) 

  plt.plot(mx,my,'ro') 

  plt.grid() 

  plt.show() 

  return [A,B,C,D,E,F,t1,t2,rho,direction]  # Returns the required values accordingly 

### Main program 

output = pd.DataFrame(columns=["FileName","sheetname","Point A","Point B","Point C","Point 

D","Point E","Point F","Theta 1 (deg)","Theta 2 (deg)","Radius of Curvature (mm)","Direction of 

curvature"])     # Creates a new pandas dataframe to store the results 

for i in arr:   # Loop through all the files 

    source=i    # Assigning the file name to source 

    sheets=["front","center","back"]    # Sheets in each excel file 

    string = source     # To take data from the file name to detrmine conditions to take 

    string=string.replace(".xlsx","")   # Removes the .xlsx extenision from the string 

    req=string.split("_")   # Splits the string to read each parameter and take appropriate conditions 

    distdict = { 

    ### "format": [A from base, B from A, E from D, F from E] 

    "35": [10,15,15,40], 

    "45": [10,25,15,40], 

    "55": [15,35,15,40], 

    "70": [10,50,15,40] 

    }   # This is a dictionary of suitable conditions to choose based on the Draw Depth of the stamping 
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    rds=(distdict[req[4]]) 

    for sheetname in sheets:    # Looping through each sheet of the file 

        print("{0}, {1}, {2}mm".format(source,sheetname,req[4]))    # Prints the filename, sheetname 

and Drawdepth before print out the results. 

        [A,B,C,D,E,F,t1,t2,rho,direction]= 

distancesfordepths(rds[0],rds[1],rds[2],rds[3],source,sheetname)     # Reading outputs form the 

function to append to the pandas dataframe 

        output.loc[output.shape[0]]=[source,sheetname,A,B,C,D,E,F,t1,t2,rho,direction]  # Appending 

the data to pandas dataframe 

output.to_excel('../Outputswithpandas.xlsx', header=True, index=False)  # Writing the outputs to an 

excel file 

The output for the above code is as follows (reduced to one part of the result): 

S_50_100DP590_100_35_15500.xlsx, front, 35mm 

The points are (original points not with x-Axis as datum) 

A = [26.0244333976834, -16.288] 

B = [27.234399772474156, -1.336880263609828] 

C = [26.615856122161862, -8.811342708705812] 

 

Fig G.2 The Points Obtained from the Program. 
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D = [34.379, 9.249300000000002] 

E = [49.29227253039767, 7.638616159491729] 

F = [88.9923534229796, 2.7494876970301156] 

The values of ϴ1, ϴ2 and ρ are 94.62675791558097°, 87.60604141025006° and 

2067.2923867836153mm 

The output sheet has been modified a little for further ease of reference. 

Table G.1(a). Sample list of the parameters generated in an excel document for 

stamped components. 
File Name Shape Channe

l Width 

Materi

al 

Thicknes

s 

Draw 

Depth 

Blank 

Holdin

g Force 

Sheet 

Name 

Point A Point B 

S_50_100DP590_1

00_35_15500.xlsx S 50 

100DP5

90 100 35 15500 front 

[26.0244333976834

, -16.288] 

[27.234399772474156, 

-1.336880263609828] 

S_50_100DP590_1

00_35_15500.xlsx S 50 

100DP5

90 100 35 15500 back 

[26.0552456038647

34, -16.292] 

[27.265645962747058, 

-

1.3409153914768623] 

S_50_100DP590_1

00_35_15500.xlsx S 50 

100DP5

90 100 35 15500 center 

[25.8442133462282

4, -16.18] 

[27.146128559538937, 

-

1.2366062496717234] 

S_50_100DP590_1

00_35_25700.xlsx S 50 

100DP5

90 100 35 25700 front 

[25.9510787162162

16, -18.704] 

[26.858764322903117, 

-3.731488292226537] 

S_50_100DP590_1

00_35_25700.xlsx S 50 

100DP5

90 100 35 25700 back 

[25.9036234442836

46, -18.787] 

[26.869474130785886, 

-3.818127883124152] 

S_50_100DP590_1

00_35_25700.xlsx S 50 

100DP5

90 100 35 25700 center 

[25.6455595549105

, -18.62] 

[26.657955312819734, 

-

3.6542038357671274] 

Table G.1(b). Sample list of the parameters generated in an excel document for 

stamped components. 
Point C Point D Point E Point F Theta1 

(deg) 

Theta

2 

(deg) 

Radius of 

Curvature 

(mm) 

Direction 

of center 

[26.615856122161862, -

8.811342708705812] 

[34.379, 

9.24930000000000

2] 

[49.29227253039767

, 

7.638616159491729] 

[88.9923534229796, 

2.7494876970301156

] 

94.6267

5792 

87.60

60414

1 

2067.29238

7 Right 

[26.65332596032008, -

8.815881293656386] 

[34.379, 

9.26330000000000

1] 

[49.28536231363366

, 

7.589871610528853] 

[89.00089548910036

, 

2.8278946483411325

] 

94.6284

2103 

87.79

11757

1 

3937.36039

9 Right 

[26.371364020604567, -

8.697516677570903] 

[34.398, 

9.17559999999999

6] 

[49.31484270889775

, 

7.598322726335098] 

[89.03957677884222

, 

2.9137199606545856

] 

94.9792

1481 

88.25

35807

3 

226.373078

4 Right 

[26.447660424158276, -

11.220335126792186] 

[33.6919999999999

9, 7.116] 

[48.62174975028151

6, 

5.665975036764642] 

[88.44138775089519

, 

1.8717123283916202

] 

93.4692

2306 

88.02

61586 656.881001 Left 

[26.41857176658813, -

11.30463019051264] 

[33.69, 

7.16060000000000

2] 

[48.61963104765967

, 

5.7093533701151244

] 

[88.43264658936776

, 

1.8462207713464274

] 

93.6918

3197 

88.14

96636

1 

876.469018

5 Left 

[26.051810961355883, -

11.130340808506162] 

[33.71, 

7.06659999999999

76] 

[48.65576696530311

6, 

5.792217867795554] 

[88.47836856421847

, 2.02918692265861] 

93.8700

0893 

88.47

18816

2 

280.809048

8 Right 
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H. FITTING OF EDGE PROFILES OF STAMPED COMPONENTS 

This Edge profile is like the 11 points straight line profile least squares fit. This 

program also finds the Least squares fit line along the edges of the stamped components 

by taking the inputs from the excel sheets that contain the data about the stamped profile 

and plot the least square points for all the components available. The code for this is as 

follows 

import os 

import pandas as pd  

import numpy as np 

from openpyxl import Workbook 

import matplotlib.pyplot as plt 

os.chdir("e:/Downloads/OSU research/Components/Profiles")   # To change the current working 

directory to the path give 

arr = os. listdir()     # List all the files in the folder specified 

### Function to print the edge profile of the stamped component 

def edges(source,sheetname): 

  point= lambda pt : [d.loc[pt][0],d.loc[pt][1],d.loc[pt][2]]   # This returns the point coordiantes at the 

point location 

  excel=pd.read_excel(source,sheet_name=sheetname)  # Reads the excel sheet in the folder 

  reqcol=excel.columns.get_indexer(['Xf (mm)','Yf (mm)','Zf (mm)']) # Finds the columns from which 

the data needs to be taken 

d=pd.read_excel(source,sheet_name=sheetname,usecols=reqcol,names=[0,1,2],header=None,skiprows

=[0])    # Read the required columns into a pandas dataframe 

  d=d.dropna()  # Remove any of the empty rows in the data 

  temporary=(np.average(d[0]))   # Finding the average of x-axis to translate the origin to that point 

  d[0]=d[0]-(temporary)     # Translate points to the new origin  

  print("The offset for the x-coordiantes are {}".format(temporary))     

  ## Choosing the points equidistant in the set of points 

  req_points=[] 

  for i in range (len(d)): 

      if i%6==0: 

          req_points.append(point(i)) 

  ### Creating the d and K matrix to find the SDT of the least square matrix 

  tempa=np.array([]) 

  tempb=np.array([]) 

  origptset=[] 

  for i in range (len(req_points)): 

    tempa=np.append(tempa,req_points[i][0]) 

    tempa=np.append(tempa,req_points[i][1]) 

    tempb=np.append(tempb,np.array([0,req_points[i][2],1,0]),axis=0) 
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    tempb=np.append(tempb,np.array([-req_points[i][2],0,0,1]),axis=0) 

    origptset.append([req_points[i][0],req_points[i][1],req_points[i][2],1]) 

  di=np.array(tempa) 

  kprime=np.hstack(tempb).reshape(int(np.size(tempb)/4),4) 

  ### Least squares for the equations and finding the angular orientaion and position 

  kprTranspose=np.transpose(kprime) 

  intermediate=np.linalg.inv(np.matmul(kprTranspose,kprime)) 

  kmoorePenrose=np.matmul(intermediate,kprTranspose) 

  pdi=np.matmul(kmoorePenrose,di) 

  deltatheta_x=pdi[0]*(180/np.pi) 

  deltatheta_y=pdi[1]*(180/np.pi) 

  delta_x=pdi[2] 

  delta_y=pdi[3] 

  print("deltatheta_x = {}, deltatheta_y = {}, delta_x = {}, delta_y = 

{}".format(deltatheta_x,deltatheta_y,delta_x,delta_y)) 

  ### Finding the values of PHI, h(pitch) and s 

  phi=np.sqrt((np.power(pdi[0],2))+(np.power(pdi[1],2))) 

  h=((pdi[0]*pdi[2])+(pdi[1]*pdi[3]))/((np.power(pdi[0],2))+(np.power(pdi[1],2))) 

  s=phi*h 

  print("Phi = {}, Pitch(h) = {}, s = {}".format(phi*(180/np.pi), h*(np.pi)/180, s)) 

  ### Finding the values of PHI, h(pitch) and s 

  l=pdi[0]/phi 

  m=pdi[1]/phi 

  n=0 

  p=(delta_x-(h*pdi[0]))/phi 

  q=(delta_y-(h*pdi[1]))/phi 

  r=0 

  print("L = {}, M = {}, N = {}".format(l,m,n)) 

  print("P = {}, Q = {}, R = {}".format(p,q,r)) 

  Lt,Mt,Nt,Pt,Qt,Rt=l,m,n,p,q,r 

  ### Finding the Nominal X,Y and Z of the Least Squares fit Line 

  vphi=1-np.cos(phi) 

  x_nom=vphi*(m*r-n*q)+p*np.sin(phi)+l*s 

  y_nom=vphi*(n*p-l*r)+q*np.sin(phi)+m*s 

  z_nom=vphi*(l*q-m*p)+r*np.sin(phi)+n*s 

  print("X_nom = {}, Y_nom = {}, Z_nom = {}".format(x_nom,y_nom,z_nom)) 

  ### Creating a Matrix to find the transformed points 

  trnomls1=np.array([(vphi*np.power(l,2)+np.cos(phi)), (vphi*l*m-n*np.sin(phi)), 

(vphi*l*n+m*np.sin(phi)), x_nom]) 

  trnomls2=np.array([(vphi*l*m+n*np.sin(phi)), (vphi*np.power(m,2)+np.cos(phi)), (vphi*m*n-

l*np.sin(phi)), y_nom]) 

  trnomls3=np.array([(vphi*l*n-m*np.sin(phi)), (vphi*n*m+l*np.sin(phi)), 

(vphi*np.power(n,2)+np.cos(phi)), z_nom]) 

  trnomls4=np.array([0,0,0,1]) 

  trnomls=np.vstack([trnomls1,trnomls2,trnomls3,trnomls4]) 

  invtrnomls=np.linalg.inv(trnomls) 
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  print("The trasformation matrix is \n{}".format(invtrnomls)) 

  ### Original points transformed along the Leasts squares line 

  origptsetCol=np.transpose(origptset) 

  ptset = np.matmul(invtrnomls,origptsetCol) 

  newcords=(np.transpose(np.delete(ptset,3,0))) 

  print("The Transformed Least squares coordinates are \n{}".format(newcords)) 

  ### Plotting of the least squares points in different orientaions 

  x_coordinates=ptset[0] 

  y_coordinates=ptset[1] 

  z_coordinates=ptset[2] 

  ### Ploting of the least square point along y axis 

  plt.figure(figsize=(10, 10))   

  plt.text(0,-0.00025,"origin") 

  plt.xlim([-0.01,0.01]) 

  for i in range (len(x_coordinates)): 

      plt.plot(x_coordinates[i],z_coordinates[i],'ro') 

      plt.text(x_coordinates[i],z_coordinates[i]+5,i+1) 

  plt.plot(0,0,'go') 

  plt.title("Component Name: {}, ({} free edge)".format(source.replace(".xlsx",""),sheetname)) 

  plt.xlabel('x - axis') 

  plt.ylabel('z - axis') 

  plt.show() 

  ### Ploting of the least squre points along the z axis 

  plt.figure(figsize=(10, 2)) 

  plt.axis('equal') 

  plt.ylim([-0.0001,0.0001]) 

  for i in range (len(x_coordinates)): 

      x=[0,x_coordinates[i]] 

      y=[0,y_coordinates[i]] 

      plt.plot(x,y,'r') 

      plt.text(x_coordinates[i],y_coordinates[i]+0.0001,i+1) 

      plt.plot(x_coordinates[i],y_coordinates[i],'ro') 

  plt.plot(0,0,'go') 

  plt.title("Component Name: {}, ({} free edge)".format(source.replace(".xlsx",""),sheetname)) 

  plt.xlabel("X - axis") 

  plt.ylabel("Y - axis") 

  plt.show() 

  lssum=0 

  for i in range (int((np.size(di))/2)): 

      lssum=lssum+np.power((ptset[0,i]),2)+np.power((ptset[1,i]),2) 

  print("The leastsqures sum is {}".format(lssum)) 

  ptlsdist=[] 

  for i in range (int((np.size(di))/2)): 

      ptls=np.sqrt((np.power(ptset[0,i],2))+(np.power(ptset[1,i],2))) 

      ptlsdist.append(ptls) 

  Ptlstdist=np.hstack(ptlsdist) 
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  zonemag=np.max(ptlsdist) 

  print("the Zone mag is {}\n\n".format(zonemag)) 

  return [deltatheta_x,deltatheta_y,delta_x,delta_y,phi,h,s,Lt,Mt,Nt,Pt,Qt,Rt,zonemag] 

### Main program 

output = 

pd.DataFrame(columns=["FileName","sheetname","deltatheta_x","deltatheta_y","delta_x","delta_y","

PHI","pitch (h)","S","L","M","N","P","Q","R","LS zone radius"])  # Creates a pandas dataframe with 

the following titles 

for i in arr:   # Loop through the files in the folder 

  source=i 

  sheets=["left","right"] 

  for sheetname in sheets:  # Loop through each sheet in the excel file 

[deltatheta_x,deltatheta_y,delta_x,delta_y,phi,h,s,Lt,Mt,Nt,Pt,Qt,Rt,zonemag]=edges(source,sheetnam

e)   # Reading outputs from the function     

output.loc[output.shape[0]]=[source,sheetname,deltatheta_x,deltatheta_y,delta_x,delta_y,phi,h,s,Lt,Mt

,Nt,Pt,Qt,Rt,zonemag]  # writing the values to the pandas dataframe 

output.to_excel('../Edgeswithpandas2.xlsx', header=True, index=False) # Converts the pandas 

dataframe and saves it in excel format. 

The output of the above program is (Only one output for example): 

The offset for the x-coordinates is -113.09076712328768 

deltatheta_x = -7.209670798812664e-16, deltatheta_y = -0.004412272070600839, 

delta_x = -0.011353787608870425, delta_y = 2.786194537136048e-15 

Phi = 0.004412272070600839, Pitch(h) = -2.1099808319849559e-13, s = -

9.309809494470342e-16 

L = -1.6340041328935752e-13, M = -1.0, N = 0 

P = -147.43517649572803, Q = 2.4090968772791326e-11, R = 0 

X_nom = -0.011353787597648463, Y_nom = 2.786194535302374e-15, Z_nom = -

4.371700674230559e-07 

The Transformed Least squares coordinates are 

[[ 2.12086214e-03 2.58413429e-16 -6.33006157e-04] 
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 [-8.35179200e-04 -1.25168607e-16 -2.54009056e+01] 

 [-7.91241707e-04 4.00075282e-15 -5.08014531e+01] 

 [-7.47292901e-04 -2.54686761e-15 -7.62018536e+01] 

 [ 2.96703778e-04 7.77184140e-16 -1.01601633e+02] 

 [ 3.40689301e-04 -1.91477229e-15 -1.27001556e+02] 

 [ 3.84788805e-04 -8.55344337e-16 -1.52400000e+02] 

 [-5.71371376e-04 -1.24690995e-15 -1.77801816e+02] 

 [-5.27552707e-04 -2.15951117e-16 -2.03203906e+02] 

 [-4.83580113e-04 -6.09493430e-16 -2.28603998e+02] 

 [-4.39571087e-04 4.22862303e-16 -2.54003617e+02] 

 [-1.39557617e-03 1.58939834e-15 -2.79403418e+02] 

 [ 2.64832122e-03 4.65896317e-16 -3.04804487e+02]] 

 

Fig H.1. The XZ-view of the Least Squares Fitted Edge of Stamped Component. 
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Fig H.2 The XY-view of the Least Squares Fitted Edge of Stamped Component. 


