
On Processing Spatial Queries in Graph Database Management Systems

by

Yuhan Sun

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved March 2021 by the
Graduate Supervisory Committee:

Mohamed Sarwat, Chair
Hanghang Tong
Kasim Candan
Ming Zhao

ARIZONA STATE UNIVERSITY

March 2021

©2021 Yuhan Sun

All Rights Reserved

ABSTRACT

Spatial data is fundamental in many applications like map services, land resource

management, etc. Meanwhile, spatial data inherently comes with abundant context

information because spatial entities themselves possess different properties, e.g., graph

or textual information, etc. Among all these compound spatial data, geospatial graph

data is one of the most challenging for the complexity of graph data. Graph data is

commonly used to model real scenarios and searching for the matching subgraphs is

fundamental in retrieving and analyzing graph data. With the ubiquity of spatial

data, vertexes or edges in graphs are enriched with spatial location attributes side by

side with other non-spatial attributes. Graph-based applications integrate spatial data

into the graph model and provide more spatial-aware services. The co-existence of the

graph and spatial data in the same geospatial graph triggers some new applications.

To solve new problems in these applications, existing solutions develop an integrated

system that incorporates the graph database and spatial database engines. However,

existing approaches suffer from the architecture where graph data and spatial data

are isolated.

In this dissertation, I will explain two indexing frameworks, GeoExpand and Riso-

Tree, which can significantly accelerate the queries in geospatial graphs. GeoExpand

includes a query operator that adds spatial data awareness to a graph database

management system. In GeoExpand, the neighborhood spatial information is

summarized and stored on each vertex in the graph. The summarization includes three

different structures according to the location distribution. These spatial summaries

are utilized to terminate the graph search early. Riso-Tree is a hierarchical tree

structure where each node is represented by a minimum bounding rectangle (MBR).

The MBR of a node is a rectangle that encloses all its children. A key difference

i

between Riso-Tree and R-Tree is that Riso-Tree contains pre-materialized sub-graph

information to each index node. The sub-graph information is utilized during the

spatial index search phase to prune search paths that cannot satisfy the query graph

pattern. The Riso-Tree index reduces the search space when the spatial filtering phase

is performed with relatively light cost.

ii

TABLE OF CONTENTS

Page

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND AND LITERATURE REVIEW . 7

2.1 Geospatial Graph Data Model . 7

2.2 Geospatial Graph Query . 7

2.3 Literature Review . 9

2.3.1 Graph Query . 9

2.3.1.1 Graph Pattern Matching Query . 9

2.3.1.2 Graph Algorithm Query . 11

2.3.1.3 Graph Analytic Query . 11

2.3.1.4 Mixed Graph Query . 11

2.3.2 Framework For Subgraph Isomorphism . 12

2.3.2.1 Memory-based Solutions . 12

2.3.2.2 Disk-based Approaches . 14

2.3.2.3 Summary . 16

2.3.3 Systems for Geospatial Graph Data . 16

2.3.4 Strategies for Geospatial Graph Query . 18

2.3.4.1 GraphTraverse . 20

2.3.4.2 SpaIndex . 21

2.3.4.3 Summary . 23

2.3.5 Methods for Geospatial Graph Query . 24

3 SPATIAL-AWARE GRAPH SEARCH . 29

3.1 Augmented Graph Data Structure . 29

iii

CHAPTER Page

3.2 Query Processing . 31

3.2.1 Operator Replacement . 31

3.2.2 Operator Evaluation . 32

3.2.3 Running Example . 33

3.2.4 SPA-Graph Analysis . 35

3.3 Initialization . 38

3.3.1 Initialization . 39

3.4 Performance Evaluation . 42

3.4.1 Evaluation Metric . 43

3.4.2 Datasets . 43

3.4.3 Query Response Time . 44

3.4.4 Effect of GeoExpand Parameters . 47

3.4.4.1 Grid Resolution . 48

3.4.4.2 GRRatio . 48

3.4.4.3 MBRatio . 49

4 RISO-TREE: GRAPH-AWARE SPATIAL INDEX . 51

4.1 Index Structure . 51

4.1.1 Initialization . 55

4.2 Query Processing . 62

4.2.1 Recognize Anchor Paths . 63

4.2.2 Check Paths In Riso-Tree . 64

4.2.3 GraSp-Range . 65

4.2.4 GraSp-KNN. 69

4.2.5 GraSp-Join . 72

iv

CHAPTER Page

4.3 Experiments . 74

5 INDEX MAINTENANCE . 91

5.1 SPA-Graph Maintenance . 91

5.1.1 Adding an edge . 91

5.1.2 Update Cases . 93

5.1.3 Maintenance Strategies . 96

5.1.4 Deleting an edge . 97

5.1.5 SPA-Graph Maintenance Evaluation . 97

5.2 Riso-Tree Maintenance. 100

5.2.1 Riso-Tree Maintenance Evaluation . 103

6 A GEOSPATIAL KNOWLEDGE MANAGEMENT SYSTEM 105

6.1 System Overview . 105

6.1.1 Data Store and Indexing . 105

6.1.2 Query Processing Coordinator . 107

6.2 Scenario . 107

7 CONCLUSION . 111

REFERENCES . 113

APPENDIX

A . 119

v

Chapter 1

INTRODUCTION

Spatial data is ubiquitous and any data with spatial information can be categorized

into spatial data. Spatial data is fundamental in many applications like map services,

land resource management, etc. These applications ignite the demand for accessing

and analyzing spatial data efficiently using some basic spatial query types, e.g., spatial

range query, spatial join query and k-NN query. Different techniques are proposed for

spatial queries from data structure and algorithm perspective [7, 24, 39] and system

perspective [59, 14, 1].

Meanwhile, spatial data inherently comes with abundant context information

because spatial entities themselves possess different properties. For instance, geospatial

graph data and spatial textual data are formed by enriching spatial data with graph and

textual information respectively. Among all these compound spatial data, geospatial

graph data is one of the most challenging for the complexity of graph data.

Graph data is commonly used to model real scenarios, including knowledge graph

[19, 34, 57, 10, 58, 21], social network [15], protein network [23, 45, 37, 5], utility

network [33], etc. Searching for the matching subgraphs is fundamental in retrieving

and analyzing graph data. The application includes but is not limited to chemical

and protein structures analysis, image processing [46], and social network community

search. Figure 1 shows two graphs in real applications. Figure 1a is a social graph

where people are modeled as vertexes and friendship relationships are modeled as

edges. In such a social graph, searching the friends of friends’ is a common query

for friends recommendation. A utility graph (shown in Figure 1b) consists of utility

1

Frie
nd

Alice
Fr
ie
nd

(a) Social Graph (b) Utility Graph

Figure 1: Graph Examples

facilities, like power station, transformer, meters. These facilities are connected

through transmission lines and distribution lines. On top of a utility graph, the

administrator of the utility management system may issue a query like searching all

impacted meters if some transformers are broken.

Thanks to the popularity of location-aware mobile devices, spatial data is prolifer-

ating and easy to access at a low cost. With the ubiquity of spatial data, vertexes or

edges in graphs are enriched with spatial location attributes side by side with other

non-spatial attributes. For instance, as of June 2018 the Wikidata knowledge graph

contains 48, 547, 142 data items (i.e., vertexes) to date and ≈13% of them have spatial

location attributes [48]. Social graph applications, like Facebook, Twitter, etc., also

allow users to check in the location when publishing posts or pictures.

Graph-based applications integrate spatial data into the graph model and provide

more spatial-aware services. The co-existence of graph and spatial data in the same

geospatial graph triggers some new applications [4, 47, 41, 16, 8, 11, 12, 17, 30, 42, 49,

50, 56, 6, 44, 13, 36]. These new applications allow users to issue graph queries with

spatial awareness:

2

• Q1:Find all places in Seattle that are co-visited by at least two

friends or friends of friends.

• Q2:Find single-family houses in Tempe, AZ that receive power from a

distribution site connected to the central power station in Maricopa

County.

Compared with the queries on top of the applications in Figure 1, these queries

are more than just graph queries but enriched with spatial relevance. These queries

consist of graph query components and spatial predicates. The returned results are

the subgraphs that match both graph and spatial constraints in the query. Even

to find the subgraphs that match only the graph component of the given query is

nontrivial because of the inherent complexity of graph data. The addition of the

spatial component to the graph query makes the query more complex.

When looking at the graph component and spatial component of such queries

independently, there are existing solutions for both of them. Graph database manage-

ment systems (GDBMS) such as Neo4j [32] and Titan [52] provide an efficient way for

managing and querying graph data. Spatial database systems can utilize the spatial

index [7, 24, 39], e.g., R-Tree to efficiently answer different categories of spatial queries,

like spatial range, join and KNN queries. So a straightforward solution is to develop an

integrated system that incorporates the existing graph database and spatial database

engines. Figure 2 illustrates the architecture of such a system. Vertexes and edges of

a graph are seamlessly transplant and stored in GDBMS. Attributes of vertexes and

edges are normally stored as key-value pairs. Spatial attributes can be managed in the

same manner as any other ordinary attribute. At the same time, entities that have

spatial attributes in the graph are stored and indexed in the spatial database. When

3

Graph Database Spatial Database

Query Coordinator

Figure 2: Isolated Architecture

queries are issued from users, Query Coordinator decomposes the query into the graph

and spatial components. The query components are sent to corresponding database

engines and answered by the corresponding database engines. The intermediate result

is returned back to Query Coordinator and the final result is formed by combining the

intermediate result. On top of this system architecture, two fundamental strategies

(i.e., GraphTraverse and SpaIndex) can be taken to solve the queries in geospatial

graphs. GraphTraverse first access the graph database to find the matched graph

patterns and then evaluates the spatial predicates. In the evaluation, the vertexes

that cannot satisfy the spatial predicate (e.g., places outside the extent of Seattle

in Q1) are filtered out. SpaIndex strategy runs in two steps: (1) Step I applies the

index to find all spatial vertexes that can satisfy the spatial predicate; (2) Step II then

search the graph for the query graph pattern starting from the set of spatial vertexes.

4

Such an architecture takes the best from the existing systems. The developers only

need to implement Query Coordinator and do not need to care about how the query

components are processed. The state-of-the-art techniques applied to either graph

database or spatial database can be seamlessly applied to such a system. However,

the graph database and spatial database are isolated components in the architecture.

Spatial entities are stored as an isolated community from the whole graph. Graph

vertexes and spatial entities are accessed and searched in a completely separate fashion.

Due to such a characteristic, both strategies will perform the unnecessary search.

GraphTraverse will fetch many intermediate subgraph results that cannot satisfy the

spatial predicate. This not only harms the performance of the graph search but also

increase the computation cost of the spatial predicate evaluation. Similarly, SpaIndex

strategy will generate many spatial entities that cannot form any final result after the

graph search.

To improve the performance of GraphTraverse strategy, I propose GeoExpand

framework, which augments the graph with Spatial Indexing Properties (SIP) to

form what we call SPatially-Augmented Graph (SPA-Graph). For each vertex, its

neighboring spatial information is stored in an efficient way as its property. SIP has

three different formats. The framework will choose the appropriate format according

to the neighboring spatial data distribution and pre-defined parameters. When the

graph search is performed, the algorithm will validate the spatial predicate by using

SIP to stop the unpromising earlier.

I also propose another technique, Riso-Tree to accelerate the SpaIndex strategy.

Similar to the R-Tree, Riso-Tree is a hierarchical tree structure where each node

is represented by a minimum bounding rectangle (MBR). The MBR of a node is a

rectangle that encloses all its children. A key difference between Riso-Tree and R-Tree

5

is that Riso-Tree contains pre-materialized sub-graph information to each index node.

The sub-graph information is utilized during the spatial index search phase to prune

search paths that cannot satisfy the query graph pattern. The Riso-Tree index reduces

the search space when the spatial filtering phase is performed with relatively light

cost.

In the rest of the thesis, I will first introduce some background information, and

the literature review is given to summarize the related work of the problem. In

Chapter 3 and 4, I demonstrate the technical details of the GeoExpand and Riso-

Tree framework. In Chapter 5, the maintenance method is introduced for the proposed

framework. A geospatial knowledge management system is demonstrated in Chapter

6. The conclusion is given in Chapter 7.

6

Chapter 2

BACKGROUND AND LITERATURE REVIEW

2.1 Geospatial Graph Data Model

A labeled property graph G = (V,E, ϕ, ψ, φ) can be defined as follows:

1. V is a set of vertexes,

2. E is a set of edges,

3. ϕ is a mapping function ϕ : V → P(LV), where LV is the set that consists of all

the vertex labels, P(LV) denotes the power set of LV . So ϕ maps each vertex to

a set of multiple labels,

4. ψ is a mapping function ψ : E → LE, where LE is the set consists of all edge

labels,

5. φ is a mapping function that maps each vertex to a set of (key, value) attributes.

A geospatial graph is a labeled property graph where some vertexes possess spatial

location attributes, e.g., point, polygon. The spatial attribute of a vertex is denoted

as v.loc.

2.2 Geospatial Graph Query

Given a graph G = (V,E, ϕ, ψ, φ), a graph query Gq = (Vq, Eq, ϕq, ψq) finds all the

maps f from Gq to G such that: (1) ∀v ∈ Vq, ϕq(v) ⊂ ϕ(f(v)); and (2) ∀(u, v) ∈ Eq,

ψq(u, v) = ψ(f(u), f(v)). A graph query with spatial predicates (abbr. GraSp) is

a normal graph query except that it has spatial predicates specified on some query

7

R7

R6

R2

R4

Q

R3

R5

R1

Bob Carol Kate

Joe
G1 Jane

Alan

Dan Larry

s13

s14

s4

s5

s6

s9

s7

s8

s3

s1

s2

s15

s10

s11

s12

Group Person Place

Graph Label

Query

Member Visit

Q

G2

G3

Anchor Path

p1 = Place - [Visit] – Person

p2 = Place - [Visit] - Person - [Member] - Group

MATCH (g : Group) - [: Member] - (per : Person)

- [:Visit] - (pl : Place) WHERE Within(pl, Q)

RETURN pl

Figure 3: Running Example

vertexes. A GraSp query can be denoted as 〈Gq, SPq〉 where Gq = (Vq, Eq, ϕq, ψq) and

SPq is a spatial predicate. The returned maps and sub-graph should satisfy both

graph pattern constraint Gq and the spatial predicate SPq.

We consider three main categories of spatial predicates, including spatial range,

KNN and spatial join predicates. A spatial range predicate has a format of 〈s,Q〉,

where s is a query vertex in Gq and Q is a query rectangle. It means that the query

vertex s needs to be within Q. A KNN predicate 〈s, loc,K〉 means s needs to be

the top-K closet spatial vertexes from loc that satisfy Gq. A spatial join predicate

〈s, t, Pjoin〉 means s and t should satisfy the spatial relationship predicate Pjoin. Here

Pjoin can be any relationship between two spatial geometries, like intersect, disjoint,

within distance, etc. The corresponding queries with different categories of spatial

predicates are denoted as GraSp-Range, GraSp-KNN and GraSp-Join respectively.

An example of a graph query with range predicate (GraSp-Range) is depicted in

Figure 3. The graph with three types of vertexes, Group, Person and Place, depicted

with white, gray and black respectively. Spatial vertexes (Place) are denoted with si

8

where i = 1, 2, ..., 15. Each spatial vertex has a location in the 2-D space. There are

three types of edges, Member, Friend and Visit. A Member edge means a person is a

member of a group. A Friend edge means the two persons are friends. A Visit edge

means a place is visited by a person.

The example GraSp= 〈Gq, SPq〉 has two components. The Gq component of the

GraSp isGroup−[Member]−Person−[V isit]−Place. The predicate is SPq ={(Place,

Q)} where Q is the spatial range enclosed with a red rectangle in the figure. Such

query should return all possible mappings, including f1 = {(Group, G1), (Person,

Bob), (Place, s13)}, f2 = {(Group, G1), (Person, Bob), (Place, s14)}, f3 = {(Group,

G1), (Person, Carol), (Place, s11)}, f4 = {(Group, G1,), (Person, Carol), (Place,

s14)}.

2.3 Literature Review

2.3.1 Graph Query

Generally, graph queries consist of any query that can be answered on top of a

property labeled graph. Graph queries can be categorized into three main types based

on their different purposes and execution methods.

2.3.1.1 Graph Pattern Matching Query

Graph pattern matching query takes input as a pattern and outputs a set of

subgraphs that ‘match‘ the given pattern. The purpose of this type of query is to

select a relatively smaller subset of the original graph. The reason behind it is that

9

the original graph is so big that it is impossible to visualize or explore the whole graph

at one time. Moreover, users may only be interested in part of the graph. Such a

query facilitates users to narrow down the graph to their main focus. The pattern

here is a labeled graph. The word ’match’ can be tricky. The match can be exact or

approximate, which allows some relaxation on the matching criteria.

Exact Match. An exact match requires there is a one-to-one projection (or

mapping) between the returned subgraph and the query graph, including each vertex

and edge. So the subgraph will have the same number of vertexes, edges, and the same

topology structure. Subgraph Isomorphism is often used to find the exact matching

subgraphs. It is defined as follows: Given a graph G = (V,E,LV ,LE, ϕ, ψ) and a

graph query Gq = (Vq, Eq, ϕq, ψq), find all the maps f from Gq to G such that:

1. ∀v ∈ Vq, ϕq(v) = ϕ(f(v)),

2. ∀(u, v) ∈ Eq then ψq(u, v) = ψ(f(u), f(v)).

Approximate Match. Such a category of pattern matching queries does not

require the returned subgraphs to exactly match the query pattern. It may define a

rule to determine if the given subgraph can match the query graph pattern. It can also

define a metric to evaluate the similarity between the subgraph and the query pattern.

The returned subgraphs are either the top-K most similar to the query pattern or their

similarities are larger than a given threshold. For different applications, the similarity

metrics are defined in various ways to reflect the different purposes of the applications.

Generally, the graph similarity (or distance) can be defined in two different ways [40]:

1. Feature-based distances. A set of features or invariants is established from a

structural description of a graph, and these features are then used in a vector

representation to which various distance or similarity measures can be applied.

10

2. Cost-based distance. The distance or similarity between two graphs reflects the

number of prescribed edit operations that are required in order to transform

one graph into the other.

2.3.1.2 Graph Algorithm Query

The graph algorithm queries not only select a subgraph but runs some algorithms

consisting of sorting, categorizing, or some other techniques to generate more insight

into the graph data. The examples include the shortest path query and finding the 10

most influential people in a social graph by using the PageRank algorithm.

2.3.1.3 Graph Analytic Query

This category of queries returns some information about the graph itself. This

information describes some status or characteristic of the graph. Normally, all the

nodes in the graph will be accessed during such queries. For instance, get the average

degree of the graph. The example is trivial but a graph analytic query can be complex

depending on the user’s requirement.

2.3.1.4 Mixed Graph Query

Besides all the above-mentioned categories, a graph query can also be the mixture

of these categories. The graph algorithm query or graph analytic query can be

combined with graph pattern matching to form a more complex query. For instance,

find the top-10 influential research institution established by European companies.

11

2.3.2 Framework For Subgraph Isomorphism

In the thesis, we mainly focus on the exact graph pattern matching query, i.e.,

subgraph isomorphism. The existing solutions for subgraph isomorphism can be

divided into two different categories, i.e., memory-based and disk-based based on how

the data is stored and accessed. Memory-based methods assume the whole graph is

stored in memory while disk-based methods assume the graph data resides on disk.

In the following, we introduce the two categories of methods in detail.

2.3.2.1 Memory-based Solutions

Memory-based approaches assume that the whole graph, including nodes and

edges can be loaded into memory. Before the query process starts, the graph data

will be loaded into memory once. Then the graph queries are performed by accessing

the graph data in memory. These approaches basically follow a common computing

algorithm schema [27]:

Algorithm 1 GenericQueryProc

1: M ← ∅
2: for u ∈ Vq do
3: C(u)←FilterCandidates(G, Gq, u)
4: if C(u) = ∅ then
5: return
6: end if
7: end for
8: SubgraphSearch(G,Gq,M)

Algorithm 1 shows a generic subgraph isomorphism algorithm, Generic-

QueryProc. Its inputs are a query graph Gq and a data graph G, and its output is

a set of subgraph isomorphisms (or embeddings) of Gq in G. Here, to represent an

12

Algorithm 2 SubgraphSearch

1: if |M | = |Vq| then
2: return M
3: else
4: u←NextQueryVertex (. . .)
5: CR ←RefineCandidates(M ,u,C(u),...)
6: for each v ∈ CR that is not yet matched do
7: if IsJoinable (q, g, M , u, v, . . .) then
8: UpdateState (M , u, v, . . .)
9: end if

10: SubgraphSearch (q, g, M , . . .)
11: RestoreState(M , u, v,...)
12: end for
13: end if

embedding, we use a list M of pairs of a query vertex and a corresponding data vertex.

For each vertex u in Vq, GenericQueryProc first invokes FilterCandidates to

find a set of candidate vertices C(u) (⊂ V) such that ϕq(u) ⊂ ϕq(v) (Line 3). If C(u)

is empty, we can safely exit, making early termination possible (Line 5). After that,

GenericQueryProc invokes a recursive subroutine, SubgraphSearch, to find

mapping pairs of a query vertex and matching data vertices at a time (Line 8).

SubgraphSearch takes as parameters a query graph Gq, a data graph G, and

a partial embedding M and reports all embeddings of Gq in G. The recursion

stops when the algorithm finds the complete solution (i.e., when |M | = |Vq) (Line

2). Otherwise, the algorithm calls NextQueryVertex to select a query vertex

u ∈ Vq which is not yet matched (Line 4). After that, it calls RefineCandidates

to obtain a refined candidate vertex set CR from C(u) by using algorithm-specific

pruning rules (Line 5). Next, for each candidate data vertex v ∈ CR such that v is

not matched yet, the IsJoinable subroutine checks whether the edges between u

and already matched query vertices of Vq have corresponding edges between v and

already matched data vertices of G (Line 7). If v is qualified, it is matched to u, and

13

SubgraphSearch updates status information by calling UpdateState (Line 8),

and the algorithm proceeds to match the remaining query vertices of q by recursively

calling SubgraphSearch (Line 10). Next, all changes done by UpdateState are

restored by calling RestoreState (Line 11). The algorithm terminates when all

embeddings are found.

This framework includes the computation steps of graph search in memory. The

cost of the search is evaluated by using the CPU computation cost. It does not

consider the disk access cost and assume all the data is residing in memory. The

computation cost is mostly determined by the IsJoinable operation. The more it is

performed, the longer the graph search will take. Such an operation is achieved by

implemented checking the existence of an edge between a given pair of vertexes. This

operation can be executed at a low cost when the graph is in memory. However, it is

not trivial when the graph data is residing on disk.

2.3.2.2 Disk-based Approaches

Disk-based approaches are proposed for the scenarios that all the data cannot

be loaded into memory when the data volume is too large or there is a requirement

that the data needs to be persistent on disk. The difference between disk-based and

in-memory approaches lies in the following aspects:

• Candidates Generation. The memory-based approaches start with initializing

the candidate sets C(u) for all the query vertexes in the query graph Gq. Such

a step needs no cost because all the data is stored in memory. In disk-based

approaches, however, such an operation is not affordable because each time to

14

form a candidate set, it requires to at least fetch all the vertexes with such label,

which will incur huge disk I/O.

• IsJoinable. In memory-based approaches, each time to match one more query

vertex, the IsJoinable is called to check the existence of an edge. But for the

disk-based scenarios, it is costly to check the existence of an edge. It requires

the disk access of the vertexes or the edge with more than one I/O cost.

• Cost Model The in-memory approaches focus on minimizing the CPU com-

putation cost. But for disk-based approaches, the goal is to reduce both the

CPU computation cost and more importantly, the disk I/O because disk access

is more expensive than CPU computation.

Due to these differences, disk-based approaches have a different set of operations.

When graph data is stored on disk, normally the neighborhood information of a given

vertex is stored and accessed altogether. So the unit operator is to expand from a vertex

and fetch all its neighbors. Based on such a characteristic, disk-based approaches

utilize NodeLabelScan, Expand, Filter and Join operators to perform the

subgraph isomorphism.

• NodeLabelScan. The NodeLabelScan operator fetches all the vertexes in

the data graph G that with a given label.

• Expand. The Expand operator takes input as a set of vertexes and performs a

1-hop graph traversal to fetch all the neighbors of the set of vertexes.

• Filter. The Filter operator takes a set of vertexes and decides whether each

vertex satisfies the given constraint. The constraint can be any boolean function.

In the subgraph isomorphism problem, the filter is to decide whether a vertex

has the given label.

15

• Join. The Join operator takes two sets of vertexes and outputs the common

nodes.

Based on these operators, a subgraph isomorphism query is executed by combining

these operators. Different plans can be generated and executed for the same query. To

determine the best execution plan, disk-based approaches come with a plan optimizer

to determine the best execution plan and perform the operator in the plan in a specific

order.

2.3.2.3 Summary

In-memory methods start performing the query until all the graph data is loaded

into memory. It is much faster to access the in-memory data compared with accessing

data reside on disk. However, the graph data size can be too huge to fit in the memory.

Then these approaches cannot be directly used. Another disadvantage is that these

approaches need to load the whole graph into memory every time they perform the

graph query. There will be a long waiting time until the first query can be answered.

When there is no query issued, the graph data will still occupy the system resources.

These limitations do apply to disk-based approaches. In this thesis, we focus on

disk-based approaches.

2.3.3 Systems for Geospatial Graph Data

Some existing graph database systems allow users to define spatial properties on

graph elements, like other ordinary properties. Indexing is available for accelerating

the search space filtering on spatial predicates.

16

Neo4j. Neo4j [32] is a native graph database system. It takes a graph model called

Property Labeled Graph (PLG), where nodes and edges are differentiated by string

labels and attached with a set of properties. The edges connected to the same node are

managed in a double-linked list. The cost to fetch a neighbor for a node is always O(1).

Such an index-free storage schema makes it efficient for graph traversal algorithms.

The flexibility to define labels and properties makes PLG suitable for applications with

rich semantics. Spatial information can be stored as built-in spatial types, including

geospatial points in 2D and 3D. It supports several spatial functionalities, including

spatial range, spatial distance. These queries are accelerated by using a back-end

spatial index. Neo4j supports Cypher [9], which is a declarative graph query language.

A GraSp can be represented by a Cypher query and executed by the Neo4j Cypher

query engine.

RDF. RDF is another popular graph database. The edges and node properties in

the graph data model are stored as triples RDF is triple-based and each triple has the

format of 〈Subject, Predicate, Object〉 (abbr. 〈S, P,O〉). Edges and properties are

stored as tuples in RDF. Graph search is performed by using table join on the triple

table. The spatial property for an entity is stored as a triple as well. GeoSPARQL

[20], proposed by Open Geospatial Consortium (OGC), is a standard for representing

and querying spatial data in RDF data using SPARQL. Geometry types of Geography

Markup Language (GML) and well-known text representation of geometry (WKT)

literals are supported. Simple Features, RCC8 and DE-9IM topological relationships

are included in the query language. Such systems include but not limited to Virtuoso

[53], GraphDB [22] and SRX [51]. Both Virtuoso and GraphDB exploit spatial indexing

techniques for spatial queries. SRX encodes objects based on the Hilbert Curve Order

17

and proposes the corresponding query algorithms for spatial range, spatial join, and

spatial KNN predicates.

Some Others. Oracle Spatial and Graph [35] is a commercial database manage-

ment system software for managing spatial and graph data. It can store both the RDF

and property labeled graph data models. However, the spatial data and graph data

management engines in Oracle Spatial and Graph are two separate modules. ArcGIS

is a general-purpose GIS system. It is now equipped with an extension for managing

utility network [2, 26]. It provides support for the network attributes and topology

management that allows users to perform network analysis like utility network tracing

and diagram generation. But it lacks the support for the general graph search.

2.3.4 Strategies for Geospatial Graph Query

Existing systems for geospatial graph data are designed following the architecture

shown in Figure 2. The graph data is stored and managed by Graph Database while

the spatial data is managed and indexed by a Spatial Database. Query Coordinator

receive queries issued by users. Queries are parsed and decomposed into a graph

and spatial components. The decomposed query components are qualified for being

directly answered by Graph Engine and Spatial Index. Then Graph components and

spatial components of Geospatial Graph Query (GraSp) are sent to Graph Engine

and Spatial Index. Graph Engine and Spatial Index receive the query request and

search the graph data and spatial data respectively. Query Coordinator combines and

processes the results provided by Graph Engine and Spatial Index to generate the

final results. The final results are returned back to the users.

18

G1 G2 G3

Bob Carol Alan Dan Larry Dan

S13 S14 S11 S14 S2 S3S1

Step1:

Step2:

Step3:

(a) GraphTraverse

S4 S5 S6 S13 S14S10 S11S7 S8 S9

Bob

G1

Bob

G1

Carol

G1

Kate Carol

G1

Joe Jane

Step1:

Step2:

Step3:

R4

R1

R5 R6

R2

R7

Root

S15

Kate

R3

(b) SpaIndex

Figure 4: Figure 4b depicts the steps the SpaIndex approach takes to process the query
given in Figure 3: Step 1: Search R-Tree to filter out the objects that are not located within
the region Q. R3 is not accessed because it does not overlap with Q. Step 2: Traverse the
graph from each spatial object to obtain persons that visit such place. Step 3: Search the
graph for all groups that each person is a member of. Figure 4a shows how GraphTraverse
processes the same query: Step 1: It first obtains all groups. Step 2: For each group, it
searches for all its members. Step 3: For each person, it finds all places that he/she visits
and checks whether it is located within Q.

On top of this architecture, existing solutions follow two different strategies,

GraphTraverse and SpaIndex.

19

2.3.4.1 GraphTraverse

GraphTraverse treats spatial location as nothing different from other attributes.

It consists two main phases. In the first phase, GraphTraverse exploits the existing

subgraph isomorphism algorithm to traverses the graph to find the matched subgraph

patterns without considering the spatial predicates. In this phase, the approach

does not consider the spatial predicate. In the second phase, it evaluates the spatial

predicates. The spatial range predicate (u,Q) is evaluated by simply checking the

location of the matched vertex of u towards the query range. The spatial join

predicate (x, y, op) is evaluated by validating matched vertexes of x and y towards

joining predicate op. The KNN predicate is different from the two spatial predicates

mentioned above. The KNN predicate cannot be determined by the matched subgraph

itself. It is determined by all the matched subgraphs. As a result, GraphTraverse

strategy needs to first find all the subgraphs that satisfy the Gq. Then for the KNN

predicate (u, loc) the distance from the matched vertex of u to the query is computed

and sorted. The top-K closest subgraphs will be the final result.

Figure 4a shows how GraphTraverse processes the query given in Figure 3:

1. It first obtains all groups.

2. For each group, it searches for all its members.

3. For each person, it finds all places that he/she visits and checks whether it is

located within Q.

20

2.3.4.2 SpaIndex

SpaIndex initially builds a spatial index [7, 24, 39], e.g., R-Tree, over the vertexes

possessing spatial locations in the graph. Basically, SpaIndex runs in two steps:

1. Spatial Filtering : It first applies the index to find all spatial vertexes that can

satisfy the spatial predicate.

2. Graph Traversal : It then traverses the graph starting from the set of spatial

vertexes that satisfy the spatial predicate to find the matched subgraphs.

Regarding the Spatial Filtering phase, different spatial predicates are handled

using the spatial index in different ways.

Algorithm 3 Range Predicate
1: Function RangeSearch(Node N , Rectangle Q, ResultSet S)
2: if N is a spatial object then
3: if N.loc is within Q then
4: S ← S ∪ {N}
5: end if
6: else
7: if N.mbr overlaps with Q then
8: for each child n of N do
9: RangeSearch(n, Q, S)

10: end for
11: end if
12: end if

Algorithm 3 demonstrates the steps of handling the spatial predicate using the

spatial index. RangeSearch is a recursive function. It takes as inputs a node N in

the R-Tree, the query rectangle Q and the result set S. The search starts from the

root node. At each function call, it checks whether current node N is a spatial object

or not. If it is a spatial object, it means the search has already reached the final layer

of R-Tree. As a result, it checks whether N.loc is located inside the query rectangle

21

Algorithm 4 KNN Predicate
1: Function KNNSearch(Query vertex u, Query location loc, Root node root)
2: result← ∅
3: q ←NewPriorityQueue()
4: Enqueue(q, roots, 0)
5: while |result| ≤ K and q 6= ∅ do
6: e← Dequeue(q)
7: if e is a spatial object then
8: result.Add(e)
9: else

10: for each child of e do
11: Enqueue(q, child, Dist(loc, child))
12: end for
13: end if
14: end while

Q. If it is true, N is inserted into the result set S. If N is not a spatial object, it

checks whether N.mbr overlaps with the query rectangle Q. If N.mbr overlaps with

Q, it implies that N might contain the result objects. As a result, each children node

of N is searched by following the same procedure.

Algorithm 4 shows the pseudo-code of handling the KNN predicate. The algorithm

keeps a priority queue q to store all the R-Tree nodes. The nodes are sorted in the

queue based on their distances to the query location loc. Each time the head node e

in the queue is popped up. If it is a spatial object, it is added to the result set. If not,

all the children of e are obtained and inserted into the queue again. Such procedure

will continue until the result set has the size of K. It means that the algorithm has

found all the K spatial objects that are closest to the query location.

Algorithm 5 shows the main steps to solve the spatial join predicate by using

R-Tree index structure. It keeps pairs of nodes in the R-Tree in a queue q. It starts

by pushing the root nodes of R-Tree into q. Each time, a pair of R-Tree nodes

〈nodea, nodeb〉 is dequeued. For each child of nodea and nodeb, the algorithm checks

whether the predicate op is satisfied or not. The pairs that can satisfy the op are

22

Algorithm 5 Spatial Join Predicate
1: Function SpatialJoinSearch(Join Vertex s, Join Vertex t, Join Operator op)
2: Queue q ← ∅
3: q.Enqueue(〈roots, roott〉)
4: while q 6= ∅ do
5: 〈nodes, nodet〉 ← q.Dequeue()
6: if nodes and nodet are not spatial objects then
7: for each childs of nodes and childt of nodet do
8: if op(nodes, nodet) = true then
9: q.Enqueue(〈nodes, nodet〉)

10: end if
11: end for
12: else
13: Add 〈nodes, nodet〉 into the candidate set
14: end if
15: end while

enqueued. If the pair are spatial objects rather than R-Tree nodes, this pair of spatial

vertexes will be added to the result set.

Figure 4b depicts the steps the SpaIndex approach takes to process the query

given in Figure 3:

1. Search R-Tree to filter out the objects that are not located within the region Q.

R3 is not accessed because it does not overlap with Q.

2. Traverse the graph from each spatial object to obtain persons that visit such a

place.

3. Search the graph for all groups that each person is a member of.

2.3.4.3 Summary

Such an architecture can take advantage of existing database systems without

modifying their internal implementation. The system developer only needs to focus

on Query Coordinator. Any future modification will also only happen on Query

23

Coordinator if necessary. This reduces the complexity of developing and extending

the system. Even though the most up-to-date techniques can be applied to Graph

Engine and Spatial Index, which ensures the fast processing of graph or spatial

data search, it still can lead to bad performance due to the inherent shortcoming of

system architecture. Graph Engine and Spatial Index only communicate with Query

Coordinator and they are unaware of each other. When Graph Engine performs the

graph search, the spatial components of the query are not considered and vice versa.

This leads to that Graph Engine and Spatial Index perform many unnecessary search.

2.3.5 Methods for Geospatial Graph Query

A system, GeoSN, is proposed to answer some geospatial graph queries in a social

network [3]. The social network is simple and it only consists of users and friendship

relations. The spatial information only exists for the user vertexes that each user

possesses a spatial location. It defines several primitive social and geospatial queries

as the fundamental components for solving more complex geospatial graph queries.

GetFriends(u) and AreFriends(ui, uj) are two primitive queries that will be answered

directly by the graph database component. GetUserLocation(u), RangeUsers(q, r)

and NearestUsers(q, k) are the three primitive queries supported by the spatial

database component. The work focuses on three more complex geospatial graph

queries, i.e., Range Friends, Nearest Friends and Nearest Star Group queries. These

queries can be solved by combining the defined primitive queries. Graph database

and spatial database components are utilized to answer the corresponding primitive

queries. In the paper, the performance of the queries is evaluated in different storage

schemes and machine architectures, including disk-based, memory-based, centralized

24

and distributed. However, the paper only discusses the solution for the defined queries

and it does support arbitrary GraSp queries issued by users. Also, its solution is limited

to the defined social network structure. There are attempting works in RDF data

model [29, 54]. Encoding [29] is an encoding-based method, which extends the RDF

search engine with spatial query support. Each spatial object is encoded with a unique

ID according to its spatial location. When a GraSp is issued, the system will utilize

the ID to prune the unpromising spatial objects without accessing the real locations

of the objects. A filter phase will be applied after the pruning on ID. Spatial range

and join predicates are the supported spatial query types. Similarly, [54] proposes an

encoding-based method BRDF-First for spatial-temporal graph queries. The encoded

ID is determined by the spatial-temporal information of the entity. However, these

algorithms are designed for the RDF data engine and cannot be extended to the

labeled property graph model. Moreover, none of them can support the KNN spatial

predicate. In a nutshell, these approaches still belong to Isolated Architecture. Their

query strategy is either GraphTraverse or SpaIndex. No awareness exists between the

graph database and spatial database.

Augmented Spatial Index. Spatial indexes are augmented with different

categories of information to solve different types of geospatial-related queries [60, 25,

18, 28]. In [60], two hybrid indexes are proposed for geospatial document search. One

is an inverted file on top of (Keyword-First). Another is an R-Tree on top of inverted

files (RTree-First). To search for the documents satisfying both spatial and textual

constraints. Keyword-First index can be used to locate the satisfying documents

based on search keywords first and then based on locations. RTree-First is exploited

in a reversed method. However, this framework treats textural index and spatial

index separately. KR*-tree [25] is another index structure extended from R-Tree for

25

geospatial keyword document search. It is different from RTree-First in that it allows

internal tree nodes to store keywords. Similarly, IR2-tree [18] extends R-Tree with

signature files, rather than directly using the keywords. The signature files stored on

a node can determine whether a keyword is contained by the documents belonging to

this node. The usage of the signature files reduces the storage overhead. IR-Tree [28]

is proposed to solve top-K geospatial and textual document search problem. IR-Tree is

similar to IR2-tree that it augments R-Tree with additional textual information. But

IR-Tree stores document summary, including document frequency and term frequency,

which are important in computing the tf-idf. However, IR-Tree is designed specifically

for the scenario that the textual similarity is computed by using tf-idf. So the structure

stored on top of R-Tree is an abstract representation of the textual information of

the documents. However, graph data is more complex than document keyword data.

Every spatial vertex can be connected to many different vertexes through different

paths. So the technique cannot be applied to the geospatial graph data.

Table 1: Comparison of different approaches

Method GeoSN Encoding BRDF-First GeoExpand & Riso-Tree
General Graph Query × X X X
Graph Query Language × X X X

Compatibility X × × X
Range Query X X X X
Join Query × X × X
KNN Query × × × X
Hybrid Index × × × X

Support Updates × X X X

Summary. Table 1 summarizes the characteristics of different approaches related

to geospatial graph query. These characteristics include but not limit to:

1. Support general graph query;

26

2. Allow users to interactive through graph query language;

3. Compatible with different graph databases;

4. Support wide range of spatial predicates;

5. Support data updates.

Among all the approaches, GeoSN is designed for social graph with specific structure.

It cannot support general input graph query. Only limited query types can be

supported. No graph query language is supported by GeoSN either. Encoding and

BRDF-First are proposed for RDF data. So they can support general RDF queries and

the query language for RDF data. GeoSN is a framework compatible with different

databases. The primitive queries defined in GeoSN, including GetFriends(u) and

AreFriends(ui, uj), are simple and can be easily implemented in different graph

databases. The operations for spatial queries are also popular query types, e.g., spatial

range query, nearest neighbor query, which are supported by almost all the spatial

databases. So GeoSN can facilitate a wide range of database systems. However,

Encoding and BRDF-First are built on top of RDF engines. It is nontrivial to extend

these two approaches to database systems other than RDF engines. Regarding the

supported query types, none of the them can cover all the spatial predicates, including

spatial range, join and KNN predicates, which are important and fundamental spatial

query types. Moreover, as we can see, none of the approaches use the hybrid index

structure. They all belong to the isolated architecture, which treats graph component

and spatial component separately from both data and query perspective. When

searching the graph, these approaches are not aware of the future processing of the

spatial predicates, and vice versa. This makes it impossible to take advantage of

the pruning power of both graph and spatial predicate. The data updates are not

discussed in GeoSN. The updates for Encoding and BRDF-First are supported by

27

directly utilizing the RDF engine. No advanced methods are discussed either. I also

discussed some augmented tree-based spatial indexes. These approaches are proposed

for answering geospatial textual queries. However, graph data is more complicated

than textual data in that it has complex internal structures, which makes it necessary

to have more advanced and complex index structures. Although these approaches

are proposed for geospatial keyword queries, they still provide a potential direction

for solving spatial queries with rich semantic context by extending spatial index with

augmented data structures.

28

Chapter 3

SPATIAL-AWARE GRAPH SEARCH

Due to the isolation of the graph database and spatial database, the graph search

is unaware of the spatial information of vertexes to be visited in the future. The

graph search will access many branches that will be filtered by the spatial predicate.

In this chapter, we demonstrate GeoExpand, which accelerates graph queries that

incorporate spatial predicates. GeoExpand allows spatial-aware graph search by

employing a light-weight technique that augments the underlying graph data with

Spatial Indexing Properties.

3.1 Augmented Graph Data Structure

For GeoExpand to achieve its goal, we augment a graph structure with Spatial

Indexing Properties, to form what we call SPatially-Augmented Graph (SPA-Graph).

To be generic, the system stores the newly added Spatial Indexing Properties (SIP)

the same way other properties are stored in a graph database system. That way these

Spatial Indexing Properties can be seamlessly and effortlessly integrated into existing

graph databases. The structure of a SPA-Graph is similar to that of the original graph

except that each vertex v ∈ V in a SPA-Graph G = {V,E} stores information of the

reachable spatial vertexes. The proposed approach only considers spatial vertexes that

are reachable within a distance limit B, which is a user-predefined parameter. For

each k ≤B, a data structure (SIP(v,k)) will be stored as a property of v, which depicts

the spatial boundary for the spatial vertexes that can be reached from v through k

29

e

f

i

g

h

a
b

d

k

c

j

Q

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18

19

21

L
0

L
1

L
2

1-Hop

GeoB:

a: false

d: false

e: false

f: false

g: false

h: false

i: false

RMBR:

j: R

ReachGrid:

b: {9}

c: {12}

k: {4}

l: {2}

R

l

20

2-Hop

GeoB:

a: true

b: false

j: false

RMBR:

g: R

h: R

ReachGrid:

c: {4}

d: {9, 12}

e: {9}

f: {4}

k: {12}

i: {12}

l: {9}

Figure 5: SPA-Graph Overview

hops. Each vertex will store from 1-hop to B-hop spatial reachable information in a

compressed bitmap form. Such spatial reachability information (aka. Spatial Indexing

Properties) has three alternatives as follows:

• GeoB: An extra bit (i.e., boolean), called Spatial Reachability Bit (abbr. GeoB)

that determines whether v can reach any spatial vertex (u ∈ VS) in the graph at

a specific hop number. GeoB of a vertex v is set to 1 (i.e., true) in case v can

reach at least one spatial vertex at hop k and set to 0 (i.e., false) otherwise.

• RMBR: Reachability Minimum Bounding Rectangle (abbr. RMBR) represents

the minimum bounding rectangle MBR(S) (represented by a top-left and a

lower-right corner point) that encloses a set of vertexes S where S includes all

spatial vertexes reachable from vertex v through k hops.

• ReachGrid: A list of spatial grid cells, called the reachability grid list (abbr.

ReachGrid). Each grid cell C in ReachGrid(v) belongs to a hierarchical grid

30

data structure that splits the total physical space into r × r spatial grid cells.

Each spatial vertex u ∈ VS will be assigned a unique cell ID (k ∈ [1, r × r]) in

case u is located within the extents of cell k, noted as Grid(u) = k. Each cell

C ∈ ReachGrid(v) contains at least one spatial vertex that is reachable from v

by k hops.

Intuition. The intuition of GeoExpand operator is to leverage the Spatial

Indexing Properties (SIP) in the SPA-Graph, which includes GeoB, RMBR and

ReachGrid to avoid expanding those vertexes that are guaranteed not to reach spatial

range predicate in a specific number of hops. That way, GeoExpand cuts down

the number of traversed graph vertexes and edges and hence significantly reduces

the overall latency. Furthermore, GeoB, RMBR and ReachGrid are stored as just

extra properties to the corresponding vertexes in the original graph. The simplicity of

GeoExpand implementation makes it a very practical solution to efficiently support

graph search in existing graph database systems.

3.2 Query Processing

3.2.1 Operator Replacement

The Expand operator takes as input a query vertex. When the plan is executed,

for each graph vertex mapped to such query vertex, the system will obtain all its

neighboring vertexes. By replacing the Expand operator in the execution plan

with GeoExpand, the graph traversal can avoid many unpromising branches. The

replacement may happen on the vertexes whose distance from the range predicate is

less than or equal to B. The GeoExpand operator has two more arguments compared

31

to Expand, which are the number of hops from this query vertex to the spatial vertex

and the query spatial range.

3.2.2 Operator Evaluation

The Expand operator traverses the graph from each vertex belonging to a set

of vertexes (obtained from the previous step) by following the pattern specified by

the input argument. If such a pattern cannot be satisfied for the current vertex, the

traversal will not continue on such vertex. Algorithm 6 shows the pseudo-code of

the query algorithm. It takes the input as a graph vertex v, an expansion pattern

pat, a hop distance to the spatial predicate k and a query rectangle Q. For a specific

GeoExpand operator , k-hop GeoExpand information stored on v will be checked

towards Q. Since the SIP has three categories, they are treated differently as follows:

Case I (GeoB): If SIP(v,k) is GeoB, the algorithm checks whether GeoB value

is true or false. If it is false, it means that v cannot reach any spatial vertexes by

k hops and the algorithm prunes the traversal at v. Otherwise, the algorithm calls

Expand(v, pat) to perform the traversal on v.

Case II (RMBR): An RMBR can either overlap with Q or not. If an RMBR

does overlap with Q, the algorithm again executes Expand(v, pat) to traverse from v

with respect to pat (9). Otherwise, the algorithm will not expand v.

Case III (ReachGrid): If any grid belonging to ReachGrid overlaps with Q, it

indicates that v can reach a spatial vertex located in Q through k hops. Hence, the

algorithm expands v (Line 13). Otherwise, the algorithm prunes the traversal at v.

32

Algorithm 6 GeoExpand Evaluation Algorithm
1: Function GeoExpand(v, pat, k, Q)
2: switch (Spatial Indexing Properties Type)
3: case GeoB:
4: if v.GeoB(k) = false then
5: Terminate()
6: end if
7: case RMBR:
8: if Q does not overlap with v.RMBR(k) then
9: Terminate()

10: end if
11: case ReachGrid:
12: if All grid cells in v.ReachGrid(k) do not overlap with Q then
13: Terminate()
14: end if
15: default:
16: Invoke Expand(v, pat)
17: end switch

3.2.3 Running Example

Let us consider an example query on top of the graph in Figure 5 as follows:

Q1: MATCH (user1:User{name:Alice})

-[:Follow]-(user2:User)

-[:V isit]-(place:V enue)

RETURN place

Figure 6 shows two execution plans of the example query. The two execution plans

are constructed on top of the Expand and GeoExpand respectively. The left side

plan is generated by the neo4j optimizer. When such plan is executed, it will first access

the vertex a. Then the Expand operator will be processed and all the neighboring

vertices of a will be fetched. For each neighbor of a, its visited spatial vertices will be

fetched. Then their spatial locations are checked towards the query rectangle Q. The

33

NodeLabelScan

p1:Person

{name:Alice}

Expand

p1-Friend-p2

Expand

p2-Visit-v

Filter

Within (v, Q)

NodeLabelScan

p1:Person

{name:Alice}

GeoExpand

p1-Friend-p2

GeoExpand

p2-Visit-v

Filter

Within (v, Q)

a

b dc j

e i h g

e

Q

a

b dc j

e

e

Q

Figure 6: Processing steps by running the execution plan

difference lies in the two Expand operators. Recall that the first step of our approach

is to replace the qualifying operators. In this case, assume that B is equal to 2. The

query vertexes user1 and user2 are 1 and 2 hop distance from the spatial query vertex

place. Both distances do not exceed B. So the Expand operators on user1 and user2

can be replaced by GeoExpand operators. When the new execution plan is processed,

the first step will be the same with that in neo4j. The first GeoExpand operator has

the format of GeoExpand(user1, user1 − Friend− user2, 2, Q). So the SIP(a, 2)

will be checked towards Q. The 2-hop information stored on a is GeoB and its value

is true. As a result, the Expand operator will be invoked. Then for each expanded

neighbor of a, the GeoExpand(user2, user2 − V isit− place, 1, Q) will be processed.

These neighbors are b, c, d and j. Their SIP will be checked towards Q. Among

all these vertices, c, d and j are pruned directly without being expanded because

ReachGrid(c, 1) = {12} (Figure 5) does not overlap with Q. Similarly, GeoB(d, 1)

= false and RMBR(j, 1) do not overlap with Q. So all of them are pruned. So the

total number of visited vertices is reduced by using the SPA-Graph.

34

B

A

f

e

Q

RMBR

I

R
(x1,y1)

(x2,y2)

(a)

B

A

f

e

Q

RMBR

I

R

(x1,y1)

(x2,y2)

(b)

Figure 7: Pruning power of RMBR

3.2.4 SPA-Graph Analysis

This section analyzes each category of SIP from two perspectives: (1) Storage

Overhead: the amount of storage overhead that each vertex type adds to the system

(2) Pruning Power: the probability that the query processing algorithm terminates

when a vertex of such type is visited.

GeoB. When GeoB(v, k) is accessed and its value is false, the algorithm stops

the graph traversal originating at v. That is due to the fact that v cannot reach any

spatial vertex in the graph given hop number k. Otherwise, the query processing

algorithm continues expanding from v. As a result, pruned power of a GeoB lies in

the condition that GeoB(v, k) is false. GeoB with true value does not contribute to

the pruning power. Given a hop number k, the number of vertices that cannot reach

spatial vertex through k hops is a certain value. Denote such number as |Vk,false|. The

probability of a GeoB being false value is |Vk,false|
|V | . This is also the pruning power of

GeoB.

35

RMBR. The GeoExpand operator will be stopped at v only if RMBR(v, k) does

not overlap with the query region. Figure 7a shows the condition of not overlapping.

The width and height of the whole space are denoted as A and B, respectively. Assume

that the query rectangle can be located anywhere in the space with equal probability.

We use (x1, y1) and (x2, y2) to represent the RMBR’s top-left corner and lower-right

point coordinates, respectively. The query rectangle is denoted as Q in the figure.

Without loss of generality, we consider the top-left vertex of Q as its location. Then

the domain of Q’s location should be part of the total space, denoted as I (the blue

shadowed area in Figure 7a). Its area is determined by size of Q. The width and height

of Q are denoted as e and f respectively. So the area of I, AI = (A− e)× (B − f).

If Q does not overlap with RMBR, Q must lie outside rectangle R which forms the

overlap region (drawn with solid line in Figure 7b). Area of R (denoted as AR) is

obviously determined by the RMBR location and size of Q. It can be easily observed

that AR = (x2 − (x1 − e))× (y2 − (y1 − f)). Another possible case is demonstrated

in Figure 7b. In such case, if we calculate R in the same way, the range of R will

exceed I. As a result, AR = AI in this case. As we can see, the area of overlapped

region is determined by the range of R and I altogether. Then we can have a general

representation of the overlap area AOverlap:

AOverlap = (min(A−e, x2)−max(0, x1−e))×(min(B−f, y2)−max(0, x2−f)). (3.1)

The No Overlap area is AI −AOverlap and the probability of having such case is as

follows:

PNoOverlap =
AI − AOverlap

AI

= 1− AOverlap

AI

. (3.2)

36

When comparing RMBR with GeoB, we need to mention that RMBR(v, k) only

exists when v can reach some spatial vertices through k hops. So we are comparing

RMBR with GeoB with true value. Actually, GeoB with true value can be imagined

as a specific RMBR whose region is the whole space. So no matter where the query

rectangle is, it must overlap with such a whole-space RMBR. It means that GeoB

with true value does not have any pruning power. So RMBR can outperform GeoB.

But how much it can outperform is determined by PNoOverlap. If ARMBR is large,

PNoOverlap is also small according to Equation 3.2.

When the storage overhead of an RMBR is considered, coordinates of RMBR’s

top-left and lower-right vertices should be stored. Thus its storage will be at least

four bytes depending on the spatial data precision. It means tha the storage overhead

of an RMBR is always higher than that of a GeoB.

ReachGrid. For a high resolution grid, it is of no doubt that a ReachGrid

possesses high pruning power. However, it costs higher storage overhead because a

ReachGrid can contain more grid cells. So blindly increasing the resolution will not

definitely improve the query time performance. The reason is that the cost to access

each vertex also becomes higher caused by the increasing size of ReachGrid.

When a ReachGrid is compared with an RMBR, RMBR can be seen as one

simplified cell for which the resolution is equal to that of RMBR and it is the only cell.

Since the area of an RMBR is larger than a grid cell most of the time, RMBR will

have less pruning power. One extreme case of RMBR is that the vertex can reach only

one spatial vertex. In such case, RMBR is a point whose location is the spatial vertex.

Such RMBR can still be counted as a ReachGrid whose grid size x→ 0. According to

the analysis of RMBR, it should be with higher storage overhead and more accuracy.

37

Actually, storing it as a ReachGrid in this case, however, will cost an integer while

any RMBR requires storage for four floats or even doubles.

3.3 Initialization

This section describes how to initialize and maintain the SIP in a graph database.

Before we go into the details of the initialization algorithm, we first propose a lemma

concerning the reachable vertices.

Theorem 1 Use V k
u to denote the set of vertices that are reachable from u through k

hops. If we define V 0
u = u, then the k-hop reachable vertices from a given vertex u is the

union set of all the k − 1 hop reachable vertices of the neighbors of u, V k
u =

⋃
u v

V k−1
v ,

k > 0.

Proof 1 Given a vertex u and any vertex v that u v, for any vertex w ∈ V k−1
v , w

can be reachable from v through k − 1 hops. Meanwhile, u is 1 hop from v, so w is k

hops from u. Then w ∈ V k
u .

Then we discuss the relationship between different categories of SIP of a vertex

and its neighbors.

Theorem 2 ReachGrid(u, k) =
⋃
u v

ReachGrid(v, k − 1)

Proof 2 ReachGrid of a vertex u can be computed by such equation, ReachGrid(u, k)

= Grid(V k
u), where Grid represents the operation of finding all the grid cells that cover

vertices in V k
u . According to Theorem 1, we have V k

u =
⋃
u v

V k−1
v . So ReachGrid(u, k)

= Grid(
⋃
u v

V k−1
v) =

⋃
u v

ReachGrid(v, k − 1).

38

Theorem 3 RMBR(u, k) of u is equivalent to the minimum bounding rectan-

gle of all RMBR(v, k − 1) of every neighboring vertex v of v. RMBR(u, k) =

MBR(RMBR(v, k − 1)), u v.

Proof 3 RMBR of a vertex u can be computed by such equation, RMBR(u, k) =

MBR(V k
u), where MBR represents the operation of computing the minimum bounding

rectangle that covers vertices in V k
u . According to Theorem 1, we have V k

u =
⋃
u v

V k−1
v .

So RMBR(u, k) = MBR(
⋃
u v

V k−1
v) = MBR(RMBR(v, k − 1)).

Theorem 4 GeoB(u, k) of a vertex u is equal to the disjunction of the GeoB(v, k−1)

values of all u’s neighbors. GeoB(u, k) =
∨
u v

GeoB(v, k − 1)

Proof 4 Similarly, according to Theorem 1, this theorem can be proved in a straight-

forward way.

3.3.1 Initialization

The objective of the initialization process is to calculate the SIP for all vertexes in

the graph where k ≤ B. To achieve that, the initialization algorithm runs in three

main steps. In the first two steps, the algorithm builds ReachGrid, RMBR and GeoB

using the 1 to B hops neighborhood of each vertex in the graph. In the last step, the

algorithm keeps only one type of SIP and drops the rest.

Algorithm 7 gives the pseudo code of the initialization process. In Phase I, the

algorithm will generate 1-hop SIP for each vertex u by accessing its neighbors. For

each vertex, its 1-hop SIP can be computed by accumulating the spatial location

attributes of its neighbors. More specifically, ReachGrid represents the union of all

39

Algorithm 7 SIP Initialization
1: Function Initialize(Graph G = {V,E})
2: /* PHASE I: One-Hop Initialization */
3: for each Vertex v ∈ V do
4: for each vertex u ∈ Adj(u) do
5: if u ∈ VS then
6: ReachGrid(v, 1) ← ReachGrid(v, 1) ∪ Grid(u)
7: RMBR(v, 1) ← MBR(RMBR(v,1), v.loc)
8: GeoB(v, 1) ← true
9: end if

10: end for
11: end for
12: /* PHASE II: 2 to B-hop Initialization (2 ≤ k ≤ B) */
13: for each k ∈ [2, B] do
14: for each Vertex v ∈ V do
15: for each vertex u ∈ Adja(u) do
16: ReachGrid(v, k) ← ReachGrid(v, k) ∪ ReachGrid(u, k − 1)
17: RMBR(v, k) ← MBR(RMBR(v,k), RMBR(u,k − 1))
18: GeoB(v, k) ← GeoB(v, k) ∪ GeoB(u, k − 1)
19: end for
20: end for
21: end for
22: /* PHASE III: Unused SIP removal */
23: for each vertex v ∈ V do
24: for each k ∈ [1, B] do
25: if ReachGrid(v, k) coverage is larger than GRRatio then
26: Remove ReachGrid
27: end if
28: if RMBR(v, k) coverage is larger than RBRatio then
29: Remove RMBR
30: end if
31: end for
32: end for

grid cells that its neighbors are located in. RMBR is the bounding box for all its

neighbors. Similarly, the algorithm computes the value of GeoB.

In phase II, the algorithm computes all three types of SIP for each vertex u where

2 ≤ k ≤B. The computation is performed starting from the smallest k value (i.e.,

k = 2) in an incremental fashion. In this phase, there is no need to access the spatial

location attribute of each vertex. For each vertex u, the algorithm only accesses

40

every neighbor vertex v and accumulates the SIP of v for k − 1 hops. In other words,

to compute ReachGrid(u, k), RMBR(u, k) and GeoB(u, k), the algorithm follows

Theorem 2, 3 and 4 respectively.

After the first two phases, each vertex possesses all three types of SIP for each hop.

In the third phase, the algorithm decides what type of SIP needs to be maintained

or discarded. The decision is made according to two system parameters, namely

GRRatio and RBRatio (defined later in this section). For each vertex at each hop,

the algorithm first decides whether to remove the ReachGrid. The spatial coverage

ratio is considered to be crucial in making the decision. The total spatial coverage of

RMBR is evaluated by using the total number of grid cells covered by the RMBR.

Hence, the coverage ratio of ReachGrid is measured by using the following equation:

ratio =
|ReachGrid|

of grid cells covered by RMBR
(3.3)

If the spatial coverage ratio of a ReachGrid is higher than GRRatio, then the

ReachGrid property will be dropped. Replacing ReachGrid with RMBR will lead

to loss of pruning power because the grid cells that do not exist in ReachGrid are

still deemed reachable using the RMBR pruning method. These grid cells are false

positives. Hence, the intuition is to drop the ReachGrid only when there are very few

false positive grid cells.

If the ReachGrid property is kept, then RMBR and GeoB will be dropped and no

further decision needs to be made. However, if ReachGrid is dropped, the algorithm

will still decide whether to replace RMBR with GeoB. Similarly, it is determined by

the spatial coverage ratio of RMBR, which can be measured as follows:

ratio =
Area(RMBR)

Area of the whole space
(3.4)

41

In case the spatial coverage ratio of the RMBR is larger than RBRatio, the

algorithm replaces RMBR with GeoB. Otherwise, it keeps RMBR and drops GeoB.

The idea is quite similar to the previous rule.

3.4 Performance Evaluation

In this section, we present a comprehensive experimental evaluation of GeoEx-

pand’s effectiveness and performance. We compare the performance of the proposed

graph traversal operator GeoExpand with the ordinary graph traversal operator

Expand. We evaluate the performance of the following two approaches: (1) GeoEx-

pand: The proposed GeoExpand approach with the following default parameters:

(a) GRRatio set to 1 which means that there is no RMBR, and (b) RBRatio set to

1 which indicates that RMBRs are not degraded to GeoB and there is no GeoB. So

all the SIPs are ReachGrids. (2) Expand: This method performs the naive graph

traversal.

Experimental Environment. The input graph and index are stored in Neo4j

graph database system. The source code for evaluating query response time is imple-

mented in Java and compiled with java-7-openjdk-amd64. All evaluation experiments

are run on a computer with 3.60 GHz 4 Cores CPU, 32GB 1600 MT/s RAM running

Ubuntu 16.04 Linux OS.

Parameter Setting. Table 2 shows the parameter settings. Default grid resolu-

tion is 128×128. GRRatio is set to 1.0 which ensures that only ReachGrids are kept

in SIP. RBRatio is set to 1.0 as well to ensure that no RMBR is replaced by GeoB.

We set B=3 for all the datasets, which means the index contains 3-hop neighborhood

information.

42

Table 2: Parameter Setting

Parameter Default Varying Range
selectivity 10−5 10−5, 10−4, 10−3, 10−2, 10−1

Grid Resolution 128×128 32, 64, 96, 128
GRRatio 1.0 0, 0.01, 0.02
RBRatio 1.0 0, 0.5, 1
Query Length 3 1, 2, 3

3.4.1 Evaluation Metric

I will evaluate the indexing overhead and the query performance of GeoExpand.

GeoExpand is evaluated by comparing its query time with that of Expand. When a

graph query is issued to a database system, an optimized query plan will be generated.

Such plan consists of traversal operators and other types of non-traversal operators .

In the query performance evaluation, we evaluate the graph traversal query because

such an operator is fundamental in all graph queries. The spatial range predicate at

the end vertex is performed from 50 different graph vertices. We run the same traversal

by using GeoExpand and Expand to search all the satisfying spatial vertices. The

average time is recorded respectively.

3.4.2 Datasets

Three real datasets will be used in the evaluation. Detailed information of these

datasets is listed in Table 3 where davg is the average degree of the graph. Three

real Geo-Spatial datasets, including Yelp, Gowalla, and Foursquare, are used in the

experimental evaluation. Yelp is a real Point-of-Interest recommendation dataset

43

extracted from Yelp!1 as introduced in the beginning. It has vertices representing

users and venues. Venues can have spatial location as their attributes. There are also

two types of edges in the graph. One type is friendship, which exists between users

and represents the two users are friends. Another one is review type, which means

a user has reviewed a venue. Gowalla dataset is extracted from SNAP datasets2.

Gowalla has the same types of vertices and edges. The graph consists of friendship

relationship between users and their check-ins information as well. Foursquare dataset,

which is extracted from Foursquare application through the public API3, also consists

of social connection (users’ friendship) and check-ins information [43].

Table 3: Spatial Graph Datasets (K = 103)

Dataset |V | |VS| |E| davg
Yelp 629K 77K 6033K 9.59
Gowalla 1477K 1280K 5881K 3.98
Foursquare 3296K 1143K 18723K 5.68

3.4.3 Query Response Time

In this section, we compare the query performance of Expand operator to our

proposed GeoExpand operator. For each dataset, we change the spatial selectivity of

the query rectangle and the length of the traversal. The spatial selectivity is evaluated

by the ratio of spatial objects within the query rectangle to the total number of spatial

1https://www.yelp.com/dataset_challenge

2https://snap.stanford.edu/data/loc-gowalla.html

3https://archive.org/details/201309_foursquare_dataset_umn

44

10−4 10−3 10−2 10−1
102.2

102.3

102.4

102.5

102.6

Query Range

Q
ue

ry
T

im
e(

s)

Expand
GeoExpand

(a) Yelp query time

10−4 10−3 10−2 10−1

107.5

108

108.5

Query Range

V
is

it
ed

V
er

ti
ce

s

Expand
GeoExpand

(b) Yelp visited vertices

10−5 10−4 10−3 10−2

101.5

102

Query Range

Q
ue

ry
T

im
e(

s)

Expand
GeoExpand

(c) Gowalla query time

10−5 10−4 10−3 10−2

107

108

Query Range

V
is

it
ed

V
er

ti
ce

s

Expand
GeoExpand

(d) Gowalla visited vertices

10−5 10−4 10−3 10−2

101.5

102

Query Range

Q
ue

ry
T

im
e(

s)

Expand
GeoExpand

(e) Foursquare query time

10−5 10−4 10−3 10−2

108

109

Query Range

V
is

it
ed

V
er

ti
ce

s

Expand
GeoExpand

(f) Foursquare visited vertices

Figure 8: Response time and number of visited vertexes by varying the spatial query
selectivity

45

objects. The length of the traversal varies between 1 and 3. We do not consider

traversals longer than 3 hops. The reason is as follows. In a graph query, graph

traversal operator will lead to a fast increasing of the result size. So, in the final query

execution plan for a given graph query, long traversal will not appear for its poor

efficiency. It will be replaced by several short traversal operators and join operators

(such as hash join, etc.).

Spatial Selectivity. Figure 8 depicts the query response time and the number

of visited vertexes for two traversal operators on all three real datasets. As is shown

in Figure 8c, 8e, 8a, when the query spatial range size increases, the query time of

Expand method does not vary because it will blindly traverse the graph until the

final step and validate the spatial predicate. So it always accesses the same number of

vertexes, which is shown in 8d, 8f, 8b. Using the Expand operator is extremely slow

because it needs to expand all the vertices and check the location intensively. The

figures show that it requires to visit almost billions of vertices. The query execution

time of GeoExpand tends to increase when the query rectangle is less selective. That

happens because when the query rectangle is larger (i.e., the spatial region is larger),

the size of the result actually increases accordingly. Hence, it is inevitable that less

vertexes can be pruned during the traversal by using SIP. However, as opposed to

Expand, GeoExpand takes less traversal time in all datasets. The reason is that

GeoExpand avoids accessing vertexes that cannot reach the target spatial region.

So GeoExpand accesses 10x less vertexes than Expand.

Traversal Length. Figure 9 depicts the query response time for two different

execution plans: The first plan uses the Expand operator and the other one employs

the GeoExpand operators. In the experiments, we vary the length of the query

traversal. The figure shows that the query response time of both methods will increase

46

1 2 3

0

100

200

300

400

Traversal hops

Q
ue

ry
T

im
e(

s)

Expand
GeoExpand

(a) Gowalla

1 2 3

0

200

400

600

800

1,000

Traversal hops

Q
ue

ry
T

im
e(

s)

Expand
GeoExpand

(b) Foursquare

Figure 9: Query response time by varying the length of the traversal

rapidly when the length of the traversal increases. The traversal search space will

increase exponentially with regard to increasing of number of hops in the traversal.

That happens because of the inherent characteristic of the graph data structure. That

means both methods will access more vertexes and edges when the traversal length is

longer. However, GeoExpand can still outperform Expand for all query lengths,

especially when the length is 3 which requires visiting more vertexes/edges and hence

takes more time to execute.

3.4.4 Effect of GeoExpand Parameters

In this section, we evaluate the impact of various parameters on the storage

overhead and query response time. These parameters include resolution of ReachGrid,

GRRatio and RBRatio.

47

3.4.4.1 Grid Resolution

Figure 10 shows the query response time and number of visited vertexes for

GeoExpand while varying the grid (i.e., ReachGrid) resolution. For each dataset,

two spatial query selectivities are evaluated in the experiments. Figure 10a and 10b

show that when the grid resolution increases (more grid cells), the query response time

first decreases and then increases again. When the grid resolutions are 64× 64 and

96× 96 in Gowalla and Foursquare datasets respectively, the performance is the best.

It reveals that increasing the resolution does not necessarily incur better performance

in terms of query response time. When the grid resolution is higher, the SIP contains

more information. Hence, it possesses stronger pruning power, which reduces the

number of visited vertexes during the traversal. Figure 10c and 10d can support our

explanation. However, higher grid resolution requires more pages to store the SIP.

That means the cost to access the SIP also increases. And, since the query response

time is influenced by both the number of visited vertexes and the cost to access each

vertex, a very high grid resolution increases the overall query response time.

3.4.4.2 GRRatio

Table 4 depicts the query response time and storage overhead of the SIP with

different values of the GRRatio parameter. The value of GRRatio varies from 0 to 0.02.

We set RBRatio to 1 in order to exclude the influence of it. In consequence, SIP for

all vertices are ReachGrid and RMBR. In Table 4, GeoExpand can perform better

considering the query response time when GRRatio is larger. This is because the

higher GRRatio is, the more ReachGrids are maintained, which are more powerful in

48

32 64 96 128

250

300

350

400

Resolution

Q
ue

ry
T

im
e(

s)

0.1
0.00001

(a) Query time in Gowalla

32 64 96 128
200

300

400

500

600

700

Resolution

Q
ue

ry
T

im
e(

s)

0.1
0.00001

(b) Query time in Foursquare

32 64 96 128

20

40

60

80

Resolution

V
is

it
ed

V
er

te
xe

s
(i

n
m

ill
io

ns
)

0.1
0.00001

(c) Vertexes visited in Gowalla

32 64 96 128

10

20

30

40

50

Resolution

V
is

it
ed

V
er

te
xe

s
(i

n
m

ill
io

ns
)

0.1
0.00001

(d) Vertexes visited in Foursquare

Figure 10: Response time and number of visited vertexes by varying the reach grid resolution

pruning sub-graphs than RMBRs. However, that comes at the cost of higher storage

overhead according to Table 4.

3.4.4.3 MBRatio

RBRatio varies between 0 and 1 in our experiment. GRRatio is fixed to 0. Hence,

there is no ReachGrid in the index. All SIP are RMBRs and GeoBs but with different

proportions. Table 4 shows that increasing RBRatio leads to better performance in

terms of query response time. Since RMBR is a more precise representation of the

spatial reachability information than GeoB, more RMBRs can reduce the overall query

response time. When RBRatio increases, fewer RMBRs will be downgraded to GeoB.

49

The query response time of GeoExpand with different RBRatio value settings proves

that RMBR is more powerful than GeoB in pruning vertexes/edges during the query

execution. The trade-off between on-line query and storage overhead is unavoidable,

which is depicted in Table 4.

GRRatio
Setting Value 0.01 0.02 0.03

Index Size (MB) 445 461 493
Query Time (s) 444.885 305.681 266.718

MBRatio
Setting Value 0 0.5 1

Index Size (MB) 131 156 173
Query Time (s) 591.823 479.322 376.821

Table 4: Tuning GeoExpand’ s Parameters

50

Chapter 4

RISO-TREE: GRAPH-AWARE SPATIAL INDEX

In this chapter, we demonstrate Riso-Tree, an index that efficiently answers GraSp.

The SpaIndex strategy utilizes the spatial index to filter the spatial objects that

cannot satisfy the spatial predicate in GraSp. However, such a strategy searches the

spatial index regardless of the graph information on the spatial objects. Riso-Tree

augments the R-Tree index with neighboring graph information. Riso-Tree facilitates

the graph-aware spatial index search by pruning sub-graphs that are guaranteed not

to satisfy the spatial predicate.

4.1 Index Structure

Definition 1 Given a graph database G = {V,E, ϕ, ψ} and L where L is the set of

all labels in the graph, a label path p can be defined as p = L∗.

Here p is a sequence of labels generated by Kleene star operation on L. A label path

does not include real vertex in the data graph. The length of p is the number of hops in

p, denoted as |p|. It represents a path pattern. Use p[i] to denote the label at a specific

position. So p[2n] and p[2n+ 1] (n = 0, 1,..., |p|) represent the labels of vertexes and

edges in p respectively. If a real data path p′ in the graph can satisfy ϕ(p′[2n]) = p[2n]

and ψ(p′[2n+ 1]) = p[2n+ 1] for n = 0, 1, ...,, which means all labels of vertexes and

edges on the data path p′ can be mapped correctly from p; hence, we say p′ can match

p. For example, in Figure 3, p = Group− [Member]− Person− [V isit]− Place is

a label path with length of 2. p[0] is Group and p[1] is Member. The data path

51

R1 R2

R3 R4 R5 R6 R7

s
1

s
2

s
3

s
7

s
8

s
9

s
4

s
5

s
6

s
13

s
14

s
15

s
10

s
11

s
12

R4

path PN

paths

. . .… …

. . .

. . .

. . .

. . .

Figure 11: Riso-Tree Memory Structure

p′ = G1− [Member]−Bob− [V isit]− s13 is a real path in the graph that can match

p.

Given two vertexes u′ and v′, if there exists at least one path p′ between them that

can match p, we say that v′ is reachable from u′ through path p or u′ can reach v′

through p. It is denoted as u′ p−→ v′. In the example graph, vertex Bob is reachable

from s13 through a label path p = Place − [V isit] − Person and it is denoted as

s13
p−→ Bob. That said, Path Neighbor is defined as follows:

Definition 2 Given a Riso-Tree node R and a label path p in a graph G = {V,G},

Path Neighbor of R with respect to p (PNp
R) is the set of all vertexes in G that can be

reached through the label path p from at least one spatial vertex that lies within R.

PNp
R =

⋃
u@R

PNp
u

Example. In Figure 3, given a label path p1, Path Neighbor of s14 with respect

to p1 is PNp1
s4

= {Bob, Carol}. Another example, PNp2
R7 = {G1} since G1 is the only

vertex connected to the spatial vertex enclosed by R7 through the label path p2.

Basically, sub-graph entries stored in Riso-Tree nodes consist of label paths and

Path Neighbors. Figure 11 shows the memory structure of the Riso-Tree. Similar

52

to the R-Tree, each Riso-Tree node is represented by an MBR that encloses a set of

spatial objects (i.e., spatial vertexes) within its boundary. In addition, each node

also stores information about the sub-graph connected to the spatial objects enclosed

by the node’s MBR. Each leaf level node R stores a list of pairs 〈p, PNp
R〉, where

p is a label path and PNp
R is the Path Neighbor for such node R with respect to p.

For non-leaf nodes, only the label paths that exist from the spatial objects within R

will be recorded. The length of the considered label paths (i.e., number of hops) is

bounded by the predefined parameter VisBound. Label Paths longer than B will

not be taken into consideration by the Riso-Tree.

Non-selective Path Neighbor removal. In Riso-Tree, the Path Neighbors for a

subset of Label Paths can occupy a tremendous amount of space. That happens because

the selectivity of various graph labels can be skewed, and the graph connectivity to

each spatial region may vary significantly. In this case, the non-selective candidate set

may not lead to a considerable saving during the graph query processing step. Hence,

it is deemed inefficient to maintain non-selective Path Neighbors in the index structure.

Based on such an observation, we employ a strategy that reduces the overall storage

overhead. The idea is to only keep the selective Path Neighbors. Since selectivity

highly depends on the nature of each application, we defined a system parameter

PNmax (supplied by the user), which determines the upper limit of Path Neighbors for

each tree node. In other words, a Path Neighbor is considered selective and maintained

only if its size does not exceed PNmax. For non-selective Path Neighbors, only their

Label Paths are stored. In practice, an empty list will be stored with this Label Path.

By doing so, the removed Path Neighbors are differentiated from the non-exist Path

Neighbors. Non-exist Path Neighbor does not have Label Path while removed Path

Neighbors have the Label Path but with an empty list.

53

R1 R3 R4 R5

Place - [Visit] - Person Larry Joe Jane

Place - [Visit] - Person - [Friend] - Person Dan, Jane Alan, Bob Larry, Carol, Kate

Place - [Visit] - Person - [Visit] - Place s1, s2, s3 s4, s5, s6 s7, s8, s9

Place - [Visit] - Person - [Member] - Group G3 - -

R2 R6 R7

Place - [Visit] - Person Carol, Kate Carol, Kate, Bob

Place - [Visit] - Person - [Friend] - Person Jane Joe, Kate, Jane, Carol

Place - [Visit] - Person - [Visit] - Place s10, s11, s14, s15 {}

Place - [Visit] - Person - [Member] - Group G1 G1

Figure 12: Riso-Tree Path Neighbor Information Example

Figure 12 depicts an example of a sub-graph information for Riso-Tree structure,

which corresponds to the graph presented in Figure 3. In this case, VisBound is set

to 2, which means only paths with the length shorter than or equal to 2 are considered.

PNmax is set to 4. Non-leaf nodes, e.g., R1 and R2, only store existing label paths. All

their paths are listed in the corresponding tables. Both of them have 4 Label Paths.

On the other hand, leaf nodes store Path Neighbors. For instance, the sub-graph

information on R4 is organized by three Label Paths. Path Neighbor with respect to

each Label Path is listed in the table as well. For R4 and R5, the dash symbol means

they do not have that Label Path. So no information is stored. Different from R4 and

R5, R7 has an empty Path Neighbor because it is {s10, s11, s13, s14, s15} and its size

exceeds PNmax.

54

Algorithm 8 Construction through insertion
1: Insert(Node root, Vertex s)
2: Leaf Node R← ChooseLeaf(root, s)
3: Add s into R
4: AdjustTree(R, true, true)
5: if R is full then
6: NodeSplit(R)
7: end if

4.1.1 Initialization

The first step of the initialization process is to lay out the Riso-Tree skeleton.

Similar to the R-Tree, each spatial object will be inserted into a leaf node until all

spatial objects are processed. Algorithm 8 shows the pseudo-code of the insertion

operation. The algorithm calls ChooseLeaf (Line 1) to determine the target leaf

node R and insert s to R (Line 3). Then AdjustTree is exploited to adjust MBR

and Path Neighbor if necessary (Line 4). When one node is full, it is split into two new

nodes using NodeSplit (Line 6). In the following, we demonstrate each component

in detail.

Choose Leaf. In the R-Tree construction algorithm, it chooses the target leaf for

insertion which minimizes spatial area enlargement. By doing so, the dead space in

each node is minimized. In Figure 13, R1 and R2 are two leaf nodes enclose {s1, s2,

s3} and {s4, s5, s6}, respectively. A spatial vertex s7 is inserted and the algorithm

needs to decide which leaf node is the target for the insertion. The spatial area

enlargements are 0.015 and 0.01 respectively. s7 will be inserted into R2 because the

area enlargement of R1 is smaller in this case. As opposed to the R-Tree, however,

spatial objects indexed by the Riso-Tree are part of the graph. Hence, the construction

of Riso-Tree takes into account how such objects are connected to other vertexes

55

in the graph as well. A new distance function integrating both spatial and graph

information is proposed for Riso-Tree construction. Similar to spatial area expansion,

we define the graph Path Neighbor expansion (GPE) as follows:

GPE(R, s) =

∑
|p|≤1 |PNp

s − PN
p
R|

|V |
(4.1)

where R is a tree node in Riso-Tree and s is the spatial object to be inserted. GPE

is defined on the Path Neighbor difference (expansion) if inserting s into R. The

definition considers the paths whose length does not exceed 1. The reason is the size

of the Path Neighbors can be huge if its length is larger than 1, which requires high

computation cost. GPE is normalized by |V |, the total number of vertexes in the

graph.

Then we define the normalized spatial area enlargement as follows:

SE =
AreaEnlargement

AS

(4.2)

where AS is the area of region that covers all the spatial vertexes in the graph. Based

on SE and GPE, we define a holistic enlargement SGE considering both spatial and

graph aspects:

SGE = αSE + (1− α)GPE (4.3)

Here α is a user-defined parameter which controls the impact of SE and GPE.

Algorithm 9 depicts the pseudo-code of ChooseLeaf function. It returns the

target leaf node in the Riso-Tree rooted at root for the insertion of a spatial vertex

s. ChooseLeaf is called recursively to select the insertion location from the root

node to the leaf node level (Line 6). At each tree level, the algorithm picks up the

target node among all the children of the current root node. The child node with the

smallest SGE is selected as the target node (Line 5).

56

Algorithm 9 Choose the leaf node for the insertion
1: ChooseLeaf(Node root, Vertex s)
2: if root is leaf then
3: return root
4: end if
5: target← argminR(SGD(R, s)), R ∈ root.children
6: return ChooseLeaf(target, s)

R2
R1

s4

s5

s1

s2

s3
s6s7

p1 {a1, a5}

p2 {b1, b2}

p3 {c1, c2, c3, c4}

p1 {a1, a2, a3, a4}

p2 {b1, b2}

p3 {c1, c2, c3}

R1 R2

p1 {a1, a5}

p2 {b1, b2}

s7

0.015

0.01

Figure 13: Insert a spatial vertex

Figure 13 depicts a real example of inserting a spatial vertex s7 into the Riso-Tree.

Assume the Path Neighbor of R1, s7 and R2 are as shown in the table. R1 and R2

are two target Riso-Tree nodes for the insertion. SE(R1, s7) = 0.015 and SE(R2,

s7) = 0.01 respectively. Considering only the spatial proximity in R-Tree, s7 will be

inserted into R2 because the area enlargement of R1 is smaller. Assume that there

are 50 vertexes in the graph (|V | = 50) and α = 0.5. If we consider graph proximity

in Riso-Tree, GPE(R1, s7) = 0 and GPE(R2, s7) = 1/50 = 0.02. So SGE(R1, s7) =

0.5× 0.015 + 0.5× 0 = 0.0075, SGE(R2, s7) = 0.5× 0.01 + 0.5× 0.02 = 0.015. In

this case, s7 is inserted into R1. So the target node is different from only considering

SE in the previous example.

The motivation behind using GPE as the new metric is to keep the Path Neighbors

as compact as possible, which in turn reduces the storage overhead. By inserting s7

into R2 will make PNp1
R2 change to {a1, a2, a3, a4, a5}. But inserting s7 into R1 will

57

Algorithm 10 Adjust MBR and Path Neighbor of a Node
1: AdjustTree(Node R, Boolean MBRCheck, Boolean PNCheck)
2: if MBRCheck = true then
3: Adjust R.MBR
4: if MBR remains the same after adjustment then
5: MBRCheck←false
6: end if
7: end if
8: if PNCheck=true then
9: Adjust PNR

10: if PNR remains the same after adjustment then
11: PNCheck←false
12: end if
13: end if
14: if MBRCheck ∨ PNCheck then
15: AdjustTree(R.parent, MBRCheck, PNCheck)
16: end if

not enlarge any Path Neighbor of R1. If s7 is inserted into R2, a5 will be stored in

both nodes R1 and R2.

Adjust Tree Node. After a spatial vertex is inserted into the proper leaf node,

the algorithm will update the MBR and Path Neighbor of the leaf node accordingly.

Algorithm 10 shows the pseudo-code of the adjustment. The algorithm expands

the MBR and Path Neighbor to cover the inserted spatial vertex. MBRCheck and

PNCheck are the flags to indicate whether MBR and Path Neighbor are modified or

not. If anyone is not modified, the algorithm set the corresponding flag to false (Line

5 and 11). If either flag is true, the algorithm updates the parent node recursively

(Line 15). Otherwise, the algorithm terminates the adjustment.

Node Splitting: Algorithm 11 shows the pseudo-code of full node split. First,

two objects within the full node will be selected as seeds. The two seeds are the first

object of each new node. Then the remaining objects will be reassigned to each new

node. In an R-Tree, both pick-up and re-assignment only consider spatial proximity.

58

Algorithm 11 Split a full node
1: NodeSplit(Node R)
2: O ← R.children
3: (o1, o2)← argmax(o1,o2)SGE(o1, o2), o1, o2 ∈ O
4: Initialize two nodes, r1 ← {o1}, r2 ← {o2}
5: O ← O − {o1, o2}
6: while O 6= ∅ do
7: o← argmaxr|SGE(r1, o)−SGE(r2, o)|, o ∈ O
8: Insert o into the node with smaller SGE
9: AdjustTree(r, false, false)

10: O ← O − {o}
11: end while

In the Riso-Tree full node splitting, the algorithm again considers both spatial and

graph proximity. Equation 4.3 is exploited to evaluate the combined proximity. The

pair of spatial objects with the maximum SGE will be selected as the new seeds (Line

3). Each seed will form a new node, denoted as r1 and r2 respectively. Each time,

one remaining object with the largest SGE difference between r1 and r2 is processed

(Line 7) and inserted into the node with smaller SGE (Line 8). Then AdjustTree is

called to update the MBR and Path Neighbors (Line 9). The procedure will continue

until all spatial objects are correctly assigned to the new nodes.

Path Neighbor Computation and Removal. After the tree skeleton is con-

structed, the algorithm computes the sub-graph entries for each node in the Riso-Tree.

The sub-graph entries are constructed in a bottom-up manner. Starting from each

leaf node in the Riso-Tree, the algorithm computes its Path Neighbors according to

the following equation:

PNp
R =

⋃

u@R
v ∈ Adj(u), ϕ(v) = p[2], ψ(u, v) = p[1] |p| = 1

⋃
u∈PNp′

R

v ∈ Adj(u), ϕ(v) = b, ψ(u, v) = a p = p′ − [a]− b.

The algorithm first calculates the node’s 1-hop Path Neighbors (|p| = 1) based on

adjacent neighbors of the spatial objects enclosed by this Riso-Tree node. The returned

59

Path Neighbors are divided into different groups according to the different Label Paths.

After the 1-hop Path Neighbors are constructed, the algorithm computes the 2, 3, ...,

B-hop Path Neighbors one after another. Non-leaf nodes are processed from lower

to higher levels in the Riso-Tree. Existing Label Paths for each non-leaf node will

be accumulated from all its children nodes. During the Path Neighbor construction

phase, the size of each PN is compared with PNmax. If |PN | ≤ PNmax, then PN

is maintained for this node. Otherwise, the algorithm removes it. A removed Path

Neighbor is stored as an empty list. When computing k-hop Path Neighbors based on

k − 1-hop Path Neighbors, the algorithm may encounter an empty list in k − 1-hop

Path Neighbors. If this happens, the initialization algorithm will skip the empty list.

So all the k-hop Path Neighbors that have the empty k − 1-hop Path Neighbor as the

prefix will not exist.

Example. Given the Riso-Tree in Figure 11 (B = 2, PNmax = 4), the algorithm

computes 1-hop Path Neighbor for all leaf nodes, including R3, R4, R5, R6, R7. For

instance, Path Neighbor of R7 with respect to the label path p1 PNp
R7 =

⋃
s@R7

{u′|s p1−→

u′}) = {Bob, Carol, Kate}. At this hop, no Path Neighbor is removed because none

of them exceeds PNmax. The algorithm then computes 2-hop Path Neighbor. For

instance, Path Neighbor of R7 with respect to a label path p2 PNp2
R7 =

⋃
v∈PN

p1
R7

{u′|v →

u′, ϕ(u′) =Group, ψ(v, u′) =Member} = {G1}. Again, the algorithm checks the size of

each Path Neighbor and PNp3
R7 is set with an empty list.

Riso-Tree Overhead Analysis. Two components contribute to the Riso-Tree

storage cost (Sriso): (i) The size of the tree structure denoted as Stree (ii) Path

Neighbor information denoted as SPN . Let the fanout of the tree be f and total

number of spatial vertexes be |VS|, then the number of levels of Riso-Tree is logf |VS|.

So Stree =
∑logf |VS |

i=0 f i. SPN consists of Path Neighbors and all the existing label

60

paths. Path Neighbors are computed based on k-hop neighbors for all spatial vertexes

in the network for 0 < k ≤B. Denote the average degree of the graph as d. The

number of vertexes reachable by all spatial vertexes at specific hop k is dk|VS|. Denote

the average number of labels each vertex possesses as l. The size of Path Neighbors is∑B
k=1 d

kl|VS|. For each node in the Riso-Tree, the maximum number of label paths it

can have is determined by the total number of labels in the graph. Assume that the

total number of labels is denoted by |L|. Then, each Riso-Tree node can possess at

most
∑B

k=1 |L|k paths. In total, the number of Riso-Tree nodes is
∑logf |VS |

i=1 f i. So the

size of label paths is at most (
∑B

k=1 |L|k)(
∑logf |VS |

i=1 f i). To sum up, Sriso is as follows:

Sriso =

logf |VS |∑
i=0

f i +

B∑
k=1

dkl|VS |+ (
B∑

k=1

|L|k)(
logf |VS |∑

i=1

f i)

≈ (dBl +
|L|B

f
+ 1)|VS |

The time for building the index (Triso) also consists of two parts, the tree skeleton,

and the Path Neighbor information, denoted as Ttree and TPN respectively. The tree is

constructed by keeping inserting new spatial objects. Each insertion needs to find the

leaf node to store the inserted spatial object. It takes logf |VS| time. As a result, Ttree

= |VS|logf |VS|. The construction time for Path Neighbor information also consists

of two parts: (1) computing Path Neighbors for leaf nodes and (2) accumulating

label paths for non-leaf nodes. The construction needs to access both Riso-Tree

nodes and graph vertices. Similarly, the time to compute PN is
∑B

k=1 d
kl|VS| with

respect to number of vertices being accessed. To perform such computation, the

algorithm also needs to iterate through all the leaf nodes of Riso-Tree, which is |VS |
f
.

61

Recognize
Anchor Paths

Riso-Tree
Search

Query Graph

R1 R2

R3 R4 R5 R6 R7

s1 s2 s3 s7 s8 s9s4 s5 s6 s13 s14 s15s10 s11 s12

R4

path PN

paths

. . .… …

. . .

. . .

. . .

. . .

Anchor
Paths

Query Rewrite
& Execute

Reduced
Candidate

{s1, s2}

{u3, u4}

{v2, v3}

match Q where
id(s) in {s1, s2},
id(u) in {u3, u4},
id(v) in {v2, v3}

Result

Figure 14: GraSp Query Solution Framework

Then accumulating label paths needs to access the whole Riso-Tree once, which takes∑logf |VS |
i=0 f i. In total, Triso can be represented as follows:

Triso = |VS |logf |VS |+
B∑

k=1

dkl|VS |+
|VS |
f

+

logf |VS |∑
i=0

f i

≈ (logf |VS |+ dBl +
2

f
)|VS |

4.2 Query Processing

GraSp queries, including GraSp-Range, GraSp-KNN and GraSp-Join can be solved

by using the framework illustrated in Figure 14. It consists of three main steps:

1. Step I: Recognize Anchor Paths;

2. Step II: Riso-Tree Search;

3. Step III: Query Rewrite and Execute.

First, the algorithm recognizes anchor paths (RecognizePaths), which extracts

the information of the query graph. All paths connected to the spatial query vertex

are extracted and used as constraints for Riso-Tree search. Then, Riso-Tree is searched

by following the corresponding algorithm for different types of GraSp queries. The

62

search space is pruned to reduced candidate sets. In the final step, the input graph

query is rewritten on top of the reduced candidate sets. The new queries are executed

by GDBMS to produce the query result. Step I is shared by all categories of GraSp

queries. Step II and III are designed differently for each category. In the rest of this

section, we explain details of RecognizePaths and a key component of searching

Riso-Tree called CheckPaths which works for all types of GraSp queries. Details of

Step II and III will be discussed in the solution of each type of GraSp query.

4.2.1 Recognize Anchor Paths

In the first step, the algorithm finds all the possible label paths in the query graph

that are connected to the spatial query vertex belonging to a spatial predicate. We

call such label path APath. It is formally defined as follows:

Definition 3 An APath is a label path p that starts from the spatial query vertex

with a spatial predicate and satisfies |p| ≤B, where B is the maximum length of label

paths in the Riso-Tree. Such a spatial query vertex is called anchor vertex and the

end vertex on the other side of the APath is called kite vertex.

For the graph query given in Figure 3, a spatial range predicate is specified on the

query vertex of type Place. In that case, Place is the anchor vertex for such a spatial

predicate. RecognizePaths detects two APaths, p1 = Place − [V isit] − Person

and p2 = Place− [V isit]− Person− [Member]−Group. The kite vertexes for the

two APaths are Person and Group respectively. Basically, the set of APaths of a

given anchor vertex depicts the graph path information of the B-hop neighbors of this

anchor vertex.

63

4.2.2 Check Paths In Riso-Tree

The APaths are generated in Step I can be utilized in search Riso-Tree for different

GraSp query purposes. A key difference between Riso-Tree and existing spatial indexes

is that it is facilitated with rich graph information. A component function called

Check Paths (CheckPaths) will utilize the APaths to search Riso-Tree. It determines

whether the current Riso-Tree node can satisfy the constraint of a given set of APaths.

Algorithm 12 demonstrates the pseudo-code of CheckPaths function. Check-

Paths takes input as a set of APaths and a Riso-Tree node and determines whether

this node contains all the APaths. If there is any path p ∈ APaths that does not

exist in R.paths, the algorithm will return false, which means that there is no spatial

vertex within R that is connected to p. The algorithm will return true if and only

if R owns all the label paths in APaths. Because some Path Neighbors are removed

Riso-Tree, the existence validation for each Label Path needs to not only check the

path itself (Line 3), but also its the prefix paths. If there exists a prefix path p′ that

|PNp′

R | = 0 which means it is removed, p will also be treated as existing (line 6). The

algorithm is correct because it only allows false positives. No qualifying Riso-Tree

nodes are pruned wrongly.

For instance in Figure 3, if the leaf node R6 is checked whether it can satisfy

the graph constraint with the APaths {p1, p2}, the function will verify |PNp1
R6| and

|PNp2
R6|. According to the stored Path Neighbor information shown in Figure 12, both

p1 and p2 are included in R6. Then CheckPaths will return true in this case. If

R4 is checked towards these two APaths, then it will return false because p2 is not

included by R4.

64

Algorithm 12 Check Paths Algorithm
1: CheckPaths(Anchor Paths APaths, Node R)
2: for each path p in APaths do
3: if path ∈ R.paths then
4: continue
5: end if
6: if exists a prefix path p′ of p that |PNp′

R | = 0 then
7: continue
8: end if
9:

10: return false
11: end for
12:
13: return true

4.2.3 GraSp-Range

GraSp-Range query is a graph query with at least one spatial range predicate.

Each spatial range predicate is represented as 〈s,Q〉, where s is a query vertex in the

query graph and Q is a spatial rectangle. Recall that the main framework consists

of three main steps, RecognizePaths, Riso-Tree search, and Query Rewrite and

Execute. We will focus on Riso-Tree search and Query Rewrite and Execute in this

section.

Once all the APaths are obtained, the algorithm searches the Riso-Tree to generate

the reduced candidate sets for the input anchor vertex and its kite vertexes. That

way, Riso-Tree can prune: (a) the spatial search space based on sub-graph information

stored in each Riso-Tree node, and (b) the graph search space based on spatial indexing

entries in the Riso-Tree. For each spatial predicate 〈s,Q〉, the algorithm searches the

Riso-Tree starting from the root node. For each visited node, the algorithm prunes

children nodes whose MBRs are not overlapping with Q. The algorithm also prunes

the Riso-Tree nodes that do not contain any spatial vertex that can be matched to

65

the query graph. CheckPaths checks the graph constraint to prune unpromising

branches in the Riso-Tree.

When the search reaches the leaf level, the algorithm takes advantage of Path

Neighbor stored on this level to generate the reduced candidate sets for the anchor

vertex and its kite vertexes. The reduced candidate sets for kite vertexes and anchor

vertex are generated in different manners. For a kite vertex, its APath is a constraint

on it because this kite vertex needs to be connected to the corresponding query range

Q through its APath. The reduced candidate set for a kite vertex with respect to

such APath can be computed by using the following equation:

PNp
Q =

⋃
PNp

Ri
, Ri ∩Q 6= ∅ ∧CheckPaths(Ri, APaths) (4.4)

where Ri is a leaf node of Riso-Tree that overlaps with Q and satisfies the graph

constraint. Path Neighbors for Q with respect to p should be the union of Path

Neighbors of these leaf nodes. Because of the existence of removed Path Neighbors,

the equation needs some adjustment. If any PNp
Ri

is an empty list, PNp
Q will be set

as the full set of the vertexes that can match kite vertex. It means that the candidate

set of the kite vertex is not reduced. Recall that these removed Path Neighbors are

not selective, so it does not influence the query performance much.

Example. Consider one of the APaths p1 for the query in Figure 3 as an example.

The leaf nodes that can satisfy both the spatial and graph constraints are R6 and R7.

The reduced candidate set PNp1
Q = PNp1

R6 ∪ PN
p1
R7 = {Bob, Carol, Kate} ∪ {Carol,

Kate} = {Bob, Carol, Kate}. So the candidate set for Person is reduced from 8 to 3.

To obtain the reduced candidate set of an anchor vertex, the algorithm iterates

through all the spatial objects that lie within the extents of each leaf node that

survives both spatial and graph constraints. For each spatial vertex, the algorithm

checks whether it is located within the query rectangle. Since branches that cannot

66

Algorithm 13 GraSp-Range Riso-Tree Search
1: Function SearchTree(Node root, Predicate 〈s,Q〉)
2: APaths← RecognizePaths(〈s,Q〉)
3: VisitTreeNode(root, 〈s,Q〉, APaths)
4: return {〈u, p,PNp

Q〉}

1: Function VisitTreeNode(node, 〈s,Q〉, APaths)
2: if node is a non-leaf node then
3: for each 〈R, child〉 ∈ node do
4: if R ∩Q 6= ∅ and CheckPaths(APaths, child) then
5: VisitTreeNode(child, 〈s,Q〉, APaths)
6: end if
7: end for
8: end if
9: if node a leaf node then

10: for each p ∈ APaths do
11: PNp

Q ←PN
p
Q∪PN

p
R

12: for each spatial object o ∈ node do
13: if o @ Q then
14: PN s

Q ← PN s
Q ∪ {o}

15: end if
16: end for
17: end for
18: end if

satisfy the graph constraint have been pruned, the size of the candidate set will be

smaller than using the traditional range query solution. For the query in Figure 3,

the candidate set for s is {s5, s8, s10, s11, s13, s14, s15} using the traditional approach.

With the help of Riso-Tree, the search can prune R4 and R5 because they do not

contain all the APaths. So s5 and s8 will not be in the candidate set for Place. The

final candidate set will be {s10, s11, s13, s14, s15}.

Algorithm 13 shows the pseudo code of Riso-Tree search. The search algorithm

takes as input the root node of the Riso-Tree root and a spatial range predicate 〈s,Q〉.

The output of the algorithm is the reduced candidate sets for the kite vertexes and

anchor vertex. The algorithm first detects all the APaths for the given anchor vertex

67

(Line 2). Then these APaths are used in the function VisitTreeNode (Line 3).

Inside the VisitTreeNode function, the algorithm follows a recursive way to search

the Riso-Tree. Riso-Tree nodes that cannot satisfy the spatial constraint or cannot

pass the CheckPaths validation will be skipped during the search (Line 4). The

candidate sets for kite vertexes and the anchor vertex are constructed at the leaf level

(Line 14).

Notice that each candidate set is with respect to each APath. A kite vertex or

anchor vertex can exist in different APaths. This can happen when a query vertex

is connected to one range predicate through different paths or to different range

predicates. As a result, before the Query Rewrite and Execute, the same query vertex

belonging to different APaths requires a merging step. A set intersection operation

will be executed on the candidate sets belonging to the same query vertex. This

step will further reduce the candidate set size (search space). Based on the reduced

candidate sets of kite vertexes and anchor vertexes, the algorithm performs the Query

Rewrite and Execute step. The original query will be kept but augmented with more

components generated from the new candidate sets.

Example. Consider the GraSp-Range in Figure 3 as a running example. There is

only one spatial predicate 〈Place,Q〉 in the query. All the APaths are {p1, p2}. There

are two kite vertexes, Person and Group and one anchor vertex, Place. The Riso-Tree

search will start from the root node. Both R1 and R2 overlap with Q and include

both APaths p1 and p2. Among all the children of R1, R3 cannot satisfy the spatial

constraint. R4 and R5 cannot satisfy the graph constraint. So they are all pruned.

For node R2, both its children R6 and R7 overlap with Q and pass the CheckPaths

validation. Then the reduced candidate sets will be constructed based on leaf nodes

R6 and R7. The new candidate sets for Person, Group and Place are constructed

68

as {G1}, {Bob, Carol, Kate} and {s10, s11, s13, s14, s15} respectively. By calling the

SearchTree algorithm, the reduced candidate sets for Group, Person, and Place

are constructed as {G1}, {Bob, Carol,Kate} and {s10, s11, s13, s14, s15} respectively.

Since each kite vertex and anchor vertex belong to only one APath, the candidate set

merge step will do no computation. Finally, the algorithm rewrites the query based

on the new candidate sets. The new query will be rewritten as follows:

Query 1 MATCH (G:Group)-[:Member]-(per:Person)-[:Visit]-(pl:Place) WHERE

Within(pl, Q) and g in {G1} and per in {Bob, Carol, Kate} and pl in

{s10, s11, s13, s14, s15}.

When comparing the query with the one in Figure 3, Query 1 keeps the query graph

main body. Besides that, more predicates regarding g, pl and s are added into the

WHERE clause. These new predicates work for reducing the candidate sets of query

vertexes in the query graph pattern. Finally, such an query will be executed by the

GDBMS.

4.2.4 GraSp-KNN

GraSp-KNN integrates a KNN predicate into a graph query. The format of a KNN

predicate is 〈s, loc,K〉, where s is the spatial query vertex in the graph and loc is the

input searched location. The query will return top-K closest spatial vertexes from

location loc that can satisfy the query graph. The SpaIndex strategy can be utilized to

execute a GraSp-KNN query by extending the classic KNN query processing algorithm,

as follows: It first finds the next closest spatial object by using the incremental KNN

algorithm. For each spatial object, the algorithm then checks whether it can satisfy the

query graph. If it can satisfy the graph constraint, add it to the result set. Otherwise,

69

Algorithm 14 Algorithm of GraSp-KNN
1: Function GraSp-KNN(Gq, SPKNN = 〈s, loc,K〉)
2: result← ∅
3: APaths← RecognizePaths(Gq, SPKNN)
4: q ←NewPriorityQueue()
5: if CheckPaths(roots, APaths) = false then
6: return result
7: else
8: Enqueue(q, roots, 0)
9: end if

10: while |result| ≤ K and q 6= ∅ do
11: e← Dequeue(q)
12: if e is a non-leaf node then
13: for each child of e do
14: if CheckPaths(child, APaths) = true then
15: Enqueue(q, child, Dist(loc, child))
16: end if
17: end for
18: else if e is a leaf node then
19: for each child of e do
20: Enqueue(q, child, Dist(loc, child))
21: end for
22: else
23: Query Rewrite and Execute on e
24: if At least one matching is found then
25: result.Add(e)
26: end if
27: end if
28: end while

fetch the next closest spatial vertex and perform the same operation until K satisfying

objects are found. Such an approach is still inefficient since so many spatial objects

that cannot satisfy the graph constraint will still be accessed. Furthermore, the

validation of the graph query constraint(s) is very time-consuming. To remedy that,

our proposed GraSp-KNN query processing algorithm exploits the Riso-Tree to prune

unnecessary tree branches as early as possible to reduce the amount of graph constraint

validation.

70

R2
s1

s2
R3

s3

s4

v2

R1

v1u2

u1

SpaIndex RisoTree

R1 R1

R2, R3 R2

s4, s3, R2 s2, s1

s3, R2 s1

R2

s2, s1

s1

Figure 15: Query Example for GraSp-KNN

Algorithm 14 shows the pseudo code of the GraSp-KNN query processing algorithm.

The algorithm takes as input a query graph Gq and a KNN predicate 〈s, loc,K〉. The

first step is still to recognize the APaths with respect to the anchor vertex s (Line

3). A priority queue q is used and the sorting key is the distance between an object

(either a Riso-Tree node or a spatial object) and the query location loc. The root node

roots of the Riso-Tree is accessed first. If all the APaths are included in the paths

connected to roots, then roots is enqueued to q (Line 8). Each time, the head element

e will be dequeued (Line 11). Basically, e can be a non-leaf node, a leaf node or a

spatial object. If e is a non-leaf node, for each child of e, it is checked towards all the

APaths by using CheckPaths function. If the function returns true, such child node

will be enqueued along with its distance to loc (Line 15). If e is a leaf node, each child

of e which is a spatial object will be directly enqueued (Line 20). For the final case

that e is a spatial object, the algorithm will rewrite the graph query that maps s to e,

and execute the query (Line 23). If there is at least one qualifying map, e is added to

the result. Such procedure continues until K objects are found or q is empty.

Example. Figure 15 shows an example of GraSp-KNN. The query location loc

is drawn with a red cross in the figure. The query is (v − u − s, 〈s, loc, 1〉). In the

GDBMS, the corresponding Cypher query is as follows:

71

Query 2 MATCH (v’ : v) – (u’ : u) – (s’ : s) RETURN Dist(s’, loc) AS dist ORDER

BY dist LIMIT 1.

So the aim of this query is to find the closest s vertex from loc that can satisfy v−u−s.

The table in Figure 15 depicts the elements in the queue for SpaIndex and Riso-Tree

approach during the query processing. By searching the spatial index, SpaIndex first

accesses the spatial objects s4 and s3 within R3 in sequence. The query for s4 will be

rewritten to

Query 3 MATCH (v’ : v) – (u’ : u) – (s’ : s) WHERE id(s’) = s4 RETURN s’.

The query pattern is kept while the KNN predicate is reduced to only vertex s4.

However, such a query will return an empty set because the sub-graph at s4 does not

satisfy the query graph pattern. Similarly, the rewritten query for s3 returns nothing.

Then R2 is dequeued and its children are enqueued. Finally, s2 is found as the final

result. But, Riso-Tree can avoid accessing spatial objects within R3. The reason is

that the existing paths for R3 are v − u and v which does not include the APaths (u

and u− v) of the query.

4.2.5 GraSp-Join

GraSp-Join query is a graph query with at least one spatial join predicate that

joins two sets of spatial vertexes in the graph database. A spatial join predicate is

commonly used in geospatial analytics. It can be any spatial relationship between

spatial objects, such as overlap, enclosed by, within distance, etc. Without loss of

generality, we present our work based on the “Within distance” spatial join operator,

which means that two spatial objects need to be within a given distance from each

72

other. The format of the spatial join predicate is SPq = 〈s, t, dist〉, where s and t

are the spatial query vertexes included in the distance join predicate and dist is the

distance value. An example query is to find all the pairs of friend vertexes in a social

graph who live within 1km from each other. The query can be written in Cypher as

follows:

Query 4 MATCH (p1:Person) – (p2:Person) WHERE Dist(p1, p2) ≤ 1 RETURN

p1, p2

The join predicate is represented by the Dist function. Similar to performing spatial

join by using R-Tree, the algorithm (see Algorithm 15) keeps pairs of nodes in the

Riso-Tree in a queue q. It starts by pushing the root nodes of Riso-Tree into q (Line

2) Each time, a pair of Riso-Tree nodes 〈nodea, nodeb〉 is dequeued. For each child of

nodea and nodeb, the algorithm checks both the join predicate and the graph constraint

by using CheckPaths function. The pairs that can pass the validation are enqueued

(Line 10). If the nodes are leaf nodes, each pair of spatial vertexes will be checked

against the spatial join predicate. The pairs that can satisfy the predicate will be

added to the candidate set (Line 17). The candidate set for the two anchor vertexes

in each join predicate is much smaller as compared to the SpaIndex approach. This

is because our algorithm filters out spatial vertexes that cannot satisfy the graph

constraint without searching the graph. Once the candidate set for all anchor vertexes

are generated, our approach rewrites the original query into a set of graph queries for

each pair of spatial objects to search for the sub-graphs that can satisfy the query

graph. Query 4 will be rewritten to:

Query 5 MATCH (p1:Person) – (p2:Person) WHERE id(p1), id(p2) in {(os, ot)}

RETURN p1, p2

73

Algorithm 15 GraSp-Join Algorithm
1: Function GraSp-Join(Gq, SPjoin = 〈s, t, dist〉)
2: 〈APathss, APathst〉 ← RecognizePaths(Gq, SPjoin)
3: Queue q ← ∅
4: q.Enqueue(〈roots, roott〉)
5: while q 6= ∅ do
6: 〈nodes, nodet〉 ← q.Dequeue()
7: if nodes and nodet are non-leaf nodes then
8: for each childs of nodes and childt of nodet do
9: if CheckConstraint(childs, childt) = true then

10: q.Enqueue(〈nodes, nodet〉)
11: end if
12: end for
13: else
14: for each os @MBR(nodes) do
15: for ot @MBR(nodet) do
16: if Distance(os, ot)≤ dist then
17: Add 〈os, ot〉 into the candidate set
18: end if
19: end for
20: end for
21: end if
22: end while
23: Rewrite & Execute Query

where {(os, ot)} represents the candidate set for the join predicate.

4.3 Experiments

In this section, we experimentally evaluate the proposed approach. We use four

real datasets (Table 5): (1) Gowalla: geospatial graph dataset extracted from SNAP

datasets1 with 1477K vertexes, 9859K edges, and 1280K spatial vertexes. (2) Wikidata:

A Knowledge graph with ≈47 Million vertexes (≈6 Million vertexes are spatial) and

1https://snap.stanford.edu/data/loc-gowalla.html

74

≈245 Million edges. (3) Foursquare: a geospatial graph dataset [43] with 3296K

vertexes, 1143K spatial vertexes, and 19605K edges. (4) Yelp2: An urban graph

dataset (extracted from the Yelp Challenge dataset) with 629k vertexes (12% are

spatial) and 8503K edges.

Table 5: Graph Datasets (K = 103)

Dataset |V | |VS| davg davg(VS)
Gowalla 1477K 87% 6.67 3.11
Wikidata 47116K 12% 5.20 6.10

Foursquare 3296K 35% 5.95 0.78
Yelp 630K 12% 13.5 31.9

We compare Riso-Tree to the SpaIndex, GraphTraverse and GeoEnc approaches.

GeoEnc is the spatial encoding approach implemented in [29]. GeoEnc was imple-

mented for RDF stores and focuses on the entity encoding. From an execution strategy

perspective, it takes advantage of the optimizer of the RDF engine. So basically it

takes either GraphTraverse or SpaIndex strategy. There are two Riso-Tree approaches,

denoted as Riso* and Riso. α equal to 1.0 for both approaches. B has different setups

in different datasets. B is equal to 2 in Gowalla, Foursquare and Yelp datasets while is

set with 1 in Wikidata dataset. Riso has PNmax of ∞, which means it does not take

the Path Neighbor removal strategy. Riso* has PNmax of 80 and the Path Neighbors

whose size larger than 80 are removed from the index.

Implementation of Riso-Tree in Neo4j GDBMS. Neo4j GDBMS provides

full support for labeled property graph data. So the graph datasets are stored using

Neo4j in a straightforward manner. Vertexes and edges are stored with their labels

in the graph. The spatial location of a vertex is stored as a key-value pair using

2https://www.yelp.com/dataset_challenge

75

the property storage feature. The tree structure of Riso-Tree is stored as a graph in

Neo4j. Each node in Riso-Tree is stored as a single vertex in Neo4j. The leaf node

in Riso-Tree directly points to the spatial vertexes in the graph. The Label Paths

of a Riso-Tree non-leaf node are stored as a list property on the node. The Path

Neighbors of a Riso-Tree leaf node are stored a set of key-value pairs. Each Path

Neighbor is a key-value pair of (label_path, neighbor_list). The Riso-Tree index

search is performed by using the Neo4j Java API [31]. By using the Neo4j Java API,

our algorithm can access the children of a node in Riso-Tree. The spatial constraint

and Label Path constraint can be checked by accessing the properties of Riso-Tree

nodes. After the Riso-Tree search, the algorithm will form new Cypher queries based

on the candidate sets. In the final step, our algorithm will call the Neo4j Java API

which facilitates executing a given Cypher query and returns the result.

Query Generation. The query graphs are generated by exploiting a sub-graph

generator similar to that in the existing paper [38]. The sub-graph generator randomly

picks up a spatial vertex and a sub-graph around this spatial vertex is generated by

using a random walk. It can ensure that the query graph will definitely have sub-graph

matchings in the data graph. In the GraSp-Range, the spatial range selectivity is

evaluated by the number of spatial objects in the query range to the total number of

spatial objects in the graph.

A prototype of all approaches is implemented in Neo4j – a real open-source graph

database management system. The source code for evaluating query response time is

implemented in Java and compiled with java-8-openjdk-amd64. All experiments are

run on a computer with a 3.00 GHz CPU, 128GB RAM running Ubuntu 18.04.

We evaluate the compared approaches using the following metrics: (i) Initialization

time: the average time (in Seconds) each approach takes to construct all indexes and/or

76

auxiliary data structures necessary to answer a GraSp query, (ii) Storage overhead: the

disk space (in Bytes) used to store the index and auxiliary data structures, (iii) Query

response time: the average time the GDBMS takes to execute a GraSp query.

Impact of Spatial Selectivity on GraSp-Range. Spatial selectivities are

varied in four different datasets. Query graphs used in this section have the size of

3 in Gowalla, Foursquare and Yelp and size of 2 in Wikidata. For each setting of

selectivity, 50 queries are run and evaluated. The average running time is recorded and

demonstrated. Figure 16 shows the query time of different approaches. GraphTraverse

approach is the worst one most of the time, especially when the query is more selective

in space. The reason is GraphTraverse does not utilize the spatial indexing technique

to reduce the search space. SpaIndex can outperform GraphTraverse in all the datasets

except for the highest spatial selectivity case in Wikidata and Yelp datasets. It is

because R-Tree can reduce the size of the candidate set for the spatial query vertex

with the help of the spatial index. The reduction factor is determined by the spatial

selectivity. When the spatial predicate is less selective, more spatial vertexes lie

within the query rectangle. Hence, the query performance of SpaIndex becomes

worse at a high rate. Specifically, Yelp dataset has a high average degree for spatial

vertexes (31.89). The increase in the number of qualified spatial vertexes has a high

impact on the graph search performance. Similarly, Wikidata has a relatively higher

average degree for spatial vertexes. So in these two datasets, SpaIndex becomes worse

when the query is not selective in space. In all datasets, two Riso-Tree approaches

can outperform SpaIndex, GraphTraverse and GeoEnc in most cases. The reason

is two-folded. One is Riso-Tree not only exploits the power of spatial index but

also provides more pruning capacity compared with SpaIndex by using the stored

graph information. So it makes Riso* and Riso accesses less spatial index branches.

77

Meanwhile, candidate sets for query vertexes within B-hop distance from the spatial

predicates can be reduced by orders of magnitude by using Riso-Tree. The query

response time of Riso* and Riso tends to increase when there are more spatial vertexes

in the query range since the effect of reducing the size of candidate sets diminishes in

that case. But they are still better than their competitors. When comparing Riso*

with Riso, Riso* can almost achieve equivalent performance as Riso, except that when

selectivity is 0.001 in Gowalla dataset and selectivity is 0.01 in Yelp dataset. It can be

noticed that the selectivity is with larger values in these cases. It is reasonable because

with more spatial vertexes within the query rectangle, it has a higher probability to

meet the removed Path Neighbor during the search. Then Riso can outperform Riso*

because it keeps all pruning power of Riso-Tree. But considering the saving in storage

overhead, Riso* is a more scalable approach compared with Riso.

Impact of K on GraSp-KNN. Figure 17 shows the query time of different

methods by varying the value of K in the GraSp-KNN. The value of K are set as

1, 5, 25 and 125. The query graph used in this figure has the size of 3, 3,3 and 4 in

four datasets. In each dataset, 50 different queries are run for each value of K. The

average time of the 50 queries are demonstrated in the figure. As we can see, the query

time of GraphTr does not change when varying the value of K. It is because GraphTr

needs to enumerate all the matched subgraphs whatever the value of K is. Query

time of SpaIndex and Riso increases as K increases. Both approaches will utilize the

spatial index to find the closes spatial object and validate whether the spatial object

can be matched to the query graph. When the value K increases, it takes more time

to find more matched spatial objects. The query time of SpaIndex is even longer than

GraphTr in Foursquare dataset when the K is between 5 and 25. Foursquare dataset

has the smallest average degree for spatial vertexes (0.78). Spatial vertex have less

78

10−6 10−5 10−4 10−3

101

102

Query Range

Q
ue

ry
T

im
e(

s) GraphTr SpaIndex
GeoEnc Riso*
Riso

(a) Gowalla

10−6 10−5 10−4 10−3
0

100

200

300

Query Range

Q
ue

ry
T

im
e(

s)

GraphTr SpaIndex
GeoEnc Riso*
Riso

(b) Wikidata

10−6 10−5 10−4 10−3

101

102

Query Range

Q
ue

ry
T

im
e(

s)

GraphTr SpaIndex
GeoEnc Riso*
Riso

(c) Foursquare

10−4 10−3 10−2 10−1

0

500

1,000

Query Range

Q
ue

ry
T

im
e(

s)

GraphTr SpaIndex
GeoEnc Riso*
Riso

(d) Yelp

Figure 16: GraSp-Range query response time

neighbors and it they have lower possibility to satisfy the graph pattern constraint.

So it will take more time to find the qualifying spatial vertexes. Comparing Riso with

SpaIndex, Riso can always outperform SpaIndex by up to 10 times. Riso can take

advantage of the Riso-Tree to avoid going into some branches in the Riso-Tree that

are not relevant to the query graph. So Riso have smaller search spatial index search

space. Meanwhile, each spatial vertex will trigger a graph search to validate the query

graph match. Riso checks much fewer spatial vertexes than SpaIndex approach. This

is another reason why Riso outperform SpaIndex.

79

1 5 25 12510−1

100

101

The value of K

Q
ue

ry
T

im
e

(s
) GraphTr

SpaIndex
Riso

(a) Gowalla (|Q| = 3)

1 5 25 125
100

101

102

The value of K

Q
ue

ry
T

im
e

(s
) GraphTr

SpaIndex
Riso

(b) Wikidata (|Q| = 3)

1 5 25 125
10−1

100

101

102

103

104

The value of K

Q
ue

ry
T

im
e

(s
)

GraphTr
SpaIndex
Riso

(c) Foursquare (|Q| = 3)

1 5 25 125

100

101

The value of K

Q
ue

ry
T

im
e

(s
) GraphTr

SpaIndex
Riso

(d) Yelp (|Q| = 4)

Figure 17: GraSp-KNN (varying the value of K)

Impact of Query Graph Size on GraSp-KNN. Figure 18 depicts the query

time of GraSp-KNN by varying the query graph size (number of vertexes in the query

graph) in different datasets. The size of query graphs varies from 3 to 6. The value

of K is set to 50. For each setup of query size, 50 queries are run and the average

query time is recorded. For all the approaches, it tends to take longer processing

time when the size of the query graph increases. When the size of the query graph

increase, the complexity of the query graph leads to a higher cost to perform the graph

search to find qualifying sub-graphs. Such increasing cost will take effect in all the

80

methods even for SpaIndex and Riso because a graph search phase occurs after every

spatial object is fetched from the spatial index. But Riso still can always outperform

SpaIndex because Riso performs much less query graph validations than SpaIndex

in the graph search phase. Thanks to the pre-stored Path Neighbor information on

each node in the Riso-Tree, Riso method can prune many unpromising branches in

the spatial index. The pruned spatial vertexes will not appear in the graph constraint

validation phase, which means the graph search does not happen from these pruned

spatial vertexes. This is similar to what happens in the experiment of GraSp-KNN

with different values of K.

GraSp-Join Performance. To analyze the influence of spatial join distance, we

vary its value in the GraSp-Join. Figure 19 shows the query time all the datasets

under different join distances. The join distance varies between 0.0001, 0.0002, 0.0003

and 0.0004. The spatial data in the experiment is in longitude and latitude format.

Here the unit of the distance value is the degree. When the join distance increases, the

query time of both SpaIndex and Riso approaches increase because more qualifying

pairs of spatial vertexes are within the join distance. The query time of GraphTr

increases a much slower ratio when the join distance increases. The query graph

complexity has more influence on the the query time of GraphTr than the spatial

selectivity (join distance). The figures also show that Riso can achieve up to 10 times

better performance than SpaIndex approach. The performance of Riso will eventually

be worse than GraphTr when the join distance is large enough. This trend is obvious in

the Foursquare dataset that the query time GraphTr and Riso are almost equivalent.

Studying the indexing overhead. Table 6 shows the indexing overhead of

SpaIndex and two Riso-Tree approaches. Index overheads of Riso* and Riso are higher

81

3 4 5 6

100

101

102

103

Query Graph Size

Q
ue

ry
T

im
e

(s
)

GraphTr
SpaIndex
Riso

(a) Gowalla

3 4 5 6
100

101

102

103

104

Query Graph Size

Q
ue

ry
T

im
e

(s
)

GraphTr
SpaIndex
Riso

(b) Wikidata

3 4 5 6

101

102

103

Query Graph Size

Q
ue

ry
T

im
e

(s
)

GraphTr
SpaIndex
Riso

(c) Foursquare

3 4 5 6
100

101

102

103

Query Graph Size

Q
ue

ry
T

im
e

(s
)

GraphTr
SpaIndex
Riso

(d) Yelp

Figure 18: GraSp-KNN, varying the query graph size (K = 50)

than SpaIndex. It is because Riso-Tree will need to compute and store the Path

Neighbor graph information besides the spatial index (R-Tree). The difference between

SpaIndex and Riso-Tree approaches are related to the characteristics of the datasets.

For Yelp dataset, construction time of Riso* is four times longer than SpaIndex and

the index size is 100x larger than SpaIndex. It is because Yelp dataset has a high

average degree of spatial vertexes. This makes the size of Path Neighbors big when

the computation goes to 2-hop neighbors. But in Foursquare dataset, index size of

Riso* is only 4 times larger than SpaIndex. The reason is that Foursquare has a small

82

0.0001 0.0002 0.0003 0.0004

103

104

Join Distance

Q
ue

ry
T

im
e

(s
)

GraphTr
SpaIndex
GeoEnc
Riso

(a) Gowalla (|Q| = 5)

0.0001 0.0002 0.0003 0.0004

103

104

Join Distance

Q
ue

ry
T

im
e

(s
)

GraphTr
SpaIndex
GeoEnc
Riso

(b) Wikidata (|Q| = 5)

0.0001 0.0002 0.0003 0.0004

103

104

Join Distance

Q
ue

ry
T

im
e

(s
)

GraphTr
SpaIndex
GeoEnc
Riso

(c) Foursquare (|Q| = 5)

0.0001 0.0002 0.0003 0.0004
800

1,000

1,200

1,400

1,600

Join Distance

Q
ue

ry
T

im
e

(s
)

GraphTr
SpaIndex
GeoEnc
Riso

(d) Yelp |Q| = 6

Figure 19: GraSp-Join by varying join distance

average degree of spatial vertexes. Wikidata is denser than Foursquare but the index

size of Riso* in Wikidata is only twice higher than SpaIndex. It is because B is set to

1 in Wikidata. 1-hop Path Neighbor is a relatively light overhead. Index overhead of

Riso is higher than Riso* because Riso* has a smaller value PNmax. Table 6 shows

that index size of Riso* can be much smaller than Riso. The reduced ratio of storage

overhead in Gowalla, Wikidata and Yelp are 72%, 49% and 52% respectively. The

storage saving in Foursquare is only 12% because the majority of Path Neighbors in

83

Table 6: Indexing Overhead

Gowalla Build Time Index Size Foursquare Build Time Index Size
SpaIndex 304.69 s 57.08 MB SpaIndex 222.43 s 44.19 MB
Riso* 423.93 s 695.60 MB Riso* 240.88 s 161.28 MB
Riso 461.68 s 2530.27 MB Riso 244.39 s 183.49 MB

Wikidata Build Time Index Size Yelp Build Time Index Size
SpaIndex 1470.8 s 222.43 MB SpaIndex 12.70 s 2.99 MB
Riso* 1619.6 s 536.32 MB Riso* 58.77 s 454.58 MB
Riso 1658.7 s 1067.36 MB Riso 74.15 s 950.45 MB

Foursquare have small size due to its sparsity. So the removal strategy only applies to

a few Path Neighbors.

20 40 60 80

101.5

102

C
on

st
ru

ct
io

n
T

im
e(

s)

SpaIndex (B=0)
Riso (B=1)
Riso (B=2)

(a) Init. Time (Spatial Ratios)

20 40 60 80
101

102

103
In

de
x

Si
ze

(M
B

)
SpaIndex (B=0)
Riso (B=1)
Riso (B=2)

(b) Index Size (Spatial Ratios)

Figure 20: Indexing Overhead

Figures 20a and 20b show the indexing overhead for a synthetic dataset that

simulates various spatial to non-spatial vertexes ratios. The synthetic dataset consists

of 3775K vertexes and 16519K edges. We randomly pick up 20%, 40%, 60% and 80%

vertexes as spatial objects. Their location is randomly selected in a [0, 1000] × [0,

1000] 2D space. When the ratio of spatial vertexes increases, both the initialization

time and storage size of SpaIndex (B=0) increase. The reason is the size of the tree

skeleton is determined by the number of spatial objects. More spatial vertexes will

84

lead to more nodes at each tree level. Since more spatial vertexes and more tree nodes

exist, it takes a longer time and more space to construct and store Path Neighbors.

That also explains why the overhead of Riso (B=1) and Riso (B=2) is higher when

the number of spatial vertexes increases. When comparing the initialization time

and index size of Riso (B=1) and Riso (B=2), there is a huge difference because the

number of neighbors expands exponentially when the number of hops increases.

Impact of PNmax. Figure 21 shows the impact of PNmax on the index size in each

dataset. We change PNmax among 10, 40, 160, 640. PNmax controls the maximum

size of every Path Neighbor in Riso-Tree. So when PNmax is set to 10, it means no

Path Neighbor stored in Riso-Tree has size larger than 10. Riso does not remove any

Path Neighbors. So its index size is always the same for all PNmax values. Riso does

not have the limitation on the size of Path Neighbor or it can be treated as PNmax =

∞. So Riso is used as the baseline method because it sets the upper-bound for the

index size of Riso*. When PNmax becomes larger, index size increases towards that

of Riso in all four datasets. The reason is straightforward that there are fewer Path

Neighbors removed because of a higher threshold for the Path Neighbor removal.

For Riso* approach, it removes some Path Neighbors whose sizes exceed PNmax.

So all the Path Neighbors in Riso are divided into two parts. One is the remaining

Path Neighbors and the other is the removed Path Neighbors. When a PNmax is

selected, Riso* only keeps the qualifying Path Neighbors. The PN count ratio of

Riso* represents how many Label Paths of Riso are covered by the Path Neighbors

of Riso*. Its range is from 0% to 100%. A larger PN count ratio means less Path

Neighbors removed and the graph information is more accurate. So PN count ratio

becomes larger when PNmax increases. Table 7 demonstrates the PN count ratio of

Riso* under different value settings of PNmax. In Gowalla and Wikidata datasets

85

when PNmax is 10, more than 80% Path Neighbors can be covered with around 20%

storage overhead compared with Riso (Figure 21a, 21b). Since the majority of Label

Paths are covered, the paths in the query graph have a high probability are covered

by the Path Neighbors of Riso*. So the saving of storage overhead is considerable

while accuracy is not harmed too much. The results in Foursquare and Yelp datasets

show different trends. In Foursquare dataset, the saving of storage is only around

50% when PNmax is 10. The reason is that its average degree is 5.94 and the average

degree of spatial vertexes is only 0.775. The spatial vertexes in Foursquare have much

fewer neighbors. So Foursquare does not have many big-sized Path Neighbors and

the removal strategy has less benefit. In Yelp dataset, PN count ratio has a sharp

increase between 10 and 40. It indicates that many Path Neighbors have sizes within

this range. It is because Yelp dataset has a high average degree of all vertexes (13.5)

and spatial vertexes (31.89). There are many Path Neighbors whose sizes are within

the range from 10 to 40. When PNmax changes from 10 to 40, these Path Neighbors

are brought back to the index.

Table 7: PN Count Ratio to Riso (%)

PNmax 10 40 160 640
Gowalla 93.4 97.0 98.5 99.6
Wikidata 90.3 98.1 99.7 99.8
Foursquare 78.3 92.0 99.2 100.0

Yelp 22.0 90.0 98.6 99.5

Figure 22 demonstrates the query time for different settings of PNmax. For each

dataset, we show its performance with two different spatial selectivities. It can be

observed that the query performance is better when the value of PNmax is larger.

The reason is straightforward that less Path Neighbors are removed which makes the

86

10 40 160 6400

500

1,000

1,500

2,000

2,500

PNmax

In
de

x
Si

ze
(M

B
)

Riso
Riso*

(a) Gowalla

10 40 160 6400

200

400

600

800

PNmax

In
de

x
Si

ze
(M

B
)

Riso
Riso*

(b) Wikidata

10 40 160 640

40

60

80

100

120

140

PNmax

In
de

x
Si

ze
(M

B
)

Riso
Riso*

(c) Foursquare

10 40 160 6400

200

400

600

800

1,000

PNmax

In
de

x
Si

ze
(M

B
)

Riso
Riso*

(d) Yelp

Figure 21: Impact of PNmax

Riso-Tree pruning more powerful. When the PNmax exceeds a specific value, increasing

PNmax will not improve the performance. In Gowalla and Wikidata, this specific

value for PNmax is 40 while in Yelp it is 160. In Foursquare, the value is larger than

640. The set of experimental queries need to access partial Path Neighbors. When

the accessed Path Neighbor are all covered by the Riso-Tree with the specific value

of PNmax, increasing PNmax will not lead to more accurate candidate sets for query

vertexes. Another observation is that the impact of PNmax differs for queries with

different selectivities. For queries with higher selectivity, the impact is not obvious. It

87

10 40 160 640

20

40

60

PNmax

Q
ue

ry
T

im
e

(s
)

Sel=0.01
Sel=0.001

(a) Gowalla

10 40 160 640
0

20

40

60

80

100

PNmax

Q
ue

ry
T

im
e

(s
)

Sel=0.0001
Sel=0.00001

(b) Wikidata

10 40 160 640
10

20

30

40

PNmax

Q
ue

ry
T

im
e

(s
)

Sel=0.01
Sel=0.001

(c) Foursquare

10 40 160 640

20

40

60

80

100

PNmax

Q
ue

ry
T

im
e

(s
)

Sel=0.01
Sel=0.001

(d) Yelp

Figure 22: Query Time By Varying PNmax

is because the query region is large and only overlaps with large number of Riso-Tree

nodes. Overlapping with more nodes will lead to a higher probability to access the

leaf nodes which contain the removed Path Neighbors. So the query performance has

a higher frequency to be influenced by PNmax.

Impact of α. The value of α determines the influence of spatial and graph

information in the tree construction phase. In order to analyze the impact of α,

Wikidata is used as our experimental dataset. B is fixed to 1 and PNmax is fixed to

infinite, which means no constraint on the size of Path Neighbor. Table 8 shows the

88

index size, query time, overlap leaf count and page access when the value of α changes.

The selectivity of the query rectangle is 0.001. The index size only includes the Path

Neighbor without considering tree size. Table 8 clearly shows that when α increases,

the index size tends to increase. When α increases, the graph information has a smaller

influence in the construction, including the target leaf node selection and tree node

split. The constructed Riso-Tree tends to achieve better space partition (less dead

space and overlapped area) while causing more separation and duplicates in graph

information which will increase the index size. Regarding the query performance, it

achieves better query performance when α increases. This is because when α increases,

Riso-Tree has less dead space and fewer overlapped areas between tree nodes. So

the query rectangle will overlap with fewer nodes. With less overlapped nodes, the

candidate sets formed by these leaf nodes have a smaller size. This will in turn reduce

the query response time because fewer vertexes will be accessed during graph search as

well. Table 8 shows such a trend that when the value of α increases, fewer leaf nodes

overlap with the query rectangle and the number of database page access decreases.

Table 8: Impact of α in Wikidata

α Index Size Query Time Leaf Hit Page Hit
0.0 727 MB 452 s 51 3188K
0.25 755 MB 300 s 18 2220K
0.5 763 MB 341 s 21 1801K
0.75 768 MB 225 s 19 1967K
1.0 805 MB 152 s 10 771K

Parameter Setup. Several parameters can be tuned for Riso-Tree, including B,

PNmax and α. We discuss how to pick up the default values for these parameters

to help users start using the system. Parameter B has a huge impact over the

performance on the Riso-Tree. When increasing the value of B, it can improve the

89

query performance while at the cost of exponentially increasing the construction time

and index size. But when the value B is large, increasing the value of B brings

less improvement on query performance. The number of neighbors for a vertex will

increase exponentially when the path hop number increases. As a result, the size

of Path Neighbor will become large quickly when B increases. The Path Neighbor

cannot reduce the search space due to its low selectivity. To sum up, the feasible setup

of B should be less than 3. But it can be larger if the graph is sparse. PNmax controls

the maximum size of each Path Neighbor. Because it removes the Path Neighbor list

whose size is larger than PNmax, it also ensures the contribution of the Path Neighbor

to reducing the search space. Based on the experiment, a value around 100 is a good

choice. α determines the weight of the graph and spatial influence when constructing

the tree structure. Increasing α reduces the dead space in the Riso-Tree index while

increasing the storage overhead. It is fine to use the α = 1 because the other two

parameters have some control over the indexing overhead. Another benefit of using α

= 1 is that it does not need to compute the graph path expansion GPE, which can

accelerates the Riso-Tree construction.

90

Chapter 5

INDEX MAINTENANCE

5.1 SPA-Graph Maintenance

In this section, we explain how the system maintains SIP in response to updates in

the graph database that include edge/vertex insertion/deletion. Updating an attribute

(i.e., vertex spatial property) can be using a combination of graph structure updates.

When v.loc is modified, it can be represented as deleting all connected edges of v and

re-adding all the edges on the vertex with a new spatial location. Having said that,

we consider the following updates:

5.1.1 Adding an edge

When an edge (u, v) is added to the graph, the system does not need to update all

SIP. The update scope is bounded by B. More specifically, the vertexes influenced by

inserting an edge are less than B-1 hops from either u or v. The reason is that SIP

only consider neighbors within B hops. u and v will impact vertexes that are within

B-hops from u and/or v. The main idea is to ensure that Theorems 2, 3 and 4 still

hold for all vertexes. To achieve that, the update algorithm runs in two main phases,

Local Update and Neighbor Transfer. Figure 23 depicts the main steps.

Local Update. The direct impact of inserting an edge is on u and v themselves.

In Local Update, the algorithm updates SIP of u and v. Without loss of generality,

we focus on the SIP updates of v from that of u. Maintaining u’ s SIP by exploiting v’

91

insertionu v

SIP(u, 0) SIP(v, 0)

SIP(u, 1) SIP(v, 1)

2. Neighbor transfer

w

SIP(w, 1)

1. Local update

······

SIP(w, B)

···

SIP(u, B) SIP(v, B)

···

SIP(x, B)

x

B

Figure 23: Adding an edge

s SIP is similar to the SIP initialization algorithm. Generally, it follows this equation:

SIP (u, k + 1) = SIP (u, k + 1) ∪ SIP (v, k), k ∈ [0, B − 1] (5.1)

The algorithm updates the k + 1-hop SIP of u by merging the k-hop SIP of v. Here

SIP(v, 0) represents v.loc.

Neighbor Transfer. After the Local Update phase, the spatial indexing proper-

ties (SIP) of u’ s neighbors might need to be maintained as well. This is determined

by whether SIP(u, k) is modified. One possibility is that SIP of u remains the same if

SIP(u, k) has already enclosed the spatial range of SIP(v, k − 1). In this case, SIP(u,

k) is actually not modified. If SIP(u, k) is modified, then the algorithm will update

SIP(w, k + 1) where w is a neighbor of u. Such update will be performed recursively

on each neighboring of w by following Equation 5.1. If SIP(u, k) is not modified after

the update, there is no need to update SIP(w, k + 1). In Figure 23, the value of B

limits the upper bound of the number of hops which in turn limits the number of

vertices to be accessed during the update. In other words, each accessed vertex is at

most (B - 1) hops from u or v.

Algorithm 16 shows the pseudo code for inserting an edge between u and v. Once

an insertion happens, the algorithm calls the Update function to maintain the SIP

92

Algorithm 16 Edge Insertion Update
1: Function Insert(Vertex u, Vertex v)
2: Create edge (u, v)
3: for each k ∈ [0, B-1] do
4: Update(u, v, k)
5: Update(v, u, k)
6: end for

Algorithm 17 Update SIP of a specific hop
1: Function Update(Vertex u, Vertex v, Hop k)
2: if k ≥B then
3: return
4: end if
5: SIP(u, k + 1) ← SIP(u, k + 1) ∪ SIP(v, k)
6: if SIP(u, k + 1) is modified then
7: for each w ∈ Adja(u) do
8: Update(w, u, k + 1)
9: end for

10: end if

of both u and v for hops within the [0, B - 1] range. Update takes Hop k as its

input and updates SIP(u, k + 1) by using SIP(v, k). If SIP(u, k + 1) is modified, the

Update function will be called recursively on each neighbor vertex of u to update its

SIP(u, k + 2). The algorithm terminates when k ≥ B.

5.1.2 Update Cases

Algorithm 16 gives the pseudo code and the general rule (Equation 5.1) used to

update SIP when an edge is inserted. However, since each spatial indexing property

(i.e., SIP) can be of different categories (e.g., ReachGrid, RMBR), maintaining SIP(u,

k + 1) accounts for each of these categories. To achieve that, the algorithm leverages

the rule in Table 9. The cases marked with X means that such validation can be

handled in a straightforward way. v.loc only exists in SIP(v, 0). The update from

93

Algorithm 18 Update ReachGrid
1: Function UpdateReachGrid(Vertex u, Vertex v, Hop k)
2: switch (type of SIP(v, k))
3: case ReachGrid:
4: ReachGrid(u, k + 1) ← ReachGrid(u, k + 1) ∪ ReachGrid(v, k)
5: if ReachGrid(u, k + 1) is modified then
6: return true
7: end if
8: if ReachGrid(v, k) contains boundary cell of ReachGrid(u, k + 1) then
9: return true

10: end if
11: case RMBR:
12: Construct ReachGrid(v, k) by using RMBR(v, k)
13: Perform the steps in case ReachGrid
14: case GeoB:
15: SIP(u, k + 1) ← true
16: return true
17: return false

Algorithm 19 Update RMBR
1: Function UpdateRMBR(Vertex u, Vertex v, Hop k)
2: switch (type of SIP(v, k))
3: case RMBR:
4: RMBR(u, k + 1) ← MBR(RMBR(u, k + 1), RMBR(v, k))
5: if RMBR(u, k + 1) is modified then
6: return true
7: end if
8: case ReachGrid:
9: Construct RMBR(v, k) by using ReachGrid(v, k)

10: Perform the steps in case RMBR
11: case GeoB:
12: SIP(u, k + 1) ← true
13: return true
14: return false

v.loc is trivial. So, the column of v.loc are all marked with X. In case v.loc exists for

vertex v, GeoB will be set to true, RMBR(u, 1) will be MBR(RMBR(u, 1), v.loc), and

ReachGrid(u, 1) will be ReachGrid(u, 1) ∪ Grid(v.loc), respectively. The updates

between two identical types of spatial indexing properties are similar to that presented

in the initialization algorithm. For the inter-type updates, less accurate SIP can be

94

Algorithm 20 Update GeoB
1: Function UpdateGeoB(Vertex u, Vertex v, Hop k)
2: if GeoB(u, k + 1) is true then
3: return false
4: else
5: if SIP(v, k) is false then
6: return false
7: else
8: SIP(u, k + 1) ← SIP(v, k)
9: return false

10: end if
11: end if
12: return false

updated easily by more accurate SIP but not the reverse way. GeoB can be upgraded

to RMBR and ReachGrid as follows: In case GeoB is true, it will not be modified

by either RMBR or ReachGrid. Otherwise, the algorithm switches it to RMBR or

ReachGrid. RMBR can be updated by ReachGrid by creating the MBR for ReachGrid.

For the remaining update cases (with cross marks), directly updating SIP can later

lead to inaccurate query results. For instance, if SIP(u, k + 1) is ReachGrid type and

SIP(v, k) is RMBR type, it is not straightforward to update the ReachGrid to RMBR.

There are two strategies to handle such cases. They are lightweight and Reconstruct

strategies.

Table 9: Updating Cases of SIP

To / From GeoB RMBR ReachGrid v.loc
GeoB X X X X
RMBR × X X X

ReachGrid × × X X

95

5.1.3 Maintenance Strategies

When the user inserts a new edge between u and v, the system follows one of two

maintenance strategies, described as follows:

Lightweight Strategy. The Lightweight strategy is to take advantage of the

existing SIP information stored in v. To update a ReachGrid with an RMBR, all

grid cells covered by the RMBR will be added into the ReachGrid. When either the

RMBR or ReachGrid is updated by GeoB with true value, the Lightweight strategy

will directly replace the RMBR or ReachGrid with true-valued GeoB. In case the

GeoB value is false, no modification is needed.

Reconstruct Strategy. This strategy reconstructs the ReachGrid(v, k − 1) for

the cases marked with a cross in Table 9. Then, GeoExpand on u will be updated

accordingly. The system performs the Reconstruct strategy by accumulating all the

ReachGrid(w, k − 2) where w is the neighbor of v. When SIP(w, k − 2) is not a

ReachGrid, then the k − 3 hops ReachGrids of all neighbors of w will be obtained to

reconstruct ReachGrid(w, k − 2).

The Lightweight strategy does not need to traverse the graph to update the SIP.

Hence, the Lightweight strategy is faster compared with the Reconstruct strategy.

Nonetheless, the Lightweight strategy may lead to less pruning power, which in turn

increases the overall query response time.

Until here, we discuss how to update u and v, which are connected by the newly-

added edge. The SIP of vertexes that are connected to u or v within less than B

hops may also need to be updated accordingly. If SIP(u, k) is modified after being

updated by SIP(v, k− 1), then for 1-hop neighbors of u, their (k+1) hops SIP should

be updated. Similarly, for the 2-hops neighbors of u, their (k + 2) hops SIP will be

96

updated. Such update will be performed in a recursive manner; Hence, the influenced

vertices are bounded by B−k hops. Sometimes, when a SIP is updated by another, it

is not really modified after the update. For instance, if RMBR(u, k) is updated using

RMBR(v, k − 1) and RMBR(u, k) totally encloses RMBR(v, k − 1), RMBR(u, k)

will have the same spatial boundaries; In this case, it is not modified. We differentiate

the two cases after one update because if SIP(u, k) is not modified, there is no need

to update SIP(w, k + 1). Such a rule also holds true during the recursive update

procedure.

5.1.4 Deleting an edge

When deleting an edge (u, v) , SIP of u and v with all numbers of hops may be

impacted. Without loss of generality, we still focus on one side of u. The strategy

to maintain the correctness of the SIP stored in u is to reconstruct each k-hop SIP.

Therefore, the system compares the new version of SIP(u, k) with the old one. If it

remains the same, that means some SIP of other vertexes that are computed based

on it do not need to be updated. In case it is modified, all vertexes within B−k hops

from u need to be updated. If a vertex w is t-hops reachable from u (w ∈ V t
u), then

SIP(w, k + t) will be updated by accumulating information from its 1-hop neighbors

again. Such reconstruction is executed from 1 to (B−k) hops neighbors for u.

5.1.5 SPA-Graph Maintenance Evaluation

To evaluate the performance of the SPA-Graph update algorithm, we randomly

insert 5%, 10%, 15% and 20% edges into the Yelp graph dataset. Here 5% indicates the

97

5% 10% 15% 20%
10−2

10−1

100

101

102

Insertion ratio

U
pd

at
e

T
im

e
/

In
se

rt
io

n
(m

s)
R_RG R_RM R_GB
L_RG L_RM L_GB

(a) Average insertion time

5% 10% 15% 20%

101

102

103

Insertion ratio

#
of

V
is

it
ed

V
er

te
xe

s

R_RG R_RM R_GB
L_RG L_RM L_GB

(b) The number of visited vertices

Figure 24: Inserting different number of edges to Yelp dataset

ratio to the total number of edges in the graph. We consider three parameter setups

of SIP. The setups make the SIP be all ReachGrid (abbr. RG), all RMBR (abbr. RM)

and all GeoB (abbr. GB). For each index setup, we test the two update strategies,

i.e., Lightweight (abbr. L) and Reconstruct (abbr. R) strategies. For instance, LRG

indicates the index with all ReachGrid using the Lightweight update strategy. Figure

24a and 24b shows the average time and the number of visited vertexes for each edge

insertion. It can be observed that SIP with all ReachGrid requires the longest update

time while GeoB requires the least regardless of the update strategies. It is because

each ReachGrid consists of a list of ids. If a ReachGrid of a vertex contains many

ids and an edge is inserted between such vertex and another, it is time-consuming to

update the ReachGrid. As a result, the complexity of the computation on ReachGrid

leads to the cost to update ReachGrid being far higher than the other two types of

indexes. The update of RMBR is just to compute all the coordinates. It has equal

complexity for all the vertexes and it is much less complex than that for ReachGrid.

But its complexity is higher than updating GeoB because updating GeoB only needs

the bitwise operation. By comparing the Lightweight with the Reconstruct strategies

98

10−4 10−3 10−2 10−1
0

0.5

1

1.5

2

·105

Average Update Time

Q
ue

ry
T

im
e(

m
s)

L_RG R_RG
L_RM R_RM
L_GB R_GB

(a) Response time after edges insertion

10−4 10−3 10−2 10−1
0

0.5

1

1.5

2

2.5

·108

Query Range

#
of

V
is

it
ed

V
er

te
xe

s

L_RG R_RG
L_RM R_RM
L_GB R_GB

(b) The number of visited vertices

Figure 25: Query performance after inserting 10% edges

for all three index setups, the Lightweight update time is always shorter than the

Reconstruct. This makes sense because the Lightweight strategy does not need to

reconstruct the index by traversing the graph. Figure 24b also proves our explanation

because it shows the Lightweight strategy requires to visit less vertexes than the

Reconstruct strategy for the same index setup.

Figure 25 shows the query response time and the number of visited vertexes after

inserting 10% edges into the Yelp graph dataset. The purpose is to evaluate the

influence of maintenance strategies on the query performance. We can observe from

Figure 25a that the Lightweight and the Reconstruct strategy share similar query

time. The number of visited vertexes is also similar for two maintenance strategies. It

reveals that the Lightweight can achieve the similar performance compared with the

Reconstruct strategy even it loses some accuracy in the reachable region representation.

Combined with the update speed, we could say that the Lightweight strategy can be

a better one because it can achieve similar query performance with a higher update

speed.

99

R

PN(s, p1-x-p2)

r = B – h -1
u vs

w
|p2| < B - h

|p1| = h x

Figure 26: Riso-Tree Maintenance

5.2 Riso-Tree Maintenance

Inserting/deleting an edge. Algorithm 21 shows how to update Riso-Tree

when an edge is inserted. When an edge of label x between u and v is inserted into

the graph, the algorithm first reconstructs Path Neighbors of length from 1 to B−1

hops for u and v based on the original graph where the inserted edge is not considered

(Line 2 and 4). The algorithm scans each vertex w in PNp
u and PNp

v where |p| ∈ [1,

B-1]. Foe each spatial vertex s, the algorithm updates Path Neighbor information

of the leaf node that contains s (Line 9). Besides, all the ancestor nodes of this leaf

node will also be updated (Line 11). Let us use a generic example to demonstrate

such a procedure. In Figure 26, a new edge with label x is inserted between u and v.

There exists one spatial vertex s that is h-hop distant from u. The Riso-Tree node

that contains s is denoted as R. The path from s to u is p1. In order to reflect the

edge insertion, vertex v should be added into PNp1xϕ(v)
R where p1xϕ(v) is a label path

that concatenates p1, x and the label of v. Besides that, Path Neighbors of v, PNp
v

where |p| < B− h, will also be added into Path Neighbors of R. For a vertex w which

100

Algorithm 21 Maintenance algorithm for adding an edge
1: AddEdge(Vertex u, Vertex v, EdgeLabel x)
2: for |p| ∈ [1, B − 1] do
3: Compute PNp

u and PNp
v

4: end for
5: for each vertex w ∈ PNp

u do
6: if w ∈ VS then
7: PN

pxϕ(v)
R ← PN

pxϕ(v)
R ∪ {v} (R 3 s)

8: for each vertex t ∈ PNp2
v (|p2| < B − 1) do

9: PNp1xp2
R ← PNp1xp2

R ∪ t
10: end for
11: Update ancestor nodes of R recursively if necessary
12: end if
13: end for
14: for each vertex w ∈ PNp

v do
15: Repeat the same steps for u
16: end for

is connected from v through path p2 and |p2| < B − h, w will be added into PNp1xp2
R .

Besides updating Riso-Tree node R, ancestor nodes of R might need to be updated as

well. The updating rule is as follows: Existing paths of R’s ancestor nodes need to be

updated if the updated path does not exist in R before the insertion. It means that if

p1xp2 does not exist in R before the updating, then the algorithm adds p1xp2 to the

ancestors of R recursively.

When an edge between u and v is deleted from the graph, the impacted extend is

similar to inserting an edge. Only the vertexes within B − 1 hops from u or v will

be impacted. So the first step is still to compute the Path Neighbors within B−1

hops from u and v. For each spatial vertex s in PNp
u and PNp

v where 1 ≤ |p| <B,

the corresponding Riso-Tree node R that contains s needs to be updated. The way

to update the Path Neighbors of R is to recalculate them. Even though such an

update is costly, a lazy-update strategy can be taken to avoid frequent and instant

re-computation for the deletion accordingly. Riso-Tree is actually filtering-based index

101

structure. So keeping a superset of the the “accurate” Path Neighbor will not impact

the correctness of the query algorithm. This is similar to that enlarging the area of

MBR in R-Tree does not influence the correctness of the spatial query. As a result,

the system just needs to executed the re-computation periodically, e.g. every month.

Or the re-computation is executed when a certain number of deletions happen on the

graph.

Skip Irrelevant Vertexes Strategy. When looking into the the algorithm of

the edge insertion and deletion, it can be discovered that not all the edge updates

will result in Path Neighbor updates. The edge updates that happen between some

vertexes do not affect the sub-graph information stored in Riso-Tree. These vertexes

are called ’irrelevant vertexes’. It can be defined as follows:

Definition 4 A vertex v is a irrelevant vertex iff (1) v /∈ VS, (2) ∀w ∈PNp
v where

|p| < B, w /∈ VS.

A vertex is irrelevant if there is no spatial vertex within its (B-1)-hop neighbors.

We can have the following theorem for irrelevant vertexes:

Theorem 5 If u and v are irrelevant vertexes, adding or deleting an edge between u

and v will not cause updates of Path Neighbor in Riso-Tree.

The correctness of Theorem 5 can be proved based on Algorithm 21. If both u and

v are irrelevant, no spatial vertex exists within (B-1)-hop neighbors of u or v. If so,

no spatial vertex is influenced by the edge between u and v. By taking advantage of

this characteristic, we keep a set of all the irrelevant vertexes. Any time an insertion

or deletion happens between two vertexes u and v, the algorithm first checks whether

u and v are in the set. If both vertexes are irrelevant, the algorithm can directly

102

skip the rest operations because Path Neighbor will not change. Otherwise, it follows

Algorithm 21.

Inserting/deleting a vertex: Inserting a new vertex with edges attached to it

can be decomposed as inserting a solitary vertex and inserting the connected edges.

Since the edge insertion has been discussed, we focus on inserting a solitary vertex in

this paragraph. If the inserted vertex is not spatial, the algorithm will not change the

structure of Riso-Tree. If the vertex is a spatial one, the algorithm will pick up the

leaf node to insert that vertex by following the rule of minimizing SGE. MBR of the

leaf node and the ancestor nodes will be updated accordingly. When a non-spatial

solitary vertex is deleted from the graph, the algorithm does not need to modify the

Riso-Tree. When a solitary spatial vertex s is deleted from a leaf node R, the system

updates the Riso-Tree in a similar way to the R-Tree. If the number of entries in R is

still valid, the algorithm will just update the MBR of R and its ancestors if necessary.

Otherwise, all the entries in R will be reinserted into the Riso-Tree.

5.2.1 Riso-Tree Maintenance Evaluation

Figure 27 shows the update performance for two different strategies in Foursquare

dataset. Baseline is the strategy without using ’irrelevant vertex’ and Irrelevant

method is the one that takes the ’irrelevant vertex’ strategy. We insert different

numbers of edges into the graph, ranging from 1000 to 8000. Figure 27a shows the

updating time when random edges are inserted. It can be observed that when the

number of edges increases, the overall update time increases linearly. The average

time is only around 10 ms for each insertion. It also reveals that the two strategies

almost have the same performance for random edges. It is because very few edges

103

start and end in irrelevant vertexes. As a result, we also test the ’irrelevant edges’ to

evaluate the performance of the ’irrelevant vertex’ strategy. Here ’irrelevant edges’

means the edges that start and end in irrelevant vertexes. Figure 27a shows the

update time for irrelevant edges. In this case, Irrelevant approach can achieve much

better performance than Baseline approach.

1000 2000 4000 8000
104

105

Update Count

U
pd

at
e

T
im

e
(m

s) Baseline
Irrelevant

(a) Random Edges

1000 2000 4000 8000

102.5

103

Update Count

U
pd

at
e

T
im

e
(m

s) Baseline
Irrelevant

(b) Irrelevant Edges

Figure 27: Update performance on Foursquare

104

Chapter 6

A GEOSPATIAL KNOWLEDGE MANAGEMENT SYSTEM

In this chapter, we demonstrate a system, namely Spindra, that provides effi-

cient management of geographic knowledge graphs. The system is equipped with

a geographic knowledge graph storage and indexing module that extends the core

functionality of a graph database system (i.e., Neo4j) to efficiently store location facts

and relationships among them as vertexes and edges. The system also optimizes

and processes queries issued on the geographic knowledge graph. We demonstrate

the system using an interactive map-based web interface that allows users to issue

location-aware search queries over the Wikidata knowledge graph. The Front-end will

then visualize the returned geographic knowledge to the user using OpenStreetMap.

6.1 System Overview

Figure 28 shows the architecture of Spindra. Spindra consists of three main

components, Web Interface, Query Processing Coordinator, and Data Store and

Indexing. In the following, we demonstrate each of the components.

6.1.1 Data Store and Indexing

The backend of the system stores the geographic knowledge graph data and

the index structure. The data source can be existing well-known datasets, such as

Foursquare, Yelp, Wikidata, etc. The graph data is managed by the graph database.

105

Geographic Knowledge Graph Storage and Indexing

Spatial Indexing Properties in Graph Vertexes / Edges

Riso-Tree Index Structure R-Tree Index Structure

Geographic Knowledge Graph Query Processing

Location-Aware Graph Query Optimizer

Graph+KNN Graph+Range Graph+SpatialJoin…

Location-Aware Graph Expansion Operator

MATCH {f:Asian}<--[:SubcategoryOf*1..3]

--[:HasInMenu]<--{r:Restaurant}

WHERE Within (r, Q)

RETURN r

Cypher Graph Query

S10S8S7

Query Answer

…

Figure 28: System architecture overview

The information, like the location of an entity in the graph, is stored as the property

of a vertex. Two categories of indexes, SPA-Graph and spatial index are exploited by

the system to accelerate location-aware graph queries (will be demonstrated later).

The spatial objects in the graph data are indexed by Riso-Tree index structure.

Riso-Tree is a graph-aware spatial index. Riso-Tree takes R-Tree as its skeleton

but with graph information being attached to its nodes. For each non-leaf node in

Riso-Tree, it is stored with all the paths connected to the spatial vertices belonging

to this R-Tree node. Each leaf node is stored with not only the paths but also the

vertices that can be reached through each path. In R-Tree, the pruning only happens

on nodes whose MBRs do not overlap with the query region. By exploiting Riso-Tree,

106

the search can skip some nodes in the tree if any desired path is not included in the

current node’s graph information besides pruning according to spatial overlap. So

Riso-Tree provides more pruning power compared to R-Tree. The details of Riso-Tree

are demonstrated in Chapter 4.

6.1.2 Query Processing Coordinator

The Query Processing Coordinator stands as the middle layer between users and

the backend data store. It takes location-aware graph queries (GraSp) from users and

returns the correct result.

Typical queries in GraSp include GraSp-Range, GraSp-KNN and GraSp-Join, etc.

The example query mentioned previously is one GraSp-Range query. It has a graph

constraint part and a range constraint part. GraSp-KNN asks for the top-K closest

spatial objects which satisfy a given graph pattern from a given location. For instance,

to find 10 closest restaurants that have a menu in Asian food. GraSp-Join is a spatial

join query with graph constraints. An example for GraSp-Join can be to search for all

the restaurants that have a menu in Asian food and are close to a resort (e.g., the

distance less than 1 km).

6.2 Scenario

In this section, we demonstrate real user scenarios by using Spindra. The Wikidata

graph dataset [55] is used as the data source. Wikidata is a knowledge graph extracted

from Wikipedia. It contains real-world objects and their relationships. The data is

107

121 rows

92 rows

93 rows

206 rows

12 rows

Filter

218 db hits

Expand(All)

299 db hits

Expand(All)

185 db hits

Filter

121 db hits

NodeIndexSeekByRange

122 db hits

Figure 29: Backend Data View Interface

loaded into Neo4j graph database system. The storage backend, including SPA-Graph

and Riso-Tree, are constructed after the data is loaded.

A real scenario can be described as follows: An ICDE 2019 participant plans to

explore Macau. He/she is interested in visiting some museums in Macau. A query

to search for nearby places that are InstanceOf MUSEUM is helpful in this case.

Figure 29 shows the interface for managing the data in the backend data store. It

can answer Cypher queries and visualize the graph data and the index information.

The figure shows an overview of the related entities for the query in the dataset.

Blue circles represent PLACE entities. They are InstanceOf different categories and

categories can be SubclassOf other categories. Normally, the query should only search

for museums. However, there could be no museum nearby. In this scenario, the places

whose categories are related to the museum (e.g., amusement park) can be accepted

and recommended as alternatives to increase the richness of the result. So the system

will trigger a search to find all the places that are nearby and their categories are

SubclassOf tourist attraction.

108

Figure 29 also shows the execution plan of the query by directly running a Cypher

query in Neo4j. Because of the existence of the spatial index, spatial filtering will

take be performed. The first two boxes in the plan reflect such a step. Such a step

incurs 243 db hits and 92 spatial objects are within the search region. Then for each

spatial object, the executor performs two Expand(All) operators. The first Expand(All)

operator expands through the edge InstanceOf and fetches all nodes connected by such

edge type. The second Expand(All) expands each node obtained from the previous

step through edge SubclassOf. The two Expand(All) operators increase the number of

rows from 92 to 206 because each node can have many neighbors. The final step is to

check whether the current node is amusement park. At the last box in the execution

plan, the number of rows decreases from 206 to 12 after the Filter operation. It

is because many subgraphs do not contain a node of tourist attraction. So even 92

spatial entities are within the query region, only 12 of them can satisfy the graph

constraint of being InstanceOf a category that is SubclassOf tourist attraction. In

other words, many nodes visited by the Expand(All) operator are unnecessary.

When this query is issued in Spindra, the spatial filter phase will also be performed

at first. But with the help of Riso-Tree, not all spatial objects within the query region

are promising. Those spatial objects that do not have the required label paths will

not be executed in the next step. So there will be far less than 92 rows. As a result,

the execution time will be reduced.

Figure 30 shows a web interface that visualizes all the satisfying spatial objects

in a map view. We can observe that not only museums but also some other spatial

entities, such as Macau Tower, which is a perfect place for tourism are returned. In

the web interface, users can move the searching center by dragging the red marker

109

Figure 30: Query Result Map View

and change the search radius. The user can also change the search topic to Hotel,

University, etc.

110

Chapter 7

CONCLUSION

In this thesis, we discuss geospatial graph queries which combine the subgraph

isomorphism with three basic spatial predicates, including spatial range, spatial join,

and spatial KNN predicates. Due to the limit of the existing strategies, two data

structures, including the augmented graph data structure (SPA-Graph) and the graph-

aware spatial index (Riso-Tree) are proposed to break the isolation between the graph

database and spatial database. We also demonstrate the efficient query algorithm

for accessing SPA-Graph and Riso-Tree respectively. Last but not least, different

techniques are applied to the maintenance algorithm to provide support for graph

updates.

There are several directions for future work. First, more workload of the experiment

for edge insertion will be considered. Currently, the queries for evaluating the query

time are generated randomly. It may not access the graph vertexes related to the

edge insertion. The new query workload will specifically access the vertexes impacted

by the edge insertion. Second, the cardinality estimation plays an important role in

determining the optimized execution plan. In geospatial graph data, the cardinality

estimation of either graph query or spatial query is not trivial. Moreover, the

correlation between the spatial data and the graph data has an impact on the

cardinality estimation. The existing graph database systems, like Neo4j, assume that

there is no correlation for simplicity, which can lead to huge errors in estimating

cardinality. The last direction is to consider the geospatial graph query in a distributed

system. In the thesis, we only propose the techniques for a centralized system. How

111

to extend the proposed techniques to facilitate the new system architecture requires

solving some new problems, like how to partition the geospatial graph data and how

to maintain the index structure, etc.

112

REFERENCES

[1] Ablimit Aji et al. “Hadoop-GIS: A High Performance Spatial Data Warehousing
System over MapReduce”. In: Proc. VLDB Endow. 6.11 (2013), pp. 1009–1020.
url: http://www.vldb.org/pvldb/vol6/p1009-aji.pdf.

[2] ArcGIS Utility Network. https://www.esri.com/en-us/arcgis/products/arcgis-
utility-network-management/overview.

[3] Nikos Armenatzoglou, Stavros Papadopoulos, and Dimitris Papadias. “A general
framework for geo-social query processing”. In: PVLDB 6.10 (2013), pp. 913–924.

[4] Petko Bakalov, Erik G. Hoel, and Sangho Kim. “A Network Model for the Utility
Domain”. In: SIGSPATIAL/GIS. ACM, 2017, 32:1–32:10.

[5] Alexandru T. Balaban. “Applications of graph theory in chemistry”. In: Journal
of Chemical Information and Computer Sciences 25.3 (1985), pp. 334–343. url:
https://doi.org/10.1021/ci00047a033.

[6] Jie Bao, Mohamed F Mokbel, and Chi-Yin Chow. “Geofeed: A location aware
news feed system”. In: ICDE. IEEE. 2012, pp. 54–65.

[7] Norbert Beckmann et al. “The R*-Tree: An Efficient and Robust Access Method
for Points and Rectangles”. In: SIGMOD. 1990, pp. 322–331.

[8] Lu Chen et al. “Maximum Co-located Community Search in Large Scale Social
Networks”. In: PVLDB 11.10 (2018), pp. 1233–1246. url: http://www.vldb.
org/pvldb/vol11/p1233-chen.pdf.

[9] Cypher Language. https://neo4j.com/developer/cypher-query-language/.

[10] DBpedia. https://wiki.dbpedia.org/.

[11] Yerach Doytsher, Ben Galon, and Yaron Kanza. “Querying geo-social data by
bridging spatial networks and social networks”. In: ACM LBSN. 2010, pp. 39–46.
url: http://doi.acm.org/10.1145/1867699.1867707.

[12] Yerach Doytsher, Ben Galon, and Yaron Kanza. “Querying socio-spatial networks
on the world-wide web”. In: WWW. ACM. 2012, pp. 329–332.

[13] Yerach Doytsher, Ben Galon, and Yaron Kanza. “Storing routes in socio-spatial
networks and supporting social-based route recommendation”. In: Proceedings

113

http://www.vldb.org/pvldb/vol6/p1009-aji.pdf
https://www.esri.com/en-us/arcgis/products/arcgis-utility-network-management/overview
https://www.esri.com/en-us/arcgis/products/arcgis-utility-network-management/overview
https://doi.org/10.1021/ci00047a033
http://www.vldb.org/pvldb/vol11/p1233-chen.pdf
http://www.vldb.org/pvldb/vol11/p1233-chen.pdf
https://neo4j.com/developer/cypher-query-language/
https://wiki.dbpedia.org/
http://doi.acm.org/10.1145/1867699.1867707

of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social
Networks. 2011, pp. 49–56.

[14] Ahmed Eldawy and Mohamed F. Mokbel. “SpatialHadoop: A MapReduce
framework for spatial data”. In: 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015. Ed. by Johannes
Gehrke et al. IEEE Computer Society, 2015, pp. 1352–1363. url: https://doi.
org/10.1109/ICDE.2015.7113382.

[15] Wenfei Fan. “Graph pattern matching revised for social network analysis”. In:
15th International Conference on Database Theory, ICDT ’12, Berlin, Germany,
March 26-29, 2012. 2012, pp. 8–21. url: https://doi.org/10.1145/2274576.
2274578.

[16] Yixiang Fang et al. “Effective Community Search over Large Spatial Graphs”. In:
PVLDB 10.6 (2017), pp. 709–720. url: http://www.vldb.org/pvldb/vol10/p709-
fang.pdf.

[17] Yixiang Fang et al. “On Spatial-Aware Community Search”. In: IEEE Trans.
Knowl. Data Eng. 31.4 (2019), pp. 783–798. url: https://doi.org/10.1109/
TKDE.2018.2845414.

[18] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. “Keyword Search on
Spatial Databases”. In: Proceedings of the 24th International Conference on
Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico. Ed. by
Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen. IEEE Computer
Society, 2008, pp. 656–665. url: https://doi.org/10.1109/ICDE.2008.4497474.

[19] Freebase. http://www.freebase.com.

[20] GeoSPARQL. http://www.opengeospatial.org/standards/geosparql.

[21] Google’s Knowledge Graph. http://www.techwyse.com/blog/search-engine-
optimization/seo-efforts-to-get-listed-in-google-knowledge-graph/.

[22] GraphDB. http://graphdb.ontotext.com.

[23] Helen M Grindley et al. “Identification of tertiary structure resemblance in
proteins using a maximal common subgraph isomorphism algorithm”. In: Journal
of molecular biology 229.3 (1993), pp. 707–721.

[24] Antonin Guttman. “R-Trees: A Dynamic Index Structure For Spatial Searching”.
In: SIGMOD. 1984.

114

https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1109/ICDE.2015.7113382
https://doi.org/10.1145/2274576.2274578
https://doi.org/10.1145/2274576.2274578
http://www.vldb.org/pvldb/vol10/p709-fang.pdf
http://www.vldb.org/pvldb/vol10/p709-fang.pdf
https://doi.org/10.1109/TKDE.2018.2845414
https://doi.org/10.1109/TKDE.2018.2845414
https://doi.org/10.1109/ICDE.2008.4497474
http://www.freebase.com
http://www.opengeospatial.org/standards/geosparql
http://www.techwyse.com/blog/search-engine-optimization/seo-efforts-to-get-listed-in-google-knowledge-graph/
http://www.techwyse.com/blog/search-engine-optimization/seo-efforts-to-get-listed-in-google-knowledge-graph/
http://graphdb.ontotext.com

[25] Ramaswamy Hariharan et al. “Processing Spatial-Keyword (SK) Queries in
Geographic Information Retrieval (GIR) Systems”. In: 19th International Con-
ference on Scientific and Statistical Database Management, SSDBM 2007, 9-11
July 2007, Banff, Canada, Proceedings. IEEE Computer Society, 2007, p. 16.
url: https://doi.org/10.1109/SSDBM.2007.22.

[26] Erik G. Hoel and Hanan Samet. “Benchmarking Spatial Join Operations with
Spatial Output”. In: VLDB. 9, pp. 606–618.

[27] Jinsoo Lee et al. “An In-depth Comparison of Subgraph Isomorphism Algorithms
in Graph Databases”. In: PVLDB 6.2 (2012), pp. 133–144. url: http://www.
vldb.org/pvldb/vol6/p133-han.pdf.

[28] Zhisheng Li et al. “IR-Tree: An Efficient Index for Geographic Document Search”.
In: IEEE Trans. Knowl. Data Eng. 23.4 (2011), pp. 585–599. url: https :
//doi.org/10.1109/TKDE.2010.149.

[29] John Liagouris et al. “An Effective Encoding Scheme for Spatial RDF Data”. In:
PVLDB 7.12 (2014), pp. 1271–1282.

[30] Kyriakos Mouratidis et al. “Joint search by social and spatial proximity”. In:
TKDE 27.3 (2015), pp. 781–793.

[31] Inc. Neo4j. Neo4j Java API. https://neo4j.com/developer/java/. 2020.

[32] Neo4j Graph Database. https://neo4j.com/.

[33] Miles Ohlrich et al. “SubGemini: Identifying SubCircuits using a Fast Subgraph
Isomorphism Algorithm”. In: Proceedings of the 30th Design Automation Con-
ference. Dallas, Texas, USA, June 14-18, 1993. 1993, pp. 31–37. url: https:
//doi.org/10.1145/157485.164556.

[34] OpenCyc. http://sw.opencyc.org/.

[35] Oracle Spatial and Graph. https://www.oracle.com/database/technologies/
spatialandgraph.html.

[36] Barak Pat, Yaron Kanza, and Mor Naaman. “Geosocial Search: Finding Places
based on Geotagged Social-Media Posts”. In: Proceedings of the 24th International
Conference on World Wide Web Companion, WWW 2015, Florence, Italy, May
18-22, 2015 - Companion Volume. Ed. by Aldo Gangemi, Stefano Leonardi, and
Alessandro Panconesi. ACM, 2015, pp. 231–234. url: https://doi.org/10.1145/
2740908.2742847.

115

https://doi.org/10.1109/SSDBM.2007.22
http://www.vldb.org/pvldb/vol6/p133-han.pdf
http://www.vldb.org/pvldb/vol6/p133-han.pdf
https://doi.org/10.1109/TKDE.2010.149
https://doi.org/10.1109/TKDE.2010.149
https://neo4j.com/developer/java/
https://neo4j.com/
https://doi.org/10.1145/157485.164556
https://doi.org/10.1145/157485.164556
http://sw. opencyc.org/
https://www.oracle.com/database/technologies/spatialandgraph.html
https://www.oracle.com/database/technologies/spatialandgraph.html
https://doi.org/10.1145/2740908.2742847
https://doi.org/10.1145/2740908.2742847

[37] JohnW. Raymond and Peter Willett. “Maximum common subgraph isomorphism
algorithms for the matching of chemical structures”. In: Journal of Computer-
Aided Molecular Design 16.7 (2002), pp. 521–533. url: https://doi.org/10.1023/
A:1021271615909.

[38] Xuguang Ren and Junhu Wang. “Multi-query Optimization for Subgraph Iso-
morphism Search”. In: Proc. VLDB Endow. 10.3 (Nov. 2016), pp. 121–132. url:
https://doi.org/10.14778/3021924.3021929.

[39] Hanan Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann, 2006.

[40] Alberto Sanfeliu and King-Sun Fu. “A distance measure between attributed
relational graphs for pattern recognition”. In: IEEE Trans. Systems, Man, and
Cybernetics 13.3 (1983), pp. 353–362. url: https://doi.org/10.1109/TSMC.
1983.6313167.

[41] Mohamed Sarwat and Yuhan Sun. “Answering Location-Aware Graph Reacha-
bility Queries on GeoSocial Data”. In: ICDE. 2017.

[42] Mohamed Sarwat et al. “Context Awareness in Mobile Systems”. In: Data
Management in Pervasive Systems. 2015, pp. 257–287.

[43] Mohamed Sarwat et al. “LARS*: An Efficient and Scalable Location-Aware
Recommender System”. In: TKDE 26.6 (2014), pp. 1384–1399.

[44] Jieming Shi et al. “Density-based place clustering in geo-social networks”. In:
SIGMOD. ACM. 2014, pp. 99–110.

[45] Rohit Singh, Jinbo Xu, and Bonnie Berger. “Global alignment of multiple protein
interaction networks with application to functional orthology detection”. In:
Proceedings of the National Academy of Sciences 105.35 (2008), pp. 12763–12768.

[46] Rachna Somkunwar and Vinod Moreshwar Vaze. “A Comparative Study of Graph
Isomorphism Applications”. In: International Journal of Computer Applications
162.7 (2017).

[47] Yuhan Sun, Nitin Pasumarthy, and Mohamed Sarwat. “On Evaluating Social
Proximity-Aware Spatial Range Queries”. In: MDM. 2017.

[48] Yuhan Sun and Mohamed Sarwat. “A generic database indexing framework
for large-scale geographic knowledge graphs”. In: Proceedings of the 26th ACM
SIGSPATIAL International Conference on Advances in Geographic Information

116

https://doi.org/10.1023/A:1021271615909
https://doi.org/10.1023/A:1021271615909
https://doi.org/10.14778/3021924.3021929
https://doi.org/10.1109/TSMC.1983.6313167
https://doi.org/10.1109/TSMC.1983.6313167

Systems, SIGSPATIAL 2018, Seattle, WA, USA, November 06-09, 2018. Ed.
by Farnoush Banaei Kashani et al. ACM, 2018, pp. 289–298. url: https :
//doi.org/10.1145/3274895.3274966.

[49] Yuhan Sun and Mohamed Sarwat. “A spatially-pruned vertex expansion operator
in the Neo4j graph database system”. In: GeoInformatica 23.3 (2019), pp. 397–
423. url: https://doi.org/10.1007/s10707-019-00361-2.

[50] Yuhan Sun, Jia Yu, and Mohamed Sarwat. “Demonstrating Spindra: A Geo-
graphic Knowledge Graph Management System”. In: 35th IEEE International
Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019.
2019, pp. 2044–2047. url: https://doi.org/10.1109/ICDE.2019.00235.

[51] Konstantinos Theocharidis et al. “SRX: efficient management of spatial RDF
data”. In: VLDB J. 28.5 (2019), pp. 703–733. url: https://doi.org/10.1007/
s00778-019-00554-z.

[52] Titan Distributed Graph Database. http://titan.thinkaurelius.com/.

[53] Virtuoso. http://virtuoso.openlinksw.com.

[54] Akrivi Vlachou et al. “Efficient spatio-temporal RDF query processing in large
dynamic knowledge bases”. In: Proceedings of the 34th ACM/SIGAPP Sympo-
sium on Applied Computing, SAC 2019, Limassol, Cyprus, April 8-12, 2019.
2019, pp. 439–447. url: https://doi.org/10.1145/3297280.3299732.

[55] Denny Vrandečić and Markus Krötzsch. “Wikidata: A Free Collaborative Knowl-
edgebase”. In: Commun. ACM 57.10 (Sept. 2014), pp. 78–85. url: http://doi.
acm.org/10.1145/2629489.

[56] Junhu Wang et al., eds. Databases Theory and Applications - 29th Australasian
Database Conference, ADC 2018, Gold Coast, QLD, Australia, May 24-27, 2018,
Proceedings. Vol. 10837. Lecture Notes in Computer Science. Springer, 2018.
url: https://doi.org/10.1007/978-3-319-92013-9.

[57] WikiData. https://www.wikidata.org/wiki/Wikidata:Main_Page.

[58] YAGO. https://yago-knowledge.org/.

[59] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. “Spatial data management in
apache spark: the GeoSpark perspective and beyond”. In: GeoInformatica 23.1
(2019), pp. 37–78. url: https://doi.org/10.1007/s10707-018-0330-9.

117

https://doi.org/10.1145/3274895.3274966
https://doi.org/10.1145/3274895.3274966
https://doi.org/10.1007/s10707-019-00361-2
https://doi.org/10.1109/ICDE.2019.00235
https://doi.org/10.1007/s00778-019-00554-z
https://doi.org/10.1007/s00778-019-00554-z
http://titan.thinkaurelius.com/
http://virtuoso.openlinksw.com
https://doi.org/10.1145/3297280.3299732
http://doi.acm.org/10.1145/2629489
http://doi.acm.org/10.1145/2629489
https://doi.org/10.1007/978-3-319-92013-9
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://yago-knowledge.org/
https://doi.org/10.1007/s10707-018-0330-9

[60] Yinghua Zhou et al. “Hybrid index structures for location-based web search”. In:
Proceedings of the 2005 ACM CIKM International Conference on Information
and Knowledge Management, Bremen, Germany, October 31 - November 5,
2005. Ed. by Otthein Herzog et al. ACM, 2005, pp. 155–162. url: https :
//doi.org/10.1145/1099554.1099584.

118

https://doi.org/10.1145/1099554.1099584
https://doi.org/10.1145/1099554.1099584

APPENDIX A

119

A.1 Composition of Riso query time in GraSp-Range

Figure 31 demonstrates the composition of Riso query time in GraSp-Range (Figure
16). The query time of Riso mainly consists of the time of Riso-Tree search, graph
search and auxiliary operations, like recognize APaths and query rewrite. The time of
auxiliary operations is negligible in all cases. The query time of Riso are determined
by the time of Riso-Tree search and graph search. The time of Riso-Tree search is
influenced by the spatial selectivity. When the query range contains more spatial
vertexes, the search time tends to increase. The time of graph search has similar trend.
But they increase at a different speed. The time of graph search is also influenced
by the complexity of the data graph and query graph. The query graphs used in
this experiment have similar complexity (query graph size). The difference lies in
the complexity of each graph dataset. Yelp dataset has the highest average degree
for whole dataset and spatial vertexes. So the time of graph search in Yelp dataset
increase fast and it dominates the query time of Riso. In the rest datasets, the
Riso-Tree search time is more influential in most of the scenarios.

A.2 Example Queries in Experiments

Figure 32, 33, 34 show the example queries for GraSp-Range, GraSp-KNN and
GraSp-KNN respectively. Different colors are are used to identify the labels of query
vertexes. The query vertexes in the spatial predicate are colored with black. Figure 32
shows two queries of GraSp-Range of size 3. The query pattern is after the “MATCH”
keyword. In the query on the left side, three query vertexes a0, a1 and a2 have the
labels of “high school”, “island nation” and “human” respectively. This query searches
the qualified subgraphs that the vertex with label “high school” is located within
the region (134.94, 34.96, 134.97, 34.98). In the query on the right side, the spatial
range predicate is with the center vertex a0. Figure 33 demonstrates two queries
of GraSp-KNN of size 3. The left-side query searches the K subgraphs that the
“mountain” vertex is closest to the location (69.46, 32.65). The right-side query has
the same number of query vertexes but the spatial predicate is on the center vertex
a0. Figure 34 demonstrates a query of GraSp-Join of size 5. The join predicate is on
vertex a0 and a3 that the distance between a0 and a3 is less than 0.0001 (degree).

120

10−6 10−5 10−4 10−3
0

10

20

30

40

Query Range

T
im

e
(s
)

Index Search
Graph Search
Auxiliary

(a) Gowalla (|Q| = 3)

10−6 10−5 10−4 10−3
0

10

20

30

Query Range

T
im

e
(s
)

Index Search
Graph Search
Auxiliary

(b) Wikidata (|Q| = 2)

10−6 10−5 10−4 10−3
0

5

10

15

Query Range

T
im

e
(s
)

Index Search
Graph Search
Auxiliary

(c) Foursquare (|Q| = 3)

10−4 10−3 10−2 10−1
0

100

200

300

400

Query Range

T
im

e
(s
)

Index Search
Graph Search
Auxiliary

(d) Yelp (|Q| = 3)

Figure 31: Composition of GraSp-Range query response time

MATCH (a0:`high school`),
(a1:`island nation`), (a2:`human`),
(a0)--(a1), (a1)--(a2)

WHERE 134.94 <= a0.lon <= 134.97
and 34.96 <= a0.lat <= 34.98

RETURN id(a0), id(a1), id(a2)

MATCH (a0:`building`),
(a1:`old town`), (a2:`country`),
(a0)--(a1), (a0)--(a2)

WHERE 8.800756 <= a0.lon <= 8.802922
and 53.077614 <= a0.lat <= 53.079780

RETURN id(a0), id(a1), id(a2)

a0 a1 a2 a1 a0 a2

Figure 32: Example query for GraSp-Range

121

MATCH (a0:`mountain`),
(a1:`country`), (a2:`river`),
(a0)--(a1), (a1)--(a2)

RETURN id(a0), id(a1), id(a2)
ORDER BY dist (a0, (69.46, 32.65))
LIMIT K

MATCH (a0:`hamlet`), (a2:`great power`),
(a1:`rural settlement of Russia`),
(a0)--(a1), (a0)--(a2)

RETURN id(a0), id(a1), id(a2)
ORDER BY dist (a0, (35.09, 62.29))
LIMIT K

a0 a1 a2 a1 a0 a2

Figure 33: Example query for GraSp-KNN

MATCH (a0:`street`),
(a1:`country of the Kingdom of the Netherlands`),
(a2:`place with town rights and privileges`),
(a3:`street`), (a4:`human settlement`),
(a0)--(a1), (a0)--(a2), (a1)--(a3), (a1)--(a4)

WHERE dist (a0, a3) < 0.0001
RETURN id(a0), id(a1), id(a2), id(a3), id(a4)a0 a1 a3 a4

a2

Figure 34: Example query for GraSp-Join

122

	Table of Contents
	Chapter
	1 Introduction
	2 Background and Literature Review
	3 Spatial-Aware Graph Search
	4 Riso-Tree: Graph-Aware Spatial Index
	5 Index Maintenance
	6 A Geospatial knowledge management system
	7 conclusion

	References
	Appendix
	A

