
Characterizing Brain Aging Trajectories in Older Adults with Autism Spectrum Disorder  

using a Novel Graph Theory Measure  

by 

Georgia Sullivan 
 
 
 
 
 

A Thesis Presented in Partial Fulfillment  
of the Requirements for the Degree  

Master of Science  
 
 
 
 
 
 
 
 
 
 

Approved April 2022 by the 
Graduate Supervisory Committee:  

 
B. Blair Braden, Co-Chair 

Vikram Kodibagkar, Co-Chair 
Sydney Schaefer 

Yalin Wang 
 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY  

May 2022  



  i 

ABSTRACT  
   

Little is known about how cognitive and brain aging patterns differ in older adults 

with autism spectrum disorder (ASD). However, recent evidence suggests that 

individuals with ASD may be at greater risk of pathological aging conditions than their 

neurotypical (NT) counterparts. A growing body of research indicates that older adults 

with ASD may experience accelerated cognitive decline and neurodegeneration as they 

age, although studies are limited by their cross-sectional design in a population with 

strong age-cohort effects. Studying aging in ASD and identifying biomarkers to predict 

atypical aging is important because the population of older individuals with ASD is 

growing. Understanding the unique challenges faced as autistic adults age is necessary to 

develop treatments to improve quality of life and preserve independence. 

 In this study, a longitudinal design was used to characterize cognitive and brain 

aging trajectories in ASD as a function of autistic trait severity. Principal components 

analysis (PCA) was used to derive a cognitive metric that best explains performance 

variability on tasks measuring memory ability and executive function. The slope of the 

integrated persistent feature (SIP) was used to quantify functional connectivity; the SIP is 

a novel, threshold-free graph theory metric which summarizes the speed of information 

diffusion in the brain. Longitudinal mixed models were using to predict cognitive and 

brain aging trajectories (measured via the SIP) as a function of autistic trait severity, sex, 

and their interaction. The sensitivity of the SIP was also compared with traditional graph 

theory metrics. It was hypothesized that older adults with ASD would experience 

accelerated cognitive and brain aging and furthermore, age-related changes in brain 

network topology would predict age-related changes in cognitive performance. 
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For both cognitive and brain aging, autistic traits and sex interacted to predict 

trajectories, such that older men with high autistic traits were most at risk for poorer 

outcomes. In men with autism, variability in SIP scores across time points trended toward 

predicting cognitive aging trajectories. Findings also suggested that autistic traits are 

more sensitive to differences in brain aging than diagnostic group and that the SIP is 

more sensitive to brain aging trajectories than other graph theory metrics. However, 

further research is required to determine how physiological biomarkers such as the SIP 

are associated with cognitive outcomes. 
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CHAPTER 1 

INTRODUCTION 

Aging in Autism Spectrum Disorder: 

 Aging is understudied in autism spectrum disorder (ASD), but emerging evidence 

suggests that older adults with ASD may be at increased risk for poorer aging outcomes 

and greater pathological aging. For example, a recent study found that people with ASD 

are at higher risk for early-onset dementia (Vivanti et al., 2021) as well as other 

neurodegenerative conditions including Parkinson’s disease (Croen et al., 2015; Kern et 

al., 2013). After adjusting for other risk factors, individuals with ASD were found to have 

a higher prevalence of dementia compared with the general population, and individuals 

under age 65 were approximately 2.6 times more likely to be diagnosed with dementia 

(Vivanti et al., 2021). In general, cognitive aging research in ASD has shown mixed 

findings with some studies suggesting better, parallel, or worse cognitive aging in ASD 

(Davids et al., 2016; Geurts et al., 2020; Geurts and Vissers, 2012; Powell, Klinger, and 

Klinger, 2017; Tse et al., 2019; Abbott, Happé, and Charlton, 2018; Lever and Geurts, 

2016; Lever et al., 2015). The discrepancies in these studies may be due to the cross-

sectional nature of existing research, which may be confounded by cohort effects (Parner, 

Schendel, and Thorsen, 2008). Finally, growing evidence in ASD (Stewart, Charlton, and 

Wallace, 2018; Stewart et al., 2020; Stewart et al., 2021) and the general population 

(Mason et al., 2021) suggests that higher autistic traits are associated with poorer aging 

outcomes. Early identification and treatment for age-related neurodegenerative conditions 

is associated with optimal outcomes (Dubois et al., 2016; Solomon and Murphy, 2005; 

Boustani et al., 2003). Given that changes in the brain often precede behavioral changes 



  2 

observed in aging (Benussi et al., 2019), identification of biomarkers predicting atypical 

aging in ASD will provide a foundation for sample selection in clinical trials or serve as 

potential prognostic markers in treatment studies. However, there is limited research to 

date addressing atypical brain aging in ASD and no studies have used longitudinal 

designs (Mason et al., 2022), which is the gold standard in aging research.  

Age-related Pathology in ASD 

 Although there is evidence of increased rates of neurodegeneration in ASD, it is 

unclear whether ASD might lead to neurodegeneration or if they are part of two separate 

but comorbid pathways (Kern et al., 2013). Recent evidence suggests that genetic factors 

may contribute to shared cellular and molecular pathways among neurodevelopmental 

and neurodegenerative disorders, and neurodevelopmental disorders such as ASD may 

contribute to an increased risk of neurodegenerative disease later in life (Hickman et al., 

2022). Several genes have been proposed in which mutations may contribute to ASD, 

Alzheimer’s disease (AD), and intellectual disability (ID; Ivashko-Pachima et al., 2021). 

These findings highlight that genes involved in autism may also contribute to 

neurodegenerative risk later in life, although further studies are needed to characterize 

aging in ASD and risk factors for cognitive decline and neurodegeneration.  

Cognitive Aging in ASD 

Other studies have examined cognitive performance and aging in older adults 

with ASD, given that cognitive declines are a hallmark of normal aging and pathological 

aging conditions (Bisiacchi et al., 2008; Craik, 2008). However, findings of cross-

sectional aging studies in ASD are likely confounded by strong age cohort effects in ASD 

(Parner. Schendel, and Thorsen, 2008). Findings from several studies examining group 
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differences indicate that older adults with ASD experience greater cognitive challenges 

than NT adults in executive function abilities and the time needed to complete daily tasks 

(Davids et al., 2016; Geurts et al., 2020; Braden et al., 2017). As a group, older adults 

with ASD also show greater difficulties in attention, working memory, and fluency, but 

some cross-sectional analyses of age associations suggest steeper cognitive decline with 

age in NT adults than adults with ASD (Geurts and Vissers, 2012). Conversely, another 

cross-sectional study found that adults with ASD have greater age-associated deficits in 

free recall ability and slower processing speeds in both cognitive and motor tasks 

(Powell, Klinger, and Klinger, 2017). Other cross-sectional studies suggest that adults 

with ASD have similar or improved cognitive aging outcomes compared with their NT 

counterparts on tasks involving speed and sequencing (Abbott, Happé, and Charlton, 

2018). A group comparison found that adults with ASD scored higher on visual memory 

tests than NT adults and similarly on verbal memory tests, although they scored lower on 

generativity and theory of mind measures (Lever and Geurts, 2016). Differences in age 

trajectories were only observed in visual memory, where a steeper decline in recognition 

and recall was observed in NT adults compared to adults with ASD (Lever and Geurts, 

2016). Similarly, a cross-sectional study on working memory in older adults with ASD 

reported similar performance between adults with ASD and NT adults, and the results 

suggested declining working memory ability with age in the NT group but not the ASD 

group (Lever et al., 2015). In summary, there remains little consensus regarding cognitive 

aging risk in ASD, and longitudinal designs are needed to control for confounding 

variables including cohort effects and individual differences.  
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Aging and Elevated Autistic Traits 

 A growing body of evidence suggests that elevated autistic traits are associated 

with poorer aging outcomes, both in ASD and in the general population. A longitudinal 

study found that higher self-reported autistic traits correlate with a faster aging pace, 

older facial age, and poorer health as rated by informants, interviewers, and participants 

themselves (Mason et al, 2021). In a study examining group differences, older adults 

were grouped by the Broad Autism Phenotype questionnaire as having either low or high 

levels of autistic traits, and participants with elevated autistic traits performed more 

poorly on three executive function metrics and an episodic memory test (Stewart et al., 

2018). This group also reported poorer executive abilities in everyday life and higher 

rates of depression and anxiety (Stewart et al., 2018). The authors hypothesized that 

autistic traits are associated with a higher risk of cognitive decline in aging in both adults 

with ASD and NT adults (Stewart et al., 2018). A study examining group differences 

found that older adults with elevated autistic traits have more difficulty with falling 

asleep, morning drowsiness, and lower sleep quality than the control group (Stewart et 

al., 2020). A similar study comparing group differences found that older adults with 

elevated autistic traits have increased rates of psychiatric diagnoses and more self-

reported symptoms of anxiety and depression than the control group (Stewart et al., 

2021). These studies suggest that the effects of ASD-related genetics and biology on 

aging may occur on a dimensional scale, where higher severity is linked to worse aging 

outcomes. Thus, the common paradigm examining diagnostic differences and age-related 

trajectories may be less sensitive to atypical aging features of ASD, and further 
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longitudinal work is warranted to determine how elevated autistic traits predict aging 

trajectories in autistic and non-autistic individuals.  

Brain Aging in ASD 

Several recent studies have used cross-sectional designs to estimate brain aging 

trajectories in ASD with growing evidence suggesting patterns of exacerbated brain aging 

in ASD. Studies examining group differences in the brains of older adults with and 

without ASD generally suggest persistent atypical features, especially in circuits 

supporting memory (Braden et al., 2017; Koolschijn et al., 2017; Linke et al., 2020). 

However, only a few studies have examined atypical age-related brain patterns in ASD, 

all of which have been cross-sectional. For example, a study that utilized diffusion tensor 

imaging (DTI) to measure white matter integrity found that adults with ASD had greater 

age-related mean diffusivity and radial diffusivity in white matter tracts than NT adults, 

suggesting poorer white matter microstructural integrity (Koolschijn at el., 2017). Adults 

with ASD have a more negative correlation between age and cortical thickness than NT 

adults (Braden and Riecken, 2019). In another study, our group examined age-group 

differences in the executive network, with findings suggesting exacerbated declines in 

network functional connectivity in older adults with ASD relative to NT adults (Walsh et 

al., 2019). Furthermore, lower functional connectivity in this network was linked to 

higher autistic traits in older men with ASD, suggesting dimensional sensitivity of 

autistic traits to detecting atypical brain aging patterns (Walsh et al., 2019). In contrast, 

less age-related decline was observed in visual network connectivity in adults with ASD, 

and this finding was supported by attenuated increase in reaction time in older adults with 

ASD compared with NT adults (Bathelt, Koolschijn, and Geurts, 2020). Besides 
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variations of MRI analysis, electroencephalography (EEG) has also been used to analyze 

differences in brain connectivity. A study that examined oscillatory slowing, an indicator 

of neurophysiological aging, suggested that the brain’s peak alpha frequency decreased 

with age at an increased rate in adults with ASD than NT adults (Dickinson, Jeste, and 

Milne, 2022). Together, research to date suggests exacerbated brain aging trajectories in 

ASD, although no studies have used gold-standard longitudinal designs to compare aging 

trajectories in ASD.   

Biomarker Research in Aging and ASD 

 Resting-state functional connectivity (rs-fMRI) approaches are promising for 

understanding and informing treatment of neuropsychiatric disease and aging (Fox et al., 

2014). However, few studies to date have used rs-fMRI to characterize atypical brain 

aging trajectories in ASD. One notable study used principal components analysis to 

derive a graph theory metric based on rs-fMRI to predict aging trajectories in ASD (Ball, 

Beare, and Seal, 2017). In particular, graph theoretical measures have shown promise as 

biomarkers in aging research (Kuang et al., 2019; Behfar et al., 2020; Brier et al., 2014; 

delEtoile and Adeli, 2017). Graph theory is a method of analyzing MRI data to quantify 

and compare brain network communication features. One challenge in neuroimaging 

biomarker research is the stringent statistical correction required for whole-brain 

investigations. Graph theoretical approaches can reduce statistical tests by quantifying 

network topology features at regional, network, or even the whole brain-level with a 

single value. For example, instead of comparing group differences in longitudinal 

trajectories for every voxel or selected regions of the brain, a single value can be 

produced for each participant to quantify whole-brain communication features, thus 
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reducing or eliminating multiple comparisons. However, a second challenge associated 

with graph theory approaches, and generally in rs-fMRI research, is the arbitrary 

selection of thresholding values to produce subject-level connectivity matrices that are 

then subject to topological investigation (van den Heuvel et al., 2017). Thresholding 

makes it difficult to compare findings between studies because the threshold values are 

subjective and vary based on the study (Chung et al., 2015; Choi et al., 2014; Lee at al., 

2017). The Integrated Persistent Feature (IPF) is a metric that eliminates the need for 

thresholding. When the IPF is plotted across different network states, the slope of the IPF 

(SIP) is a threshold-free metric which represents the rate of information diffusion, or the 

speed to fully connect a network (Kuang et al., 2019). The SIP is a promising metric 

because it summarizes the whole brain with one value, and it has previously shown 

sensitivity to group differences in Alzheimer’s disease, mild cognitive impairment, and 

healthy participants (Kuang et al., 2019). Thus, novel graph theoretical approaches to 

quantify functional brain network topology may be promising for biomarker research of 

aging in ASD.  

Sex Differences in Brain Aging: 

 Research examining sex differences in ASD is lacking, but preliminary evidence 

suggests that there are sex differences in ASD lifespan brain development (Walsh et al., 

2021). One study suggests age-by-sex-by-diagnosis differences in the (cross-sectionally 

estimated) slope of functional connectivity changes across diffuse brain networks 

(Kozhemiako et al., 2019). They found similar aging patterns among NT males, ASD 

males, and ASD females compared with NT females. The authors hypothesized that ASD 

may follow a “typical male” developmental pattern (Kozhemiako et al., 2019). The same 
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group later reported that females with ASD have more distinct developmental trajectories 

of local functional connectivity than other groups, which they concluded to support the 

female protective effect hypothesis (Kozhemiako et al., 2020). Importantly, a graph 

theory study examining functional connectivity reported an age-by-sex-by-diagnosis 

interaction that approached significance for modularity (Henry, Dichter, and Gates, 

2018), which measures communication between communities within a network (Sporns 

and Betzel, 2016). They found that while NT females had quadratic aging trajectories and 

NT males had flatter aging trajectories, both male and females with ASD had negative 

quadratic trajectories (Henry, Dichter, and Gates, 2018). Overall, studies examining sex 

differences in cross-sectionally estimated age trajectories, albeit in younger groups, 

suggest that sex and ASD may interact to produce distinct neurodevelopmental and aging 

trajectories in males vs. females with ASD. Thus, sex is a critical variable to consider in 

brain aging studies in ASD.  

Present Study: 

 The goal of this study is to use a longitudinal design to characterize cognitive and 

brain aging trajectories in ASD as a function of either diagnosis or autistic trait severity. 

First, to reduce multiple comparisons, we will use principal components analysis (PCA) 

to derive a single cognitive component metric explaining maximal variability in 

performance on a comprehensive cognitive battery of memory and executive functioning. 

We will examine how autistic traits, sex, or the interaction of sex and autistic traits 

predict longitudinal aging trajectories for this cognitive component. Then, we will 

explore the ability of a novel graph theoretical metric, the SIP, to predict distinct 

trajectories as a function of autistic traits, sex, and the interaction of sex and autistic traits 
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in a sample of ASD and NT adults. We will further compare the sensitivity of the SIP to 

traditional graph theory metrics (Betti number plot [BNP], characteristic path length 

[CPL], network diameter [ND], Eigenvector centrality [EC], and modularity [MOD]) to 

characterize atypical brain aging trajectories in ASD. We will also validate that autistic 

trait severity shows more sensitivity to atypical aging trajectories than diagnosis in an 

analysis of diagnosis, sex, and sex-by-diagnosis differences in cognitive and SIP 

trajectories. Finally, we will confirm links between brain trajectories and changes in 

cognitive ability over time, as summarized by the PCA component. We hypothesize that 

higher ASD trait severity will predict poorer cognitive and brain aging outcomes in men 

with ASD. Furthermore, we expect that the SIP will show greater sensitivity than the 

other graph theory metrics to atypical brain aging trajectories in ASD. Finally, we predict 

that changes in brain network topology with age will predict changes in cognitive 

performance with age in men with ASD.    
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CHAPTER 2 

METHODS 

Participants 

 Participants for this study with ASD were recruited through the Southwest Autism 

Research and Resource Center (SARRC) and with flyers posted throughout the 

community. NT participants were recruited through flyers and via word of mouth. 

Participants with ASD had their diagnoses confirmed at SARRC by a psychometrist with 

the Autism Diagnostic Observation Schedule-2 (ADOS-2; Lord et al., 2012) to determine 

if DSM-V criteria for an ASD diagnosis was met. Participants in either group with a 

score <70 on the Kaufman Brief Intelligence Test – 2nd Edition (KBIT-2) and scores <26 

on the Mini Mental State Exam (MMSE) were excluded from the study (Kaufman and 

Kaufman, 2004; Folstein, Folstein, and McHugh, 1975). NT participants were excluded if 

they had any suspected or confirmed ASD diagnosis, t-scores > 66 on the Social 

Responsiveness Scale – 2 Adult Self Report (SRS-2), or if they had a first-degree relative 

with a confirmed ASD diagnosis (Constantino, 2012). Participants in either group were 

also excluded if they had a history of neurological disorders or a head injury which 

resulted in loss of consciousness. Participants who had one childhood seizure but who are 

not taking anti-seizure medication and have not had any seizures in adulthood were not 

excluded, because children with ASD have a high frequency of seizures (Theoharides and 

Zhang, 2011). Participants were tested at baseline and at 2-, 4-, and 6-year follow-up 

visits.  
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Quantifying Symptom Severity 

 Self-reported ASD traits were measured with the Social Responsiveness Scale- 

2nd Edition Adult Self-Report (SRS-2A; Constantino, 2012). The SRS-2A consists of 65 

questions regarding social behaviors related to ASD. The scale reports both a summary 

T-score and subscale scores, which include Social Awareness (8 items), Social Cognition 

(12 items), Social Communication (22 items), Social Motivation (11 items), and 

Restricted Interests/Repetitive Behaviors (12 items). Total T scores are grouped by their 

reflection of ASD-related behaviors as follows: Mild (60-66), Moderate (67-75), and 

Severe (76+). Scores of 59 or below indicate minimal to no reported ASD-related 

behaviors. Total raw scores were used for the analysis.  

Cognition 

 Given that little is known about cognitive aging in ASD to derive hypotheses 

about cognitive domains most vulnerable to aging, we used principal components 

analysis on measures from a comprehensive cognitive battery. PCA derives a single 

measure of cognitive performance that explains maximum variability in this sample. In 

brief, measures included in the PCA analysis included: 1) Wisconsin Card Sorting Task 

(WCST) Perseverative Errors, 2) Rey Auditory Verbal Learning Task Short Term (AVLT 

A1) and Long-Term (AVLT A7) verbal memory scores, 3) Wechsler Memory Test 

Visual Reproduction Task Short Term (WMS-VR-I) and Long Term (WMS-VR-II) 

scores, 4) Tower of London total correct, 5) Trails A and B total time, and 6) Stroop 

interference scores. SPSS 26 was used to generate the cognitive component; PCA was 

implemented using maximum likelihood estimation with 100 iterations. While the top 

component was of primary interest as it explains maximum variability in the sample’s 
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cognitive performance, a second component with an eigenvalue greater than one was also 

produced and examined in an exploratory manner in subsequent longitudinal analyses.  

Data Acquisition  

 A 3-Tesla Philips Ingenia MRI scanner was used for all of the scans, and the 

maximum gradient strength was 5 mT/m. A three-dimensional magnetization prepared 

rapid acquisition graduate echo (MPRAGE) was used to acquire the T1 weighted 

structural images (170 axial slices, 1.2 mm thickness, 240mm FOV, 256x256 acquisition 

matrix). A gradient-echo echo-planar series with whole brain coverage was used to obtain 

resting state images (TR=3s, echo time=25ms, flip angle=80°, 3mm slices, 24mm FOV, 

64x64 acquisition matrix). Participants had the opportunity to visit the scanner before 

their scans in an attempt to reduce any stress or anxiety related to the MRI process. They 

were also provided with ear plugs, head phones, and padding to make the scanner more 

comfortable and to minimize motion. The participants were instructed to lay in the 

scanner with their eyes closed for six minutes (120 volumes) and to “clear their mind.”  

Image Pre-Processing 

 Statistical Parametric Mapping software (SPM-12) was used to preprocess the 

resting-state data in MATLAB (Wellcome Department of Cognitive Neurology, Institute 

of Neurology, London, UK; fil.ion.ucl.ac.uk/spm/; Mathworks, Natick, MA). The 

structural T1 images were preprocessed with image segmentation and skull-stripping. For 

rs-fMRI images, Wavelet Despiking was done with the BrainWavelet toolkit (Patel et al., 

2014). The next steps were functional image realignment, anatomical image 

segmentation, skull-stripping, functional image co-registration, and DARTEL 

normalization to the MNI space with 8mm FWHM smoothing. Functional outliers were 



  13 

removed at a 0.5 mm framewise displacement threshold. A CompCor confound 

regression was conducted, including realignment parameters/first order derivatives, 

scrubbing, linear detrending, and bandpass filtering [.008 .1]. The images were visually 

inspected after preprocessing for quality assurance. Then, Data Processing Assistant for 

Resting State fMRI (DPARSF; Chao-Gan and Yu-Feng, 2010) was used to extract 

denoised timecourses for 116 regions of interest based on the automated anatomical 

labelling atlas (AAL; Tzourio-Mazoyer et al., 2002). 

Graph Theory Metric Calculations 

Graph theoretical analysis of rs-fMRI images is an approach where the brain is 

represented by networks in a mathematical graph. The graph is made up of intersections 

(nodes) and edges between regions. The elements of the matrix are composed of 

coefficients representing the functional communication between regions (Medaglia, 

2017). However, it is common to threshold graphs by choosing the strength of edges that 

form the graph where the network organization is evaluated (van den Heuvel et al., 

2017). The Integrated Persistent Feature (IPF) is a metric that eliminates the need for 

thresholding. It is derived from the zeroth Betti number and the Connected Component 

Aggregation Cost. The zeroth Betti number is a homology-based topological feature 

(Kuang et al., 2019). Persistent homology quantifies topological features for a given state 

of a network, but it does not give information about future states of the network. The 

Connected Component Aggregation Cost measures the energy that would be required to 

fully connect a network from its current state. When the IPF is plotted across different 

network states, the slope (SIP) is a threshold-free metric which represents changes in 

network connectivity (Kuang et al., 2019). The SIP is a decreasing convergence function, 
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and a steeper negative slope can be interpreted as more efficient information diffusion in 

a network.  

Methodology from Kuang et al. (2019) was replicated to construct networks and 

calculate the IPF at each network scale filtration value. In summary, the mean time series 

of ROIs were extracted for AAL regions, and the observed distance matrix was calculated 

through Pearson correlation. Single linkage dendrogram was used to obtain the predicted 

distance matrix. The single linkage distance matrix was used to construct a multiscale 

resting state network (RSN) for each subject, and the IPF was plotted against different 

filtration values. The slope of the IPF (SIP) was calculated for each participant.  

 Traditional graph theory metrics include Betti Number Plots (BNP), 

Characteristic Path Length (CPL), Network Diameter (ND), Eigenvector Centrality (EC), 

and Modularity (Mod) (De Silva and Ghrist, 2007; Watts and Strogatz, 1998; Assenov et 

al., 2008; Lohmann et al., 2010; Sporns and Betzel, 2016). These metrics were also 

calculated using the Brain Connectivity Toolbox for the purpose of comparing their 

sensitivity with the SIP (Rubinov and Sporns, 2010). BNPs quantify how the number of 

connected components varies throughout different filtration values, or spatial states. CPL 

measures the efficiency of information transfer throughout a network, and it is the 

average shortest distance between all nodal pairs (Rubinov and Sporns, 2010). Lower 

CPL values are associated with more efficient information transfer. The ND measures 

network size by calculating the distance between the farthest paired nodes in a network 

(Assenov at al., 2008). Mod measures communication between communities within a 

network (Sporns and Betzel, 2016). A high Mod value indicates high communication 

within a region but low communication between regions. EC assigns each node a value 
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based on the number of other nodes it is connected to, so a node that is highly connected 

has a greater weight (Lohmann et al., 2010).  

Longitudinal Analyses  

Longitudinal analyses examined the influence of autistic traits, sex, and the 

interaction of sex and autistic traits on cognitive and brain aging. We also explored the 

same models, but instead investigated diagnosis group effects rather than autistic traits 

for a comparison of sensitivity (e.g., autistic traits vs. diagnosis). All longitudinal 

modeling was conducted in SAS 9.4 using proc mixed. For cognitive variables, our 

primary dependent measure was the first PCA-derived component, which loaded strongly 

and positively onto memory variables. However, we explored longitudinal trajectories for 

all components with an eigenvalue greater than one (which consisted of one other 

component that loaded more positively onto executive functioning variables). For brain 

variables, our primary dependent measure of interest was the SIP. However, we also 

explored longitudinal trajectories for traditional graph theory measures including BNP, 

CPL, EC, ND, and Mod for a comparison of sensitivity with the SIP. For the primary 

brain (SIP) and cognitive (PCA component 1) longitudinal analyses, alpha was set at 

p=0.05 without correction. Given the exploratory nature of the other brain/cognitive 

analyses, alpha was also set at p=0.05. Models included the following fixed effects: age, 

autistic traits, sex, age*autistic traits, age*sex, and age*sex*autistic traits. Continuous 

predictors were mean-centered and categorical predictors were dummy coded. Using 

Aikake Information Criterion (AIC) for model selection, we compared the following 

models separately for the primary dependent measures: 1) fixed effects only, 2) mixed 

effects with random slopes, 3) mixed effects with random slopes/intercepts. When 
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random effects were included, an unstructured covariance pattern model was used. The 

optimal fixed effects covariance pattern model was selected using AIC comparing two 

parsimonious (autoregressive with and without constrained variances) vs. two 

unstructured models (unstructured with and without constrained variances). The model of 

best fit was selected separately for cognitive vs. brain analyses. For exploratory analyses, 

the same model was used as the corresponding primary cognitive or brain analysis (e.g., 

fixed vs. mixed and covariance patterns). All models used maximum likelihood 

estimation. Exploratory post-hoc investigations of significant three-way interactions were 

conducted for men and women separately to determine the sex group driving significant 

effects. These models were the same as the full group model, except the sex variable was 

eliminated from the analysis and restricted maximum likelihood estimation was used to 

adjust for the smaller sample. Figures were generated using proc sgplot to display 

predicted SIP values as a function of age, with a gradient legend coloring participants 

according to autistic trait severity. 

We also conducted a post-hoc exploratory investigation of cognitive-brain 

trajectory associations in the group showing the most vulnerable brain trajectories (men 

with ASD). For this analysis, we included only men with ASD. The dependent measure 

in this model was the memory-loading PCA component. Fixed effects included age, 

subject-mean SIP values, and SIP residuals (from the subject mean) to investigate 

whether trait or state-level SIP values influenced cognitive performance. Random 

intercepts and slopes were modeled using an unstructured covariance pattern model. 

Given the small sample, a simple, parsimonious autoregressive covariance pattern model 

with constrained variances was used to model repeated measures for fixed effects. 
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Furthermore, given the small sample, restricted maximum likelihood estimation was 

used.  
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CHAPTER 3 

RESULTS 

Demographics 

At 2-year follow-up, there were a total of 70 participants (13 ASD females, 23 

ASD males, 14 NT females, 19 NT males). Twenty participants were tested at a 4-year 

follow-up (1 ASD female, 9 ASD males, 2 NT females, 11 NT males), and 11 

participants were tested at a 6-year follow- up (4 ASD males and 7 NT males). The ages 

of the participants and their follow-up intervals are displayed in Figure 1, and the 

demographic information for the participants is listed in Table 1. There were no 

significant differences between groups in terms of age, average interval between visits, 

MMSE score, KBIT-2 composite score, or the ADOS-2 score. There was a significant 

difference in the number of visits between males and females (p=0.001) because 

recruitment of female participants began several years after males. As expected, there 

was also a significant difference in SRS-2 scores between diagnostic groups (p<0.001).  
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Figure 1: Participants’ ages and follow-up intervals 

 

Fig. 1. Participants’ ages and follow-up intervals. Each participant is represented by an 

individual line, and each dot represents one visit.   
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Table 1: Demographics for participants  

 

ASD M 
(n=23) 
Mean 
(±SD) 
Range 

ASD F 
(n=13) 
Mean 
(±SD) 
Range 

NT M 
(n=19) 
Mean 
(±SD) 
Range 

NT F 
(n=14) 
Mean 
(±SD) 
Range Statistics 

Age  
(baseline, 
years) 

53.09 
(±8.64) 
40-67 

53.77 
(±8.68) 
40-71 

51.00 
(±7.78) 
41-68 

56.21 
(±8.20) 
42-66 n/a 

Average 
interval 
(years) 

2.31 
(±0.35) 
1.99-3.48 

2.27 
(±0.26) 
1.97-2.95 

2.28 
(±0.49) 
1.96-4.05 

2.50 
(±0.43) 
2.00-3.35 n/a 

Number  
of visits 

2.57 
(±0.79) 
2-4 

2.08 
(±0.28) 
2-3 

2.89 
(±0.88) 
2-4 

2.14 
(±0.36) 
2-3 

Sex: 
Fdf=12.651,66 
P=0.001 

SRS-2  

93.90 
(±26.76) 
56-138 

98.15 
(±25.45) 
44-134 

31.44 
(±18.16) 
7-70 

19.79 
(±13.10) 
3-46 

Diagnosis: 
Fdf=166.961,62 
P<0.001 

MMSE 

29.30 
(±1.02) 
26-30 

29.23 
(±1.01) 
27-30 

29.26 
(±0.99) 
26-30 

29.64 
(±0.63) 
28-30 n/a 

KBIT-2  

112.00 
(±14.80) 
70-131 

108.54 
(±11.38) 
88-127 

113.00 
(±12.65) 
94-141 

109.64 
(±12.41) 
85-132 n/a 

ADOS-2   

10.48 
(±3.13) 
7-19 

9.46 
(±1.56) 
7-13 n/a n/a n/a 

Table 1. The demographic information for participants. There were no significant 

differences between groups for age, average interval, Mini Mental State Exam scores 

(MMSE), Kaufman Brief Intelligence Test- 2nd Edition scores (KBIT-2), or Autism 

Diagnostic Observation Schedule- 2 scores (ADOS-2). Females had significantly fewer 

visits than males because the female study began after the male study, and participants 

with ASD had higher Social Responsiveness Scale- 2 Adult Self Report (SRS-2) scores 

than NT adults due to the social symptoms associated with ASD.  
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Cognitive PCA Component Derivation 

 The first cognitive PCA component loaded most positively onto memory 

variables (see Table 2). The positive loadings were in the following order: 1) verbal long-

term memory (AVLT A7), 2) visual short-term memory (WMS-VR-I), 3) visual long-

term memory (WMS-VR-II), 4) verbal short-term memory (AVLT A1), and 5) Tower of 

London (ToL). The top negative loadings were in the following order: 1) Trails B, 2) 

Trails A, 3) Wisconsin Card Sorting Task (WCST) Perseverative Errors, and 4) Stroop. 

This component may be more representative of memory processes. The second PCA 

component also had an eigenvalue greater than one. This component loaded positively 

onto most variables, but with the strongest positive loadings ordered as follows: 1) Stroop 

and 2) Trails A. This component may be more representative of cognitive 

control/attention and/or processing speed. 
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Table 2: Cognitive principal components derivations 

 Component 

 1 2 
WCST -0.403 0.067 
AVLT A1 0.595 0.273 
AVLT A7 0.795 0.244 
WMS-VR-I 0.737 0.302 
WMS-VR-
II 0.712 0.397 
ToL 0.327 -0.056 
Trails A -0.609 0.515 
Trails B -0.717 0.369 
Stroop -0.335 0.709 

Table 2. The results from the cognitive principal component derivation. The first 

component loaded most positively onto memory variables, and the second component 

loaded most positively onto variables measuring executive function and processing 

speed. Abbreviations: Wisconsin Card Sorting Task Perseverative Errors (WCST), Rey 

Auditory Verbal Learning Task Short Term (AVLT A1) and Long-Term (AVLT A7) 

verbal memory scores, Wechsler Memory Test Visual Reproduction Task Short Term 

(WMS-VR-I) and Long Term (WMS-VR-II) scores, Tower of London total correct 

(ToL), Trails A and B total time, and Stroop interference scores. 

Cognition: Longitudinal Trajectories 

 For the memory-loading cognitive component, there was a significant autistic 

traits-by-sex-by-age interaction. Specifically, greater autistic traits predicted greater 

cognitive reductions over time, but female sex attenuated this effect (Table 3; Fig. 2). 

Post-hoc analysis of sex groups separately showed that, for men, autistic traits 

approached significance for predicting the intercept (t23.3=-2.04, p=.052) and slope 

(t43.1=-1.84, p=.072) for the memory-loading PCA component trajectory. Specifically, 
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higher autistic traits predicted lower intercepts and more negative slopes. For women, 

autistic traits trended toward predicting the intercept (t28=-1.89, p=.071) but not the slope 

(t28=0.20, p=.843) of the memory-loading PCA component growth curve, although power 

was more limited in this group. Higher autistic traits also predicted lower intercepts in 

women. There were no other significant effects of autistic traits, sex, or lower order 

interactions. For the cognitive control-loading PCA component, there were no significant 

effects of any predictor or interaction. There were no significant effects for diagnostic 

group for either the memory-loading PCA component or the cognitive control-loading 

PCA component.  

Table 3: Memory loading PCA component 

Solution for Fixed Effects 

Effect Estimate 
Standard 
Error DF t Value Pr > |t| 

Intercept -0.0051 0.17 48.9 -0.03 0.98 
Age -0.027 0.017 103 -1.61 0.11 
SRS Baseline -0.0071 0.0038 50.2 -1.90 0.06 
Age x SRS Baseline 0.00038 401 94.5 0.94 0.35 
Sex 0.034 0.21 49.7 0.16 0.87 
Age by Sex -0.0040 0.021 111 -0.19 0.85 
SRS Baseline by Sex -0.00038 0.0049 49.8 -0.08 0.94 
Age by SRS Baseline by 
Sex -0.00096 0.00049 99.4 -1.95 0.05 

Table 3. The solution for fixed effects analysis of the cognitive memory-loading 

principal components analysis. There is a significant effect for the interaction between 

age, autistic traits, and sex.  
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Figure 2: Age trajectories of memory-loading PCA component  

 

Fig. 2. Predicted age trajectories of the memory-loading PCA component 1 as a function 

of baseline scores on the Social Responsiveness Scale – 2 Adult Self Report (SRS). 

Table 4: Cognitive control-loading PCA component  

Solution for Fixed Effects 

Effect Estimate 
Standard 
Error DF t Value Pr > |t| 

Intercept -0.053 0.16 78.7 -0.34 0.73 
Age -0.0060 0.018 80.3 -0.33 0.74 
SRS Baseline 0.0022 0.0036 79.6 0.61 0.54 
Age x SRS Baseline -0.00037 0.00043 82.6 -0.86 0.39 
Sex 0.019 0.19 72.2 0.10 0.92 
Age by Sex -0.011 0.022 76 -0.49 0.62 
SRS Baseline by Sex -0.0010 0.0044 71.8 -0.24 0.81 
Age by SRS 
Baseline by Sex 0.00043 0.00051 74.6 0.85 0.40 

Table 4:  The solution for fixed effects analysis of the cognitive control-loading principal 

components analysis. There were no significant effects.  
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Graph Theory Functional Connectivity: Longitudinal Trajectories 

There was a significant autistic traits-by-sex-by-age interaction for SIP 

trajectories (Table 5; Fig. 3). Post-hoc analysis of sex groups separately was conducted to 

investigate the group driving significance. This analysis revealed a significant autistic 

traits-by-age effect in men (t39.8=2.78, p=.008), such that higher autistic traits predicted 

more positive SIP trajectories, indicating slower rates of information diffusion across 

aging. However, this effect was not significant in women (t20.4=-0.33, p=.747). 

Furthermore, there was a significant main effect of sex (Table 5), such that women, on 

average, had lower SIP values than men, which may indicate faster rates of information 

diffusion. For traditional graph theory metrics, the BNP also showed a significant autistic 

traits-by-sex-by-age effect albeit weaker than the SIP (Table 6; Fig. 4). Given that the 

BNP is used to calculate the SIP, it is not unexpected that both measures may yield a 

significant effect. Post-hoc analyses separately in male and female groups showed that 

the autistic traits-by-age interaction was non-significant in men (t43.1=1.35, p=.184) and 

women (t19.5=-0.86, p=.402). However, the pattern of effects was generally similar to the 

SIP, such that higher autistic traits predicted more positive BNP trajectories in men and 

the inverse for women. Furthermore, ND showed a significant effect of sex, such that 

women had higher values than men. However, there were no other significant effects of 

autistic traits, sex, age, or their interaction for traditional graph theory measures. There 

were also no significant effects between diagnostic groups.  
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Table 5: SIP effects for autistic traits, age, and sex 

Solution for Fixed Effects 

Effect Estimate 
Standard 
Error DF t Value Pr > |t| 

Intercept -0.94 0.014 73.9 -69.04 <0.01 
Age -0.0022 0.0015 80.2 -1.50 0.14 
SRS Baseline 0.00032 0.00032 72.2 1.02 0.31 
Age x SRS Baseline -0.000040 0.000036 83.2 -0.99 0.32 
Sex 0.054 0.016 76.1 3.43 <0.01 
Age by Sex -0.00040 0.0018 69.3 -0.23 0.82 
SRS Baseline by Sex -0.00025 0.000368 77 -0.68 0.50 
Age by SRS Baseline by 
Sex 0.000106 0.000043 80.6 2.47 0.02 

Table 5. The solution for fixed effects analysis of the slope of the integrated persistent 

feature (SIP). There is a significant effect for the intercept, sex, and the interaction 

between age, autistic traits, and sex.  

Figure 3: Age trajectories of the SIP as a function of autistic traits  

 

Fig. 3. Predicted age trajectories of the slope of the integrated persistent feature (SIP) as a 

function of baseline scores on the Social Responsiveness Scale – 2 Adult Self Report 

(SRS). 
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Table 6: BNP effects for autistic traits, age, and sex 

Solution for Fixed Effects 

Effect Estimate 
Standard 
Error DF t Value Pr > |t| 

Intercept -278.31 2.54 72.3 -109.51 <0.01 
Age -0.46 0.29 78.1 -1.58 0.12 
SRS Baseline 0.068 0.059 71 1.16 0.25 
Age x SRS Baseline -0.0098 0.0069 79.7 -1.41 0.16 
Sex -0.83 3.10 74.2 -0.27 0.79 
Age by Sex 0.20 0.36 72.2 0.55 0.59 
SRS Baseline by Sex -0.064 0.072 74.6 -0.89 0.38 
Age by SRS Baseline by 
Sex 0.018 0.0086 78.4 2.05 0.04 

Table 6. The solution for fixed effects analysis of the Betti number plot (BNP). There is a 

significant effect for the intercept and the interaction between age, autistic traits, and sex. 

Figure 4: Age trajectories of the BNP as a function of autistic traits  

 

Fig. 4. Predicted age trajectories of the Betti number plot (BNP) as a function of baseline 

scores on the Social Responsiveness Scale – 2 Adult Self Report (SRS). 
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Cognitive-Brain Associations 

 We explored whether SIP trajectories predict poorer cognitive aging trajectories 

in the group that showed the most positive SIP trajectories (men with ASD). We found 

that variability in subject-level SIP values at each time point approached significance for 

predicting the memory-loading PCA component (p=.065; Table 7; Fig. 5). Specifically, 

when a participant’s SIP values were relatively more positive, the “memory” growth 

curve was pushed down, indicating a lower “memory” score at the time point. In contrast, 

when a participant’s SIP values were relatively more negative, the “memory” growth 

curve was pushed up, indicating higher “memory” scores at that time point. However, 

trait-level SIP values (e.g., the participant’s mean SIP value across time points) was not a 

significant predictor of the memory-loading PCA component.  

Table 7: Interactions between the SIP and memory-loading PCA component in 

males with ASD 

Solution for Fixed Effects 

Effect Estimate 
Standard 
Error DF t Value Pr > |t| 

Intercept -0.31 0.25 16.3 -1.24 0.23 
Age -0.06 0.021 29.2 -2.95 0.01 
Mean SIP -0.12 3.41 14.8 -0.03 0.97 
SIP Residuals -1.19 0.62 25.4 -1.93 0.07 

Table 7. The solution for fixed effects analysis of the SIP in predicting the memory-

loading PCA component in males with ASD. There is a significant effect for age and a 

near-significant effect for SIP residuals.  
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Figure 5: Age trajectories of the memory-loading PCA component as a function of 

the SIP 

 

Fig. 5. Predicted age trajectories of the memory-loading PCA component as a function of 

the slope of the integrated persistent feature (SIP). 
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CHAPTER 4 

DISCUSSION 

Summary 

 The results supported our hypothesis that autistic trait severity is a more sensitive 

metric than diagnostic group. In terms of cognitive aging trajectories, there were sex-by-

autistic traits differences for the PCA memory-loading component, but not the cognitive 

control-loading component. Higher autistic traits predicted a steeper decline in cognitive 

ability over time, but this effect was only significant in males. The results supported our 

hypothesis that the SIP is more sensitive to differences in functional connectivity than 

other graph theory metrics including CPL, ND, and EC. In terms of SIP aging 

trajectories, there was a significant effect for sex-by-autistic traits where in males, higher 

autistic traits predicted a more positive SIP over time. We also found that in males with 

ASD, SIP trajectories trended towards predicting the memory-loading PCA component. 

This finding supports the hypothesis that positive SIP values reflect slower, less efficient 

information processing with age (Kuang et al. 2019).    

Memory 

 We found that elevated autistic trait severity was associated with a reduction in 

cognitive ability over time and that this effect was more pronounced in males than in 

females. In men, higher autistic traits were associated with lower intercepts and more 

negative slopes of the memory-loading PCA component. These results extend cross-

sectional research suggesting that older adults with ASD have less desirable cognitive 

aging outcomes than NT adults (Geurts and Vissers, 2012; Davids et al., 2016; Geurts et 

al., 2020). One prior study found that increasing age in adults with ASD is associated 
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with greater deficits in free recall and processing speeds than NT adults (Powell, Klinger, 

and Klinger, 2017). However, other cross-sectional age research in ASD finds evidence 

for equivalent or protective aging trajectories (Abbott, Happé, and Charlton, 2018; Lever 

and Geurts, 2016; Lever et al., 2015). Our results suggest that contradictory findings on 

how ASD impacts memory through the aging process may be a result of  analyzing males 

and females together without modeling sex interactions. We found sex differences in how 

memory changes over time in males and females, so it may be more appropriate to 

analyze the sexes separately and/or investigate interactions.  

Brain Aging in Autism 

 Our results support existing research suggesting that older adults with ASD have 

less desirable brain aging trajectories than the general population. We found that higher 

autistic traits correlated with more positive SIPs and thus less efficient information 

processing. The results also indicated that the SIP trends towards predicting the memory-

loading PCA component in men with ASD, such that variability in SIP scores from one 

timepoint to the next predicts “memory trajectories.” Specifically, more positive SIP 

values are linked to lower scores on the memory-loading PCA component. This evidence 

supports the hypothesis that more positive SIPs are associated with less efficient brain 

information diffusion (Kuang et al., 2019). The results support cross-sectional research 

on brain aging in ASD, including studies that found reduced age-related white matter 

integrity (Koolschijn et al., 2017), increased age-related cortical thinning (Braden and 

Riecken, 2019), and reduced age-related functional connectivity in adults with ASD 

(Walsh et al. 2019). Our results combined with existing research support the hypothesis 
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that men with ASD with high autistic traits have steeper age-related declines in functional 

connectivity than those with lower autistic traits and NT men.  

Categorical vs. Dimensional Measures of Autism 

 Our results also support the hypothesis that autistic traits show greater sensitivity 

to differences in brain aging than diagnostic group. Based on our results and findings 

from previous studies, quantifying ASD based on trait severity may be more sensitive 

than categorical group difference analyses. In a study involving the general population, 

higher autistic traits were associated with accelerated aging processes including a variety 

of biomarkers, facial age, and poorer health outcomes (Mason et al., 2021). There are few 

studies that use a dimensional analysis of autistic traits in older adults, and no studies 

were identified that directly compare categorical and dimensional analyses (Mason et al., 

2022). However, there is consensus that autistic traits are distributed throughout the 

population in individuals with and without an ASD diagnosis (Hoekstra et al., 2007; 

Colvert et al., 2015; Tick et al., 2016). Among the general population, individuals who 

endorse higher autistic traits have similar social and cognitive difficulties as adults with 

ASD (Stewart et al., 2020; Stewart, Charlton, and Wallace, 2018; Wallace, Budgett, and 

Charlton, 2016), and they also demonstrate similar mental health patterns (Stewart et al., 

2021). Another study found that individuals with elevated autistic traits have accelerated 

age-related subjective cognitive impairment (Caselli et al., 2018). There is also evidence 

that autistic trait severity is associated with differences in brain development and 

functional connectivity (Gibbard et al., 2013; Pua et al., 2021; Di Martino et al., 2009). 

Several of these studies found stronger correlations between symptom severity and 

differences in brain features in female participants (Cauvet et al., 2019; Kozhemiako et 
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al., 2020). Dimensional analyses may be more appropriate given the heterogenous nature 

of ASD and changes in diagnostic criteria over time.  

Graph Theory in Autism 

 These results also support previous research studying graph theory in ASD. There 

are no existing studies measuring the IPF or SIP in ASD, but other graph theory metrics 

have been used to compare group differences in functional connectivity and to develop 

screening tools for ASD (Sadeghi et al., 2017). Most existing research in this field 

focuses on children and adolescents with ASD, and there are few graph theory-based 

studies examining aging trajectories in ASD. Several studies involving children and 

younger adults found that ASD is associated with abnormal network organization and 

reduced network efficiency and density (Keown et al., 2017; Alaerts et al., 2015). 

Another study on adolescents in ASD found that posterior overconnectivity was 

associated with higher ASD trait severity and frontal underconnectivity was associated 

with lower ASD trait severity, which supports our hypothesis that trait severity may be a 

more sensitive metric than diagnostic group (Keown et al., 2013). Similarly, a study of 

adults with ASD found decreased degree centrality in areas related to speech 

comprehension and that degree centrality was negatively correlated with ADOS scores 

(Lee at al., 2017). These findings are supported by graph theoretical analyses of 

behavioral data. A study that mapped networks involved in social cognition found 

decreased connectedness between nodes in young adults with ASD compared with NT 

adults (Vagnetti et al., 2020). One study used principal components analysis to derive a 

rs-fMRI based graph theory metric that predicts aging trajectories in ASD throughout the 

lifespan. They found that a quadratic model best predicted aging trajectories and that 
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including sex differences improved the accuracy of their model (Ball, Beare, and Seal, 

2017). Our findings agree with the existing body of research that ASD may be associated 

with functional underconnectivity and less efficient information processing.  

Sex Differences in ASD Aging  

 We found sex differences in how autistic trait severity predicts changes in 

memory ability over time. We found that elevated autistic traits were associated with a 

greater reduction in cognitive ability over time, but this effect was less pronounced in 

females. We also found that higher autistic traits predicted a more positive SIP in males 

but not females, and overall, females had more negative SIPs than males. Although no 

prior studies have examined sex differences in aging processes from the perspective of 

autistic trait severity, these results support the conclusions of the few other studies 

examining age-by-sex-by-diagnosis interactions in ASD. One group reported that females 

with ASD have more distinct developmental trajectories than males with ASD, and they 

found similar developmental patterns between males and females with ASD and NT 

males (Kozhemiako et al., 2019; Kozhemiako et al., 2020). They hypothesized that more 

changes in local connectivity patterns are needed to create symptoms that reach a 

diagnostic threshold for females with ASD, and the female brain may be protective 

against autistic traits. Our results support this hypothesis, as we found that autistic traits 

predicted less of a reduction in cognitive ability over time in females compared to males. 

Another study also reported age-by-sex-by-diagnosis differences in network 

communication, as both males and females with ASD had negative quadratic trajectories 

while NT males had flatter trajectories and NT females had quadratic trajectories (Henry 

et al., 2018). These findings also suggest that aging in ASD for both males and females 
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may follow a path that is more similar to typical male aging patterns. Our results coupled 

with prior research suggest that there are sex differences in brain aging patterns in ASD 

and that this field warrants further study.  

Limitations 

 Sex is an important factor to consider in ASD research because historically, men 

have been diagnosed nearly four times as frequently as women (Giarelli et al., 2010). Our 

sample size of female participants was smaller compared to male participants, which 

influences the statistical power for within sex analyses. Specifically, for longitudinal data 

the study first recruited exclusively men for three years before securing funding to recruit 

women. Additional research investigating sex differences in functional connectivity with 

a larger sample is warranted. The present study also addressed relationships between 

cognitive abilities and functional connectivity metrics, which is a first step in exploring 

the brain mechanisms of cognitive changes. However, further research is required to 

determine the clinical significance of the SIP. A final limitation of this study is that 

approximately one third of all individuals who are diagnosed with ASD have comorbid 

intellectual disability (ID). We excluded individuals with ID, which limits 

generalizability of findings to the larger ASD population. Further research is required to 

determine how functional connectivity differs in those with ASD and comorbid ID.  

Conclusions 

 In this study, we found that the SIP, a novel threshold-free graph theory metric, is 

more sensitive to age-related changes in functional connectivity in ASD than other graph 

theory metrics (BNP, CPL, ND, or EC). We also found that quantifying ASD trait 

severity continuously rather than categorically based on diagnosis may be more sensitive 
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for understanding cognitive and brain aging in ASD. We found that higher autistic traits 

are associated with declining functional connectivity and less efficient information 

processing in men. We explored the association between the SIP and cognitive ability in 

males with ASD, and found that variability in the SIP over time predicted cognitive 

performance on the memory component of the PCA. In the future, we plan to further 

study how physiological biomarkers such as the SIP are associated with cognitive 

outcomes. Future studies examining sex differences in brain aging patterns are also 

warranted. Our study includes a longitudinal sample up to six years in length, but 

continuing this research for a longer period of time will increase the power of the study 

and allow us to determine how the aging process in ASD differs over extended periods of 

time. This research has clinical applications because understanding the unique challenges 

faced by an aging population of older adults with ASD is necessary to develop effective 

interventions for improved quality of life and maintaining independence.  
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