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ABSTRACT 

Advanced driving assistance systems (ADAS) are one of the latest automotive technologies 

for improving vehicle safety. An efficient method to ensure vehicle safety is to limit vehicle 

states always within a predefined stability region. Hence, this thesis aims at designing a 

model predictive control (MPC) with non-overshooting constraints that always confine 

vehicle states in a predefined lateral stability region. To consider the feasibility and stability 

of MPC, terminal cost and constraints are investigated to guarantee the stability and 

recursive feasibility of the proposed non-overshooting MPC. The proposed non-

overshooting MPC is first verified by using numerical examples of linear and nonlinear 

systems. Finally, the non-overshooting MPC is applied to guarantee vehicle lateral stability 

based on a nonlinear vehicle model for a cornering maneuver. The simulation results are 

presented and discussed through co-simulation of CarSim® and MATLAB/Simulink.  
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CHAPTER 1 INTRODUCTION 

 

1.1 Background and Motivation 
 

The growth of autonomous guided vehicles in driving scenarios is gaining much 

importance and has obtained rapid growth with the help of artificial intelligence and 

enhanced sensor technologies. Complete autonomous driving in natural urban settings has 

remained an important but elusive goal [2]. Beyond that appropriate for a research lab, 

significant engineering effort must go into a system to ensure maximal reliability and safety 

in all conditions [2]. Vehicle safety has changed drastically over the years; today, newer 

cars are safer than ever [1]. As many ADAS functions focus on longitudinal motion, 

minimal research is done considering the lateral motion as in Figure  1  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1 Non-overshooting MPC With 

Applications to Vehicle Stability Control. [19] 
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The practical need for non-overshooting phenomenon is needed when the system must 

follow a safety constraint in some emergencies like the docking of a ship/boat where the 

constraints play a significant role, and there is a need to make sure that the system satisfies 

it at all instant (feasible). The vehicle's lateral dynamics will dominate and may cause safety 

issues in a typical driving scenario [3]. Critical maneuvers like a lane change, double lane 

change, cornering, and obstacle avoidance include a lateral motion. A significant number 

of safety-related accidents happened in the last few years, primarily due to lateral vehicle 

movement. Therefore, vehicle lateral stability control should also be thoroughly considered 

in developing AGVs [3]. With that in mind, the primary method to control vehicle stability 

is based on a predefined or estimated stability region, as in Figure 1, typically described by 

lateral vehicle states (such as yaw rate and lateral speed) on a phase plane [3]. The effect 

of model predictive control (MPC) on this issue is of great importance due to the 

controller's ability to control the vehicle states with constraints. The presence of the 

constraint makes the vehicle states be in the region and not overshoot a particular value. In 

model predictive control (MPC), inequality constraints for non-overshooting design could 

be applied at each sampling time during the entire prediction horizon to ensure that the 

control inputs will not make the system output overshoot. If the boundaries are considered 

references, a non-overshooting control design concerning the references can satisfy the 

vehicle stability requirements [2].  

MPC’s underlying issues regarding stability and feasibility should be addressed. This thesis 

addresses those problems by adding specific parameters in the last step of the horizon. The 

stability and feasibility of the model predictive control (MPC) are ensured ideally with the 

help of terminal cost and terminal constraint [5]. The long-term goal of this project is to 
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propose a detailed study on a control algorithm using the non-overshooting constraint and 

terminal cost/constraints such that we could use it in an autonomous vehicle to improve 

driving safety. The control purpose is to keep vehicle states operating within the stability 

region. To achieve this purpose, whenever the vehicle states approach or pass through the 

boundaries of the stability region, the controller will maintain or drag vehicle states back 

into the region [2][3]. Hence a suitable terminal cost under a specific terminal region is 

developed and represented as an approximation to the infinite horizon problem. 

1.2 Literature Review 

Theoretically, the non-overshooting MPC  has been implemented in two categories 

generally, linear systems & nonlinear systems. Although the non-overshooting control 

design for the specific systems has been discussed, the general dynamic system has yet to 

be addressed by many. The main idea was derived from the works of Yiwen Huang and 

Yan Chen [3]. In this project, through the advantages of handling constraints, MPC is 

utilized as an appropriate approach to develop a uniform non-overshooting control design 

for general dynamic systems. The flow of the study concerning the numerical simulations 

with the linear/nonlinear systems & stability region approach for a non-overshooting model 

predictive control (MPC) in this research is based on the work from Dr. Yan Chen [3]. The 

estimation of this region is based on his other paper [4], where he discusses vehicle lateral 

stability regions by a local linearization method, which guarantees both vehicle's local 

stability and handling stability. As per the literature, the terminal cost function brings 

stability to the systems, and the terminal equality constraint brings feasibility to the system. 

The definition of terminal constraint was taken from lecture notes on MPC by UC- 

Berkeley, Stanford, and Ohio State Universities [13] [14] [15]. D.Q Mayne and D. Limon 
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predominantly did the prior work on this. Hence, their paper [12] on the subjective study 

of model predictive control is beneficial in understanding the flow. The theoretical 

understanding and the baseline for the terminal cost and terminal constraint functions is 

based on F. Borrelli’s [6] work in his book. The stability proof and the definition of 

invariant set theory were very relevant to this thesis. A model predictive control variant 

employs a terminal cost 𝐹(𝑥)  and a terminal constraint in the optimal control problem 

PN(x). It is the version attracting the most attention in the current research literature. It has 

superior performance compared to zero states and terminal constraint set MPC and can 

handle a much more comprehensive range of problems than terminal cost MPC 

(D.Q.Mayne ) [13]. Finally, the choice of terminal cost from the nonlinear systems is still 

fuzzy, and there is ongoing research for the best cost function. Authors like David 

Scramuzza from ETH – Zurich addressed this in his paper by considering an essential 

assumption regarding the terminal penalty matrix addressed in this thesis. The 

terminologies have been used as per the SAE definitions [18] 

1.3 The Problem Statement  

As discussed, non-overshooting model predictive control is critical in emergencies [2], 

where the system must obey a specific constraint indefinitely. This research accelerates the 

development and popularization of the stability region based MPC. However, as mentioned 

above, the MPC has stability and feasibility issues [12]. The system seems stable for 

specific initial points and general conditions but only for some scenarios. It is one of the 

most significant disadvantages of MPC. We need to ensure that stability and feasibility are 

guaranteed so that we can have a robust MPC that is suitable for practical applications in 
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an efficient way. Before implementing the model with the vehicle controller, we need to 

understand the system's response in general. The problem formulation is dealt with and 

carried out in such a way that it addresses the following questions, 

1. How to analyze the systems using non-overshooting constraints and terminal 

cost/constraint utilizing the approach of MPC algorithm for both linear & nonlinear 

systems? 

2. How can it be extended to vehicle lateral stability control, guaranteeing that vehicle 

states are constantly within the stability region? 

1.4 Outline  
 

The remainder of the paper is as follows. Chapter 2 discusses the introduction to model 

predictive control (MPC) and its theory. The influence of terminal cost and terminal 

constraint on the MPC is discussed elaborately with the support of elaborate proofs 

accordingly in chapter 3. Chapter 4 presents the non-overshooting model predictive control 

(MPC) idea with the simulation results. Chapter 5 describes the theory behind the non-

linear vehicle model and the CarSim® environment. Chapter 6 concludes the thesis 

presented and discusses the future work that could take this research forward.   
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CHAPTER 2: MODEL PREDICTIVE CONTROL 
 

2.1 Background of Model Predictive Control (MPC) 
 

Model Predictive Control was initially developed for chemical applications to control the 

transients of dynamic systems with hundreds of inputs and outputs, subject to constraints. 

It actively encompasses optimal control strategy in a receding horizon approach. We know 

that optimization is the backbone of the optimal control process because of the need to find 

the minimum/maximum of the objective function. 

 

 

 

 

 

 

 

 

 

The further understanding for the need of optimization in optimal control can be understood 

by looking at the following problem formulations. [19] 

The optimization problem for minimizing the function f(x) is,  

𝑚𝑖𝑛
𝒙

𝒇(𝒙) 

 subject to c(𝑥) ≤ 0, ceq(𝑥) = 0, A ∗ 𝑥 ≤ b, 𝐴𝑒𝑞 ∗ 𝑥 = 𝑏𝑒𝑞, lb ≤ 𝑥 ≤ ub 

(1) 

 

Figure 2 Layout of Model Predictive Control [24] 
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Similarly, the optimal control problem is formulated as ,  

𝑚𝑖𝑛
𝒙

𝒇(𝒙)  

subject to  c(𝑥) ≤ 0, ceq(𝑥) = 0, A ∗ 𝑥 ≤ b, Aeq ∗ 𝑥 ≤ b, lb ≤ 𝑥 ≤ ub 

                            �̇� = h(𝑥) 

(2) 

where c(x), ceq(x), A, b, Aeq, Beq are the equality and inequality coefficients. 

From (1) & (2), we come to know that the optimal control finds the future values in addition 

to solving an minimization problem. This is utilized in the model predictive control 

actively.  

There are many methods for solving an optimization and optimal control problem. 

Optimization pre-dominantly uses: 

1. Analytical methods (E.g.: KKT conditions)  

2. Iterative methods(E.g.: SQP) 

Where the fmincon is the non-linear programming solver [20] as the addition of non-linear 

constraints makes the problem non-linear and complex. It is very useful in simulation with 

tools like MATLAB and this thesis has the active usage of fmincon. For the optimization 

problem in (1), the syntax of the fmincon problem would be, [20] 

𝑥 =  𝑓𝑚𝑖𝑛𝑐𝑜𝑛(𝑓𝑢𝑛, 𝑥0, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏, 𝑛𝑜𝑛𝑙𝑐𝑜𝑛) 

For the optimal control problem, most used methods are. [19] 

1. Dynamic programming  

2. Receding horizon Control (MPC)  
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We can understand the relation of optimal control with the model predictive control from 

this approach. Model predictive control is one of the solutions to optimal control problems, 

and it can be done in stages explained in the next section. Hence the applications of model 

predictive control (MPC) have increased by multiple folds due to the ability of it to satisfy 

the constraints and the explicit usage of model and tuning parameters. An optimal control 

strategy is an open loop control, and it cannot account for the system-model mismatch 

between the predicted and actual behavior.  

2.1  What is model predictive control? 

MPC is a form of control in which the control action is obtained by solving online an 

infinite horizon optimal control problem at each sampling instant in which the initial state 

is the current state of the plant. Optimization yields an infinite control sequence, and the 

first control action in this sequence is applied to the plant, as in Figure 3. MPC differs, 

therefore, from conventional control in which the control law is precomputed offline. 

However, this is not an essential difference; MPC implicitly implements a control law that 

can, in principle, be computed offline. 

 

 

 

 

 

 

 

 

Figure 3 Working Principle of RHC[20] 
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 The design of model predictive control needs the understanding of the following 

components: 

1. Plant model  

2. Cost Function 

3. Prediction Horizon  

4. Control Horizon  

The plant model represents the system's dynamics, which can be linear or nonlinear. It 

varies according to the application. The cost function is the function of state and control 

variables that can be linear or quadratic. Generally, it is considered quadratic to prevent the 

error from going to negative values while solving the problem. The prediction horizon, 

generally denoted by N, defines the time window in which the cost function is minimized, 

and the states are predicted according to this value. The control horizon denoted by P tells 

us the number of times the control variable (Moving Variable) is solved for a given 

problem.  

It can be from one to the value of N but can be, at most, the prediction horizon as the system 

cannot afford to have more control effort.   

Figure 4 Flowchart of the MPC Programming 
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Primarily, suppose the current state of the system is controlled. In that case, model 

predictive control (MPC) obtains an optimal control input by solving an open-loop problem 

for this initial state, and then a specific control action is applied to the plant, as in Figure 

4. Then the state variable is updated and sent to the objective function again, where an 

optimization problem is solved. The computed optimal manipulated input signal is applied 

to the process only during the following sampling interval. At the next step, a new optimal 

control problem based on new state measurements is solved over a shifted horizon. An 

infinite horizon suboptimal controller can be designed by repeatedly solving finite time 

optimal control problems in a receding horizon way. At each sampling time,  starting at the 

current state, an open-loop optimal control problem is solved over a finite horizon in Figure 

3. The resulting controller is called a Receding Horizon Controller (RHC). A receding 

horizon controller where the finite time optimal control law is computed by solving an 

optimization problem online is usually referred to as Model Predictive Control (MPC). [6]. 

2.2 Limitations of Model Predictive Control  

In MPC, when we solve the optimization problem over a finite horizon repeatedly at each 

time step, we hope that the controller resulting from this “shortsighted” strategy will lead 

the example in the forthcoming sections indicates that at least two problems may occur. 

First, the controller may lead us into a situation where after a few steps, the finite horizon 

optimal control problem that we need to solve at each time step is infeasible, i.e., there does 

not exist a sequence of control inputs for which the constraints are obeyed. Second, even 

if the feasibility problem does not occur, the generated control inputs may not lead to 
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trajectories that converge to the origin, i.e., that the closed-loop system is asymptotically 

stable. (F. Borrelli) [6].   

 

 

 

 

  

It is a well-known fact that there are differences in the closed-loop trajectories between the 

actual and predicted system response in an MPC. The optimal control problem's design is 

being solved instantly, and we must ensure stability and feasibility are guaranteed at every 

step. The inclusion of terminal cost and constraints plays a significant role in this, as in 

Figure 5. Those effects are studied with the help of the conclusion drawn from the work of 

notable authors. Therefore, conditions are derived on how the terminal cost with the penalty 

matrix and the terminal constraint set should be chosen to ensure closed-loop stability and 

feasibility. 

 

 

  

Figure 5 Common Issues in MPC 
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CHAPTER 3 : THEORETICAL STUDY  
 

The following table gives an overview of the theorems and lemma considered for the 

numerical simulations in the next section.  

Theorem 1  

Consider a linear discrete system,  

𝑥𝑘+1 = 𝐴 ∗ 𝑥𝑘 + 𝐵 ∗ 𝑢𝑘  

If we were to solve for the infinite horizon 

problem as below, i.e., k →  ∞ 

𝐽∞
∗ (𝑥(𝑘)) = 𝑚𝑖𝑛

𝑢0,𝑢1,…
 ∑ 𝑥𝑘

′ 𝑄𝑥𝑘 + 𝑢𝑘
′ 𝑅𝑢𝑘

∞

𝑘=𝑁

 

The choice of terminal penalty matrix, 𝑃 in the 

terminal cost and it requires no control effort. 

The above problem approximates as 𝑥𝑁
𝑇𝑃𝑥𝑁, 

where P should be a solution of ARE. It can be 

understood in two parts , one being from 0 to 

N and the other from N to ∞. 

𝐽𝑘(𝑥𝑘) = 𝑚𝑖𝑛
𝑢0,…𝑢𝑛−1

 ∑(𝑥𝑘
𝑇𝑄𝑥𝑘

𝑁−1

𝑘=0

+ 𝑢𝑘
𝑇𝑅𝑢𝑘)+ 𝑥𝑁

𝑇𝑃𝑥𝑁 

Finite horizon problem 

to be equivalent to an 

infinite horizon 

problem. 

Theorem 2 

Necessary and sufficient conditions for the 

predictions generated by the tail 𝑢𝑘+1 to be 

Recursive Feasibility 
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feasible at time 𝑘 + 1 whenever the MPC 

optimization at time 𝑘 is feasible are, 

1. The constraints are instantaneously 

satisfied at all points in 𝑋𝑓. 

2. 𝑋𝑓 is invariant in mode 2 , which is 

equivalent to requiring that (𝐴 +

𝐵𝐾)𝑥𝑁∣𝑘 ∈ 𝑋𝑓 for all 𝑥𝑁∣𝑘 ∈ 𝑋𝑓 

Theorem 3 

If 𝑋𝑓 is control invariant, then the individual 

states,  𝑋𝑁−1, 𝑋𝑁−2, . . ., 𝑋1 € 𝑋𝑓 are control 

invariant too. 

Subset of an invariant 

set is also invariant of 

the control input. 

Lemma 1 

Effect of Positive invariant set on persistent 

feasibility 

Positive invariant 

definition 

 

Lemma 2 

Effect of control invariant set on persistent 

feasibility 

 Control invariant 

definition 

Theorem 4  

The simplest approach is to design a terminal 

region such that , 𝑥𝑛 ∈  𝑋𝑓 = 0 so that we can 

have a feasible control input at all instances. 

Feasibility proof for 

the system with 

terminal equality 

constraints 

 

Theorem 5 

If a function is of the form,  
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3.1  Infinite Horizon Problem   
 

The shortsighted or the finite horizon brings certain disadvantages to the model predictive 

control as there is always some model mismatch. Hence, transforming a finite horizon 

problem into an infinite one is critical. If we solve the RHC problem for N = 1 (as done for 

LQR), then the open-loop trajectories are the same as the closed-loop trajectories [6] [15]. 

𝑉(0) = 0 𝑎𝑛𝑑 𝑉(𝑥) > 0, ∀𝑥

∈ 𝛺 ∖ {0} 𝑉(𝑥𝑘+1) − 𝑉(𝑥𝑘)

≤ −𝛼(𝑥𝑘)∀𝑥𝑘 ∈ 𝛺 ∖ {0}  

where 𝛼: 𝑅𝑛 → 𝑅 is a continuous positive 

definite function. Then 𝑥 = 0 is asymptotically 

stable in 𝛺 

Lyapunov Function 

definition 

Theorem 6 

If a system is assumed to satisfy all the lemma 

and theorem discussed above. 

With the assumption(A3) as below, 

𝑚𝑖𝑛 𝑣∈𝑈,

𝐴𝑥+𝐵𝑣∈𝑋𝑓  (−𝑝(𝑥) + 𝑞(𝑥, 𝑣) + 𝑝(𝐴𝑥 +

𝐵𝑣)) ≤ 0, ∀𝑥 ∈ 𝑋𝑓. 

Then, the origin of the system is asymptotically 

stable with domain of attraction 𝑋0 

Shows the stability in 

the form of 

convergence criteria 

which ensures stability 

of the system. 

Table 1 Overview of Theorems & Lemmas [6] 
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As solving the problem over an infinite horizon does not seem practical, an equivalent cost 

function mimics an infinite horizon is formulated. 

Theorem 1 

For a system,  𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘, the infinite horizon cost 

𝐽∞
∗ (𝑥(0)) = 𝑚𝑖𝑛

𝑢0,𝑢1,…
 ∑ 𝑥𝑘

′ 𝑄𝑥𝑘 + 𝑢𝑘
′ 𝑅𝑢𝑘

∞

𝑘=0

  

can be substituted as a terminal cost function  𝑥𝑁
𝑇𝑃𝑥𝑁,  where 𝑥𝑁 is the terminal state and 

P is the solution of ARE which approximates the problem. [6] 

Let us consider a system defined as, 

𝑥k+1 = A𝑥k + B𝑢k (3) 

Then the finite time optimal cost function to be solved is,  

Jk(𝑥k) = min
u0,…un−1

 ∑(𝑥k
TQ𝑥k + 𝑢k

TR𝑢k)+ 𝑥N
TP𝑥N

N−1

k=0

 

(4) 

 subject to 𝑥𝑁 = 𝐴𝑥𝑁−1 + 𝐵𝑢𝑁−1  

Jk(𝑥𝑁) =  𝑥𝑁
𝑇𝑄𝑃𝑥𝑁 + ∑ (𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘)

𝑁−1
𝑘=0 . For the finite problem as in,  

𝐽𝑁(𝑥𝑁) = 𝑚𝑖𝑛
𝑢0,…𝑢𝑛−1

 ∑(𝑥𝑘
𝑇𝑄𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘)+ 𝑥𝑁
𝑇𝑄𝑃𝑥𝑁

𝑁−1

𝑘=0

 

According to the principle of optimality the optimal one step cost-to-go can be obtained,  

JN−1
∗ (𝑥N−1) =   min

𝑢N−1

 𝑥𝑁
𝑇𝑄𝑃𝑥𝑁 + 𝑥𝑁−1

𝑇 Q𝑥𝑁−1 + 𝑢𝑁−1
𝑇 𝑅𝑢𝑁−1   (5) 
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𝑥𝑁 = 𝐴𝑥𝑁−1 + 𝐵𝑢𝑁−1,  𝑃 =  𝑃𝑁                 (6) 

Substituting (6) into the objective function (5), 

JN−1
∗ (𝑥N−1) =   min

uN−1

 {𝑥𝑁−1
𝑇 (A𝑇PNA + Q)𝑥𝑁−1   + 2𝑥𝑁−1

𝑇 A′PNB𝑢𝑁−1   

+ 𝑢𝑁−1
𝑇 (B𝑇PNB + R)𝑢𝑁−1}  

(7) 

We note that the cost-to-go JN−1
∗ (𝑥N−1) is a positive definite quadratic function of the 

decision variable 𝑢𝑁−1. We find the optimum by setting the gradient to zero and obtain the 

optimal input 

𝑢N−1
∗ = −(B𝑇PNB + R)−1B𝑇PNA𝑥𝑁−1 (8) 

and the one-step optimal cost-to-go, 

JN−1
∗ (𝑥𝑁−1) = 𝑥𝑁−1

𝑇 PN−1𝑥𝑁−1 (9) 

where we have defined, 

PN−1 = A𝑇PNA + Q − A𝑇PNB(B𝑇PNB + R)−1B𝑇PNA. (10) 

At the next stage, consider the two-step problem from time 𝑁 − 2 forward, we can state 

the optimal solution as per the solution at previous step 𝑢𝑁−1
∗ , 

𝑢𝑁−2
∗ = −(𝐵𝑇𝑃𝑁−1𝐵 + 𝑅)−1𝐵𝑇𝑃𝑁−1𝐴𝑥𝑁−2. 

The optimal two-step cost-to-go is 

𝐽𝑁−2
∗ (𝑥𝑁−2) = 𝑥𝑁−2

𝑇 𝑃𝑁−2𝑥𝑁−2, 

where we defined, 
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𝑃𝑁−2 = 𝐴𝑇𝑃𝑁−1𝐴 + 𝑄 − 𝐴𝑇𝑃𝑁−1𝐵(𝐵𝑇𝑃𝑁−1𝐵 + 𝑅)−1𝐵𝑇𝑃𝑁−1𝐴 

Continuing in this manner, at some arbitrary time 𝑘 the optimal control action is, 

𝑢∗(k)   = −(B𝑇Pk+1B + R)−1B𝑇Pk+1A𝑥𝑘  = 𝐹(k),  for k = 0,… , N − 1 (11) 

 

 

 where, 

Pk = A𝑇Pk+1A + Q − 𝐴𝑇𝑃𝑘+1𝐵(𝐵𝑇𝑃𝑘+1𝐵 + 𝑅)−1𝐵𝑇𝑃𝑘+1𝐴  

 

(12) 

and the optimal cost-to-go starting from the measured state 𝑥(𝑘) is, 

Jk
∗(𝑥(k)) = 𝑥𝑘

𝑇Pk𝑥𝑘 (13) 

 

 

Equation (12) is called Discrete Time Riccati Equation or Riccati Difference Equation 

(RDE) and is initialized with 𝑃𝑁 = 𝑃 and is solved backwards, i.e., starting with 𝑃𝑁 and 

solving for 𝑃𝑁−1, etc. Note from that the optimal control action 𝑢∗(𝑘) is obtained in the 

form of a feedback law as a linear function of the measured function. 

Infinite Horizon Problem 

This controller corresponds to an infinite horizon control law. Notice that it is stabilizing 

and has a reasonable stability margin. Nominal stability is a guaranteed property of infinite 

horizon controllers as we prove in the next section. For continuous processes operating 

over a long time, it would be interesting to solve an infinite horizon problem. The problem 

becomes difficult if we were to solve for the infinite horizon problem as below, i.e., 𝑁 →

 ∞ [6].  The reason for that is the increase in the prediction horizon value which is not a 
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good practice to follow because there are chances where the system may not follow the 

dynamics of the system in the presence of uncertainties.  

 

J∞
∗ (x(0)) = min

u0,u1,…
 ∑ 𝑥k

𝑇Q𝑥k + 𝑢k
𝑇R𝑢k

∞

k=0

 
(14) 

To prove the cost from 𝑁 →  ∞ , is  𝑥𝑁
𝑇𝑃𝑥𝑁, We need to do prove by using the dynamic 

programming approach by solving it recursively backwards. 

Since the prediction must be carried out to infinity, application of the batch method 

becomes impossible. On the other hand, derivation of the optimal feedback law via 

dynamic programming remains viable. We can initialize, 

𝑃𝑘 = 𝐴𝑇𝑃𝑘+1𝐴 + 𝑄 − 𝐴𝑇𝑃𝑘+1𝐵(𝐵𝑇𝑃𝑘+1𝐵 + 𝑅)−1𝐵𝑇𝑃𝑘+1𝐴 (15) 

with the terminal cost matrix 𝑃0 = 𝑄 and solve it backwards for 𝑘 → −∞. Let us assume 

for the moment that the iterations converge to a solution 𝑃∞. Such 𝑃∞ would then satisfy 

the Algebraic Riccati Equation (ARE) 

P∞ = A𝑇P∞A + Q − A𝑇P∞B(B𝑇P∞B + R)−1B𝑇P∞A (16) 

Then the optimal feedback control law is, 

𝑢∗(𝑘) = −(B𝑇P∞B + R)−1B𝑇P∞A 𝑥𝑘 , k = 0,⋯ ,∞ (17) 

and the optimal infinite horizon cost is 

𝐽∞
∗ (𝑥(0)) = 𝑥0

𝑇 P∞ 𝑥0 (18) 
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Controller is referred to as the asymptotic form of the Linear Quadratic Regulator (LQR) 

or the ∞-horizon LQR. 

3.2 Terminal constraint 

Based on the discussion by Kouvaritakis & Cannon (Chapter 2.4 & 2.5) in their book [6] 

about the invariant sets, the guarantees of closed-loop stability and convergence derived in 

the previous section rely on the assumption that the predictions generated by the tail, 𝑢𝑘 

satisfy constraints at each time 𝑘. However due to short sighted strategy, the finite horizon 

optimal control may lead to a infeasible solution where the constraint satisfaction cannot 

be ensured at all times [15]. 

It is clear that 𝑢𝑘 only satisfies constraints over the first 𝑁 − 1 sampling intervals of the 

prediction horizon, Since the optimal predictions at time 𝑘, namely {𝑢1|𝑘, … , 𝑢𝑁−1|𝑘}, 

necessarily satisfy constraints. However, for 𝑢𝑘+1 to be feasible at 𝑘 + 1, there is also  a 

need that the 𝑁𝑡ℎ element of to satisfy constraints i.e., at 𝑢𝑘+1,  (𝑢𝑁 = 𝐾𝑥𝑁 ), and this 

requires extra constraints to be introduced in the MPC optimization at 𝑘 = 𝑁. 

 

 

 

 

 
Figure 6 Terminal Constraint [7] 
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Extra constraints that are introduced to ensure feasibility of the tail are known as terminal 

constraints since they apply to mode 2 predictions (which are governed by time-invariant 

feedback) in Figure 6, and are therefore equivalent to constraints on the terminal state 

prediction 𝑥𝑁∣𝑘. For convenience we denote the region in which 𝑥𝑁∣𝑘 must lie to satisfy 

given terminal constraints as 𝑋𝑓 [6] , where 𝑋𝑓  is called terminal region.  

Note that for stable systems without state constraints 𝐾∞(𝑋𝑓 ) = ℝ𝑛 always, i.e., the choice 

of 𝑋𝑓 is less critical. For unstable systems K∞(𝑋𝑓) is the region over which the system can 

operate stably in the presence of input constraints and is of eminent practical importance 

[6].  

Constraint means that it can be defined in either one of the two terminal points. It can be 

zero state constraints or the final state constraints. With just zero state constraints in the 

initial point, we still are not sure whether the  solution is feasible. The terminal constraints 

must be constructed to ensure feasibility of the MPC optimization recursively [6], so that 

the tail predictions necessarily satisfy constraints, including the terminal constraints 

themselves. i.e., The constraint satisfaction at the last step of the horizon must happen 

successively. When we include constraints at both the terminal points , which is 

approximated as terminal cost (that represents an infinite horizon problem), then it 

represents a terminal constraint. Johan [11] addresses about approximating the terminal set 

and arriving at a terminal constraint through complex hull calculation and LMI methods 

and he concludes that those methods does not explicitly categorize the feasible set for all 

systems. Hence the easy way to determine the terminal set to understand the system’s 
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response for the input and define soft/hard constraints in such a way that it satisfies it from 

N to ∞. 

Invariant Set 

An MPC is called recursively feasible if it always keeps the states in a region from where 

the online optimization problem has a feasible solution. One way to achieve this is to 

restrict the states within a pre-computed robust controlled invariant set. These robust 

controlled invariant sets, however, can have a complicated geometry. Therefore, restricting 

the states in these sets may introduce too many state constraints and render the online 

optimization problem computationally expensive to solve. [12] 

Consider the MPC problem formulation as below,   

𝐽𝑘(𝑥𝑘) = 𝑚𝑖𝑛
𝑢0,…𝑢𝑛−1

 ∑(𝑥𝑘
𝑇𝑄𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘)+ 𝑥𝑁
𝑇𝑄𝑃𝑥𝑁

𝑁−1

𝑘=0

  
(19) 

subject to,  

 𝑥 =  𝐴 𝑥𝑘+1  +  𝐵𝑥𝑘, 

𝑥𝑘  ∈  𝑋,  

𝑢𝑘  ∈  𝑈, 𝑤ℎ𝑒𝑟𝑒  𝑘 =  0, . . . , 𝑁 −  1  

𝑥𝑁  ∈  𝑋𝑓 

𝑥0  =  𝑥(𝑡) 
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The following sets which are very important to prove feasibility and stability.  

𝐶∞:  The maximal control invariant set 𝐶∞ is only affected by the sets 𝑋 and 𝑈, the 

constraints on states and inputs. It is the largest set over which we can expect any controller.  

𝑋0:  A control input 𝑈0 can only be found, i.e., the control problem is feasible, if 𝑥(0) ∈

𝑋0. The set 𝑋0 depends on 𝑋 and 𝑈, on the controller horizon 𝑁 and on the controller 

terminal set 𝑋𝑓. It does not depend on the objective function and it has generally no relation 

with𝐶∞. 

𝑂∞ : The maximal positive invariant set for the closed-loop system depends on the 

controller and as such on all parameters affecting the controller, i.e., 𝑋,𝑈, 𝑁,𝑋𝑓 and the 

objective function with its parameters 𝑃, 𝑄 and 𝑅. Clearly 𝑂∞ ⊆ 𝑋0 because if it were not 

there would be points in 𝑂∞ for which the control problem is not feasible. Because of 

invariance, the closed loop is persistently feasible for all states 𝑥(0) ∈ 𝑂∞. Clearly, 𝑂∞ ⊆

𝐶∞. [6] 

We can now state necessary and sufficient conditions guaranteeing persistent feasibility by 

means of invariant set theory. 

Theorem 2  

Necessary and sufficient conditions for the predictions generated by the tail 𝑢𝑘+1 to be 

feasible at time 𝑘 + 1 whenever the MPC optimization at time 𝑘 is feasible are, [10] [6] 

1. The constraints are instantaneously satisfied at all points in 𝑋𝑓 
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2.  𝑋𝑓 is invariant in mode 2 , which is equivalent to requiring that (𝐴 + 𝐵𝐾)𝑥𝑁∣𝑘 ∈

𝑋𝑓 for all 𝑥𝑁∣𝑘 ∈ 𝑋𝑓 

If 𝑋𝑓 satisfies (i) and (ii), then the MPC optimization is,  

𝐽𝑘(𝑥𝑘, 𝑢𝑘) = 𝑚𝑖𝑛
𝑢0,…𝑢𝑛−1

 ∑(𝑥𝑘
𝑇𝑄𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘) + 𝑥𝑘|𝑁
𝑇 𝑄𝑃𝑥𝑘|𝑁

𝑁−1

𝑘=0

 

subject to,  

 𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥  , 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 

𝑥𝑘  ∈  𝑋,  𝑢𝑘  ∈  𝑈  , 𝑥𝑛 ∈ 𝑋𝑓 , 0 ≤  𝑘 ≤  𝑁 − 1 

         where the terminal set is given by the output x,  𝑥𝑖 − 𝑥𝑟𝑒𝑓 ≤ 0 

𝑥𝑁 ∈ 𝑋𝑓 is guaranteed to be feasible at all times 𝑘 > 0 provided it is feasible at 𝑘 = 0. 

Theorem 3 

Consider the RHC law (13) as in  with N ≥ 1. If 𝑋𝑓 is a control invariant set for a system, 

then the RHC is persistently feasible.  

Proof: If 𝑋𝑓 is control invariant, then 𝑋𝑁−1, 𝑋𝑁−2, . .  ., 𝑋1 are control invariant and  

Lemma 2 establishes persistent feasibility for all feasible u.  

Lemma 1 

Let 𝑂∞ be the maximal positive invariant set for the closed-loop system 𝑥(𝑘 + 1) =

𝑓𝑐𝑙(𝑥(𝑘)) with constraints 𝑥(𝑡)  ∈  𝑋, 𝑢(𝑡)  ∈  𝑈, ∀𝑡 ≥  0. The RHC problem is 

persistently feasible if and only if 𝑋0 = 𝑂∞. [6]  



24 
 

Proof: 

 For the RHC problem to be persistently feasible 𝑋0 must be positive invariant for the 

closed-loop system. We argued above that 𝑂∞ ⊆ 𝑋0. As the positive invariant set 𝑋0 cannot 

be larger than the maximal positive invariant set 𝑂∞, it follows that 𝑋0 = 𝑂∞. 

As 𝑋0 does not depend on the controller parameters 𝑃, 𝑄 and 𝑅 but 𝑂∞ does, the 

requirement 𝑋0 = 𝑂∞ for persistent feasibility shows that, in general, only some 𝑃, 𝑄 and 

𝑅 are allowed. The parameters 𝑃, 𝑄 and 𝑅 affect the performance. The complex effect they 

have on persistent feasibility makes their choice extremely difficult for the design engineer. 

In the following we will remedy this undesirable situation. We will make use of the 

following important sufficient conditions for persistent feasibility. 

Lemma 2 

Consider the RHC law from the definition above with 𝑁 ≥ 1. If 𝑋1 is a control invariant 

set for a system, then the RHC is persistently feasible. Also, 𝑂∞ = 𝑋0 is independent of 

𝑃, 𝑄 and 𝑅. [6]  

Proof: If 𝑋1 is control invariant then, by definition, 𝑋1 ⊆ 𝑃𝑟𝑒 (𝑋1). Also recall that 

𝑃𝑟𝑒 (𝑋1) = 𝑋0 from the properties of the feasible sets. (Note that 𝑃𝑟𝑒 (𝑋1) ∩ 𝑋 =

𝑃𝑟𝑒 (𝑋1) from control invariance). Pick some 𝑥 ∈ 𝑋0 and some feasible control 𝑢 for that 

𝑥 and define 𝑥+ = 𝐴𝑥 + 𝐵𝑢 ∈ 𝑋1. Then 𝑥+ ∈ 𝑋1 ⊆ 𝑃𝑟𝑒 (𝑋1) = 𝑋0. As 𝑢 was arbitrary (if 

it is feasible) 𝑥+ ∈ 𝑋0 for all feasible 𝑢. As 𝑋0 is positive invariant, 𝑋0 = 𝑂∞. As 𝑋0 is 

positive invariant for all feasible 𝑢, 𝑂∞ does not depend on 𝑃, 𝑄 and 𝑅. 
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A terminal constraint is 𝑥(𝑘 + 𝑁) ∈ 𝑋𝑓, where 𝑋𝑓 is the terminal set [13]. To ensure that 

the tail satisfies constraints over the first 𝑁 steps of the prediction horizon at time 𝑘 + 1, 

we need to include a terminal constraint, [7] 

𝑥(𝑘 + 𝑁) ∈ 𝑋𝑓 {
𝑢𝑚𝑖𝑛 ≤ 𝐾 ∗ 𝑥𝑁∣𝑘 ≤ 𝑢𝑚𝑎𝑥

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑁∣𝑘 ≤ 𝑥𝑚𝑎𝑥
 

(20) 

 

 

However, an optimization problem with terminal constraints will be computationally 

complex. From the optimization point of view, as being feasible means to satisfy certain 

constraint conditions at every time step in a recursive manner and optimization takes more 

time to find the minimum with the effects of constraints in place whereas an infeasible 

problem gives up the search after some time by returning a value which may or may not be 

a feasible solution. Hence the control input must be finite all the time indefinitely.  

 

 

 

 

Let us assume that we measure a state 𝑥(𝑡) at some time instance 𝑡. We then obtain 

𝑈𝑡
∗(𝑥(𝑡)) by solving an optimization problem. If the optimization renders an empty set 

𝑈𝑡
∗(𝑥(𝑡)) = Φ  , then it means that the problem is infeasible. Then the optimization stops 

at that point and the first control action 𝑢𝑡
∗ from 𝑈𝑡

∗ is applied and then the problem moves 

to next time step 𝑡 + 1.This process is continued, and this is called online receding horizon 

control. [6] 

Figure 7 Feasible Set 
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What if we can find feasible 𝑢 for that all 𝑋 at that point. That’s when, we can guarantee 

recursive feasibility. That’s the reason we need a constrained optimization solver at the 

time t. We need to define a set of 𝑋 for which 𝑢 is always feasible and could return a 

solution. That set is called the terminal set/region and it denoted by 𝑋𝑓. Authors are still 

researching about the best method to arrive a suitable terminal region for a system and the 

common method to do that is to establish a convex set. But the simplest approach is to 

design a terminal region such that , 𝑥𝑛  ∈  𝑋𝑓 = 0. [15] 

Theorem 4  

The simplest approach is to design a terminal region such that , 𝑥𝑛 ∈  𝑋𝑓 = 0 so that we 

can have a feasible control input at all instances. [F.Borrelli, M. Morari and C. Jones] [15] 

1. Assume feasibility of 𝑥0 & let {𝑢0
∗ , 𝑢1

∗, … , 𝑢𝑁−1
∗ } is the optimal control  

sequence computed at 𝑥𝑜 to give {𝑥𝑜 ,  𝑥2, … . 𝑥𝑛} as the corresponding state 

trajectory.  

2. Apply 𝑢0
∗  , then 𝑥(1) =  𝐴 ∗ 𝑥0 + 𝐵 ∗ 𝑢0

∗ .   

3. At 𝑥(1), the control sequence is {𝑢1
∗, … , 𝑢𝑁−1

∗ ,  0} is feasible.  i.e., 𝑥𝑛+1 = 0. 

For some 𝑥𝑁 ∈  𝑋𝑓 , At 𝑥(1), the control sequence is {𝑢1
∗, … , 𝑢𝑁−1

∗ ,  𝑣(𝑥𝑁)} is feasible.  

i.e., 𝑥𝑁+1 =  𝐴 ∗ 𝑥𝑁 + 𝐵 ∗ 𝑣(𝑥𝑁) ∈  𝑋𝑓 

3.3 Terminal Cost 
 

Having ensured the feasibility, we need to focus on stability of an MPC. Persistent 

feasibility does not guarantee that the closed-loop trajectories converge towards the desired  
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equilibrium point [6]. Hence, we need to establish a additional term called terminal cost.  

One of the earliest proposals for modifying cost function to ensure closed-loop stability 

was the addition of a terminal cost. The proposal was made in the context of predictive 

control of unconstrained linear system for which the choice  𝑥𝑁
𝑇𝑃𝑥𝑁 is appropriate [13]. 

The matrix P, the terminal value of the Riccati difference equation, is chosen so that the 

sequence obtained by solving the Riccati difference equation in reverse time with terminal 

condition is monotonically non-increasing and it represents the cost as the infinite horizon. 

A monotonically non increasing function tells us the convergence is ensured consistently 

and consistent convergence is said to be stable most of the times. One other point to note 

is that errors at any stage of the computation are not amplified but are attenuated as the 

computation progresses. 

 

Figure 8 Property of Terminal Cost [7] 
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The main reason for considering the addition of terminal cost in MPC is to increase the 

stability. The stability of the problem can be ensured by finding the Lyapunov function for 

the closed loop system. We will show next that if the terminal cost and constraint are 

appropriately chosen, then the value function 𝐽0
∗(𝑥(. ) is a Lyapunov function. [6] 

Terminal cost is a quadratic function which is calculated at the last step of the prediction 

horizon. It approximates the infinite horizon to a finite horizon problem. Terminal 

constraint is a set that is defined in the form of constraints on the state variable such that it 

remains in the feasible set for all time, t. The terminal set is defined is based  on the system 

responses.  

We try to prove the result by simulating the spring mass system below as in  and we find 

that the convergence characteristics increases as we increase the prediction horizon for the 

same control horizon. As per the definition of stability. Hence when N reaches infinity , 

the convergence characteristics is improved. and closed loop stability can be guaranteed 

by using the terminal cost and suitable terminal regions [13]. The response of the system 

converges to the steady state closed loop eigen values [7]. This tells that the nominal  

stability and a better stability margin can be guaranteed in an infinite horizon controller.  

Hence, the terminal cost is chosen to be the value function of infinite horizon unconstrained 

optimal control problem, there exists a set of initial states for which MPC is actually 

optimal for the infinite horizon constrained optimal control problem and therefore inherits 

its associated advantages [7] . Therefore, conditions will be derived on how the terminal 
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weight P chosen according to theorem 1 can be used in a quadratic function which is proved 

to be a Control Lyapunov Function (CLF) such that closed-loop stability is  ensured. 

 

  

Theorem 5 

Consider the equilibrium point 𝑥 = 0 of a discrete system. Let 𝛺 ⊂ 𝑅𝑛 be a closed and 

bounded set containing the origin. Assume there exists a function 𝑉: 𝑅𝑛 → 𝑅 continuous 

at the origin, finite for every 𝑥 ∈ 𝛺, and such that,   

V(0) = 0 and V(𝑥) > 0, ∀𝑥 ∈ Ω ∖ {0} V(𝑥k+1) − V(𝑥𝑘) ≤ −α(𝑥𝑘)∀𝑥𝑘

∈ Ω ∖ {0} 

(21) 

where 𝛼: 𝑅𝑛 → 𝑅 is a continuous positive definite function. Then 𝑥 = 0 is asymptotically 

stable in 𝛺. [13] 

Figure 9 System Oscillation When N Increases  
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Theorem 6 

The Control Lyapunov Function should follow these conditions as given below, [13] [6] 

[15] 

Consider system (3), the RHC law (19) and the closed-loop system. 

(A0) The stage cost 𝑞(𝑥, 𝑢) and terminal cost 𝑝(𝑥) are continuous and positive definite 

functions. 

(A1) The sets 𝑋, 𝑋𝑓 and 𝑈 contain the origin in their interior and are closed. 

(A2) 𝑋𝑓 is control invariant, 𝑋𝑓 ⊆ 𝑋 

(A3) 𝑚𝑖𝑛 𝑣∈𝑈,

𝐴𝑥+𝐵𝑣∈𝑋𝑓  (−𝑝(𝑥) + 𝑞(𝑥, 𝑣) + 𝑝(𝐴𝑥 + 𝐵𝑣)) ≤ 0, ∀𝑥 ∈ 𝑋𝑓. 

Then, the origin of the closed-loop system (3) is asymptotically stable with domain of 

attraction 𝑋0. 

Proof:  

From hypothesis (A2), Theorem 3 and Lemma 1, we conclude that 𝑋0 = 𝑂∞ is a positive 

invariant set for the closed-loop system (3) for any choice of the cost function. Thus, 

persistent feasibility for any feasible input is guaranteed in 𝑋0. 

Next, we prove convergence and stability. We establish that the function 𝐽0
∗(⋅) in (18) is a 

Lyapunov function for the closed-loop system. Because the cost 𝐽0, the system and the 

constraints are time-invariant we can study the properties of 𝐽0
∗ between step 𝑘 = 0 and 

step 𝑘 + 1 = 1. 
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Consider problem (3) at time 𝑡 = 0. Let 𝑥(0) ∈ 𝑋0 and let 𝑈0
∗ = {𝑢0

∗ , … , 𝑢𝑁−1
∗ } be the 

optimizer of problem  and 𝑥0 = {𝑥(0), 𝑥1, … , 𝑥𝑁} be the corresponding optimal state 

trajectory. After the implementation of 𝑢0
∗  we obtain 𝑥(1) = 𝑥1 = 𝐴𝑥(0) + 𝐵𝑢0

∗ .  

For 𝑡 = 1. We will construct an upper bound on 𝐽0
∗(𝑥(1)). Consider the sequence 𝑈1 =

{𝑢1
∗, … , 𝑢𝑁−1

∗ , 𝑣} and the corresponding state trajectory resulting from the initial state 

𝑥(1), 𝑋1 = {𝑥1, … , 𝑥𝑁 , 𝐴𝑥𝑁 + 𝐵𝑣}.  

Because 𝑥𝑁 ∈ 𝑋𝑓 and (A2) there exists a feasible 𝑣 such that 𝑥𝑁+1 = 𝐴𝑥𝑁 + 𝐵𝑣 ∈ 𝑋𝑓 and 

with this 𝑣 the sequence 𝑈1 = {𝑢1
∗, … , 𝑢𝑁−1

∗ , 𝑣} is feasible. Because 𝑈1 is not optimal 

𝐽0(𝑥(1), 𝑈1) is an upper bound on 𝐽0
∗(𝑥(1)). Since the trajectories generated by 𝑈0

∗ and 𝑈1 

overlap, except for the first and last sampling intervals, it is immediate to show that,  

J0
∗(𝑥(1)) ≤ J0(𝑥(1), U1) = min

u0,…un−1

 ∑ q(𝑥𝑘, 𝑢𝑘
∗) +  q(𝑥n, v) +  p(A𝑥𝑁 + Bv)

N−1

k=0

 (22) 

Adding 𝐽0
∗(𝑥(0) and subtracting from 𝑞(𝑥0, 𝑢0

∗) will give us the cost from 1 to 𝑁 + 1, 

J0
∗(𝑥(1)) ≤ J0(𝑥(1), U1)

=  𝐽0
∗(𝑥(0)) − q(𝑥0, 𝑢0

∗) − p(𝑥𝑁) +  (q(𝑥𝑁, v) + p(A𝑥𝑁 + Bv)) 

(23) 

Let 𝑥 = 𝑥0 = 𝑥(0) and 𝑢 = 𝑢0
∗ . Under assumption (A3), (11) becomes, 

J0
∗(A𝑥 + B𝑢) − J0

∗(𝑥) ≤ −q(𝑥, 𝑢), ∀𝑥 ∈ X0 (24) 

Equation (24) and the hypothesis (A0) on the stage cost 𝑞(⋅) ensure that 𝐽0
∗(𝑥) strictly 

decreases along the state trajectories of the closed-loop system for any 𝑥 ∈ 𝑋0, 𝑥 ≠ 0. In 

addition to the fact that 𝐽0
∗(𝑥) decreases, 𝐽0

∗(𝑥) is lower-bounded by zero and since the state 
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trajectories generated by the closed-loop system starting from any 𝑥(0) ∈ 𝑋0 lie in 𝑋0 for 

all 𝑘 ≥ 0, equation is sufficient to ensure that the state of the closed-loop system converges 

to zero as 𝑘 → 0 if the initial state lies in 𝑋0. We have proven that in order to prove stability 

via we must establish that 𝐽0
∗(𝑥) is a Lyapunov function. For continuity at the origin, we 

will show that 𝐽0
∗(𝑥) ≤ 𝑝(𝑥), ∀𝑥 ∈ 𝑋𝑓 and as 𝑝(𝑥) is continuous at the origin (by 

hypothesis (A0)) 𝐽0
∗(𝑥) must be continuous as well. From assumption (𝐴2), 𝑋𝑓 is control 

invariant and thus for any 𝑥 ∈ 𝑋𝑓 there exists a feasible input sequence {𝑢0, … , 𝑢𝑁−1} for 

problem (12.6) starting from the initial state 𝑥0 = 𝑥 whose corresponding state 

trajectory is {𝑥0, 𝑥1, … , 𝑥𝑁} stays in 𝑋𝑓, i.e., 𝑥𝑖 ∈ 𝑋𝑓∀𝑖 = 0,… ,𝑁. Among all the input 

sequences {𝑢0, … , 𝑢𝑁−1} we focus on the one where 𝑢𝑖 satisfies assumption (A3) for all 

𝑖 = 0, … ,𝑁 − 1. Such a sequence provides an upper bound on the function 𝐽0
∗. 

𝐽0
∗(𝑥0) ≤ (∑   𝑞(𝑥𝑖, 𝑢𝑖)

𝑁−1

𝑖=0

) + 𝑝(𝑥𝑁), 𝑥𝑖 ∈ 𝑋𝑓 , 𝑖 = 0, … , 𝑁 

which can be rewritten as 

𝐽0
∗(𝑥0) ≤  (∑ 𝑞(𝑥𝑖 , 𝑢𝑖)

𝑁−1
𝑖=0   ) + 𝑝(𝑥𝑁)    = 𝑝(𝑥0) + (∑ 𝑞(𝑥𝑖, 𝑢𝑖)

𝑁−1
𝑖=0   + 𝑝(𝑥𝑖+1) −

𝑝(𝑥𝑖)) 𝑥𝑖 ∈ 𝑋𝑓, 𝑖 = 0,… , 𝑁   

which from assumption (A3) yields, 

J0
∗(𝑥) ≤ p(𝑥), ∀𝑥 ∈ Xf 

 

(25) 

In conclusion, there exist a finite time in which any 𝑥 ∈ 𝑋0 is steered to a level set of 𝐽0
∗(𝑥) 

contained in 𝑋𝑓 after which convergence to and stability of the origin follows. 
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Remark  

• The assumption on the positive definiteness of the stage cost 𝑞(⋅) in can be relaxed 

as in  theorem 6  as in standard optimal control.  

• The procedure outlined in theorem 6 is, in general, conservative because it requires 

the introduction of an artificial terminal set 𝑋𝑓 to guarantee persistent feasibility 

and a terminal cost to guarantee stability.  

• A function 𝑝(𝑥) satisfying assumption (A3) of  theorem 6 is often called the control 

Lyapunov function.  

Model predictive control employs both a terminal cost F(x)  and a terminal constraint 

𝑥(𝑘 + 𝑁) ∈ 𝑋𝑓in the optimal control problem and is the version attracting most attention 

in current research literature [68]. It has improved performance when compared with zero 

state and terminal constraint set MPC and can handle a much wider range of problems than 

just terminal cost MPC. This is one of the basic strategies to ensure stability and feasibility 

together. The action of convergence will make the system to reach the optimal point while 

satisfying the set of constraints which ensures feasibility at every time step. If the terminal 

constraint is removed from the optimization problem, then the optimal cost may not be a 

Lyapunov function for the system and, moreover, the feasibility may be lost.  

However, there are some predictive controllers with guaranteed stability which do not 

consider an explicit terminal constraint. It is important to note that for certain cases without 

terminal constraints, terminal cost may ensure feasibility if it attains the optimal point at 

every iteration that belongs to the feasible set as in Figure 6. However, it is not guaranteed 
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always.  With, there are significant research done in removing terminal constraints because 

of the complexity in computation depending on the system chosen. It is evident that the 

constraint arises because one often has a local, rather than a global, control Lyapunov 

function (CLF) for the system being controlled. In a few situations, a global CLF is 

available, in which case a terminal constraint is not necessary [13]. When you remove 

terminal constraints, we are indirectly reducing the domain of attraction which means the 

ability of the controller to reach the optimal point is reduced. Hence , the removal for 

terminal constraints has significant effects on the system, 

1. Domain of attraction is decreased. 

• Let us assume that A is an invariant set,  

• There exists a neighborhood of A, called the  domain of attraction for A 

which is denoted as B(A). Domain of attraction is the region of the phase 

space, over which iterations are defined, such that any point (any initial 

condition) in that region will be asymptotically iterated. 

• It consists of all points b that "enter A in the limit t → ∞". More formally, 

B(A) is the set of all points b in the phase space with the following property. 

• Similarly, we have terminal constraint, 𝑥𝑁 that help us to enter 𝑋𝑓 when t 

→ ∞. When we remove terminal constraint , we reduce the ability of the 

controller to reach the terminal region.  

If additional weights to terminal cost assuming the set is control invariant, the domain of 

attraction can be increased, and we don’t require additional constraints [21]. In the sense 
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of Lyapunov, the convergence characteristics is increased as we make the terminal cost to 

attain the further minimum value (negative value) by weighting it by a constant. Sometimes 

terminal constraints can enhance stability characteristics of a system. Stability is a direct 

result of incorporating the stability constraint 𝑥(T) = 0 in the optimal control problem [13]. 

De Nicolao, Magni and Scattolini (1996a) and Magni and Sepulchre (1997)  employed the 

terminal constraint 𝑥(𝑘 + 𝑁) =  0 to establish closed-loop stability when the system is 

nonlinear and unconstrained. This ideal in cases when N → ∞ , then x → 0. However , it 

is not true for all systems.  While there is a lot of research on how to find terminal constraint 

set, there is a significant study to eliminate the use of terminal constraint due to complexity 

issues which is addressed in the later section of the paper.  

The terminal region is regarded as a good estimation of the stability region [7]. In practice, 

sometimes choosing a good terminal cost is enough (i.e., don’t need to enforce a terminal 

control invariant condition), though you may be sacrificing guarantees [16]. While there 

are other modern methods to arrive at a suitable terminal set in the form of polytope, 

terminal sets in general are not well understood by practitioners & requires advanced tools 

to compute polyhedral or LMI [6]. 𝑥𝑛 ∈ 𝑋𝑓 = 0 is the simplest choice but it has small 

region of attraction when the N is small.                              

 

 

  



36 
 

CHAPTER 4: NON-OVERSHOOTING MODEL PREDICTIVE CONTROL 
 

4.1 Problem Statement 
 

Consider a general non-linear system  which is the form, [3]  

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) 

𝑦(𝑘) = ℎ𝑥(𝑘) 

The objective of the MPC design is to find a control input that minimizes the following 

cost function, 

𝐽(𝑘) = ∑  

𝑁−1

𝑗=1

[𝑥(𝑘+𝑗  |𝑘) − 𝑥𝑟𝑒𝑓)
𝑇] )] ∗ 𝑄 ∗ [𝑥(𝑘 + 𝑗 | 𝑘 ) − 𝑥𝑟𝑒𝑓] + 

∑  

𝑃−1

𝑗=1

𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘)𝑇 ∗ 𝑅 ∗ 𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘) 

(26) 

Subject to, 𝑥(𝑘 + 𝑗|𝑘) ∈ 𝑋 , 𝑢(𝑘 + 𝑗|𝑘) ∈ 𝑈,   0 ≤ j ≤ P 

 
Table 2 Parameter Information 
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To achieve the non-overshooting MPC design of system outputs with respect to the 

references, four different inequality constraints (C1-C4) are proposed as follows, [3] 

 

where 𝑦𝑖(𝑘 + 𝑁|𝑘)is the predicted value of the ith system output at the jth prediction horizon 

step and the 𝑦𝑖−𝑟𝑒𝑓 is the ith reference variable.  

The action of different constraint has different effect on the optimal control sequence and 

there by generating appropriate system response.  

C1: 𝒚𝒊(𝒌 + 𝟏|𝒌) ≤ 𝒚𝒊−𝒓𝒆𝒇 

This makes sure that the first prediction value is less than the reference value of the system.  

C2: 𝒚𝒊(𝒌 + 𝒋|𝒌) ≤ 𝒚𝒊−𝒓𝒆𝒇, where 𝟏 ≤ 𝒋 ≤ 𝑵 

This makes sure that the prediction values from 1 to N to be less than the reference value 

of the system.  

Figure 10 Non-overshooting Constraints [19] 
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C3: 𝒚𝒊(𝒌 + 𝑵|𝒌) ≤ 𝒚𝒊−𝒓𝒆𝒇 & 𝒚𝒊(𝒌 + 𝒋|𝒌) ≤ 𝒚𝒊(𝒌 + 𝑵|𝒌), where 𝟏 ≤ 𝒋 ≤ 𝑵 − 𝟏 

This has 2 constraints . One is the terminal constraint which makes sure that the predicted 

value at the last step of the horizon is less than or equal to the desired value. While this is 

being ensured, it tells us that the system does not overshoot at the last step and hence the 

next constraint is constructed in such a way that the values predicted from 1 to N-1 is less 

than the terminal value.  

C4 : 𝒚𝒊(𝒌 + 𝑵|𝒌) ≤ 𝒚𝒊−𝒓𝒆𝒇 & 𝒚𝒊(𝒌 + 𝒋|𝒌) ≤ 𝒚𝒊(𝒌 + 𝒋 + 𝟏|𝒌), where 𝟏 ≤ 𝒋 ≤ 𝑵 − 𝟏 

The first constraint is same as the terminal constraint tin the C3 case. The second one is 

constructed in such a way that is ensures monotonic characteristic due to the constraint 

chain between each time step.  

4.2 Linear System – Numerical Simulations 
 

Consider a general spring mass damper system  which is the form ,  

�̇� = 𝑨𝑥 + 𝑩𝑢
𝑦 = 𝑪𝑥 + 𝑫𝑢

 
(27) 

 

𝑨 = [
0 1

−𝑘
𝑚⁄ −𝑏

𝑚⁄
] 𝑩 = [

0
1

𝑚⁄
]

𝑪 = [1 0] 𝑫 = [
0
0
]

                                                                                                                                             

 

Figure 11 Mass Spring Damper System 
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Here the optimization problem is,  

𝐽(𝑘) = ∑  

𝑁−1

𝑗=1

[𝑥(𝑘+𝑗  | 𝑘)  − 𝑥𝑟𝑒𝑓)
𝑇] )] ∗  𝑄 ∗  [𝑥(𝑘 + 𝑗 | 𝑘 ) − 𝑥𝑟𝑒𝑓] + 

∑  

𝑃−1

𝑗=1

𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘)𝑇 ∗ 𝑅 ∗ 𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘) 

(28) 

Where 𝑄 = 𝑑𝑖𝑎𝑔[10 1], 𝑅 =  1, N= P = 10. 

As per the simulation responses below, the spring mass damper system is simulated as per 

the constraints defined above in Figure 10. For four non-overshooting constraints, C1 gives 

the shortest settling time. C2 and C3 cause similar but longer settling time compared with 

C1. C4 generates the longest settling time among the four constraints. From C1 to C4, since 

the constraints become stricter, the optimized control input sequence becomes more 

conservative, which may cause a longer settling time.  

Symbol  Parameter Value 

m  mass 5 kg 

k  Spring Constant 0.1 N/m 

b  Damping Coefficient 0.1 N.s/m 

Ts Sample Time 0.1 s 

𝒙(𝟎) & 𝒙𝒓𝒆𝒇  Initial state & reference State  [0,0] & [4,0] 

Table 3 System Properties & Values 
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The presence of overshoot in C4 as in Figure 13 is due to the conservative action of the 

controller. The value of control input (force) must decrease eventually once the steady state 

is reached. But in this case, a distortion in control is observed even after the mass reaches 

the desired position. So when the output 𝑦 fall below 𝑦i−ref, the condition 𝑦𝑖(𝑘 + 𝑁|𝑘) ≤

𝑦𝑖−𝑟𝑒𝑓 is satisfied and the other predicted states are less than the terminal state at N as per 

𝑦𝑖(𝑘 + 𝑗|𝑘) ≤ 𝑦𝑖(𝑘 + 𝑗 + 1|𝑘), where 1 ≤ 𝑗 ≤ 𝑁 − 1. Hence the error between the closed 

loop trajectory increases and this causes the change in the control action constantly and 

this constant fluctuation develops for a while resulting in overshooting to ensure that the 

mass in the desired position.  

 

Figure 12 System Response for the Constraints C1- C4 [3] 
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While we can make the system to not overshoot by modifying the horizon as in Figure 13, 

but the non-overshooting can happen anytime because of the system dynamics. Fox 

example, the system is overshooting at N = 10 and non-overshooting at N = 15. To deal 

Figure 14 Input response of the System Response for C4 

Figure 13 System Response for C4 When N Increases 
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with this kind of undesirable behavior due to design parameters , we need to make sure that 

the constraint terminal state must be equal to the desired state so that error is zero for 

tracking scenario. As the strictest constraint is C4 , we would consider the same by 

replacing the 𝑦𝑖(𝑘 + 𝑁|𝑘) ≤ 𝑦𝑖−𝑟𝑒𝑓 with 𝑦𝑖(𝑘 + 𝑁|𝑘) − 𝑦𝑖−𝑟𝑒𝑓 = 0 i.e., terminal equality 

constraint. This leads to a new design C5. 

For the optimization problem as below,  

𝐽(𝑘) = ∑  

𝑁−1

𝑗=1

[𝑥(𝑘+𝑗  | 𝑘)  − 𝑥𝑟𝑒𝑓)
𝑇] )] ∗  𝑄 ∗  [𝑥(𝑘 + 𝑗 | 𝑘 ) − 𝑥𝑟𝑒𝑓] +

∑  

𝑃−1

𝑗=1

𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘)𝑇 ∗ 𝑅 ∗ 𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘) 

+∑  

𝑁

𝑗

[𝑥(𝑘+𝑁 | 𝑘)  − 𝑥𝑟𝑒𝑓)
𝑇] ∗ 𝑄𝑝 ∗ [ 𝑥(𝑘 + 𝑁 | 𝑘) − 𝑥𝑟𝑒𝑓]

 

where,   𝑥(𝑘 + 𝑁 |𝑘) − 𝑥𝑟𝑒𝑓 ∈ 𝑋𝑓 = 0,  

When 𝑥𝑛(𝑘 + 𝑁 |𝑘) − 𝑥𝑟𝑒𝑓 = 0, then 𝑥𝑛(𝑘 + 𝑁 + 1 |𝑘) = 0 ∀ 𝑘 This method is one of 

the approaches, however it is very trivial. The same thing can be extended to general 

terminal region 𝑋𝑓,  

At 𝑥(1), {𝑢1
∗, … , 𝑢𝑁−1

∗ , 𝑣(𝑥𝑛)}  is feasible: 𝑥𝑛 is in 𝑋𝑓  →  𝑣(𝑥𝑛) is feasible and 𝑥𝑛+1 = 

A*𝑥𝑛 + B*𝑣(𝑥𝑛) in 𝑋𝑓, where 𝑣 is the control input at N. The same result ensures persistent 

feasibility if the set defined is control variant (i.e.  𝑣(𝑥𝑛) ∀ 𝑥𝑛 € 𝑋𝑓 ),  and positive 

invariant (i.e. 𝑋𝑓 ⊆ 𝑋 ).  

The common way to adopt a terminal region is by constructing an ellipsoidal set. D. Limon 

address the general terminal region to be  𝑋𝑓  =   𝑃(𝑥𝑛) ≤ 𝛼 , where 𝛼 > 0.  
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i.e.  𝑋𝑓 = { 𝑥 ∈ ℝ𝑛 | 𝑃(𝑥𝑛) ≤ 𝛼 },  where 𝛼 > 0 is chosen such that 𝑥 ∈ 𝑋 , 𝐾. 𝑥 ∈ U 

⇒ 𝑋𝑓 = { 𝑥 ∈ ℝ𝑛 |[𝑥(𝑘+𝑁 | 𝑘)  − 𝑥𝑟𝑒𝑓)
𝑇] ∗ 𝑄𝑝 ∗ [ 𝑥(𝑘 + 𝑁 | 𝑘) − 𝑥𝑟𝑒𝑓] } ≤ 𝛼 , For 

general cases, 𝛼 = 1.   

C5:𝒚𝒊(𝒌 + 𝑵|𝒌) − 𝒚𝒊−𝒓𝒆𝒇 = 𝟎 & 𝒚𝒊(𝒌 + 𝒋|𝒌) ≤ 𝒚𝒊(𝒌 + 𝒋 + 𝟏|𝒌),where 𝟏 ≤ 𝒋 ≤ 𝑵 − 𝟏 

The system is simulated in Figure 9 with the proposed constraints and the system response 

is better as the non-overshooting can be achieved. Apart from this, recursive feasibility can 

be guaranteed as we use a terminal equality constraint. In this case, the fluctuations are 

reduced because of the terminal equality constraint term in C5. It makes sure that there is 

a feasible control input to drive the state to zero at the end of the prediction horizon.  

 
Figure 15 System Response for C4 & C5 
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The same system is simulated with a sampling time of 0.05s. When the sampling time gets 

reduced , the controller tends to have a better system response as seen in Figure 10. 

 

 

 

 

 

 

 

 

 

However, as the sampling time becomes small, the  computational effort increases 

dramatically as C5. Moreover, as R  decreases, the control input becomes more aggressive, 

which usually causes impractical control efforts and may violate the system capability. 

Therefore, to reduce the overshoot percentage and oscillation, small sampling time periods 

and R values are probably not practical and effective. 

Effect of terminal cost. 

With the support of literature, we know that terminal equality constraints ensure recursive 

feasibility in which there is a feasible control input for all time. But for the cases without 

the terminal equality constraint, terminal cost ensures that stability indefinitely upon the 

introduction of terminal cost which is a Lyapunov function.  

Figure 16 Input Responses of the System for C4 & C5 
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The matrix 𝑄𝑝, the terminal value of the Riccati difference equation, is chosen so that the 

sequence obtained by solving the Riccati difference equation in reverse time with terminal  

sequence obtained by solving the Riccati difference equation in reverse time with terminal 

condition is monotonically non-increasing. 

 

A monotonically non decreasing function tells us the convergence is ensured consistently 

and consistent convergence is said to be stable most of the times. One other point to note 

is that errors at any stage of the computation are not amplified but are attenuated as the 

computation progresses. 

Terminal cost,  

 𝑃(𝑥(𝑘 + 𝑁|𝑘))  =  [𝑥(𝑘+𝑁 | 𝑘)  − 𝑥𝑟𝑒𝑓)
𝑇] ∗ 𝑄𝑝 ∗ [ 𝑥(𝑘 + 𝑁 | 𝑘) − 𝑥𝑟𝑒𝑓] ,  

𝑄𝑝 = 𝑑𝑎𝑟𝑒(𝐴, 𝐵, 𝑄, 𝑅), Terminal constraint,  𝑥(𝑘 + 𝑁 |𝑘) − 𝑥𝑟𝑒𝑓 = 0. 

Figure 17 Input Responses of the System for Ts = 0.05s & Ts = 0.1s 
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Then the optimization problem become as follows with the additional term being added 

to the cost function as per the previous definition. This also increases the computation 

time as per the simulation process as MATLAB tend to take more time with this term. 

Figure 18 Effect of Terminal Cost on System Response 
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𝐽(𝑘) = ∑  

𝑁−1

𝑗=1

[𝑥(𝑘+𝑗  | 𝑘)  − 𝑥𝑟𝑒𝑓)
𝑇] )] ∗  𝑄 ∗  [𝑥(𝑘 + 𝑗 | 𝑘 ) − 𝑥𝑟𝑒𝑓] +

∑  

𝑃−1

𝑗=1

𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘)𝑇 ∗ 𝑅 ∗ 𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘) 

+∑  

𝑁

𝑗

[𝑥(𝑘+𝑁 | 𝑘)  − 𝑥𝑟𝑒𝑓)
𝑇] ∗ 𝑄𝑝 ∗ [ 𝑥(𝑘 + 𝑁 | 𝑘) − 𝑥𝑟𝑒𝑓]

 

 

(29) 

From the simulation results in Figure 19 , we could see that the convergence is improved 

upon the addition of the terminal cost. The settling time is also improved upon the addition 

of terminal cost. Hence this could be one of the effective approaches to design a MPC 

controller with guaranteed stability and feasibility with terminal cost and terminal equality 

constraints. This idea is presented through the simulation in figure 13 with the proposed 

C4 & C5 design. It is evident is that system has a quick convergence and less settling time 

while ensuring non-overshooting characteristic.  

 

 

 

 

 

 

 Figure 19 System Output for the MPC with C4, C5 & Terminal Cost + C5 
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4.3 Nonlinear system – Numerical Simulations  

 

 

 

 

 

  

Consider a cart-pendulum system with the following dynamics, 

𝑥 = [𝑧 �̇� 𝜃 �̇�]𝑇 

�̇� =

[
 
 
 
 
 
 

�̇�
𝐹 − 𝐾𝑑�̇� − 𝑚𝑝𝐿�̇�2sin 𝜃 + 𝑚𝑝𝑔sin 𝜃cos 𝜃

𝑚𝑐 + 𝑚𝑝sin2 𝜃

�̇�
(𝐹 − 𝐾𝑑�̇� − 𝑚𝑝𝐿�̇�2sin 𝜃)cos 𝜃 + (𝑚𝑐 + 𝑚𝑝)𝑔sin 𝜃

𝐿(𝑚𝑐 + 𝑚𝑝) − 𝑚𝑝𝐿cos2 𝜃 ]
 
 
 
 
 
 

 

 

(30) 

where 𝑧, 𝜃, and 𝑢 are the cart position, pendulum angle, and input force applied on the cart. 

The parameter values are 𝑚𝑝 = 𝑚𝑐 = 1 kg, 𝐿 = 0.5 m, and 𝐾𝑑 = 10 N ⋅ s/m. The initial 

condition is 𝑥(0) = [0 0 −𝜋 0]𝑇 and reference is 𝑥ref = [4 0 0 0]𝑇. Weighting 

matrices are 𝑄 = [
10 0
0 𝐼3

] and   𝑅 = [0.1]. The prediction and control horizons are 10-

time steps with the sampling step at 𝑇𝑠 = 0.1𝑠. 

Figure 20 Inverted Cart Pendulum. 
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As observed in Figure 21, the overshoots of the nonlinear system responses are like those 

of the linear system example for the MPC design without and with the non-overshooting 

constraints C1-C4. For other characteristics of system responses, the oscillations are still 

observed for C1-C3, but the amplitudes become smaller as the constraints become stricter. 

For C4, since the system response is required. Unlike linear system ,we don’t observe any 

overshoot or fluctuation in the results for different horizon. This is because we use 

aggressive control (R =0.1) for our system. 

The definition of C1 to C4 is extended to the proposed nonlinear system and the system 

responses are recorded as well. However, as the sampling time becomes small, the 

computational effort increases dramatically. Moreover, as R decreases, the control input 

becomes more aggressive, which usually causes impractical control efforts and may violate 

the system capability. Therefore, to reduce the overshoot percentage and oscillation, small 

sampling time periods and R  

Figure 21 System Responses for C1 – C4 [3] 
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values are probably not practical and effective. 

 

As explained, we don’t observe any kinds of fluctuation as in linear system and we could 

conclude that the C4 is the strictest constraint with less settling time without many 

oscillations. As the strictest constraint is C4 , we would consider the same by replacing the 

𝑦𝑖(𝑘 + 𝑁|𝑘) ≤ 𝑦𝑖−𝑟𝑒𝑓 with 𝑦𝑖(𝑘 + 𝑁|𝑘) − 𝑦𝑖−𝑟𝑒𝑓 = 0 i.e., terminal equality constraint. 

This leads to a new design,C5. 

C5:𝒚𝒊(𝒌 + 𝑵|𝒌) − 𝒚𝒊−𝒓𝒆𝒇 = 𝟎 & 𝒚𝒊(𝒌 + 𝒋|𝒌) ≤ 𝒚𝒊(𝒌 + 𝒋 + 𝟏|𝒌), where𝟏 ≤ 𝒋 ≤ 𝑵 − 𝟏 

When we try to extend the proposed non overshooting design here, we see that the system 

response better with quick convergence and less settling time when compared to other non-

overshooting constraint C4 as in Figure 23. Moreover, we could ensure feasibility of the 

nonlinear MPC upon the addition of terminal equality constraint. [13] The convergence 

cannot be guaranteed always as it depends on the value of R when the sampling time 

changes. 

Figure 22 Input Force Profile When Ts = 0.1s & Ts = 0.05s 
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The effect of predication horizon plays a major role here as the system tend to have a varied 

response as in Figure 24 and specific purpose for longer and shorter values of N. We notice 

that the prediction horizon with less N has better convergence, however it might have some 

adverse effect on the system due to the short-sighted behavior. If we choose a prediction 

horizon long enough is that the system will be more prone to disturbance and uncertainties 

and hence these methods are not ideal choice. We need to select the horizon in such a way 

that it satisfies all the dynamics of the system [20]. Hence N = 10 is chosen as one of the 

ideal values in carrying out the simulation.  

 

Figure 23 System Response for System with C4 & C5 

Figure 24 System Reponse for the Different Values of N 



52 
 

Effect of terminal cost. 

As per the theory presented in this thesis, we know that the terminal cost is considered as 

a control Lyapunov function which is a monotonically increasing function where the 

convergence and stability are guaranteed.  

Terminal cost,  𝑃(𝑥(𝑘 + 𝑁|𝑘))  =  [𝑥(𝑘+𝑁 | 𝑘)  − 𝑥𝑟𝑒𝑓)
𝑇] ∗ 𝑄𝑝 ∗ [ 𝑥(𝑘 + 𝑁 | 𝑘) −

𝑥𝑟𝑒𝑓] , The selection of 𝑄𝑝 plays a major role here and it cannot be obtained by solving 

the Riccati solution as this is not a linear system. As per the literature, the choice of 𝑄𝑝 is 

positive definite matrix. This idea is derived by the study of literature by multiple authors 

in their research on non-linear MPC tracking. We tend to present the same idea in this 

paper by  considering the custom penalty matrix for the sake of trajectory convergence.  

𝑄𝑝 = 𝑑𝑖𝑎𝑔(50,5,10,1) 

Terminal constraint,  𝑥(𝑘 + 𝑁 |𝑘) − 𝑥𝑟𝑒𝑓 = 0. 

Then the optimization problems become,  

𝐽(𝑘) = ∑  

𝑁−1

𝑗=1

[𝑥(𝑘+𝑗  | 𝑘)  − 𝑥𝑟𝑒𝑓)
𝑇] )] ∗  𝑄 ∗  [𝑥(𝑘 + 𝑗 | 𝑘 ) − 𝑥𝑟𝑒𝑓] +

∑  

𝑃−1

𝑗=1

𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘)𝑇 ∗ 𝑅 ∗ 𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘) 

+∑  

𝑁

𝑗

[𝑥(𝑘+𝑁 | 𝑘)  − 𝑥𝑟𝑒𝑓)
𝑇] ∗ 𝑄𝑝 ∗ [ 𝑥(𝑘 + 𝑁 | 𝑘) − 𝑥𝑟𝑒𝑓]

 

(31) 
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The effect of terminal cost on the system response with every non overshooting constraint 

is presented individually in Figure 25. The common characteristic is that it reduces the 

oscillation for the response as in C1 – C4, and also  it helps in better & smooth convergence. 

There is a significant decrease in the settling time of the system. 

The same idea ids extended to the design C5 below as in Figure 26 where the convergence 

is getting improved on the addition of terminal cost. The results are presented in a 

cumulative way as shown in Figure 27 for the better understanding. Hence by the 

theoretical study and the application of the practical scenarios, 

Figure 25 Effect of Terminal Cost on MPC with C1 to C4 
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it is confirmed that the characteristics are similar for both linear and nonlinear systems. 

 

  

Convergence: 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 + 𝐶5 > 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 + 𝐶4 > 𝐶5 > 𝐶4 

Settling Time:  𝐶4 > 𝐶5 > 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 + 𝐶4 > 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑐𝑜𝑠𝑡 + 𝐶5 

 

 

  

Figure 26 Effect of Terminal Cost on MPC with C5 

Figure 27 Effect of Terminal Cost on C4 & C5 
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CHAPTER 5: VEHICLE LATERAL STABILITY CONTROL 

5.1 Vehicle Model  
 

Having seen the simulation results from the linear and non-linear system, we extend the 

same to the vehicle model. Here is the non-vehicle model considered as below,  

𝑚𝑣(�̇�𝑦 + 𝑉𝑥𝑟) = (𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑓𝑟) cos 𝛿𝑓 + 𝐹𝑦𝑟𝑙 + 𝐹𝑦𝑟𝑟 + 𝐹𝑦𝐴𝐹𝑆, (32) 

𝐼𝑧�̇� = 𝑙𝑓[(𝐹𝑦𝑓𝑙 + 𝐹𝑦𝑓𝑟)cos 𝛿𝑓 + 𝐹𝑦𝐴𝐹𝑆] − 𝑙𝑟(𝐹𝑦𝑦𝑙 + 𝐹𝑦𝑟𝑟)

+ 𝑙𝑠(𝐹𝑦𝑓𝑙 − 𝐹𝑦𝑓𝑟) sin 𝛿𝑓 , 

(33) 

where 𝑚𝑣, 𝐼𝑧, 𝛿𝑓, 𝑉𝑥, 𝑉𝑦, and 𝑟 are the  vehicle mass, yaw moment of inertia, front steering 

angle, vehicle longitudinal velocity, lateral velocity, and yaw rate. 𝑙𝑠, 𝑙𝑓, and 𝑙𝑟 are the 

wheel track, front wheelbase, and rear wheelbase, respectively.  𝐹𝑦𝑖 ( 𝑖 =   𝑓𝑙,  𝑓𝑟,  𝑟𝑙,  𝑟𝑟) 

are the lateral forces, which are calculated by 2D LuGre tire model, on four wheels, 

respectively. 𝐹𝑦𝐴𝐹𝑆  is the additional tire lateral force generated by the AFS control. [1]  

 

 

 

 

 

 

 Figure 28 Lateral Vehicle Model 

[19] 
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Tire models play a major role in the stability analysis. There are many models which has 

been discussed before and they follow different criteria according to the practicality of the 

applications. For example, magic formula tire model is a nonlinear model for the static tire 

with steady state data [22]. The 2D LuGre model is more suitable to real world applications 

& it is nonlinear and dynamic in nature which has better  tire force characteristics [23].  

Hence a 2D LuGre model has been considered. Stability region was generated by 

considering the tire and vehicle instabilities. 

 The stability region is presented in figure above. The boundaries are constructed by using 

the polytope function from the MATLAB as the data points are already defined. The yaw 

rate is the defined as a function of lateral velocity. [4] 

i.e. 𝑟 = 𝑓(𝑉𝑦), where 𝑉𝑦−𝑚𝑖𝑛  ≤ 𝑉𝑦 ≤ 𝑉𝑦−𝑚𝑖𝑑 

 

 

 

 

 

 

 

 

Figure 29 Stability Region [3] 
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The behavior of the stability region tends to enlarge with the varying longitudinal velocity 

𝑉𝑥. But as the 𝑉𝑥 remains constraint, the region gets shifted by vector 𝑆 by the change in 

the steering angle 𝛿𝑓 . [3]The shifting vector, 𝑆 = (𝑉𝑦−𝑠ℎ𝑖𝑓𝑡, 𝑟𝑠ℎ𝑖𝑓𝑡),  where the  𝑉𝑦−𝑠ℎ𝑖𝑓𝑡 =

 
𝑉𝑥𝑙𝑟𝛿𝑓

𝑙𝑓+𝑙𝑟
 , 𝑟𝑠ℎ𝑖𝑓𝑡 = 

𝑉𝑥𝛿𝑓

𝑙𝑓+𝑙𝑟
 makes the vehicle stability region real time implementable. 

5.2 Test Environment  

The constraint formulated as derived based on the previous study done on linear and non-

linear systems. The 2012 Hatchback C class vehicle from the CarSim® database is 

simulated for the above the problem formulation with the following parameters as shown 

the table. 

 

 

Figure 30 2012 Hatchback model setup [25] 
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Table 4 Vehicle Parameters  

Symbol Parameter Value 

𝒎𝒗 Vehicle Mass 1270 kg 

g Gravity Constant 9.8 m/s2 

𝑰𝒛 Yaw Inertia 1536.7 kg.m2 

L Wheelbase 2.91 m 

𝒍𝒇 Front Wheelbase 1.11m 

𝒍𝒇 Rear Wheelbase 1.8 m 

𝒍𝒔 Half of the vehicle track 0.835 m 

𝑻𝒔 Sampling Time 0.1 𝑠 

N & P 
Prediction & Control 

Horizon 
10 

 

 

 

 

 

 

 

 

 

 

 

 

The vehicle speed is fixed at 25 m/s. The steering angle is shown in Figure 4, in which the 

front wheel steering angle starts at zero and ramps up to 0.18 rad in 1.5 seconds and then 

keeps constant. MPC design and it is sent to the CarSim® vehicle as a input along with the 

steering profile externally. The experiment is carried out via the co-simulation using the 

MATLAB/Simulink & CarSim®.  The inputs are generated by the external controller using 

the non-overshooting the vehicle states are obtained as the outputs from the model and fed 

back into the system for further computation.  
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, 

 

 

 

 

 

 

 

 

The same setup is done via Simulink as per Figure 33 Simulink Model As shown in the 

figure, the open loop function generates the steering angle. The lateral tire force due to the 

active front wheel steering angle is generated by the model predictive control algorithm 

using the non-overshooting design. 

Figure 32 Steering Input in radians. 

Figure 31 System Configuration with CarSim® at DSCL, ASU Poly 

Campus 
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We can see the shift in the vehicle trajectory from the CarSim result. The step steer and 

the lateral force cause the vehicle to move in the left direction, having a steering angle of 

0.18 rad/s. This idea is implemented in different stages in the later sections of the thesis. 

 

 

 

 

 

 

 

 

 
 

Figure 34 Vehicle Path With/Without Control 

Figure 33 Simulink Model 
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5.3 Non-overshooting MPC for Vehicle Stability Control  
 

The control objective is to minimize the following cost function when the vehicle states 

are going to pass the stability boundary 𝑥𝑠  → (𝑉𝑦𝑠, 𝑟𝑠), 

𝐽(𝑘) = ∑  

𝑁−1

𝑗=1

[𝑥(𝑘+𝑗  | 𝑘)  − 𝑥𝑠)
𝑇] )] ∗  𝑄 ∗  [𝑥(𝑘 + 𝑗 | 𝑘 ) − 𝑥𝑠] + 

 ∑  

𝑃−1

𝑗=1

𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘)𝑇 ∗ 𝑅 ∗ 𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘) 

(34) 

Where 𝑄 = [10 1; 1  10], 𝑅 =  0.001, N= P = 10 & 𝛥𝑢( 𝑘 + 𝑗 ∣∣ 𝑘 ) =

𝐹𝑦−𝐴𝐹𝑆(𝑘 + 𝑗 | 𝑘) − 𝐹𝑦−𝐴𝐹𝑆(𝑘 + 𝑗 − 1 | 𝑘). 

The implemented non-overshooting design is done in four stages by the mathematical 

formulation of stability region boundary. [3] 

1. 𝑟 ≤ 𝑓1(𝑉𝑦) & 𝑉𝑦 ∈ [𝑉𝑦−𝑚𝑖𝑛, 𝑉𝑦−𝑚𝑖𝑑]  

2. 𝑟 ≤ 𝑓2(𝑉𝑦) & 𝑉𝑦 ∈ [𝑉𝑦−𝑚𝑖𝑑 , 𝑉𝑦−𝑚𝑎𝑥]  

3. 𝑟 ≤ 𝑓3(𝑉𝑦) & 𝑉𝑦 ∈ [𝑉𝑦−𝑚𝑖𝑑 , 𝑉𝑦−𝑚𝑎𝑥]  

4. 𝑟 ≤ 𝑓4(𝑉𝑦) & 𝑉𝑦 ∈ [𝑉𝑦−𝑚𝑖𝑛, 𝑉𝑦−𝑚𝑖𝑑]  

Among the ones defined , the fourth one is adopted to achieve the best control objective 

based on our previous discussions. We need to understand that the control is applied as per 

the change in segment numbers, and we try to present only the effects of specific cases in 

our following discussions 
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5.4 Simulation Results and Discussions 

The aim of the analysis is to keep the vehicle states close the stability boundary as much 

as possible through the non-overshooting design MPC [3]. The continuous variations of 

the vehicle states and regions were monitored and verified in the simulation. The stability 

point in the boundary are found by the projection method discussed by Y.Chen, and Y. 

Huang [4][3]. This observation can be further verified by comparing the actual vehicle state 

with the closest point on the boundary for case 4 as below. The reason for simulating the 

design with C4 design is to see the response of the best non-overshooting design and how 

to take this forward. 

 

 

 

 

 

 

 

  

As mentioned before , the aim of the simulation is to have the vehicle states closer to the 

stability boundary as much as possible. The vehicles states movement and its status are 

recorded below. This tells us the vehicle states has tried to overshoot the region and it was 

Figure 35 Vehicle States & Its Closest Boundary in C4 Design 
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steered back due to the control formulation. However, this observation does not mean the 

vehicle states are out of the stability region. 

 

 

 

 

 

However, we tend to extend the proposed design in terms of C5 as we tend to get to have 

the feasible response with better convergence as in linear and the non- linear systems. From 

the idea derived before, we propose equality constraints at the terminal step of the horizon. 

The case 5 is proposed as : 𝑟 ≤ 𝑓4(𝑉𝑦) & 𝑉𝑦 ∈ [𝑉𝑦−𝑚𝑖𝑛, 𝑉𝑦−𝑚𝑖𝑑] & with the 𝑦𝑖(𝑘 + 𝑁|𝑘) −

 𝑦𝑖−𝑟𝑒𝑓 = 0 & 𝑦𝑖(𝑘 + 𝑗|𝑘) ≤ 𝑦𝑖(𝑘 + 𝑗 + 1|𝑘), where1 ≤ 𝑗 ≤ 𝑁 − 1. The system is 

simulated as in figure 37 , and we observe the vehicle states to be closer to the boundary 

as the result of the terminal equality constraint. However, this approach is not trivial [6] 

[12].  We observe the vehicle states are much closer to the boundaries as per the conclusion 

in [3][4]. Also, the convergence and the oscillations are better than the in C4 design. This 

is due to the action of the terminal equality constraint (Otherwise called as stability 

constraint) that helps with convergence.  The movement of vehicle states are presented in 

the figure below where the fluctuation in the stability boundary values is caused due to the 

movement of vehicle states. 

Figure 36 Segment Profile for C4 
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The stability boundary when compared to the previous cases and thus we validate that the 

C5 has the best characteristic among all the non-overshooting design.  

𝑪𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 :  𝑪𝟓 >  𝑪𝟒 (𝒘𝒓𝒕 𝒕𝒐 𝒔𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒑𝒐𝒊𝒏𝒕,  𝒙𝒔 → (𝑽𝒚𝒔, 𝒓𝒔)) 

𝑶𝒔𝒄𝒊𝒍𝒍𝒂𝒕𝒊𝒐𝒏:  𝑪𝟓 <  𝑪𝟒 (𝒘𝒓𝒕 𝒕𝒐 𝒔𝒕𝒂𝒕𝒆 𝒑𝒐𝒊𝒏𝒕,  𝒙 → (𝑽𝒚, 𝒓 )) 

Figure 37 Vehicle States & Its Closest Boundary in C5 Design 

Figure 38 Segment Profile in C5 Design 
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Effect of terminal cost,  

As discussed earlier ,the purpose of the terminal cost function is to bring stability to the 

system. While the stability proof can be evaluated theoretically for a linear system. The 

nonlinear systems need certain assumptions for the terminal penalty matrix used in the 

cost function. There is still on going to find a best way to arrive at a penalty matrix and 

As per authors like David Scramuzza , the terminal penalty matrix 𝑸𝒑 shall be equal to 

the 𝑸 which is used from 𝟏 to 𝑵 − 𝟏 steps. [17] (2022) 

The problem formulation using the terminal cost is as follows,  

𝐽(𝑘) = ∑ { 
𝑁−1

𝑗=1
[𝑥(𝑘 + 𝑗 | 𝑘 ) − 𝑥𝑠]

𝑇 ∗  𝑄 ∗  [𝑥(𝑘 + 𝑗 | 𝑘 ) − 𝑥𝑠]} +  

 𝛥𝑢(𝑘 + 𝑗 ∣ 𝑘)𝑇 ∗ 𝑅 ∗ 𝛥𝑢( 𝑘 + 𝑗 ∣∣ 𝑘 ) + 

 [𝑥𝑛(𝑘+𝑗  | 𝑘))𝑇] )] ∗  𝑄𝑝 ∗  [𝑥𝑛(𝑘 + 𝑗 | 𝑘 ) − 𝑥𝑠] 

(35) 

where 𝑄 = [10 1; 1  10], 𝑅 =  0.001, N = P = 10 , 𝛥𝑢( 𝑘 + 𝑗 ∣∣ 𝑘 ) =

𝐹𝑦−𝐴𝐹𝑆(𝑘 + 𝑗 | 𝑘) − 𝐹𝑦−𝐴𝐹𝑆(𝑘 + 𝑗 − 1 | 𝑘) , 𝑄𝑝 = 𝑄 is the terminal penalty matrix.  

The system is simulated with the presence of terminal cost on C5 as we concluded that the 

stability and feasibility ca be guaranteed by the addition of the terminal cost and terminal 

constraint. The response shows the states and its respective stability boundaries. From the 

segment plot down below, we can infer the movement of vehicle states within the segments 

along the boundaries. The associated advantages of terminal cost, which is Lyapunov 

function and terminal constraint brings the states closer to the boundary than the C5 design 

which is ideal necessity according to the application and research methodology presented. 
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𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 : 𝑇𝑒𝑟. 𝐶𝑜𝑠𝑡 + 𝐶5 > 𝐶5 >  𝐶4  

(𝑤𝑟𝑡 𝑡𝑜 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑜𝑖𝑛𝑡,  𝑥𝑠 → (𝑉𝑦𝑠, 𝑟𝑠)) 

𝑂𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛:  𝐶5 < 𝑇𝑒𝑟. 𝐶𝑜𝑠𝑡 + 𝐶5 < 𝐶4  

(𝑤𝑟𝑡 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑝𝑜𝑖𝑛𝑡,  𝑥 → (𝑉𝑦, 𝑟 )) 

  

Figure 39 Vehicle States & Its Closest Boundary for Terminal Cost & C5 

Figure 40 Segment Profile for the Design with Terminal Cost & C5 
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CHAPTER 6: CONCLUSION 
 

The system's safety is essential and is the primary motivation behind this thesis [1]. In a 

nutshell, restricting the states within a pre-defined region ensures that the system/actuator 

does not reach its saturation value, which is very important for the system. This is a critical 

thing to ensure in emergency scenarios like docking of a boat, lane change, cornering in a 

tight turn, etc., and this thesis proposes a novel method for doing that. Non-overshooting 

model predictive control (MPC) ensures that the safety and theory of terminal cost and 

terminal constraints address its limitations. The existing non-overshooting control is fused 

with this theory, and a new design is proposed. Thus, benefiting from the proposed 

algorithm's non-overshooting characteristic, the vehicle's maneuverability is significantly 

improved in front wheel steering (FWS). The effectiveness of this algorithm is therefore 

checked in terms of its convergence through the simulation results from 

MATLAB/Simulink and CarSim® environment.  
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