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ABSTRACT

Iwasawa theory is a branch of number theory that studies the behavior of certain

objects associated to a Zp-extension. The work in this thesis will focus on the cyclo-

tomic Zp-extensions of imaginary quadratic fields for varying primes p, and will give

some conditions for when the corresponding lambda-invariants are greater than 1.
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Chapter 1

INTRODUCTION AND STATEMENT OF MAIN RESULTS

Let p be an odd prime, and d > 0 a square-free integer. Denote K = Q(
√
−d)

and let λp(K) be Iwasawa’s λ-invariant for the cyclotomic Zp-extension of K. In

(10), Dummit, Ford, Kisilevsky and Sands compute λp(K) for various primes and

imaginary quadratic fields. They define the non-trivial primes of K to be those which

satisfy λp(K) > 1 (non-trivial since λp(K) > 0 whenever p splits in K, see (19)).

For example, Table 1 gives the non-trivial primes for K = Q(
√
−3) and K = Q(i)

for primes p < 107 (see Table 1 in (10) for all other imaginary quadratic fields with

discriminants up to 1,000).

Table 1.1: Non-trivial primes p < 107 of Q(
√
−3) and Q(i).

K = Q(
√
−3) 13 181 2521 76543 489061 6811741

K = Q(i) 29789

Note that the values from Table 1 come from (10), which were computed in 1989

(it would be interesting to compute these values further with modern computational

power). Authors such as Ellenberg, Jain, and Venkatesh (11), Horie (17), Ito (18),

and Sands (33) have studied λp(K) by fixing a prime p and varying the imaginary

quadratic field K. Dummit, Ford, Kisilevsky, and Sands (10), and Gold (13) have

studied the case when K is fixed and p varies (which is the point of view we take in

this paper), but less seems to be known in this situation. Another point of view might
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be to fix both p and K and vary the Zp-extension of K. Interestingly, Sands (32) has

shown that if p does not divide the class number of K, and the cyclotomic λ-invariant

λp(K) ≤ 2, then every other Zp-extension K∞/K has λp ≤ 2 and µp = 0. Therefore,

knowing the non-trivial primes p of K is important for our overall understanding of

the other Zp-extensions of K.

On the other hand, for m ∈ Z+ we have the seemingly unrelated 1-exceptional

primes p for m studied by Cosgrave and Dilcher, that is, primes p ≡ 1 (mod m) such

that
(
p2−1
m

)p−1

p
! =

(∏ p2−1
m
a=1

gcd(a,p)=1

a

)p−1

≡ 1 (mod p2). Surprisingly, the primes p in

Table 1 are exactly the 1-exceptional primes for m = 3 and m = 4 respectively, with

p < 107 (see the next section, or (7) and (8) to learn about 1-exceptional primes).

This thesis is dedicated to finding conditions for which the cyclotomic λ-invariants

of imaginary quadratic fields surpass a given value n, with a focus on n = 1 and 2.

The first main result is Theorem 3.1.1, which is a criterion in terms of Gauss

factorials that gives λp(K) > 1 (this is a condition that works for every imaginary

quadratic field K and any prime p that splits in K and is congruent to 1 modulo the

absolute discriminant of K). This will be proven in two ways: first using the Gross-

Koblitz formula (16) and Gold’s criterion (13) (see Theorem 3.1.2), the second using

the p-adic L-function associated to the imaginary quadratic field K. From this, we

obtain an explanation for the apparent connection between the 1-exceptional primes

for m = 3 and m = 4, and the non-trivial primes of K = Q(
√
−3) and K = Q(i), as

well as some similar results for K = Q(
√
−d) with d = 2, 5 and 6:

Theorem 1.0.1. Let K = Q(
√
−d) and D = 2d if d ≡ 3 (mod 4) and D = 4d

otherwise. Let p be a prime such that p ≡ 1 (mod D), and suppose that p does not
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divide the class number of K. Then for d = 1, 2, 3, 5 and 6 we have

λp(K) > 1 ⇐⇒


(
p2−1
D

)2

p
!(

p2−1
D/2

)
p
!


p−1

≡ 1 (mod p2).

In particular, p is 1-exceptional for m = 3 if and only if λp(Q(
√
−3) > 1 and p is

1-exceptional for m = 4 if and only if λp(Q(i)) > 1.

The proof of Theorem 1.0.1 relies on the fact the fields K = Q(
√
−d), where

d = 1, 2, 3, 5 and 6, have so called “maximal class numbers” (see Definition 8). We

will prove Theorem 3.1.4 which tells us that these are the only imaginary quadratic

fields with such class numbers, under the assumption that the generalized Riemann

hypothesis is true.

As a corollary of Theorem 1.0.1 we will see that primes p of the form p2 = 3x2 +

3x + 1 with x ∈ Z always give λp(
√
−3) > 1. However, the converse does not hold

(see Remark 2). Theorem 1.0.1 also leads to

Corollary 1. For K = Q(
√
−d) for d = 1, 2, 3, 5 and 6, we have

λp(K) > 1 ⇐⇒ Bp(2/D) ≡ 2pBp(1/D) (mod p3)

where Bn(x) is the n-th Bernoulli polynomial.

In particular, we obtain some interesting conditions for the non-trivial primes of

K = Q(i) and K = Q(
√
−3) in terms of Glaisher and Euler numbers respectively.

Recall the Euler numbers {En} and Glaisher numbers {Gn} are defined by

∞∑
n=0

En
xn

n!
=

2

ex + e−x
and

∞∑
n=0

Gn
xn

n!
=

3/2

ex + e−x + 1
.

We will prove:
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Corollary 2. Let p ≡ 1 (mod 4) be a prime and En denote the n-th Euler number.

Then λp(Q(i)) > 1 if and only if Ep−1 ≡ 0 (mod p2).

Corollary 3. Let p ≡ 1 (mod 3) be a prime and Gn denote the n-th Glaisher number.

Then λp(Q(
√
−3)) > 1 if and only if Gp−1 ≡ 0 (mod p2).

Remark 1. The numbers {Gn} were studied by Glaisher in (14) and (15) in which

they are referred to as I-numbers.

In Section 4, we will find another unexpected relation, that is, between the lambda

invariant of an imaginary quadratic field and the number of points on a reduced elliptic

curve with complex multiplication. We state the main Theorem of that section:

Theorem. Let p > 3 be a prime and K be an imaginary quadratic field such that p

does not divide the class number of K, and pOK = pp̄. Let E be an elliptic curve

with complex multiplication by OK, K̃ the field obtained by adding certain torsion

coordinates of E to the Hilbert class field of K, and P a prime of K̃ above p (see

section 4 for more details). Then λp(K) > 1 if and only if #Ẽ(Fq) ≡ 0 (mod p2),

where q = pp−1, and Ẽ is the reduction of E modulo P.

As a result, we can relate certain Gauss factorials to elliptic curves with complex

multiplication, as well as the Euler and Glaisher numbers:

Theorem. Let p ≡ 1 (mod 3), and consider E/Fp : y2 = x3 − 1. Then p is 1-

exceptional for m = 3 if and only if Gp−1 ≡ 0 (mod p2) if and only if #E(Fpp−1) ≡

0 (mod p2).

Theorem. Let p ≡ 1 (mod 4), and consider E/Fp : y2 = x3 + x. Then p is 1-

exceptional for m = 4 if and only if Ep−1 ≡ 0 (mod p2) if and only if #E(Fpp−1) ≡

0 (mod p2).
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Next, in the absence of Gold’s result for λp(K), we will again use the p-adic L-

function associated to K to obtain a criterion for n < λp(K) < p. In particular, we

will get a “Gold like” criterion for λp(K) > 2. In this case we will also get a result

analogous to Theorem 3.1.1. Finally, we will obtain a partial result in the spirit of

Theorem 3.1.2 for λp(K) > 2.
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Chapter 2

PRELIMINARIES

2.1 Brief Overview of Iwasawa Theory

Iwasawa theory can be described as the study of objects {An}n∈N associated to

an infinite tower of number fields K ⊆ K1 ⊆ K2 ⊆ · · · ⊆ K∞ =
⋃
nKn such that

the Galois group Gal(K∞/K) is isomorphic to the p-adic integers Zp. We will always

denote Γ = Gal(K∞/K), and refer to K∞/K as a Zp-extension.

Here is the most basic example of such an extension: Let ζn = ζpn be a primitive pn-

th root of unity and K an Abelian number field such that ζn /∈ K. Then K(ζn+1)/K

is a cyclic Galois extension of degree pn(p − 1), and thus contains a sub-extension

Kn/K such that Gal(Kn/K) ∼= Z/pnZ. Taking K∞ =
⋃
nKn we have that Γ =

Gal(K∞/K) = lim←−Z/pnZ ∼= Zp. In this case K∞/K is referred to as the cyclotomic

Zp-extension of K.

Returning to the general case, let K∞/K be a Zp-extension and denote C(Kn) to

be the ideal class group of Kn, and An to be its Sylow p-subgroup. Let us now get

a rough idea of how a Zp-extension allows one to study {An}. By class field theory,

there exists an unramified Abelian extension Ln/Kn such that Gal(Ln/Kn) ∼= An.

Then taking L∞ =
⋃
n Ln, we have that X = Gal(L∞/K∞) = lim←−Gal(Ln/Kn), and

L∞/K is also Galois.
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L∞

K∞

K

X

Γ

We have that Γ acts on X, and even more, X is a finitely generated Λ = Zp[[Γ]]

module. We shall refer to Λ as the Iwasawa algebra. One might think of X as having

encoded all the information of each An, and viewing X as a Λ-module allows us to

access this information. There exists an element γ ∈ Γ such that γ generates a dense

subgroup which gives rise to an isomorphism Λ ∼= Zp[[T ]], where T is identified with

γ− 1 (γ is called a topological generator). We say that two Λ-modules M and N are

pseudo-isomorphic, and write M ∼ N , if there exists an exact sequence of Λ-modules

0→ A→M → N → B → 0

such that A and B are finite. Then with the Λ-module X as above, it can be shown

that

X ∼
t⊕
i=0

Λ/paiΛ⊕
m⊕
i=0

Λ/fi(T )biΛ

where fi ∈ Λ are irreducible distinguished polynomials (fi(T ) = crT
r + · · ·+ c1T + c0

is distinguished if p | ci for 0 ≤ i ≤ r − 1, and p - cr), ai, bi ∈ Z+, and An ∼=

Gal(Ln/Kn) ∼= X/(γp
n − 1)X (see Theorem 13.12 and Proposition 13.19 in Chapter

13 of (39)). We define the Iwasawa invariants µ = µp(K∞/K) = µp(K) and λ =

λp(K∞/K) = λp(K) as

µ =
t∑
i=0

ai, λ =
m∑
i=0

deg(fi)bi

7



and we call the ideal generated by f(T ) = pµ
∏m

i=0 fi(T )bi the characteristic ideal of

Λ.

Theorem 2.1.1 (Iwasawa’s Theorem). For n sufficiently large

|An| = |X/(γp
n − 1)X| = pnλ+pnµ+ν .

where µ, λ ∈ Z+ and ν ∈ Z.

If K is Abelian and K∞/K is the cyclotomic Zp-extension, then µ = 0 by the

Theorem of Fererro-Washington (12). In general, if K∞/K is not the cyclotomic

Zp-extension then there are known instances where µ 6= 0 (see (22)). On the other

hand, we know many simple cases where λ > 0. For example, if K = Q(
√
−d) is

an imaginary quadratic field then λp(K) > 0 if and only if p splits K, or p divides

the class number of K (more on this later). There is still much to learn about λ

even under basic assumptions (see, for example, (10), (32) and, (33)). For more on

classical Iwasawa theory, see chapter 13 in Washington (39).

2.2 p-adic Measure Theory and the Iwasawa Isomorphism

Let p be a prime number.

Definition 1. Let k/Qp be a finite extension of Qp. A k-valued measure is a function

α : {compact open subsets of Zp} → k

such that

i. for A ∩B = ∅, α(A ∪B) = α(A) + α(B)

ii. {|α(A)|p}A is bounded.

8



We define Λk to be the set of all Ok-valued measures on Zp.

Definition 2. We define the indicator function for a+ pnZp by

ga,pn(x) =


1 if x ∈ a+ pnZp

0 else

.

We say that f : Zp → K is locally constant if there exists N ∈ N such that

f(x) =

pN−1∑
a=0

f(a)ga,pN (x).

We can now start to define an integral on Zp against a measure α.

Definition 3. If α is a k-valued measure and f : Zp → k is locally constant, then we

define ∫
Zp
f(x) dα(x) =

pN−1∑
a=0

f(a)α(a+ pNZp).

Now let f : Zp → k be continuous. Then there is a sequence (fn)n∈Z+ such that

fn : Zp → k is locally constant, and fn → f uniformly.

Definition 4. If α is a k-valued measure and f : Zp → k is continuous, then we

define ∫
Zp
f(x) dα(x) = lim

n→∞

∫
Zp
fn(x) dα(x)

where fn → f .

It is easy to show that this integral is independent of the choice of sequence (fn).

Theorem 2.2.1. There is an isomorphism of rings (Λk,+, ∗) ∼= (Ok[[T − 1]],+, ·)

given by

α 7→
∞∑
n=0

(∫
Zp

(
x

n

)
dα(x)

)
(T − 1)n

where ∗ is convolution of measures.

We will often view Λk as a ring of measures or power series interchangeably.

9



2.3 L-functions

Let χ be a Dirichelt character with conductor f . Then the Dirichlet L-function

attached to χ is defined to be

L(s, χ) =
∞∑
n=0

χ(n)

ns

which converges for all s ∈ C with Re(s) > 1. It is well known that L(s, χ) has an

Euler product

L(s, χ) =
∏

p prime

(
1− χ(p)

ps

)−1

which again converges for Re(s) > 1. These Dirichlet L-functions can be analytically

continued to the entire complex plane (except when χ = 1, in which case there is a

simple pole at s = 1) via the functional equation

Γ(s) cos

(
π(s− δ)

2

)
L(s, χ) =

τ(χ)

2iδ

(
2π

f

)s
L(1− s, χ̄)

where χ̄(a) = χ(a), Γ(s) =
∫∞

0
xs−1e−x dx is the gamma function, τ(χ) =

∑f
a=0 χ(a)e2πia/f

is the Gauss sum for χ, and

δ =


1 if χ(−1) = −1

0 if χ(−1) = 1

.

Now, consider the Bernoulli numbers Bn given by

t

et − 1
=
∞∑
n=0

Bn
tn

n!

the Bernoulli polynomials Bn(X) given by

Bn(X) =
n∑
k=0

(
n

k

)
BkX

n−k

10



and the generalized Bernoulli numbers Bn,χ given by

f∑
a=1

χ(a)
teat

eft − 1
=
∞∑
n=0

Bn,χ
tn

n!
.

Then the Dirichlet L-functions have the generalized Bernoulli numbers as their

special values, that is, for n ∈ Z+,

L(1− n, χ) = −Bn,χ

n
.

2.4 p-adic L-functions

Kubota and Leopoldt (24) found a p-adic analogue Lp(s, χ) of L(s, χ) such that

Lp(s, χ) : Zp → C×p is continuous, and

Lp(1− n, χ) = (1− χ(p)pn−1)L(1− n, χ)

if n is divisible by p− 1, and

Lp(1− n, χ) = (1− χω−n(p)pn−1)L(1− n, χω−n)

if n is not divisible by p−1. Here ω : (Z/pZ)× → C× is the Teichmüller character. In

2.5 we will see that we can construct p-adic L-functions via p-adic measures. Other

constructions can be found in (23), (27), and (39).

2.5 Iwasawa’s Power Series and Rational Functions

We shall restrict our attention to K = Q(
√
−d), where the situation is simplified

compared to the more general CM case. Denote k to be the p-adic completion of K

where p ∩ Z = p. Denote U = 1 + pZp, V ⊆ Zp the (p − 1)-st roots of unity, and π

the maximal ideal in Ok. We also denote ord(·) to be the valuation of Cp such that

11



ord(p) = 1. As before, we denote Λk to be the set of all Ok-valued measures on Zp.

We will write Fα(T ) ∈ Ok[[T − 1]] as the power series corresponding to α ∈ Λ, as in

Theorem 2.2.1. Now, for Fα(T ) ∈ Λk, with Fα(T ) =
∑∞

n=0 an(T − 1)n, we denote

µ(Fα) = µ(α) = min
n
{ord(an)} and λ(Fα) = λ(α) = min{n : ord(an) = µ(α)}.

Let c be any positive integer such that gcd(c, dp) = 1, and define the periodic function

ε(a) =


χ(a) if c - a

χ(a)(1− c) if c | a
.

If f is any multiple of cdp, it can be shown that∑f
a=1 ε(a)T a

1− T f
∈ Ok[[T − 1]].

We thus associate the above rational function with the power series Fα(T ), where

α ∈ Λk (see Proposition 4.1 in (37)). Given a topological generator u (that is,

u ∈ 1 + pZp but u 6∈ 1 + p2Zp) we have an isomorphism ϕ : Zp → U given by x 7→ ux.

For x ∈ Zp we will also write 〈x〉 = x/ω(x). The Γ-transform of α is the function

from Zp to Cp defined by

Γα(s) =

∫
Z×p
〈x〉s dα(x) =

p−1∑
a=1

∫
U

〈ω(a)x〉s dα(ω(a)x) =

∫
U

xs β(x) =

∫
Zp
usx dβ̃(x)

where β =
∑p−1

a=1 dα(ω(a)x) and β̃ = β ◦ ϕ. Now, consider Gχ(T ) ∈ Λk given by

Gχ(T ) =

∫
Zp
T x dβ̃(x) =

∞∑
n=0

(∫
Zp

(
x

n

)
dβ̃(x)

)
(T − 1)n

Then Gχ(T ) is essentially the p-adic L function, or more precisely, Gχ(us) = −(1 −

χ(c)c〈c〉s)Lp(−s, χω). We say that Gχ(T ) is the Iwasawa series for α. Now choose

t ∈ Zp such that ut = 〈c〉 and set Hχ(T ) = 1 − χ(c)cT t from which we obtain

12



Lp(s, χω) = Gχ(u−s)/Hχ(u−s). We denote gχ(T ) = Gχ(T−1)/Hχ(T−1), and we shall

write

gχ(T ) =
∞∑
n=0

bn(T − 1)n. (2.1)

Then since K is an imaginary quadratic field, we have

λp(K) = λ(gχ) and µp(K) = µ(gχ).

We also have that K is Abelian over Q, so the Ferrero-Washington Theorem (12)

says that µp(K) = 0 (see (37) for another proof using rational functions). Hence, to

calculate λp(K), we must find the smallest index n such that bn 6≡ 0 (mod p).

One issue with the power series gχ is that the composition with ϕ makes certain

computations difficult. The next theorem due to Childress (3), (4), and later improved

by Satoh (34), will give us a better rational function to work with later on,

Theorem 2.5.1 (Childress (3)). Let ε, V , and f be as above. Then

F (T ) =
∑
ζ∈V

 f∑
a=1

a≡ζ (mod p)

ε(a)T ζ
−1a

/
(1− T ζ−1f )

 . (2.2)

Then Hχ(T ), F (T ) ∈ Ok[[T − 1]], and p divides λp(F ). Also λp(gχ) = 1
p
λp(F ) −

λp(Hχ).

Notice that F (T ) is almost the power series obtained from the Γ-transform of α

(it is missing the composition with ϕ).

2.6 Some Results of Class Field Theory

Let k be a number field, and m an ideal of Ok. We denote Im to be the set of

fractional ideals a such that m - a. For α ∈ k we say that α is totally positive if
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τ(α) > 0 for every real embedding τ of k. We denote Pm to be the set of principle

ideals 〈α〉 of Ok such that α ≡ 1 (mod m) and α is totally positive.

Theorem 2.6.1. Suppose that H is such that Pm < H < Im. Then there exists an

abelian extension K/k such that Gal(K/k) ∼= Im/H. Further, K/k is ramified only

at the primes dividing m.

We say that K is the ray class field of k for H. If H = Pm then we say that K is

the ray class field for k of conductor m. The isomorphism in the theorem is induced

by the so called Artin map.

Let k be a number field and K/k a finite Galois extension. Let p be a prime of k

and P a prime of K above p. Denote

Z = Z(P/p) = {σ ∈ Gal(K/k) : σ(P) = P}

T = T (P/p) = {σ ∈ Z(P/p) : σ(α) ≡ α (mod P) for all α ∈ OK}.

We call Z and T the decomposition and inertia groups respectively for P/p. Now, if

KT is the fixed field for T , then p is unramified in KT/k and pT = P∩OKT is totally

ramified in K/KT .

Now, (OK/P)/(Ok/p) is a finite extension of fields, with Galois group generated

by the Frobenius automorphism σP given by

σP(x+ P) = xNk/Q(p) + P.

We have the exact sequence

1→ T → Z → Gal((OK/P)/(Ok/p))→ 1
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and if p is unramified in K/k, then T = 1 and Z ∼= Gal((OK/P)/(Ok/p)). Hence, we

may view the Frobenius σP as an element of Z with the property

σP(x) ≡ xNk/Q(p) (mod P).

Now, if τ ∈ Gal(K/k), then τP is a prime above p and unramified in K/k. It is

easy to see that στP = τσPτ
−1 = σP since Gal(K/k) is Abelian. In other words, the

Frobenius automorphism only relies upon p, and we can then write σp = σP. If D is

the relative discriminant of K/k then for any prime ideal p ∈ ID we have that p is

unramified in K/k. Therefore, we can define the Artin map ID → Gal(K/k) on the

prime ideals p ∈ ID as

p 7→ σp.

which extends naturally to arbitrary m ∈ ID. See (2) for more on class field theory.

2.7 Elliptic Curves With Complex Multiplication

Let K be an imaginary quadratic field. Recall that an elliptic curve E defined

over a field F with char(F ) 6= 2 or 3, is the set of points (x, y) ∈ F̄ such that

y2 = x3 + Ax + B, where A,B ∈ F and ∆ = −16(4A3 + 27B2) 6= 0 (the condition

∆ 6= 0 means that the curve is non-singular). For a subfield L ⊆ F̄ , we write

E(L) = {(x, y) : y2 = x3 + Ax+B such that x, y ∈ L}.

If E1 and E2 are two elliptic curves , an isogeny from (E1, O1) to (E2, O2) is a mor-

phism ϕ : E1 → E2 such that ϕ(O1) = O2. We write Hom(E1, E2) to be the set

of isogenies from E1 to E2. Then Hom(E1, E2) is a group under addition. If E is

an elliptic curve then we denote Hom(E,E) = End(E), which is then a ring under

addition and composition. Hence, we call End(E) the endomorphism ring of E (see
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Chapter III in (36)). Since an elliptic curve E has a group operation +, we have for

each m ∈ Z+ an isogeny [m] : E → E given by

[m]P = P + P + · · ·+ P ( m-times ).

The isogeny [−m] is defined in the obvious way. We see then that there is a natural

map Z→ End(E). In fact,

Theorem 2.7.1 (Corollary 9.4 in (36)). The endomorphism ring End(E) of E/F is

isomorphic to either Z, an order in an imaginary quadratic field, or an order in a

quaternion algebra. If char(F ) = 0, then only the first two are possible.

In light of this theorem, we say that E/F has complex multiplication by OK if

End(E) ∼= OK , and we denote the image of γ ∈ OK as [γ] ∈ End(E).

Suppose that m ∈ Z and P ∈ E such that [m]P = O. Then we say that P is an

m-torsion point of E, and we denote the group of m-torsion points of E as

E[m] = ker[m].

We know about the structure of this group:

Theorem 2.7.2 (Corollary 6.4 in (36)). Let E/F be an elliptic curve and m ∈ Z

with m 6= 0. Then

i. If char(F ) = 0, or p = char(F ) > 0 and gcd(p,m) = 1, then

E[m] ∼= Z/mZ⊕ Z/mZ.

ii. . If char(F ) = p > 0, then either E[pr] = {O} for all r ∈ Z+, or E[pr] = Z/prZ

for all r ∈ Z+.
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If E/F has complex multiplication by OK , and c is an integral ideal of OK , then

we also have the c-torsion points of E, defined as

E[c] = {P ∈ E : [γ]P = O for all γ ∈ OK}.

For an extension L/F , and a prime P of L above p ∈ Z, denote LP to be the

completion of L with respect to the P-adic absolute value. Let OLP
= {x ∈ LP :

|x|P ≤ 1} be the ring of integers in LP, and MP the maximal ideal of OLP
. Then

OLP
/MP

∼= Fpf , where f is the residue degree of L/Q. Now, if E : y2 = x3 +A′x+B′

is an elliptic curve with points in LP, by making a variable substitution, we may

obtain a curve such that the coefficients A,B ∈ OLP
, and the P-adic valuation of

∆ is minimized (we say that E has a minimal Weierstrass equation, see Chapter

VII.1 (36)). Consider the map OLP
→ OLP

/MP, denoted by x 7→ x̃. We can

define Ẽ/Fpf : y2 = x3 + Ãx + B̃, which may or may not be singular (Ẽ is non-

singular if and only if ∆ ≡ 0 (mod P)). If P ∈ E(LP), then there are homogeneous

coordinates P = [x, y, z] with x, y, z ∈ OLP
so we have a modulo P reduction map

E(LP) → Ẽ(Fpf ) given by [x, y, z] 7→ [x̃, ỹ, z̃]. One nice thing about this reduction

map is that torsion is mostly well behaved:

Proposition 1 (Proposition 3.1 in (36)). Keep all of the notation from above. Sup-

pose that m ≥ 1 is relatively prime to p. Suppose Ẽ/Fpf is non-singular. Then

the reduction map E(LP)[m] → Ẽ(Fpf ) is injective, where E(LP)[m] = {P ∈ LP :

[m]P = O}.

One may ask what happens to the p-power torsion in the modulo P reduction of

E. There are two possibilities:

1. Ẽ[pr] = {O} for all r ∈ Z+
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2. Ẽ[pr] ∼= Z/prZ for all r ∈ Z+.

If the first item holds then we say that E has super-singular reduction at P, and if the

second item holds we say that E has ordinary reduction at P. If E/F has complex

multiplication, we can say more about which situation actually occurs:

Theorem 2.7.3 (Deuring’s reduction criterion (9)). Let F/Q be a finite extension,

E/F an elliptic curve with complex multiplication by OK, and P a prime of F above

p for which E has good reduction. Then E has ordinary reduction at P if and only if

p splits in K.

2.8 Gauss Factorials and Exceptional Primes

In this section we define Gauss factorials and exceptional primes, as well as state

some results that will be needed for the proof of Theorem 1.0.1 as well as Corollary

4. For N, n ∈ Z+ the Gauss factorial of N with respect to n is defined as

Nn! =
N∏
i=1

gcd(i,n)=1

i

In (8), Cosgrave and Dilcher investigate multiplicative orders modulo powers of p of

the following Gauss factorials (
pα − 1

m

)
p

!

where m,α ∈ Z+, with m and α greater than 2, and p ≡ 1 (mod m). If γmα+1(p) is the

multiplicative order of
(
pα+1−1

m

)
p
! modulo pα+1, then Cosgrave and Dilcher define p

to be α-exceptional for m if γmα+1(p) and γmα (p) are the same modulo a factor of 2±1

(otherwise γmα+1(p) = pγmα (p) or γmα+1(p) = 2±1pγmα (p), see Theorem 1 and Definition

1 in (8)). Further, Theorem 3 in (8) shows that if p is α exceptional for m, then p is

18



also (α−1)-exceptional for m. For our purposes, we will not need this much precision

on the multiplicative orders, and we will instead use the equivalent definition:

Definition 5. For α ∈ Z+, we say that p is α-exceptional for m if and only if(
pα+1−1

m

)p−1

p
! ≡ 1 (mod pα+1).

We contrast Definition 5 with the following definition:

Definition 6. Given an imaginary quadratic field K, we say that p is non-trivial for

K if λp(K) > 1.

Theorem 1.0.1 will show that the primes in Definitions 5 and 6 are the same when

m = 3 and K = Q(
√
−3), and when m = 4 and K = Q(i). For the other imaginary

quadratic fields, a more complicated condition involving Gauss factorials will hold

(see Theorem 3.1.1).

Example 1. Let p = 13 and m = 3. Then γ3
1(13) = 12, γ3

2(13) = 12, γ3
3(13) = 12 ·13,

γ3
4(13) = 12 · 132, γ3

5(13) = 12 · 133 and so on (“and so on” since Theorem 3 in (8)

says that p is (α + 1)-exceptional for m implies p is also α-exceptional for m). The

next few values of p such that γ3
1(p) = γ3

2(p) are p = 181, 2521, 76543 and so on. On

the other hand, if m = 4 and p = 29789, then γ4
2(p) = 1

2
γ4

1(p), and is the only known

such example for p < 1011 (see also Table 1 in (7) for γ4
α(p) with 1 ≤ α ≤ 5, p ≤ 37

and p ≡ 1 (mod 4)).

The following results of Cosgrave and Dilcher will be important later on:

Theorem 2.8.1 (Cosgrave-Dilcher (8)). Let p ≡ 1 (mod 6) be a prime. Then p is

1-exceptional for m = 3 if and only if p is 1-exceptional for m = 6.
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Theorem 2.8.2 (Cosgrave-Dilcher (8)). Let p ≡ 1 (mod 6) be a prime and n ∈ Z+.

Then ((
pn − 1

3

)
p

!

)24

≡

((
pn − 1

6

)
p

!

)12

(mod pn).

Theorem 2.8.3 (Cosgrave-Dilcher (7)). Every prime p ≡ 1 (mod 6) that satisfies

p2 = 3x2 + 3x + 1 for some x ∈ Z is 1-exceptional for m = 3. Equivalently, if

γ = 2 +
√

3 and q ∈ Z+, then any prime of the form

p =
γq + γ−q

4

is 1-exceptional for m = 3.

Definition 7. We shall refer to the primes p ≡ 1 (mod 3) such that p2 = 3x2 +3x+1

for some x ∈ Z as Cosgrave-Dilcher primes.

Remark 2. In (7) and (8) Cosgrave and Dilcher rearranged the equation p2 = 3x2 +

3x+1 into (2p)2−3(2x+1)2 = 1, which can be viewed as the Pell equation X2−3Y 2 =

1. It is from the theory of these equations that we obtain the primes p = (γq +γ−q)/4.

Also, q is necessarily prime (see lemma 7 in (7)). It should be mentioned that the

converse of Theorem 2.8.3 does not hold. For example, p = 76543 is 1-exceptional

for 3 but is not a Cosgrave-Dilcher prime (p = 76543 is the only such example for

p < 1012). It is unknown whether or not there are infinitely many Cosgrave-Dilcher

primes, and the question seems to be analogous to that of the infinitude of Fibonacci

primes. In a moment we will list some new Cosgrave-Dilcher primes (see Example

2).
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Chapter 3

CONNECTION BETWEEN GAUSS FACTORIALS AND THE CYCLOTOMIC

λ-INVARIANTS OF IMAGINARY QUADRATIC FIELDS

In this section we will prove Theorem 1.0.1 from which we immediately obtain as

a Corollary:

Corollary 4. Let p ≡ 1 (mod 6) be a Cosgrave-Dilcher prime. Then λp(Q(
√
−3)) >

1.

Example 2. Using Corollary 4 we may add to the non-trivial primes of Q(
√
−3)

in Table 1 by searching for Cosgrave-Dilcher primes. The following table contains

p = (γq + γ−q)/4 with q ≤ 79:

q = 3 p = 13

q = 5 p = 181

q = 7 p = 2521

q = 11 p = 489061

q = 13 p = 6811741

q = 17 p = 1321442641

q = 19 p = 18405321661

q = 79 p = 381765135195632792959100810331957408101589361

One may further verify using any standard CAS that the primes 79 < q ≤ 10, 000

giving 1-exceptional primes p = (γq + γ−q)/4 for m = 3 (and therefore non-trivial

primes of Q(
√
−3)) are q = 151, 199, 233, 251, 317, 863, 971, and q = 3049, 7451,
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and 7487 giving probable primes p (the non-trivial probable prime corresponding to

q = 7487 is 4282 digits long).

3.1 Proof of Main Theorems

Let d be a square-free integer, K = Q(
√
−d), D = 2d if d ≡ 3 (mod 4) and

D = 4d otherwise. Let p > 2 be a prime such that p ≡ 1 (mod D) with pOK = pp̄

and P be a prime in Q(ζD) above p, where ζD is a primitive D-th root of unity. Let

P̄ be the complex conjugate of P . Denote G = Gal(Q(ζD)/Q) and χK = χ to be the

imaginary quadratic character for K. We have for x ∈ Q(ζD)

NQ(ζD)/K(x) =
D∏
i=1

χ(i)=1
gcd(i,D)=1

σi(x) ∈ K

where σi ∈ G acts by σi(ζD) = ζ iD. We will also denote Pi = σi(P) so that

NQ(ζD)/K(Pi) = p. We will now work towards proving the following result from which

Theorem 1.0.1 will follow.

Theorem 3.1.1. Let K = Q(
√
−d) be any imaginary quadratic field, and D be as

above. Let p be a prime such that p ≡ 1 (mod D), p - hK, and p 6= 3 whenever

χK(2) = −1 and K 6= Q(
√
−3). Then,

λp(K) > 1 ⇐⇒


D∏

i=D/2
χ(i)=1

gcd(i,D)=1

(
(D − i)p2−1

D

)2

p
!(

(D − i)p2−1
D/2

)
p
!

D/2∏
i=1

χ(i)=1
gcd(i,D)=1

(
ip

2−1
D/2

)
p
!(

ip
2−1
D

)2

p
!


p−1

≡ 1 (mod p2).

The first step of the proof is to write p̄ in terms of Jacobi sums. Consider the

multiplicative character ψ : OQ(ζD)/P → C× of order D modulo P . We denote

J(ψ) =
∑
a∈Fp

ψ(a)ψ(1− a)
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to be the Jacobi sum for ψ. Denote 0 ≤ L(j) < D to be reduction of j modulo D,

and for 1 ≤ i < D/2 we define

Si(D) = {j : 0 < j < D; gcd(j,D) = 1; L(ji) < D/2}.

Then from Theorem 2.1.14 in (1) we have

J(ψi)OQ(ζD) =
∏

j∈Si(D)

Pj−1 .

Proposition 2. Denote hK = h to be the class number for K = Q(
√
−d). With the

notation fixed above, we have

p̄t =


D∏

i=D/2
χ(i)=1

gcd(i,D)=1

J(ψi)

/
D/2∏
i=1

χ(i)=1
gcd(i,D)=1

J(ψ−i)

OQ(ζD)

where t = ±h(2 − χ(2)) if d 6= 1 or 3, else t = ±1. The sign of t depends on the

number of quadratic residues modulo D between 1 and D/2.

Proof. Denote

a+ = #{0 < j < D/2 gcd(j,D) = 1, χ(j) = 1}

a− = #{0 < j < D/2 gcd(j,D) = 1, χ(j) = −1}.

It is well known that ±h = (a+ − a−)/(2 − χ(2)) when d is not 1 or 3 (it is easy to

see what happens in those cases, so we will assume d > 3). If N is the norm from

Q(ζD) to K then

N(J(ψ−1))OQ(ζD) =

D/2∏
j=1

gcd(j,D)=1

N(P̄j−1) = pa
−
p̄a

+
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and also J(ψi)J(ψ−i) = p. Then the ideal
D∏

i=D/2
χ(i)=1

gcd(i,D)=1

J(ψi)

/
D/2∏
i=1

χ(i)=1
gcd(i,D)=1

J(ψ−i)

 =


D∏

i=D/2
χ(i)=1

gcd(i,D)=1

J(ψi)
D∏

i=D/2
χ(i)=1

gcd(i,D)=1

J(ψ−i)

/
D/2∏
i=1

χ(i)=1
gcd(i,D)=1

J(ψi)
D∏

i=D/2
χ(i)=1

gcd(i,2m)=1

J(ψ−i)



=


D∏

i=D/2
χ(i)=1

gcd(i,D)=1

p

/
N(J(ψ−1))

 =
(pp̄)a

−

pa− p̄a+
= p̄±h(2−χ(2)).

Theorem 3.1.1 will now follow from Gold’s criterion:

Theorem 3.1.2 (Gold’s criterion (Theorem 4 in (13))). Let K be an imaginary

quadratic field, and p > 2 be a prime such that p does not divide the class number hK

of K.

i. If p splits in K then λp(K) > 0.

ii. Suppose pOK = pp̄ and write phK = (α). Then λp(K) > 1 if and only if

αp−1 ≡ 1 (mod p̄2).

Proof of Theorem 3.1.1. Suppose p ≡ 1 (mod D). Working inside the localization

Kp
∼= Qp, we have J(ψ−i) ≡

(
i p

2−1
D/2

)
p

!(
i p

2−1
D

)2
p
!

(mod p2Zp) from (9.3.6) in (1) (which is

essentially the Gross-Koblitz formula). The result now follows from Proposition 2

and Gold’s criterion 3.1.2.

We will see that the condition in Theorem 3.1.1 becomes more compact for a

certain family of imaginary quadratic fields.
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Definition 8. Let χK = χ be the imaginary quadratic character for K and D be as

above. We say that K has maximal class number if χK(i) = 1 for each i co-prime to

D and 1 ≤ i ≤ D/2.

If hK is the class number for K 6= Q(i) or Q(
√
−3), we have that (2− χ(2))hK =∣∣∣∑D/2

i=1 χ(i)
∣∣∣. Then χ(i) = 1 for each i co-prime to D and 1 ≤ i ≤ D/2 if and only if

hK = ϕ(D)/2(2− χ(2)).

Theorem 3.1.3. Suppose that p ≡ 1 (mod D) and all other notation is as above. If

K has maximal class number, and p - hK, then

λp(K) > 1 ⇐⇒


(
p2−1
D

)2

p
!(

p2−1
D/2

)
p
!


p−1

≡ 1 (mod p2).

Proof. Here we will view K ⊆ Kp
∼= Qp. If K has maximal class number, then S1(D)

accounts for all of the quadratic residues between 1 andD/2, and so J(ψ−1) ∈ N(P̄) =

p̄. Therefore, if p̄hK = (α) for some α ∈ K, we have J(ψ−1)hK ≡ αu (mod p2Zp)

where u ∈ O×K . Now, since p - hK we have J(ψ−1)hK(p−1) ≡ 1 (mod p2Zp) if and only

if J(ψ−1)(p−1) ≡ 1 (mod p2Zp). The result now follows from Gold’s criterion and the

fact that up−1 = 1.

Remark 3. When D = 6, the combination of Theorems 2.8.1 and 2.8.2 imply that

λp(Q(
√
−3)) > 1 if and only if p is 1-exceptional for m = 3. When D = 4, we have

that
(
p2−1

2

)p−1

p
! ≡ 1 (mod p2) (a corollary of Wilson’s theorem), so λp(Q(i)) > 1 if

and only if p is 1-exceptional for m = 4.

Theorem 1.0.1 now follows as a special case of Theorem 3.1.3. Computations show

that K = Q(i), Q(
√
−2), Q(

√
−3), Q(

√
−5) and Q(

√
−6) are the only imaginary
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quadratic fields K = Q(
√
−d) with d < 10, 000 having maximal class number. In

fact,

Theorem 3.1.4. Assuming the generalized Riemann hypothesis (GRH) holds for ev-

ery non-principle primitive imaginary quadratic character, the only imaginary quadratic

fields with maximal class number are K = Q(i), Q(
√
−2), Q(

√
−3), Q(

√
−5) and

Q(
√
−6).

Proof. Let d > 0 be a square free integer and let D and χD = χ be as above.

Denote K = Q(
√
−d) and hK to be the class number of K, and assume that hK =

ϕ(D)/2(2− χ(2)) (i.e. hK is maximal). From Theorem 15 in (31), we have

ϕ(D) >
D

eγ log log(D) + 3
log log(D)

where e = exp(1) and γ = 0.577215665... is Euler’s constant. On the other hand,

under the assumption of the generalized Riemann hypothesis, Littlewood (30) gave

the inequality hK < ceγ log log(D)
√
D, where c is an absolute constant. Recently,

this bound has been improved (see (25) and (26)) to

hK ≤
2eγ

π

√
D

(
log log(D)− log(2) +

1

2
+

1

log log(D)

)
for D ≥ 5, and assuming GRH holds. Thus, when hK is maximal and D ≥ 5, the two

inequalities above imply

√
D <

12eγ

π

(
eγ(log log(D))2 +

3

(log log(D))2
+ eγ + 3

)
< 14(log log(D))2 + 140.

This inequality does not hold for long. Indeed, set f(x) =
√
x− 14(log log(x))2 + 140

and notice that f ′(x) = 1
2
√
x
− 28 log log(x)

x log(x)
> 0 precisely when x log(x) > 56

√
x log log(x),

which will eventually hold for all x sufficiently large (e.g. for all x > 300). Therefore,
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we have that f(x) is strictly increasing on [300,∞). We also have that f(300) > 0,

so the inequality
√
D > 14(log log(D))2 + 140 holds for all D > 300. Therefore, there

are no imaginary quadratic fields with D > 300 having maximal class number. It is

easy to check that the only imaginary quadratic fields with D ≤ 300 and maximal

class number are the ones listed above.

3.2 Proof of Corollaries

We now turn to the proofs of Corollaries 1, 2 and 3 for which we will need some

preliminary results. For a co-prime to p the Fermat quotient is defined as qp(a) =

(ap−1 − 1)/p, which is an integer by Fermat’s little Theorem. The Fermat quotient

has logarithmic properties, that is, for a and b co-prime to p,

qp(a) + qp(b) ≡ qp(ab) (mod p) and qp(a)− qp(b) ≡ qp (a/b) (mod p)

as well as

qp(a+ p) ≡ qp(a)− 1

a
(mod p).

Denote Hn =
∑n

a=1 1/a to be the n-th harmonic number and wp = ((p− 1)! + 1)/p to

be the Wilson quotient (also an integer by Wilson’s Theorem). It is well known that

wp ≡
∑p−1

a=1 qp(a) (mod p).

Lemma 1. Let p > 2 be a prime. For any b ∈ (Z/p2Z)× such that b = b0 + b1p with

1 ≤ b0 ≤ p−1 and 0 ≤ b1 ≤ p−1, we can write b ≡ bp0

(
1 +

(
b1
b0
− qp(b0)

)
p
)

(mod p2).

Proof. Let b ∈ (Z/p2Z)× such that b = b0+b1p with 1 ≤ b0 ≤ p−1 and 0 ≤ b1 ≤ p−1.

Then setting x = b1/b0, we see that 1 + px ≡ (pqp(b0) + 1)(1 + px− pqp(b0)) (mod p2).

Since bp−1
0 = 1 + pqp(b0), we obtain the result by multiplying through by b0.
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Proposition 3. Suppose m ∈ Z with m ≥ 2 and p ≡ 1 (mod m) is a prime. Then(
p2 − 1

m

)p−1

p

! ≡ 1 (mod p2) ⇐⇒ 1

m
(wp −H p−1

m
)−

p−1
m∑
a=1

qp(a) ≡ 0 (mod p).

Proof. Using Lemma 1, we have

(
p2 − 1

m

)p−1

p

! =

p2−1
m∏
a=1

gcd(a,p)=1

ap−1 =

p−1∏
a=1

p−1
m
−1∏

b=0

(a+ bp)p−1

 p−1
m∏
a=1

(
a+

p− 1

m
p

)p−1


≡

p−1∏
a=1

p−1
m
−1∏

b=0

(
1 +

(
b

a
− qp(a)

)
p

) p−1
m∏
a=1

(
1 +

(
p−1
m

a
− qp(a)

)
p

)
≡

p−1∏
a=1

p−1
m
−1∏

b=0

(1 + p)
b
a
−qp(a)

 p−1
m∏
a=1

(1 + p)
p−1
m
a
−qp(a)

 (mod p2).

Combining all the factors of (1 + p) we get the desired sum in the exponent which

is taken modulo p (since 1 + p is a p-th root of unity modulo p2). It is known that

Hp−1 ≡ 0 (mod p). Hence,
∑p−1

a=1

∑ p−1
m
−1

b=0
b
a
≡ 0 (mod p). The result now follows.

Recall that the Bernoulli numbers {Bn} and the Bernoulli polynomials {Bn(t)}

are defined by

∞∑
n=0

Bn
xn

n!
=

x

ex − 1
and

∞∑
n=0

Bn(t)
xn

n!
=

xext

ex − 1
.

Lemma 2. Let p be a prime such that p ≡ 1 (mod 2m). Then
(
p2−1
m

)
p
!(

p2−1
2m

)2

p
!


p−1

≡ 1 (mod p2) ⇐⇒ Bp(1/m)− 2pBp(1/2m)

p2
≡ 0 (mod p).

Proof. For any n ∈ Z+ with p ≡ 1 (mod n), we use the relation Bp(x+ 1)−Bp(x) =

pxp−1 along with the properties of the Fermat quotient to obtain

p−1
n∑
a=1

qp(a) ≡
(
np−1

p

(
p2

n
Bp−1 −Bp(1/n)

)
− p− 1

n

)
+

1

n
qp(n)− 1

n
H p−1

n
(mod p).
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Then for p ≡ 1 (mod 2m), a straightforward computation gives

p−1
m∑
a=1

qp(a)− 2

p−1
2m∑
a=1

qp(a) ≡ −Bp(1/m)− 2pBp(1/2m)

p2
− 1

m
H p−1

m
+

1

m
H p−1

2m
(mod p).

From Proposition 3 we know that

(
p2−1
m

)
p

!(
p2−1
2m

)2
p
!

p−1

≡ (1 + p)ξ (mod p2), where

ξ =
1

m
(wp −H p−1

m
)−

p−1
m∑
a=1

qp(a)− 2

 1

2m
(wp −H p−1

2m
)−

p−1
2m∑
a=1

qp(a)


≡ −Bp(1/m)− 2pBp(1/2m)

p2
(mod p).

The result now follows.

Corollary 1] is an immediate consequence of Lemma 2. We also have,

Proof of Corollary 2. Let p ≡ 1 (mod 4). We have seen from Lemma 2 that p is

1-exceptional for 4 if and only if Bp(1/2) − 2pBp(1/4) ≡ 0 (mod p3). But from (28)

we know that Bp(1/2) = 0 and Bp(1/4) = −pEp−1/4
p. Corollary 2 now follows from

Theorem 1.0.1.

Remark 4. The proof also shows that Ep−1 ≡ 0 (mod p) when p ≡ 1 (mod 4),

although this was already observed by Zhang in (41).

The proof of Corollary 3 will be similar to that of Corollary 2, but will instead

involve the Glaisher numbers {Gn}. Since these numbers are less well known we will

take a moment to view some of their properties. In particular, we will see that for

odd n ≥ 1, Bn(1/3) = −(n + 1)Gn−1/3
n−1. Recall the Glaisher numbers {Gn} are

defined by

3/2

ex + e−x + 1
=
∞∑
n=0

Gn
xn

n!
.
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Notice that 2
∑∞

n=0G2n+1
x2n+1

(2n+1)!
=
∑∞

n=0Gn
xn

n!
−
∑∞

n=0Gn
(−x)n

n!
= 0 so that Gn = 0

whenever n is odd, and
∑∞

n=0Gn
xn

n!
=
∑∞

n=0 G2n
x2n

(2n)!
. We also know from (15) that

Gn can only have powers of 3 in the denominator.

Example 3. In the following table we list all primes p ≡ 1 (mod 3) and 7 ≤ p ≤ 193

in the first column, along with the reduced values of Gp−1 (mod p) in the second

column and Gp−1 (mod p2) in the third column:

7 0 42

13 0 0

19 0 342

31 0 434

37 0 1332

43 0 559

61 0 3660

67 0 3685

73 0 803

79 0 2844

97 0 1940

103 0 1133

109 0 7521

127 0 16002

139 0 5282

151 0 15855

157 0 785

163 0 24939

181 0 0

193 0 26441

Notice that 13 and 181 are the first two 1-exceptional primes for m = 3. It also

appears that Gp−1 ≡ 0 (mod p) for all p ≡ 1 (mod 3), which we will soon see is true.

We will now show that Bn(1/3) = −(n + 1)Gn−1/3
n−1 for odd n ≥ 1. It should

be noted that this result is already known (see page 352 in (28)), but not commonly
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stated or proven in the literature. Observe that

−x
e

1
3
x + e−

1
3
x + 1

= −2

3
x

3/2

e
1
3
x + e−

1
3
x + 1

= −2

3
x

∞∑
n=0

G2n

(
1
3
x
)2n

(2n)!

= 2
∞∑
n=0

−(2n+ 1)G2n

32n+1

x2n+1

(2n+ 1)!

and at the same time

2
∞∑
n=0

B2n+1(1/3)
x2n+1

(2n+ 1)!
=
x(e

1
3
x − e 2

3
x)

ex − 1
=

xe
1
3
x(1− e 1

3
x)

(e
1
3
x − 1)(e

2
3
x + e

1
3
x + 1)

=
−x

e
1
3
x + e−

1
3
x + 1

Therefore,
∞∑
n=0

−(2n+ 1)G2n

32n+1

x2n+1

(2n+ 1)!
=
∞∑
n=0

B2n+1(1/3)
x2n+1

(2n+ 1)!

which implies,

B2n+1(1/3) = −(2n+ 1)G2n

32n+1
.

For k, n ∈ Z+, we also have Raabe’s multiplication formulaBn(kx) = kn−1
∑n−1

j=0 Bn(x+

j/k). So, with x = 1/6 and k = 2 we have

B2n+1(1/6) =
22n + 1

22n
B2n+1(1/3)

Proof of Corollary 3. Let p ≡ 1 (mod 3). Then from Lemma 2 p is 1-exceptional for

m = 3 if and only if

Bp(1/3)− 2pBp(1/6)

p2
= −(1 + 2p)Bp(1/3)

p2
=

(
1 + 2p

3p

)
Gp−1

p
≡ 0 (mod p).

The result now follows from Theorem 1.0.1.

Remark 5. From the proof of Corollary 3 we also have that Gp−1 ≡ 0 (mod p) for

all primes p ≡ 1 (mod 3).
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Chapter 4

CM ELLIPTIC CURVES AND THE CYCLOTOMIC λ-INVARIANTS OF

IMAGINARY QUADRATIC FIELDS

Let K be an imaginary quadratic field, and fix a prime p > 3 that does not divide

the class number of K. In this section we prove that λp(K) > 1 if and only if the

number of points on a certain reduced elliptic curve is divisible by p2.

4.1 Introduction

Let p > 3 be a prime and K be an imaginary quadratic field such that p does

not divide the class number of K, which we denote by hK , and also write Cl(K) to

be the class group of K. We will always assume that pOK = pp̄. Denote λp(K) to

be Iwasawa’s λ-invariant for the cyclotomic Zp-extension of K. It is well known that

λp(K) > 0 when p splits in K. We will consider an elliptic curve E that has complex

multiplication by OK , i.e. End(E) ∼= OK . For any elliptic curve E and m ∈ Z, we

let E[m] = {P ∈ E(K̄) : [m]P = O} denote the m-torsion points of E (as usual,

K̄ is the algebraic closure of K). From the theory of complex multiplication, we can

obtain Abelian extensions of K by essentially adjoining the torsion points of E. More

precisely, if F/K is an abelian extension, then there exists some m ∈ Z+ such that

F ⊆ K(j(E), E[m]) = K(j(E), {x, y ∈ K̄ : (x, y) ∈ E[m]})

where j(E) is the j-invariant of E. Something interesting happens when we adjoin the

x-coordinates of the torsion points of E. Consider the Webber function Φ : E[m]→ K̄
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given by

Φ(x, y) =


x2 if K = Q(i)

x3 if K = Q(
√
−3)

x else

Since E has complex multiplication by OK , we may also define for a fractional ideal

c of K, the c-torsion points of E,

E[c] = {P ∈ E(K̄) : [α]P = O for all α ∈ c},

and the abelian extension K(j(E),Φ(E[c]))/K, where

K(j(E),Φ(E[c])) = K(j(E), {Φ(P ) : P ∈ E[c]}).

Then we have that K(j(E),Φ(E[c])) is the ray class field of K modulo c.

Let P be a prime of K(j(E), E[p̄2]) above p for which E has good reduction, and

denote Ẽ to be the reduction of E modulo P. Here is the main result of this section,

which we will prove in 4.4:

Theorem 4.1.1. With the notation fixed above, we have λp(K) > 1 if and only if

#Ẽ(Fq) ≡ 0 (mod p2), where q = pp−1.

While #Ẽ(Fq) may be difficult to compute modulo p2, there is a relatively efficient

way to check if λp(K) > 1 (see Theorem 3.1.2, and (13)). So, Theorem 4.1.1 may be

seen as an efficient way to check the p2 divisibility of the number of points of certain

elliptic curves over finite fields. That is,

Corollary 5. Let K = Q(
√
−d) be an imaginary quadratic field, p > 3 such that

pOK = pp̄, and r ∈ Z+ such that pr is principle. Then we can write pr = a2 + b2d for
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some a, b ∈ Z. Let E be an elliptic curve with complex multiplication by OK, denote

P to be a prime of K(j(E), E[p̄2]) above p for which E has good reduction, and Ẽ

to be the reduction of E modulo P. Then #Ẽ(Fpp−1) ≡ 0 (mod p2) if and only if

(2a)p−1 ≡ 1 (mod p2).

4.2 A Few Examples

Before we get to the proof of Theorem 4.1.1, let us first check some computations.

Given a prime p > 3, we will denote q = pp−1. In the following example, each field K

has class number 1, so the corresponding elliptic curves with complex multiplication

by OK are defined over Q. Therefore, we may reduce each curve by the rational prime

p. One should compare the data in the following tables with Table 1 in (10).

K = Q(
√
−3) K = Q(

√
−11) K = Q(

√
−19)

E : y2 = x3 − 1 E : y2 = x3−264x−1694 E : y2 = x3−608x−5776

3 < p < 70

such that p

splits in K

#Ẽ(Fq)

(mod p2)

7 42

13 0

19 342

31 527

37 1332

43 559

61 3660

67 3685

3 < p < 70

such that p

splits in K

#Ẽ(Fq)

(mod p2)

5 0

23 230

31 527

47 1222

53 1007

59 59

67 1340

3 < p < 70

such that p

splits in K

#Ẽ(Fq)

(mod p2)

5 20

7 28

11 0

17 102

23 506

43 1806

47 893

61 3355
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4.3 Some Preliminary Results

The main idea for the proof of Theorem 4.1.1 is that λp(K) > 1 if and only if p

splits in an extension of K obtained by adding some of the p̄2 torsion points of E,

that is, the p-ray class field of K modulo p̄2. This fact was proven in (13), which we

reformulate as,

Proposition 4 (Gold). Let H be the p-ray class field modulo p̄2, and σp ∈ Gal(H/K)

the image of p under the Artin map. Then λp(K) > 1 if and only if σp = 1.

Proof. From Theorem 3, and the proof of Theorem 4 in (13), we have that λp(K) > 1

if and only if p splits in H/K. Since [H : K] = p, the prime p splits in H/K if and

only if it splits completely in H/K. The Proposition now follows.

For the remainder of this section we will assume that E/K(j(E)) is an elliptic

curve with complex multiplication by OK , and that pOK = pp̄. Denote H to be the p-

ray class field of K, and K̃ = K(j(E), E[p̄2]). Let gp denote the order of the class of p

in Cl(K), and let P be a prime of K̃ above p. Consider E(K), the isomorphism classes

of elliptic curves with complex multiplication by OK . If L = K(j(E)) (which is the

Hilbert class field of K), then there is an action of the class group Cl(K) ∼= Gal(L/K)

on E(K). Indeed, if E represents a class in E(K), with E ∼= C/L for some lattice in

C, then the action of Cl(K) is determined by a∗E ∼= C/a−1L, which again represents

a class in E(K) (see Proposition 1.2 in Chapter II of (35)). On the other hand, if

E/L is given by the Weierstrass equation E : y2 = x3 +Ax+B, then τ ∈ Gal(K̄/K)

acts on E by Eτ : y2 = x3 + τ(A)x + τ(B). In fact, there is a well defined map

F : Gal(K̄/K)→ Cl(K), such that Eτ = F (τ) ∗ E, which factors as

F : Gal(K̄/K)→ Gal(L/K)→ Cl(K)
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where the first map is restriction to L, and the second is the inverse of the Artin map.

We now seek to understand how certain p-power torsion points of E reduce modulo

P. To that end, we have the following:

Theorem 4.3.1 (Deuring’s reduction criterion (9)). Let F/Q be a finite extension,

E/F an elliptic curve with complex multiplication by OK, and P a prime of F above

p for which E has good reduction. Then E has ordinary reduction at P if and only if

p splits in K.

Lemma 3. Let E/K(j(E)) be an elliptic curve with complex multiplication by OK,

and let r ∈ Z+. If P is a prime of K̃ above p such that E has good reduction at P,

then,

a. E[pr] ∼= E[pr]⊕ E[p̄r].

b. The reduction modulo P map E[p̄r]→ Ẽ[pr] is an isomorphism.

Proof. Proof of (a): Let P ∈ E[pr]. Since pr ∈ prp̄r, we have pr =
∑
αiᾱi, where

αi ∈ pr and ᾱi ∈ p̄r. Then

[pr]P =
[∑

αiᾱi

]
P =

∑
[ᾱi]([αi]P ) =

∑
[ᾱi]O = O

so that P ∈ E[pr]. Similarly, E[p̄r] ⊆ E[pr]. From Proposition 1.4 in Chapter

II of (35), we have that both E[pr] and E[p̄r] are free OK/pr-modules of rank 1.

Hence E[pr] ∼= E[p̄r] ∼= Z/prZ. Now let t be a multiple of hK . Then we have that

pt = (a + bi) and p̄t = (a − bi), for some a, b ∈ Z. Suppose that there is P ∈ E[pt]

such that [a + bi]P = [a − bi]P . Then [bi]P = [−bi]P , which is only possible if

[bi]P = O, which in turn is only possible if P = O, since b is co-prime to p. Hence,

E[pt] ∩ E[p̄t] = {O}, and since E[pr] ⊆ E[pt], we have E[pr] ∩ E[p̄r] = {O} for all
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positive integers r < t. This now holds for all r ∈ Z+ since t can be made arbitrarily

large. Part (a) now follows.

Proof of (b): Before the proof, recall that if L/F is Galois with Q a prime of L

above a prime q of F , then we have the decomposition subgroup with respect to Q/q

Z(Q/q) = {σ ∈ Gal(L/F ) : σQ = Q}

and the inertia group with respect to Q/q

T (Q/q) = {σ ∈ Z(Q/q) : σ(x) ≡ x (mod Q) for all x ∈ L}.

If G(Q/q) = Gal(OL/Q/OF/q), then we have a map Z(Q/q)→ G(Q/q), given by

σ 7→ σ̄ : x+ Q 7→ σ(x) + Q.

Now, back to the proof. Consider L̃ = K(j(E), E[pgp ]), and L = K(j(E)). The field

K̃ ⊆ L̃ will be as it was defined above. Let P be a prime of L above p, and P be a

prime of L̃ above P . Let τp ∈ Gal(L/K) be the image of p under the Artin map, and

τ ∈ Gal(L̃/K) such that τ maps to the Frobenius automorphism in G(P/p). Thus,

τ |L = τp, and Eτgp = F (τ gp) ∗ E = pgp ∗ E. Then τ gp induces an isogeny η : E → E

that gives rise to the commutative diagram

E E

Ẽ Ẽ

[α]

ϕ

where Ẽ is the reduction of E(L̃) modulo P, the map ϕ is the pgp-th power Frobenius,

and pgp = (α) (see Theorem 5.3 and Corollary 5.4 in (35)). Since E[pgp ] = ker[α], we

have that Ẽ[pgp ] ⊆ kerϕ, so that Ẽ[pgp ] is trivial. But by Deuring’s reduction criterion

4.3.1, we have that Ẽ[pgp ] ∼= Z/pgpZ. So it must be that Ẽ[pgp ] = Ẽ[p̄gp ]. Now, for

37



a positive integer r < gp, define K̃r = K(j(E), E[p̄r]) ⊆ L̃, and let Pr = P ∩ K̃r.

Notice we can view any P ∈ E(K̃r) an element of E(L̃). Therefore, the reduction of

P modulo P is the same as reduction modulo Pr. We now have the commutative

diagram

E(K̃r) E(L̃)

Ẽ(OK̃r/Pr) Ẽ(OL̃/P)

(mod Pr) (mod P)

where the horizontal maps are inclusion, and the vertical maps are reduction modulo

Pr and P respectively. From this diagram, we see that E[p̄r] ⊆ E[p̄gp ] is non-trivial

modulo P, so E[p̄r] is non-trivial modulo Pr.

4.4 Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. As before, let H be the p-ray class group of K modulo p2,

denote K̃ = K(j(E), E[p̄2]), P a prime of H above p, and P a prime of K̃ above P.

We have the following commutative diagram,

1 T (P/p) Z(P/p) G(P/p) 1

1 T (P/p) Z(P/p) G(P/p) 1

where the vertical maps are restriction from K̃ to H. Let τ ∈ Z(P/p) be a lift

of Frob(P/p) ∈ G(P/p), and τ̄ ∈ Gal(K(E[p̄2])/K) the restriction of τ to H̃ =

K(E[p̄2]). Then τ̄ |H = σp. From Lemma 3 we have another commutative diagram

E[p̄2] E[p̄2]

Ẽ[p2] Ẽ[p2]

τ̄

∼= ∼=

ϕ
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where ϕ is the p-power Frobenius automorphism. Let P̃ = P ∩ OH̃ . Then the

reduction of E[p̄2] modulo P is the same as reduction modulo P̃. If f = [OH̃/P̃ :

OK/p] > 1, then for any positive integer a < f , we have that τ̄a will act non-trivially

on E[p̄2].

Assume that λp(K) > 1. Then σp ∈ Gal(H/K) is trivial by Proposition 4, and

from the proof of Theorem 2.3 in Chapter II of (35), we have that [H̃ : K] divides

p(p − 1). Thus, f divides p − 1 so that τ̄ p−1 acts trivially on E[p̄2]. From the

commutative diagram, we then have that the pp−1-power Frobenius fixes Ẽ[p2], which

gives the forward implication.

Now assume that σp is non-trivial in Gal(H/K) (i.e. λp(K) ≤ 1). Then, p is

unramified and does not split in H/K. Hence, the residue degree of p in H/K is p,

and f ≥ p > p − 1. So, τ̄ p−1 does not act trivially on E[p̄2], hence the pp−1-power

Frobenius does not act trivially on Ẽ[p2]. This gives the reverse implication.

4.5 Some Special Cases

From the results in the previous section, we now have:

Theorem 4.5.1. Let p ≡ 1 (mod 3), and consider E/Fp : y2 = x3 − 1. Then p is

1-exceptional for m = 3 if and only if Gp−1 ≡ 0 (mod p2) if and only if #E(Fq) ≡

0 (mod p2), where q = pp−1, and {Gn} are the Glaisher numbers given by

3/2

ex + e−x + 1
=
∞∑
n=0

Gn
xn

n!
.

Corollary 6. Let p ≡ 1 (mod 3), and consider E/Fp : y2 = x3−1. If p2 = 3n2+3n+1

for some n ∈ Z, then #E(Fq) ≡ 0 (mod p2).

Proof. This follows from Theorem 4.5.1 and Corollary 6 in (7).
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Theorem 4.5.2. Let p ≡ 1 (mod 4), and consider E/Fp : y2 = x3 + x. Then p is

1-exceptional for m = 4 if and only if Ep−1 ≡ 0 (mod p2) if and only if #E(Fq) ≡

0 (mod p2), where q = pp−1, and {En} are the Euler numbers given by

2

ex + e−x
=
∞∑
n=0

En
xn

n!
.
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Chapter 5

CONDITIONS FOR LARGE CYCLOTOMIC λ-INVARIANTS

Childress (4) was able to re-write (2.2) as

F (T ) =
∑
ζ∈V

 f∑
a=1

a≡ζ (mod p)

ε(a)T ζ
−1a

/
(1 + T ζ

−1f )

 (5.1)

under the assumption that d ≡ 3 (mod 4) and c = 2 so that ε(a) = χ(a)(−1)a+1 (note

that we require c to be co-prime to the discriminant of K). The upshot is that we

may now evaluate

b0 = F (1) =
1

2

dp∑
a=1
p-a

ε(a) = (1− χ(p))
1

2

d∑
a=1

χ(a)(−1)a+1.

This can be seen as a rediscovery of the fact that λp(K) > 0 if and only if p splits in K

or p divides the class number of K. In general, Childress (4), (5) obtains congruences

modulo p for the coefficients of the Iwasawa series associated to a Dirichlet character

of odd conductor. This makes it possible to compute the relative cyclotomic Iwasawa

invariants of a CM field.

In this section we only focus on imaginary quadratic fields, and first extend (5.1)

to the case d 6≡ 3 (mod 4). Then we will find (without restrictions on the discriminant

of K) congruences modulo p for the coefficients bn of the Iwasawa series
∑
bn(T −1)n

by computing (d/dT )np |T=1F (T )/(np)! (mod p), but assuming that 1 ≤ n < p. The

congruences we obtain are essentially the same as ones found in (5), however the

method used to obtain them is new. One should also compare these congruences
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to Propositions 3.1 and 3.2 in (10). We then use the congruences to find imaginary

quadratic fields K for which λp(K) is greater than a given value (p = 5, 7, 11 and

13). Finally, we will use the congruences to find another proof of Theorem 3.1.1, then

prove an analogous condition for λp(K) > 2 using this new technique.

5.1 Even Discriminants

Suppose d 6≡ 3 (mod 4), and χ the primitive imaginary quadratic character be-

longing to Q(
√
−d). Then χ has conductor 4d. Let p be co-prime to 4d, and let

f = 4dp, c ∈ Z and ε be as they were defined above. Because imaginary quadratic

fields have Q as their maximal real subfield, and χ is the only non-trivial element of

Gal(Q(
√
−d)̂, we have

λ−p (gχ) = λp(gχ) = λp(Q(
√
−d)).

We may choose c such that c 6≡ ±1 (mod p). Hence

Hχ(T ) = (1− cχ(c))− cχ(c)
∞∑
n=1

(
t

n

)
(T − 1)n

implies λp(Hχ) = 0. Therefore, pλp(F ) = λp(Q(
√
−d)). For convenience we will write

r∑
i≡c

xi =
r∑
i=1

i≡c (mod n)

xi

whenever the modulus n is clear from context. Given ζ ∈ V , we write

F̃ζ(T ) =

cf∑
a≡ζ (mod p)

ε(a)T ζ
−1a

1− T ζ−1cf

and

Fζ(T ) =

cf∑
a≡ζ (mod p)

χ(a)T ζ
−1a

1− T ζ−1cf
.
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Hence, F (T ) =
∑

ζ F̃ζ(T ). In (4), a key step is in obtaining the expression for F (T )

in equation 5.1 is to set c = 2 which gives ε(a) = (−1)aχ(a). Part of the challenge

now is that 2 is no longer co-prime to the conductor of χ. We will try to get around

this:

Proposition 5.

F (T ) =
∑
ζ∈V

Fζ(T )− cχ(c)
∑
ζ∈V

Fζ,c(T )

where

Fζ,c(T ) =

f∑
a≡c−1ζ (mod p)

χ(a)T (c−1ζ)−1a

1− T (c−1ζ)−1f

Proof. For ζ ∈ V ,

cf∑
a≡ζ

ε(a)T ζ
−1a =

cf∑
a≡ζ
c-a

χ(a)T ζ
−1a +

f∑
ca≡ζ

χ(ca)(1− c)T ζ−1ca.

Now,

cf∑
a≡ζ
c-a

χ(a)T ζ
−1a =

cf∑
a≡ζ

χ(a)T ζ
−1a −

f∑
ca≡ζ

χ(ca)T ζ
−1ca

=

cf∑
a≡ζ

χ(a)T ζ
−1a − χ(c)

f∑
a≡c−1ζ

χ(a)T (c−1ζ)−1a

and

f∑
ca≡ζ

χ(ca)(1− c)T ζ−1ca = (1− c)χ(c)

f∑
a≡c−1ζ

χ(a)T (c−1ζ)−1a.

The proposition now follows.

Lemma 4. For odd k ∈ Z, we have χ(a + 2kd) = −χ(a). In other words, for any

a, n ∈ N, with gcd(a, 4d) = 1,

χ(a+ 2nd) = (−1)nχ(a).
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Proof. For each a ∈ Z co-prime to 4d, either χ(a+2kd) = χ(a) or χ(a+2kd) = −χ(a).

Now, suppose that a, b ∈ Z with a and b co-prime to 4d. Then a and b are odd, and

a+ b = 2e for some e ∈ Z. So,

(a+ 2d)(b+ 2d) ≡ (ab+ 2d(a+ b)) ≡ ab (mod 4d).

Hence,

χ(a+ 2d)χ(b+ 2d) = χ(a)χ(b).

Now, suppose that a and b are co-prime to 4d with χ(a+2d) = −χ(a) and χ(b+2d) =

χ(b). Then

χ(a+ 2d)χ(b+ 2d) = −χ(a)χ(b)

which is a contradiction. Thus, it must be that either χ(a+2d) = −χ(a) for all a ∈ Z,

or χ(a+ 2d) = χ(a) for all a ∈ Z. But the latter cannot be true, since then χ would

have conductor 2d instead of 4d. Hence χ(a + 2d) = −χ(a) for all a. If k = 2e + 1

for some e ∈ Z, then

χ(a+ 2kd) = χ(a+ (2e+ 1)2d) = χ(a+ 2d) = −χ(a).

Proposition 6. Let n ∈ Z+ and f = 4dp. Then∑nf
a≡ζ χ(a)T ζ

−1a

1− T ζ−1nf
=

∑f
a≡ζ χ(a)T ζ

−1a

1− T ζ−1f

Proof. Let X = T ζ
−1

and 1 −Xnf = (1 −Xf )Q(X). It is easy to see that Q(X) =
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∑n−1
k=0 X

kf . Therefore,∑nf
a≡ζ χ(a)Xa

1−Xnf
=

∑n−1
k=0

∑f
a+kf≡ζ χ(a+ kf)Xa+kf

Q(X)(1−Xf )

=

(∑n−1
k=0 X

kf
) (∑f

a≡ζ χ(a)Xa
)

Q(X)(1−Xf )

=

∑f
a≡ζ χ(a)Xa

1−Xf
.

Proposition 7.

Fζ(T ) =

∑f/2
a≡ζ χ(a)T ζ

−1a

1 + T ζ−1f/2

and

Fζ,c(T ) =

∑f/2

a≡c−1ζ χ(a)T ζ
−1ca

1 + T ζ−1cf/2

Proof. Using Lemmas 4 and 6, we have∑cf
a≡ζ χ(a)T ζ

−1a

1− T ζ−1cf
=

∑f
a≡ζ χ(a)T ζ

−1a

1− T ζ−1f

=

∑f/2
a≡ζ χ(a)T ζ

−1a

1− T ζ−1f
+

∑f/2
a≡ζ χ(a+ 2dp)T ζ

−1(a+f/2)

1− T ζ−1f

=

∑f/2
a≡ζ χ(a)T ζ

−1a

1− T ζ−1f
−
∑f/2

a≡ζ χ(a)T ζ
−1(a+f/2)

1− T ζ−1f

=

cf/2∑
a≡ζ

χ(a)T ζ
−1a1− T ζ−1f/2

1− T ζ−1f

=

∑f/2
a≡ζ χ(a)T ζ

−1a

1 + T ζ−1f/2
.

The second equality follows in a similar fashion.

We now have that Fζ,c(T ) = Fζ(T
c), and so we have
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Theorem 5.1.1. Let n ∈ Z+. Then

(d/dT )n|T=1(Fζ(T )− cχ(c)Fζ,c(T )) = (1− c2χ(c))F
(n)
ζ (1)

where F
(n)
ζ (T ) = (d/dT )nFζ(T ).

Proof. Using Fζ,c(T ) = Fζ(T
c), and the chain rule, we have

(d/dT )n|T=1(Fζ(T )− cχ(c)Fζ,c(T )) = F
(n)
ζ (1)− c2χ(c)F

(n)
ζ (1) = (1− c2χ(c))F

(n)
ζ (1).

5.2 Coefficients of the Iwasawa Series Associated to an Imaginary Quadratic Field

Let f = 2Dp, and define ψ by

ψ(a) =


χ(a)(−1)a if d ≡ 3 (mod 4)

χ(a) else

If m ∈ Z+ and H(T ) ∈ Ok[[T−1]], we will often write (d/dT )m|T=1H(T ) = H(m)(1) =

H(m).

For d 6≡ 3 (mod 4), and c co-prime to f such that cχ(c) 6≡ 1 (mod p), we have

from Theorem 5.1.1 that (d/dT )pn|T=1(Fζ(T )− cχ(c)Fζ,c(T )) = (1− c2χ(c))F
(pn)
ζ (1).

So we will carry out essentially the same computation, that is, (d/dT )pn|T=1Fζ(T ),

whatever the reduction of d modulo 4 happens to be. For 1 ≤ n < p and ζ ∈ V , we

denote

Sζ(T ) =

f/2∑
a=1

a≡ζ (mod p)

ψ(a)T ζ
−1a, Rζ(T ) = 1 + T ζ

−1f/2, Fζ(T ) = Sζ(T )/Rζ(T )

so that F (T ) =
∑

ζ∈V Fζ(T ).
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Now, if vp(·) is the p-adic valuation, then vp((np)!) = n. Hence, bn ≡ 0 (mod p) if

and only if F (np)(1) ≡ 0 (mod pn+1). We also have

F
(np)
ζ (T ) =

S
(np)
ζ (T )−

∑np−1
i=0

(
np
i

)
F

(i)
ζ (T )R

(np−i)
ζ (T )

Rζ(T )
.

Lemma 5. For 1 ≤ n < p, we have

vp

((
np

i

))
=


1 if p - i

0 else .

Further, for 1 ≤ b ≤ n, we have(
np

bp

)
≡
(
n

b

)
(mod p).

Proof. For s, t ∈ Z+ we have from Lagrange’s formula

vp

((
s

t

))
=
sp(t)− sp(s) + sp(s− t)

p− 1

where sp(s) denotes the sum of the p-adic digits of s. Suppose that 1 ≤ i ≤ np and let

i = a+bp be the base p expansion of i and notice that if a 6= 0 then (n−b−1)p+(p−a)

is the base p expansion of np− i, and if a = 0 then (n− b)p is the base p-expansion.

Then

vp

((
np

i

))
=
sp(i)− sp(np) + sp(np− i)

p− 1
=


1 if a 6= 0

0 if a = 0

.

Next, if 1 ≤ n < p, we have

(np)!

pn
=

1

pn

p−1∏
j=0

n−1∏
i=0

(np− ip− j) = n!

p−1∏
j=1

n−1∏
i=0

(np− ip− j)

≡ n!
n−1∏
i=0

p−1∏
j=1

(−j) ≡ n!(p− 1)!n ≡ n!(−1)n (mod p)
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(the last congruence follows from Wilson’s Theorem). Hence(
np

bp

)
=

(np)!

(bp)!((n− b)p)!
≡ (−1)nn!

(−1)nb!(n− b)!
≡
(
n

b

)
(mod p).

Lemma 6. Let ζ ∈ V and suppose that 0 ≤ b < n. Then

i. S
(i)
ζ ≡ 0 (mod pb+1), for bp < i ≤ (b+ 1)p

ii. R
(i)
ζ ≡ 0 (mod pb+1), for bp ≤ i < (b+ 1)p, and i 6= 0.

Proof. Suppose, bp < i ≤ (b+ 1)p, and recall that f ≡ 0 (mod p).

Proof of (i.): Notice that

S
(i)
ζ =

f/2∑
a=1

a≡ζ (mod p)

ψ(a)
i−1∏
j=0

(ζ−1a− j)

and (ζ−1a − j) ≡ 0 (mod p) whenever j ≡ 1 (mod p), and there are b + 1 such j

between 0 and i− 1.

Proof of (ii.): We have R
(i)
ζ =

∏i−1
j=0(ζ−1f − j), and (ζ−1f − j) ≡ 0 (mod p) if

and only if j ≡ 0 (mod p), and there are b + 1 many j divisible by p such that

0 ≤ j ≤ i− 1.

Lemma 7. Suppose that 1 ≤ b < n, and bp < m ≤ (b + 1)p. If m > 1, then

F
(m)
ζ ≡ 0 (mod pb).

Proof. We will prove that for all j ∈ {0, 1, . . . ,m − 1}, we have F
(j)
ζ R

(m−j)
ζ ≡

0 (mod pb), which will prove the lemma since

F
(m)
ζ =

1

2

(
S

(m)
ζ −

m−1∑
j=0

(
m

j

)
F

(j)
ζ R

(m−j)
ζ

)
≡ 0 (mod p)
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and from Lemma 6 (i), S
(m)
ζ ≡ 0 (mod pb). For j = 0, we have FζR

(m)
ζ ≡ 0 (mod pb)

by Lemma 6 (ii). Now, let j ∈ {0, 1, . . . ,m − 1}, r ≤ b with rp ≤ j ≤ (r + 1)p, and

suppose that F
(i)
ζ R

(m−i)
ζ ≡ 0 (mod pb) for all i < j. Then, by this assumption, and

Lemma 6 (i), which says S
(j)
ζ ≡ 0 (mod pr), we have

F
(j)
ζ =

1

2

(
S

(j)
ζ −

j−1∑
i=0

(
j

i

)
F

(i)
ζ R

(i−j)
ζ

)
≡ 0 (mod pr).

At the same time, Rm−j
ζ ≡ 0 (mod pb−r), again by Lemma 6 (ii). Therefore,

F
(j)
ζ R

(m−j)
ζ ≡ 0 (mod pb).

Definition 9. For fixed ζ ∈ V and i, j ∈ Z+, we denote

θζ(i, j) =

f/2∑
a=1

a≡ζ (mod p)

ζ−jaiψ(a) and θ(i, j) =

f/2∑
a=1

aiω−j(a)ψ(a).

Note that when j 6= 0, we have
∑

ζ∈V θζ(i, j) = θ(i, j). If j = 0, then
∑

ζ∈V θζ(i, 0) =∑f/2
a=1
p-a

aiψ(a).

Lemma 8. Let 0 < b ≤ n. Then

S
(bp)
ζ ≡ (−1)b

b∑
j=1

j∑
i=0

(
j

i

)b
j

 pb−j(−1)j−iθ(i, i) =
b∑
i=0

ci(b)θζ(i, i) (mod pb+1) (5.2)

where ci(b) =
∑b

j=i

(
j
i

) [
b
j

]
pb−j(−1)j−i, and

R
(bp)
ζ ≡ (−p)b

b∑
i=1

b
i

 (ζ−12D)i (mod pb+1) (5.3)

Where [mi ] are the Stirling numbers of the first kind, defined by
∏m−1

i=0 (x − i) =∑m
i=1 [mi ]x

i.
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Proof. First, we have

S
(bp)
ζ =

f/2∑
a=1

a≡ζ (mod p)

ψ(a)

bp−1∏
j=0

(ζ−1a− j)

and

bp−1∏
j=0

(ζ−1a− j) =

p−1∏
i=0

b−1∏
j=0

(ζ−1a− (i+ pj))

≡

p−1∏
i=0
i6=1

b−1∏
j=0

(1− i)

( b∏
j=0

(ζ−1a− (1 + pj))

)
(mod pb+1)

≡ (−(p− 2)!)b
b∑

j=1

b
j

 pb−j(ζ−1a− 1)j (mod pb+1)

≡ (−1)b
b∑

j=1

j∑
i=0

(
j

i

)b
j

 pb−j(−1)j−i(ζ−1a)i (mod pb+1).

Hence

S(bp) ≡ (−1)b
b∑

j=1

j∑
i=0

(
j

i

)b
j

 pb−j(−1)j−iθ(i, i) (mod pb+1)

≡ (−1)b
b∑
i=0

b∑
j=i

(
j

i

)b
j

 pb−j(−1)j−iθ(i, i) (mod pb+1).

R
(bp)
ζ is calculated in a similar way.

Lemma 9. Let 0 < b ≤ n, and (ai), (ci) be sequences. Then

b∑
i=1

n−b∑
j=1

aicjx
i+j =

n∑
m=2

tmx
m

where

tm =

min{m−1,b}∑
r=max{1,m+b−n}

arcm−r
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Proof. We have that
b∑
i=1

n−b∑
j=1

aicjx
i+j =

n∑
m=2

tmx
m

where tm =
∑m

r=1 arcm−r, with ar = 0 for b < r and cr = 0 for n− b < r.

For fixed ζ ∈ V and 1 ≤ n ≤ p − 1, we can now show that F
(np)
ζ can be defined

recursively in terms of F
(bp)
ζ , with 0 ≤ b < n.

Proposition 8. Let 0 ≤ n ≤ p− 1. Then

F
(np)
ζ ≡ 1

2

(
S

(np)
ζ −

n−1∑
b=0

(
n

b

)
F

(bp)
ζ R

((n−b)p)
ζ

)
(mod pn+1) (5.4)

Proof. Let j ∈ {0, 1, . . . , np}, and 1 ≤ b < n such that bp < j < (b + 1)p. Then

by Lemma 6 (ii.), we have R
(np−j)
ζ ≡ 0 (mod pn−b+1), and by Lemma 7 we have

F
(j)
ζ ≡ 0 (mod pb). Hence, F

(j)
ζ R

(np−j)
ζ ≡ 0 (mod pn+1) whenever j is not divisible by

p. Now, if j = bp, we have F
(bp)
ζ ≡ 0 (mod pb−1), and R

(np−bp)
ζ ≡ 0 (mod pn−b+1), so

F
(bp)
ζ R

(np−bp)
ζ ≡ 0 (mod pn). Further, by Lemma 5, we have

(
np
bp

)
≡
(
n
b

)
(mod p), and

these do not contribute any factors of p to the bp-th term of
∑np−1

j=0

(
np
j

)
F

(j)
ζ R

(np−j)
ζ .

Whence the stated congruence.

Let us now use Proposition 8 to write out some congruences which will determine

if λp(K) > n, for n = 0, 1, 2, 3, and p ≥ 5. First, we prove a lemma which will ease

some of the computations to come.

Lemma 10. For any j ∈ Z with j 6= 0, we have that θ(0, j) = 0.

Proof. Notice that χω−j(−a) = χω−j(a). First suppose d ≡ 3 (mod 4). Then,

dp∑
a=1

χω−j(a)(−1)a =

(dp−1)/2∑
a=1

χω−j(a)(−1)a +

(dp−1)/2∑
a=1

χω−j(dp− a)(−1)dp−a

=

(dp−1)/2∑
a=1

χω−j(a)(−1)a −
(dp−1)/2∑
a=1

χω−j(a)(−1)a = 0.
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If d 6≡ 3 (mod 4), then χ(a+ 2di) = χ(a)(−1)i. Therefore,

2dp∑
a=1

χω−j(a) =

dp∑
a=1

χω−j(a) +

dp∑
a=1

χω−j(2dp− a) =

dp∑
a=1

χω−j(a)−
dp∑
a=1

χω−j(a) = 0.

From Lemma 10, any instances of θζ(0, j), with j 6= 0, appearing in the ex-

pression for F
(np)
ζ will vanish once we sum over ζ ∈ V . In other words, write

F
(bp)
ζ =

∑
i,j c

b
i,jθζ(i, j) and S

(bp)
ζ =

∑
i,j e

b
i,jθζ(i, j), with cbi,j, e

b
i,j ∈ Zp (if there is

no confusion, we will suppress the superscripts for ci,j and ei,j), and define

F̄
(bp)
ζ = F

(bp)
ζ −

∑
j

c0,jθζ(0, j) and S̄
(bp)
ζ = S

(bp)
ζ −

∑
j

e0,jθζ(0, j).

Then
∑

ζ F̄
(np)
ζ =

∑
ζ F

(np)
ζ − cn0,0θ(0, 0), and as we will see, if λp(K) > 0, then

θ(0, 0) ≡ 0 (mod p). Furthermore, since ζ−iθζ(0, j) = θζ(0, j+ i), it follows from (5.3)

that
∑

ζ F
(j)
ζ R

(i)
ζ − c

j
0,0θζ(0, 0)R

(i)
ζ =

∑
ζ F̄

(j)
ζ R

(i)
ζ . Thus, when λp(K) > 0, it suffices

to compute

F̄
(np)
ζ ≡ 1

2

(
S̄

(np)
ζ −

n−1∑
b=1

(
n

b

)
F̄

(bp)
ζ R

((n−b)p)
ζ

)
(mod pn+1) (5.5)

(note that F̄ζR
(np)
ζ =

∑
rjθζ(0, j) for some rj ∈ Zp).

Proposition 9. Suppose F̄
(np)
ζ =

∑n
i=1

∑n
j=1 ci,j(n)θζ(i, j), for some ci,j(b) ∈ Zp.

Then

i. ci,j(n) = 0, whenever i > j

ii. ci,i(n) = (1/2)
∑n

r=i

(
r
i

)
[nr] p

n−r(−1)n+i−r
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iii. ci,j(n) =
∑n−1

b=i

(
n
b

)
(−p)bti,j(b), if i < j, where

ti,j(b) =

min{j−1,b}∑
m=max{1,j+b−n}

[
n−b
j−m
]
Dj−mci,m(b)

Proof. (i) is clear and (ii) follows from Lemma 8. For (iii), denote αr,b = [n−br ] dr,

βb =
(
n
b

)
(−p)b, and ti,j(b) as above. Then

n−1∑
b=1

(
n

b

)
R

(n−b)
ζ F̄

(b)
ζ =

n−1∑
b=1

(
n

b

) b∑
i=1

b∑
j=1

ci,j(b)θζ(i, j)(−p)b
n−b∑
r=1

n− b
r

 (ζ−1d)r

=
n−1∑
b=1

b∑
i=1

βb

(
b∑

j=1

n−b∑
r=1

αr,bci,j(b)θζ(i, j + r)

)

=
n−1∑
b=1

b∑
i=1

βb

n∑
j=2

ti,j(b)θζ(i, j)

=
n∑
j=2

n−1∑
b=1

b∑
i=1

βbti,j(b)θζ(i, j)

=
n∑
j=2

n−1∑
i=1

n−1∑
b=i

βbti,j(b)θζ(i, j)

=
n∑
j=2

j∑
i=1

ci,j(n)θζ(i, j)

where we have used Lemma 9 moving from lines two to three.

5.3 Conditions for λ > n

Using the recursive formulas in Proposition 9, we will write down some conditions

for when λp(K) > n for n = 1, 2, 3, 4 (the congruences become more complicated for

n > 4). These congruences were already known to Childress (see the final page of

(5)) although in a slightly different form, and only in the case when the discriminant

is odd. It should be noted that Childress’ congruences work for CM fields. Similar
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congruences can be found in Proposition 3.1 and 3.2 of (10). As always, we denote

K = Q(
√
−d), and D = d if d ≡ 3 (mod 4) and D = 2d otherwise. Again, write

ψ(a) = χ(a)(−1)a if d ≡ 3 (mod 4) and ψ(a) = χ(a) otherwise. Throughout we will

also assume that p does not divide the class number of K.

Proposition 10 (λp(K) > 1). Suppose that χ(p) = 1. Here we have already seen

that λp(K) > 1 if and only if

Dp∑
a=1

aψ(a)ω−1(a) ≡ 0 (mod p2).

Proposition 11 (λp(K) > 2). If λp(K) > 1, then λp(K) > 2 if and only if

Dp∑
a=1

a2ψ(a)ω−2(a)− 2

Dp∑
a=1

aψ(a)ω−1(a)−Dp
Dp∑
a=1

aψ(a)ω−2(a) ≡ 0 (mod p3).

Proposition 12 (λp(K) > 3). Suppose that λp(K) > 2, and recall our notation

θ(i, j) =
∑Dp

a=1 a
iψ(a)ω−j(a). Then λp(K) > 3 if and only if

3∑
j=1

j∑
i=1

ci,j(3)θ(i, j) ≡ 0 (mod p4)

where

c1,1(3) = −p2 − 3p− (3/2)

c1,2(3) = −(3/4)D(p+ 2)p− (3/4)Dp2

c2,2(3) = (3/2)p+ (3/2)

c1,3(3) = 0

c2,3(3) = (3/4)Dp

c3,3(3) = −1/2
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Proposition 13 (λp(K) > 4). Suppose that λp(K) > 3. Then λp(K) > 4 if and only

if
4∑
j=1

j∑
i=1

ci,j(4)θ(i, j) ≡ 0 (mod p5)

where

c1,1(4) = −3p3 − 11p2 − 9p− 2

c1,2(4) = −(3/2)D(p+ 2)p2 − 2Dp3 − (2p2 + 6p+ 3)Dp

c2,2(4) = (11/2)p2 + 9p+ 3

c1,3(4) = 3D2p3 − (3/2)(D(p+ 2)p+Dp2)Dp+ (3/2)(D2(p+ 2)−D2p)p2

c2,3(4) = 3D(p+ 1)p+ (3/2)Dp2

c3,3(4) = −3p− 2

c1,4(4) = (1/2)D3p3

c2,4(4) = 0

c3,4(4) = −Dp

c4,4(4) = 1/2

As an application, we fix a small prime p, and use the recursive formulas to search

for imaginary quadratic fields K for which λp(K) is large. As p becomes larger,

the computations become slower, hence the range for the discriminant of K will be

smaller. In each example we are still assuming that p does not divide the class number

of K, hence these lists are not entirely complete.

Example 4 (p = 5). When p = 5 we have the imaginary quadratic fields K with

absolute value of the discriminant DK less than 10,000, giving λ5(K) = 3 are DK =

519, 599, 664, 799, 964, 1051, 1311, 1839, 1951, 2251, 2391, 2679, 2699, 3064, 3496,
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3704 3893, 3851, 4231, 4264, 4291, 4331, 4371, 4859, 5556, 5671, 5811, 5891, 6119,

6199, 6371 6376, 6616, 6739, 6771, 6819, 7259, 7291, 7796, 7816, 8011, 8079, 8151,

8331, 8491, 8531, 8571, 9011, 9051, 9379, 9419, 9444, 9899, and 9956.

On the other hand, the imaginary quadratic fields K with DK < 10, 000, giving

λ5(K) ≥ 4 are DK = 311, 3044, 3864, 3471, 5039, and 9859.

Example 5 (p = 7). When p = 7 we have the imaginary quadratic fields K with

DK < 5, 000, giving λ7(K) = 3 are DK = 143, 580, 776, 1956, 2036, 2071, 2120,

2211, 2267, 2488, 2708, 3923, 3995, 4303, 4408, 4511, and 4679.

There are no fields K with discriminant under 5,000 having λ7(K) ≥ 4.

Example 6 (p = 11). When p = 11 we have the imaginary quadratic fields K with

DK < 2, 000, giving λ11(K) = 3 are DK = 723, 1491, 1623.

There are no fields K with discriminant under 2,000 having λ11(K) ≥ 4.

Example 7 (p = 13). When p = 13 we have the imaginary quadratic fields K with

DK < 5, 000, giving λ13(K) = 3 are DK = 443, 1608

There are no fields K with discriminant under 2,000 having λ13(K) ≥ 4.

One can confirm that the examples match the table in (10), for DK < 1000.

56



Chapter 6

ANOTHER “GOLD LIKE” CRITERION (THE δχ,P PRODUCT).

Let K = Q(
√
−d) and χ the imaginary quadratic character for K. First assume

that d ≡ 3 (mod 4).

Proposition 14. For k ∈ N, we have

dp∑
a=0

aχω−1(a)(−1)a =

dpk∑
a=1

aχω−1(a)(−1)a

Proof. Let k ∈ N. Then,

dpk∑
a=0

aχω−1(a)(−1)a =

pk−1−1∑
i=0

dp∑
a=1

(a+ dpi)χω−1(a+ dpi)(−1)a+dpi

=

pk−1−1∑
r=0

(−1)i

(
dp∑
a=1

aχω−1(a)(−1)a + dpi

dp∑
a=0

χω(a)(−1)a

)

=

(
dp∑
a=1

aχω−1(a)(−1)a

)pk−1−1∑
i=0

(−1)i


=

dp∑
a=1

aχω−1(a)(−1)a.

57



Now, using the fact that ω(a) ≡ ωp(a) (mod p2), we see that

dp2r∑
a=0

aχω−1(a)(−1)a ≡
dp2r∑
a=0
p-a

a(p−1)2χ(a)(−1)a (mod p2)

=

dp2r∑
a=0
p-a

χ(a)(−1)a + p

dp2r∑
a=0
p-a

qp(a
p−1)χ(a)(−1)a

= p(p− 1)

dp2r∑
a=0
p-a

qp(a)χ(a)(−1)a

≡ −p
dp2r∑
a=0
p-a

qp(a)χ(a)(−1)a (mod p2)

and by the logarithmic properties of the Fermat quotient

dp2r∑
a=0
p-a

qp(a)χ(a)(−1)a ≡ qp(δχ,p) (mod p)

where

δχ,p = δ =

dp2r∏
a=0
p-a

aχ(a)(−1)a .

Observe that qp(δ) ≡ 0 (mod p) if and only if δp−1 ≡ 1 (mod p2). Similarly, if

d 6≡ 3 (mod 4),

2dp2r∑
a=1

aχω−1(a) ≡
2dp2r∑
a=1

a(p−1)2χ(a) (mod p2)

≡ −p
2dp2r∑
a=1

qp(a)χ(a) (mod p2)

≡ −pqp(δ) (mod p2)

where

δχ,p = δ =

2dp2r∏
a=0
p-a

aχ(a).
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Once again, qp(δ) ≡ 0 (mod p) if and only if δp−1 ≡ 1 (mod p2). We thus define

δχ,p =


∏dp2r

a=0
p-a

aχ(a)(−1)a if d ≡ 3 (mod 4)∏2dp2r

a=0
p-a

aχ(a) if d 6≡ 3 (mod 4)

We have thus shown the following:

Proposition 15. Denote K = Q(
√
−d), and χ to be the imaginary quadratic char-

acter for K. Then

λp(K) > 1 ⇐⇒ δp−1
χ,p ≡ 1 (mod p2).

Remark 6. Compare proposition 15 to Gold’s criterion (theorem 3.1.2).

6.1 Expressing δχ,p as Gauss Factorials (d ≡ 3 (mod 4))

In this section we will see once again that δχ,p is essentially congruent to a product

of Gauss factorials modulo p2. The difference is that we have arrived at the result via

the Iwasawa series, and not using Gold’s criterion 3.1.2. Hence, this method might

be seen as an alternative proof of Theorem 3.1.2.

As before, let p be a prime such that p ≡ 1 (mod d). Denote

σ+
k =

p2r∏∗

a=1
a≡k (mod d)
a is even

a, σ−k =

p2r∏∗

a=1
a≡k (mod d)
a is odd

a

and

ε+k =

dp2r∏∗

a=1
a≡k (mod d)
a is even

a, ε−k =

dp2r∏∗

a=1
a≡k (mod d)
a is odd

a.

Here, we always view the subscript k modulo d accordingly. We also define

±(i) =


+ if i is even

− if i is odd

.
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Observe that

ε+k ≡
m−1∏
i=0

σ
±(i)
k−i , and ε−k ≡

m−1∏
i=0

σ
±(i+1)
k−i .

Consider the set

Ar,m(k) =

{
a ∈ N : k

p2r − 1

m
≤ a ≤ (k + 1)

p2r − 1

m
and gcd(a, p) = 1

}
We know the exact size of Ar,m when p ≡ 1 (mod m). That is,

Lemma 11. Let m ∈ Z+ such that p ≡ 1 (mod m). Then

#A1,m(k) = p · p− 1

m

Proof. We have that

p2 − 1

m
= (p+ 1) · p− 1

m
.

If a ∈ Z+ such that a ≤ (p− 1)/m, then

ap ≤ p
p− 1

m
< (p+ 1)

p− 1

m
.

On the other hand, if a = (p− 1)/m+ 1, then

ap =

(
p− 1

m
+ 1

)
p = p

p− 1

m
+ p > p

p− 1

m
+
p− 1

m
= (p+ 1)

p− 1

m
.

Hence, the elements of
{
a : 1 ≤ a ≤ p2−1

m
and gcd(a, p) > 1

}
consist of ap with 1 ≤

a ≤ (p− 1)/m. Therefore,

#

{
a : 1 ≤ a ≤ p2 − 1

m
and gcd(a, p) = 1

}
=
p2 − 1

m
−#

{
a : 1 ≤ a ≤ p2 − 1

m
and gcd(a, p) > 1

}
= p · p− 1

m
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Lemma 12. Let k, n, r ∈ Z+ such that pr ≡ 1 (mod n). Then(
(k + 1)p

2r−1
n

)
p
!(

k p
2r−1
n

)
p
!
≡ nAr,n(k)

p2r−1
n
−1∏∗

a=0

(na+ (n− k)) (mod p2)

Proof. Observe that(
(k + 1)p

2r−1
n

)
p
!(

k p
2r−1
n

)
p
!
≡

(k+1) p
2r−1
n∏∗

a=k p
2r−1
n

+1

a ≡

p2r−1
n∏∗

a=1

(
a+ k

p2r − 1

n

)

≡ nAr,n(k)

p2r−1
n
−1∏∗

a=0

(na+ (n− k)) (mod p2).

Lemma 13. For 1 ≤ k ≤ d

σ+
d−k ≡


C

(
(k+1) p

2−1
2d

)
p

!(
k p

2−1
2d

)
p
!

if k even

C

(
(d+k+1) p

2−1
2d

)
p

!(
(d+k) p

2−1
2d

)
p
!

if k odd

and σ−d−k ≡


C

(
(d+k+1) p

2−1
2d

)
p

!(
(d+k) p

2−1
2d

)
p
!

if k even

C

(
(k+1) p

2−1
2d

)
p

!(
k p

2−1
2d

)
p
!

if k odd

modulo p2, where Cp−1 ≡ 1 (mod p2).

Proof. First, if k is even, then da− k is even when a is even. Hence, by Lemma 12

σ+
d−k =

p2−1
2d∏∗

a=1

(2da− k) ≡ C

(
(k + 1)p

2−1
2d

)
p
!(

k p
2−1
2d

)
p
!

.

On the other hand, if k is odd da− k is even when a is odd, and

σ+
d−k =

p2−1
2d∏∗

a=1

(2da− (d+ k)) ≡ C

(
(d+ k + 1)p

2−1
2d

)
p
!(

(d+ k)p
2−1
2d

)
p
!
.

The congruences for σ−d−k follow in a similar way.
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Lemma 14. Let 1 ≤ k ≤ d. Then

ε+k ≡


C

(
k p

2−1
d

)
p

!(
k p

2−1
2d

)2
p
!

if k even

C

(
k p

2−1
2d

)2

p

!(
k p

2−1
d

)
p
!

if k odd

and ε−k ≡


C

(
k p

2−1
2d

)2

p

!(
k p

2−1
d

)
p
!

if k even

C

(
k p

2−1
d

)
p

!(
k p

2−1
2d

)2
p
!

if k odd

modulo p2, where Cp−1 ≡ 1 (mod p2).

Proof. Suppose k is odd. We again have the telescopic product

ε+k =
k∏
i=0

σ
±(i+1)
d−(d−k+i)

d−k−1∏
i=1

σ
±(i+1)
d−i

≡ C
k∏
i=0

(
(2d− k + i+ 1)p

2−1
2d

)
p
!(

(2d− k + i)p
2−1
2d

)
p
!

d−k−1∏
i=1

(
(i+ 1)p

2−1
2d

)
p
!(

ip
2−1
2d

)
p
!

≡ C

(
(d− k)p

2−1
2d

)
p
!(

(2d− k)p
2−1
2d

)
p
!
≡ C ′

(
k p

2−1
2d

)
p
!(

(d+ k)p
2−1
2d

)
p
!
≡ C ′′

(
k p

2−1
2d

)2

p
!(

k p
2−1
d

)
p
!

(mod p2)

The other congruences follow in a similar way. Further, (C ′′)p−1 ≡ 1 (mod p2) by

Lemma 11.

Putting all the pieces together, we have:

Theorem 6.1.1. Suppose d ≡ 3 (mod 4). Then

δp−1
χ,p ≡ 1 (mod p2) ⇐⇒

 d∏
k=1
k even

(
k p

2−1
d

)2

p
!(

k p
2−1
2d

)4

p
!

d∏
k=1
k odd

(
k p

2−1
2d

)4

p
!(

k p
2−1
d

)2

p
!


p−1

≡ 1 (mod p2)
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Proof. Note that

δχ,p = C
d∏
k=1

χ(k)=1
k even

ε+k ε
−
d−k

ε−k ε
+
d−k

d∏
k=1

χ(k)=1
k odd

ε+k ε
−
d−k

ε−k ε
+
d−k

≡ C
d∏
k=1

χ(k)=1
k even

(
k p

2−1
d

)2

p
!(

k p
2−1
2d

)4

p
!

(
(d− k)p

2−1
2d

)4

p
!(

(d− k)p
2−1
d

)2

p
!

d∏
k=1

χ(k)=1
k odd

(
k p

2−1
2d

)4

p
!(

k p
2−1
d

)2

p
!

(
(d− k)p

2−1
d

)2

p
!(

(d− k)p
2−1
2d

)4

p
!

(mod p2)

≡ C
d∏
k=1
k even

(
k p

2−1
d

)2

p
!(

k p
2−1
2d

)4

p
!

d∏
k=1
k odd

(
k p

2−1
2d

)4

p
!(

k p
2−1
d

)2

p
!

(mod p2)

where Cp−1 ≡ 1 (mod p2).

6.2 Expressing δχ,p as Gauss Factorials (d 6≡ 3 (mod 4))

Suppose d 6≡ 3 (mod 4), p ≡ 1 (mod 4d) and let χ be the imaginary quadratic

character for K = Q(
√
−d). Denote

σk =

p2∏∗

a=1
a≡k (mod 4d)

a, εk =

2dp2∏∗

a=1
a≡k (mod 4d)

a.

Lemma 15. Let 1 ≤ k ≤ 2d. Then

εk ≡ C

(
k p

2−1
4d

)2

p
!(

k p
2−1
2d

)
p
!

(mod p2) and ε2d+k ≡ C

(
k p

2−1
2d

)
p
!(

k p
2−1
4d

)2

p
!

(mod p2)

where Cp−1 ≡ 1 (mod p2).

Proof. Notice that for 1 ≤ j ≤ 4d, we have the telescopic product

εj ≡ C

2d−1∏
i=0

(
(j − i)p2−1

4d

)
p
!(

(j − 1− i)p2−1
4d

)
p
!
≡


C

(
j p

2−1
4d

)
p

!(
(j−2d) p

2−1
4d

)
p
!

if j ≥ 2d

C

(
(2d−j) p

2−1
4d

)
p

!(
(4d−j) p2−1

4d

)
p
!

if j ≤ 2d

(mod p2)
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Putting these pieces together, we have:

Theorem 6.2.1. Suppose d 6≡ 3 (mod 4). Then

δp−1
χ,p ≡ 1 (mod p2) ⇐⇒

 2d∏
k=1

χ(k)=1

(
k p

2−1
4d

)4

p
!(

k p
2−1
2d

)2

p
!

2d∏
k=1

χ(k)=−1

(
k p

2−1
2d

)2

p
!(

k p
2−1
4d

)4

p
!


p−1

≡ 1 (mod p2)
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Chapter 7

A “GOLD LIKE” CRITERION FOR λ > 2 (THE ∆χ,P PRODUCT).

Let p be a prime, K = Q(
√
−d), χ be the imaginary quadratic character for K,

D = d if d ≡ 3 (mod 4) and D = 2d otherwise, and ψ(a) = (−1)aχ(a) if d ≡ 3 (mod 4)

and ψ(a) = χ(a) otherwise. As in the previous section, we will transform the sum

Dp∑
a=1

a2ψ(a)ω−2(a)− 2

Dp∑
a=1

aψ(a)ω−1(a)−Dp
Dp∑
a=1

aψ(a)ω−2(a)

into a product. Recall that λp(K) > 2 if and only if this sum is divisible by p3. For

a co-prime to p, we denote qpn(a) = (ap
n−1(p−1) − 1)/pn to be the generalized Fermat

quotient, which is an integer. We will need a few preliminary results.

Lemma 16. Let a and b be co-prime to p and r ∈ Z. Then

i. qp(a) + qp(b) = qp(ab)− pqp(a)qp(b)

ii. (qp(a))2 + (qp(b))
2 ≡ (qp(ab))

2 − 2qp(a)qp(b) (mod p)

iii. qp2(ab) ≡ qp2(a) + qp2(b) (mod p2)

iv. qp2(a
r) ≡ rqp2(a) (mod p2)

Proof. For (i)

qp(a) + qp(b) =
ap−1 − 1 + bp−1 − 1 + (ab)p−1 − (ab)p−1

p

=
(ab)p−1 − 1

p
+
ap−1 − (ab)p−1

p
+
bp−1 − 1

p

= qp(ab)− (ap−1 − 1)qp(b)

= qp(ab)− pqp(a)qp(b).
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Next, (ii) is an easy consequence of the logarithmic properties of qp. The proof for

(iii) and (iv) are similar to the arguments for the logarithmic properties of qp.

Lemma 17. With all of the notation as above,

Dp2∑
a=1

a2ψ(a)ω−2(a) =

Dp∑
a=1

a2ψ(a)ω−2(a) +D(p+ 1)p

Dp∑
a=1

aψ(a)ω−2(a)

and
Dp2∑
a=1

aψ(a)ω−2(a) =

Dp∑
a=1

aψ(a)ω−2(a).

Proof. Suppose that k > 1. First, assume ψ(a) = χ(a)(−1)a, so that ψ(a + dpi) =

χ(a)(−1)a+i. Then
∑p−1

i=0 (−1)i = 1,
∑p−1

i=0 (−1)ii = (p+1)/2, and
∑Dp

a=1 ψ(a)ω−2(a) =

0

Dp2∑
a=1

a2ψ(a)ω−2(a) =

p−1∑
i=0

Dp∑
a=1

(a+Dpi)2ψ(a+Dpi)ω−2(a+ dpi)

=

Dp∑
a=1

a2ψ(a)ω−2(a)

p−1∑
i=0

(−1)i + 2Dp

Dp∑
a=1

aψ(a)ω−2(a)(−1)a
p−1∑
i=0

i(−1)i

+ (Dp)2

p−1∑
i=0

i2(−1)i
Dp∑
a=1

ψ(a)ω−2(a)

=

Dp∑
a=1

a2ψ(a)ω−2(a) +D(p+ 1)p

Dp∑
a=1

aψ(a)ω−2(a).

If ψ(a) = χ(a), then χ(a + Dpi) = χ(a)(−1)i from Lemma 4, and so the same

calculation carries through. The second equality follows in a similar way.

From the Lemma, we have

Dp∑
a=1

a2ψ(a)ω−2(a)−2

Dp∑
a=1

aψ(a)ω−1(a)−Dp
Dp∑
a=1

aψ(a)ω−2(a)

=

Dp2∑
a=1

a2ψ(a)ω−2(a)− 2

Dp2∑
a=1

aψ(a)ω−1(a)−Dp(p+ 2)

Dp2∑
a=1

aψ(a)ω−2(a)
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We now make the observation that

a−2(p2−1) = (p2qp2(a
−2) + 1)(pqp(a

−2) + 1) ≡ p2qp2(a
−2) + pqp(a

−2) + 1 (mod p3)

and similarly

a−(p2−1) = (p2qp2(a
−1) + 1)(pqp(a

−1) + 1) ≡ p2qp2(a
−1) + pqp(a

−1) + 1 (mod p3).

We have from the previous proposition that

p2(qp2(a
−2)− 2qp2(a

−1)) ≡ 0 (mod p3)

and

p(qp(a
−2)− 2qp(a

−1)) = p(2qp(a
−1) + p(qp(a

−1))2 − 2qp(a
−1)) = p2(qp(a

−1))2.

Therefore,

Dp2∑
a=1

a2ψ(a)ω−2(a)− 2

Dp2∑
a=1

aψ(a)ω−1(a) ≡ p2

Dp2∑
a=1
p-a

qp(a
ψ(a)qp(a)) ≡ p2qp(Φχ,p) (mod p3)

where

Φχ,p =

Dp2∏
a=1
p-a

aψ(a)qp(a).

Next we will look at the sum
∑Dp2

a=1 aψ(a)ω−2(a) modulo p2.

Lemma 18. With all of the notation as above,

Dp2∑
a=1
p-a

ψ(a)

a
≡ 0 (mod p2)

Proof. For a ∈ Z, consider the map Z/DZ→ Z/DZ given by i 7→ a + ip2 (mod D).

Since gcd(p,D) = 1, we have that a + ip2 ≡ a + jp2 implies i ≡ j (mod D). Hence
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this map is a bijection, and
∑D−1

i=0 ψ(a+ ip2) =
∑D−1

b=0 ψ(b). Therefore,

Dp2∑
a=1
p-a

ψ(a)

a
=

D−1∑
i=0

p2−1∑
a=1
p-a

ψ(a+ ip2)

a+ ip2
≡

D−1∑
b=0

ψ(b)

p2−1∑
a=1
p-a

1

a
≡ 0 (mod p2)

since
∑p2−1

a=1
p-a

1
a
≡ 0 (mod p2). To see this, notice

p2−1∑
a=1
p-a

1

a
=

p−1∑
i=0

p−1∑
a=1

1

a+ ip

and

1

a+ ip
≡ (a+ip)p(p−1)−1 =

p(p−1)−1∑
j=0

(
p(p− 1)− 1

j

)
(ip)jap(p−1)−1−j ≡ 1

a
− ip
a2

(mod p2).

Hence,

p2−1∑
a=1
p-a

1

a
≡

p−1∑
i=0

p−1∑
a=1

(
1

a
− ip

a2

)
≡

p−1∑
i=0

p−1∑
a=1

1

a
− p

p−1∑
a=1

1

a2

p−1∑
i=0

i ≡ 0 (mod p2)

since it is well known that
∑p−1

a=1 1/a ≡ 0 (mod p2).

Now, using the Lemma and the identity a2ω−2(a) ≡ (1 + pqp(a
−2)) (mod p2), we

have

Dp2∑
a=1

aψ(a)ω−2(a) ≡
Dp2∑
a=1
p-a

(1 + pqp(a
−2))

ψ(a)

a
≡ p

Dp2∑
a=1
p-a

qp(a
−2)

ψ(a)

a
(mod p2).

Therefore,

Dp(p+ 2)

Dp2∑
a=1

aψ(a)ω−2(a) ≡ p2

Dp2∑
a=1
p-a

qp(a
−4Dψ(a)ap−2

) ≡ p2qp(Ψχ,p) (mod p3)

where

Ψχ,p =

Dp2∏
a=1
p-a

a−4Dψ(a)ap−2

.

68



So, we have that

Dp2∑
a=1

a2ψ(a)ω−2(a)−2

Dp2∑
a=1

aψ(a)ω−1(a)−Dp(p+2)

Dp2∑
a=1

aψ(a)ω−2(a) ≡ p2qp(∆χ,p) (mod p3)

where ∆χ,p = Φχ,p/Ψχ,p. From this we have

Theorem 7.0.1. Suppose λp(K) > 1, and p does not divide the class number of K.

Then λp(K) > 2 if and only if

∆p−1
χ,p ≡

Dp2∏
a=1
p-a

aΣ(a)(p−1) ≡ 1 (mod p2)

where Σ(a) = ψ(a)qp(a+ 4Dp).

In the expression for Σ(a), we have used the congruence qp(a + bp) ≡ qp(a) −

b/a (mod p). Again, compare this Theorem 3.1.2.

7.1 Generalized Hyper Gauss Factorials

We naturally define the hyper Gauss factorial of n with respect to p as

Hp(n) =
n∏
a=1

gcd(a,p)=1

aa

and if τ : Z \ pZ → Z is any function, then we define the generalized hyper Gauss

factorial of n with respect to τ and p as

(n)p,τ ! =
n∏
a=1

gcd(a,p)=1

aτ(a).

Definition 10. If r ∈ Z+ such that pr ≡ 1 (mod m), then we say that p is 1-

exceptional for m and τ : Z \ pZ→ Z if(
p2r − 1

m

)p−1

p,τ

! ≡ 1 (mod p2).
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The next proposition can be viewed as Wilson’s theorem for a certain generalized

hyper Gauss factorials.

Proposition 16. Suppose that, τ(a) = (p− 1)qp(a) for a co-prime to p. Then

(pm − 1)p,τ ! ≡ 1 (mod pm)

and (
pm − 1

2

)
p,τ

! ≡ ±1 (mod pm)

Proof. Let g be a primitive root modulo Z/pmZ. Then

(pm)p,τ ! ≡
pm−1(p−1)∏

k=1

(gk)τ(gk) (mod pm)

(in the product above modulo pm, the argument of τ(·) = qp(·)(p − 1) can be taken

mod pm by Euler’s Theorem). So

pm−1(p−1)∏
k=1

(gk)τ(gk) = g
∑pm−1(p−1)
k=1 kτ(gk).

We will look at the sum in the exponent of g, but first, recall one of the properties of

the Fermat quotient is that for a, b co-prime to p,

qp(ab) = qp(a) + qp(b) + pqp(a)qp(b).

From this we get for k > 1

qp(a
k) = kqp(a) + pqp(a)

(
k−1∑
i=1

qp(a
i)

)
= kqp(a) + qp(a)

(
k−1∑
i=1

(ai(p−1) − 1))

)

= kqp(a) + qp(a)

(
k−1∑
i=1

(ai(p−1) − 1))

)
= kqp(a) + qp(a)

(
ap−1 − ak(p−1)

1− ap−1
− k + 1

)
.
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Then, assuming ap−1 6≡ 1 (mod pm) (which is the case for the primitive root g)

pm−1(p−1)∑
k=1

kqp(a
k) = qp(a)

pm−1(p−1)∑
k=1

(
ap−1 − ak(p−1)

1− ap−1
+ k

)
≡ 0 (mod pm−1)

since,
pm−1(p−1)∑

k=1

ak(p−1) = ap−1 1− apm−1(p−1)

1− ap−1
≡ 0 (mod pm)

and
pm−1(p−1)∑

k=1

k ≡ 0 (mod pm−1)

Therefore, (p−1)
∑pm−1(p−1)

k=1 kqp(g
k) ≡ 0 (mod (p−1)pm−1), and (pm)p,τ ! ≡ 1 (mod pm).

Notice that

1 ≡
pm∏∗

a=1

a(p−1)qp(a)

≡


pm−1

2∏∗

a=1

a(p−1)qp(a)




pm−1
2∏∗

a=1

(a+ pm)(p−1)qp(a+pm)

 (mod pm)

≡
(
pm − 1

2

)2

p,τ

! (mod pm).

which implies that
(
p2−1

2

)
p,τ

! ≡ ±1 (mod p2).

Proposition 17. Let m > 1 in Z+ and suppose that, for a co-prime to p, τ(a) =

(p− 1)ar for some r ∈ Z (if r < 0 then η : Z \ pZ→ Z which sends a to (p− 1)b such

that 1 ≤ b ≤ p− 1 and arb ≡ 1 (mod p)). Then

(pm − 1)p,τ ! ≡ 1 (mod pm)

and (
pm − 1

2

)
p,τ

! ≡ ±1 (mod pm)
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Proof. The proof will be similar to that of 16. Let g be a primitive root modulo

pm. Then g is also a primitive root modulo pm−1. If a ∈ Z is co-prime to p, then

a ≡ gk (mod pm), and a ≡ gk (mod pm−1) for some k ∈ Z. So

(pm − 1)p,τ ! ≡ g(p−1)
∑pm−1(p−1)
k=1 kgrk (mod pm).

Because gcd(r, p(p− 1)) = 1, g0 = gr is a primitive root modulo pm−1, and

pm−1(p−1)∑
k=1

kgk0 ≡ 0 (mod pm−1).

Indeed,

n∑
k=1

kxk−1 =
d

dx

n∑
k=1

xk =
(1− x)(1− (n+ 1)xn) + (x− xn+1)

(1− x)2

and substituting x = g0, and n = pm−1(p − 1) gives the desired result. The second

congruence follows by the same argument in Proposition 16.

7.2 ∆χ,p as Generalized Hyper Gauss Factorials

In this section we prove two Theorems which are analogues of Theorems 6.1.1

and 6.2.1. The proofs are very similar, so we will suppress some of the details. Let

K = Q(
√
−d) and let χ be the corresponding imaginary quadratic character of K.

We first assume d 6≡ 3 (mod 4). Denote τ(a) = (p − 1)qp(a), and η(a) = (p − 1)/a

(again, we consider η : Z \ pZ→ Z which sends a to (p− 1)b such that 1 ≤ b ≤ p− 1

and ab ≡ 1 (mod p)). Let ϕ : Z \ pZ→ Z with ϕ(a) ≡ ϕ(b) (mod p(p− 1)), whenever

a ≡ b (mod p2), and denote

θk,ϕ =

2dp2∏∗

a=1
a≡k (mod 4d)

aϕ(a), and νk,ϕ =

p2∏∗

a=1
a≡k (mod 4d)

aϕ(a).
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If ϕ(a) = ϕ(b) for a ≡ b (mod p2), then

θk,ϕ ≡
2d−1∏
i=0

νk−i,ϕ (mod p2).

We will now prove analogues to some of the lemmas found in the previous section:

Lemma 19. Suppose that p ≡ 1 (mod 4d). Then(
(k + 1)p

2−1
4d

)
p,τ

!(
k p

2−1
4d

)
p,τ

!
≡ ν−k,τ (4d)uk(4d)σ

−τ(4d)
−k (mod p2)

and (
(k + 1)p

2−1
4d

)
p,η

!(
k p

2−1
4d

)
p,η

!
≡ ν4d

−k,η(4d)4dtk(4d) (mod p2)

where

σk =

p2∏∗

a=1
a≡k (mod 4d)

a, uk(n) = −(p− 1)

k p
2−1
n∑

a=1
p-na−k

qp(na− k), tk(n) = −(p− 1)

k p
2−1
n∑

a=1
p-na−k

1

na− k
.

Proof. Note that(
(k + 1)p

2−1
4d

)
p,τ

!(
k p

2−1
4d

)
p,τ

!
=

p2−1
4d∏∗

a=1

(
a+ k

p2 − 1

4d

)τ(a+k p
2−1
4d

)

≡ (4d)uk(4d)

p2−1
4d∏∗

a=1

(2da− k)τ(4da−k)

p2−1
4d∏∗

a=1

(4da− k)−τ(4d) (mod p2).
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For the congruence involving η, we have(
(k + 1)p

2−1
4d

)
p,η

!(
k p

2−1
4d

)
p,η

!
=

p2−1
4d∏∗

a=1

(
a+ k

p2 − 1

4d

)η(a+k p
2−1
4d

)

≡


p2−1
4d∏∗

a=1

(
a+ k

p2 − 1

4d

)η(4da−k)


4d

(mod p2)

≡

(4d)tk(4d)

p2−1
4d∏∗

a=1

(4da− k)η(4da−k)


4d

(mod p2).

Lemma 20. Let p ≡ 1 (mod 4d) and k ∈ Z+. Then

(
(2d+ k)

p2 − 1

4d

)
p,τ

! ≡ 2xk(4d)−zk(4d)

(
k p

2−1
2d

)
p,τ

!(
k p

2−1
4d

)
p,τ

!

((
k
p2 − 1

2d

)
p

!

)−τ(2)

(mod p2)

and (
(2d+ k)

p2 − 1

4d

)
p,η

! ≡ ±22yk(4d)−vk(4d)

(
k p

2−1
2d

)2

p,η
!(

k p
2−1
4d

)
p,η

!
(mod p2)

where

xk(4d) = −(p− 1)

k p
2−1
4d∑

a=1
p-2a−1

qp(2a− 1), zk(4d) = (p− 1)

k p
2−1
4d∑

a=1
p-a

qp(a)

and

yk(4d) = −(p− 1)

k p
2−1
4d∑

a=1
p-2a−1

1

2a− 1
, vk(4d) = (p− 1)

k p
2−1
4d∑

a=1
p-a

1

a
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Proof. Note,

(
(2d+ k)

p2 − 1

4d

)
p,τ

! =

(
p2 − 1

2

)
p,τ

!

k p
2−1
4d∏∗

a=1

(
a+

p2 − 1

2

)τ(a+ p2−1
2

)

≡ 2xk(4d)

k p
2−1
4d∏∗

a=1

(2a− 1)τ(2a−1)

k p
2−1
4d∏∗

a=1

(2a− 1)−τ(2)

≡ 2xk(4d)−zk(4d)


(
k p

2−1
2d

)
p,τ

!(
k p

2−1
4d

)
p,τ

!




(
k p

2−1
4d

)
p
!(

k p
2−1
4d

)
p
!
(
k p

2−1
2d

)
p
!


τ(2)

(mod p2)

where we have again used the identity

2n∏
a=1

ϕ(2a− 1) =

∏n
a=1 ϕ(a)∏2n
a=1 ϕ(2a)

where ϕ is some function on Z+. Also,

(
(2d+ k)

p2 − 1

4d

)
p,η

! =

(
p2 − 1

2

)
p,η

!

k p
2−1
4d∏∗

a=1

(
a+

p2 − 1

2

)η(a+ p2−1
2

)

≡ ±22yk(4d)

k p
2−1
4d∏∗

a=1

(2a− 1)2η(2a−1) ≡ ±22yk(4d)−vk(4d)

(
k p

2−1
2d

)2

p,η
!(

k p
2−1
4d

)
p,η

!
(mod p2)

Now, similar to the previous section (see Lemma 15), θ−k,τ ≡
∏2d−1

i=0 ν−(k+i),τ is a

partially telescopic product, and applying Lemmas 19 and 20 (for 1 ≤ k ≤ 2d),

θ−k,τ ≡
2d−1∏
i=0

ν−(k+i) ≡
2d−1∏
i=0

(
(k + i+ 1)p

2−1
4d

)
p,τ

!(
(k + i)p

2−1
4d

)
p,τ

!
(4d)uk+i(4d)σ

τ(4d)
−(k+i) (mod p2)

≡ (4d)Ukε
τ(4d)
−k

(
(2d+ k)p

2−1
4d

)
p,τ

!(
k p

2−1
4d

)
p,τ

!
≡ (4d)Ukε

τ(4d)
−k

(
k p

2−1
2d

)
p,τ

!2xk(4d)−zk(4d)(
k p

2−1
4d

)2

p,τ
!
(
k p

2−1
2d

)τ(2)

p
!

(mod p2)
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where Uk = −
∑2d−1

i=0 uk+i(4d) and εk are as in Lemma 15. Similarly, for 1 ≤ k ≤ 2d,

θ−(2d+k),τ ≡ (4d)U2d+kε
τ(4d)
−(2d+k)

(
k p

2−1
4d

)2

p,τ
!
(
k p

2−1
2d

)τ(2)

p
!(

k p
2−1
2d

)
p,τ

!2xk(4d)−zk(4d)
(mod p2).

On the other hand, for 1 ≤ k ≤ 2d, we have modulo p2,

θ4d
−k,η ≡ ±

(
k p

2−1
2d

)2

p,η
!(

k p
2−1
4d

)2

p,η
!
(4d)Tk22yk(4d)−vk(4d), θ4d

−(k+2d),η ≡ ±

(
k p

2−1
4d

)2

p,η
!(

k p
2−1
2d

)2

p,η
!
(4d)T2d+k2vk(4d)−2yk(4d)

where Tk = −4d
∑2d−1

i=0 tk+i(4d). Now recall

∆p−1
χ,p ≡

2dp2∏
a=1
p-a

aΣ(a)(p−1) ≡ 1 (mod p2)

where Σ(a) = χ(a)qp(a+ 8dp) ≡ χ(a)(qp(a)− 8d/a) (mod p). Then we have

∆p−1
χ,p ≡

(
2d−1∏
k=1

(θk,τ/θ2d+k,τ )
χ(k)

/
2d−1∏
k=1

(θk,η/θ2d+k,η)
8dχ(k)

)
(mod p2)

and

Theorem 7.2.1. Suppose m 6≡ 3 (mod 4), τ(a) = qp(a)(p− 1) and η(a) = (p− 1)/a.

Then

∆p−1
χ,p ≡ 1 (mod p2) ⇐⇒ δ−τ(2d)

χ,p ABΦτ/Φη ≡ 1 (mod p2)

where

Φτ =
2d−1∏
k=1


(
k p

2−1
4d

)4

p,τ
!(

k p
2−1
2d

)2

p,τ
!


χ(k)

Φη =
2d−1∏
k=1


(
k p

2−1
4d

)
p,η

!(
k p

2−1
2d

)
p,η

!


4χ(k)
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A =
2d−1∏
k=1

((
k
p2 − 1

2d

)
p

!

)2χ(k)τ(2)

and the error factor

B = (4d)U−T2X−V

where

U =
2d−1∑
k=1

χ(k)(U4d−k − U2d−k), T =
2d−1∑
k=1

χ(k)(T2d−k − T4d−k)

X = 2
2d−1∑
k=1

χ(k)(x4d−k(4d)− z4d−k(4d)), V = 4
2d−1∑
k=1

χ(k)(2y4d−k(4d)− v4d−k(4d)).

Next, assume d ≡ 3 (mod 4). If ϕ : Z\pZ→ Z such that ϕ(a) ≡ ϕ(b) (mod p(p−

1)) whenever a ≡ b (mod p2), we denote

θ+
k,ϕ =

dp2∏∗

a=1
a≡k (mod d)

a even

aϕ(a), θ−k,ϕ =

dp2∏∗

a=1
a≡k (mod d)

a odd

aϕ(a)

and

ν+
k,ϕ =

p2∏∗

a=1
a≡k (mod d)

a even

aϕ(a), ν−k,ϕ =

p2∏∗

a=1
a≡k (mod d)

a odd

aϕ(a).

Lemma 21. For 1 ≤ k ≤ d

ν+
−k,τ ≡



(
(k+1) p

2−1
2d

)
p,τ

!(
k p

2−1
2d

)
p,τ

!
(σ+
−k)

τ(2d)(2d)−uk(2d) if k even

(
(d+k+1) p

2−1
2d

)
p,τ

!(
(d+k) p

2−1
2d

)
p,τ

!
(σ+
−k)

τ(2d)(2d)−uk(2d) if k odd

(mod p2)

and

ν−−k,τ ≡



(
(d+k+1) p

2−1
2d

)
p,τ

!(
(d+k) p

2−1
2d

)
p,τ

!
(σ−−k)

τ(2d)(2d)−uk(2d) if k even

(
(k+1) p

2−1
2d

)
p,τ

!(
k p

2−1
2d

)
p,τ

!
(σ−−k)

τ(2d)(2d)−uk(2d) if k odd

(mod p2).
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Also,

(ν+
−k,η)

2d ≡



(
k+1) p

2−1
2d

)
p,η

!(
k p

2−1
2d

)
p,η

!
(2d)−2dtk(2d) if k even

(
(d+k+1) p

2−1
2d

)
p,η

!(
(d+k) p

2−1
2d

)
p,η

!
(2d)−2dtk(2d) if k odd

(mod p2)

and

(ν−−k,η)
2d ≡



(
(d+k+1) p

2−1
2d

)
p,η

!(
(d+k) p

2−1
2d

)
p,η

!
(2d)−2dtk(2d) if k even

(
(k+1) p

2−1
2d

)
p,η

!(
k p

2−1
2d

)
p,η

!
(2d)−2dtk(2d) if k odd

(mod p2).

Proof. If k is even, then da− k is even when a is even. Hence from Lemma 19

ν+
−k,τ =

p2−1
2d∏∗

a=1

(2da− k)τ(2da−k) ≡

(
(k + 1)p

2−1
2d

)
p,τ(

k p
2−1
2d

)
p,τ

!
(σ+
−k)

τ(2d) (mod p2).

The other congruences follow similarly.

Similar to δχ,p we get a partial telescopic product θ±k,τ =
∏m−1

i=0 ν±k,τ (the difference,

just like in the case for d 6≡ 3 (mod 4) is that we pick up some additional factors that

amounted to A, B and δχ,p in Theorem 7.2.1). Therefore, we have

Theorem 7.2.2. Suppose d ≡ 3 (mod 4) and τ(a) = qp(a)(p−1) and η(a) = (p−1)/a.

Then

∆p−1
χ,p ≡ 1 (mod p2) ⇐⇒ δ−τ(2d)

χ,p AΦτ/Φη ≡ 1 (mod p2)

where

Φτ =
d∏

k=1


(
k p

2−1
d

)2

p,τ
!(

k p
2−1
2d

)4

p,τ
!


(−1)k
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Φη =
d∏

k=1


(
k p

2−1
d

)
p,η

!(
k p

2−1
2d

)
p,η

!


2(−1)k

A =
d∏

k=1

((
k
p2 − 1

2d

)
p

!

)2(−1)kτ(2)

.

and the error factor

B = (2d)U−T2X−V

where

U =
d−1∑
k=1

χ(k)(U2d−k − U2d−k), T =
d−1∑
k=1

χ(k)(T2d−k − T2d−k)

X = 2
d−1∑
k=1

χ(k)(xd−k(4d)− zd−k(4d)), V = 4
d−1∑
k=1

χ(k)(2y2d−k(2d)− v2d−k(2d)).

7.3 Some Examples

In this section we will take a closer look at ∆χ,p for K = Q(i) and Q(
√
−3). We

will again let τ(a) = qp(a)(p − 1) and η(a) = (p − 1)/a. Recall that for a and b

co-prime to p

qp(a)− b/a ≡ qp(a+ bp) (mod p) and rqp(a) ≡ qp(a
r) (mod p)

which we will use below.

Theorem 7.3.1. Suppose p is a prime such that p ≡ 1 (mod 4), K = Q(i) with

imaginary quadratic character χ, and λp(K) > 1. Then

λp(K) > 2 ⇐⇒ B
(
p2 − 1

4

)4(p−1)

p,Σ

! ≡ 1 (mod p2)

where Σ(a) = qp(a+ p).
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Proof. We have A = 1, Φτ =
(
p2−1

4

)4

p,τ
!, and Φη =

(
p2−1

4

)4

p,η
!. Now use Theorem

7.2.1.

Theorem 7.3.2. Suppose p is a prime such that p ≡ 1 (mod 6), K = Q(
√
−3) with

imaginary quadratic character χ, and λp(K) > 1. Then

λp(K) > 2 ⇐⇒ B


(
p2−1

6

)
p,Σ1

!(
p2−1

3

)
p,Σ2

!


2(p−1)

≡ 1 (mod p2)

where Σ1(a) = qp(a
2 + p) and Σ2(a) = qp(a

4 + 3p).

Proof. We have A = 1, Φτ =

(
p2−1

6

)4

p,τ

!(
p2−1

3

)8
p,τ

!
, and Φη =

(
p2−1

6

)2

p,η

!(
p2−1

3

)6
p,η

!
. Again, use Theorem

7.2.1.
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Chapter 8

ANOTHER (PARTIAL) CRITERION FOR λP (K) > 2

In this section, we attempt to get a criterion for λp(K) > 2 similar to that of

Theorem 3.1.2 by extending the methods of Gold (13). While we have already given

a criterion for λp(K) > 2, it would be useful for computational as well as theoret-

ical reasons to have a criterion resembling Theorem 3.1.2 (see (10) and (33) for a

computational and theoretical application of (13)). However, this is only a partial

result, and the author hopes to revisit this topic in future research. We also note that

the proof of Gold’s criterion relies on relative genus theory (see (6)), and class field

theory, (see Section 2.6 and (2)).

8.1 Preliminary Results

The next Theorem is due to Iwasawa (19), (but also see Theorem 4 in (40)),

Theorem 8.1.1 (Iwasawa). Let k ⊂ L be number fields, such that L an unramified

Abelian p-extension of k and denote H to be the p-Hilbert class field for k. Then

|AL| = 1 implies that L = H.

Proof. Suppose that L 6= H. Then |Gal(H/L)| > 1, and if H ′ is the p-Hilbert class

field for L, then L ⊆ H ⊆ H ′, and so |AL| = |Gal(H ′/L)| ≥ |Gal(H/L)| > 1.

Let k be an imaginary quadratic field in which p = pp̄, and let k∞ =
⋃
n kn be the

cyclotomic Zp extension of k with Gal(kn/k) ∼= Z/pnZ. Denote A(kn) to be the class

group of kn. We will need the following result from Sands (32),
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Theorem 8.1.2 (Sands). Suppose k is an imaginary quadratic field. Let l < p − 1.

Then the following are equivalent:

(a) |A(k1)| = |A(k)|pl

(b) λp(k) = l

(c) |A(kn)| = |A(k)|pln for each n ≥ 0.

Let Hk1 the p-Hilbert class field for k1. Let L be any Abelian unramified extension

of k1 so that k1 ⊆ L ⊆ Hk1 . If HL is the p-Hilbert class field of L, then we have that

Gal(Hk1/L) ∼= Gal(HL/L)/Gal(HL/Hk1)
∼= AL/M where M ∼= Gal(HL/Hk1). We

denote AL/M = BL. Now, if a ∈ AL and α ∈ G, the Artin map AL → Gal(HL/L)

satisfies

σαa = α̃σaα̃
−1

where α̃ is any extension of α ∈ Gal(L/E) to Gal(HL/E). Therefore, if [a] = aM , we

have the induced Artin map on BL → Gal(Hk1/L) denoted by σ[a] =
[
σa|Hk1

]
, and

satisfies

σ[αa] = ᾱσ[a]ᾱ
−1

where ᾱ is any extension of α to Gal(Hk1/L). For a ∈ AL, and α ∈ G, we may also

write σαa = ασaα
−1 ( or [σα[a]] = ασ[a]α

−1 for [a] ∈ BL). We have the commutative

diagram

BL Ak1

Gal(HL/L)
Gal(HL/Hk1 )

Gal(Hk1/k1)

∼= ∼=

with horizontal maps being injections. Suppose that P, and ℘ are primes above p in

L, and Hk1 respectively. Then σ[P] ≡ σP|Hk1 (mod Gal(HL/Hk1)) and if x ∈ Hk1 , we
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have

σP(x) ≡ xp (mod ℘).

On the other hand, if p1 is a prime above p in k1, then for x ∈ Hk1

σp1(x) ≡ xp (mod ℘)

and therefore σ[P] 7→ σp1 . Hence, if p1 is non-trivial in Ak1 , then [P] is also non-trivial

in BL, and they also have the same order.

Let k, p = pp̄, k1 be as above L the relative fixed field of the commutator subgroup

of Gal(Hk1/k) (the p-genus field for k1/k, see (6)). Suppose that E is the inertia

subfield for p in L/k and suppose that p splits in E. We have that [E : k] = [L : E] =

p. Denote L′ to be the fixed field of the commutator subgroup of Gal(Hk1/E), where

Hk1 is the p-Hilbert class field of k1, and G = Gal(L/E) = 〈τ〉. If HL is the p-Hilbert

class field of L, then we have that Gal(Hk1/L) ∼= Gal(HL/L)/Gal(HL/Hk1)
∼= AL/M

where M ∼= Gal(HL/Hk1).

Proposition 18. Let L, L′, G = 〈τ〉, and BL be as above. Then Gal(L′/L) ∼=

B/B1−τ .

Proof. Recall that Gal(L′/L) is the commutator subgroup of Gal(Hk1/E). Let a, b ∈

BL and write a = xα, b = yβ for α, β ∈ G. Then a well known computation reveals

aba−1b−1 = αxβyx−1α−1y−1β−1 = xα(yx−1)αβ(αβ)α−1y−1β−1

= xα(yx−1)αβy−β = (xα)1−β(yβ)α−1.

On the other hand, if β = 1 and α = τ , we have that yτ−1 ∈ Gal(L′/L).

If A is a G-module, denote AG to be the elements of A fixed by G. Then we have

the exact sequence

0→ BG
L → BL

1−τ−−→ BL → BL/B
1−τ
L .
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But then |BL|/|BG
L | = |B1−τ

L |, which implies |BG
L | = |BL/B

1−τ
L |.

Proposition 19. [L′ : L] = |BG
L |

Now, if 〈γ〉 = Gal(L/k1), let γ̃ be any extension of γ to Gal(Hk1/k1). Then the

image of σ[γP] in Gal(Hk1/k1) is γ̃σp1 γ̃
−1 = σp1 . Therefore, σ[P] = σ[γP]. Now, suppose

that P is a prime in L above P in E. Then since P is totally ramified in L/E, we

have that G only fixes P, and hence, BG
L is of order p generated by P. Therefore, we

have

Proposition 20. Suppose that p splits in E. Then [L′ : L] = p.

Now, assume p splits in E/k as p = P1 · · · · ·Pp, and fix one of these primes P

in E which lies above p. Denote E ′ to be the inertia sub-field of L′/E for P. Notice

that E ′/E is Galois since Gal(L′/E ′) has index p in Gal(L′/E). Since |AE| = 1 there

must be at least one prime above p that ramifies in E ′/E, since if not E ′/E is an

unramified Abelian extension of E of degree p, so we denote

R = {i : Pi ramifies in E ′/E}

It follows that E ′ is the p-ray class field of conductor

m =
∏
i∈R

P ti
i

for some ti ∈ Z+. Now, if UE are the units of E, CE the class group of E, and Cm

the ray class group of E modulo m, we have the exact sequence

UE → (OE/m)× → Cm → CE → 1

where (OE/m)× → Cm is defined by x + m 7→ [xOE]. Denoting Am = (Cm)p, and

taking p-parts of the exact sequence gives us

1→ (OE/m)×p → Am → 1
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since UE does not contain any primitive p-th roots of unity, and |AE| = 1. Therefore,

(OE/m)×p
∼= Am. If Am is the ray class group corresponding to E ′/E, then we have

|Am| = p, and hence (OE/m)×p
∼=
∏

i∈R(OE/P ti
i )×p
∼= Z/pZ, which implies that there

exists r ∈ R such that tr = 2, and ti = 1 for all other i ∈ R. Hence,

Proposition 21. If m is the conductor for the p-ray class field extension E ′/E, then

m = P2
r

∏
i∈R
i 6=r

Pi, for some r ∈ R.

Lemma 22. Suppose that p splits in E/k. Fix a prime P of E which lies above p,

and denote hE to be the class number for E such that PhE = (α). Let E ′ and m be

as above, and let P ′ | m be such that vP′(m) = 2. Then the following are equivalent:

(i.) P splits in E ′/E

(ii.) P is trivial in Am

(iii.) αp−1 ≡ 1 (mod (P ′)2)

Proof. (i.) ⇐⇒ (ii.): Notice that [E ′ : E] = p, so if P splits in E ′/E, then it splits

completely. Therefore, the Frobenius automorphism σP is trivial, and hence P is

trivial in Am. On the other hand, if σP is trivial then the residue degree for E ′/E is

1. Since P is unramified in E ′/E it must be that P splits.

(ii.) ⇐⇒ (iii.): Since AE = 1, we have that P is trivial in Am if and only if

PhE = (α) is also trivial. But then α is trivial in (OE/m)×p
∼= Am if and only if

αp−1 ≡ 1 (mod (P ′)2).

8.2 Proof of the Partial Result

Theorem 8.2.1. Let k,E, p and P be as above. Suppose hE is the class number

for E and PhE = (α). Then there exists a prime P ′ of E above p such that, if
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αp−1 ≡ 1 (mod (P ′)2), then λp(K) > 2.

Proof. Let P ′ be as in Lemma 22. Suppose that L′ is the p-Hilbert class field for k1

or equivalently, λp(K) = 2. If p splits in E/k, then it must be that the prime p1 in k1

above p also splits in L′/k. We also have that p1 has order p in Ak1 , so p1 has residue

degree p in L′/k1. Therefore, P has residue degree p in the degree p extension E ′/E,

since p splits in E/k.
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Chapter 9

SOME FURTHER QUESTIONS

Dummit, Ford, Kisilevsky and Sands conjecture in (10) that given a fixed imag-

inary quadratic field K, there are infinitely many primes such that λp(K) > 1. We

can now restate this conjecture in the case of K = Q(i) and K = Q(
√
−3) in a way

that may be of interest to those who study Euler and Glaisher numbers, as well as

Gauss factorials:

Conjecture 1. There are infinitely many primes p ≡ 1 (mod 3) such that Gp−1 ≡

0 (mod p2). Equivalently, there are infinitely many primes p ≡ 1 (mod 3) such that

p is 1-exceptional for m = 3.

Conjecture 2. There are infinitely many primes p ≡ 1 (mod 4) such that Ep−1 ≡

0 (mod p2). Equivalently, there are infinitely many primes p ≡ 1 (mod 4) such that

p is 1-exceptional for m = 4.

87



REFERENCES

[1] Berndt, B.C., Evans, R.J., and Williams, K.S., Gauss and Jacobi Sums. Wiley,
New York, 1998.

[2] Childress, N., Class Field Theory, Springer Science & Business Media, Oct 28,
2008, https://doi.org/10.1007/978-0-387-72490-4

[3] Childress, N., λ-invariants and Γ-transforms. Manuscripta Math., 64 (1989), 359-
375.

[4] Childress, N., Examples of λ-invariants. Manuscripta Math., 68 (1990), 447-453.

[5] Childress, N., The coefficients of a p-adic measure and its Γ-transform.
Manuscripta Math. 116, 249–263 (2005).

[6] Cornell, G., Relative genus theory and the class group of l-extensions. Transactions
of the American Mathematical Society 277 (1983): 421-429.

[7] Cosgrave, J.B., and Dilcher, K., The multiplicative order of certain Gauss facto-
rials. International Journal of Number Theory Vol. 07, No. 01, pp. 145-171 (2011)

[8] Cosgrave, J.B., and Dilcher, K., The multiplicative order of certain Gauss facto-
rials, II., Funct. Approx. Comment. Math. 54 (1) 73 - 93, March 2016.

[9] Deuring, M., Die Typen der Multiplikatorenringe elliptischer Funktionenkörper
Abh. Math. Sem. Hansischen Univ. 14, (1941). 197272.

[10] Dummit, D., Ford, D., Kisilevsky, H., and Sands, J., Computation of Iwasawa
lambda invariants for imaginary quadratic fields. J. Number Theory, 37 (1991),
100-121.

[11] Ellenberg, J., Jain, S., and Venkatesh, A., Modelling λ-invariants by p-adic ran-
dom matrices. September 2011 Communications on Pure and Applied Math- emat-
ics 64(9):1243 - 1262

[12] Ferrero, B., and Washington, L., The Iwasawa invariant µp vanishes for abelian
number fields. Ann. of Math., 109:377-395, 1979.

[13] Gold, R., The nontriviality of certain Zl-extensions, J. Number Theory 6 (1974),
369-373.

[14] Glaisher, J.W.L., On a Congruence Theorem relating to an Extensive Class
of Coefficients, Proceedings of the London Mathematical Society, Volume s1-31,
Issue 1, April 1899, 193–215.

[15] Glaisher, J.W.L., On a Set of Coefficients analogous to the Eulerian Numbers,
Proc. London Math. Soc., 31 (1899), 216-235.

88



[16] Gross, B. H., Koblitz, N., Gauss Sums and the p-adic Γ-function. Annals of
Mathematics, 109(3), (1979), 569–581. https://doi.org/10.2307/1971226

[17] Horie, K., A note on basic Iwasawa λ-invariants of imaginary quadratic fields,
Inventiones Mathematicae, 1987, Volume 88, Number 1, Page 31

[18] Ito, A., On certain infinite families of imaginary quadratic fields whose Iwasawa
λ-invariant is equal to 1, Acta Arith. 168 (2015), 301–339.

[19] Iwasawa, K., A note on class numbers of algebraic number fields, Abh. Math.
Sem. Univ. Hamburg, 20(1957), 257-258.

[20] Iwasawa, K., On Γ-extensions of algebraic number fields. Bull. Amer. Math. Soc.,
65 (1959), 183-226.

[21] Iwasawa, K., On p-adic L-functions. Annals of Mathematics , Jan., 1969, Second
Series, Vol. 89, No. 1 (Jan., 1969)

[22] Iwasawa, K, On the µ-invariants of Z`-extensions. Number Theory, Algebraic
Geometry and Commutative Algebra, in Honor of Yasuo Akizuki, Kinokuniya,
Tokyo (1973), pp. 1-11.

[23] Koblitz, N., p-adic Numbers, p-adic Analysis, and Zeta-Functions (Second Edi-
tion). Springer, New York, 1984.

[24] Kubota, T. and Leopoldt, H. W., Eine p-adische Theorie der Zetawerte. I.
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