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ABSTRACT

Soft robots provide an additional measure of safety and compliance over tradi-
tional rigid robots. Generally, control and modelling experiments take place using a
motion capture system for measuring robot configuration. While accurate, motion
capture systems are expensive and require re-calibration whenever the cameras are
adjusted. While advances in soft sensors contribute to a potential solution to sensing
outside of a lab environment, most of these sensing methods require the sensors to
be embedded into the soft robot arm. In this work, a more practical sensing method
is proposed using off-the-shelf sensors and a Robust Extended Kalman Filter based
sensor fusion method. Inertial measurement unit sensors and wire draw sensors are
used to accurately estimate the state of the robot. An explanation for the need for
sensor fusion is included in this work. The sensor fusion state estimate is compared to
a motion capture measurement along with the raw inertial measurement unit reading
to verify the accuracy of the results. The potential for this sensing system is further
validated through Linear Quadratic Gaussian control of the soft robot. The Robust
Extended Kalman Filter based sensor fusion shows an error of less than one degree

when compared to the motion capture system.
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Chapter 1

INTRODUCTION

1.1 Background

Soft robots have been gaining a lot of traction over recent years within the robotics
community, because of the innate safety that a soft robot provides. Traditionally when
rigid robots are used in the same workspace as humans, many safety precautions are
taken to ensure the protection of the human. If contact is made between a rigid
robot and something fragile, damage is likely to occur. Vasic and Billard (2013)
carries out a survey classifying the danger cause by rigid robots. Soft robots are
flexible, soft, and adaptable, allowing them to be used in environments not suitable
for rigid robots. When contact occurs between a soft robot and its environment,
the soft robot will bend accordingly without any harm or injury to the contacted
object or person. Much like Bicchi et al. (2002) safe human interaction is the driving
motivation behind a number of soft robot arms. Soft robot safety opens the door
to new areas where robots could enhance our everyday lives. In this paper, steps
are taken towards a soft robot capable of working in any environment with accurate
sensing and control. This includes applying modeling techniques, creating a sensing
system including fusion algorithms, and proving the controllability of the robot using
the sensor fusion approach.

In Lee et al. (2017), a review of potential soft robot application is carried out.
Some of the applications they find include human-machine interface and interaction,

locomotion and exploration, manipulation, medical and surgical applications, and
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Figure 1.1: Five Soft Robots Manufactured with Unique Fabric and Polymer Mate-
rials. (Nguyen et al., 2019), (Best et al., 2015), (Al-Ibadi et al., 2018a), (Renda et al.,
2014), (Al-Ibadi et al., 2018b)

rehabilitation and wearable robots. The Octarm, an octopus inspired arm, manipu-
lates objects and performs basic pick and place tasks both on ground and in the water
(Grissom et al., 2006). Initial concept design and testing for manipulation tasks with
a soft arm in space has begun in Troise et al. (2021). In Best et al. (2015) a soft
humanoid was designed and controlled for safer human-robot interaction. Visual ser-
voing has been performed with a soft manipulator (Wang et al., 2017). Soft robots
may also be used in assisting the elderly or disabled with daily living tasks (Nguyen
et al., 2019). This project aims to assist in advancing the applications for a soft

robotic manipulator.



1.2 Challenges

While the application of soft robots shows promise, the flexible nature of soft
robots creates additional challenges that must be considered (Laschi, 2016). Mod-
elling a rigid robot arm requires knowing the parameters of the links and joints of
the robot. For a soft robot continuum arm, there is not a constant axis of rota-
tion among the joints, thus traditional robot modelling techniques will fail without
making additional assumptions. Obtaining accurate models and equations of motion
that describe the robot as it moves through space requires novel techniques based
on similar fields of research. These modelling approaches include applying mechanics
of materials to describe the bending motion of the arm, making assumptions based
on constant-curvature to incorporate traditional robot modelling techniques, dividing
the robot into infinitesimally small masses or discs, or creating artificial neural net-
works and machine learning algorithms to learn the dynamics of a system (Armanini
et al., 2021). These modeling techniques require more formulation, calculation, sim-
ulation, or training than the traditional robot modeling approaches, thus research is
done in this area to reduce the amount of modeling time and cost for a soft robot.

Before moving from dynamic models to controls, sensing must be considered.
Again, when considering traditional rigid robots, sensing the state of the robot is
simpler than it is for a soft robot, because of the use of encoders attached to the
joints of the robot. Soft robots may not have specific joints and using a hard encoder
would limit the softness of the robot. For this reason, sensing of soft robots has
become another topic of interest within soft robotics. Sensing must consider both
rotation about a certain frame or axis and elongation depending on the actuator de-

sign. Instead of only using angle and angular velocity as the states of the robot, some



consider arc length, curvature, joint translation, or distance to the axis of rotation
to be state variables. Many of the sensors in related research papers are manufac-
tured by the researcher, which means the sensors aren’t readily available for use in
soft robot research. These sensors may be embedded into the system which make
the manufacturability of a soft robot more difficult and complex. Section 2.2 covers
related works on soft robot sensing.

Most soft robot research is done in a lab environment using some form of motion
capture to sense the position of the robot as seen in figure 1.2. While extremely
accurate, these systems are expensive, not portable, and take time to set-up and
calibrate. Using motion capture outside of a lab environment is not practical, thus
alternative state estimation techniques are necessary. Without use of motion capture,

and due to the large uncertainty of a flexible soft robot, it is difficult to measure

motion capture
camera (x8)

recorded motion
capture marker
(output)

motors and
spools (inputs)

SUred
posﬁops

Figure 1.2: Three Distinct Motion Capture Setups for Robot Sensing (Duriez, 2013),
(Bern et al., 2020), (Scharff et al., 2021)



the state of a robot without some error in the readings. The material of the robot
and sensors are subject to degradation over time which may cause sensor drift and
inaccuracy. Currently soft robot manufacturing creates imperfections in the robot
which makes state estimation more difficult. The motion of the robot is not always
predictable meaning that sensor readings won’t explain the exact motion of the robot.
Filtering and estimation in addition to sensor readings may give more accurate results
and should be considered as part of the sensing system. Apart from the accuracy of
the sensor, using embedded sensors limits the transferability of the sensing system
to be used on soft robots made with different materials. A brief overview of state
estimation in addition to sensing is given in section 2.3. Further exploration of state

estimation using multiple sensors is included.
1.3 Contributions

With the challenges of soft robot estimation and control in mind, this thesis
proposes to find a practical solution to soft robot state estimation. This paper aims
to generate a portable, transferable sensing system with a state estimator that can
handle high nonlinearities and uncertainty in a robot model. These design focuses
will save future soft robot designers time and money with no need for costly sensing
techniques. The possibility for a sensing system that could be used on most if not all
types of soft robots would be beneficial as well.

This Thesis proposes an improved state estimation approach that fuses three sen-
sor measurements together with the dynamic model. The fusion takes place using a
variation of the Extended Kalman Filter (EKF), the Robust Extended Kalman Filter

(REKF), with the derived equations of motion. The proposed REKF filter provides a



more robust estimator than other current estimation approaches. The contributions

of this Thesis are as follows:

1. Realization of a portable, transferable sensor fusion system consisting of a wire

draw sensor, accelerometer, and gyroscope.

2. Implementation of a Robust Extended Kalman Filter (REKF) for improved

accuracy and robustness in state estimation.

3. Validation of the sensing system in control through implementation of a Linear

Quadratic Gaussian (LQG) controller.

The remaining sections of this paper are divided into the following chapters: In
chapter 2, an overview of the related works is given including the contributions to
this paper. Chapter 3 describes the modeling approach used in this paper, the sensor
selection and characterization, the state estimation algorithms, and the LQG control
scheme. Chapter 4 describes the experiments and results for validating the sensor
fusion algorithms. Finally, Chapter 5 sums up this work with future applications and

extensions to the research completed.



Chapter 2

RELATED WORKS

2.1 Modeling

The challenge of modelling a compliant mechanism with large amounts of uncer-
tainty and error has led to unique modeling methods that stray from using Denavit-
Hatenburg (DH) parameters, forming homogenous transformation matrices and cal-
culating traditional Jacobians for the robot arm. More evaluation on each joint
individually results in much more complex models. Researchers have incorporated
modeling techniques that draw from other fields of study commonly used for model-
ing compliant systems. In Armanini et al. (2021) soft robot modeling techniques are
categorized into four groups: continuum mechanic models, geometric models, discrete
material models, and surrogate models.

Continuum mechanic models are based on the mechanics of a material including
the materials tendency to bend and stretch under a given force or torque. The
manipulator is seen as having a backbone with compliant tendencies (Rao et al.,
2021). The material properties must be known for this approach. When multiple
materials make up a soft robot or the materials don’t naturally bend the continuum
mechanic model will have uncertainty the model does not account for.

Geometric models make assumptions or model the shape of a robot based on its
geometry. The most popular technique in this group is based on piecewise-constant
curvature, a method used with continuum robots (Chawla et al., 2018), (Robert

J. Webster and Jones, 2010). Assuming the curvature of the rotation is consistent
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throughout the arm simplifies the geometric model. The assumptions made for this
technique also create uncertainty within the robot, since the joints won’t follow a
constant curvature in all scenarios.

Discrete material models build off the other groups by discretizing the system.
The robot arm will be separated into any number of discrete groupings sometimes
infinitesimally small to simplify the amount of motion in each section. Finite element
methods (FEM) sum up the results from all sections to create a wholistic model. The
discrete material models approach improves the accuracy of geometric and continuum
mechanic models, but the time required to carry out the FEM is significant and
changes in the robot behavior may require additional formulation.

To better model the large uncertainty inherent in soft robots, machine learning
approaches have been explored as they pertain to soft robots (Kim et al., 2021a),
(Wang et al., 2021). Machine learning more accurately predicts all uncertainty caused
by manufacturing error through large amounts of training. Much like the discrete
material models, when anything in the environment changes, the system must be
retrained which takes time. Further exploration into surrogate models includes order

reducing algorithms.
2.2 Sensors

As mentioned previously, rigid encoders typically used in rigid robots are not
practical for use in a soft robot. Encoders are too hard, too heavy, and there
is no effective place to position them due to the variable axis of rotation of con-
tinuum joints. Researchers have turned to much less conventional sensing tech-

niques that retain the compliant nature of the robot with slight changes to the



impedance. Lee et al. (2017) describes the manufacturing of microfluidic sensors that
measure changes in capacitance and inductance to describe the motion of the joint.
This is put in practice in a silicon-elastomer based soft robot (Kim et al., 2021b).
Plastic optical fibers (POF) measure curvature in

PneuNet

Lunni et al. (2018), by shining light into the fibers Actustor_ ,

and measuring how much light reaches the end of the
fiber. As the robot rotates, so do the fibers, which

admit less light then in the straightened position. An
Jo—f—o—fl—off

embedded strain sensor attached throughout a joint fengon

F’/OF Accelerometers

also measures curvature assuming constant curvature

- &« - — 4
(Loo et al., 2019a). Hyatt et al. (2019) proposes a :[ \%

global measurement for orientation based on the Vive Figure 2.1: Top: Embed-

ded Strain sensors. Middle:
Vive Trackers. Bottom: Em-
bedded POFs and Accelerom-
eters.

motion tracker and IMU sensors attached to the end
of each joint. It is important to note that soft fabric
based manipulators are more accommodating to rigid
sensors than polymer based soft robots. The majority of these sensors are embedded

in the robot meaning the sensors are positioned during manufacturing.
2.3 State Estimation

Accurate sensing is difficult without the use of external sources such as a motion
capture system. To improve the state estimation using on board sensors, signal filter-
ing can be used to better estimate the state of the robot. A Bayesian network filters
noisy sensor signals and incorporates hysteresis into the model for improved state

estimation (Kim et al., 2021b). Loo et al. (2019a) uses the EKF to combine a model,



obtained through machine learning, with strain sensor measurements. Hyatt et al.
(2019) proposes a new method for calibrating multiple unrelated sensor measurements
for improved state estimation and global orientation estimation. An Adaptive Ex-
tended Kalman Filter integrates optical measurements with a simplified steady-state
model (Lunni et al., 2018). In Loo et al. (2019b) an H-infinity based EKF very similar
to the REKF is used to simulate the state estimation for both bending and extension
in a highly nonlinear soft robotic system. Fusing multiple sensors together into a
single estimate may provide a more accurate sense of the where the robot is in space.
This is one area of state estimation that has yet to be thoroughly explored. Sensor
fusion is used however, to estimate the force and position of contact with capacitive
sensors (Navarro et al., 2020). Further exploration into the optimization of sensor
placement and estimation accuracy can improve the sensing system results (Rupert

et al., 2021).
2.4 Control

As control is not the main contribution of this paper, an extensive overview of
the control of soft robots is not given. Instead, a quick summary is offered. Due
to the high uncertainty and potential for high non-linearity of a soft robot, a large
number of control schemes have been attempted. These control schemes can be sep-
arated into three distinct groups, as shown in Wang and Chortos (2021), namely:
open-loop control, closed-loop control and autonomous control. Open loop control
methods don’t require sensors. Model predictive control, impedance control, opti-
mal linear quadratic regulator control, sliding mode control, are but a few commonly

used closed-loop controllers. Autonomous controllers include machine learning, arti-

10



ficial intelligence and reinforcement learning control schemes. All these methods have
shown suitable for soft robot control. This Thesis aims to provide more accurate state

estimation leading to more reliable control in the future.
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Chapter 3

METHODS

In this chapter, the modelling approach and sensor selection are described at length.
This includes the derivations of the equations of motion, placing those equations in a
compatible form to be used in the REKF and describing the equations used to sense
rotation of the arm. The state estimation algorithms are then demonstrated including
the alteration made for the REKF from the EKF. Lastly, an LQG controller based

on the REKF is provided for further validation of the state estimation system.
3.1 Robot Design

This research uses an elephant trunk inspired soft robot joint as shown in figure

3.1, based on the work from Nguyen et al. (2019). The robot is made up of a fabric

Figure 3.1: Elephant Inspired Soft Manipulator and Joint Frames for Describing
Motion
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spine which is rigid enough to provide curvature without extension when actuated.
The actuation is provided by inflating the blue woven thermoplastic polyurethane
pockets in series forcing the rigid fabric into a bending motion. In future work, this
robot joint can be combined with similar joints to create a soft robot arm with a large
range of motion. All modeling, state estimation, and control derivations are formed
with this actuator in mind.

This robot has infinite degrees of freedom allowing it to bend in all directions.
This is explained in Figure 3.1 where the variable 1) measures the angle about the z,
axis from x; to the projection of the direction of bending x;' on the base axis. The
angle theta measures the rotation angle of the actuator. Due to the complexity of

this problem this work focuses on planar motion where the angle v is set to 0.0.
3.2 Modeling

Referring back to the four groups of modeling in section 2.1, namely continuum
mechanic models, geometric models, discrete material models, and surrogate models,
a modeling method was selected for this research based on formulation time while
avoiding the direct use of material properties that made up the robot. A design that
does not require a large amount of simulation, training, or calculation is beneficial in
scenarios where the environment of the robot changes. With this known, the hybrid
approach that focuses on the geometric curve of the joint is selected. This model
develops an equation of motion based on the geometry of the robot, and some of the
parameters are evaluated using a grey-box model approach. It’s important to note
that while material properties are not dealt with directly, the material properties

effect the parameter estimation as is discussed in the next few paragraphs.
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With the model design requirements noted, the piecewise constant curvature
(PCC) geometric model was selected. This model uses the assumption of constant
curvature to divide the curved joint into a system of joints that approximate the
curve. The assumptions and background described for this modeling technique are
clearly explained in Della Santina et al. (2018). While the constant curvature as-
sumption does simplify the model, it also creates some amount of uncertainty in the
projected motion of the arm. Figure 3.2 shows the simplification of a joint of con-
stant curvature by taking the compliant joint and dividing it into three or four joints
in series. The three joints are ordered as a revolute joint followed by a prismatic
joint followed by an additional revolute joint (RPR). The four joints are ordered as
a revolute joint, two prismatic joints with an additional revolute joint (RPPR). The
four joint simplification is used in this paper. Table 3.1 shows the resulting Denavit
Hartenberg (DH) parameters for a single soft joint where ¢ represents the rotation

angle and p is the point mass.. The mass and inertial properties are estimated by

. A
sin()
L; ]

/
I
J I
L q r.
L
/
P

(a) RPR (b) RPPR

Figure 3.2: Generalization of a Continuum Joint of Infinite Freedoms to a Three
(a) or Four (b) Prismatic and Revolute Joint Approximation.
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Table 3.1: DH-Table for the RPPR Approximation of a Single Soft Joint.

Link 7} d a
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) -ii'iq_
sinf <
3 0 Li (3) 0 T 0
qi 2
qi
4 — 0 0 0 0
2

assuming a point mass exists between the prismatic joints.
With the order of revolute and prismatic joints established and the DH-parameters
evaluated, the kinematic relationships and dynamic equations of motion can be de-

rived. The dynamics for planar motion of this soft robot are given by

M(q)G+C(q,q) +G(q) =7 — Kq— Dq (3.1)

T =aR(¢)p (3.2)

R(6) = —sin(7/6) —sin(w/6) 1 (33)

cos(m/6) —cos(m/6) 0
where q, ¢, ¢, are the states variables or bending states of the robot. M, C', and
G are the inertia matrix, Coriolis and centrifugal matrix, and gravitational matrix
respectively. A spring term K and damping term D are added to the dynamics due to
the tendency for the robot to naturally return to the upright position when no pressure
is applied. The torque caused by pressure tau is obtained through multiplying a

pressure constant « to a transformation matrix R(¢). The unknown terms K, D,

and « are found using the nonlinear system identification toolbox in MATLAB. The
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derivation of M, C, and G are shown in full in Cosimo’s work (Della Santina et al.,

2018) and the equations are included in Appendix B.
3.3 Sensor Selection

One goal of this research project was to create a state estimation system that
is transferable between different soft robot platforms. As such, the IMU and wire
draw sensors proposed for this project can be placed on the exterior of any soft robot
platform. The IMU shown in figure 3.3, containing an accelerometer, gyroscope, and
magnetometer provides multiple sensor in one compact device. The draw sensor, also
shown in figure 3.3, measures the length of the wire that has been extracted. The IMU
sensor has proven to be beneficial for measuring orientation and rotation of a system.
While each component contributes to the overall accuracy of the IMU sensor, the
accelerometer and magnetometer produce errors
depending on how and where the device is used.
The accelerometer at times has an issue when lin-
ear accelerations occur. For now the device will
be used in stationary environments, thus the ac-
celerometer is included. Depending on the en-

vironment and electronics surrounding the IMU

sensor, the electromagnetic readings may become

distorted. Thus the magnetometer is excluded Figure 3.3: Top: Wire Draw

Sensor. Bottom: Inertial Mea-

from the design. surement Unit (IMU)

While each of the proposed sensors measures

the rotation angle of a robot, there are inherent errors, which are minimized by the

16



use of sensor fusion. The accelerometer and gyroscope are subject to drift and noise
issues respectively. Over time, the error caused by the IMU will become large enough
causing the sensor measurement to eventually be unusable. These sensors however
are very accurate when measuring slow changes in orientation. The main source
of accelerometer and gyroscope error shown in this project is primarily caused by
alignment issues between the two IMUs used. The wire draw sensor is not subject
to drift, but due to mechanical constraints is subject to timing delay (latency) errors
(figure 3.4). This is caused from the internal friction of the recoiling mechanism
and contact points of the wire. Further design adjustments alleviates this error in
this paper, however when multiple actuators are joined together to form a long arm,
friction is likely to delay the draw sensor readings. Sensor fusion creates a more
consistent state estimation, because when the accelerometer and gyroscope experience
drift, the draw sensor accounts for the error. Likewise, when the draw sensor has

latency issues, the accelerometer and gyroscope counteract the delay. Sensor fusion

——Mocap
——wire

o O
N

angle(radians)
<

0O 20 40 60 80
time(s)

Figure 3.4: Latency Issues from the Draw Wire Sensor Due to Friction.
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should portray more accurate estimates than each sensor individually.
Each sensor is manipulated to derive the angle of rotation. Therefore the vector
z 1S
eaccel

(3.4)

z = egyTo

ewire

The bno055 IMU sensor gives raw accelerometer and gyroscope data. Two IMU
sensors, one on the base and on the robot, are used for accelerometer and gyroscope
readings. For the accelerometer, the rotation about the x-axis of the robot is
evaluated by subtracting the gravitational force on the IMU on the robot by the

IMU on the base. This is given by

ez,base = arctan 2(_ay,basea az,base) (35)

Figure 3.5: a) Wire Draw Sensor Location for Measuring Rotation in All Directions.
b) Distance from Sensor to Bending Axis. c) Depiction of delta. (Not used in this
work)
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ex,robot = arctan 2(_ay,robot7 az,robot) (36)
eaccel = ezp,robot - ex,base (37)

The rotation given by the gyroscope is acquired directly from the IMU. The python

package used calculates rotation from rotation rate.

The draw wire sensors require the constant curvature assumption to calculate the
angle given the arc length measurements from the wire as shown in Della Santina
et al. (2020) (figure 3.5). Note that since the robot only experiences planar motion,
only two draw wire sensors are needed to calculate the bending angle based on arc

length. Thus the angle of rotation is given by
Gwm = (Ll — LQ)/(2 * d,«) (38)

where L1, Lo are the draw sensor readings, and d, is the radial distance from the
wire to the center of bending which is assumed to be at the center of the robot

cross-section.
3.4 Extended Kalman Filter

Before discussing the EKF, the dynamic equations must be linearized, discretized,
and placed in state space form. Placing equations (3.1)-(3.3) in state space form with

r1 = q and x9 = ¢ gives

T X2

iy M~ (=Cxy — G — Kxy — Dzy + aR(¢)p)

Discretizing the equations results in

19



L1,k
- f(xk—l) = T1,k—1 + $27k,1At X2 k-1 + M_1<—C£132 -G - K.’L‘l — DI‘Q + OzR(¢)p)At
T2k

(3.10)
The EKF requires a linearization of the state equations. Thus the linearization A is

A_(?f(:c) A Ay

= = 3.11
8:6;{,1 A3 A4 ( )
Ay = O =1 (3.12)
0x1 1 t=dp_1
A, = DT = At (3.13)
3902,k—1 t=Fp_1
oG
As = Oz = M! ( _ 9@ Topo1 — - K) At
8951,k;-1 t=Fp_1 5$1,k—1 p=F_1 8$1,k—1 e=F_1
oOM~!
9 ( — Cl’g’k,1 —G - le,kfl — D.I‘g}k,l + CKR(¢)]?) At
L1k—1 =3,
(3.14)
Ay = O =1+ ]\/[*1(— o¢ —C - D)At (3.15)
(91’2,k—1 =y 1 axz,k—1 r=F5_
where QM — _ -1 _0M pr-1

0z 1 oxy k1

The Extended Kalman Filter (EKF) is chosen due to its low memory usage. Only
values from the previous time step are necessary for the EKF. Since the equations
of motion are non-linear, the Extended Kalman filter (EKF) is considered over the

Kalman Filter. The discrete state space equations are now of the form
T = f(l"k_l, U) + Wi (316)

2 = h(ZL’k) + v (317)
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where = are the states, u is the input, f and h are the dynamics and observation

terms, w, v are the system noise.

The EKF consists of a two step process. In the first step, a prediction is made using
the dynamics from equations (3.1) - (3.3). The system covariance is also estimated
for making corrections to this approach in the next step. These prediction equations

are
Ty, = f(@k-1) (3.18)

Py = As 1P AL+ Q (3.19)

Z, and P_ are the state and covariance predictions using the previous values. A is
the linearized matrix derived in equations (3.11) - (3.15). @ represents the process

covariance and R, which will be used later on is the observance covariance.

The second step corrects the predictions using the Kalman gain L, sensor measure-
ments z and observer covariance R. The updated state estimate ) and covariance

estimate P, are now give by

Ly =P HI (H.P;Hf + R)™ (3.20)
P, = (I — LyH,)P; (3.22)

Hy, is the linearized matrix of h(xy). The observation equation is assumed to be
linear, thus h(zy) = Hxg. I is the identity matrix. A condensed flow of the EKF is

shown in Appendix A.
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Figure 3.6: Validation of the Proposed Dynamic Model in Response to a Sine Wave
Input

3.5 Robust EKF

The EKF, while beneficial in some scenarios, struggles to obtain estimates to
highly nonlinear systems or systems with large uncertainty. The estimates diverge
quickly due to the linearization of the nonlinear system. Such is the case with the soft
robot used in this work, the model of which can be seen in Figure 3.6. As shown, errors
occur when deflating the robot in the prediction model prove there exists uncertainty
with the dynamic equations. The deflation is difficult to model due to no internal
torque from the pressure forcing the soft robot back into the upright position. Instead
the model estimates the stiffness and damping terms, which aren’t as accurate. This
uncertainty results in solutions that diverge immediately.
Instead of continuing with the EKF, variations to the EKF are considered. These
variations have been designed to overcome the non-linearities of a dynamic system.

Figure 3.7 shows a brief comparison experiment between two variations of the EKF":
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Figure 3.7: Quick Comparison of Variations to the EKF Including Root Mean
Square Error.

The Robust Extended Kalman Filter (REKF) and the Unscented Kalman Filter
(UKF). The EKF results are not included, since the filter diverges immediately, but
the KF based on kinematics is shown to prove the EKF variations improve the re-
sults. The error during deflation is due to the friction error described in section 3.3.
This comparison does not constitute as proof that the EKF outperforms the UKF,
but rather demonstrates that both filters are viable options. The UKF improves
the accuracy of the filter through the use of multiple predictions, while the REKF
improves the stability of each estimate through results from H-infinity control. The
UKF derivation along with a comparison of each algorithm with the EKF is shown
in Appendix C and A respectively. Since the EKF was seen as unstable for the robot
presented in this paper, the Robust Extended Kalman Filter will be used for state
estimation and control in this work. The UKF shows improvement, but the problem
of divergence persists unless a sampling time of < .0001 is used which exceeds the
operating speed of the raspberry pi described in chapter 4.

The EKF attempts to achieve local optimality through the underlying Riccati
equation. This equation however is not always stable, because there is no guarantee

the solutions to the Riccati equation are positive definite. The Robust Extended
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Kalman Filter improves the stability of the design by adding a positive definite term
to the Riccati equation as first proposed in Einicke and White (1999). An update to

the signal model (3.16)-(3.17) is given by
xr = f(2r-1,u) + Bwg_1 (3.23)
2 = h(l’k) + Dywy, + vy, (324)

where B; and D, are the linearized process noise and observation noise matrices
respectively. The change to the Ricatti equation results in the following adjustments

to the prediction equations (3.18)-(3.19)

&y = f(wp-1) + BQD Ry (= = Hyf (w-1)) (3.25)

P; = (A, — BQQDT R, Hy) Py (Ax — B.QDT R, H)" + B(Q — QDI R,”' D,Q)B”
(3.26)

where

Equations (3.20)-(3.22) remain the same for the REKF. These updated equations

obtain a stable solution more often than the traditional EKF.
3.6 LQG Control

To further prove the validity of this state estimation system, the REKF is used
in Linear Quadratic Gaussian (LQG) Control. LQG was selected as the controller
due to its simplicity and ease of use with the EKF or REKF. This controller was

not chosen to outperform the many currently presented in soft robotics work. The
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experiments explained in Chapter 4 will evaluate the accuracy of this state estimation
approach and the accuracy of this approach enveloped in a controller. Thus in this
section, the LQG formulations, using the REKF instead of the EKF are discussed.
Traditionally, the LQG controller combines the EKF with a Linear Quadratic
Regulator (LQR) controller. In this LQG controller LQR is used with the REKF
including the linearized equations as previously discussed. Such can be seen in figure
3.8. While this may not be the most accurate controller used within the soft robotics
community, the implementation of this controller is simple and effective. The follow-

ing discrete cost function is minimized to achieve the optimal solution:

N-1
J=alFoy+ Y (a] QiX; + uf Rju;) (3.28)

=0
with the gain F' equal to zero for simplicity. The controller than uses the same

equations for the REKF (3.20)-(3.22) and (3.25)-(3.26). The LQG controller is

ey = Tak — Tk (3.29)
up = —Kyey, (3.30)
x, = f(xk-1) + Bru + Li(z — Hydy) (3.31)
6, ¥~ e LQG u L
- Controller System
f(x)
X %, P
Robust EKF 2 Sensors

Figure 3.8: LQG Block Diagram with Robust EKF
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e represents the error between the desired state x4 and the current state ;. The

LQG controller gain K is evaluated by

K = (Bl'Spy1B+ R 'Bl'S, 1 A1) (3.32)

Se = A} (Sis1 — Sks1 Bi(Bl Spy1 By + R) BT S 1) A+ QF; (3.33)
It is important to note the difference between the covariance matrices ), R and
LQG gains %, R*. The equation for S} is derived by following the Riccati equation

backwards in time. The gains were selected through trial and error beginning with

identity matrices and increasing one matrix at a time.
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Chapter 4

TESTS AND RESULTS

The goal of this paper is to provide a sensor fusion system comparable to that of
motion capture. This allows soft robots to be used in all environments rather than
only in a lab. To achieve this goal, as described in this chapter, tests were run to
compare the results of the proposed sensor fusion estimation with motion capture
readings. Results are also compared to the on board filtered IMU data to verify if the
REKF estimate improves upon the IMU data alone. The purpose is not to create a
sensing system more accurate than motion capture, but rather a system that comes
close the accuracy of motion capture. To prove the adaptability of these algorithms,
LQG control experiments are performed as explained in this chapter.

4.1 Experimental Setup

The two wire sensors are placed on opposite sides of the robot. The wire housing is
secured to the base and the wire stretches up to the end of the robot as shown in figure

4.1. Note: the wire sensor attached

to the back of the robot is not visible

Motion
Capture
Markers

in this photo, and an additional IMU MU

is placed at the base. The wires are Sensor
Wire

Stretch
Sensor

secured to the body of the robot to
ensure an accurate measurement of
. Fi 4.1: Pl

the arc length. One IMU sensor is isure Sensor Placement

placed on the base of the robot and the other is placed on the tip of the robot. The
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Figure 4.2: Physical Controller Components

orientations of the IMU sensors are matched at the origin to avoid positioning errors.

The robot as described in 3.1, is controlled using two raspberry pis. The first
raspberry pi or the low-level controller sends the desired pressure values to three
SMC ITV1000 series proportional valves. The low-level controller also measures the
pressure in each actuator and sends this information to the high-level controller.
The desired pressure readings are sent from the high-level controller to the low-level
controller. This high-level controller receives the pressure readings, motion capture
readings, and sensor measurements then performs all algorithms described in 3. The
wire sensor readings are received through an ADS1263 analog to digital converter and
the IMU sensors communicate the sensor measurements with the high-level controller
through 12C communication. The communication between the raspberry pi’s and the
motion capture system takes place through Ethernet connections. Figure 4.2 shows

the physical components that make up the controller.
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There are two control options that are used in this research. The first is open-loop
control where pressure values are controlled to follow a desired pressure trajectory.
The cycle time for the raspberry pi for open-loop control is 0.123 seconds. The
second option involves closed-loop LQG control where all controller calculations are
carried out on the high-level raspberry pi. The closed loop configuration has a cycle
time of 0.0997 seconds. The somewhat slow cycle time for the open and closed-loop
methods is due to the large amount of calculation needed to linearize the equations
each iteration. In both cases, the REKF is running on the high-level controller to
estimate the state of the robot at all times. The open-loop option is used for REKF
comparisons with the motion capture readings, and the closed-loop option is used for

further validation that control is possible given a portable state estimation approach.
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4.2  Sensor Fusion

The first experiment aims to explore the accuracy of the REKF. A simple, open-
loop, square wave and sine wave are implemented while the motion capture and
REKF estimates are recorded. The low-level controller commands the pressure to
a maximum amplitude of 25 psi in both experiments. Figure 4.3 shows the fusion
results from the step input. Each sensor is displayed individually with the REKF
Fusion represented as well. All sensors give the same relative measurement to one
another as can be seen by the wire plot covering the other measurement plots for the
peaks and valleys of the response. The wire draw sensor gives a noisy reading due
to the large resolution needed to convert the analog signal to a digital signal for the
raspberry pi to read. There are some minor jumps recorded for the accelerometer and
gyroscope, but these jumps are minimized by the REKF.

The square wave comparison between the Motion capture set up, IMU and Robust
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Figure 4.5: Fusion of Each Sensor with Respect to a Sine Response

EKF are shown in figure 4.4. The REKF sensor fusion estimate outperforms the IMU
filtered data and follows the step response very closely. The noise in the signal is likely
caused by resampling issues to match each time-step between sensors. Regardless of
the minor noise, the sensor fusion estimate has a root mean square error (RMSE) of
less than 1 degree as seen in table 4.1.

The response to the sine wave input (figures 4.5-4.6) is similar to the square wave
except for the friction shown by the wire sensor. On this particular test, the wire was
required to make a 90 degree turn immediately on leaving the housing. On future
tests this design was improved to avoid this additional friction. Despite the delay in
the wire readings, it is interesting to note how the inaccuracy shown by the wire sensor
does not translate to the REKF results as indicated in the RMSE values from table
4.1. This proves the benefit provided by sensor fusion over any single sensor. When
the wire sensors are inaccurate, the sensors from the IMU correct those inaccuracies.

Notice that the sensor fusion approach outperforms the IMU filtered measurements
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Figure 4.6: State Estimate Compared to Motion Capture (Ground Truth) and

Filtered IMU Measurements in Response to a Sine Wave.
in both tests. This test also demonstrates how the uncertainty of the model (figure

3.6, especially during deflation, is overcome by the sensor measurements and REKF.
4.3 REKF Limitations

The next experiment intends to find where the REKF struggles to obtain an accu-
rate estimate. This requires exploring the extremes of the robot such as the maximum
bending angle and the highest operating frequency. This particular actuator reaches
it’s maximum bending angle at or near 35 psi. Due to the slow nature of pneumat-

ically driven soft robots, the maximum frequency tested is .5 Hz. Figure 4.8 shows

Table 4.1: RMSE Values in Degrees for the Square Wave (Step Response) and Sine
Wave (Sine Response).

REKF IMU
Step Response 0.6165 1.1033
Sine Response 0.8705 1.3596
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the results from various open-loop configurations with pressure amplitudes ranging
from 10 psi to 35 psi and frequencies ranging from .05 to .5 Hz.

The major takeaway from figure 4.8 on page 35 was discovered when the frequency
increases. As the frequency increases, the REKF estimate is generally below the
motion capture measurements. Besides the highest frequency case, the REKF is only
inaccurate when approaching the maximum amplitude of the desired response. Since
the increase in frequency is the limiting factor for the sensor fusion method proposed,
a BODE plot would be helpful in future work to designate the exact frequency when
the REKF is no longer sufficient for estimating the state. Even with the inaccuracies

shown, the REKF estimates are fairly accurate compared to the motion capture

system.
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Figure 4.7: LQG Control of a Sine Wave Input with a Frequency of .05 and Maxi-
mum Amplitude of 0.8 Radians.
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4.4 LQG Control

As mentioned previously, the purpose of exploring the capabilities of sensor fu-
sion on control doesn’t focus on creating a controller that outperforms the numerous,
currently accepted, soft robot control techniques. Rather the hope is this section pro-
vides further exploration on the capabilities and applications of the proposed sensor
fusion approach. A desired sine function is input into the LQG controller and the re-
sults can be seen in figure 4.7. The controller proves that the REKF state estimation
approach works in succession with an LQG controller, and the controller reaches the
desired trajectory as shown by the motion capture plot.

A drawback to soft robot control is the inflation and deflation time of the robot.
In this control setup there is no vacuum to aid in the deflation of the arm. This results
in slower descents than expected by the dynamic model predictions and controller.
This is represented in the response of the controller after approaching the maximum
amplitude of the sine wave. In this test the controller tracks a trajectory with a
frequency of less than .1 Hz. To increase the frequency of the response with suc-
cessful control, improvements need to be made to the cycle time of the raspberry pi.
Currently the real time calculation of the linearized dynamics is too computationally
expensive to achieve good results at a higher frequency. This is left to future work.
With the limitations stated, the results from the LQG control experiment represent
a step towards full proprioception of a soft robot arm for improved control in any

environment.
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Chapter 5

CONCLUSION

This paper has proposed a sensor fusion approach for state estimation of soft
robot arms based on the Robust Extended Kalman Filter (REKF). A model was
derived following the piecewise constant curvature assumption. The sensing system
incorporated is cost-effective, portable, and adaptable to most soft robot platforms.
The REKF was compared to a motion capture system and results in error of less
than one degree. The accuracy of the REKF proves the potential for this system to
be used outside of a lab environment. The REKF is tested with a LQG controller
demonstrating the practicality for this state estimation approach in control.

The robustness of the REKF was shown by an RMSE of less than 1 degree despite
the imperfect, nonlinear dynamic equations. This approach proposes a more robust
solution than similar state estimation filters used in soft robotics. The positive definite
REKF equations ensure that the solution will not diverge from the desired trajectory.

Overall, the work performed in this Thesis has produced a robust, portable, and
accurate REKF based sensor fusion approach for state estimation. This system
increases soft robot proprioception enabling the robots use in environments where
human-robot interaction is beneficial. This research takes a step towards fully con-
trollable soft robots assisting people with dangerous, rehabilitative, or assistive tasks.

5.1 Future Work

While the results are promising, there are improvements that are left to future

work. First of all the soft robot model shows error on deflation and with initial inputs.
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Further augmentation or filtering would improve the sensor fusion results. Exploring
more accurate modeling techniques that don’t require a large amount of calculation
or simulation time should be considered. Improvements could be made to the REKF
as well. The REKF focuses on stability and may lack optimality. Thus experimenting
with iterative or adaptive alteration could improve the accuracy of the filter.

The transferability of the sensing system shows promise for estimating the state
of most if not all soft robot manipulators so long as the IMU sensor and wire draw
sensor can be attached to the robot. One extension to this project would require
testing this system on several robots and comparing the results. Such a research
project would mostly consist of exploring the necessary changes required to update
the dynamic models for each new arm. This work also sets a foundation for adding
additional joints and exploring non-planar motion, because the sensors are capable of
measuring bending in all directions with the addition of two more wire draw sensors.
Improvements to the control system should also be considered, or rather incorporating
the sensor fusion algorithms with a proven soft robot controller for further proof of

soft robot use in any environment.
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APPENDIX A

EKF FIGURE
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Time Update (**Prediet™)

(1) Project the state ahead
Xp = S a1, 0)
(2) Project the error covanance ahead

P, = AP, AT+ W, 0, W]

Initial estimates for ¥, ) and P,

Measurement Update (“Correct™)

(1) Compute the Kalman gain
- p gl vy T 7T
K, = P.HI(HPH + VR V])
(2) Update estimate with measurement z;
Y = G+ Kz - h(3x,0))
(3) Update the error covanance

P, = (I-K.H,)P;

1

Figure A.1: Diagram Depicting the Flow of the EKF

Algorithm 1 EKF

Initialize:

Tr—1 < To

P+ B

Predict:

Ty, fzr1)

P]; — AlgflpkflAg_l -+ Q
where: R, = R+ D;QDF
Correct:

Ly < P HI'(H.P;HF + R)™*
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Algorithm 2 REKF

Initialize:

Trp—_1 < X

Pk—l < PO

Predict: _

Ty < flak—1) + BQD{ Ry (2 — Hif(w1-1))
P (Aj1 — B:QDI'R, 1H)P(Ay_y

— B,QDI'R, 1H)" + B(Q — QDI R,D,Q)B”
where: R, = R+ D;QD!

Correct:

Ly + P, HF(H.P;H + R)™!

Algorithm 3 UKF

Predict:

Lf?,; <— Z W’;‘:cj

P = Wiy — 2y )y — )"
Correct:

Z Z WJQZJ'

Sk 2 Wils; —a;)(2 — 2)"
Csz — Z ch(sj - ‘%l:)(zj - 2)T
Lk < 05251;1
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APPENDIX B

EQUATION OF MOTION MATRIX DERIVATION
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The following equations show the M, C, G matrices respectively along with the
parameters used in table B.1.

M = 2Lt smfeos() (6~ L/)) + (Lsin() /)2 + 3 (mOsin(LY(0— L/?) - (B)

C = —2iq5(qu(2sm(g) - qcos(g))(QL sin(g) ~Ig cos(g) + bq%os(g))) (B.2)
2oz ma(Lsinq) + be” cos(a) — Lacos(a)) (B.3)

Table B.1: Parameters Used in the Derivation of the Equations of Motion.

m | 0.35 /(kg/)
g | 98m/s*
L | 017 /(m/)
I.| 0.1 kg/m?
ko 4897
dy .8616
Qo 1.2634
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APPENDIX C

UNSCENTED KALMAN FILTER
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The formulation of the Unscented Kalman Filter (UKF) is given here. To begin, a
certain number of weights and sigma points are necessary to more accurately predict
the current state. The number of weights and sigma points is determined by the
equation:

N=2n+1 (C.1)

with n equal to the number of dimensions of the system, in this case 2. The weights
are now determined by
1

W: p—
0 n+ A

0.4 (C.2)

1
Wi=———fori=1,..,2 C.3
2(n+ \) ore " (C-3)
The sum of the weights is equal to one. In the formulation of the filter two weights
could be used, W* for state predictions and W€ for covariance predictions. In this case
both W weights are the same. Next the sigma points are found from the following:

O‘QZiL‘k—l (04)
n .
alzxk—l—i—\/l_WO*Pk_Lj,]:l (C.5)
n .
agzxk—l—i—\/l_WO*Pij,j:Z (C.6)
n .
03:$k_1_\/1—W0*Pk_1’j’]:1 (C.7)
n .
U4:xk_1_\/1—Wo*Pk_1’j’j:2 (C.8)

where j is the column of P.
With the weights and sigma points established the prediction equations are given
as the following sums

=) Wz, (C.9)
Pr= Wylzy —ap)(a; — ;)" (C.10)

N
p=> 7 (C.11)
J

with
z; =h(o;) for j=1,..,N (C.12)
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The updates are then given by the equations

N
Sk=> (5= 5z —5)" (C.13)
j=0
N
Cs. = Z(Uj - :%I;)(ZJ - ék_>T (C.14)
j=0
Ly = C.S5;* (C.15)
Ty = QAZI; + Lk(Zk — 2) (016)
P, = P — LTS, LT (C.17)

with S and C,, are covariance sums and the remaining variables remain the same as
discussed in the REKF algorithms.
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