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ABSTRACT

Enabling robots to physically engage with their environment in a safe and efficient

manner is an essential step towards human-robot interaction. To date, robots usually

operate as pre-programmed workers that blindly execute tasks in highly structured

environments crafted by skilled engineers. Changing the robots behavior to cover new

duties or handle variability is an expensive, complex, and time-consuming process.

However, with the advent of more complex sensors and algorithms, overcoming these

limitations becomes within reach. This work proposes innovations in artificial intelli-

gence, language understanding, and multimodal integration to enable next-generation

grasping and manipulation capabilities in autonomous robots. The underlying thesis

is that multimodal observations and instructions can drastically expand the respon-

siveness and dexterity of robot manipulators. Natural language, in particular, can be

used to enable intuitive, bidirectional communication between a human user and the

machine. To this end, this work presents a system that learns context-aware robot

control policies from multimodal human demonstrations. Among the main contribu-

tions presented are techniques for (a) collecting demonstrations in an efficient and

intuitive fashion, (b) methods for leveraging physical contact with the environment

and objects, (c) the incorporation of natural language to understand context, and (d)

the generation of robust robot control policies. The presented approach and systems

are evaluated in multiple grasping and manipulation settings ranging from dexter-

ous manipulation to pick-and-place, as well as contact-rich bimanual insertion tasks.

Moreover, the usability of these innovations, especially when utilizing human task

demonstrations and communication interfaces, is evaluated in several human-subject

studies.

i



ACKNOWLEDGMENTS

Thinking back to being an undergraduate student, I never envisioned pursuing a

doctoral degree; however, my advisers during my bachelors and masters thesis,

David Vogt and Prof. Bernhard Jung, showed me the exciting world of robotics

research. They introduced me to the world of research and gave me the courage to

pursue a Ph.D. program in the United States. For that, I would like to thank them

wholeheartedly. Of course, at this point, I would also like to thank my mother,

Gisela Stepputtis, as well as my sisters Anne Rohde and Eva Stepputtis, who always

encouraged me to pursue my goals, even if they were far from home, as well as their

continued support of my decision to study abroad. Pursuing a Ph.D. program is

certainly not always easy and comes with many challenges along the way. In these

challenging times, my adviser, Heni Ben Amor, was always a supportive constant,

and I would like to thank him specifically for believing in me and my research, even

when reviewer number two told me to better go and change careers. In addition to

my adviser, I would also like to thank Chitta Baral, Yezhou Yang, and Stefan Lee,

who fortunately agreed to join my committee and advised me along the way on

many topics related to my work, but also related to career goals, life in academia,

and many more things. While not part of my committee, I would also like to thank

Mariano Phielipp for his continuous support and advice. Furthermore, this would

also not have been possible without my close friends Joseph Campbell and Mehrdad

Zaker Shahrak, who not only provided advice on my research but also made me feel

welcome in the United States and became good friends, even roommates, during my

time at Arizona State University. Finally, I would also like to thank the many

members of the Interactive Robotics Lab that have been an invaluable part of this

journey, particularly Kevin Luck, Geoffrey Clark, Mark Strickland, Shubham

Sonawani, Trevor Richardson, and Trevor Barron.

ii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Completed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 TACTILE DEXTERITY THROUGH ACTIVE SLIP CONTROL . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Run Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Nondeterministic evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Generalization with different objects . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Dynamic movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 BIMANUAL MANIPULATION FOR CONTACT-RICH TASKS . . . . . . . . 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Bayesian Interaction Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



CHAPTER Page

3.4.3 Spatial Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.4 Temporal Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.5 NASA TLX Workload Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 LANGUAGE-CONDITIONED IMITATION LEARNING . . . . . . . . . . . . . . 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Problem formulation and approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Preprocessing vision and language . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Semantic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Control model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.4 Model integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.5 End-to-end training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Evaluation and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Broader impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 VERBAL DESCRIPTIONS FROM MULTIMODAL ROBOT DATA . . . 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Problem Statement and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.2 Sequence to Sequence Language Generation . . . . . . . . . . . . . . . . 78

5.3.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

iv



CHAPTER Page

5.4.1 Data Collection and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.2 Evaluation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.3 Language Generation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.4 NLP Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.5 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.6 Model Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 FUTURE WORK: LANGUAGE-CONDITIONED REWARD LEARN-

ING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Problem Formulation and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.1 Pre-processing Vision and Language . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.2 Reward Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.1 Mountain Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.2 Robot Manipulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.3 Results on Tabletop Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

APPENDIX

A DISCLOSURE OF PREVIOUSLY PUBLISHED WORK . . . . . . . . . . . . . . . 127

B SOURCE CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

v



LIST OF TABLES

Table Page

2.1 Properties of the Used Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Bimanual Bayesian Interaction Primitives Performance on Peg-Insertion 36

4.1 Model Ablations Regarding Losses, Structure, and Training Size . . . . . . . 62

4.2 Generalization to New Sentences and Changes in Illumination . . . . . . . . . 63

4.3 Comparison to a Baseline and a Current State-of-the-Art Method . . . . . 67

5.1 Language Generation: Results and Baselines . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Generalization to Environment Changes and New Objects . . . . . . . . . . . . 89

6.1 Robustness of the Reward Model for Mountain Car . . . . . . . . . . . . . . . . . . 107

vi



LIST OF FIGURES

Figure Page

1.1 Scope of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Tactile Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Dexterous Manipulation with Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Deep Predictive Model for Active Slip Control . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Manipulated Objects using Slippage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Manipulation with Active Slip Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Slipping Object Pose Uncertainty: 90 Degree Target . . . . . . . . . . . . . . . . . . 15

2.7 Slipping Object Pose Uncertainty: Varying Targets . . . . . . . . . . . . . . . . . . . 17

2.8 Predictive Model Accuracy for Varying Targets . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Generalization to New Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Bimanual Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Bimanual Insertion Task Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Bimanual Learning from Demonstration Pipeline . . . . . . . . . . . . . . . . . . . . . 28

3.4 Motion Adaption from Force/Torque Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Motion Adaption from Joint Position Sensors . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Temporal (Phase) Adaption to Various Motion Disturbances . . . . . . . . . . 42

3.7 NASA TLX Workload Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Instruction Following Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Language-Conditioned Imitation Learning System Overview . . . . . . . . . . 50

4.3 Instruction Following: Scene and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Handling of Physical, Visual, and Verbal Disturbances . . . . . . . . . . . . . . . . 64

5.1 Language Generation Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Multimodal Language Generation Introduction . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Language Generation System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



Figure Page

5.4 Overview of All Possible Scene Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Attention to Image Regions During Task Generation . . . . . . . . . . . . . . . . . 86

5.6 Evaluation of the Proposed Method on Common NLP Baselines . . . . . . . 88

5.7 Generalization to Changing Lighting Conditions . . . . . . . . . . . . . . . . . . . . . . 89

5.8 Stochastic Forward Passes for Language Generation . . . . . . . . . . . . . . . . . . 91

5.9 Variation of Generated Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Inverse Reinforcement Learning Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Inverse Reinforcement Learning from Language . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Task Separation Mountain Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 Convergence Ratio of Our Language Based Reward Model . . . . . . . . . . . . 110

6.5 Task Separation Tabletop Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

viii



Chapter 1

INTRODUCTION

An emerging field in which robots are applied are in-home environments, requiring

the execution of various manipulation tasks, including picking, pouring, and placing

objects. Enabling robots to complete a task in our environments is usually restricted

to executing tasks in highly constrained environments that skilled engineers have

carefully crafted. Changing the robot’s initial behavior to cover new duties or handle

variability is an expensive and complex endeavor. However, as intelligent algorithms

slowly start to take advantage of more complex sensor modalities and utilize tech-

niques that are inspired by the human learning process, more complex skills can be

learned in an intuitive and efficient manner. When deploying robots in highly dy-

namic environments, they need to quickly learn or adapt previously learned skills to

the particular environment without requiring users to tediously program the desired

behavior. A popular approach to learning such behaviors is imitation learning (Schaal,

1999), which has successfully been used in various areas of robotics, including loco-

motion, grasping, and even more complex actions like handover tasks or playing table

tennis (Chalodhorn et al., 2007b; Vogt et al., 2018; Mülling et al., 2013). Further-

more, taking inspiration from the human learning process in which multiple sensor

modalities are combined to learn a skill is an important step towards allowing robots

to interact in our environments. For example, imagine learning how to swing a tennis

racket with the goal of hitting the ball. From a human perspective, we would use

vision and object tracking to follow the ball’s motion, use tactile sensing to feel we

hit the ball with the racket, and maybe also follow instructions given by a trainer

that telling us to “hold the racket firmly and tilt it into the direction you want the ball

1



to go!”. Correlating the relevant information from each input modality enables us to

learn the desired skills. Similarly, intelligent algorithm design can extract correlations

between multiple modalities from a set of demonstrations by using imitation learning.

With imitation learning, new motor skills can easily be learned by observing a

human expert or by experiencing a kinesthetic demonstration of the task. However,

while motion information can be derived from execution traces, semantic information

about the intended task is difficult to learn since no adequate communication channel

exists between the human expert and the robot. For example, teaching the robot

how to pick up a mug can become challenging without being able to explicitly tell

the robot what the objective is. Incorporating an additional communication channel

into the training process enables the demonstrator to outline the key concept of the

demonstrated task. In case of learning to pour a cup of coffee from a can held by

the robot, the demonstrator would not only provide a demonstration of the necessary

movements but also explain what the shown motion is accomplishing, namely to “pour

the coffee into the cup”. With this additional input modality, a context between the

motion and the resulting action in the environment is created, allowing the system

to interrelate these modalities to encode the correlations between the various input

modalities.

To this end, this work presents systems that can learn various modalities in

multiple grasping and manipulation settings ranging from dexterous manipulation

and pick-and-place tasks to contact-rich bimanual insertion. Figure 1.1 provides an

overview of the areas covered in this thesis:

Tactile Dexterity utilizes tactile sensor information to learn a predictive model

that allows the robot to complete in-hand manipulation tasks by leveraging slip-

page. This model uses a single modality to predict a suitable control signal in a

2



Figure 1.1: Scope of the Dissertation

The four figures show the main contributions of this work and the interaction

between the used modalities: T: tactile sensing, C: robot control, V: vision, F/T:

force/torque sensors, L: language

self-supervised approach. Further details can be found in chapter 2.

Bimanual Control orchestrates multiple robot arms to complete a contact-rich

insertion task. In this task, vision and force/torque sensor data are combined to

generate a control signal for the robots. This task uses a Bayesian approach to ma-

neuver the robots in an over-constrained manipulation task in conjunction with an

admittance controller to account for potential forces between the robots. Further-

more, chapter 3 also evaluates how humans can efficiently and intuitively provide

demonstrations for multiple robots at the same time.

Instruction Following uses a supervised approach to translate verbal instructions

into low-level robot control policies for picking and pouring tasks. During training,

the robot learns to interrelate the demonstrated motion with the perception of the en-

vironment and the verbal instruction, allowing it to generate a suitable control policy

3



that is specific to the desired action. The resulting language-conditioned visuomotor

policies can then be conditioned at run-time on new human commands and instruc-

tions, which allows for more fine-grained control over the trained policies. Further

details can be found in chapter 4.

Task Explanations are generated in work presented in chapter 5 and utilizes vision

and motion traces of the robot to generate a verbal description of the action that has

been performed by the system. With this additional communication channel, full

human-robot interaction can be achieved.

Future Work Finally, chapter 6 provides a future perspective of this work by

utilizing language to learn a reward function instead of directly translating it into a

control policy. A benefit of this approach is that (a) language might be better suited

to describe the high-level goal of a task rather than being translated into low-level

control signals and (b) it allows the robot to freely learn a policy in a reinforcement

learning setting while only being guided by the applicability of the generated motion,

rather than the individual steps of the motion.

1.1 Completed Work

Interaction with the real world is a basic requirement for robots, ranging from

repetitive tasks like the assembly of cars or other common devices in well-defined

environments to highly specific actions in dynamically changing environments found

in our own homes. Not only does the state of the environment influence the robot’s

target behavior, but the target might even change between or during interactions,

e.g., based on the changing objective of a human operator. Successfully acting in

ever-changing environments and fulfilling dynamically changing objectives requires

4



robots to sense their environment with a variety of sensors and change their behavior

towards ever-changing expectations.

In my early work, I focused on expanding the robot’s sensing capabilities by in-

corporating tactile sensing into a manipulation task that utilized slippage to position

a grasped object in the desired configuration (Stepputtis and Ben Amor, 2017a,b).

With the addition of further modalities, in this case, tactile sensing, the robot’s reper-

toire of skills was expanded to complete previously challenging actions. A detailed

explanation of the conducted work can be found in chapter 2 and was published

in Stepputtis et al. (2018b).

A limitation of the previous work is the inability of the robot to adapt its behavior

to varying tasks or expectations. In order to adhere to changing requirements, the

robot needs to be able to incorporate an intention into its motion generation, ideally

by using a quick and intuitive approach that can easily be facilitated by a non-expert

user. One such way of conveying user intentions to a robot is by using natural lan-

guage. However, natural language is difficult to use in such a context due to its inher-

ent ambiguity, context, and semantic meaning. Communication between humans usu-

ally assumes a certain degree of context, which can vary based on cultural backgrounds

and between individuals, as well as semantic meaning, where some phrases should be

interpreted differently based on cultural and social paradigms (Meyer, 2014). How-

ever, translating this ambiguous input into suitable low-level robot control policies is

detailed in chapter 4, based on the preliminary work presented in Stepputtis et al.

(2018a, 2019, 2021). Furthermore, the work in Stepputtis et al. (2019) received the

best poster award by Nvidia, and the work in Stepputtis et al. (2020a) was selected

as a spotlight presentation at NeurIPS 2020.
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Chapter 2

TACTILE DEXTERITY THROUGH ACTIVE SLIP CONTROL

Figure 2.1: Tactile Modalities

Overview of the used modalities in the dexterous manipulation task

In this chapter, we present a machine learning methodology for actively controlling

slip. Leveraging recent insights in deep learning, we propose a Deep Predictive Model

that uses tactile sensor information to reason about slip and its future influence

on the manipulated object. Instead of learning object manipulation from motion

traces alone, tactile sensing is utilised as an additional input modality to enable

additional manipulation skills. Figure 2.1 shows an overview of the used modalities

from tactile sensing to control and the desired dexterous manipulation task. The

obtained information is then used to precisely manipulate objects within a robot

end-effector using external perturbations imposed by gravity or acceleration. We

show in a set of experiments that this approach can be used to increase a robot’s

repertoire of motor skills.

The work presented in this chapter has been published and presented as a full con-

ference paper at the International Conference on Robotics and Automation (ICRA)

2018.
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2.1 Introduction

Throughout our lifetime, we learn to delicately grasp, manipulate, and use a

wide range of objects. Repeated physical contact with our environment allows us to

acquire complex motor skills, such as in-hand rotation of objects. In doing so, we

also learn to actively use slip to our advantage. By contrast, in the robot grasping

literature, approaches to slip detection often aim at reducing or eliminating the effects

of slip Veiga et al. (2015); Ma et al. (2015); Stachowsky et al. (2016); Cirillo et al.

(2017); Cavallo et al. (2014); Shaw and Dubey (2016). To this end, they require access

to robust and accurate models of slip dynamics which, due to the non-deterministic

nature of slippage, is a challenging problem in its own right.

In this paper, we discuss how slip can be actively controlled to increase robot

dexterity. Previous approaches to slip control have focused on a theoretical analysis of

the underlying forces, torques, and physical constraints Cirillo et al. (2017). However,

in practice, such models are often infeasible since they fail to represent the uncertainty

and variability inherent to manipulation tasks involving slip. We argue that a critical

component necessary for active slip control is a stochastic model of dynamic object

behavior under such conditions.

We therefore propose a Deep Predictive Model (DPM) which can be used to effec-

tively learn the relationship between robot actions, incurred slip, and future object

poses. A key feature of this approach is that we are able to manipulate a grasped ob-

ject in-hand even when using a robot gripper with a single degree of freedom (DOF).

This type of action is possible by utilizing extrinsic dexterity – external perturba-

tions and forces such as gravity Dafle et al. (2014) that are actively utilized towards

object manipulation. To account for the non-deterministic nature of slippage, we use

stochastic forward passes (also referred to as Monte Carlo Dropout) Gal (2016) to

7



Figure 2.2: Dexterous Manipulation with Slip

Slip can be utilized to rotate an object to different target locations. This image

shows five example positions of a green bottle. The robot is able to utilize slippage

to rotate the object to the desired angle.

generate a probabilistic belief over predicted object states. Accordingly, instead of

relying on point-estimates, we can compute and analyze a distribution over object

poses, thereby gaining a deeper understanding of the prediction process Gal (2016).

Finally, we perform experiments and provide examples for manipulating multiple

objects having different surface structures, shapes and masses. These experiments

show how this approach can be leveraged to achieve dexterous manipulation with

robot hands that have a limited number of degrees of freedom. The experiments also

provide evidence indicating that such learned models generalize to new, untrained

objects.

2.2 Related Work

A large body of work on modeling slip has focused on prediction and prevention

Shaw and Dubey (2016) using tactile sensing Veiga et al. (2015); Ma et al. (2015);
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Stachowsky et al. (2016); Cirillo et al. (2017); Cavallo et al. (2014). Other research

focused on utilizing tactile information to classify linear or rotational slip by training a

neural network to discriminate between these two types of slip Su et al. (2015). Going

beyond simple detection, slip has also been used for dexterous in-hand manipulation

of grasped objects Jara et al. (2014). An approach that only uses tactile sensing to

rotate an object is described in van Hoof et al. (2015). A drawback of that approach,

however, is that it still requires an external object to support the movement instead

of utilizing gravity. The work presented in Stachowsky et al. (2016); Shaw and Dubey

(2016); Cirillo et al. (2017) focuses on grasping an object with the lowest possible force

by calculating/estimating the friction coefficient between the gripper and the object.

When utilizing slippage, knowing the friction coefficient between the gripper and the

object is crucial. Especially the work in Cirillo et al. (2017) made an important

effort in determining this coefficient for unknown objects while dynamically adjusting

its estimation. However, the goal of this paper is to present a system that utilizes

slippage to rotate objects in-hand, rather than estimating friction, resulting in a

simple grid-search to determine friction.

In this work, slip is not considered an undesired source of perturbation, but rather

as an opportunity for dexterous manipulation. Compared to Jara et al. (2014), the

presented system is able to solely rely on tactile sensing for in-hand manipulation and

does not need to use a supporting object as in van Hoof et al. (2015). In addition,

no analytical model of the underlying mechanics and forces is needed as in Cirillo

et al. (2017), since the DPM is able to learn the necessary relations to successfully

manipulate the grasped objects.
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Figure 2.3: Deep Predictive Model for Active Slip Control

Schematic visualization of the deep predictive model used in this work. An example

input for the DPM is shown on the left left, containing the static and dynamic

tactile data. The right shows and Bayesian distribution over the output of the

network for one exemplary value from v.

2.3 Methodology

When utilizing slip to re-orient an object in the gripper, a robot needs to predict

the implications of its actions on the pose of the manipulated object. For this pur-

pose, a Deep Predictive Model (DPM) is trained to predict the absolute rotation of

the object at run time. More specifically, we train a neural network with three hidden

layers, as shown in Figure 2.3, to act as a DPM. The first two layers are recurrent

layers to leverage temporal features, followed by a flattening layer and three fully

connected dense layers which are separated by Dropout layers. These Dropout layers

will later be used for Monte Carlo Dropout Gal (2016). The network structure was

determined empirically by running a grid search. Once trained, the DPM generates

an estimate of the object’s future orientation for the next 20 time steps. Predictions

are generated based on the static tactile data, allowing it to measure absolute pres-

sure values and locations as well as dynamic tactile data. Dynamic sensors provide

information about contact changes and events involving vibrations Cutkosky and Ul-

men (2014). Another benefit of dynamic sensors is their ability to quickly respond to

changes in sensation Stern (2017), which is especially useful for detecting slippage.

10



Figure 2.4: Manipulated Objects using Slippage

Overview of the objects used for training and evaluation. The two left most objects

were used for training and are referenced as “Training A” and “Training B”. Both

are equipped with an acceleration sensor.

Due to their differential property, temporal features can be inferred from these sen-

sors. Formally, the prediction process can be represented by the following equation

by utilizing a sliding window of the past five time steps:

fn(st:t−5,dt:t−5) → vt:t+20 (2.1)

where s ∈ R56 is the vector of static tactile sensor activations and d ∈ R2 is the vector

of dynamic tactile sensor values. The output v is a vector containing the absolute

rotations for the next twenty time steps {vt, · · · , vt+20}, where one time step is set

to a hundredth of a second. It is important to note that the predicted angle is given

relative to the gripper. In addition to the recurrent layers, the neural network can

also infer latent features about the changes from the dynamic sensors without solely

resorting to recurrent layers. This is due to the sensors’ ability to capture rapid

changes that are characteristic for slippage Stern (2017).
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Table 2.1: Properties of the Used Objects

Object

Property 1 3 3 4 5 6 7 8

Mass [g] 519 99 174 119 124 121 194 104

S-Rad. [cm] 4.6 1.6 3.2 2 2.2 3.8 2.1 2.5

Deformable yes no no yes no yes no no

Since slippage is a highly nondeterministic process, we use a Bayesian neural net-

work to predict a distribution over its results Gal (2016). To this end, we leverage re-

cent theoretical insights from Gal (2016) for estimating model uncertainty within the

DPM. According to Gal (2016), multiple stochastic forward passes using a stochastic

version of dropout are identical to variational inference in Gaussian processes. This is

used to validate the accuracy of the neural network regarding different target angles

of the test data set. For this purpose we activate dropout at test time to gain a better

understanding of how the network performs in certain regions of the input space. The

results from these analyses can be found in section 2.4.

2.3.1 Training

For training purposes, the ground truth data is collected by measuring the angle

of the object with an acceleration sensor that is embedded or attached to the two

training objects, as can be seen in Figure 2.4. The objects were chosen based on their

form and rigidity. Training object A is slightly deformable, has a nearly flat surface

and weighs about 500 grams. The second training object, object B, is not deformable,

has a radius of 1.5 centimeters and weights about 100 grams. The acceleration sensor
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Figure 2.5: Manipulation with Active Slip Control

The above sequences visualize two scenarios for in-hand manipulation using active

slip control. The top row shows an experiment in which slip is used to keep the

object in the same global rotation even though the gripper is rotating. The bottom

row shows how to rotate an object using centrifugal forces without any rotation of

the robot gripper. The main difference between these two experiments is the way in

which slip is induced. Slip occurs as either the result of rotation within the gripper

or as an effect of the acceleration of the gripper.

is used to automatically label the collected training data. The sensor is calibrated to

accurately represent the angle of the object between -20 and 220 degrees by using a

Gaussian process Geng et al. (2015). The calibration was done by firmly holding the

object in the gripper of the robot and using its controls to change the rotation of the

gripper stepwise by one degree and collecting the 3 DOF data from the accelerometer.

Zero degree was set to represent an upright object as can be seen in Figure 2.2 at the

object’s twelve o’ clock position, continuing counter clockwise with increasing value.

The evaluation of the calibrated acceleration sensor resulted in an average error of
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0.4 degrees with a maximum error of 2.1 degrees.

Formally, the training data can be written as follows (Equation 2.2)

(st:t−5,d[t:t−5], vt:t+20) (2.2)

s denotes a concatenated list of five vectors with the most current static tactile data.

d holds the corresponding dynamic tactile data over the past five time steps. v repre-

sents a vector of the next t : t+ 20 object angles that where taken from the training

data. One training example is constructed by randomly selecting one observation at

time step t0, representing the current observation (s,d). The sliding window over

s goes from t−5 to t0 and the values of v range from t0 to t+20. Additionally we

made sure that no training example exceeds the boundaries of one experiment, since

multiple demonstrations were used in the training process. If n is the number of

observations from a particular training example, the maximal chosen time t0 will be

tn−20.

2.3.2 Run Time

The network uses the static and dynamic tactile data to make a prediction re-

garding the object’s angle for the next 20 time steps. Each prediction represent the

position of the object and is used to decide whether or not the gripper needs to close

to stop the object at the desired position. The benefit of predicting multiple steps

into the future is the ability to select the correct amount of lookahead to resolve any

network and control latencies in the pipeline. Based on the predictions, a simple con-

troller as shown in Equation 2.3 is used to close the gripper as soon as the predicted

angle a is equal to or greater than the target angle.

fc(v, l) → a (2.3)
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An important parameter within Equation 2.3 is the value of l, which indicates

the amount of lookahead used to best compensate for latencies. During training, the

network does not experience any latencies, but at run time the prediction of v[0]

gives a rotation that would already be obsolete when received by the controller due

to latencies in the pipeline. Using the gripper controller solely based on these old

predictions leads to constantly overshooting the target angle. On the other hand,

making control decisions based on information that is too far into the future will

result in undershooting the target. Besides the latencies, the angular velocity of the

currently slipping object influences the latency error. If the object has a high angular

velocity, it takes longer to slow down the object due to mass inertia until it is held

firmly in the gripper. In this work, we empirically evaluated that a value of 19 for l

yields to a good approximation of the final angle.

2.4 Evaluation

For the experiments, we are using a UR5 robotic arm equipped with the Robotiq

adaptive two finger gripper. The two fingertips of the gripper are replaced with a

tactile sensorLe et al. (2017). Each of the two fingers has a 4x7 sensor matrix for

static tactile data as well as one dynamic tactile sensor to leverage temporal features.

To train the network, a total of 200 demonstrations of a 180 degree slip were

recorded, 100 with every training object, resulting in 90,200 samples. Since the

object has a different angular velocity during the slipping motion, these samples are

not equally distributed over all angles. Analyzing the collected data showed that there

are at least 200 samples for every angle between 0 and 180 degrees, which was used as

the upper limit for all other angles. Without the previously mentioned preparation

of the training data, the network would learn to have a strong preference towards

low angles where the movement was still slow, resulting in much more training data
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Figure 2.6: Slipping Object Pose Uncertainty: 90 Degree Target

Histogram of the predicted object values for 500 stochastic forward passes. Results

are shown for time step 19 at a target angle of 90 degrees.

for these regions. The difference is roughly a factor of 25. Additionally, all angles

below 13 degrees were cut out of the data set, since the robot was given an initial

slope of 10 degrees to allow slippage of the grasped object. After these adjustments,

the dataset contained 32,000 samples which were then split into 70% training, 20%

validation and 10% testing data. Furthermore, all data points are normalized before

they are used in the training process. To accurately represent the movement, all data

points are collected at a rate of 100 Hz, resulting in an average resolution of one

sample per degree. The demonstration ends as soon as the object reaches a total

rotation of more than 180 degrees, measured with the embedded acceleration sensors

within each training object. One training example is roughly illustrated in Figure 2.2

where the values mentioned above are collected while the object is rotating counter

clockwise. Adaptive moment estimation (Adam) Kingma and Ba (2015) is used for
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Figure 2.7: Slipping Object Pose Uncertainty: Varying Targets

Stochastic forward passes for different targets. Each distribution is based on 500

predictions of the same input. The plot shows the distribution of the predicted

angle for different targets. A smaller variance indicates a DPM with higher

certainty in its predictions.

training using a learning rate of 0.001 in combination with mean squared error as loss

function.

We evaluated our approach with two experiments. The first experiment uses the

test data from the dataset, whereas the second experiments evaluates the network

with eight different objects (2.4) on an actual robot (2.2).

2.4.1 Nondeterministic evaluation

For the nondeterministic evaluation we use stochastic forward passes to analyze

the certainty of the neural network. This is helpful since slippage is a highly nonde-

terministic process. With this in mind, we randomly chose samples from the training
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set that were labeled with 90 degrees at v[19]. This sample was provided 500 times

to the DPM and the error between the predictions and the 90 degree target was

collected. Figure 2.6 shows a histogram of the error between the prediction and the

target.

This result indicates that the predicted values can be approximated using an

exponential distribution. We assume that a single Gaussian is feasible to represent

the data. Based on this assumption, Figure 2.7 shows the normal distribution for

different target angles between 20 and 160 degrees, using 20 degree steps. µ is set

to zero for all targets for an easier comparison of the variance. Smaller variances

indicate that the network has a higher certainty for the predicted angle. As for the

previous experiment, the network was provided with the same sample 500 times for

each target angle. The samples were randomly chosen from the test set.

The distributions over the data shows that the precision of the network is highest

for angles between 60 and 80 degrees. Between these two angles, the variance of the

predictions with respect to the ground truth is ∼ 2.5 degrees, whereas the variance

for higher angles is over 10 degrees.

Even though the ground truth data was collected with 100 Hz, fast object move-

ments have a reduced accuracy compared to slower object movements during the early

slippage. This explains the lower precision at higher angles. Another parameter that

contributes to the uncertainty at higher angles is the latency in the system, since its

influence is higher when the object is moving faster.

Figure 2.8 gives a more general overview over the error. Each box contains the

accumulated error for one target angle over all time steps of v between t0 and t19.

As already seen in Figure 2.7, the error for predictions above 100 degrees increases

quickly. The region between 60 and 100 degrees provides a nearly constant error

with ±10 degrees, or ±4 degrees between the upper and lower quantile. When only
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Figure 2.8: Predictive Model Accuracy for Varying Targets

Overview of the neural network regarding different target angles on the test dataset.

The error above is accumulated over all predicted time steps.

considering a single future time step like in Figure 2.7, the error decreases to ±2.5

degrees within the first quantile. The slightly increased error below 60 degrees can be

explained with the occasional inability of the tactile sensor to distinguish an object

at 0 from the same object at 180 degrees. The average rotation time over all objects

was approximately 4 seconds.

2.4.2 Generalization with different objects

While the nondeterministic evaluation of the neural network helped to understand

its properties and to empirically evaluate the structure of the network, we use a

deterministic network for the robot experiments by disabling dropout at run time.

This is done to get the average of all the different subnetworks that are trained with

dropout Srivastava et al. (2014).
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At run time, the force used to grasp the object is crucial since it needs to be high

enough to still hold the object while being low enough to allow rotational slippage.

The amount of pressure between the object and the gripper depends on the surface

properties of the gripper and the object, as well as the object’s mass. However, these

parameters remain unknown. In this work, we used a grid-search approach to find

the correct value for each object, such that the grasp allows the object to slip.

Prior to the actual experiment, every object was evaluated regarding the amount

of force needed to allow slip. The gripper can be controlled with 255 steps between

fully open and closed, where 255 denotes a fully closed gripper. To control the force

between the gripper and object, we opened the gripper one unit at a time and observed

if the grasped object slips. When the slip for one value exceeded 90 degrees within 7

seconds, the smallest of these values was taken in the experiment later on. For this

test we opened the gripper between 0 and 15 units after a full grasp.

In this scenario, the robot picks an object and lifts it up to allow the object to

rotate. The grasping process is done in multiple steps. First, the object is grasped

with full force, followed by opening the gripper for an object-specific amount of degrees

to prepare for slip. The grasp is validated by ensuring that the network is predicting

an angle smaller than 90 degrees for five consecutive time steps. This is because the

DPM was never trained to handle the grasping process and to prevent any errors

in the prediction due to untrained data. To initiate slippage, the robot then gives

an initial slope of 10 degrees to the object. This initial slope is enough to initiate

rotational slippage, since the grasp of the robot is already loosened. However, it is

still tight enough to prevent most of the linear slippage. The objective is to stop the

object precisely at 90 degrees.

Figure 2.9 shows the results of our experiments with eight different objects. The
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Figure 2.9: Generalization to New Objects

Evaluation of eight objects (including the two training objects). The goal was to

stop the object at exactly 90 degrees. Negative values correspond to not reaching

the target angle whereas positive values indicate overshooting the target. The blue

numbers outline the average offset.

shown data are based on ten target approaches with each object. The order of the

objects (from left to right) is equivalent to the order of the objects as shown in

Figure 2.4. On the y-axis, positive values indicate that the target of 90 degrees was

overshot, while negative values indicate that the object did not rotate enough before

the network predicted that the target was reached.

All experiments with the robot use the same DPM that was also evaluated in

section 2.4.1. It can be seen from Figure 2.9 that the DPM is able to generalize

towards different objects. The objects were chosen due to their different properties
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like mass, shape and ductility as outlined in Table 2.1. Even though different objects

have a general offset that causes them to slightly over- or undershoot the 90 degree

target, the variance of the actual object angles (excluding “Training A”) is still within

an average ± 8 degree limit for most of the approaches. For these experiments, the

object angles were manually measured since six of the eight objects did not have an

acceleration sensor. An interesting observation is that the result for the “Training A”

object is noticeably worse in comparison to all other objects while overshooting the

target by up to 90 degrees. A possible explanation for the error is the weight of the

“Training A” object. Since the object already had a high mass inertia when reaching

the target, the gripper had a notable problem to stop the object.

2.4.3 Dynamic movements

Especially during fast movements, where an object is more likely to slip due to

acceleration or centrifugal forces, our approach is able to utilize normally undesirable

slippage to enhance the robot’s ability to manipulate objects in-hand. Two examples

of these movements can be seen in Figure 2.5.

Preliminary results with these experiments suggest that even though the physics

of the experiment were changed to a fully dynamic task, the DPM is able to rotate

the object to a 90-degree target. For these experiments, the same DPM was used.

Initial experiments showed that the the error between the target and the actual object

position slightly increased.
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2.5 Conclusion

In this paper, a novel approach for dexterous manipulation is presented that lever-

ages slippage to rotate an object in-hand. We showed that a single data-driven DPM

is able to utilize external dexterity to precisely manipulate an object. A benefit of

our approach is that we do not need to use an external object and we showed that

gravity and acceleration are enough to conduct complex object manipulation even

with a 1-DOF gripper. Compared to Jara et al. (2014) and Cirillo et al. (2017),

our approach solely relies on tactile data and does not require a detailed model of

the environment. Experiments support the feasibility of this approach in real-world

applications and indicate how the approach can increase a robot’s repertoire of skill.

They further show that the DPM can generalize its predictive ability to different,

unknown objects.

A potential expansion of this approach is the transition to a more complex task

in contact-rich environment. One such task is peg-insertion, which could greatly

benefit from tactile and force/torque sensors. Furthermore, additional modalities

could further expand the capabilities of the system towards adaptive and responsive

systems.
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Chapter 3

BIMANUAL MANIPULATION FOR CONTACT-RICH TASKS

Figure 3.1: Bimanual Modalities

Overview of the used modalities in the bimanual insertion task.

The previous chapter used tactile data to perform dexterous manipulation; how-

ever, input data from the force domain can also be used for more complex tasks like

contact-rich insertion. Figure 3.1 describes how vision and force/torque sensors can

be used as part of a framework to learn a complex bimanual control task by imita-

tion. To this end, we present a system and algorithms for learning compliant and

contact-rich robot behavior from human demonstrations. The presented system com-

bines insights from admittance control and machine learning to learn control policies

that can (a) deal and adapt to a variety of disturbances in time and space, while

also (b) effectively leveraging physical contact with the environment. To this end,

we discuss techniques for identifying and recovering from perturbations. We demon-

strate the effectiveness of our approach using a real-world insertion task involving the

multiple simultaneous contacts between a manipulated object and insertion pegs. We

also investigate efficient means of collecting training data for such bimanual settings.
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To this end, we conduct a human-subject study and analyze the effort and mental

demand as reported by the users.

3.1 Introduction

Manipulation still remains a critical challenge of robotics. Over the past decades,

there has been tremendous progress in endowing robots with motor skills for grasping

and dexterity. However, the vast majority of work in this field focuses on scenarios

involving a single robot arm and tightly controlled physical interactions with the

environment. Making early or premature contact with a target object may create

forces that may seriously jeopardize the manipulation process. With decreasing prices

for robot arms, as well as the proliferation of collaborative and humanoid robotics,

there is increased need for techniques that enable reliable, efficient and safe bimanual

manipulation. Bimanual robots need to perform manipulation tasks that involve

multiple points of contact and dynamic force exchange with objects (and humans)

in their surroundings, e.g., lifting a box, inserting a tight-fitting part, unscrewing a

bottle cap, or reacting to a human push. In addition to physical interaction with

their surroundings, the individual robot arms in a bimanual setup may themselves be

exchanging forces and torques through the manipulated objects. Hence, compliant

control policies are required that allow bimanual robots to (a) deal and adapt to a

wide variety of disturbances in space and time, and (b) effectively leverage physical

contact to their advantage. Yet, designing control algorithms that can bridge these

(potentially conflicting) requirements can be challenging and time-consuming.

In this paper, we propose an imitation learning framework for extracting compli-

ant bimanual policies. We describe a robotic setup in which human demonstrations

of the task are recorded across a variety of sensing modalities. The setup leverages
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Figure 3.2: Bimanual Insertion Task Overview

Overview of the bimanual insertion task in which the two robots need to jointly

insert the bracket onto four pins. The detail pictures on the right indicate the

corrective abilities of our proposed method.

principles of admittance control to enable contact-rich and dynamic demonstrations

without the risk of collisions, damage or wear-and-tear. In turn, the recorded data

is used to learning a Bayesian Interaction Primitive (BIP) which encodes the demon-

strated behavior in time and space. At runtime, the BIP is used to identify (a) the

temporal task progress as a function of external perturbations and (b) the optimal

robot response to these perturbations and environmental conditions. In cases where a

physical perturbations affects the task execution, the robot is then able to correct its

actions by performing corrective actions in either time or space. Since the presented

approach is Bayesian in nature, it allows for powerful spatiotemporal inference from
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multimodal datastreams. We show in experiments in a real-world insertion task with

tight tolerances that our approach results in compliant, responsive and contact-rich

manipulation. To this end, we also investigate the influence of user interface for

collecting training data in such a bimanual setting. We conduct a human-subject

study using both kinesthetic teaching and space mouse teleoperation and evaluate

the intuitiveness, ease-of-use and mental load as reported by the users.

3.2 Related Work

Common manipulation tasks in the real world are usually setup in a bimanual

affortance, designed to be completed by a human. Yet, robotics mostly focuses on

single arm control with specialized grippers to complete manipulation tasks in highly

constrained environments. However, in recent years, there has been increased inter-

est in bimanual control (Chu et al., 2015) and the introduction of various bench-

marks (Chatzilygeroudis et al., 2020) and challenges (Hackett et al., 2014) has only

increased the interest in automation of bimanual tasks. So far, however, bimanual

control has remained to be challenging as controling a single object with multiple

robots poses an over-constrained control problem. The work presented in Huang

et al. (2020a) introduces an impedance model-based optimal control approach to reg-

ulate the forces between two robots that are holding on to an object, however, other

approaches like admittance control can also be used to address the force-exchange be-

tween multiple robots. Other approaches attempt to learn the necessary control from

data by using a latent space to decouple high-level effects and low-level motions (Fang

et al., 2020). Another recent approach is to use deep learning in which a graph neural

network (GNN) (Scarselli et al., 2009) can be used to represent the configuration of

the robot (Wang et al., 2018) while also modeling the interaction between it and the
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Figure 3.3: Bimanual Learning from Demonstration Pipeline

Overview of our approach from data collection to control. We evaluate two different

teaching modalities to learn the task.

environment (Zhu et al., 2018).

However, bimanual manipulation can roughly be categorized into two areas in

which the robots either complete a joint task by holding on to the same object to

manipulate it (Xie et al., 2020), or robots that only share a common work space and

one of the robots is commonly used as a fixture, meaning that it is holding another

object in place (Kim et al., 2021; Motoda et al., 2021). Manipulating objects jointly

between multiple robots as discussed in Xie et al. (2020) and Chitnis et al. (2020)

addresses many interesting problems that result from jointly manipulating an object,

however, the presented tasks are either limited to simulation, or simple lifting tasks.

In this work, a bimanual control approach in a contact-rich multi-peg insertion task

is introduced that was entirely learned and evaluated on a real-world robot setup.

3.3 Methodology

The main objective of this paper is to learn compliant bimanual manipulation

policies from human example demonstrations. Fig. 3.3 shows an overview of our

approach. As a first step, human demonstrations of the behavior are provided. To

this end, we employ either direct kinesthetic teaching or tele-operation via a space
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mouse. We will later discuss the advantages and shortcomings of each one of these

input modalities. Once the demonstrations are recorded, they are used in the learn-

ing step to extract a Bayesian Interaction Primitive. The BIP is, in turn, used in

realtime to infer the spatial and temporal state of the execution of the manipulation

task. Inference takes into account all the available sensor sources, e.g., force-torque

readings, in order to identify the current progress in task execution and a distribution

over potential future robot actions. Based on the generated temporal information, we

then determine whether the robot should continue with the task execution or whether

a corrective action needs to be performed. The generated action is then sent to an

admittance controller to for execution on the robot. A critical element in this control

scheme is the realtime inference using Bayesian Interaction Primitives, which will be

described subsequently.

3.3.1 Bayesian Interaction Primitives

Each Recorded demonstration Y is represented as a time series of D-dimensional

vectors Y1:T = [y1, . . . ,yT ] ∈ RD×T where T is the total number of time steps.

Of the D dimensions, Do represent the observable state dimensions of the robot,

and Dc represent controlled dimensions, i.e., robot actions, with D = Do +Dc. Our

overall goal in this paper is to learn a bimanual manipulation policy that can generate

the accurate robot controls from observed states. Given the current state of the

robot, the policy should generate optimal control signals that mimic the behavior of

the human demonstrator. However, in the context of human-robot interaction and

physical contact with the environment, it is also critical that the manipulation policy

adapts to external perturbations. This may be, for example, a push from a human

partner or forces generated from premature contact with a screw.
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To learn such a policy, we use Ensemble Interaction Primitives and learn a gen-

erative probabilistic model over the training demonstrations. However, instead of

immediately using time-discretized data, EnBIP transform the recorded demonstra-

tions into a time-invariant representation by performing a basis function decompo-

sition. Such decompositions have been popularized in , and have since been used

in a number of motor primitive formulations . Applying the basis function decom-

position, we now approximate each state dimension Yd
t = Φ⊺

φ(t)w
d + εy through a

linear combination of B basis functions Φφ(t) ∈ RBd
with corresponding basis weights

wd ∈ RBd
. Note the shift into a relative time measure known as phase φ(t) ∈ R,

where 0 ≤ φ(t) ≤ 1, as well as the approximation error εy. The above decomposition

generates compact weight vectors w of the same length d and is therefore a practical

first step towards efficient encoding and modelling of the recorded data. Concatenat-

ing all basis weight vectors for the individual dimensions then forms the compressed

representation w = [w0⊺, . . . ,wD⊺] ∈ RB of a given trajectory where B =
!D

d Bd.

In turn, we can now extract a probability distribution p(w) over all given demon-

strations. Sampling from this distribution generates an sample trajectory containing

all observed sensor states and robot controls in the bimanual task. Similarly, we

can also condition on previous states of the robot to yield a posterior distribution

p(wt|Y1:t,w0) over future states and controls.

However, a critical insight in Bayesian Interaction Primitives is the interplay be-

tween temporal and spatial reasoning. An estimation error can be the result of either

errors in time or space. The inference mechanism in Eq. 3.1 assumes that the cur-

rent time step or phase are known. This is typically only the case, when the robots

behavior is unencumbered by physical interactions with humans or the environment.

For example, a human operator may hold back the robot by pushing the end-effector.
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In such a case, the phase variable needs to be adjusted or set back to prior values.

To enable such adaptation, Bayesian Interaction Primitives reformulate the problem

as a joint spatio-temporal inference – time and space are coupled and are jointly

estimated. This insight is realized by forming a new state vector s = [φ, φ̇,w]. The

state vector holds both a spatial component, contained in the basis function weights

w, as well as temporal components in the form of the phase φ and the phase velocity

φ̇. The temporal variables φ and φ̇ describe where we are in time and how fast we

are progressing with the task. Hence, generating the posterior:

p(st|Y1:t, s0) ∝ p(yt|st)p(st|Y1:t−1, s0). (3.1)

now yields the both information about the spatial and temporal aspects of robot con-

trol, since these are encoded in st. Performing the above inference step can efficiently

be done via recursive filtering. To this end, we will use an Ensemble Kalman Filter

(EnKF) as proposed in . A major advantage of EnKF is its ability to model complex

nonlinear distributions without having to specify any parametric family. More specif-

ically, the initial distribution is immediately formed by the provided demonstrations

– no fitting to a parametric family of densities is needed. In addition, EnKF can

be used with nonlinear transition functions and observation functions. As a result,

linearization errors as found in other filters can be avoided.

We start by defining an ensembleX of E members shown byX = [x1, . . . ,xE]. Op-

timally we want to sample the initial ensemble X0 directly from the prior x0 ∼ p(w0)

for all x0 ∈ X0; however, since we do not have direct access to p(w0), as a data-driven

method, it is standard to instead sample from observed training demonstrations.

Random selection on ensemble members is reasonable as the ensemble-based filtering

approach provides robustness against possible non-Gausian uncertainties, provided

the number of ensemble members is not less than the number of example demonstra-

31



tions E ≤ N . As a two-step Bayesian estimation method, our first step approximates

p(wt|y1:t−1,w0) by propagating each ensemble member forward one time step with:

xj
t|t−1 = g(xj

t−1|t−1) + εx, 1 ≤ j ≤ E, (3.2)

with constant-velocity state transition operator g(·), and noise error εx. Next, the

ensemble members are updated from the observation and the nonlinear observation

operator h(·) via

HtXt|t−1 =
"
h(x1

t|t−1), . . . , h(x
E
t|t−1)

#⊺
, (3.3)

HtAt = HtXt|t−1 (3.4)

−
$
1

E

E%

j=1

h(xj
t|t−1), . . . ,

1

E

E%

j=1

h(xj
t|t−1)

&
,

The deviation of each ensemble member from the sample mean HtAt and the ob-

servation noise matrix R can then be used to compute the innovation covariance

with:

wt =
1

E − 1
(HtAt)(HtAt)

⊺ +R. (3.5)

The Kalman gain is likewise calculated directly from the ensemble, with no need to

specify an explicit covariance matrix, with

At = Xt|t−1 −
1

E

E%

j=1

xj
t|t−1, (3.6)

Kt =
1

E − 1
At(HtAt)

⊺w−1
t . (3.7)

As is typical in recursive filtering, partial observation are sufficient to optimally

estimate the full state, which we leverage to generate a posterior over unobservable

latent variables, i.e. robot controls. Since the posterior is over weights w it defines

the controls for all future time steps.
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By performing this inference scheme in each time step, we can generate posterior

distributions that are conditioned on a multitude of sensors. In Fig. 3.4, for example,

we can see the effect of conditioning an execution on high sensor readings from the

force-torque sensor. In this specific case, the robot learned to change direction away

from this force exchange. Note, however, that strategy was acquired in a purely data-

driven fashion – how the robot responds to such stimuli is learned from the human

expert’s demonstrations.

3.4 Evaluation

We evaluate our approach with a bimanual insertion task that requires two robots

to jointly position a bracket onto four pegs. One peg is located at each corner of

the object, as shown on the right in Figure 3.3. This task has two main challenges,

one being that small control discrepancies can have a large impact on the success of

the insertion task due to the distance between the pegs, and secondly, in addition to

the object interacting with the world, the robots also exchange forces between each

other while jointly moving the object. This section introduces the experiment setup

in greater detail as well as discusses the different data collection modalities. Finally,

we evaluate the contribution of force/torque sensors on the task success rate as well

as the generalizability of the proposed method.

3.4.1 Experiment Setup

Our experiment setup consists of two robot arms, one UR10 and one UR5 robot

from Universal Robots, each equipped with a force-torque sensor and gripper. For

the grippers, we are using the Robotiq two and three-finger grippers on the UR5 and

UR10, respectively. Both robots are located in close proximity to each other and
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share a common workspace in front of them in which we are conducting our bimanual

insertion task. Initially, the robots pick up the bracket shown in figure 3.3 and jointly

lift it up with a predefined motion. After lifting the object, the force-torque sensors

are initialized to account for the added weight of the bracket, and control is handed

over to either the data collection algorithm or the inference controller that attempts to

insert the bracket onto the pegs. The following sections describe the data collection,

learning, and evaluation process.

Data Collection

Imitation learning is an intuitive approach for humans to demonstrate the desired

action to a robot. In this work, we evaluate two different approaches to collecting

the necessary training data from the real-world robot setup. Our two approaches

either use kinesthetic teaching in which the user is physically moving the object after

it has been lifted by the robots or utilize a space mouse to provide six-dimensional

control signals for the object that are relayed by the two robots. When collecting

demonstrations for the two robots, we are collecting the following modalities: joint

angles ∈ R12, tool center point positions ∈ R7 for each robot, the position ∈ R3

and rotation ∈ R4 of the object, as well as the force/torque sensor data in the form

of a wrench at the robot’s tool ∈ R6. Depending on the used training modality,

the the force/torque sensor data can be used during task learning. I.e., when using

the space mouse demonstrations, the force/torque sensor data can be used later on

to give the robots an additional modality to perceive their world, e.g., when being

stuck on top of a peg. However, when using the kinesthetic approach to create

demonstrations, the force sensors are used for compliant robot movement and record

the external forces induced by the demonstrator. As these external forces are not
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present during inference, the force/torque sensor data can not be used for learning

when using kinesthetically collected data.

Data Representation

Interaction primitives internally use a basis representation to encode each collected

demonstration. Using these representations has two benefits: (a) the trajectories are

smoothed by being represented by a fixed number of basis functions, and (b), the

basis-representation is independent of the actual trajectory length as all trajectories

are re-defined by an artificial phase value that ranges from zero to one. Given a basis

representation of a demonstration, a trajectory of arbitrary length can be generated by

stepping through the phase and sampling from the basis functions. Our method allows

us to use different basis functions for each feature; however, during our experiments,

we use the same basis function type for each feature dimension in a given modality.

The type and number of basis functions have been determined empirically as a trade-

off between model complexity and the ability to capture the nuances of the recorded

motions. For the following experiments, we chose to represent the robot’s joints with

a Gaussian model utilizing five basis functions and a variance of 0.1, whereas the tool

center points are represented with a Gaussian model with seven basis functions and

a variance of 0.2. The object is represented with a Sigmoidal model with 11 basis

functions and a variance of 0.15, while the force/torque sensor is represented with a

Polynomial model with 5 degrees.

Evaluation Metrics

We consider an insertion task to be successful when all four grommets are placed on

their respective pegs and both robots release the object. If a subset of grommets
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Training Data Modality Features and Datasets during Training Model Evaluation

Model Space-Mouse Kinesthetic F/T Sensors Extended Dataset Variation Task Success

1 BBIP ✓ ✗ ✓ ✓(3 demonstrations) ✓ 53.3%

2 BBIP ✓ ✗ ✓ ✓ ✓ 90.0%

3 BBIP ✓ ✗ ✓ ✓ ✗ 93.3%

4 BBIP ✓ ✗ ✓ ✗ ✓ 20.0%

5 BBIP ✓ ✗ ✓ ✗ ✗ 90.0%

6 BBIP ✓ ✗ ✗ ✓ ✓ 70.0%

7 BBIP ✓ ✗ ✗ ✓ ✗ 100.0%

8 BBIP ✓ ✗ ✗ ✗ ✓ 13.3%

9 BBIP ✓ ✗ ✗ ✗ ✗ 100.0%

10 BBIP ✗ ✓ ✗ ✓ ✓ 73.3%

11 BBIP ✗ ✓ ✗ ✓ ✗ 100.0%

12 BBIP ✗ ✓ ✗ ✗ ✓ 0.0%

13 BBIP ✗ ✓ ✗ ✗ ✗ 100.0%

14 ProMP ✓ ✗ ✓ ✗ ✗ 33.3%

15 ProMP ✓ ✗ ✓ ✓ ✓ 20.0%

16 BC ✓ ✗ ✓ ✓ ✓ 0.0%

Table 3.1: Bimanual Bayesian Interaction Primitives Performance on Peg-Insertion

are inserted, and one or more are stuck or not fully inserted, we consider the task

as failed. Similarly, when the robots do not release the object at the end of the

task, we consider the task failed even if all four grommets are inserted. Such a

failure is usually caused when the phase estimation that predicts the task progress is

incorrectly estimating that the task is not complete. Generally, we release the object

with a simple threshold at 96% task completion, which empirically generated the best

motions. It is important to note here that we did not choose 100% task completion

before opening the grippers as the phase estimation might be slightly erroneous.
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3.4.2 Model Evaluation

We compare our model, BBIP, against Probabilistic Movement Primitives (ProMP)

(Paraschos et al., 2013) as well as a simple Behavioral Cloning approach (BC) us-

ing a Bayesian neural network. Table 3.1 shows the results of the evaluated ap-

proaches based on which training modality has been used, either kinesthetic teaching

or the space mouse. Note that in the case of using kinesthetic demonstrations, the

force/torque sensor data will never be used. However, for the space mouse data, we

evaluated the performance of the models with and without force/torque data. Fur-

thermore, our standard evaluation starts with the bracket at a fixed pickup location,

but we also test the performance when varying the initial pose of the bracket within

a 3cm range along the x and y-direction. Column six indicates whether or not the

starting position was variable, while column 5 indicates whether or not additional

seven demonstrations (or three demonstrations when specified) data have been used

to train the model to adapt to varying starting positions. Generally, all our models

and baselines are trained on the same ten demonstrations, either collected by using

the space mouse or kinesthetic teaching are being evaluated in 30 insertion attempts

on the real robot.

While Table 3.1 also compares our approach against three baselines, it mainly

evaluates the impact of having force/torque data available during training and the

resulting adaptability to varying starting positions. Additionally, we also evaluate

the model quality when using the two different training modalities. Line 2 shows

the results of our main model, completing the insertion task with a 90% success rate

when using a total of 17 demonstrations and varying starting positions. Using these

seven additional training data is essential as a smaller number of data, as shown in
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line 1, causes a drastic decrease in model performance. The efficacy against a model

that is not trained on these additional data is shown in line 4, where the success rate

is reduced to 20%. However, adding these additional training data does not have a

catastrophic forgetting effect on the task in which we would always start at the same

location as can be seen when comparing lines 3 and 2, resulting in a 3.33% increased

performance when adding these additional variations.

The main difference between the different training modalities is the availability

of the force/torque sensor data. Lines 6 to 9 show the same experiments as lines

2 to 5 discussed in the previous section, but with the important difference that the

experiments in lines 6 to 9 do not use the force/torque data. Lines 7 and 9 show

a 100% success rate when the starting position is not varied. This is a 10% over

the same situations in lines 3 and 5, indicating that the force/torque data might not

be beneficial to the model’s success. However, when always using the same starting

position, the model only needs to learn a single motion that is roughly the same for

each evaluation run. Yet, when varying the starting positions, the model’s success

rate drastically decreases (line 6 and 8), even when training it on the varying starting

positions (line 6). Besides the used object tracking, the force/torque sensor data are

the only way the model perceives its environment. When not perfectly inserting the

bracket on the first attempt, the additional force/torque sensors allows the model to

dynamically recover from such situations, as seen in the comparison of lines 2 and 6,

resulting in a 20% performance increase.

In the previous paragraph, the impact of force/torque sensor data has been eval-

uated on the exact same demonstrations, just by omitting the additional data. How-

ever, we would now expect to see similar performance in the data collected from the

kinesthetic approach, which by nature doesn’t have usable force/torque sensor data.
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Lines 10 to 13 show the same experiments as lines 6 to 9, but without the different

teaching modality. We can see comparable performance between the models trained

on the different modalities. However, as discussed earlier, force/torque sensor data

are important for error recovery.

Lines 14 to 16 compare our model with three different baselines. In order to

give the baselines the best chance, we provide them with the data collected from

the space mouse with force/torque data and evaluate it on the standard and varied

starting position. However, all baselines show a drastically decreased performance as

compared to our model in line 2, thus underlining the capabilities of our approach

to adapt to temporal and spatial requirements during task execution dynamically.

The next chapter will have a more detailed look at our model’s ability to adapt to

temporal and spatial disturbances dynamically.

3.4.3 Spatial Conditioning

In the previous section, we discussed the overall performance of our model; how-

ever, a key contribution is our model’s ability to condition on the current situation

and generate an appropriate trajectory that completes the task while also adjusting

temporally to potential disturbances in the motion. First, Figure 3.4 and Figure 3.5

show our model’s ability to condition spatially when certain sensor modalities change.

Figure 3.4 shows the influence of the force/torque sensors on the bracket movement

when additional forces are sensed. These additional forces could, for example, be

added when being stuck on the pins. The figure shows 200 trajectories of the bracket

that have been executed without disturbances and shows the general motion when

the bracket is about to be inserted on the pins. Generally, the trajectories vary by

about 5mm; however, when adding disturbances in the force sensor readings, the tra-
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Figure 3.4: Motion Adaption from Force/Torque Sensors

Generalization capabilities of our IntPrim model. Conditioned on the initial object

pose, the model predicts similar trajectories over consecutive runs (blue), however,

introducing constant disturbances to the F/T sensors results in adjusted trajectories

(red) that still follow the general trend, however, will not be able to complete the

task.

jectories take drastic turns. These turns are shown in red and are solely caused by the

increased force readings. Furthermore, Figure 3.5 shows a similar experiment; how-

ever, here, control discrepancies have been introduced, and the model is conditioned

on its motion on these changed behaviors.

In both cases, disturbances have been introduced as a constant factor on the force-

torque sensors or absolute joint values, respectively. In order to reflect the influence

of the disturbed sensors on the remaining system, predictions of the interaction prim-

itives have been carried over to the next time step. While the shown insertion motion

is not successful in either case, it is clearly visible that our model is sensitive to

changes in the received sensor data and can continue to follow the general trend of

the demonstrated behaviors without causing extreme deviations from the expected

behaviors, allowing small disturbances to yield successful task completions still.
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Figure 3.5: Motion Adaption from Joint Position Sensors

Generalization capabilities of our IntPrim model. Conditioned on the initial object

pose, the model predicts similar trajectories over consecutive runs (blue); however,

introducing constant disturbances to the joints results in adjusted trajectories (red)

that still follow the general trend, however, will not be able to complete the task.

3.4.4 Temporal Conditioning

Besides disturbances in space, as discussed in the previous section, disturbances

in time are also a common occurrence during task execution. Time disturbances are,

for example, common when the bracket is about to be inserted into the four pegs

but is slightly off, causing it to be stuck on the pegs. In such a case, the task is

not progressing and needs a spacial adjustment before being able to be completed.

In such a case, the estimated phase progression should stop and only continue when

the motion is resumed. Figure 3.6 shows this behavior in the blue line where the

motion has been stopped after 60% of the task completion. In that case, the model

is able to adapt to this situation by stopping the estimated task progression until the

spatial correction was able to move the bracket into a position that allows further

motion. A more extreme case of this issue is if a human is in the loop and pushes
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Figure 3.6: Temporal (Phase) Adaption to Various Motion Disturbances

Phase progression in three scenarios: Held object (blue), showing how the phase

stops and continues, pulled-back object (red) where the object is pulled back to the

start after completing 60% of the task, and an undisturbed execution.

the robot in orthogonal or opposite directions of the intended task. In such cases,

the system should recognize the disturbance and not only stop the estimated task

progression but also apply a negative phase velocity to revert the task to a previous

state. Such a negative velocity is shown in the red line of Figure 3.6 in which the

object was pulled back towards the start of the interaction. In each case, it is visible

that our model is able to address these situations by either stopping or reversing the

previously predicted task progress.

3.4.5 NASA TLX Workload Evaluation

Lastly, we evaluate how easy it is to provide the demonstrations used in our ex-

periment using the different teaching modalities. The results in Table 3.1 indicates

that using the space mouse data is better for the learning algorithm as using the

force/torque data has a non-negligible benefit when handling variations in the ob-
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ject starting pose. However, collecting the data requires a different amount of effort.

Since evaluating the required workload is a subjective measure, we utilize the NASA

Task Load Index Hart (2006); Hart and Staveland (1988). NASA TLX is a subjec-

tive assessment of the workload a user is experiencing when completing a task, where

workload represents the cost of the labor. To assess the workload of each training

modality, additional demonstrations have been collected from eight users that are fa-

miliar with robots; however, they did not interact with a biannual setup before. Each

demonstrator is providing three demonstrations with each of the two teaching modal-

ities, which are either using a space mouse to control the six degrees of freedom of

the carried bracket or manually moving the object in a kinesthetic demonstration. In

both cases, the participants are not instructed on how the bracket should be inserted,

besides being shown the final configuration prior to providing the first demonstration.

Additionally, we also allowed the participants to familiarize themselves with the input

modalities by allowing an unrecorded first demonstration attempt.

After providing a set of three demonstrations with one of the modalities, users

are asked to complete a brief survey that collects their subjective assessment in six

different categories related to workload:

• Mental Demand: The Mental demand of the task.

• Physical Demand: The physical demand of the task.

• Temporal Demand: How rushed a participant felt.

• performance: How successful the participant was.

• Effort: Evaluating how hard participants had to work to achieve the perfor-

mance they achieved.
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Figure 3.7: NASA TLX Workload Assessment

Evaluation of the NASA TLX workload index. Blue bars show the raw data and

orange bars the weighted averages.

• frustration: How insecure, discouraged, irritated, stressed or annoyed a par-

ticipant felt during the task.

However, since every user has a different subjective definition of what workload means

to them, weights for each category are derived from simple decisions about which

member of each paired combination of the six metrics are more important to them.

Utilizing this one-time weighting approach further increases the sensitivity of the

metrics across multiple subjects. Figure 3.7 provides the results of the human subject

study in each category shown in blue, as well as the overall weighted workload shown

in light-blue.

Given the assessment of the workload, the eight participants indicate that the

overall workload of providing a demonstration with the space mouse is approximately

twice as high as when using kinesthetic teaching. Particularly, the temporal demand,
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perceived performance, and frustration are significantly higher compared to the kines-

thetic teaching mode. This is also reflected in the length of the collected trajectories.

While the average kinesthetic demonstration length from a non-expert is 173 and 114

time-steps from an expert, the average trajectory lengths for a space mouse demon-

stration is 587 and 292 from a non-expert and expert, respectively. Given the results

of this human subject study, collecting data by using the kinesthetic teaching mode is

significantly easier from a human perspective; however, the model’s ability to adapt

to variations by using the force/torque sensors from the space mouse teaching mode

has significant benefits. The decision on which mode should be preferred is an open

discussion topic. When it can be expected that the object variations are minor, us-

ing kinesthetic demonstrations should be preferred; however, when variability is an

unavoidable aspect of the task, data from the space mouse should be preferred.

3.5 Conclusion

In this paper, we introduced a framework for extracting compliant bimanual poli-

cies from human demonstrations. Our approach combines the strength of probabilistic

inference with underlying admittance control strategies in order to enable contact-rich

interactions with the environment. We show that spatio-temporal inference can play

a major role in determining safe, reliable, and efficient control signals for physical

interaction with objects and humans. We further applied our approach to a biman-

ual insertion task that requires the joint insertion of multiple grummets into their

corresponding pegs. Using the introduced methodology, we achieve a success rate of

90%. Further, we have conducted a user study to identify optimal data collections

interfaces. Our study shows that participants largely preferred kinesthetic teaching

to teleoperation with a space mouse. However, we show in this chapter that the
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kinesthetic teaching approach renders the recorded force-torque readings unusable.

This results in a tradeoff between higher reproduction accuracy (space mouse) and

higher usability (kinesthetic teaching).
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Chapter 4

LANGUAGE-CONDITIONED IMITATION LEARNING

Figure 4.1: Instruction Following Modalities

Overview of the used modalities in the instruction following task.

Imitation learning is a popular approach for teaching motor skills to robots. How-

ever, most approaches focus on extracting policy parameters from execution traces

alone (i.e., motion trajectories and perceptual data). In the previous chapters, no

adequate communication channel existed between the human expert and the robot

to describe critical aspects of the task, such as the properties of the target object or

the intended shape of the motion. Motivated by insights into the human teaching

process, we introduce a method for incorporating unstructured natural language into

imitation learning. At training time, the expert can provide demonstrations along

with verbal descriptions in order to describe the underlying intent (e.g., “go to the

large green bowl”). The training process then interrelates these two modalities to en-

code the correlations between language, perception, and motion. Figure 4.1 shows an

overview of the instruction following task and the relation between the used modal-

ities. After training, the resulting language-conditioned visuomotor policies can be
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conditioned at runtime on new human commands and instructions, which allows for

more fine-grained control over the trained policies while also reducing situational am-

biguity. We demonstrate in a set of simulation experiments how our approach can

learn language-conditioned manipulation policies for a seven-degree-of-freedom robot

arm and compare the results to a variety of alternative methods.

The work presented in this chapter has been published and presented at the Con-

ference on Neural Information Processing Systems (NeurIPS) 2020 and was selected

for a spotlight presentation.

4.1 Introduction

Learning robot control policies by imitation (Schaal, 1999) is an appealing ap-

proach to skill acquisition and has been successfully applied to several tasks, including

locomotion, grasping, and even table tennis (Chalodhorn et al., 2007a; Amor et al.,

2012; Mülling et al., 2013). In this paradigm, expert demonstrations of robot motion

are first recorded via kinesthetic teaching, teleoperation, or other input modalities.

These demonstrations are then used to derive a control policy that generalizes the

observed behavior to a larger set of scenarios that allow for responses to perceptual

stimuli (e.g., joint angles and an RGBD camera image of the work environment) with

appropriate actions (e.g., moving a table-tennis paddle to hit an incoming ball).

In goal-conditioned tasks, perceptual inputs alone may be insufficient to dictate

optimal actions (Codevilla et al., 2018) (e.g., without a target object, what should

a picking robot retrieve from a bin when activated?). Consequently, expert demon-

stration and control policies must also be conditioned on a representation of the

goal. While we use the term goals, it may refer to end goals (e.g., target objects)

or constraints on motion (e.g., minimizing end-point effector acceleration) (Ding
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et al., 2019). Prior work has typically employed manually designed goal specifica-

tions (e.g., vectors indicating a target position, a one-hot vector indicating target

objects, or a single value indicating the execution speed). However, this is an inflex-

ible approach that must be pre-defined before training and cannot be modified after

deployment.

In the present work, we consider language as a flexible goal specification for im-

itation learning in manipulation tasks. As shown in Fig. 4.2(center), we consider a

seven-degree-of-freedom robot manipulator anchored to a flat workspace populated

with a set of objects that vary in shape, size, and color. The agent is instructed

by a user to manipulate these objects in language for picking (e.g., “grab the blue

cup”) and pouring tasks (e.g., “pour some of its contents into the small red bowl”).

In order to succeed, the agent must relate these instructions to the objects in the

environment, as well as constraints on how they are manipulated (e.g., pouring some

or all of something require different motions). We examine the role of imitation learn-

ing from demonstrations in this setting that consist of developing a training set of

instructions and associated robot motion trajectories.

We developed an end-to-end model for the language-conditioned control of an

articulated robotic arm – mapping directly from observation pixels and language-

specified goals to motor control. We conceptually divided our architecture into two

modules: a high-level semantic network that encodes goals and the world state and a

lower-level controller network that uses the higher encoding to generate suitable con-

trol policies. Our high-level semantic network must relate language-specified goals,

visual observation of the work environment, and the robot’s current joint positions

into a single encoding. To do this, we leveraged advances in attention mechanisms

from vision-and-language research Anderson et al. (2018a) to associate instructions
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Figure 4.2: Language-Conditioned Imitation Learning System Overview

Overview of the general system architecture. (Left) Details of the controller model,

which synthesizes robot control signals . (Right) details of the semantic model,

which extracts critical information about the task from both perceptual input and

language commands. Dark-blue boxes indicate pre-trained components of our

model.

and target objects. Our low-level controller synthesizes parameters of a motor prim-

itive that specifies the entire future motion trajectory, providing insight into the

predicted future behavior of the robot from the current observation. The model was

trained end-to-end to reproduce demonstrated behavior while minimizing a set of

auxiliary losses to guide the intermediate outputs.

We evaluated our model in a dynamic-enabled simulator with random assortments

of objects and procedurally generated instructions, with success in 84% of sequential

tasks that required picking up a cup and pouring its contents into another vessel.

This result significantly outperformed state-of-the-art baselines. We provided de-

tailed ablations of modeling decisions and auxiliary losses, as well as detailed analysis

of our model’s generalization to combinations of modifiers (color, shape, size, and

pour-quantity specifiers). We also assessed robustness to visual and physical pertur-

bations in the environments. While our model was trained on synthetic language,

we also ran human-user experiments with free-form natural-language instructions for
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picking/pouring tasks, with a success rate of 64% for these instructions.

All data used in this chapter, along with a trained model and the full source code

can be found at: https://github.com/ir-lab/LanguagePolicies. The release

features a number of videos and examples on how to train and validate language-

conditioned control policies in a physics-based simulation environment. Additionally,

detailed information about the experimental setup and the human data collection

process can be found under the link above.

Contributions. To summarize our contributions, we

1. introduced a language-conditioned manipulation task setting in a dynamically

accurate simulator,

2. provided a natural-language interface which allows laymen users to provide

robot task specifications in an intuitive fashion,

3. developed an end-to-end, language-conditioned control policy for manipulation

tasks composed of a high-level semantic module and low-level controller, inte-

grating language, vision, and control within a single framework,

4. demonstrated that our model, trained with imitation learning, achieved a high

success rate on both synthetic instructions and unstructured human instruc-

tions.

4.2 Background

Imitation learning (IL) provides an easy and engaging way to teach new skills

to an agent. Instead of programming, the human can provide a set of demonstra-

tions (Argall et al., 2009) that are turned into functional (Ijspeert et al., 2013) or

probabilistic (Maeda et al., 2014; Campbell et al., 2019) representations. However, a
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limitation of this approach is that the state representation must be carefully designed

to ensure that all necessary information for adaptation is available. Furthermore,

it is assumed that either a sufficiently large task taxonomy or set of motion primi-

tives is already available (i.e., semantics and motions are not trained in conjunction).

Neural approaches scale imitation learning (Pomerleau, 1989; Anderson et al., 2019;

Kuo et al., 2020; Abolghasemi et al., 2019; Chang et al., 2021) to high-dimensional

spaces by enabling agents to learn task-specific feature representations. However, both

foundational references (Pomerleau, 1989), as well as more recent literature (Codev-

illa et al., 2018), have noted that these methods lack “a communication channel,”

which would allow the user to provide further information about the intended task,

at nearly no additional cost Cui et al. (2020). Hence, both the designer (program-

mer) and the user have to resort to numerical approaches for defining goals. For

example, a one-hot vector may indicate which of the objects on the table is to be

grasped. This limitation results in an unintuitive and potentially hard-to-interpret

communication channel that may not be expressive enough to capture user intent

regarding which object to act upon or how to perform the task. Another popular

methodology for providing such semantic information is to use formal specification

languages such as temporal logic Kress-Gazit et al. (2009); Raman et al. (2012). Such

formal frameworks are compelling, since they support the formal verification of pro-

vided commands. Even for experts, specifying instructions in these languages can

be a challenging, complicated, and time-consuming endeavor. An interesting com-

promise was proposed in Gopalan et al. (2018), where natural-language specifications

were first translated to temporal logic via a deep neural network. However, such a

methodology limits the range of descriptions that can be provided due to the larger

expressivity of the English language relative to the formal specification language.
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DeepRRT, presented in (Kuo et al., 2020), describes a path-planning algorithm that

uses natural-language commands to steer search processes, and (Sugita and Tani,

2005) introduced the use of language commands for low-level robot control. A survey

of natural language for robotic task specification can be found in Matuszek (2018).

Beyond robotics, the combination of vision and language has received ample atten-

tion in visual question-and-answering systems (VQA) (Lu et al., 2019; Antol et al.,

2015) and vision-and-language navigation (VNL) (Zhu et al., 2020; Krantz et al.,

2020; Codevilla et al., 2018). Our approach is most similar to (Abolghasemi et al.,

2019). However, unlike our model, the work in (Abolghasemi et al., 2019) used a

fixed alphabet and required information about the task to be extracted from the sen-

tence before being used for control. In contrast, our model can extract a variety of

information directly from natural language.

4.3 Problem formulation and approach

We considered the problem of learning a policy π from a given set of demonstra-

tions D = {d0, ..,dm}, where each demonstration contained the desired trajectory

given by robot states R ∈ RT×N over T time steps and with N control variables

(Subsequently, we would assume, without loss of generality, a seven-degree-of-freedom

(DOF) robot – i.e., N = 7.). We also assumed that each demonstration contained

perceptual data I of the agent’s surroundings and a task description v in natural lan-

guage. Given these data sources, our overall objective was to learn a policy π(v, I),

which imitated the demonstrated behavior in D while considering the semantics of

the natural-language instructions and critical visual features of each demonstration.

After training, we provided the policy with a different, new state for the agent’s en-

vironment, given as image I, and a new task description (instruction) v. In turn, the
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policy generated control signals that were needed to achieve the objective described in

the task description. We did not assume any manual separation or segmentation into

different tasks or behaviors. Instead, the model was assumed to independently learn

such a distinction form the provided natural-language description. Fig. 4.2 shows

an overview of our proposed method. At a high level, our model takes an image I

and task description v as input to create a task embedding e in the semantic model.

Subsequently, this embedding is used in the control model to generate robot actions

at each time in a closed-loop fashion.

4.3.1 Preprocessing vision and language

We first preprocessed both the input image and verbal description by building

upon existing frameworks for image processing and language embedding. More specif-

ically, we used a pre-trained object detection network on image I ∈ R569×320×3 of the

robot’s environment that identified salient image regions of any object found in the

robot’s immediate workspace. In our approach, we used Faster R-CNN (Ren et al.,

2015) to identify a set of candidate objects F = {f0, ..,fc}, each represented by a fea-

ture vector f = [f o,f b] composed of the detected class f o, as well as their bounding

boxes f b ∈ R4, within the workspace of the robot, ordered by the detection confidence

f c of each class. Based on a pre-trained FRCNN model trained from ResNet-101 on

the COCO dataset, we continued to fine-tune the model for our specific use-case on 40

thousand arbitrarily generated environments from our simulator. After fine-tuning,

the certainty of FRCNN on our objects was above 98%.

Regarding the preparation of the language input, each verbal description v was

split into individual words and converted into a row index of a matrix G ∈ R30000×50,

representing the 30 thousand most-used English words, initialized and frozen to utilize
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pre-trained GloVe word embeddings (Pennington et al., 2014). Our model took the

vector of row-indices as input, and the conversion to their respective 50-dimensional

word embedding was done within our model to allow further flexibility for potentially

untrained words.

4.3.2 Semantic model

The goal of the semantic model is to identify relevant objects described in the

natural-language command, given a set of candidate objects. In order to capture

the information represented in the natural-language command, we first converted the

task description v into a fixed-size matrix V ∈ R15×50, encoding up to 15 words with

their respective 50-dimensional word embedding. Based on V , a sentence embedding

s ∈ R32 was generated with a single GRU cell s = GRU(V ).

To identify the object referred to by the natural-language command v from the

set of candidate regions F , we calculated a likelihood for each region given the

sentence embedding s (Anderson et al., 2018a). The likelihood ai = wT
a fa([fi, s])

was calculated by concatenating the sentence embedding s with each candidate ob-

ject fi, applying the attention network fa : R37 → R64 and converting the result

into a scalar by multiplying it with a trainable weight wa ∈ R64. The function

fa(x) = tanh (Wx+ b) ⊙ σ (W ′x+ b′) is a nonlinear transformation that used a

gated hyperbolic tangent activation (Dauphin et al., 2016), where ⊙ represents the

Hadamard product of the elements, and W ,W ′, b, b′ are trainable weights and bi-

ases, respectively. This operation was repeated for all c candidate regions, and the

individual likelihoods ai were used to form a probability distribution over candidate

objects a = softmax([a0, ..., ac]). Then, the language-conditioned task representation

was the mean e′ =
!c

i=0 fiai where e′ ∈ R5. The final task representation e ∈ R32
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was computed by reintroducing the sentence embedding s, which was needed in the

low-level controller to determine task modifiers like everything or some, and concate-

nating it with e′. The task embedding was then created with a single fully connected

layer e = ReLU(W [e′, s] + b), where W and b were trainable variables.

4.3.3 Control model

The generation of controls is a function that maps a task embedding e and the

current agent state rt to control values for future time steps. Control signal generation

is performed in two steps. In the first step, the control model produces the parameters

that fully specify a motor primitive. A motor primitive in this context is a trajectory

of the control signals for all the robot’s degrees of freedom and can be executed in an

open-loop fashion until task completion. However, to account for the nondeterministic

nature of control tasks (e.g., physical perturbations, sensor noise, execution noise,

force exchange, etc.) we employed a closed-loop approach by recalculating the motor

primitive parameters at each time step.

Motor primitive generation We used motor primitives inspired by the approach

in Ijspeert et al. (2013). A motor primitive was parameterized byw ∈ R1×(B∗7), where

B is the number of kernels for each DOF of the robot. These parameters specified

the weights for a set of radial basis function (RBF) kernels, which would be used

to synthesize control signal trajectories in space. In addition, the motor primitive

generation step also estimated the current (temporal) progress towards the goal as

phase variable 0 ≤ φ ≤ 1 and the desired phase progression ∆φ. A phase variable

of 0 means that the behavior has not yet started, while a value of 1 indicates a

completed execution. Predicting the phase and phase progression allowed our model
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to dynamically update the speed at which the policy was evaluated. In order to keep

track of the robot’s current and previous movements, we used a GRU cell that was

initialized with the start configuration r0 of the robot and encoded all subsequent

robot states rt at each step t of the control loop into a latent robot state ht ∈ R7.

Based on the task encoded in the latent task embedding e and the latent state of

the robot ht at time step t, the model generated the full set of motor primitive

parameters for the current time step (wt,φt,∆φ) = (fw ([ht, e]) , fφ ([ht, e]) , f∆ (e)),

where fφ : R39 → R1, fw : R39 → RB∗7 and f∆ : R32 → R1 are multilayer perceptrons.

Finally, the generated parameters were used to synthesize and execute robot control

signals, as described in the next section.

Motor primitive execution A motor primitive parameterization (wt,φt,∆φ) en-

coded the full trajectory for all robot DOF. To generate the next control signals rt+1

to be executed, we evaluated the motor primitive at phase φt+∆φ. Each motor prim-

itive was a weighted combination of radial basis function (RBF) kernels positioned

equidistantly between phases 0 and 1. Each kernel was characterized by its location

µ with a fixed scale σ: Φµ,σ(x) = exp
'
−
'
(x− µ)2

(
(2σ)

)
. All B kernels (We use

B = 11 RBF kernels for each of the 7 DOF with a scale of σ = 0.012) for a single

DOF were represented as a basis function vector [Φµ0, σ(φ), . . . ,ΦµB, σ(φ)] ∈ RB×1,

and each kernel was a function of φ, representing the relative temporal progress to-

wards the goal. Given that a linear combination of RBF kernels approximated the

desired control trajectory, we could define a sparse linear map Hφt ∈ R7×(B∗7), which

contained the basis function vectors for each DOF along the diagonals. The control

signal at time t+1 was given as rt+1 = fB(φt+∆φ,wt) = Hφt+∆φ
wT

t , which allowed

us to quickly calculate the target joint configuration at a desired phase φt + ∆φ in
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a single multiplication operation. The respective parameters were generated in the

previously described motor primitive generation step. The control model worked in

a closed loop, taking potential discrepancies (and perturbations) between the desired

robot motion and the actual motion of the robot into consideration. Based on the

past motion history of the robot, our model was able to identify its progress within

the desired task by utilizing phase estimation. This phase estimation was a unique

feature in our controllers and differed from previous approaches with a fixed phase

progression Ijspeert et al. (2013).

4.3.4 Model integration

The components described in the previous sections were combined sequentially

to create our final model. After preprocessing the input command into a sequence

of word IDs for GloVe and detecting object locations in the robot’s immediate sur-

rounding using FRCNN, the semantic model (section 4.3.2) created a task-specific

embedding e that encoded all the necessary information about the desired action.

Subsequently, the control model translated the latent task embedding e and cur-

rent robot state rt at each time step t into hyper-parameters for a motor primitive

(section 4.3.3). These parameters were defined as the weights wt, phase φt, and

phase progression ∆φ at time t. By using these parameters, the motor primitive

was used to infer the next robot configuration rt+1, as well as the entire trajectory

R = {r0, ..., rT}, allowing for subsequent motion analysis. At each time step, a new

motor primitive was defined by generating a new set of hyper-parameters from the

task representation e. While e was constant over the duration of an interaction, the

current robot state rt was used at each time step to update the motor primitive’s

parameters. An overview of the architecture can be seen in figure 4.2.
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The integration of our model resulted in an end-to-end approach that takes high-level

features and directly converts them to low-level robot control parameters. As opposed

to a multi-staged approach, which requires a significant amount of additional feature

engineering, our framework learned how language affects the behavior (type, goal

position, velocity, etc.) automatically, while also learning the control itself. Another

advantage of this end-to-end approach was that the overall system could be trained

such that the individual components harmonized. This was particularly important for

the interplay of language embedding and control when using language as a modifier

for trajectory behaviors.

4.3.5 End-to-end training

Our model was trained in an end-to-end fashion, utilizing five auxiliary losses

to aid the training process. The overall loss was a weighted sum of five auxiliary

losses: L = αaLa + αtLt + αφLφ + αwLw + α∆L∆. The guided attention loss La =

−
!C

i xi log(yi) trained the attention model and was defined as the cross-entropy

loss for a multi-class classification problem over c classes, where a# ∈ Rc are the

ground truth labels and a ∈ Rc the predicted classes. The training label a# was a

one-hot vector created alongside the image preprocessing. It indicated which object

is referred to by the task description, depending on the order of candidate objects

in F . The controller was guided by four mean-squared-error losses, starting with

the phase estimation Lφ = MSE(φt,φ
#
t ) and with the phase progression, defined as

L∆ = MSE(∆φ,∆
#
φ), indicating where the robot was in its current behavior and how

much the current configuration would be updated for the next time steps. Both of

the labels ∆#
φ and φ#

t could easily be inferred from the number of steps in the given

demonstration. Furthermore, we minimized the difference between two consecutive
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"Pour some of it into the blue bowl"

"Pick up the red cup" Execution Trace: Picking

Simulator Overview

Execution Trace: Pouring

Figure 4.3: Instruction Following: Scene and Examples

Overview of the available objects in simulation (left) and sample task execution se-

quences with their respective commands of the two tasks: picking (top right) and

pouring (bottom right).

basis weights with Lw = MSE(Wt,Wt+1). By minimizing this loss, the model was

ultimately able to predict full motion trajectories at each time step, since significant

updates between consecutive steps were mitigated. Finally, the overall error of the

generated trajectoryR = [rφ=0, ..., rφ=1] was calculated via Lt = MSE(R,R#) against

the demonstrated trajectory R#. Values αa = 1, αt = 5, αφ = 1, αw = 50, α∆ = 14

were empirically chosen as hyper-parameters for L that had been found by a grid-

search approach. We trained our model in a supervised fashion by minimizing L with

an Adam optimizer using a learning rate of 0.0001.

4.4 Evaluation and results

We evaluated our approach in a simulated robot task with a table-top setup. In

this task, a seven-DOF robot manipulator had to be taught by an expert how to

perform a combination of picking and pouring behaviors. At training time, the ex-

pert provided both a kinesthetic demonstration of the task and a verbal description

(e.g.,“pour a little into the red bowl”). The table might feature several differently

shaped, sized, and colored objects, which often led to ambiguities in natural-language
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descriptions thereof. The robot had to learn how to efficiently extract critical infor-

mation from the available raw-data sources in order to determine what to do, how to

do it, or where to go. We show that our approach leveraged perception, language, and

motion modalities to generalize the demonstrated behavior to new user commands or

experimental setups.

The evaluation was performed using CoppeliaSim (Rohmer et al., 2013; James

et al., 2019), which allowed for accurate dynamics simulations at an update rate of

20Hz. Fig. 4.3 depicts the table-top setup and the different variations of the objects

used. We utilized three differently colored cups containing a granular material that

could be poured into the bowls. Additionally, we used 20 variations of bowls in two

sizes (large and small), two shape types (round and squared), as well as five colors

(red, green, blue, yellow, and pink). When generating an environment, we randomly

placed a subset of the objects on the table, with a constraint to prevent collisions or

other artifacts. A successful picking action was achieved when a grasped object could

be stably lifted from the table. Successful pouring was detected whenever the cup’s

dispersed content ended up in the correct bowl. Tasks of various difficulties could be

created by placing multiple objects with overlapping properties on the table.

To generate training and test data, we asked five human experts to provide tem-

plates for verbal task descriptions. Annotators watched prerecorded videos of a robot

executing either of the two tasks (picking or pouring) and were asked to issue a com-

mand that they thought the robot was executing. During annotation, participants

were encouraged to use free-form natural language and not adhere to a predefined

language pattern. The participants in our data collection were graduate students

familiar with robotics but not familiar with the goal of the present research. Over-

all, we collected 200 task explanations from five annotators where each participant
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labeled 20 picking and 20 pouring actions. These 200 task descriptions were then

manually templated to create replaceable noun phrases and adverbs, as well as basic

sentence structures. To train our model, task descriptions for the training examples

were then automatically generated from the set of sentence templates and synonyms

from which multiple sentences could be extracted via synonym replacement. In order

to generate natural task descriptions, we first identified the minimal set of visual fea-

tures required to uniquely identify the target object, breaking ties randomly. The set

of required features was dependent on which objects were in the scene – e.g., if only

one red object existed, a viable description that uniquely describes the object in the

given scene could refer only to the target’s color; however, if multiple red objects were

present, other or further descriptors might be necessary. Synonyms for objects, visual

feature descriptors, and verbs were chosen at random and applied to a randomly cho-

sen template sentence in order to generate a possible task description. Given the sent

of synonyms and templates, our language generator could create 99,864 unique task

descriptions of which we randomly used 45,000 to generate our data set. The final

data set contained 22,500 complete task demonstrations composed of the two sub-

tasks (grasping and pouring), resulting in 45,000 training samples. Of these samples,

we used 4,000 for validation and 1,000 for testing, leaving 40,000 for training.

Basic metrics: Table 4.1 summarizes the results of testing our model on a set of

100 novel environments. Our model’s overall task success describes the percentage of

cases in which the cup was first lifted and then successfully poured into the correct

bowl. This sequence of steps was successfully executed in 84% of the new environ-

ments. Picking alone achieved a 98% success rate, while pouring resulted in 85%. We

argue that the drop in performance was due to increased linguistic variability when

describing the pouring behavior. These results indicate that the model appropriately
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Table 4.1: Model Ablations Regarding Losses, Structure, and Training Size

Our model Tasks Success Execution statistics Error statistics (pouring)

Att ∆φ φ W Trj Pick Pour Seq Dtc PIn QDif MAE Dst None C S F C+S C+F S+F C+S+F

17 ! 0.57 0.53 0.28 0.83 0.61 0.79 0.15 9.33 0.83 0.36 0.69 1.00 0.31 0.00 0.90 0.56

18 ! ! ! ! 0.00 0.44 0.00 0.67 0.57 0.74 0.17 20.78 1.00 0.33 0.62 0.50 0.27 0.00 0.80 0.3

19 ! ! 0.62 0.84 0.51 0.97 0.89 0.94 0.12 4.16 0.83 0.89 0.85 1.00 0.82 0.67 0.80 0.67

20 FF attention 0.00 0.01 0.00 0.41 0.14 0.60 0.22 25.63 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00

21 RNN controller 0.02 0.00 0.00 0.44 0.17 0.71 0.38 19.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

22 FF step orediction 0.91 0.87 0.79 0.96 0.93 0.96 0.06 4.41 1.00 0.86 0.87 0.88 0.82 0.67 1.00 0.89

23 Dataset size 2,500 0.69 0.15 0.10 0.67 0.36 0.55 0.18 13.92 0.33 0.06 0.23 0.50 0.00 0.00 0.50 0.00

24 Dataset size 5,000 0.58 0.17 0.10 0.69 0.39 0.65 0.20 11.57 0.67 0.09 0.15 0.67 0.08 0.00 0.30 0.0

25 Dataset size 10,000 0.54 0.55 0.29 0.86 0.65 0.67 0.11 7.17 0.83 0.42 0.69 1.00 0.35 0.33 0.90 0.44

26 Dataset size 20,000 0.80 0.72 0.59 0.90 0.84 0.91 0.13 8.81 0.83 0.71 0.85 1.00 0.71 0.33 0.70 0.56

27 Dataset size 30,000 0.94 0.86 0.80 0.94 0.95 0.94 0.05 4.12 0.67 0.86 0.92 1.00 0.88 0.33 0.90 1.00

28 Our model 0.98 0.85 0.84 0.94 0.94 0.94 0.05 4.85 0.83 0.83 0.85 1.00 0.88 1.00 0.70 0.89

Table 4.2: Generalization to New Sentences and Changes in Illumination

Tasks Execution statistics

Pick Pour Seq Dtc PIn MAE

1 Illumination 0.93 0.67 0.62 0.84 0.81 0.07

2 Language 0.93 0.69 0.64 0.86 0.83 0.09

3 Our model 0.98 0.85 0.84 0.94 0.94 0.05

generalized the trained behavior to changes in object position, verbal command, or

perceptual input. While the task success rate is the most critical metric in such a

dynamic control scenario, Table 4.1 also shows the object detection rate (Dtc), the

percentage of dispersed cup content inside the designated bowl (PIn), the percent-

age of correctly dispersed quantities (QDif), underlining our model’s ability to adjust

motions based on semantic cues, the mean-average-error of the robot’s configuration

in radians (MAE), as well as the distance between the robot tool center point and
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Visual Pertubation Language Disambiguation

"Pour some into the 
jade bowl"

"Pour some into the 
jade bowl"

"Pour some into the 
jade bowl"

"Pour some into the 
jade bowl"

"... small bowl" "... blue bowl"

"... large round pot" "... square basin"

Physical Perturbation

"Grab the blue veil"

"Fill some into the 
blue bin"

Figure 4.4: Handling of Physical, Visual, and Verbal Disturbances

Generalization of our model towards physical perturbations (left), visual

perturbations (middle), and verbal disambiguation (right). All experiments used the

same model.

the center of the described target (Dst). The error statistics describe the success

rate of the pouring tasks depending on which combination of visual features was used

to uniquely describe the target. For example, when no features were used (column

“None”), only one bowl was available in the scene, and no visual features were nec-

essary. Further combinations of color (C), size (S), and shape (F) are outlined in the

remaining columns. We noticed that the performance decreased to about 70% when

the target bowl needed to be described in terms of both shape and size, even though

the individual features had substantially higher success rates of 100% and 85%, re-

spectively. It is also notable that our model successfully completed the pouring action

in all scenarios in which either the shape or a combination of shape and color were

used. The remaining feature combinations reflected the general success rate of 85%

for the pouring action.

Generalization to new users and perturbations: Subsequently, we evalu-

ated our model’s performance when interacting with a new set of four human users,
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from which we collected 160 new sentences. The corresponding results can be seen in

Table 4.2, row 2. When tested with new language commands, our model successfully

performed the entire sequence in 64% of cases. The model nearly doubled the trajec-

tory error rate but maintained a reasonable success rate. It is also observable that

most of the failed task sequences primarily resulted from a deterioration in pouring

task performance (a reduction from 85% to 69%). The picking success rate remained

at 93%.

Fig. 4.4 depicts different experiments for testing the ability of our model to deal

with physical perturbations, visual perturbations, and linguistic ambiguity. In the

physical perturbation experiment, we pushed the robot out of its path by applying a

force at around 30% of the distance to the goal. We can see that the robot recovered

(red line) from such perturbations in our model. In the visual perturbation experi-

ment (middle), we perturbed the visual appearance of the environment and evaluated

if the correct object was detected. We can see that, in all of the above cases, the ob-

ject was correctly detected at a reasonably high rate (between 59%− 100%). Fig. 4.4

(right) shows the model’s ability to identify the target objects as described in the ver-

bal commands. Depending on the descriptive features used in the task description,

the robot assigned probabilities to different objects in the visual field. These values

described the likelihood of the corresponding object being the subject of the sen-

tence – a feature that enabled increased transparency of the decision-making process.

Fig. 4.4 (middle) shows examples of the same task executed in differently illuminated

scenarios. This experiment highlighted the ability of this approach to cope with per-

ceptual disturbances. Evaluating the model under these conditions yielded a task

completion rate of 62% (Table 4.2, row 1). The main source of accuracy loss was the

detection network misclassifying or failing to detect the target object.

65



Baselines: We also compared our approach to two relevant baseline methods.

As a first baseline, we evaluated a three-layered LSTM network augmented with

extracted features F of all objects from the object tracker and sentence embedding s.

The LSTM network concatenated the features in an intermediate embedding and, in

turn, predicted the next robot configuration. The second baseline was a current state-

of-the-art method called PayAttention!, as described in (Abolghasemi et al., 2019).

The objective of PayAttention! was similar to our approach and aimed at converting

language and image inputs into low-level robot control policies via imitation learning.

Table 4.3 compares the results of the two baselines to our model for the pouring,

picking, and sequential tasks. Furthermore, the table also shows the percentage of

detected objects (Dtc), percentage of dispersed cup content that ended up in the

correct bowl (PIn), and the mean-absolute-error (MAE) of the joint trajectory. For

fairness, the models were evaluated using two modes: closed loop (CL) and ground

truth (GT). In the first mode, using a closed-loop controller, a model was only pro-

vided with the start configuration of the robot. In each consecutive time step, the

new robot configuration was generated by the simulator after applying the predicted

action and calculating dynamics. In the second mode, using ground truth states, a

model was constantly provided with the ground truth configurations of the robot as

provided by the demonstration. This mode reduced the complexity of the task by

eliminating the effect of dynamics and sensor or execution noise but allowed for easier

comparison across methods. Results in Table 4.3 show that the baselines largely failed

at executing the sequential task. However, partial success was achieved in the picking

task when using the full RNN baseline. Both methods particularly struggled with

the more dynamic closed-loop setup, in which they achieved a 0% success rate. Over-

all, our model (row 5) significantly outperformed both comparison methods. Unlike
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our model, the PayAttention! method used a fixed alphabet and required information

about the task to be extracted from the sentence before use in the model. In contrast,

our model could extract a variety of information directly from natural language. We

argue that in our case, adverbs and adjectives played a critical role in disambiguating

objects and modulating behavior. PayAttention!, however, primarily focused on ob-

jects that could be clearly differentiated by their noun, making it difficult to correctly

identify the target objects.

Ablations of our model: We studied the influence of auxiliary losses on model

performance. Table 4.1 (rows 1-3) shows the task and execution statistics for different

combinations of the auxiliary losses. When training with the trajectory loss (Trj) only,

our model successfully completed about 28% of the test cases (row 1). This limited

amount of generalization hints at the presence of overfitting. Rather than focusing

on task understanding and execution, the network learned to reproduce trajectories.

Adding the three remaining controller losses (W , φ, and ∆φ) aggravated the situation

and led to a 0% task completion (row 2). We noticed that attention (Att) was a

critical component for training a model with high generalization abilities. Attention

ensured that the detected object was in line with the object clause of the verbal task

description. A combination of Att and Trj already resulted in a 51% task success

rate (row 3). When using the full loss function, including all components, our model

achieved an 84% success rate (row 12). This result highlights the critical nature of

the loss function, in particular in such a multimodal task. The different objectives

related to vision, motion, temporal progression, etc. had to be balanced to achieve

the intended generalization.

We also consider an ablation that replaced the attention mechanism with a simple

feed forward network. This network took all image features F as input and gener-
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Table 4.3: Comparison to a Baseline and a Current State-of-the-Art Method

Tasks Execution statistics

GT CL Pick Pour Seq Dtc PIn MAE

1 Full RNN ✓ 0.58 0.00 0.00 0.52 0.07 0.30

2 Full RNN ✓ 0.00 0.00 0.00 0.39 0.07 0.39

3 PayAttention! ✓ 0.23 0.08 0.00 0.66 0.41 0.13

4 PayAttention! ✓ 0.00 0.00 0.00 0.52 0.06 0.53

5 Our model ! 0.98 0.85 0.84 0.94 0.94 0.05

ated an intermediate representation via a combination with the sentence embedding

s (without any attention mechanism). All other elements of the approach remained

untouched. Table 4.1 (row 4) shows a severe decline in performance when using this

modification. This insight underlines the central importance of the attention model

in our approach. Pushing the ablation analysis further, we also investigated the im-

pact of the choice of low-level controller. More specifically, we evaluated a variant of

our model that used attention but replaced the controller module with a three-layer

recurrent neural network that directly predicted the next joint configuration (row

5). Again, performance dropped significantly. Finally, we performed an experiment

in which we, again, maintained the attention model but replaced only the motor

primitives with a feed forward neural network. This variant produced a similar per-

formance to our controller (row 6); the task performance was only marginally lower,

by about 5%. While this was a reasonable variant of our framework, it lost the ability

to generate entire trajectories indicating the robot’s future motion. Such lookahead

trajectories could be of significant importance for evaluating secondary aspects and

68



safety of a control task (e.g., checking for collision with obstacles, calculating dis-

tances to human interaction partners, etc). Therefore, we argue that the specific

control model proposed in this paper was more amenable to integration into hierar-

chical robot control frameworks. Finally, we investigated the impact of the sample

size on model performance. Table 4.1 presents results from different dataset sizes in

rows 7 to 11. Significant performance increases could be seen when gradually increas-

ing the sample size from 2,500 to 30,000 training samples. However, the step from

30,000 to 40,000 samples (our main model) only yielded a 4% performance increase,

which was negligible compared to the previous increases of ≥ 20% between each step.

4.5 Conclusion

We present an approach for end-to-end imitation learning of robot manipula-

tion policies that combines language, vision, and control. The extracted language-

conditioned policies provided a simple and intuitive interface to a human user for

providing unstructured commands. This represents a significant departure from ex-

isting work on imitation learning and enables a tight coupling of semantic knowledge

extraction and control signal generation. Empirically, we showed that our approach

significantly outperformed alternative methods, while also generalizing across a vari-

ety of experimental setups and achieving credible results on free-form, unconstrained

natural-language instructions from previously unseen users. While we use FRCNN

for perception and GloVe for language embeddings, our approach is independent of

these choices and more recent models for vision and language, such as BERT (Devlin

et al., 2019a), can easily be used as a replacement. This extensibility is an appealing

feature of this methodology and allows for steady improvements in the future. An

interesting direction for this work would be to better analyze failure cases rooting
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from either providing impossible instructions, or failing to complete the task. By

analyzing the model’s uncertainty given a new instruction, the user can be informed

about potential issues. An intuitive way to convey such information would be to

extend the currently one-directional communication channel with the ability of the

system to formulate such issues or even use language as a means to explain to a user

what task the system has performed.

4.6 Broader impact

Our work describes a machine-learning approach that fundamentally combined

language, vision, and motion to produce changes in a physical environment. While

each of these three topics has a large, dedicated community working on domain-

relevant benchmarks and methodologies, there are only a few works that have ad-

dressed the challenge of integration. The presented robot simulation scenario, the

experiments, and the presented algorithm provide a reproducible benchmark for in-

vestigating the challenges at the intersection of language, vision, and control. Natural

language as an input modality is likely to have a substantial impact on how users in-

teract with embedded, automated, and/or autonomous systems. For instance, recent

research on the Amazon Alexa Lopatovska et al. (2018) suggests that the fluency

of the interaction experience is more important to users than the actual interaction

output. Surprisingly, “users reported being satisfied with Alexa even when it did not

produce sought information”Lopatovska et al. (2018).

Beyond the scope of this paper, having the ability to use a natural-language

processing system to direct, for example, an autonomous wheelchair Williams and

Scheutz (2017) may substantially improve the quality of life of many people with

disabilities. Natural-language instructions, as discussed in this paper, could open
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up new application domains for machine learning and robotics, while at the same

time improving transparency and reducing technological anxiety. Especially in elder

care, there is evidence that interactive robots for physical and social support may

substantially improve quality of care, as the average amount of in-person care in only

around 24 hours a week. However, for the machine-learning community to enable such

applications, it is important that natural-language instructions can be understood

across a large number of users, without the need for specific sentence structures or

perfect grammar. While far from conclusive, the generalization experiments with

free-form instructions from novel human users (see Sec.4.4) are an essential step in

this direction and represent a significant departure from typical evaluation metrics

in robotics papers. In particular, we holistically tested whether the translation from

verbal description to physical motion in the environment brought about the intended

change and task success.

Even before adoption in homes and healthcare facilities, robots with verbal in-

structions may become an important asset in small and medium-sized enterprises

(SMEs). To date, robots have been rarely used outside of heavy manufacturing due

to the added burden of complex reprogramming and motion adaptation. In the case

of small product batch sizes, as typically used by SMEs, repeated programming be-

comes economically unsustainable. However, using systems that learn from human

demonstration and explanation also comes with the risk of exploitation for nefari-

ous objectives. We mitigated this problem in our work by carefully reviewing all

demonstrations, as well as the provided verbal task descriptions, in order to ensure

appropriate usage. In addition to the training process, another source of system fail-

ure could come from adversarial attacks on our model. This is of particular interest

since our model does not only work as software but ultimately controls a physical
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robotic manipulator that may potentially harm a user in the real world. We ad-

dressed this issue in our work by utilizing an attention network that allowed users to

verify the selected target object, thereby providing transparency regarding the robot’s

intended behavior. Despite these features, we argue that more research needs to focus

on the challenges posed by adversarial attacks. This statement is particularly true for

domains like ours in which machine learning is connected to a physical system that

can exert forces in the real world.
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Chapter 5

VERBAL DESCRIPTIONS FROM MULTIMODAL ROBOT DATA

Figure 5.1: Language Generation Modalities

Overview of the used modalities in the language generation task.

Giving robots the ability to communicate with their environment and other agents

in it efficiently is an integral step towards human-robot collaboration. The previous

chapter introduced an approach that combines vision and language to generate the

robot’s motion, allowing users to provide instructions that the robot then executes.

However, most approaches lack the ability to efficiently communicate with the user if

the task fails, doesn’t run as expected, or when additional information is needed. In

such cases, natural language is an efficient and intuitive way to express the robot’s

action. While the previous chapter introduced a multimodal approach that uses vision

and language to generate motion, this chapter presents an approach to allow a robotic

system to explain its actions to a user from two sample images of a task and a motion

trace of the robots. Figure 5.1 shows the relation between the three used modalities.

Using multiple modalities for language generation allows our approach to explain the
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robot’s action in greater detail than single-modality approaches and current state-

of-the-art image captioning methods. Furthermore, we utilize a Bayesian approach

to reason over our model’s uncertainty and its generated task explanation to gain

further insights into the robot’s actions.

5.1 Introduction

Language plays a critical role in our everyday lives. Throughout history, language

has been the most efficient way for humans to convey ideas, concepts, and thoughts

among each other, ultimately becoming an integral part of human society. Therefore,

it is of critical importance that robots can utilize this form of communication, espe-

cially as they are moving close to our everyday lives. Particularly when engaging with

non-expert users who might not be able to program robots directly to teach them

how to achieve new tasks, providing a language interface to the robot is of utmost

importance.

Previous work on incorporating language with robot systems primarily focused on

understanding verbal action descriptions to generate a control policy that achieves

the described task. However, to fully integrate these robot systems into our homes,

it is important to understand human instruction and close the loop by generating

language descriptions of the robot’s actions. In this chapter, we propose an approach

that generates a verbal action description from images and an execution trace of the

robot’s motion. We also demonstrate this approach in a multi-robot scenario that

shows our model’s ability to generate concise action descriptions of various tasks.

Figure 5.2 shows an overview of the proposed method. Given two images of the

task, a pre-and post-action image, together with the motion trace of the two robots,

our model can automatically generate a plausible description of the action that was

74



 What just 
happened?

Im
ag

es

M
ov

em
en

t "The left-robot was
able to exchange the

green bottle with 
the right-robot!"

?

Figure 5.2: Multimodal Language Generation Introduction

Our model can generate a verbal description of the task that is completed by the

two robots from a pre- and post-action image as well as a motion trace of the

robots’ joint movement.

completed by the robots. In this example of an exchange, the model describes the

task as “The left-robot was able to exchange the green bottle with the right robot”. It

is important to note here that the work in this chapter does not attempt to describe

why the robots performed the action, but rather what has been performed. Such

action descriptions have multiple use-cases. For example, these descriptions can be

used when the robots can not directly be observed or to allow for better accessibility

for people with visual impairments. Furthermore, language can provide additional

context that cannot be extracted from vision alone. For example, from a single video

of a robot completing a task, it is unclear if the system performed quickly or slowly;

however, an additional explanation can provide the necessary context for downstream

tasks or follow-up actions.
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In summary, this chapter introduces the following contributions:

1. An approach capable of generating verb descriptions of tasks completed by

multiple robots.

2. An empirical evaluation of our model, demonstrating its ability to generate

more accurate verbal task descriptions, as compared to a current state-of-the-

art image captioning baseline.

3. An approach to better understand the model’s ability to generate sentences

in multiple variations of the trained actions by reasoning about the model’s

uncertainty.

5.2 Background

The benefit of using natural language in conjunction with robotics has long been

discovered as an intuitive communication channel between humans and robots (Wino-

grad, 1972). Given this early approach, the work in Dillmann and Friedrich (1996)

and Kress-Gazit et al. (2008) extended the idea of Winograd (1972) by proposing a

programming-by-demonstration approach as well as a translations approach of verbal

instructions to a plan specification, respectively. However, these approaches usually

utilize symbolic language processing, semantic analysis, or formal gramars (Juraf-

sky and Martin, 2009). Following the recent advances in deep learning, allowing for

more complex language models (Sutskever et al., 2014; Vaswani et al., 2017; Otter

et al., 2021). The usage of language in conjunction with robotics has also seen fur-

ther advances, partially due to the surge of interest in collaborative robotics (Hicks

and Simmons, 2019; Thomaz et al., 2016). Especially in the domain of collaborative

robotics, giving robots the ability to utilize language does not only remove the need
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for other, potentially cumbersome interfaces but also has the potential of increasing

the user’s trust in the system (Martelaro et al., 2016; Javaid and Estivill-Castro,

2021). While trust plays an important role in human-robot collaboration, most of

today’s focus on combining language and robotics falls into the category of instruc-

tion following Stepputtis et al. (2020b); Lynch and Sermanet (2021) with the goal

of learning a policy from language and potentially other modalities that completes

the described action. A complete overview of this type of task can be found in the

surveys of Tellex et al. (2020) and Liu and Zhang (2019). In addition to an increased

interest in collaborative robotics, the surge of deep learning in recent years enabled

the usage of even more complex models that automatically learn various concepts in

images and language. Especially the introduction of novel concepts like Transform-

ers (Vaswani et al., 2017) and self-attention, resulting in large language models like

BERT (Devlin et al., 2019b) allowed for a shift towards semantic image processing

and language understanding (Stefanini et al., 2021). One use-case of these advances

is demonstrated in Huang et al. (2020b) where human action descriptions have been

extracted from dynamic videos.

The approach presented in this chapter utilizes a multimodal approach that com-

bines vision and motion in order to generate a verbal description of the executed

task. In contrast to explainable AI (XAI) (Chakraborti et al., 2021), the approach

presented here strictly focuses on what has been done, rather than explaining why

the robots have performed the actions they did. This approach allows users to uti-

lize additional communication channels in order to advance human-robot interaction

further. The approach discussed in this section is most similar to the work presented

in Yoshino et al. (2020), but instead of K-means clustering, it uses an end-to-end

learning approach that utilizes recent advances in attention models.
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Figure 5.3: Language Generation System Overview

Our model generates a sentence from two images, one from before and one from

after the action, as well as a motion trace of the two robots.

5.3 Problem Statement and Approach

The problem of generating a verbal task description s (a sequence of words) that

concisely describes the action a ∈ A from the set of all actions A is defined as the

problem of generating the next word sn+1 in sentence s as described in equation 5.1

sn+1 = fΘ (Ipre, Ipost,J , s0→n) (5.1)

where the images Ipre and Ipost are describing the image of the robots’ immediate en-

vironment from before and after the action, respectively. Furthermore, our approach

utilizes multiple modalities in order to generate a suitable task description, thus our

model fΘ(...) also receives an execution trace J ∈ RT×14 containing T measurements

of the robots’ joint and gripper configuration during the action. Finally, in order to

generate the next word sn+1, we also provide our model with the so-far generated

sentence s0→n of length n. Each sentence is initialized with the start-of-sentence to-

ken 〈sos〉 and completes when either the maximum sentence length of 28 words is

reached, or the end-of-sentence token 〈eos〉 is generated. For each word sn ∈ s, our

problem is defined as a classification task over N classes, where N is the size of our

dictionary D.

After the training of our model is completed, our model can generate a suitable
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task description given a set of two new images Ipre and Ipost as well as a motion trace

J for any task a ∈ A.

5.3.1 Data Pre-Processing

Instead of providing our model directly with raw images, we are utilizing Detec-

tron2 (Wu et al., 2019) in order to generate regions of interest (RoI) in the images.

These regions capture all potentially relevant objects and robots in the environment

image. In order to make the model applicable to our specific actions A and the ob-

jects used within the tasks, we fine-tuned Detectron2 on 10.000 randomly generated

environments.

To allow our model to understand language, we represent each word w as a train-

able embeddingwe ∈ R256. In addition to the words used in our training data, expand

the dictionary with the 〈sos〉, 〈sos〉, and 〈padding〉 tokens to form our dictionary of

size N . In addition to the 〈sos〉 and 〈sos〉 tokens, the 〈padding〉 token is used to pad

each sentence in the training dataset to its maximum length of 27 words.

5.3.2 Sequence to Sequence Language Generation

Equation 5.1 defines our problem: Predicting the next word in sentence s that

describes the robots’ actions shown by two images Ipre and Ipost and a motion trace

J . We formulate our problem as a classification problem over the dictionary D of

size N . The sentence that needs to be generated by the model is initialized with only

the 〈soc〉 token, and our model generates one more word in each iteration. Figure 5.3

provides a general overview of the approach, starting with independent embeddings

for each modality before applying our attention approach and language generation

head.
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Encoding Modalities

Images are processed by our pre-trained Detectron2, extracting the 25 image regions

that have the highest confidence according to the detection algorithm. The feature

vector of each of the 25 regions from each image are concatenated into a single matrix

Ir ∈ RR×1024 where R = 50 is the total number of image regions. Each row of Ir

is then transformed with a trainable non-linear transformation Ie = relu (IrW + b)

with trainable variables W and b of dimension 1024.

In order to encode the robots’ motion J , which is a sequence of robot states, a

single GRU cell is used, returning the sequence of intermediate results J e as well as

the final hidden state h after re-scaling each element in J non-linearly to the common

size of 1024. Equation 5.2 formally describes the joint encoding with trainable weights

W and b.

J e,h = GRU(relu (JW + b)) (5.2)

Cross- and Self-Attention

After having generated the individual joint representations Ie and J e, as well as the

hidden state h, we employ two stages of cross attention and one layer of self-attention

to generate a task context c ∈ RC×1024 that is later used to generate the next word

in s. Generally, equation 5.3 describes the general process of attention used in the

cross and self-attention parts of our model.

C = fC(Q,X)

= tanh ((QW q + bq) + (XW x + bx))W + b

(5.3)

The variables W ,W x, and W q as well as b, bx, and bq are trainable and of common

dimension 1024. While the function fC(...) is used multiple times, the dimensionality
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of the weights remains the same. Further note that depending on the inputs, the

resulting context CJ = softmax (fC(h,J
e))J e and CI = softmax (fC(h, I

e)) Ie have

a dimensionality of RT×1024 and RRx1024 respectively. For the last step, self attention,

which utilizes fC(...) again, the sequences need to be padded to a common length of

296, which is the maximum possible length of the robots’ motion. We then generate

the final context vector C = softmax(fC([C
J ,CI ], [CJ ,CI ]))[CJ ,CI ].

Word Prediction

The word generation is implemented as a classification problem over N classes in

dictionary D. At each iteration of our model, the generated word is concatenated to

the sentence s until either the maximum sentence length is reached or the 〈eos〉 is

generated. Given the context C, we generate the next hidden state hn+1 as well as

the word embedding x as described in Equation 5.4.

x,h = GRU([embedding (sn) ,a])W + b (5.4)

In contrast to the previous use of the trainable variables W and b, the dimensionally

here is reduced to the size of the dictionary D in order to allow for a classification task

from x. The GRU cell in Equation 5.4 has 1024 hidden units and also generates a new

hidden state h that is used in Equation 5.3 during the generation of the context C in

the next iteration. Finally, the next word is classified by sn+1 = argmax(softmax(x)).

While using argmax to decide on the next word in sn+1 ∈ s results in reasonable

sentences, we decided to utilize beam-search with a beam-width of five to generate the

final sentence by always keeping the five most promising sentences. Empirically, using

beam-search increases the variability of chosen templates during sentence generation,

while the greedy approach using argmax directly mostly uses a single template to
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generate a sentence. While both approaches are feasible, we decided to use beam-

search for increased linguistic variability.

5.3.3 Training

We start our training process by fine-tuning Detectron2 on all of our objects and

robots in the environment to be able to generate proper RoIs. To speed up the

training of our language generation model, we pre-process the entire dataset with the

fine-tuned Detectron2 model to generate the 25 most confident RoIs for each image

in the dataset. While our model is capable of end-to-end inference, we chose this

optimization during training such that the full-resolution images do not need to be

part of the training dataset.

During training, we optimize the sparse categorical cross-entropy loss for a given

one-hot encoding of the predicted word and the target word at each step. Between

steps, teacher forcing is used by giving the correct word as input to the decoder

instead of the predicted word from the previous time step until the maximum length

of the target description is reached. Furthermore, we employ a 70% dropout in the

attention layers of Equation 5.3 The model is optimized with an Adam optimizer

using a learning rate of 0.001 over 25 epochs with a batch size of 32. On average,

training the model until convergence takes about 60 minutes.

5.4 Evaluation and Results

By using our model, verbal descriptions of multiple tasks can be generated from

two images and a motion trace of the robots’ action. This ability is demonstrated on

five different tasks implemented in a simulated table-top manipulation task utilizing

two universal robots UR5 robots. Besides the six degrees of freedom (DoF) of each
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robot, each robot utilizes a parallel jaw gripper to handle objects. The five tasks are

defined as follows:

• Picking: A cup or mug on the table in front of the robots is picked up by one

of the robots while the second robot is not performing any action.

• Pouring: A cup that is held by one of the robots is poured into one of the

bowls on the table. In this task, the active robot can either pour a little or pour

a lot.

• Exchange: An object that is held by one robot is exchanged with the other

robot, resulting in the second robot holding the object

• Open: The saucepan object has a lid that can be opened and placed next to

the pan.

• Twist: In this task, one robot acts as a fixture, holding a jar with a lid that

can be unscrewed from it, while the second robot attempts to open the jar by

holding onto the lid and opens it with a twisting motion.

All five tasks have been implemented with a motion planner in CoppeliaSim (Rohmer

et al., 2013; James et al., 2019), allowing for precise physics simulation of our objects

and robot motions. During the experiments, the simulator runs in real-time with a

fixed step size of 50ms. The objects utilized in our task are shown in Figure 5.4,

and all ten objects are available in six colors, except the saucepan, which is unique.

All objects are monolithic in nature, except for the jar, which has a lid that can be

unscrewed, and the saucepan, which also has a lid, but it can simply be lifted off.

The objects in the top-right corner of the image are used for geometric variations
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Figure 5.4: Overview of All Possible Scene Objects

All our objects exist in all six colors and the objects in the back-right are used for

geometric variation.

which is evaluated later in this section. Unlike shown in Figure 5.4, the objects used

for geometric generalization are also available in six different colors.

5.4.1 Data Collection and Training

In order to collect the training data for the model, the five basic motions are

executed in the simulator to collect the pre and post-action images as well as to record

the robot motion for every time step. Overall, a dataset of 40000 demonstrations for

training and an additional 1500 demonstrations for testing have been collected. In

order to later evaluate unseen action-object pairs, we do not include the glass in the

exchange action nor the jar in the pouring action. However, other actions include the

glass and the jar, as well as the respective actions with other objects from the dataset.

This held-out object-action combination allows us to later evaluate the model’s ability

to generalize the learned language generation.

84



The sentences in our demonstrations are generated automatically with a template

system that can generate plausible task descriptions given an environment and desired

task. Our sentences are generated from a set of five templates for each task, as

well as a set of synonyms for commonly used words like colors, objects and actions.

Generally, we are interested in describing six features in each sentence: action, agent,

direction, object, color, and Quantity. However, depending on the described task, not

all features are necessary. For example, the quantity is only used when describing a

pouring task as it is not applicable for other actions.

5.4.2 Evaluation Metric

Our model creates a description for an observed task. The resulting task descrip-

tion is evaluated on multiple common NLP metrics (Sai et al., 2020) including BLEU,

ROUGE, METEOR, CIDER, as well as our own metric that. In this work, we decided

to add our own metric to evaluate the six described features by using an inverse tem-

plate generator that can take a generated sentence and converter it back into the used

template as well as the features the model chose to describe the task. This additional

metric provides further insights into the quality of the generated language while the

general NLP scores might not pick up the nuances of our task. Further details on the

NLP metrics can be found in our discussion in section 5.4.4.

For our own metric, we extract the features and respecive sentence template that

the model generated and compare them with the training template and features.

We calculate the percentage of correctly detected attributes under consideration of

valid synonyms. Our inverse template generator is able to handle such synonyms and

varying templates for all five tasks since the possible sentences the model can generate

are limited, and no out-of-distribution words will ever be generated. In addition to
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Input Features Action Agent Direction Object Color Quantity Object & Color All

Model Joints Images /1500 /1500 /900 /1800 /1200 /300 /1200 /1500

1 Ours ✗ ✓ 98.6% 96.2% 76.87% 99.94% 97.81% 98.67% 97.71% 83.41%

2 Ours ✓ ✗ 100.0% 99.8% 92.13% 50.08% 19.42% 100.0% 7.32% 47.1%

3 Ours ✓ ✓ 100.0% 98.6% 95.87% 99.89% 96.2% 98.0% 96.11% 93.2%

4 M2T ✗ ✓ 100.0% 100.0% 86.43% 95.94% 98.83% 99.33% 92.76% 87.01%

5 M2T ✓ ✓ 100.0% 100.0% 87.55% 95.89% 98.08% 99.67% 92.01% 87.14%

Table 5.1: Language Generation: Results and Baselines

the six feature metrics, we also add the Object & color and ALL metric to capture if

an object was fully described and if all features of the entire task have been identified

correctly. Table 5.1 reports the result of our metric based on the extracted features

while Figure 5.6 compares the standard NLP scores.

5.4.3 Language Generation Results

We evaluate our model with our custom metric described in Section 5.4.2 and

report the results in Table 5.1. Results are reported on 1500 test demonstrations

that are equally distributed over the five different actions, resulting in 300 tests per

action type. However, some attributes overlap between different actions, potentially

increasing the number of test cases for each feature. For example, each action involves

one robot and as a result, the Agent feature in Table 5.1 is evaluated on all 1500 test-

cases. On the other hand, the Quantity feature is only applicable in the pouring task

and is thus only evaluated in the 300 pouring actions. Yet, maybe counterintuitively,

the object feature is evaluated in 1800 cases even though there are only 1500 test

cases. This is due to the pouring task in which the poured and target objects are

referenced, thus increasing the number of objects by 300.
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Figure 5.5: Attention to Image Regions During Task Generation

The heat-map shows the attention to certain image regions when generating

key-words of a task description: “The left-robot successfully poured the red mug

partially into the orange small-circular bowl located at the left of the table”. Darker

colors indicate higher attention, and circles indicate the two highest weights.

The main contribution of this work is the combination of multiple modalities

with the hypothesis that the combination of modalities yields more accurate task

descriptions. The main results of our model when combining both modalities are

shown in line 3 of Table 5.1 while the results with only one of the modalities are shown

in lines 1 and 2. Combining the modalities provides a semantically correct sentence

in 93.2% of the test cases where most of the failures come from not identifying the

direction of the movement or color of the target object correctly. This is a drastic

performance increase over the single modality models with 83.41% and 47.1% accurate

sentences when only using images or joints, respectively. As expected, detecting the

color of objects from the robot’s motion alone results in only 7.32% accuracy in line

2, while detecting the direction of the two images alone is difficult for the image-only

model. Overall, these results clearly indicate the benefit of using multiple modalities

to describe robot actions as they complement each other.

Figure 5.5 shows our model’s attention over the various image regions on a post-

condition image of the pouring task. In order to generate the sentence “The left
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robot successfully poured the red mug partially into the orange small-circular bowl

located at the left of the table”, the model attends various image regions for the

most relevant words in the generated sentence. The two regions with the highest

attention are highlighted with a white circle, while darker colors generally indicate

higher attention. Most noticeably, the system correctly identifies the image regions

for the pouring action by observing the state of each robot (highlighted in blue).

Furthermore, the image regions containing the mug have been clearly identified and

highlighted in green. Other concepts, like the word red, also have clear image regions

but are not directly shown in the picture.

Additionally, we also compared our model with a current state-of-the-art image-

captioning baseline to show the benefit of using a multimodal approach. For this

work, we chose Meshed-Memory Transformers (M2T) (Cornia et al., 2020) that we

expanded to take two images as well as two images and sequence of joint positions by

concatenating the additional inputs to the original input image. Table 5.1 shows the

results of M2T in line 4 and 5. While the image-only baseline in line 4 outperforms

our image-only model in line 1 by 3.6%. However, comparing the multimodal baseline

in line 5 with our multimodal model in line 3, the performance of our model increases

by 6.06% over the baseline model. We attribute this additional performance gain to

our attention approach that allows the modalities to be combined efficiently.

5.4.4 NLP Scores

In addition to our own metric, we also evaluate our model on seven common NLP

metrics, namely BLEU-1/2/3/4, METEOR, ROUGE, and CIDEr (Sai et al., 2020).

Figure 5.6 shows the results when evaluating the generated sentences of our model

and the baseline against the ground-truth sentence on common NLP baselines. In
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Figure 5.6: Evaluation of the Proposed Method on Common NLP Baselines

Comparison of our model and the baseline on common NLP scores: BLEU,

METEOR, ROUGE, and CIDEr. Note that all scores have been normalized

between [0, 1] according to their respective max values.

all metrics, using a multimodal approach increases the overall score of our as well as

the baseline model. However, the baseline model outperforms our model when using

the BLEU and CIDEr metrics, while our model marginally outperforms the baseline

on METEOR and ROUGE. However, when looking at the results of our metric in

Table 5.1, our model outperforms the baselines and single-modality models by large

margins. We argue that this discrepancy is due to the way these metrics are evaluating

sentences. Our task requires precise wording given the features we are interested in,

yet these metrics are not well suited to capture such issues since a single mistake in,

for example, determining the colors is still a grammatically correct statement, yet a

semantically wrong sentence. However, unlike our own metric, failing to describe the

task correctly will not result in a significantly lower score.
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Generalization Action Agent Direction Object Color Quantity Object & Color All

1 Light Change 100.0% 100.0% 96.72% 100.0% 78.46% 95.0% 78.46% 86.17%

2 Motion Change 98.67% 100.0% 72.86% 99.0% 68.08% 87.75% 66.67% 52.67%

3 Novel Object 100.0% 99.01% 88.23% 81.74% 86.84% 96.0% 67.10% 67.33%

4 Novel Object-Action 100.0% 100.0% 96.0% 93.33% 92.57% 92.0% 87.16% 81.0%

Table 5.2: Generalization to Environment Changes and New Objects

Figure 5.7: Generalization to Changing Lighting Conditions

Changes in the lighting conditions have a drastic effect on the gray mug, as its color

changes noticeably with different environment illumination.

5.4.5 Generalization

In order to show our model’s generalization capabilities, we show results on vary-

ing light conditions and robot motions, as well as changing objects and action-object

pairs. To limit the generalization capabilities to our model only, Detectron2 always

included the visual changes in order to provide our model with correct feature em-

beddings. With that, we expect our model from line 3 of Table 5.1 to perform in all

the generalization tests.

Ideally, our model’s generated sentence should be independent of varying lighting
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conditions as well as modifications of the robot’s motion assumed it still completes the

same task. While we do not claim any contributions for object detection, Figure 5.7

shows four examples of our changed lighting conditions on a pickup task in which a

gray cup needs to be lifted from the left side of the table. As can be seen in the figure,

the cup appears to have a different color depending on the changed lighting conditions.

Despite the color changes on our objects, our model still accurately describes 83.17%

of the tasks as shown in line 1 of Table 5.2 with the main failures coming from the

color prediction that loses about 18% accuracy when compared to line 3 in Table 5.1.

Line 2 in Table 5.2 reflects our model’s performance when objects, and thus the

grasping point, are rotated by ±45 degrees, causing the robot to perform slightly

different motions. The model has been evaluated on 50 scenarios from the picking,

pouring, and opening tasks each. The overall task performance in this scenario is only

52.67%, indicating that the model does not generalize well to the changing motions.

While changing the motions does not completely fail, the root cause for the reduced

performance still needs to be determined.

Lines 3 and 4 evaluate novel encounters in the environment by either adjusting

the known objects’ geometry or using a known object for a new task, respectively.

The new objects are shown on the top-right of Figure 5.4 while line 4 demonstrates

our model’s ability to describe known objects in new tasks. For the latter, we are

using the green glass for an exchange task and a jar for a pouring task. Given these

changes, our model reaches 67.33% accuracy on novel objects while achieving 81%

accuracy by using known objects for tasks they have not been used for in the training

data. This shows that our model is generally able to understand and separate objects

from actions as it can re-combine them; however, generalizing to entirely new objects

remains challenging.
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5.4.6 Model Uncertainty

Lastly, we evaluate our model’s certainty when generating sentences by utilizing

stochastic forward passes (Gal and Ghahramani, 2016). The general concept is to use

stochastic forward passes Gal and Ghahramani (2016) by utilizing dropout during

inference. In order to generate a distribution over x from Equation 5.4, we pass the

same input 500 times through our network as a single batch and treat the resulting

weights for each word of the dictionary as a distribution. The results can be seen in

Figure 5.8 where the weights in x for each word are shown. However, for simplicity, we

only show words that exceed a threshold-weight of 0.1 as the vast majority of the N

words from the dictionary have a negligible or zero likelihood. In each plot, the most

likely word is highlighted in blue; the second, third, and fourth choices are orange,

green, and red, respectively. The generated sentence, as well as the alternative words,

can be seen underneath each plot. The six plots show the model’s language generation

capabilities in the base-case in the first plot, as well as five generalization tests. The

basic task is to pick up a red mug from the front of the table, and the task is exactly

the same for all five generalization tests, except the respectively described variation.

The first variation is a change in the robot’s motion that has not been part of the

training process. The second plot shows the word weights using a modified motion

that grasps the object from a 45-degree angle. In comparison to the first plot that

shows the pickup under ideal conditions, it can be seen that the robot and action still

are identified correctly despite the changed movement; however, the wording changed

from front to top right with an increased variance, which is a wrong description.

The third figure shows the word weight when the light in the scene changes by

using a strong blue component. Here, we are evaluating our model’s ability to handle
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Figure 5.8: Stochastic Forward Passes for Language Generation

Most likely words are blue, where as second, third, and fourth choices are orange,

green, and red, respectively.
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visual perturbations. As an interesting result, our model is very uncertain about the

object and decided not to describe it using a color word. However, the confusion is

primarily due to the uncertainty of whether or not to use the color word red, which

would regardless be a correct choice. This shows our model’s robustness with respect

to visual perturbations.

In the fourth graph, we tested the same picking task as in plot one; however, we

changed the object’s color from red to blue. Like the first plot, the model generates

a correct sentence while being certain about the changed color, showing that our

attention model is able to attend to the correct features as other components of the

sentence have not been changed.

The fifth graph shows a situation in which the pickup action failed by throwing

over the object. This has been achieved with our physic simulator and a slightly

altered trajectory causing this failure. In this case, the generated sentence is still

certain about which agent performed the task and what task might have been per-

formed; however, the variances across the words describing the object location and

object itself are significantly higher than in the other generalization experiments.

This indicates that this model could successfully be used to inform the user about

a generally increased variance and thus indicate that the currently executed task is

not executed as expected. Especially as our model is forced to generate a sentence

until the maximal length is reached or the end-of-sentence token is generated, this

additional information can significantly increase the usability of the system.

Finally, we also evaluated our model’s performance when using a slightly different

object. In this case, a different 3D model of a mug was used whose appearance brought

it closer to the one of a jar. In the sentence generation, it is still clearly visible that

the only changes occur in words related to the object, ultimately confusing it with a
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Figure 5.9: Variation of Generated Words

Variance of the chosen feature words in the five ablations as compared to the base

case.

glass or jar. However, the uncertainty is drastically increased, which could be utilized

to inform the user about an unexpected object.

Figure 5.9 shows the variance of the features relevant to the picking task shown

in Table 5.1. In the generalization towards changed lighting conditions, changed

geometry, and the failed picking tasks, significant increases in the variance can be

observed. Except for the object’s location in the lighting case, this increased variance

is related to the object of interest. In contrast, the variance of the agent and the

performed task remains low. Overall, using stochastic forward passes can identify

problems during sentence generation that can hint at inexplicable and unexpected

robot behavior or objects.

5.5 Conclusion

We present an approach for end-to-end language generation that combines lan-

guage, vision, and control. After training, the resulting model generates a verbal

task description of the robot’s actions from a pre and post-action image as well as
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the recorded motion trace of the robots. Using language to describe what the robot

has done enables intuitive and efficient human-robot interaction and allows users to

better understand what the robot is doing in case of occlusions, vision impairments,

or teleportation. Empirically, the proposed methodology in this work significantly

outperforms alternative methods by efficiently combining multiple modalities while

also being able to generalize towards new combinations of objects and tasks. Our ap-

proach produces credible results explaining an action from a set of possible tasks and

is able to detect situations in which the task execution diverges from the expected

behavior by using Monte Carlo sampling. In future work, this approach could be

used to not only explain successful tasks but also to describe potential failure cases

to further close the gap between humans and robot collaborators.
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Chapter 6

FUTURE WORK: LANGUAGE-CONDITIONED REWARD LEARNING

Figure 6.1: Inverse Reinforcement Learning Modalities

Overview of the used modalities in the instruction following task, trained with

inverse reinforcement learning.

Natural language is an intuitive and efficient way to demonstrate new behav-

iors to robots. However, its integration into an imitation learning approach can be

difficult due to its inherent complexity and dependency on context. In this work,

Chapter 4 uses language as part of a translation process that generates a low-level

control policy for the robot manipulator; however, that approach assumes that (a),

the demonstrations provided by the user are ideal and (b) that language can be used

in a meaningful process from words to low-level control parameters. To address both

issues, this section introduces a different perspective on language integration by uti-

lizing inverse reinforcement learning (IRL). Figure 6.1 introduces the relation of the

used modalities in the same tabletop manipulation task as presented in Chapter 4.

The key difference of the work presented in this chapter is that language is only used
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as high-level guidance in the form of a generalizable reward function that can pro-

duce suitable rewards to the multi-task learner. Furthermore, the robot can learn an

optimal policy without having to follow human demonstrations directly as demon-

strations are only used to train the reward function that assigns rewards to execution

traces of the learner based on a description of the desired task. In this work, we

show preliminary results on learning a suitable reward function on a Mountain Car

reinforcement learning problem as well as on the tabletop manipulation task proposed

in Chapter 4.

6.1 Introduction

Existing inverse reinforcement learning (IRL) algorithms largely assume that each

reward function represents the costs of a single task or behavior. In this chapter, we

argue that a more general reward function can be learned when contextual information

is considered. We present a generalization of the IRL problem that allows rewards for

multiple tasks to be generated within a single, language-conditioned reward function.

The major difference as compared to the approach presented in Chapter 4 is that lan-

guage is not directly used for policy generation but only for selecting a task within the

reward model and providing a suitable reward signal to the agent’s action sequence.

This allows the agent to explore the action space freely and enables it to learn an

optimal control policy without being restricted by the demonstrations provided by

a user. Furthermore, this approach can also be used to fine-tune an existing policy

to, for example, overcome the correspondence problem between a demonstrator and

the agent or learn how to recover from new states that were due to the agent’s noisy

control.

In this work, we explore the usage of natural language instructions provided
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by the human expert to specify which agent behavior should be reinforced. We

present a methodology for learning language-conditioned reward functions from mul-

timodal demonstrations, i.e., example trajectories and verbal descriptions thereof.

Once trained, a language-conditioned reward function can be used to generate a set

of different agent policies that are responsive to new user input. Fundamentally, lan-

guage is used to condition the reward function on the desired task and, further, to

generate a reward signal that a subsequent reinforcement learning algorithm can use

to train the agent. In order to generate a suitable reward function, it is of utmost

importance that the learned reward model can separate the different tasks from each

other but is also able to generate a meaningful reward signal for different instances

of the same task. Preliminary results on two synthetic tasks, a mountain-car gym

environment and a robot manipulation tasks, show that our IRL method is capable of

generating meaningful rewards while clearly separating different tasks and can be uti-

lized to successfully learn a policy on the mountain-car environment with comparable

performance to a policy trained with the default reward.

6.2 Background

Reinforcement Learning (RL) is widely used to learn various tasks from ground-

ing language (Chevalier-Boisvert et al., 2019) to manipulation tasks (Misra et al.,

2017); however, it usually requires a large amount of feature and reward engineering.

To alleviate parts of this problem, Inverse Reinforcement Learning (IRL) attempts

to learn a reward function from a set of demonstrations (Abbeel and Ng, 2004; Osa

et al., 2018). Fundamentally, IRL can be seen as a form of Learning from Demon-

stration (LfD) (Hussein et al., 2017) with the goal of assigning a scalar reward to

a given execution trace. After training, the reward function can then be used in
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a reinforcement learning pipeline to learn a policy that optimizes the reward func-

tion. Going beyond most IRL approaches that learn a reward function for a single

task, the work presented in Tschiatschek et al. (2019) learns a single reward function

that can generalize towards different instances of the same task while the approach

in Chen et al. (2021) extends this idea by learning a generalizable reward function

from in-the-wild videos of humans performing various tasks. In this work, however,

we propose a method that learns a generalizable reward function from a high-level

natural language description that describes one of the multiple captured tasks.

Incorporating language into the process of generating rewards is an appealing

direction as language is an intuitive way for humans to describe the desired outcome

of various tasks. At the same time, it allows the underlying learner to freely explore

a vast action space to learn a policy that fulfills the desired action without being

biased by human task demonstrations (Hussein et al., 2017). Language can be used

in conjunction with agent behaviors by either evaluating the final state of the task

without the need of providing a full demonstration Fu et al. (2018); Singh et al.

(2019), or by creating a classifier to predict whether or not a trajectory matches

a verbal description of the desired task (Goyal et al., 2019). In contrast to these

approaches, which do not consider sharing knowledge between multiple tasks, we

focus on learning a generalizable multi-task reward function for instruction following

that can produce rewards for different tasks by conditioning on a natural language

instruction of the desired task Stepputtis et al. (2020b); Anderson et al. (2018b).

This approach has prominently been used in multi-task reward learning from videos

of humans performing various tasks Chen et al. (2021); Fu et al. (2019); Schmeckpeper

et al. (2019).

Going beyond multi-task learning, the work presented in Finn et al. (2017) and
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Duan et al. (2017) can generate reward functions in a one-shot approach based on a

large set of initial training tasks while Choi and Kim (2012) uses a clustering approach

to rapidly learn reward functions upon observing new tasks. In this work, however,

we rather focus on learning a reward function for a set of known tasks that can be

conditioned on verbal descriptions of the desired task.

6.3 Problem Formulation and Approach

The goal of our approach is to learn a generalizable reward function that can be

used to train a Markov Decision Process (MDP) given as tuple M := (S,A, T , R, γ).

Here, S and A are the set of states and actions, the transition function T is defined

as T := S × A × S → [0, 1] and describes the probability P (s′|s, a) = P(st+1 =

s′|st = s, at = a), wile the reward function R(s) → R provides a single reward

at the end of each episode, and γ ∈ [0, 1) is the discount factor. The goal of the

MDP is to learn a policy π : S × A → [0, 1] modeling the distribution P (at|st) over

actions the agent should take in any given state. An optimal policy π∗ can be learned

from a fully specified MDP that maximizes the agent’s expected discounted reward:

π∗ = argmaxπ (Eπ [
!

i γiR (si)]). However, specifying a suitable reward function R(s)

requires manual feature engineering and is difficult to formulate, especially when

using complex or high-dimensional state representations. To mitigate this problem,

IRL allows to learn a suitable reward function form a set of demonstrated behaviours.

In the IRL setting, the agent does not know the MDP’s reward function and must

first infer it from demonstrations D = {d1, ..., dn} provided by an expert. In this work,

language is used together with a physical demonstrations of the desired motions and a

binary reward specifying if the language matches the motion. Given this information,

the goal is to learn a reward function R(τ,v) → R taking a sequence of agent states τ
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Figure 6.2: Inverse Reinforcement Learning from Language

Example of our proposed reward model. Given an observation of an agent’s action

and target instruction, the reward model evaluates the agents performance and

produces a suitable reward.

and a verbal description of the desired outcome v to predict a scalar reward describing

how well the agent’s motion captured in τ matches the task described in v.

6.3.1 Pre-processing Vision and Language

We first pre-process the language input to the reward model by converting the

sentence s into a sequence of tokens v with the standard BERT tokenizer Devlin

et al. (2019a). The pre-processing of the state tuple τ is done in two steps by first

normalizing each dimension of each modality to a range of [0, 1], which are then

manually grouped into different channels based on their semantic meaning. Details

of each state definition can be found in Section 6.4.1 for theMountain Car experiment

and Section 6.4.2 for the Robot Manipulation task. However, the general approach is

to separate different input modalities into their own channels, e.g., agent positions and

velocities are described in different channels. Especially for the Robot Manipulation

task, our reward model contains an image sequence as part of its state definition.

Each image I ∈ Rw×h×c is recorded from an RGB top-down camera placed directly

above the robot with a resolution of 569× 320 and is then scaled to 128× 128 pixels.
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6.3.2 Reward Model

The goal of our reward model is to produce a scalar reward r from an execution

trace M of the trained agent and a verbal description v of the desired task. Out

model is able to utilize multiple input modalities, such as agent positions, velocities

and visual representations from the environment. At its core, we use an attention

mechanism that identifies the relations between multiple modalities, and we use a

binary routing matrix R that defines which of the N modalities attend to each other.

This allows for simplified training and limits the focus on a manually selected subset

of feature relations. Especially for the robot manipulation experiment, the routing

matrix significantly speeds up model training time and improves performance. An

overview of our approach can be seen in Figure 6.2 in which our model learns a

reward model from a positive and negative language-motion pair in the Mountain

Car environment.

Data Preparation: In a first step, our model starts by splitting the verbal input

v into individual tokens by using the BERT tokenizer and the resulting vector of

tokens is used as the first modality τ0. The agent’s execution trace M is separated

into its different modalities, depending on the experiments, e.g. agent positions,

velocities, or environment state. See Sections 6.4.1 and 6.4.2 for experiment specific

state processing. The state information is defined as a tuple E = (e0, e1, ..., eN) that

contains the N modalities where e0 = τ0 is the verbal description. Note that each

e ∈ Rsn×dm where sn is the sequence length of the n’th modality.

In a first step, we convert each modality into a fixed-size feature representation

with dm dimensions by using a one-dimensional convolution for each modality: Fi =

Conv1D(τi)∀i ∈ [0, ..., N ] where each feature Fi ∈ Rsi×d with sequence length si.
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To recognize each feature, we add a class token ξi ∈ R1× dm to the beginning of

each sequence before adding the positional sequence embedding Pi ∈ Rsi+1×dm . The

resulting embedding, ei, is then transferred to the routing process.

Information Routing: The purpose of information routing is to select which

modalities attend to other modalities, e.g., language should attend to the robot’s

motion; however, having the robot’s position attend to its velocity might not be as

useful, especially since each added cross-modal attention increased the computational

cost exponentially. The routing is defined as a binary matrix R ∈ RN×N with ele-

ments Ri,j ∈ {0, 1} overall N modalities. The routing matrix is used in a selection

process that selects the relevant other modalities that a target modality should attend

to, aggregated in the ordered set C:

Cn = select ((e0, e1, ..., eN) ,Rn,:) ∀n ∈ [0, ..., N ] (6.1)

A modality ej with 0 ≤ j ≤ N will be part of Cn if and only if Rn,j = 1. A given

modality attends to γn other modalities where γn = |Cn|, which is dependant on the

number of modalities selected in R for each modality n.

Cross-Modal Attention: Cross-modal attention attends the modality eα to the

other selected modalities in Cα. For simpler notation, we limited the following equa-

tions to highlight only one of the cross-modal attention blocks; however, the following

operations are done overall N modalities.

The cross-modal attention operation is defined as follows for each attention head

hiRsα×d with dimension d = dm/H over H attention headers:

hi = CM(Qα,Kβ,Vβ) = softmax

*
QαWQαK

T
β WKβ√

d

+
VβWVβ

(6.2)
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QueriesQα = eαW
Q
α→β, keysKβ = Cα

βW
K
α→β and values Vβ = Cα

βW
V
α→β are processed

in a separate linear unit before being passed into the CM(Qα,Kβ,Vβ) operation with

individually trainable weights W per attention head i.

Next, the individual attention heads are concatenated together. Note, again, that

these are just the attention heads for one particular α → β pair with Cα
β and each

head represents the same combination, meaning that there are multiple crossmodal

attention heads for each pair, that are concatenated and added to a residual connec-

tion with eα. This results in Zα→β = concat(h1, . . . , hH)+eα where Zα→β ∈ Rsα×dm .

After layer normalization, we apply a two-layer feed forward network utilizing Gaus-

sian error linear units (Hendrycks and Gimpel, 2020) such that Xα→β = FFN(Zα→β)

where Xα→β ∈ Rsα×dm . Now, all cross-channels for the single modality eα over

Cα
β are concatenated together. Note that the dimensionality of this vector depends

on the number of elements in γi = |Ci|: Yα = concat(X(α→β), . . . ,X(α→η)) where

Yα ∈ Rsα×dmgα . η is used here to describe the attended modalities of Cα
β the model is

cross attending to. So this is 0 ≤ β ≤ η.

Self Attention and Reward Prediction In a final step, we run self attention over

every modality. This process is similar to the to the cross-modal attention, however,

it now utilizes a single modality α for the query Qα = YαW
Q
α , key Kα = YαW

K
α and

value Vα = YαW
V
α pairs. Based on these input definitions, the process is the same as

previously explained in the previous section. After generating Xα for each modality

in N , the class token ξ is pooled for each modality by selecting the first entry in each

sequence and concatenated to our reward vector r ∈ Rdm
!

Ri,j .

The vector r is then used in a two-layered feed forward network to determine the

final scalar reward r = MLP(r) where MLP(r) = W2 (W1r + b1)+b2 with trainable
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variables W1,W2, b1, b2.

The reward model is trained in an end-to-end approach and utilizes contrastive

examples to distinguish different tasks from each other. Each training example S

consists of the trajectory τa, text description va, and the trajectory τb and text

description vb. Our loss function is shown in equation 6.3 and describes a positive

and negative loss, respectively:

Lp/n = E(τa,τb,va/b)∼D
'
−log

'
σ
'
RΘ(τa/b,va/b)−RΘ(τb/a,va/b)

)))
(6.3)

The overall loss function is then calculated by computing the mean of the two

samples L = (Lp + Ln)/2. For optimization, we use the Adam optimizer with a

learning rate of 1e−5, training on a single GPU until convergence after 100 episodes.

A detailed convergence plot can be seen in Figure 6.3.

6.4 Evaluation

We evaluate our approach with two different experiments to first show the feasibil-

ity of our proposed method on a gym environment before extending the approach to a

more challenging environment of multi-task table-top manipulation using a 6 Degree

of Freedom (DoF) robot arm. Both experiments utilize the approach described in

section 6.3 with minor changes to the state space of the respective experiment.

6.4.1 Mountain Car

In the first experiment, we use the one-dimensional gym environment Mountain

Car in which a car is located in a valley between two mountains and the task is to

learn a policy that allows the car to go to the top of the mountain. A difficulty in this

setup is that the car does not possess enough power to simply drive up the hill, thus

an approach that swings between the two hills and using momentum is required to
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successfully complete the task. We chose this experiment as an introductory example

to highlight the properties of our reward model.

We collected 200 trajectories of the car attempting to ascend the hill, containing

trajectories in which the car stays at the bottom of the hill, swings between the hills,

and successfully reaches the top. These behaviours are grouped into three categories,

where each category is defined by a threshold. We then asked ten human experts

to provide descriptions for 20 trajectories for each category, where each description

explains the behavior of the agent. Each collected description has been manually

transcribed into text and checked for grammatical correctness and appropriateness

by replacing sentences that are not relevant to the shown task. Based on these

sentences, we build a template system that replaces synonyms in various sentence

templates to automatically generate plausible sentences for arbitrary new execution

traces.

State Definition

Our reward model is flexible with regards to the state definitions and can incorporate

various modalities. For Mountain Car, the state τ is a list containing the tuple

(cpos, cvel) where cpso ∈ R is the car’s position and vvel ∈ R is its velocity. Furthermore,

it contains the tuple (ca) where ca ∈ {0, 1, 2} is a discrete representation of the car’s

actions. Actions are defined as accelerating to the left, right, or no accelerating at

all.

Results and Ablations

Table 6.1 shows the results of our reward model in line 1 over the three different

motion categories when the target behaviour is to reach the top of the mountain.
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Table 6.1: Robustness of the Reward Model for Mountain Car

Described Top vs. Behavior

Experiment Top Middle Bottom

1 Full Model 9.40± 4.04 −5.92± 6.25 −10.91± 4.13

2 No Regularization −13.12± 0.38 −12.68± 0.69 −12.34± 0.52

3 No Routing 9.12± 2.48 3.41± 2.77 9.61± 1.95

4 Verbal Generalization 8.16± 2.46 7.88± 3.75 8.26± 2.15

5 Motion Generalization 8.36± 4.05 −5.09± 6.63 −10.32± 4.34

Our reward model provides a clear positive reward of 9.4 with a variance of 4.04 for

the correct behavior, while still being able to provide a distinction between the two

other behaviors. While Table 6.1 only shows the target task of reaching the top of the

mountain, Figure 6.3 shows the three categories introduced for mountain car, namely

Bottom, Middle, and Top, indicating the behavior of the agent staying at the valley,

moving between the mountains but not making it to the top and reaching the top

of the mountain. The green violin plots show the reward and standard deviation if

the agent’s behavior matches the task description, while the orange plots show the

average reward of the other two non-matching task descriptions. While the task of

staying at the bottom and reaching the top has clear distinctions from the respective

other tasks, the behavior of swinging between the hills has an overlapping decision

area, resulting in a lower performance of the reward model. We attribute this loss

in descriptiveness to the fact that we are using a threshold method to separate the

tasks and tasks that are ending very close to the boundaries provide sub-optimal

demonstrations to learn the sharp boundaries.
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Figure 6.3: Task Separation Mountain Car

Comparison of the generated rewards for the Mountain Car experiment, contrasting

matching and non-matching pairs of the verbal task description and the agent’s

behavior.

We attribute the success of our model to multiple design choices, including using

a contrastive loss and information routing approach. Line 2 in Table 6.1 shows the

result when using a simple mean-squared-error loss over our contrastive approach

discussed in Equation 6.3, resulting in a strong negative reward overall tasks without

having learned clear decision boundaries for the matching and non-matching task

descriptions. Furthermore, we use a routing approach that allows us to pre-select

modalities that are matched against each other in the self-attention model. While the

ideal approach would be to extract information from every possible tuple combination

in τ , the required computation increases exponentially for every additional modality.

Instead, we introduce a routing approach to pre-select potential combinations to

reduce the computational cost drastically. Line 3 in table Table 6.1 shows our reward
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model’s performance when attending to all possible combinations as compared to

line 1 that uses the routing approach. It can be seen that limiting the number of

combinations even has a positive effect on the model’s performance as the Bottom

behavior is not wrongly received a high reward.

After our reward model is trained, it is expected to generate suitable rewards for

the agent that utilizes it to learn a suitable policy for the described task. A key

requirement is that our reward model needs to generate a consistent reward when

semantically equivalent, but different sentences are used to describe the same task;

similarly, different trajectories from the same categories need to result in a similar

reward. We are testing this capability by using the same motion while varying the

sentence in line 4 of Table 6.1 and using the same sentence but varying motions in

line 5. The results show the model’s rewards for matching (Top) and non-matching

behaviors (Middle and Bottom) are not descriptive anymore when varying the lan-

guage, indicating that further work is needed to generalize the language properly.

However, when fixing the language and providing the model with varying motions

from the same categories, the results are comparable to line 1 of Table 6.1, indicating

good generalization.

As our final experiment for the Mountain Car, we evaluate our reward model

when used as part of a full reinforcement learning pipeline to show that a learned

policy is not only able to converge but also to yield a policy that is successfully

able to solve the Mountain Car experiment. We chose to train a policy with Sarsa

Lambda and compare it to a policy trained using the standard sparse reward of the

mountain car environment. Figure 6.4 shows the reward of the trained policies using

our reward model and the standard reward given in the environment. Using our

language conditioned reward model yields a better episodic reward signal, allowing
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Figure 6.4: Convergence Ratio of Our Language Based Reward Model

Convergence of Sarsa Lambda using our reward model (green) and the standard

sparse reward model of the gym environment (red). Both trained policies are

considered successful based on the internal evaluation of the gym environment.

the policy to converge faster than using the sparse reward. With our model, the

policy initially converges faster than the binary reward of the standard environment.

However, while our final reward, as reported by the gym environment, is not as high

as the one of the policy trained with a sparse reward, the environment reports a 100%

success rate for both policies. It is important to note that we do not claim to produce

better policies using our reward model, but only that using our language-conditioned

reward model can be used to train a suitable policy for the task successfully.

6.4.2 Robot Manipulation

After having shown the feasibility of our approach in the Mountain Car environ-

ment, we apply our method of learning a reward function to a more challenging task.
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In our robot manipulation experiment, the goal is to pick up one of the multiple cups

placed in the work-space of the robot or to pour a specified quantity into one of the

bowls in the environment, similar to the picking task in Chapter 4 or 5. In contrast

to the previous mountain car experiment, the picking task requires control of a 6 De-

gree of Freedom (DoF) robot arm and an attached gripper. Furthermore, the reward

model is required to understand the environment from an image I ∈ Rw×h×c as an

additional channel in τ .

This experiment is run in simulation using CoppeliaSim (Rohmer et al., 2013) and

uses the same dataset as the approach in Chapter 4. As a brief summary, we collected

100 human-labeled task descriptions for each of the actions from five human experts

and used them to initialize an automatic, synthetic language generator. First, these

descriptions are manually transcribed into text and are then converted into sentence

templates and a list of possible synonyms for commonly used words. Based on these

templates, we collected 22.500 further actions and automatically generated plausible

descriptions for each of them based on the templating system.

State Definition

A contribution of our reward model is its ability to handle multi-modal input in its

state tuple τ . For the robot experiment, the reward model needs to relate the visual

input of the environment with the task described in the language command. The

state space of the robot contains the robot configuration rpos ∈ R6, robot velocity

rvel ∈ R6, gripper state rg ∈ R1 and environment image I ∈ Rw×h×c.
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Figure 6.5: Task Separation Tabletop Manipulation

Our reward model when used on our robot manipulation task, consisting of picking

and pouring actions. We compare our models ability to distinguish tasks based on

the poured quantity, shape of the object, general object and general action.

6.4.3 Results on Tabletop Manipulation

In contrast to our previous task, the state space is more complex, and the routing

of the various modalities is required to be feasibly trainable. Furthermore, we are

distinguishing between four different tasks as defined below:

• Quantity: Pouring the correct quantity

• Shape: Pouring into an object of a different shape

• Picking: Picking the correct object from the table

• Action: Executing the correct action (picking vs. pouring)

The results of our reward model are shown in Figure 6.5. At the bottom of the
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plot is the behavior the robot actually executed, while the assigned reward is on the

y-axis. The green section of the respective violin plots shows the reward generated if

the agent’s action matches the described behavior. In contrast, the orange violin plot

shows the reward assigned if the action does not match the described behavior. The

results in the figure show the model’s ability to distinguish different quantities, picked

objects, and actions from each other; however, the reward model does not seem to be

able to distinguish objects based on their shape clearly enough. We hypothesize that

this is due to limitations in the vision pipeline as object differences are only visible

in a small subset of pixels.

6.5 Conclusion

This work presents a novel approach to learning generalizable, language-conditioned

reward functions for the mountain car environment and a tabletop manipulation task.

After training, our model is able to distinguish multiple tasks from each other while

providing a meaningful reward signal to a subsequent learner given a verbal descrip-

tion of the desired task. Preliminary experiments on the mountain car environment

showed the feasibility of our approach by learning a policy that was successful in

reaching the top of the mountain when employed in a full reinforcement learning

pipeline. Furthermore, we showed the model’s ability to distinguish different tasks in

the more complex tabletop manipulation task. However, additional experiments need

to be conducted to cover the entire action space of the manipulation task. Further-

more, while the results on the mountain car seem promising, it is yet to be determined

if the reward model in the manipulation task can be used to learn a control policy

for the robot.
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Chapter 7

SUMMARY

Expanding the responsiveness and dexterity of robot manipulators by using multi-

modal observations and instructions stands at the core of this thesis. To this end, this

work presents multiple approaches to combine language, vision, control, tactile sens-

ing, and force/torque data to learn robust control policies while allowing for intuitive

and effective training. Motivated by the human learning process, teaching robots how

to manipulate objects in complex and contact-rich scenarios requires the system to

fuse various sensor modalities to learn the correlations between them to complete the

desired task successfully. Furthermore, many tasks can only be achieved successfully

if the system understands the context it is acting in.

Instead of learning control policies from robot motion alone, additional sensor

modalities allow the robot to gain additional insights about the environment it is

interacting in. Starting with simple manipulation, Chapter 2 uses tactile sensors

located at the robot’s fingertips to perceive how a manipulated object is moving in

its hand. Given this additional input, the robot learns how to utilize slippage to

its advantage in order to perform dexterous manipulation. Utilizing slippage marks

a significant departure from previous work. It was only seen as a negative side-

effect of grasping; however, utilizing multimodal approaches allows the robot to learn

additional skills that would not have been possible without it. Chapter 3 takes this

idea to the next level by utilizing force/torque sensors and vision to complete a

contact-rich bimanual insertion task. Similar to the previous task, force/torque and

vision data are fused in order to generate the next action. However, given these
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additional sensor data, the system can dynamically perform spatial and temporal

adjustments that dramatically increase the success rate of the insertion.

While the previous tasks showed the advantages of using multimodal input data

to increase the robot’s repertoire of skills and allowed it complete tasks in contact-

rich environments, conveying the context in which the system is performing a task is

of utmost importance. Understanding the context of a task allows robots to physi-

cally engage with their environment in a safe and efficient manner and is an essential

step towards human-robot interaction. Chapter 4 introduces an approach to learn

language-conditioned visuomotor policies that can complete various tasks in a table-

top manipulation setup. In this setup, language is used as an efficient and effective

way to convey the desired task and context to the robot. At the intersection of lan-

guage, vision, and control, the methods presented are cable to learn a single policy

that is able to complete multiple tasks by using language to identify what, where,

and how to perform the desired task. As a next step, Chapter 5 closes to loop to

full human-robot interaction by extending the one-directional communication chan-

nel to a bidirectional channel that allows the system to explain the actions that are

performed by the robots to a human partner by utilizing vision and motion traces to

generate a verbal description of the performed actions. Finally, Chapter 6 introduces

an alternative way to utilize language in order to learn task-specific control policies.

Instead of directly translating language into robot control by using supervised learn-

ing, language is used as a high-level directive in the reward function of an inverse

reinforcement learning task. This allows the system to independently explore what

policies are suitable to complete the indent task.

From a learning perspective, this thesis shows how using multimodal approaches

can be beneficial when learning manipulation tasks, ranging from dexterous manipu-
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lation to pick-and-place and contact-rich bimanual insertion. Robots can safely and

efficiently engage with their environment by utilizing these approaches, especially

when adding language as an external input to convey tasks, contexts, and desired

outcomes. These additional communication channels, be it an input to the system or

output to a human collaborator, are an essential step towards human-robot interac-

tion and bringing robots closer to our everyday lives.
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The source code for the work presented in Chapter 4 can be found at https:

//github.com/ir-lab/LanguagePolicies
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