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ABSTRACT  
 

Weather radars provide quantitative precipitation estimates (QPEs) with seamless 

spatial coverage that can complement limitations of sparse rain gage measurements, 

including those affecting intensity-duration-frequency (IDF) relations used for 

infrastructure design. The goal of this M.S. thesis is to assess the ability of 4-km, 1-h 

QPEs from the Stage IV analysis of the Next-Generation Radar (NEXRAD) network to 

reproduce the statistics of extreme precipitation (P) in central Arizona, USA, using a 

dense network of 257 rain gages as reference. The generalized extreme value (GEV) 

distribution is used to model the frequency of annual P maximum series observed at 

gages and radar pixels for durations, d, from 1 to 24 h. Estimates of P quantiles from 

radar QPEs are negatively biased (-20% – -30%) for d = 1 h. The bias tends to 0 and 

errors are small for d ≥ 6 h, independently of the return period. The presence of scaling 

for the GEV location and scale parameters, needed to apply IDF scaling models, was 

found for both radar and gage products. Regional frequency analysis methods combined 

with bias correction of the GEV shape parameter allow reducing the statistical 

uncertainty and providing seamless spatial distribution of P quantiles at daily and 

subdaily durations that address limitations of current IDF relations in southwestern U.S. 

based on NOAA Atlas 14. 
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CHAPTER 1 

INTRODUCTION 

Extreme precipitation (P) is one the most impactful natural hazards causing 

property damages and loss of lives. For example, the National Centers for Environmental 

Information (NCEI) has reported an economic loss in 2021 of $20.8 billion related to 

severe storm events in the United States (U.S.) and a sharp increase in the number of 

these events from about <20 events observed prior to the 2000s per decade to 75 

observed in the last decade alone (NCEI, 2022). Intense P storms are particularly 

impactful in urban regions, where population density and the concentration of economic 

activities are high. In cities, intense P storms could lead to flash floods and pluvial 

flooding conditions due to the high runoff coefficients and fast response times of urban 

basins (Rosenzweig et al., 2018). Ahmadalipour & Moradkhani (2019) summarized the 

spatial occurrence and impacts of flash floods that occurred during 1996-2017 in the U.S. 

and found that the southwestern U.S. to be a hot spot compared to other parts of the 

country.  

The design and maintenance of infrastructure systems against extreme P events 

are based on the estimation of the so-called design storm, which is the P intensity,  

q(TR, d), over a duration, d, associated with a given frequency of occurrence quantified 

through the return period, TR (in years). This information is synthetized by intensity-

duration-frequency (IDF) curves (Burlando & Rosso, 1996b; Koutsoyiannis et al., 1998; 

Madsen et al., 2002; Requena et al., 2019; Tyralis & Langousis, 2018). In all U.S. states 

except ID, MT, OR, WA and WY, IDF curves are provided by the Volumes of the 

National Oceanic and Atmospheric Administration (NOAA) Atlas 14 (Bonnin et al., 
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2019) for d ranging from 5 min to 60 day and TR from 1 to 1000 years. The most 

common approach to generate IDF curves requires the (1) frequency analysis of P records 

observed at networks of rain gages, and (2) the application of techniques to spatially 

interpolate the point information derived at the gages over larger regions (Blanchet et al., 

2016; Fitzgerald, 1989; Guttman et al., 1993; Madsen et al., 1997; Mascaro, 2020; 

Modarres & Sarhadi, 2011; Schaefer, 1990). The first task is usually conducted with the 

block maxima method, which involves fitting an appropriate probability distribution to 

annual precipitation maxima (APM) series. According to the extreme value theory 

(Coles, 2001), the asymptotic distribution of block maxima is the Generalized Extreme 

Value (GEV), and empirical evidence has shown that this distribution captures well the 

frequency of APM at different durations (Blanchet et al., 2016b; Coles et al., 2003; Coles 

& Dixon, 1999; Deidda et al., 2021; Gubareva & Gartsman, 2010; Koutsoyiannis, 2004a, 

2004b; Koutsoyiannis & Langousis, 2011; Mascaro, 2020; Papalexiou & Koutsoyiannis, 

2013).  

The most popular method adopted to extrapolate information on extreme P 

frequency at un-gaged locations is based on the index-flood technique, which is 

commonly referred to as regional frequency analysis (Dalrymple, 1960; Hosking & 

Wallis, 1997). This method is based on the idea that hydrological records (in our case, 

APM) observed at different sites exhibit similar statistical properties if they belong to the 

same “homogeneous region” identified through proper statistical tests. APM series 

observed within a homogeneous region can then be pooled together and a single 

distribution (e.g., the GEV) can be used to characterize their frequency after they have 

been standardized by their mean or another index statistic. This allows reducing the 
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uncertainty of records with small sample size. Local estimates of q(TR, d) at un-gaged 

sites are then obtained by multiplying the quantiles of the single distribution by the local 

index statistic (e.g., the mean APM). IDF curves of NOAA Atlas 14 are obtained by 

applying the index-flood method with the GEV distribution. 

A critical source of uncertainty of IDF curves is the density of the rain gage 

network. When the density is low, local features of extreme P may not be properly 

captured, leading to inaccurate estimates of q(TR, d) and, in turn, to the possible over- or 

under-sizing of infrastructure. Moreover, Deidda et al. (2021) have recently showed that 

regionalization techniques based on homogeneous regions have the drawback of causing 

abrupt shifts in the values of P quantiles along the boundaries of contiguous regions. 

These authors proposed a method involving the application of a hierarchical approach 

where geo-statistical interpolation is used to obtain continuous fields of parameter 

estimates. While promising, the efficacy of this technique relies on the resolution of the 

gage network. 

An additional source of uncertainty of IDF curves is the lack of subdaily P 

observations. A strategy identified in literature to address this issue is the application of 

scaling models for IDF relations (Bara et al., 2010; Blanchet et al., 2016b; Borga et al., 

2005; Mascaro, 2020; Sane et al., 2018; Yu et al., 2004). These models are based on the 

evidence of temporal scaling properties for P that extends to the parameters of the 

distribution characterizing the APM series. Scaling models can then be utilized to obtain 

P quantiles at subdaily resolution starting from information at daily scale where P is more 

widely available.  
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Quantitative precipitation estimates (QPEs) derived from weather radars 

characterize the spatial variability of P at resolutions of a few km and ≤1 h and, in certain 

regions of the world, they have been collected for more than a decade. Therefore, these 

areal P products have the potential to improve IDF curves by addressing the limitations 

caused by sparse rain gage networks and the lack of subdaily observations. Recent efforts 

have started to explore the utility of radar QPEs for the frequency analysis of extreme P. 

In a study in the Netherlands, Overeem et al. (2009) fitted the GEV distribution to 

records of 11 years of APM extracted from radar QPEs and found that the location 

parameter derived from the radar has a mean biases of -14% compared to estimates from 

the gages at d = 1 h. Marra & Morin (2015) developed IDF curves with radar products 

from 23 years data records in parts of Israel and compared the IDF curves from radar and 

gages and concluded that APM quantiles are less biased at d = 4 h compared to shorter 

durations of 20 min and 1 h. Studies have been also recently carried out in U.S., where 

the National Centers for Environmental Prediction (NCEP) Stage IV analyses provide 

gage-corrected QPEs at 4 km,1 h resolution in the Conterminous U.S. (CONUS) since 

2002. Ghebreyesus & Sharif (2021) used 19 years of Stage IV radar observations to 

derive IDF curves in Texas and validated them using NOAA Atlas 14 precipitation 

frequency estimates (PFEs). They found bias in radar quantiles ranging within -/+27% at 

all durations with a lower range at higher d (24 h). In another study, McGraw et al. 

(2019) derived IDF relations using records of hourly P from (1) 539 rain gages covering 

the U.S., and (2) Stage IV QPEs in the co-located pixels. These authors findings grouped 

the rain gages based on the Köppen-Geiger climate classification and found that the 

discrepancies between two products is climate-dependent. While results of McGraw et al. 
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(2019) are very promising, they are based on single, at-site comparisons at each location 

which have low statistical significance given the short records of Stage IV QPEs. 

Additional studies based on a through comparison of IDF curves from radar and gages 

using dense network of rain gages in a region are then desirable to complement and 

expand these initial efforts. 

The main goal of this M.S. thesis is to assess the ability of Stage IV radar QPEs to 

characterize the frequency of extreme P at different time aggregations to ultimately 

improve IDF relations in southwestern U.S. To address this goal, we use the high-density 

network of rain gages installed since the 1980s by the Flood Control District of Maricopa 

County (FCDMC) in central Arizona. We first show that the GEV is an appropriate 

distribution to model the frequency of APM series observed at 257 gages and radar pixels 

for d = 1 to 24 h. We then compute at-site estimates of GEV parameters and related P 

quantiles for the two products and compared them with values obtained through different 

regional frequency analysis methods based in part on Deidda et al. (2021). To further 

address the uncertainty due to the limited sample size (19 years), we bias correct the GEV 

shape parameter using recent empirical evidence by (Carney, 2016; Papalexiou & 

Koutsoyiannis, 2013). We also investigate the presence of scaling properties for the GEV 

location and scale parameters, needed to apply IDF scaling models. After gaining 

confidence on radar products in central Arizona, we show that the use of regional 

frequency analysis of extreme P and scaling IDF models based on Stage IV QPEs provide 

a seamless spatial distribution of P quantiles at daily and subdaily durations that address 

limitations of current IDF relations in southwestern U.S. based on NOAA Atlas 14. 
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CHAPTER 2 

BACKGROUND 

2.1. Study Area 

The comparison of radar QPEs with gage records was performed in a 216 × 232 

km2 area in central Arizona centered around the Phoenix Metropolitan region. Figure 1a 

outlines the study area in southwestern U.S., with the background map showing the 2-

year 1-hr PFEs from NOAA Atlas Volume 1. As shown in Figure 1b, the study domain 

includes a large area at low elevation (92–200 m asl), where Phoenix is located, and a 

mountainous region in the northwest, the Mogollon Rim, where elevation reaches 2577 m 

asl. Due to its arid/semi-arid climate, this desert area of southwestern U.S. is categorized 

as the hottest and driest in North America (Garfin et al., 2013; MacDonald, 2010). The 

average annual rainfall is low (189.5 mm at Phoenix Sky harbor) and temperature (min 

15.2 ⁰C and max 30 ⁰C) is high. The presence of a quasi-permanent subtropical high 

pressure ridge guarantees dry and warm conditions for most of the year (Sheppard et al., 

2002). Climate variability are largely attributed to the shift between the mid-latitude and 

subtropical atmospheric circulation regimes, with terrain exerting local controls 

(Sheppard et al., 2002). 
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Figure 1. Location of the Study Area in (a) Southwestern U.S. With the Background Map 
Showing Precipitation Frequency Estimates from NOAA Atlas Volume 1 for d = 1 h and 

TR = 2 Years. (b) Digital Elevation Model (from U.S. Geological Survey National 
Elevation Dataset) of the 216×232 km2 Study Domain in Central Arizona Centered 
Around the Phoenix Metropolitan Area, along with the Rain Gage Network of the 

FCDMC. (c)-(d) Average Maximum Precipitation Intensity in the Study Domain for (c) d 
= 1 h and (d) d = 24 h from 19 Years of Stage IV QPEs. In (a) the States of NOAA Atlas 

14 Volume 1 are Labeled. 

The precipitation regime is characterized by two seasons with markedly different 

storm-generating mechanisms. From late fall to early summer (winter: November-
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March), prolonged dry conditions are interrupted by storms due to cold fronts with 

moisture transported by westerly flows from the Pacific. Winter storms tend to last for a 

few days (Barry & Chorley, 1998), be widespread, and be characterized by relatively low 

precipitation intensity. These events are considered more important for water resources 

management due to their ability to recharge aquifers (Sheppard et al., 2002). Several 

studies have showed that winter storms could be caused by different mechanisms 

including Pacific/North American (PNA) circulations (Leathers & Palecki, 1992; 

Redmond & Koch, 1991; Simmons et al., 1983) and Southwestern troughing (Burnett, 

2013; Sellers & Hill, 1974; Woodhouse & Meko, 1997). Sellers & Hill (1974) also 

highlighted the importance of localized orographic effects. Moreover, the magnitude and 

frequency winter storms has been linked to teleconnection patterns, including the El Niño 

Southern Oscillation (ENSO) (Cayan & Peterson, 1989; Wallace & Gutzler, 1981; 

Woodhouse & Meko, 1997; Yarnal & Diaz, 1986) and the Pacific Decadal Oscillation 

(Mantua et al., 1997; Zhang et al., 1997). While different mechanics are responsible for 

winter P in the Southwest, ENSO and PNA have been found to be the main cause 

(Blackmon et al., 1984; Dettinger et al., 1998; Shukla & Wallace, 1983; van Loon & 

Madden, 1981; van Loon & Rogers, 1981; Yarnal & Diaz, 1986). More recent findings 

from Svoma and Balling (2009) show that local factors such as vehicular emissions have 

started to impact and suppress winter precipitation formation. 

In early July, the northward advection of water vapor from the Gulf of California 

and, to a lower extent, Gulf of Mexico (Favors & Abatzoglou, 2013; Sheppard et al., 

2002) leads to the onset of the North American monsoon (NAM) (Adams & Comrie, 

1997), which last until the end of September. The intrusion of these northward moisture 
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from the identified sources is driven by midlatitude (Anderson & Roads, 2002; Higgins et 

al., 2004) and tropical circulation patterns (Corbosiero et al., 2009; Fuller & Stensrud, 

2000; Stensrud et al., 1995, 1997). During the NAM, convective thunderstorms with high 

intensity, short durations (< 1 h), and small spatial extent (a few km2) occur according to 

a diurnally modulated cycle (Balling & Brazel, 1986). In particular, the mountainous 

regions in northern Arizona and southernmost parts of the state experience the maximum 

precipitation frequencies during daytime, while in the central portion of the state 

(including the Phoenix Metropolitan area) monsoonal storms are likely to occur at 

nighttime. These findings were originally identified by Balling & Brazel (1986) by 

analyzing a few gages in the entire state and were then further conformed and expanded 

by Svoma (2010) and Mascaro (2017) by analyzing the precipitation records of >200 

gages of the FCDMC network. Finally, a prominent characteristic of the precipitation 

regimes in central Arizona is the dependence on orography, which affects annual and 

seasonal totals and, to a lower extent, extreme P (Mascaro, 2017, 2018). 

2.2. Dataset 

2.2.1. Radar 

We used radar quantitative precipitation estimates (QPEs) at resolution of 1 h and 

4 km from the National Centers for Environmental Prediction (NCEP) Stage IV analyses 

for the period 2002 to 2020. Stage IV QPEs are generated for the Conterminous United 

States (CONUS) by mosaicking reflectivity data from the NEXRAD network and 

adjusting rainfall rates with gauge and satellite observations and manually quality 

controlled (Nelson et al., 2016). Data were acquired from the Earth Observing Laboratory 

(EOL) data archive (Du, 2011) in polar-stereographic coordinates for the CONUS, 
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clipped to the 216 × 232 km2 domain shown in Figure 1a, and projected into the 

Universal Transverse Mercator (UTM) Zone 12 N reference. The Stage IV 

documentation provides a detailed list of the missing data and its causes.  

From the radar QPEs, we derived the records of annual P maxima (APM) (in 

mm/h), id, for durations d = 1, 2, 3, 6, 12, 24 and 48 h in each pixel of the study domain. 

For each year, we extracted the largest P intensity over d-long moving windows 

independently of the presence of missing data. In years with missing values, we used the 

method of Papalexiou and Koutsoyiannis (2013) and Blanchet et al. (2016) to decide 

whether there are enough observations to retain the annual maxima. If N is the number of 

years with no missing data, we first sorted the associated N APM. For a year with a 

fraction f of missing data, we (1) computed the rank of its id in the series extracted for the 

N complete years, and (2) retain (rejected) id if in case its rank is above (below) f N. As 

an example, Figures 1c,d show the mean APM for d = 1 and 24 h in the study region 

derived from Stage IV. 

2.2.2. Gages and Operational Design Storms 

The ALERT network of rain gages managed by the Flood Control District of 

Maricopa County (FCDMC) was used as reference to assess the radar QPEs’ ability to 

characterize extreme P statistics. The network started operated in the early 1980s and 

currently includes 365 gages that monitor P in real-time over an area of about 29,600 km2 

centered around the Phoenix Metropolitan Area (Figure 1b). The gage elevation ranges 

from 220 to 2325 m MSL, although most (195) gages are installed below 800 m 

(Mascaro, 2020) the inter-gage distance varies between 0.5 km to 227 km with a median 

of 70 km. For our analyses, we used 257 gages that were active during the same 19 years 
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when Stage IV data are available. We also utilized a subset of 91 gages with long-term 

(≥30 years) observations to investigate the effect of sample size on the results. Figure 1b 

shows the location the gages with the two record lengths. All gages are of the tipping 

bucket type with a tipping depth of 1 mm. Records were obtained in the original form of 

tipping instants in seconds, which were converted into signals at a given duration d 

according to the procedure suggested in Mascaro et al. (2013). The same procedure 

illustrated for the radar QPEs was applied to derive the series of APM while accounting 

for missing data.  

To further validate the reliability of the radar-derived extreme P statistics, we also 

used the precipitation frequency estimates (PFEs) for different return periods and P 

durations available from the National Oceanic and Atmospheric Administration (NOAA) 

Atlas 14 (Bonnin et al., 2019). These design storms are utilized in most part of the U.S. as 

the basis of design and maintenance of infrastructure elements, such as stormwater 

management system, roadway drainage, culverts, and bridges. The NOAA Atlas 14 maps 

were obtained in the form of ASCII grids in units of thousands of inches referred to the 

chosen duration. The maps were then imported in ArcGIS, projected into UTM, and the 

values in each pixel was converted to mm/h. 
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CHAPTER 3 

METHODOLOGY 

3.1. The Generalized Extreme Value (GEV) Distribution 

Extreme P was characterized statistically by fitting the generalized extreme value 

(GEV) distribution to the APM series for the different durations. This distribution was 

found to be appropriate for this purpose using gage observations in the region by 

(Mascaro, 2020) and is also used to derive the PFEs in NOAA Atlas 14 through a 

procedure based on parameter regionalization (Hosking & Wallis, 1997). Here, we tested 

its applicability to APM series derived from the radar QPEs. The cumulative distribution 

function (CDF) of the GEV distribution for the random variable Xd ≡ “annual maximum 

P intensity for a given d” is defined as: 

𝐹𝐹(𝑥𝑥|𝑘𝑘𝑑𝑑 , 𝜇𝜇𝑑𝑑 ,𝜎𝜎𝑑𝑑) = Pr{𝑋𝑋𝑑𝑑 ≤ 𝑥𝑥} =  

⎩
⎨

⎧exp �− �1 + 𝑘𝑘𝑑𝑑
𝑥𝑥−𝜇𝜇𝑑𝑑
𝜎𝜎𝑑𝑑

�
− 1
𝑘𝑘𝑑𝑑�          𝑘𝑘𝑑𝑑 ≠ 0

exp �− exp �− 𝑥𝑥−𝜇𝜇𝑑𝑑
𝜎𝜎𝑑𝑑

��                  𝑘𝑘𝑑𝑑 = 0
, (1) 

where 𝑘𝑘𝑑𝑑 ∈ (−∞, +∞) is the shape parameter, 𝜇𝜇𝑑𝑑 ∈ (−∞, +∞) is the location parameter, 

and 𝜎𝜎𝑑𝑑 ∈ (0, +∞) is the scale parameter. The location and the scale parameter represent 

the central tendency and the variance of the GEV distribution, whereas the shape 

parameter is indicative of the behavior of tails of the distribution. Depending on the value 

of the shape parameter, the distribution is further categorized as follows.  

• Type I or Gumbel. This is defined when kd = 0 with domain −∞ < 𝑥𝑥 < +∞. In this 

case, the right tail of the survival function, 𝐹𝐹�(𝑥𝑥) = 1 − 𝐹𝐹(𝑥𝑥), exhibits an exponential 

behavior that corresponds to a decreasing linear relation in the log space.  
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• Type II or Fréchet. This is defined when kd > 0 with domain 𝜇𝜇𝑑𝑑 −
𝜎𝜎𝑑𝑑
𝑘𝑘𝑑𝑑
≤ 𝑥𝑥 ≤ ∞. In 

this case, the tail of 𝐹𝐹�(𝑥𝑥) is subexponential, which, in the log space, implies that the 

exceedance probabilities of extreme quantiles show a lower rate of decline than the 

exponential case. This type of distributions is also denoted as “heavy tailed”. 

• Type III or Weibull. This is defined when kd < 0 with an upper bound −∞ < 𝑥𝑥 ≤

𝜇𝜇𝑑𝑑 −
𝜎𝜎𝑑𝑑
𝑘𝑘𝑑𝑑

 (S. Coles, 2001). The presence of a maximum possible value for x is unlikely 

when considering positive definite atmospheric variables.  

The quantiles of the GEV associated with the annual return period TR = 1/[1 - 

F(x)] and duration d, q(TR, d), are computed by inverting equation (1) as: 

 𝑞𝑞(𝑇𝑇𝑅𝑅 ,𝑑𝑑) = �
𝜇𝜇𝑑𝑑 −

𝜎𝜎𝑑𝑑
𝑘𝑘𝑑𝑑

 �1 − �− log �1 − 1
𝑇𝑇𝑅𝑅
��
−𝑘𝑘𝑑𝑑

�                  𝑘𝑘𝑑𝑑 ≠ 0

𝜇𝜇𝑑𝑑 − 𝜎𝜎𝑑𝑑 log �− log �1 − 1
𝑇𝑇𝑅𝑅
��                              𝑘𝑘𝑑𝑑 = 0

  (2) 

Here, the suitability of the GEV distribution was first verified through the 

graphical methods of the L-moment ratio diagram (Hosking, 1990). Then, the distribution 

was fitted to the APM series extracted at the radar pixels and from the gage records using 

the method of probability weighted moments (PWM) (Hosking et al., 1985). The method 

of PWM was chosen since it is more robust to outliers when the sample size is small 

compared to techniques for parameter estimation based on simple moments and 

maximum likelihood (Hosking et al., 1985; Madsen et al., 1997; McGraw et al., 2019; 

Sankarasubramanian & Srinivasan, 1999; Vogel & Fennessey, 1993). 
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3.2. Spatial Frequency Analysis 

We characterized the spatial variability of extreme P at a given duration d (for 

simplicity, we will omit the index d from the variables defined next) using gage records 

and radar QPEs through a stepwise technique based on the boundaryless approach of 

Deidda et al. (2021). This approach, in turn, relies on the index-flood method, whose 

main steps and equations are summarized next. Let x(i) be the AMP series at a given 

duration d in the i-th radar pixel or gage. The sample x(i) is first standardized as:  

 𝑦𝑦(𝑖𝑖) = 𝑥𝑥(𝑖𝑖)/𝑚𝑚(𝑖𝑖)      (3) 

where m(i) is the sample mean. In the index-flood method, statistical tests are applied to 

investigate the hypothesis that the distribution of y(i) is the same at all sites. If confirmed, 

the standardized records y’s at all sites are pooled together and their distribution is 

characterized by a proper parametric model (e.g., the GEV in our case). Its quantile 

function, 𝑞𝑞𝑦𝑦(𝑇𝑇𝑅𝑅), is known as growth curve and is used to obtain the quantiles at any 

location i of the homogeneous region, 𝑞𝑞(𝑇𝑇𝑅𝑅)(𝑖𝑖), as: 

𝑞𝑞(𝑇𝑇𝑅𝑅)(𝑖𝑖) = 𝑚𝑚(𝑖𝑖) ⋅ 𝑞𝑞𝑦𝑦(𝑇𝑇𝑅𝑅).       (4) 

If the GEV distribution is used to model the dimensionless variable y whose mean is 1, its 

dimensionless parameters, denoted as k, μ*, and σ*, are related to each other through the 

following relationship: 

  𝜇𝜇∗  = � 1 + 𝜎𝜎∗

𝑘𝑘
{1 − Γ(1 − 𝑘𝑘)}        𝑘𝑘 ≠ 0

1 − 𝛾𝛾𝜎𝜎∗                                     𝑘𝑘 = 0
  (5) 

where Γ(.) represents the gamma function {Γ(𝑥𝑥)  = ∫ 𝑡𝑡𝑥𝑥−1𝑒𝑒−𝑡𝑡 𝑑𝑑𝑑𝑑∞
0 } and γ is the Euler’s 

constant.  
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The boundaryless approach of Deidda et al. (2021) is based on a hierarchical 

parameter estimation that relies on the dimensionless variables and GEV parameters, as 

in the index flood method. However, instead of relying on homogenous zones where all 

y(i) samples are pooled together to estimate a single growth curve, it involves the spatial 

interpolation of the GEV parameters. This method has been adopted here with minor 

modifications, as summarized in the next steps. Additional methodological details of the 

steps are provided in the next subsections. 

• Step 1: The at-site GEV parameters, k, μ*, and σ*, are estimated on each 

dimensionless sample y(i). k is then bias corrected through empirical relations to 

account for the short sample size. 

• Step 2: The bias corrected shape parameter k is interpolated spatially into the 4-km 

radar grid with an appropriate technique. Here, we tested the performance of two 

methods: the kriging for uncertain data (KUD), used by Deidda et al. (2021), and the 

simpler moving average (MA).  

• Step 3: The at-site scale parameter σ* is re-estimated on the sample y(i), conditioned 

on the spatially interpolated, bias corrected k. KUD is used to spatially interpolate the 

re-estimated σ*. 

• Step 4: The at-site scale parameter µ* is re-estimated on the sample y(i), conditioned 

on the spatially interpolated bias corrected k and σ* obtained in step 3. KUD is used to 

spatially interpolate the re-estimated µ *. At the end of this step, gridded estimates of 

the dimensionless GEV parameters k, μ*, and σ* are obtained. 
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• Step 5: The local mean m(i) is spatially interpolated with KUD and gridded estimates 

of the GEV parameters k, μ, and σ are obtained. These allow computing gridded P 

quantiles, 𝑞𝑞(𝑇𝑇𝑅𝑅). 

3.2.1. Bias Correction of the GEV Shape Parameter 

It is well known that estimates of the GEV shape parameter, k, from short APM 

records are subject to large uncertainty (Hosking & Wallis, 1997; Mascaro, 2020; 

Overeem et al., 2009; Papalexiou & Koutsoyiannis, 2013). Papalexiou & Koutsoyiannis 

(2013) investigated the relation between the variability of k and the sample size using 

long-term global records of daily APM from 15,137 rain gages of the Global Historical 

Climatology Network-Daily database. These authors found that, as the record length 

increases, the shape parameter converges asymptotically to a mean value of 0.114, 

suggesting that the distribution of daily APM is heavy tailed (k > 0), with a standard 

deviation of 0.045, which was attributed to the effect of local climate conditions. 

Moreover, Papalexiou & Koutsoyiannis (2013) proposed an empirical relation to correct 

the bias of k estimates as a function of its sample size. In a more recent study, Carney 

(2016) extended this analysis to the shape parameter of APM records at durations from 1 

h to 60 days using APM records of the rain gages used in the NOAA Atlas 14 studies in 

the U.S. These authors proposed the relation: 

𝑘𝑘� = 0.045
0.045+1.27𝑛𝑛−0.70 {𝑘𝑘�(𝑛𝑛) − [𝜇𝜇𝑘𝑘 + 𝛽𝛽/𝑛𝑛]} + 𝜇𝜇𝑘𝑘  (6) 

where 𝑘𝑘� is the bias corrected value, 𝑘𝑘�(𝑛𝑛) is the PWM estimate of k from the sample, n is 

the sample size, and μk is the estimated unbiased average GEV shape parameter and β is a 

coefficient. The values of μk and β estimated for Volume 1 of NOAA Atlas 14 (Arid 

Southwest) and used here are reported in Table 1. Equation (6) was applied here to 
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correct the bias of the 𝑘𝑘�(𝑛𝑛)’s estimated by fitting the GEV to the AMP series at each 

gage and radar pixel (Step 1 in Section 3.1). Note that the estimate of shape parameter 

does not change whether the original, x(i), or the standardized, y(i), variables are used.  

 
Table 1. Value of Coefficients Used to Bias Correct kd with Equation (6) for NOAA Atlas 
14 – Volume 1. 
 

Duration, d (h) μk β 
1 -0.149 0.8726 
2 -0.117 0.7172 
3 -0.087 0.5945 
6 -0.035 0.4231 
12 -0.013 0.3662 
24 -0.053 0.4774 

 

3.2.2. Spatial Interpolation Techniques  

We used two techniques to spatially interpolate the GEV parameters (Steps 2-5 in 

Section 3.2). The first is Kriging for Uncertain Data (KUD), which was recently adopted 

by Deidda et al. (2021) to interpolate the GEV parameters of daily APM recorded by 256 

rain gages in the island of Sardinia, Italy. The KUD differs from ordinary kriging since it 

does not assume zero variance of the statistical parameter at the location where estimates 

are available. This is a desirable characteristic when the variable to be interpolated 

exhibits large uncertainty, as in the case of the GEV parameters and, particularly, the 

shape parameter. The technique was first developed by Marsily (1986) for homoscedastic 

fields (i.e., equal variance) and later expanded by Mazzetti & Todini (2008) to account 

for heteroscedasticity. As for ordinary kriging, the estimation of the target parameter θ at 

a given site with KUD is a linear combination of the θ estimates at N neighboring sites:  

𝜃𝜃� = ∑ 𝜆𝜆𝑖𝑖 𝜃𝜃𝑖𝑖𝑁𝑁
𝑖𝑖=1       (7) 
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where θi is the local parameter estimate at location i, and λi is the weight assigned to each 

of the sites. To obtain the weights at each location, the original kriging method is 

modified to account for the uncertainty in the following way: 

⎩
⎪
⎨

⎪
⎧𝛾𝛾𝑖𝑖,𝑗𝑗∗ = 𝛾𝛾𝑖𝑖,𝑗𝑗 +

𝜎𝜎𝑖𝑖
2+𝜎𝜎𝑗𝑗

2

2
       𝑖𝑖, 𝑗𝑗 = 1, 2 …𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ≠ 𝑗𝑗

𝛾𝛾𝑖𝑖,𝑗𝑗∗ = 𝛾𝛾𝑖𝑖,𝑗𝑗                                                             𝑖𝑖 = 𝑗𝑗

𝛾𝛾𝑖𝑖,0∗ = 𝛾𝛾𝑖𝑖,0 + 𝜎𝜎𝑖𝑖
2

2
                                   𝑖𝑖 =  1, 2, …𝑁𝑁

  (8) 

Here, γ(i,j) refers to the variogram value between sites i and j, and γ(i,0) refers to the 

variogram value between the site i and the estimation site. The corresponding modified 

variogram values used in KUD are denoted by γ*. σi
2 is the at-site measuring variance at 

site i, which is estimated through Monte Carlo simulations. For our application where we 

interpolated the GEV parameters, we performed 10,000 Monte Carlo simulations, each 

involving (1) the generation of n variates (n = 19) using the at-site GEV parameters, and 

(2) the estimation of the GEV parameters using these n variates. The simulations lead to 

10,000 parameter values, whose sampling variance is used to estimate σi
2. The KUD 

technique was used to interpolate k in Step 2, σ in Step 3, µ in Step 4, and m(i) in Step 5. 

As an alternative to KUD, we also evaluated the performance of a simple moving 

average (MA) to smooth the variability of the shape parameter. This method involves 

calculating, for each pixel or gage, the mean value of parameter estimates at sites located 

within a radius l*. Here, we assumed l* = 40 km, which is a distance within which the 

statistical properties of extreme P can be assumed not to exhibit marked changes Mascaro 

(2017). It is worth to highlight that KUD accounts for the spatial correlation of the 

targeted variable, while MA assumes independence among the values at all locations. The 

reasons why MA was tested will be better explained in the Results. 
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3.3. Error Metrics 

The performance of Stage IV QPEs in characterizing EP was assessed through 

error metrics between the GEV quantiles obtained by different estimation methods. For 

the j-th gage and/or co-located radar pixel, we computed the relative bias (RB) as: 

RB𝑗𝑗,𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑞𝑞𝑗𝑗
𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇𝑅𝑅,𝑑𝑑)− 𝑞𝑞𝑗𝑗

𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝑅𝑅,𝑑𝑑)

𝑞𝑞𝑗𝑗
𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝑅𝑅,𝑑𝑑) × 100,    (9) 

where 𝑞𝑞𝑗𝑗𝐸𝐸𝐸𝐸𝐸𝐸(𝑇𝑇𝑅𝑅 ,𝑑𝑑) and 𝑞𝑞𝑗𝑗𝑅𝑅𝑅𝑅𝑅𝑅(𝑇𝑇𝑅𝑅 ,𝑑𝑑) are the TR-quantiles of EP at duration d estimated for 

a given estimation (EST) and reference (REF) method, respectively. The relative biases 

were then averaged across all N radar pixel-gage pairs as:  

RB𝑅𝑅𝑅𝑅𝑅𝑅 = 1
𝑁𝑁
∑ RB𝑗𝑗,𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁
𝑗𝑗=1 .      (10) 

We also computed the relative root-mean-square error (RRMSE) as: 

RRMSE𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ RB𝑗𝑗,𝑅𝑅𝑅𝑅𝑅𝑅

2𝑁𝑁
𝑗𝑗=1 �

1/2
.     (11) 

The quantile estimation methods and correspondent reference datasets are summarized in 

Table 2, along with a rationale explaining why the comparison was made. We considered 

the following estimation methods:  

• At-site BC Gages (Radar): quantiles estimated at a given gage (radar pixel) using the 

GEV distribution with at-site bias corrected (BC) k, and µ and σ estimated 

conditioning the shape parameter to the bias corrected k value. 

• Gages (Radar) KUD: quantiles estimated using spatially interpolated parameters 

based on the application of KUD for k in the steps of Section 3.1. 

• Gages (Radar) MA: quantiles estimated using spatially interpolated parameters based 

on the application of MA for k (and KUD for µ and σ) in the steps of Section 3.1. 
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• NOAA 14: precipitation frequency estimates (PFEs) from NOAA 14 Volume 1 maps 

for given P durations and return periods. 

 
Table 2. Combinations of Estimation Method (EST) and Corresponding Reference 
Method (REF) Used for the Determination of Error Metrics Identifying the Goal to be 
Achieved 
 

EST REF Goal 
At-site BC Radar At-site BC Gages Performance of best possible at-site estimates 

Gages KUD At-site BC Gages  

Change in performance due to spatial interpolation 
Gages MA At-site BC Gages 
Radar KUD At-site BC Radar  
Radar MA At-site BC Radar  

Radar MA At-site BC Gages  Performance of interpolated radar with best 
possible local estimate of gages 

At-site BC Gages NOAA 14 Performance of best possible at-site estimates with 
operational PFEs 

Radar MA NOAA 14 Performance of interpolated radar with operational 
PFEs 

 

3.4. Scaling Models for Intensity-Duration-Frequency Analysis of Extreme 

Precipitation 

Intensity-duration-frequency (IDF) curves of EP are empirical relations used to 

design and maintain infrastructure that provide the precipitation intensity, i(TR, d), for a 

given duration, d, and return period, TR. A popular equation that well captures IDF curves 

has the general form (Koutsoyiannis et al., 1998): 

𝑖𝑖(𝑇𝑇𝑅𝑅 ,𝑑𝑑) = 𝑎𝑎(𝑇𝑇𝑅𝑅)(𝑑𝑑 + 𝜃𝜃)−𝜂𝜂,     (12) 

where a(TR) depends on the probability distribution function of EP, and θ ≥ 0 and 0 < η ≤ 

1 are site-dependent coefficients. If applied separately for two durations d and d0, 

equation (9) leads to the convenient relationship between the corresponding P intensities: 
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𝑖𝑖(𝑑𝑑,𝑇𝑇𝑅𝑅) = (𝑑𝑑+𝜃𝜃)−𝜂𝜂

(𝑑𝑑0+𝜃𝜃)−𝜂𝜂 𝑖𝑖(𝑑𝑑0,𝑇𝑇𝑅𝑅).   (13) 

When θ = 0, equation (10) simplifies to a form that descends from the assumption of 

“strict sense simple scaling” of precipitation (Burlando & Rosso, 1996a; Gupta & 

Waymire, 1990). This can be written as: 

𝐼𝐼𝑑𝑑 =
𝑑𝑑
� 𝑑𝑑
𝑑𝑑0
�
−𝜂𝜂
𝐼𝐼𝑑𝑑0,   (14) 

with the symbol =
𝑑𝑑

 indicating equality in probability distributions and η being the scaling 

exponent. This implies that Id and Id0 have the same distribution once the latter is rescaled 

by a factor (d/d0)-η. This property can be extended to the moments of order q as: 

𝐸𝐸�𝐼𝐼𝑑𝑑
𝑞𝑞� = � 𝑑𝑑

𝑑𝑑0
�
−𝑞𝑞𝜂𝜂

𝐸𝐸�𝐼𝐼𝑑𝑑0
𝑞𝑞 �,   (15) 

which has been also described as the “wide sense simple scaling” property (Gupta & 

Waymire, 1990).  

The assumption of simple scaling has been used to derive an IDF model adopting 

the GEV distribution with constant shape parameter across durations. Under these 

conditions, equation (12) provides two scaling relations that link the scale and location 

parameter with the duration: 

𝜇𝜇𝑑𝑑 = � 𝑑𝑑
𝑑𝑑0
�
−𝜂𝜂
𝜇𝜇𝑑𝑑0,  𝜎𝜎𝑑𝑑 = � 𝑑𝑑

𝑑𝑑0
�
−𝜂𝜂
𝜎𝜎𝑑𝑑0.  (16) 

Equations (13) allow obtaining the GEV parameters at high temporal resolutions, where 

P data are less available (e.g., d = 1 h), from the values estimated from AMP records at 

coarser resolutions, which are more widely observed (e.g., d0 = 24 h), through the scaling 

exponent η. The GEV simple scaling model has been applied in different regions of the 
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world (Blanchet et al., 2016a; Innocenti et al., 2017; Nguyen et al., 1998) including 

central Arizona (Mascaro, 2020) with relatively good accuracy  

The assumption of simple scaling leads to a parsimonious IDF model that is 

operationally simple to apply. However, ample evidence has shown that P exhibits 

multiscaling properties (Burlando & Rosso, 1996b; Deidda et al., 1999; Mascaro et al., 

2014), which can be defined according to Gupta & Waymire (1990) as: 

𝐸𝐸�𝐼𝐼𝑑𝑑
𝑞𝑞� = � 𝑑𝑑

𝑑𝑑0
�
−𝛼𝛼𝑞𝑞

𝐸𝐸�𝐼𝐼𝑑𝑑0
𝑞𝑞 �,     (17) 

where 𝛼𝛼𝑞𝑞 is a nonlinear function of q that accounts for the departure from simple scaling 

In recent work, Van de Vyver (2018) proposed a multiscaling IDF model based on the 

GEV distribution, where different scaling exponents are used for µ and σ: 

𝜇𝜇𝑑𝑑 = � 𝑑𝑑
𝑑𝑑0
�
−𝜂𝜂𝜇𝜇

𝜇𝜇𝑑𝑑0,  𝜎𝜎𝑑𝑑 = � 𝑑𝑑
𝑑𝑑0
�
−𝜂𝜂𝜎𝜎

𝜎𝜎𝑑𝑑0.  (18) 

This author has also proved that ηµ ≤ ησ and showed that the multiscaling GEV model 

reproduces better IDF relations in several gages in Belgium than the simple scaling 

model. Here, we (1) investigated whether the GEV parameters estimates from the radar 

QPEs at different durations exhibit scaling properties; (2) compared the radar-derived 

scaling exponents with those obtained for the gages, complementing the work of Mascaro 

(2020); and (3) used the large samples of scaling exponents estimated at the radar pixels 

to assess whether ηµ and ησ are different in the region. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1. Evaluation of the GEV hypothesis 

The suitability of the GEV distribution to model APM series observed at the 

gages and retried at the radar pixels was evaluated using the L-moment ratio diagram 

(Hosking, 1990, 1992; Hosking & Wallis, 1993; Peel et al., 2009). This is shown in 

Figure 2 for the AMP series at d = 1 and 24 h at the gages and co-located radar pixels. To 

investigate the effect of sample size, the panels on the left show results for the 91 gages 

with longer records of n =30 years, while those on the right report results at the same 91 

gages for the n =19 years where radar QPEs are available. For all durations and products, 

the sample estimates are scattered around the theoretical GEV curve, and the mean L-

skewness and L-kurtosis (large symbols) are very close to or lie on the GEV line, 

indicating that this distribution well captures the AMP series of both gages (as also found 

by Mascaro, 2020) and radar. As expected, the scatter of the gage sample estimates is 

larger for n = 19 years; however, the mean L-skewness and L-kurtosis for the gages do 

not change significantly with n (i.e., the position of the large blue triangle is practically 

the same in the left and right panels for the same d). The scatter of the radar samples is 

very similar to that of the gages with n = 19 years. The average L-moments for the radar 

are slightly higher than those of the gages for d = 1 h and practically the same for d = 24 

h. These findings suggest that (1) the use of 19-year-long records for both gages and 

radar allows capturing the average statistical properties in the region obtained from 

longer records; and (2) differences between the statistical properties of EP characterized 
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by gages and radar are larger at short durations. The analyses presented next will be 

based on the 257 gages with n = 19 years.  

 

 

 
Figure 2. L-moment Ratio Diagram for Observed Records of AMP at 91 Gages and Co-

located Radar Pixels for (a)-(b) d = 1 h and Sample Size n = 30 and 19 Years for the 
Gages, Respectively. (c) and (d) Are the Same as (a) and (b), but for d = 24 h. The Lines 

Show the Theoretical L-moment Combinations for the Generalized Pareto (GP), 
Generalized Logistic (GL), Generalized Extreme Value (GEV), Lognormal (LN), and 

Pearson Type III (PT3). 
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4.2. Comparison of At-Site and Spatially Interpolated GEV Parameter Estimates for 

Gages and Radar 

As described in Section 3, at-site estimates and spatial interpolations were applied 

to obtain the shape, location, and scale parameters of the GEV distribution at each gage 

and co-located radar pixel. Figures 3-5 present the scatterplots between the parameter 

values at the 257 gages (x axis) and co-located radar pixels (y axis) under different 

methods for d = 1, 6, and 24 h, respectively (results for all durations are presented in 

Appendix A). The upper row in each figure (panels (a)-(c)) present the scatterplots with 

At-site estimates of k, µ and σ. For all durations, the relations between the k estimates for 

the two datasets is quite scattered with very low (<0.07) coefficient of determination, R2. 

Figure 23 in Appendix A shows the scatterplot comparing k from radar and gage using 

At-site BC estimates with low correlation. This is an expected result given the large 

uncertainty of the shape parameter estimates for such a short sample size. The 

correspondence is instead stronger for at-site estimates of µ and σ, with R2 increasing 

with d and reaching 0.50 (0.80) for σ (µ) for d = 24 h (Figures 5b,c). For both µ and σ, 

the radar estimates are negatively biased compared to gage estimates for the lower 

durations. The negative bias is reduced as d increases and becomes slightly positive for d 

= 24 h.  

Panels (d)-(f) and (g)-(i) in Figures 3-5 present the scatterplots between the 

parameter estimates obtained through the spatial interpolation steps based on KUD and 

MA, respectively. Overall, the two interpolation techniques lead to very similar impacts 

on the GEV parameters. As described in Section 3.2, prior to performing the spatial 

interpolations, k was bias corrected to account for the uncertainty due to the low sample 



   26 

size. This greatly reduces the scatter of the k estimates and leads this parameter to range 

between 0 and 0.2 for both KUD and MA, with larger (lower) values of d = 1 h (24 h). 

Interestingly, at lower durations, the R2 of MA is higher than that of KUD. For both µ 

and σ, the spatial interpolation methods reduce the range of variability and lower the 

values for each product. The scatter between radar and gage values is importantly 

reduced compared to the at-site results. Consequently, the linear correlation increases 

with R2 ranging from 0.20 (0.71) at d = 1 h to 0.70 (0.9) at d = 24 h for σ (µ). However, 

the negative bias at d = 1 h is still present and a slightly positive value is found at d = 24 

h for σ > 0.6 mm/h and µ > 1.4 mm/h.  

The impact of negatively biased scale and location parameters at smaller 

durations can be first understood in terms of the GEV distribution (probability 

distribution function) and then the quantiles estimated using them. A lower µ shifts the 

shape of the GEV distribution to the left compared to the true distribution and this in turn 

implies the underestimation in the probability of occurrence of a higher P intensity. A 

lower σ reduces the spread of the distribution and increases the concentration of 

probability around the mode of the AMP series. The negative bias of both σ and µ 

implies underestimation of P quantiles at shorter durations.  
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Figure 3. Scatterplots Comparing Radar and Gage Estimates for At-site, KUD, and MA 

Spatial Interpolation Methods When d = 1 h 
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Figure 4. Scatterplots Comparing Radar and Gage Estimates for At-site, KUD, and MA 
Spatial Interpolation Methods When d = 6 h 
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Figure 5. Scatterplots Comparing Radar and Gage Estimates for At-site, KUD, and MA 
Spatial Interpolation Methods When d = 24 h 
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Figure 6. Boxplots Summarizing the Empirical Distributions of the Shape Parameter k 
Across (a)-(c) 257 Gages and (d)-(f) Co-located Radar Pixels for d = 1, 6 and 24 h and 

Different Estimation Methods, Including At-site, At-site BC, KUD and MA. 
 

Results of the scatterplots are summarized in Figures 6-8 through boxplots that 

show the empirical distribution of the GEV parameters for the different estimation 

methods. As presented in Figure 6, the bias correction of k from At-site to At-site BC 

(now shown in scatterplots) greatly reduces the inter-site variability of this parameter. 

The use of interpolation methods leads to a further decrease of the variability for KUD 
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and, even more, for MA. The median value of k increases from At-site to the other 

methods for d = 1 h and d 24 h and decreases for d = 6 h. For all durations, the 

distribution is heavy tailed. All these considerations are true for both gage and radar 

records. The bias correction and spatial interpolations lead to practically the same 

empirical distributions of k for a given d obtained for gages and radar. 

The boxplots for σ and µ are shown in Figures 7 and 8, respectively. It is 

important to note first that the range of values in units of mm/h for these parameters 

changes with the dependent. The figures reveal the following results. (1) The values and 

inter-site variability of both parameters do not change when k is bias corrected, i.e., 

comparing At-Site and At-Site BC. (2) When applying the spatial interpolation, the inter-

site variability of both σ and µ decreases significantly, and their median values are also 

reduced. (3) No important difference emerges between KUD and MA. Considerations 

(1)-(3) apply to both gages and radar. (4) For each estimation method, the values of σ and 

µ estimated from the radar records are lower than those obtained for the gages for d = 1 h, 

and slightly lower for d = 6 h. The empirical distributions derived for the two products 

are practically the same for d = 24 h. 
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Figure 7. Boxplots Summarizing the Empirical Distributions of the Scale Parameter σ 
across 257 Gages and Co-located Radar Pixels for Different Estimation Methods, 
Including At-site, At-site BC, KUD and MA, for d = 1 h (a), 6 h (b), and (c) 24 h. 

  



   33 

  

Figure 8. Same as Figure 6 but for Location Parameter μ. 
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4.3. Spatial Distribution of GEV Parameters 

Arguably, the most valuable advantage of radar observations over gages is the 

availability of seamless spatial information. To prove this important point, Figures 9-11 

show maps of the GEV parameters for d = 1, 6 and 24 h, respectively, derived from the 

radar QPEs using the different estimation methods. As already presented in the 

scatterplots and boxplots, the range of the At-site estimates of k is large with both high 

positive and negative values. The maps in panels (a) further show that the At-site k 

estimates could (1) vary significantly within relatively small distances, and (2) exhibit 

clusters of ~10-20 pixels with very similar high or low values, as highlighted in the 

example of Figure 12a. The features of the spatial patterns of At-site k do not appear to be 

physical plausible, since it is very unlikely that the right tail of the extreme P distribution 

(1) is bounded (negative k) only in limited spatial areas, and (2) changes so abruptly 

within short distances (8-40 km), especially in the rather flat Phoenix Metropolitan region 

(Figure 1b).  

The major reason of these unrealistic spatial features is the large uncertainty in the 

estimation of the shape parameter using such a short sample, combined with the typical 

size of storms leading to extreme P. To better illustrate this, Figure 12b shows the year of 

occurrence of the largest APM (d = 1 h) using the same color in close pixels if the event 

was recorded within the same 24-hour period. It is clear that size and locations of the 

clusters in Figures 12a,b are similar, indicating that the spatial correlation of k is closely 

related to the spatial correlation of the storms causing the largest APM. This is further 

illustrated in Figures 12c,d, that demonstrate that the shape of the GEV distribution fitted 
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to the empirical CDF at pixels belonging to two clusters is severely affected by the 

largest APM values and that, for each cluster, these have occurred in the same year. 

Here, to limit the impacts of this uncertainty, the At-site k estimates were bias 

corrected following Papalexiou & Koutsoyiannis (2013) and Carney (2016). As shown in 

the At-site BC maps in panels (d), the bias correction constrains the k estimates to 

positive values (i.e., heavy tailed distributions) and reduces the inter-site variability; 

however, the spatial correlation caused by the clusters is still present. Such correlation is 

somewhat reduced through the spatial interpolation with KUD (panels (g)), and mostly 

eliminated by MA (panels (j)). The spatial patterns of k obtained using this last 

interpolation technique exhibit instead large-scale spatial correlations that appear to be 

the most realistic.  

As anticipated by the boxplots, the patterns of σ and µ are very similar for At-Site 

and At-Site BC, indicating that the bias correction of k does not significantly impact the 

estimates of scale and location parameters (compare panels (b)-(c) with panels (e)-(f)). 

The limited effect of using different k values when re-estimating σ and µ is confirmed by 

contrasting the spatial maps of these parameters obtained outcomes for KUD (panels (h)-

(i)) and MA (panels (k)-(l)). The spatial patterns obtained for the two methods are in fact 

very similar, except for a slightly larger variability exhibited by µ in KUD. These 

considerations are true for all durations.  

Finally, it was found that the spatial patterns of σ and µ are partially explained by 

elevation, with a dependence that increases with d, confirming results obtained by 

Mascaro (2020) analyzing gage records. The R2 for σ and µ estimated using At-Site BC 

and MA chosen as representative methods are reported in Table 3 which indicate the 
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correspondence between the parameter estimates and the elevation at that pixel. Higher 

R2 for µ confirms the effect of orography in the study domain, which implies that short 

duration convective storms are less reliant on topography compared to long lasting storms 

which have a higher dependence on terrain conditions. The dependence of σ on elevation 

is negligible for short duration storms, but for larger durations this relationship is 

somewhat existent explaining that scale parameter also varies with elevations. The use of 

spatial interpolation techniques reduces the overall noise associated with estimation of σ 

and µ which is also reflected through better R2 values with the use of MA or KUD.  
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Figure 9. Spatial Variability of the GEV Parameters for d = 1 h Obtained with At-site, 
At-site BC, KUD and MA Estimation Methods. The Colormaps for Each Parameter are 

Shown at the Bottom of Each Column (Only Panel (a) has its Own Colormap) 
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Figure 10. Same as Figure 9 but for d = 6 h. 
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Figure 11. Same as Figure 9 but for d = 24 h. 
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Figure 12. (a) Example of Two Clusters with High Positive and Low Values of At-site k 
for d = 1 h. (b) Year of Observation of Highest APM for d = 1 h. (c)-(d) Empirical and 

Fitted GEV Distributions of APM Records in Three Representative Pixels in Each of the 
Two Clusters. 

 
 

Table 3. Estimated R2 for a Linear Model Obtained by Fitting σ and µ to Elevation for a 
Given Estimation Method. 

Duration 
At-site BC MA 

σ μ σ μ 

1 0.0002 0.32 0.0003 0.49 

2 0.0007 0.34 0.0024 0.52 

3 0.002 0.37 0.003 0.53 

6 0.017 0.47 0.019 0.58 

12 0.14 0.58 0.19 0.63 

24 0.27 0.63 0.30 0.66 
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4.4. Performance of Radar QPEs to Characterize Regional Extreme Precipitation 

Frequency 

4.4.1. Performance of At-Site BC Radar Estimates 

The ability of the radar QPEs to characterize the regional frequency of extreme P 

at different durations was tested through error metrics computed between the quantiles 

obtained for the estimation (EST) and reference (REF) methods summarized in Table 2. 

The first comparison was made between quantiles estimated with At-Site BC for both 

radar (EST) and gages (REF), in order to assess the capability of radar QPEs to capture 

local estimates of the gage quantiles. The mean relative bias (RB) and relative root-mean-

square error (RRMSE) for TR from 2 to 50 years and d = 1, 6, and 24 h are displayed in 

Figure 13. RB for d = 1 h is negative (i.e., the radar underestimates gage quantiles) and 

varies from around -20% for TR = 2 years to -5% for TR = 50 years. RB increases with the 

duration, being negligible for d = 6 h and slightly positive (up to ~+5%) for d = 24 h. For 

these two durations RB slightly increases with TR. For all durations, the RRMSE doubles 

from TR = 2 years to TR = 50 years and is the largest for d = 1 h (maximum of 40%). The 

performances found at the different durations are expected given the biases of the GEV 

location and scale parameters shown in Figures 7 and 8 for At-Site BC.  
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Figure 13. Error Metrics for EST = At-site BC Radar and REF = At-site BC Gage for d = 
1 h, 6 h, and 24 h. 

 
 
4.4.2. Performance of Spatial Interpolation Methods 

To understand the impact due to the use of spatial interpolation techniques, we 

computed the error metrics for the Gage KUD and Gage MA (Radar KUD and Radar 

MA) estimation methods, respectively, assuming At-site BC Gage (At-site BC Radar) as 

reference. Results are shown in Figure 14. When comparing the two P products, the 

application of interpolation techniques leads to very similar trends in the error metrics 

against local quantile estimates, with (1) negative RB that decrease with TR and is overall 

included between about -2% and -8%, (2) RRMSE that increases with TR from roughly 

7% to 15%, and (3) larger errors for lower durations. For the gages, RB is lower (i.e., less 

negative) for MA compared to KUD, while no important difference emerges between 

KUD and MA for the radar.  
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Figure 14. (a)-(b) Error Metrics for d = 1, 6, and 24 h for EST = Gages KUD or Gages 
MA and REF = At-site BC Gages. (c)-(d) Same as (a)-(b) but for EST = Radar KUD or 

Radar MA and REF = At-site BC Radar 
 
 

As a next step, we tested the performance of the spatially interpolated radar 

quantiles with the best possible local estimates from gage records (i.e., At-site BC 

Gages). Results are displayed in Figure 16 only for Radar MA since the differences 

between the two interpolation techniques for the radar are very little, as shown in Figure 

14. We first notice that the effect of TR is quite small for all durations. RB for d = 24 h is 
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nearly 0% with a low RRMSE of less than 10%, implying that the spatial smoothing 

method is able to predict accurate estimates of extreme P quantiles at higher durations. 

Performances are fairly good also for intermediate durations (d = 6 h), where RB remains 

close to -10% and RRMSE is less than 20%. As found in previous cases, performances 

are the worst for d = 1 h with an RB of -30% and RRMSE of 30%. When compared to 

Figure 13, these findings reveal that the use of spatial interpolation methods with radar 

QPEs reproduces local gage estimates with only slightly larger errors than At-site BC 

Radar estimates. Moreover, since RB is not affected by TR, bias correction techniques can 

be applied to remove the negative bias of the extreme P quantiles at lower durations, as 

discussed next.  

 
 

 

Figure 15. Same as Figure 14 but for EST = Radar MA and REF = At-site BC Gage. 
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4.4.3. Comparison with NOAA Atlas 14 PFEs 

NOAA Atlas 14 provides PFEs that are routinely used in most of the U.S. to 

maintain and size infrastructure against extreme P. As previously mentioned, these PFEs 

are generated by applying regionalization techniques to rain gage records of different 

sample size using the GEV distribution. To complete the assessment of radar 

performance, we compared the quantiles generated with our gage and radar datasets in 

central Arizona with the PFEs from NOAA Atlas 14 Volume 1 that covers the semiarid 

Southwest (REF). The error metrics with EST = At-site BC Gages are displayed in 

Figures 16a,b, which indicate that some discrepancies exist between the two gage-based 

products. Local quantile estimates based on the 19-year-long gage records are negatively 

biased (about -20%) at TR = 2 years for all durations. RB is gradually reduced as TR 

increases and becomes slightly positive (up to +10%) for d = 1 years and TR = 50 years. 

RRMSE varies between 10% and 15% with a minimum found at TR = 5 years, with little 

differences across the durations.  

For a more robust analysis, we also fit the GEV distribution to 30 years of gage 

records and compute P quantiles at each gage location. They are compared to PFEs where 

we find slightly lower errors. The RB at lower TR remains similar as those from the 19 

years, but at TR = 50 years, the RB at all durations is ~0. The RRMSE also improves at 

higher recurrence intervals (< 20% for all durations at TR = 50 years). This comparison 

here also gives an insight about the confidence in NOAA Atlas 14 estimates for different 

recurrence intervals. The presence of a negative bias at all durations even with the use of 

longer gage records located at a high spatial density suggest that there might be an 

overestimation of NOAA Atlas 14 quantiles at lower return periods. 
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The error metrics for EST = Radar MA are presented in Figures 16c,d. The values 

and trends of both error metrics for d = 24 h are very close to those found for At-site BC 

Gages, with the radar leading to lower RRMSE at higher TR. The performance at d = 6 h 

is also comparable in terms of RB and better considering RRMSE. At d = 1 h, the 

quantiles derived from radar QPEs severely underestimate the NOAA 14 PFEs with RB 

increasing from about -45% at TR = 2 years to -20% at TR = 50 years. The RRMSE is also 

much larger than the values found at other durations. However, an important 

characteristic of the radar estimates is that their errors decrease significantly as TR (and, 

thus, the statistical uncertainty) increases. 
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Figure 16. (a)-(b) Error Metrics for d = 1 h, 6 h, and 24 h for EST = At-site BC Gage and 
REF = NOAA 14. (c)-(d) Same as (a)-(b) but for EST = Radar MA and REF = NOAA 14. 
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4.4.4. Inter-Site Variability of Bias  

As a final step of the analyses of the error metrics, Figure 17 presents the boxplots 

summarizing the empirical distribution of the bias at each gage vs. radar (or NOAA 14) 

pixel location, RBj. In addition to confirming the outcomes of the previous figures based 

on RB, Figure 17 reveals the following two points: (1) The inter-site variability increases 

with TR; and (2) The variability is the largest when comparing At-site BC Gage with 

NOAA 14 (Figure 17b) and it is quite similar when comparing Radar MA with At-site 

BC Gage (Figure 17a) or NOAA 14 (Figure 17c). We also investigated the existence of 

spatial patterns for RBj and found this error metric to be largely randomly distributed in 

space (not shown). 
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Figure 17. Boxplots of RBj for (a) EST = Radar MA and REF = At-site BC Gage, (b)EST 
= At-site BC Gage and REF = NOAA 14, and (c) EST = Radar MA and REF = NOAA 

14. 
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4.6. Evidence of Scaling for the GEV Scale and Location Parameters 

Mascaro (2020) found evidence of the scaling properties (equations (18)) for the 

At-site and At-site BC estimates of the location, μ, and scale, σ, GEV parameters using 

the same gage records analyzed here. This implies that a linear relation in the log-log 

plane was found between the parameter and the P duration, d, with the slope denoted as 

scaling exponent. Mascaro (2020) also found the scaling exponent for σ, ησ, is slightly 

larger than that of µ, ημ, suggesting that multiscaling GEV models should be used to 

develop more accurate IDF relations (Van de Vyver, 2018).  

As a further way to assess the ability of radar QPEs to characterize the statistical 

properties of extreme P, here we verified whether the scaling relations are also exhibited 

by the GEV parameters estimated with the radar APM series using MA. We found this to 

be the case, but that the scaling exponents have a negative bias, which is a direct 

consequence of the bias between estimates of μ and σ from At-site gage BC and radar 

MA series found at lower P durations (see Figures 7-8). This is illustrated in Figure 18, 

where evidence of scaling for μ and σ is presented for a representative gage and co-

located radar pixel (panels a-b), and results across all sites are summarized through 

boxplots and scatterplots (panels c-e). As found by Mascaro (2020), ηµ was found to be 

lower than ησ, a condition that Van de Vyver (2018) proved to be needed to apply 

multiscaling IDF GEV models. Finally, Figure 18d,f presents the maps of ηµ and ησ 

derived from the radar. Interesting patterns emerge with presence of correlations that are 

partially explained by elevation (R2 of 0.25 of ημ and 0.16 of ησ). These maps indicate 

that regions in the southwestern portion of the domain have larger scaling exponents, 

which implies larger changes of APM intensities across durations values in these regions, 
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likely due to more localized and intense convective storms. In regions in the northeast 

with lower scaling exponents, APM intensities exhibit less variations across time 

aggregations. 

 

Figure 18. (a)-(b) Example of Linear Scaling Relationship in the Log-Log Plane between 
P Duration, d, and (a) μ or (b) σ Observed at a Representative Gage and Co-located Radar 

Pixel. The Scaling Exponents ημ and ησ Are the Slopes of the Lines. (c) Boxplots of ημ 
and ησ Estimated from 257 Gages (Blue) and Co-located Radar Pixels (Red). (d)-(e) 

Scatterplots Between (d) ημ and (e) ησ Estimated Using 257 Gages and Co-located Radar 
Pixels. (f)-(g) Maps of ημ and ησ Derived from the Radar MA in the Study Area. 
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4.7. Utility of Radar to Support NOAA Atlas 14  

Our results indicate that extreme P quantiles generated with the spatial 

interpolation method applied to radar QPEs capture well the NOAA 14 PFEs at d = 24 h. 

In this section, we show that radar QPEs provide valuable information to address one of 

the limitations of NOAA 14, which is the presence of abrupt changes of quantile 

estimates within short distances due to the use of large homogenous regions. This 

problem has been recently illustrated by Deidda (2021) in Sardinia, Italy. Here, we 

estimated the 25-year quantile for extreme P at d = 6 h applying the Radar MA method in 

all State IV pixel in the states of NOAA Atlas 14 Volume 1 (see Figure 1a). Figure 19 

shows the comparison of this map with the map of NOAA 14 PFEs. The values are from 

radar quantiles are smaller however the patterns are preserved as in NOAA 14 PFEs as 

can be observed from the quantiles observed in Arizona and New Mexico in Figure 19. 

However, there are areas NOAA 14 PFEs with sharp discontinuities as highlighted in the 

zoomed version of panel (a), which do not exist in Radar MA, as shown in panel (b). 
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Figure 19. (a) PFE from NOAA Atlas 14 at TR = 25 years and d = 6 h Emphasizing Non 
Continuous Values at the State Boundary of California and Nevada. (b) QPEs Estimated 

Using Stage IV in the States Covered by NOAA Atlas 14 Volume 1. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

The utility of 4 km, 1 h Stage IV radar QPEs to characterize extreme P statistics 

and improve IDF relations was assessed in central Arizona using a dense network of 257 

rain gages as reference. The conclusions of this study are as follows: 

1.        The suitability of the GEV distribution to model annual P maxima (APM) series 

at durations, d, from 1 to 24 h obtained from radar and gages was confirmed using the 

L-moment ratio diagram.  

2.        At-site estimates of the GEV shape parameter, k, exhibited large variations due to 

the short sample size (19 years). This uncertainty was reduced using empirical 

relations based on the analysis of a large number of rain gage records covering the 

U.S. For all durations, the bias corrected k was found to be > 0, i.e., the distribution of 

APM is heavy tailed. 

3.        A hierarchal approach based on spatial interpolation methods (KUD and MA) was 

designed to further reduce the statistical uncertainty and obtain P quantile estimates 

that vary seamlessly in space. Estimates of P quantiles from radar QPEs are 

negatively biased (-20% – -30%) when compared to at-site gage estimates for d = 1 h. 

The bias tends to 0 and errors (RRMSE of ~10%) are small for d > 6 h, independently 

of the return period.  

4.        The use of Moving Average (MA) rather than Kriging for Uncertain Data (KUD) 

is advised to smoothen the spatial variability of k. The scale and location parameters 

of the GEV exhibited spatial patterns in part dependent on elevation.  
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5.        Comparison with NOAA Atlas 14 precipitation frequency estimates (PFEs) yields 

to a further reduction of the bias (-40%) for P quantiles estimated from the radar 

QPEs at d = 1 h. Performance of gage and radars against NOAA Atlas 14 is instead 

similar for d ≥ 6 h.  

6.        The presence of scaling for the location and scale GEV parameters, needed to 

apply scaling IDF models, was found for both radar and gages. The scaling exponents 

estimated for the radar were negatively biased compared to the gages, due to the bias 

identified for the P quantiles at d = 1 h. The spatial patterns of the scaling exponents 

are related to the impacts of localized convective storms, with flatter areas exhibiting 

larger exponents, i.e., increase in extreme P rates is larger as the time aggregation 

decreases. 

A key idea for improving the analysis for more accurate results is to perform a 

localized bias correction using a relationship that is derived from rain gage records 

present in the specific area in which the comparison is performed rather than using one 

common to the entire US Southwest. Such an optimization will improve the parameter 

estimates used for deriving precipitation quantiles. 

This M.S. thesis is part of the award “SCC: Community-Based Automated 

Information for Urban Flooding” (#1831475) funded by the National Science Foundation 

(NSF), which has the main goal of improving collection, analysis, and modeling of 

flooding in urban areas. The work conducted in this thesis contributes to the broader 

goals of the project by improving understanding of the accuracy of radar products which 

are crucial to improve the ability of modeling and forecasting urban flooding. 
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APPENDIX A 

RESULTS FROM COMPARISON OF AT-SITE AND SPATIALLY INTERPOLATED 

GEV PARAMETERS ESTIMATED FOR GAGE AND RADAR 
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Figures 20 to 22 show scatterplots for different methods at d = 2, 3, and 12 h, 

respectively. 

 
 

 

Figure 20. Scatterplots Comparing Radar and Gage Estimates for At-site, KUD, and MA 
Spatial Interpolation Methods When d = 2 h 
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Figure 21. Same as Figure 20 but for d = 3 h 
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Figure 22. Same as Figure 20 but for d = 12 h 
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Figure 23. Scatterplots Comparing Radar and Gage Shape Parameter Estimates for At-
site BC 
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APPENDIX B 

RESULTS FROM SPATIAL DISTRIBUTION OF GEV PARAMETERS  
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Figures 26 to 28 show maps of GEV parameter obtained from gages comparing different 

spatial interpolation techniques at d = 2, 3, and 12 h, respectively. 
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Figure 24. Spatial Variability of the GEV Parameters for d = 2 h Obtained with At-site, 
At-site BC, KUD and MA Estimation Methods. The Colormaps for Each Parameter are 

Shown at the Bottom of Each Column (Only Panel (a) Has Its Own Colormap) 
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Figure 25. Same as Figure 24 but for d = 3 h. 
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Figure 26. Same as Figure 24 but for d = 12 h. 
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