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ABSTRACT

Vertical take-off and landing (VTOL) systems have become a crucial component of

aeronautical and commercial applications alike. Quadcopter systems are rather con-

venient to analyze and design controllers for, owing to symmetry in body dynamics.

In this work, a quadcopter model at hover equilibrium is derived, using both high and

low level control. The low level control system is designed to track reference Euler

angles (roll, pitch and yaw) as shown in previous work [1],[2]. The high level control

is designed to track reference X, Y, and Z axis states [3].

The objective of this paper is to model, design and simulate platooning (separa-

tion) control for a fleet of 6 quadcopter units, each comprising of high and low level

control systems, using a leader-follower approach. The primary motivation of this re-

search is to examine the ”accordion effect”, a phenomenon observed in leader-follower

systems due to which positioning or spacing errors arise in follower vehicles due to

sudden changes in lead vehicle velocity. It is proposed that the accordion effect oc-

curs when lead vehicle information is not directly communicated with the rest of the

system [4][5].

In this paper, the effect of leader acceleration feedback is observed for the quad-

copter platoon. This is performed by first designing a classical platoon controller for

a nominal case, where communication within the system is purely ad-hoc (i.e from

one quadcopter to it’s immediate successor in the fleet). Steady state separation/-

positioning errors for each member of the fleet are observed and documented during

simulation. Following this analysis, lead vehicle acceleration is provided to the con-

troller (as a feed forward term), to observe the extent of it’s effect on steady state

separation, specifically along tight maneuvers. Thus the key contribution of this work

is a controller that stabilizes a platoon of quadcopters in the presence of the accordion

effect, when employing a leader-follower approach.
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The modeling shown in this paper builds on previous research to design a low cost

quadcopter platform, the Mark 3 copter [1]. Prior to each simulation, model nonlin-

earities and hardware constants are measured or derived from the Mark 3 model, in

an effort to observe the working of the system in the presence of realistic hardware

constraints. The system is designed in compliance with Robot Operating System

(ROS) and the Micro Air Vehicle Link (MAVLINK) communication protocol.
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Chapter 1

INTRODUCTION

Quadcopter research has been of great interest recently, given it’s scope for greater

maneuverability and control as compared to other models such as fixed wing aircraft.

A standard quadcopter model for a hovering equillibrium (i.e without any movement)

is fairly decoupled, meaning that the system can be visualised as multiple single input

single output (SISO) systems operating in tandem. This makes control design and

analysis of quadcopter models fairly simple, especially when using feedback lineariza-

tion methods[2],[5]. Many conventional control design methods such as PID, LQR,

backstepping control and sliding mode control) are applicable to quadcopter systems.

Quadcopter systems are inherently unstable and under-actuated ; there are four

control inputs and 6 degrees of freedom, and as such a robust control system is re-

quired for complete input-output stability. As seen in contemporary research [2],[6],[7],

modeling a single quadcopter to follow high level position commands is in itself a de-

tailed and intriguing problem when considering that there are multiple time-varying

states to stabilize, arising from both translational and rotational dynamics

With a single quadcopter acting as a virtual leader, this paper considers a leader-

follower approach where only the leader is provided a trajectory. A separation control

system is designed for follower quadcopters, such that a desired formation vector can

be tracked with minimal deviation from assigned position, assuming that the only

input provided is x, y, z position data from the quadcopter’s nearest neighbor.

In this context, the 1992 seminal paper of Charles Desoer and Shahab Sheik-

holeslam poses an interesting question; what is the effect of leader information on

the local stability of follower vehicles? In context, when considering leader follower

1



approaches, there is an accordion effect that arises within the quadrotor formation if

data is simply communicated from one quadcopter to another within the formation.

Thus, the key contribution of this paper is the design of a controller to stabilize a

leader-follower quadcopter fleet in the presence of the accordion effect, given a prede-

termined formation vector that specifies the desired vehicle spacing from a follower’s

immediate neighbours in formation.
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Chapter 2

MOTIVATION AND OUTLINE OF WORK

2.1 Literature Survey

The quadrotor system must be designed well with respect to angular rate control

(inner loop), angle control (outer loop), high level reference state tracking (for desired

X,Y,Z references) and finally, separation control to ensure followers remain at desired

spacing from each other. In this section (and in subsequent section in this thesis),

these aspects are addressed in the following order 1. Modeling for a single Quadcopter

2. Low level control for a single quadcopter- Angular rate command following (inner

loop) and Attitude angle command following (outer loop) 3. High level control for a

single quadcopter- Translational position/path following control 4. Separation control

for multiple quadcopters - control of spacing (∆) between quad rotors in the fleet, in

both X axis (longitudinal spacing) and Y axis (lateral spacing).

2.1.1 Modeling for a Single Quadcopter

In this work, each individual quadcopter is implemented using a kinematic model

(to represent the Euler angle/body dynamics) and a dynamic model (comprising of

rigid body and actuator dynamics). Figure 2.1 below shows the free body diagram

for a single quadcopter.
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Figure 2.1: Quadcopter Free Body Diagram

Kinematic Model of Quadrotor In this work, the Cartesian coordinate system,

i.e., Earth-centered Earth-fixed (ECEF) is considered as the global reference frame,

while the Euler angles represent the vehicle’s orientation in the body frame[1]. For

modeling the controller, the body frame is used to model control inputs as shown

in [1] and [2]. Rotation matrices are used to transform quadcopter states from the

body frame to the global reference frame and vice versa; these are described further

in Chapter 3

Dynamic Model of Quadrotor Each quadcopter is modeled using rigid and ac-

tuator dynamics, and it is assumed that forces and moments may be considered stable

inputs (controls) for the system [3,11]. To map these forces and moments into corre-

sponding motor speeds (in radians/second) we consider an inverse mapping function

as described in [2]. Low level control is modeled by considering separate SISO (Single-

Input-Single-Output) systems for roll-pitch-yaw angles and rates respectively, using
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classical design concepts [8]. The angular rate control makes use of a first order trans-

fer function, representing the actuator dynamics for the four BLDC (brushless DC)

motors on the quadrotor. The choice of brushless motor is based on it’s common use

in contemporary quadcopter research platforms[9,10]

In this paper, it is assumed that all four model models are identical, each repre-

senting an ideal ESC (Electronic Speed Controller) mapping a PWM input signal to

a desired motor speed. This model is derived using hardware testing results [1] to

obtain a suitable transfer function representing the motor model.

2.1.2 Low Level Controller Design - Cascade Control Scheme

As discussed in the previous section, each angle in the inner-loop control is con-

trolled using a SISO system. Classical SISO design ideas are described in [8], to model

controllers which can achieve target specifications such as desired bandwidth,phase

margin, settling time e.t.c; these are all important aspects to consider when design-

ing a tracking controller, as described further in the modeling section of this thesis.

Specifically ,the unity gain crossover frequency and the phase margin are taken into

account when modeling the control system.

The objective of the low level control design is to accurate;y track desired angular

rates, subject to actuator dynamics and motor constraints for a low cost quadrotor

platform. The constraints on the model correspond to physical/hardware limitations

for the quadcopter, which are obtained through reference material in previous work

[1,2]. Based on the angular rate control, a hierarchical (Cascade) scheme is considered

for angle control, which is performed to ensure faster dynamics for the rate control

system, while maintaining slower dynamics for the angle control system. Different

values of bandwidth are considered for the outer loop, specifically in order to test how

aggressive the outer loop bandwidth can be made (given a fixed/constrained inner
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loop model based on hardware specification). This cascade control scheme has proven

to work well with quadcopter systems, as in [1],[12], and [13].

2.1.3 High Level Controller Design - Position Coordinate Tracking

For high level position/trajectory control, we assume full state feedback with

differential flatness in states [14]. This forms a basis for using a Linear Quadratic

Regulator (LQR) system to control position and velocity states. The formulation

of the LQR equations to track X, Y and Z positions/velocities; this is implemented

using model descriptions found in previous work [3] to obtain a zero steady-state

error in trajectories. Thus, given a reference trajectory, we have a robust controller

to track desired reference positions and velocities alike, and a framework is defined

for translational position and velocity control of a single quadcopter.

2.1.4 Separation/Platooning Control

As the number of viable applications for quadcopters grows, the need for cooper-

ation between multiple quadcopters within a system to perform complex operations

becomes paramount. Applications such as surveillance, load transportation and ter-

rain mapping (as in [15,16,17]) require large areas of coverage and ,specifically in the

case of the latter, communication between deployed units in the fleet to maintain

assigned separation.

With trajectory control described for a single leader,, the separation control is im-

plemented by considering a leader-follower system, where follower quadcopters main-

tain fixed spacing from their immediate upstream predecessor in the fleet [18,19].

A leader-follower approach has the advantage of dynamic re-positioning i.e quad-

copters can quite easily change formation for any desired time period for functions

such as obstacle avoidance.[20,21]. This is because all units in the formation maintain

6



reference positions provided by a singular leader. However, using previous work as

a basis [4],[5], the leader follower approach suffers from a major drawback, known

as the accordion effect. In context of traffic flow stability and intelligent systems,

this implies that any perturbation to the leader’s trajectory will get amplified down-

stream, such that the positioning and velocity errors within each follower increase

exponentially as described by Swaroop, Huandra, et. al[22].

Thus, It is imperative that in any platooning system, the specified separation is

maintained for aggressive maneuvers that require constant change in leader velocity

(in the Cartesian or global reference frame). In this paper, we consider a nominal case

where all state information in the system is only communicated ad-hoc (i.e. passed

from one quadcopter to the next in line). Subsequently, lead quadcopter acceleration

is then fed forward to each quadcopter in the fleet, which is observed to reduce the

accordion effect. Thus in this paper, the primary objective is to observe the extent

to which this lead information reduces the accordion effect, given a robust control

design for an ad-hoc communication case.
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2.2 Contributions of Work

While each of the following aspects will be covered in detail subsequently in this

thesis, the broad contributions/objectives of this work are as listed below

� Modeling a single 6 degree of freedom quadcopter based on contemporary low-

cost hardware ( with specifications and constraints)

� Low level control of a single quadcopter for accurate attitude and angular rate

command following

� High level control of a single quadcopter for accurate path following given a

lead trajectory

� Platoon controller design for a fleet of 6 quadcopters (1 leader and 5 followers)

using a leader follower approach.

� Analysis of platoon controller performance in the presence of the accordion

effect, with and without lead vehicle information in the system, as studied for

ground vehicles in [4] (using a nonlinear quadcopter fleet model)
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Chapter 3

MATHEMATICAL PRELIMINARIES

3.1 Overview

In order to define the kinematics for a single quadcopter (i.e each agent in the

fleet) this section describes a convention that adequately describes each time-varying

state of the quadcopter, by defining a body reference frame and Earth reference frame

representation (as mentioned in Section 2) and deriving a relationship between the

two coordinate frames using conventional Euler rotation matrices.

3.2 Body Reference Frame Representation

The body reference frame describes the motion of the quadrotor with respect to a

local origin of the body frame (on the quadrotor itself). In aerial vehicles, the center

of mass of the vehicle is often considered the origin point of the body-frame [3,].

The primary reason for using the body-frame representation in this work is that it is

more intuitive to consider the orientation or attitude of the vehicle as a sequence of

finite rotations around a fixed-point (rotations are considered to be counter-clockwise

around the positive axis). This is very useful in context of the low level control for the

quadcopter, specifically given the hierarchical (cascade) structure of the angular rate

control : through use of an adequate mapping function (from control inputs to desired

angles of rotation) we can establish robust control strategies for the body frame inputs,

which in turn are based on the top level (Earth frame) reference commands.
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3.3 Earth Reference Frame Representation

Given a definition for the body frame a global reference frame must be defined

as well the Earth reference From a command perspective, the control law be able to

interpret and track a reference position: the most commonly used notation for posi-

tioning is the Cartesian system, where the position of the quadcopter is represented

by x, y, z position coordinates [insert reference for Cartesian].Both x and y represent

the lateral distance from the origin (forming a plane tangent to the earth surface)

while z is perpendicular to the surface. This is shown in Figure 3.1 below, with the

body frame represented by the b vector, and the Earth frame represented by the e

vector.

Figure 3.1: Representation of Earth Coordinate Frame and Body Reference Frame
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3.4 Attitude Angles and Rotation Matrices (Quadrotor Kinematic Description)

To describe a convention for a quadcopter in the body frame, we require mathe-

matical relations that transform the reference Earth-frame coordinates to the body

coordinates, and vice versa. The angles of rotation for the quadcopter are represented

by the Euler angle notation, as described below φ: Pitch angle is the counter clock-

wise rotation around the x-axis which is the angle between the bx and (x, y) plane;

θ : Roll angle is the counter clockwise rotation around the y-axis which is the angle

between the by and (x, y) plane; ψ : Yaw angle is the counter clockwise rotation

around the z-axis which is the angle between the projection of bx in the (x, y) plane

and ex vector;

Within the body frame, the relationship between the angles (low level control

outer loop) and desired angular rates (low level control inner loop) is described in

3.1.


p

q

r

 =


1 0 sin θ

0 cosφ − sinφ cos θ

0 sinφ cos θ cosφ

 (3.1)

Based on the above, we define rotation matrices [1, 3,23],which are used to trans-

form the orientation coordinates of a vehicle from the body frame to the earth frame.

These matrices are as defined in (3.2)-(3.4)

Rx(φ) =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 (3.2)
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Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 (3.3)

Rz(ψ) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (3.4)

Using these three matrices, we obtain a function for converting all Euler angles

(body frame coordinates) to the Cartesian coordinates (Earth frame reference), shown

in (3.5)-(3.7).

Ω = Rx(φ)Ry(θ)Rz(ψ)Θ̇ (3.5)

where

Ω =


p

q

r

 (3.6)

Θ =


φ

θ

ψ

 (3.7)

Thus, we have the final coordinate transformation matrix given by (3.8)

RB−>E =


cosψ cos θ − cosφ sinψ + cosψ sinφ sin θ − cosφ cosψ sin θ − sinφ sinψ

cos θ sinψ cosφ cosψ + sinφ sinψ sin θ cosψ sinφ− cosφ sinψ sin θ

sin θ − cos θ sinφ cosφ cos θ


(3.8)
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Chapter 4

MODELING FOR A SINGLE QUADCOPTER

In the previous section, the attitude representation (Body frame) of the quadcopter

is defined, as well as a rotation matrix that establishes a mathematical relationship

between the attitude angle and translational (Cartesian) position of the quadcopter

in the Earth frame. With these preliminaries defined, the present section deals with

the modeling of quadcopter dynamics.

Before proceeding to describe the quadcopter model (in state space form), mea-

sured constants for each quadcopter are fixed based on the hardware specifications of

the Mark 3 quadcopter model [1]. The parameters are as described in Table 4.1

Table 4.1: Preliminary Hardware Constants for Modelling a Single Quadcopter

SI No. Parameter Value

1. Mass (m) 0.647 Kg

2. Gravity (g) 9.81 m/s

3. Arm length(l) 0.125 m
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The quadcopter is capable of VTOL (vertical-take off and landing) action, which is

important to consider when comparing it with other unmanned aerial vehicle models

(such as fixed-wing aircraft). The assumptions for the quadrotor model are listed

below.

� The whole quadrotor is a rigid body.

� The quadrotor frame is symmetrical.

� The center of frame matches the center of mass.

� The inertia of motor is small and neglected.

� The range of pitch movement and roll movement is small.

Based on the assumptions above, we can define the system block diagram for the

assembly of a single quadcopter unit, as shown in Figure 4.1 below.
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Figure 4.1: Assembly Level Block Diagram for a Single Quadcopter

The modeling of the ESC (Electronic Speed Controller) is complex and is not

included within the scope of research. The dynamics of a single rotor thrust (ESC,

Motor, Propeller) are modeled as a first-order system as presented in [3] and [11] .

Therefore, this section will primarily deal with

1. The relationship between battery voltage and the voltage signal (PWM) put

out by the ESC (Vavg), based on system identification tests from observed input-

output data.

2. Modeling the motor for the quadcopter, including the actuator dynamics (based

on measured hardware parameters for the motor) to obtain desired propeller speed

3. Airframe design - Moment of Inertia about each axis

4. Nonlinear dynamics for the quadcopter (based on the aforementioned points),

and linearization at a given equilibrium.

4.1 Battery Voltage Mapping

From the assembly level block diagram (Figure 4.1), the first output signal is

generated by the battery, represented as voltage Vb. From [1] and [11], when using
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an ESC , the resulting motor rotation speed for a given PWM command (ESC input

UPWM from Figure 3) depends on the battery voltage. The PWM signal is to be

generated by the flight controller.

In Figure 4.2, a 3-D curve is plotted between the PWM signal and motor speed

value across different values of battery voltage (UPWM vs. ω vs. Vb). This data is

obtained through hardware testing.

Figure 4.2: Mapping of PWM vs Motor Speed vs. Battery Voltage for Motor ESC
Control

From this graph, we obtain a function for UPWM in terms of ω and Vb, given in

Equation (4.1) below [1]

UPWM =
ω2 + 5393ω + 29960

1166Vb + 1544
+ 895 (4.1)
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4.2 Actuator Dynamics (Motor Modeling)

As in many conventional quadcopter designs, it is assumed that 4 identical brush-

less DC (BLDC) motors are mounted on each quadcopter, in order to generate nec-

essary forces and moments. The primary reason for using a BLDC motor is the high

torque ratings when compared to other DC motor types. High torques on all 4 motors

allows for tight maneuver for the vehicle (as documented in [9],[10]) making BLDC

motors a great choice for low-cost quadcopter platforms (great power-to-weight ratio).

This is the same choice as in [3].

On each BLDC motor, it is assumed that three bladed propellers are used in

the assembly. This design consideration is based on the Snail Propulsion System

described in [1]. Figure 4.3 shows the actuator unit used in the Mark 3, which is the

basis for modelling actuator dynamics in this paper.

Figure 4.3: Snail Propulsion System for Quadcopter Flight
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Using the blade element momentum theory as proposed in [24], we obtain a re-

lationship between the propeller speed, and the overall force and moment generated

by the motor. Equation (4.2) shows the basic equation for the BLDC motor, derived

using Kirchoff’s Law (The propeller model is discussed in the next section).

L
di

dt
= u−RI −KeΩi (4.2)

where L is the motor inductance, u is the voltage input, R is the equivalent motor

resistance, Ke is the voltage coefficient and Ωi is the propeller speed. The torque

equillibrium equation for the motor during rotation ia shown in Equation (4.3)

L
dΩi

dt
= kmi− dΩ2

i (4.3)

Given that the BLDC motor is quite small, L is considered negligible. This yields

the following approximate motor model shown in Equation (4.4) ([1],[9])

Ω̇ =
KmKe

RJ
Ωi −

d

J
Ω2
i +

Km

RJ
u (4.4)

From equation (4.4), using the Taylor series expansion all high order terms are

removed, for a low frequency approximation of the motor model. This gives Equation

(4.5) for the Taylor series approximation, and Equation (4.6) for the approximate

motor model (Laplace transformation).

Ω̇ = −AΩi +Bu+ C (4.5)

Ω(s)

u
=

zvol
(s+ a)

(4.6)

In Equation (4.6), while the zvol represents voltage input to the ESC, but in actual

practice this is a PWM signal, not a direct voltage. From the curve fitting shown in
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the previous section, we have a mapping from input voltage to the PWM signal on

the ESC, and in turn from the PWM signal to the desired motor speed. Thus, we

require a transfer function from the desired motor speed, to the actual motor speed

based on the actuator dynamics described in this section. This transfer function is

considered as a first order low pass filter, shown in Equation (4.7)

Ω(s)

Ω∗(s)
=

a

(s+ a)
(4.7)

Where Ω∗(s) is the desired motor speed, and Ω(s) is the actual motor speed.

4.3 Airframe Design

Having defined an appropriate motor model for the system, this section describes

the parameters considered when modeling the airframe for each quadcopter. One of

the most important components of the quadcopter hardware is the propeller, and the

suitability of different propellers (in terms of blade count, material, e.t.c) is covered

in literature such as [25]. In this design, as mentioned in the previous section, we

have considered the use of a three bladed propeller made of carbon fiber, with a 250

mm carbon fibre frame chosen for the body of the quadcopter.

From [26], we obtain the relationship between propeller rotation speed ω, and the

overall force (Fm) and moment (τm) generated by the motor. This is as shown in

equations (4.8) and (4.9).

Fm = kfω
2 (4.8)

τm = kτω
2 (4.9)

where kf is the thrust coefficient, and kτ is the moment coefficient of the motor.

From the hardware testing in [1], these coefficients are obtained using curve fitting,
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using the Dynamometer Series 1580 test stand to measure thrust and torque in real

time for different motor speeds. Figures 4.4 and 4.5 show the curves plotted using

data from the test stand.

Figure 4.4: Thrust (Newton) vs Motor Rotation Speed (rad/s) for Single BLDC
Motor
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Figure 4.5: Torque (Newton-meter) vs Motor Rotation Speed (rad/s) for Single
BLDC Motor

From the curve fitting shown in Figure 4.3 and 4.4, the value of kf is 1.91 ×

10−6N/rad2 and the value of kτ is 2.47 × 10−8Nm/rad2. From the PWM curve

fitting shown in section 4.1, we have a relationship between the voltage input to the

PWM input as well as from the PWM input to motor rotation speed. Thus, with

the mapping from rotation speed to force shown above, we obtain a fully described

model for the quadrotor kinematics. The actuator constant a is chosen to be 9.79,

as it shows 92% fitness with measured test stand data (using System Identification

experiment)[1].

Finally, prior to modeling quadcopter dynamics, we require the moment of inertia

of the airframe about the X,Y and Z axes. The bifilar pendulum experiment [27] is

used to evaluate these parameters, as shown in [1]. In the experiment, the moment of
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inertia about each axis is computed by measuring the twist oscillation period for the

airframe about the respective axis, with the experiment setup as shown in Figure 4.5

Figure 4.6: Bifilar Pendulum Experiment for Moment of Inertia Estimation (Single
Quadcopter

With T as the time period of one twist oscillation, m as the mass of the quadrotor

in kilogram, L1 and L2 as shown in Figure 4.5, and g = 9.81 (acceleration due to

gravity), the formula used to find the moment of inertia is shown in Equation (4.10)

J =
mgT 2L12

4π2L2
(4.10)

The resulting moment of inertia values are shown in Table 4.1
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Table 4.2: Moment of Inertia Values for Quadcopter Airframe

SI No. Parameter Value

1. Jx 0.0019 kgm2

2. Jy 0.00195 kgm2

3. Jz 0.00369 kgm2

4.4 Rigid Body Dynamics for the Quadcopter

The dynamic model for the quadcopter describes the translational movement of

the quadcopter in the global (Earth) frame of motion, when under the influence of

external forces. Two primary design equations are considered to model quadcopter

translational dynamics. The first is shown in Equation (4.11)[1]

mζ̈ = T (RB−>E)T e3 −mg (4.11)

where m is the mass of the quadrotor (in kg), ζ = [x, y, z]T is the Cartesian

position of the quadrotor in the global frame, T is the total upward force in the

body-frame (or the total thrust), and g = [0, 0, 9.81]T represents the gravity vector

(downward acceleration). The second design equation is shown in Equation (4.12)[3].

JΩ̇ = M − Ω× JΩ (4.12)

where J = diag[Jxx, Jyy, Jzz] is the inertia matrix (described in section 4.3), Ω =

[p, q, r] represents the angular rates of the quadcopter in all three axes, and M =

[MxMyMz]
T represents the moment of the quadcopter about each axis.

When the quadcopter kinematic relations (derived in Section 3) are substituted

into equations (4.11) and (4.12), we obtain the nonlinear translational dynamics for

a single quadrotor, shown in equation (4.13)
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ẍ

ÿ

z̈

ṗ

q̇

ṙ


=



T
m

(− cosφ cosψ sin θ − sinφ sinψ)

T
m

(cosψ sinφ− cosφ sinψ sin θ)

T
m

(cosφ cos θ)− g
1
Jxx

(Mx + Jyyqr − Jzzqr)
1
Jyy

(My − Jxxpr + Jzzpr)

1
Jzz

(Mz + Jxxpq − Jyypq)


(4.13)

The full rigid body dynamics (including integrator states) are shown in Equation

4.14.

X =



ẋ

ẏ

ż

V̇ x

V̇ y

V̇ z

φ̇

θ̇

ψ̇

ṗ

q̇

ṙ



=



V x

V y

V z

T
m

(− cos(ψ) sin(θ) cos(φ)− sin(ψ) sin(φ))

T
m

(cos(ψ) sin(φ)− sin(ψ) sin(θ) cos(φ))

T
m

(cos(ψ) cos(θ))− g

p+ q sin(ψ) tan(θ)− r cos(φ) tan(θ)

q cos(φ) + r sin(φ)

−q sin(φ)
cos(θ)

+ r cos(φ)
cos(θ)

qr
Jy−Jz
Jx

+ τφ
Jx

pr Jz−Jx
Jy

+ τθ
Jy

pq
Jx−Jy
Jz

+ τψ
Jz



(4.14)

Thus, the rigid body dynamics can be modeled as a state space system, with the

form shown in Equation 4.15.

˙Xrig = f( ˙Xrig, Urig) (4.15)

where Xrig is given by Equation 4.14, and Urig is as shown in Equation 4.16
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U =



T

τφ

τθ

τψ


(4.16)

The quadcopter is assumed to have an equilibrium/operating point near hover

position where the thrust magnitude is equal to the force of gravity, and the rotation

angles are all close to zero. Substituting these into equation 4.14, we obtain the

linearized dynamics shown in Equation 4.17 (same choice in [1] and [2])

X lin =



ẋ

ẏ

ż

V̇ x

V̇ y

V̇ z

φ̇

θ̇

ψ̇

ṗ

q̇

ṙ



=



V x

V y

V z

−gθ

gφ

T
m
− g

p

q

r

τφ
Jx

τθ
Jy

τψ
Jz



(4.17)

Thus, with the linearization at hover, the dynamics of a single quadcopter system

can be represented as a nominal state space system as shown in Equations 4.18

through 4.20.

Ẋrig = AXrig +BU rig (4.18)
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where

A =



0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 −g 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



(4.19)

B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1/m

0 0 0 0

0 0 0 0

0 0 0 0

0 1/Jx 0 0

0 0 1/Jy 0

0 0 0 1/Jz



(4.20)

26



Chapter 5

LOW LEVEL CONTROL OF A SINGLE QUADCOPTER- ANGULAR RATE

AND ANGLE TRACKING CONTROL

As in [1] and [2], a feedback control system is designed for low level control of the

attitude of the quadcopter. The attitude of each quadcopter is given by it’s Euler

angle [φ, θ and ψ] orientation in the body frame. Therefore, reference angles must be

tracked very accurately, given that the motion of a quadcopter in the Earth reference

frame is entirely based on the direction of tilt, and in turn the rate of change of

orientation angles in the body reference frame.

Robust control of attitude can be achieved by controlling the angular rate (inner

loop control) and the angle (outer loop) in a cascade control scheme, as detailed in

previous literature [12]. The first important aspect of control here is that the flight

controller is digital, and thus the system must account for sampling time. From

contemporary research in [3], we choose the sampling time of 0.0025 seconds (based

on the hardware specification of a 400 Hz clock, on the Teensy 3.0 board).

The angular rate control system is modeled as a classical feedback loop as shown

in Figure 5.1 below, where each input corresponds to a desired propeller angular rate

[3].
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Figure 5.1: Inner Loop Block Diagram (Angular Rate Command Following)

With control inputs corresponding to desired angular rates, the low level angular

rate control system can now be modeled.

5.1 Low Level Inner Loop Control: Angular Rate Command Following

The primary objective of the angular rate control system is to track desired p,q and

r angular rate commands. From Chapter 4, the angular rate plant can be represented

by the following transfer function matrix

Prate =


5151.28
s(s+9.79)

0 0

0 5011.26
s(s+9.79)

0

0 0 2653.55
s(s+9.79)

 (5.1)

Where Pp = Prate(1,1) , Pq = Prate(2,2) and Pr = Prate(3,3). The frequency

response for each approximated plant transfer function are shown in Figure 5.2.
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Figure 5.2: Low Level Inner Loop - Plant Frequency Response

While the pitch and roll angular rates (p, q) show similar behavior at all frequencies

, it is noted (as in [1]) that yaw angular rate control requires more torque to generate

equivalent angular acceleration. This is because the magnitude of the Pr plant (at

low frequencies) is less than the magnitudes of Pp and Pq at those frequencies; this

is due to the fact that the actuator torque coefficient of the BLDC motor is much

smaller than it’s combined thrust coefficient. As such, the quadcopter’s moment of

inertia about the Z-axis (Jzz) is nearly double that of the moment of inertia about

the X-axis (Jxx and Y axis (Jyy). Thus, the bandwidth of designed yaw rate control

is chosen to be less than half of the bandwidth for pitch and roll control. This is the

same choice in [1],[2] and [3]

Using the linearized dynamics at hover (from Chapter 4), we obtain generalized

plant diagrams for angular rate feedback control, shown in Figure 5.3.

It is noted from [3] that the first propeller harmonic begins at 500 radians per

second, and therefore the maximum bandwidth we can design for is 50 rad/s (i.e at
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Figure 5.3: Angular Rate Plant - Block Diagram Visualization

least a decade below the first harmonic). Based on this specification, a bandwidth

trade study for the angular rate plants is conducted, sweeping the unity gain crossover

frequency (ωg) from 7 rad/s to 35 rad/s. The phase margin is specified at 60 degrees,

adequate for good closed loop command following properties. [8]

Bandwidth Sweep of Inner Loop - Comparisons and Observations

With phase margin fixed at 60 degrees, a bandwidth trade study is performed, by

varying the unity gain crossover ωg, to observe the effect of controller bandwidth on

inner loop command following.

In designing the controller, the following assumptions are made.

1. The frequency of the digital controller is 400 Hz

2. A PD controller design is considered sufficient for accurate [p, q, r] command

following. This is based on common use of the PD design structure in litera-

ture[1].
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3. A high frequency roll off term is included in each angular rate controller, to

reduce the effects of high frequency noise on the angular control systems. Based

on choices in contemporary literature [1][3] , this roll-off term should correspond

to a frequency at least 10 times the controller bandwidth, in order to adequately

attenuate high frequency noise

Based on the assumptions above, the controller structure is modeled as shown in

Equation 5.2

Kangrate = g(s+ z)

(
r

s+ r

)2

(5.2)

where r is the high frequency roll off term, chosen to be a decade above the wg

parameter.

The bandwidth sweep results are presented in the following subsections, for P and

Q angular rate control respectively.
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Plots and Key Observations for P Angular Rate Control

Figure 5.4: Closed Loop Frequency Response for P Command Following (Bandwidth
Sweep)

Figure 5.5: Closed Loop Sensitivity Response for P Command Following (Band-
width Sweep)
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From the plots shown in the previous page, the following inferences are made

� As ωg is increased from 7 rad/s to 35 rad/s, the bandwidth of the system

improves, as expected.

� It is noted that the frequency curve shows marginal improvement in high fre-

quency response (i.e at 10 to 100 radians per second) from ωg = 7 rad/s to ωg

= 15 rad/s,which is not as prevalent when increasing ωg beyond 15 rad/s

� The peak sensitivity values (for each response) decrease as the bandwidth is in-

creased. This means that the controller’s input disturbance rejection properties

improve, provided higher bandwidth.

� It is observed that the peak complementary sensitivities increase slightly with

bandwidth. This is summarised in Table 5.1 below, with documented peak

sensitivities and complementary sensitivities

Table 5.1: Bandwidth Sweep Results - Peak Sensitivity and Complementary Sensi-
tivity Values for P Command Following

SI No. ωg(rad/s) Peak sensitivity (dB) Peak comp. sensitivity (dB)

1. 7 2.21 0.37

2. 15 1.46 0.818

3. 22 1.56 1.01

4. 30 1.93 1.03

5. 35 2.18 0.96
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Figure 5.6 shows the command following response for P angular rate control.

Figure 5.6: P Angular Rate Command Following- Time Domain Response

From the plots above, it can be inferred that even as bandwidth is increased

beyond 30 rad/s, the peak overshoot and sensitivity remain relatively low. However,

it is noted from [2] that the first propeller harmonics begin around 500 radians/sec.

It is good practice to maintain a cut off frequency at least a decade below the first

harmonic frequency.

With this condition in mind from the hardware, the design with ωg = 22 rad/s

is chosen. It features a good balance between peak sensitivity (1.56dB), and peak

complementary sensitivity (1.01dB), and the peak overshoot is around 12%, which is

fairly low. This is the same choice for bandwidth as in [1] and [5].
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Plots and Key Observations for Q Angular Rate Control

Figure 5.7: Closed Loop Frequency Response for Q Command Following (Bandwidth
Sweep)

Figure 5.8: Closed Loop Sensitivity Response for Q Command Following (Band-
width Sweep)
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From the plots above, the following inferences are made

� As ωg is increased from 7 rad/s to 35 rad/s, the bandwidth of the system

improves, as expected.

� As in P angular rate control, the high frequency response is marginally improved

(i.e at 10 to 100 radians per second), when increasing ωg from 7 rad/s to 15

rad/s,which is not as prevalent as when ωg is increased beyond 15 rad/s

� As presented in Table 5.2 below, the peak sensitivities and complementary

sensitivities for Q angular rate control show nearly identical behavior with the

P angular rate control values, on sweeping controller bandwidth.

Table 5.2: Bandwidth Sweep Results - Peak Sensitivity and Complementary Sensi-
tivity Values for Q Command Following

SI No. ωg(rad/s) Peak sensitivity (dB) Peak comp. sensitivity (dB)

1. 7 2.21 0.372

2. 15 1.46 0.82

3. 22 1.56 1.01

4. 30 1.93 1.02

5. 35 2.18 0.964

Figure 5.9 shows the command following response for Q angular rate control.

From the plots above, it can be inferred that even as bandwidth is increased

beyond 30 rad/s, the peak overshoot and sensitivity remain relatively low. However,

it is noted from [2] that the first propeller harmonics begin around 500 radians/sec.
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Figure 5.9: Q Angular Rate Command Following- Time Domain Response

It is good practice to maintain a cut off frequency at least a decade below the first

harmonic frequency.

As in the design for P angular rate control, ωg = 22 rad/s is chosen. While the

35 rad/s design has slightly lower peak complementary sensitivity, it is too high for

the first propeller harmonic. The ωg = 22 rad/s offers a good balance between peak

sensitivity (1.56dB) and peak complementary sensitivity (1.01dB)
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5.2 Low Level Outer Loop Control - Attitude Command Following

From the previous subsection, the inner loop angular rate control is fixed at 22

rad/s for P and Q angular rate command following. For R angular rate control, the

bandwidth is fixed at 5 rad/s in accordance with the hardware requirement that the

yaw rate bandwidth must be significantly less than pitch and roll rate bandwidth;

this is for the following reasons

� The torque for yaw angular movement requires much more maximum motor

speed than that for pitch angular movement, as the actuator torque coefficient

is much smaller than the combined actuator thrust factor

� Moment of inertia in x and y body axis is smaller than that in z body axis.

To now address attitude (outer-loop) control in this design, it is assumed that all

quadcopters perform maneuvers using robust pitch and roll control alone,and so psi

dynamics are addressed separately in Chapter 6 as a part of high level control.

A proportional controller sufficient for attitude (Euler) angle command following,

given a well designed inner loop (angular rate) control system [1]. Typically, in

cascaded control system (inner-outer loop hierarchy) the outer loop is slower than

the inner loop; at system limits, the inner loop is typically designed to be 2-4 times

faster than the outer loop [28].

The cascade control scheme is shown in Figure 5.10, for phi angle control. Theta

angle (Pitch) control is implemented using identical proportional controllers, as p and

q rate control are nearly identical in nature.

From the previous section, the inner loop bandwidth is fixed at 22 rad/s for P and

Q angular rate controllers. With this kept constant, a bandwidth sweep is performed

for varying Kφ shown in Figure 5.10. It is to be noted that θ (pitch) angle control is
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Figure 5.10: Attitude Command Following - Cascade Control Scheme

modeled identical to the structure to 5.10, with Kθ=Kφ; this is due to the fact the P

and Q angular rate dynamics are virtually identical as well.

Assuming that the system is being tested at its limits, the inner loop should be 4

times faster than the outer loop. With this design requirement in mind, the minimum

possible outer loop bandwidth at 5.5 rad/s, and the maximum possible outer loop

bandwidth is 11 rad/s. With these considered boundary values, the bandwidth sweep

is performed by setting Kφ =[5,6,8,10,11], (corresponding ωg values are [5.1 6.2 8.6

11 12] rad/s).
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Plots and Key Observations for Roll Angle (φ) Command Following

Figure 5.11: Closed Loop Frequency Response for Roll (φ) Angle Command Fol-
lowing (Bandwidth Sweep)

Figure 5.12: Closed Loop Sensitivity Response for Roll (φ) Angle Command Fol-
lowing (Bandwidth Sweep)

From the plots above, the following inferences are made
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� As ωg is increased from 5.1 rad/s to 12 rad/s, the bandwidth of the system

improves, as expected.

� The peak sensitivity values (for each response) increases as the bandwidth is

increased. This means that the angle controller’s input disturbance rejection

properties worsen at higher bandwidth, unlike the angular rate controller.

� It is observed that the peak complementary sensitivities remain below 0dB

(constant with bandwidth increment. The sensitivity values are summarised in

Table 5.3 below.

Table 5.3: Bandwidth Sweep Results - Peak Sensitivity and Complementary Sensi-
tivity Values for φ Command Following

SI No. ωg(rad/s) Peak sensitivity (dB)

1. 5.1 1.87

2. 6.2 2.25

3. 8.6 3

4. 11 3.78

5. 12 4.15

Figure 5.13 shows the command following response for phi angle control.
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Figure 5.13: Roll (φ) Angle Command Following - Time Domain Response

From Figure 5.13, it is observed that the step response shows no overshoot, until

the controller bandwidth is increased to 11 rad/s. At this stage, there is an overshoot

in the response. In general, settling time reduces with increasing bandwidth of con-

troller, although there is no significant difference in the settling time between ωg=11

rad/s and ωg=12 rad/s.
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Plots and Key Observations for Pitch Angle (θ) Command Following

Figure 5.14: Closed Loop Frequency Response for Pitch (θ) Angle Command Fol-
lowing (Bandwidth Sweep)

Figure 5.15: Closed Loop Sensitivity Response for Pitch (θ) Angle Command Fol-
lowing (Bandwidth Sweep)

From the plots above, the following inferences are made
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� As ωg is increased from 5.1 rad/s to 12 rad/s, the bandwidth of the system

improves, as expected.

� The peak sensitivity values (for each response) increases with bandwidth as in

the Phi control response

� It is observed that the peak complementary sensitivities remain below 0dB

(constant with bandwidth increment. The peak sensitivity values for Theta

angle control are identical to those of Phi angle control, and are summarised in

Table 5.4 below.

Table 5.4: Bandwidth Sweep results - Peak Sensitivity Values for θ Command Fol-
lowing

SI No. ωg(rad/s) Peak sensitivity (dB)

1. 5.1 1.87

2. 6.2 2.25

3. 8.6 3

4. 11 3.78

5. 12 4.15

Figure 5.16 shows the command following response for Theta angle control.
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Figure 5.16: Pitch (θ) Angle Command Following - Time Domain Response

From Figure 5.16 it is observed that, as in the φ command following response,

the response shows a distinct overshoot when control bandwidth is increased beyond

8.6 rad/s. The overshoot characteristics for φ and θ command following are nearly

identical, and are as shown in Table 5.5.

Table 5.5: φ and θ Command Following - Step Response Characteristics

SI No. ωg(rad/s) Rise time (s) Settling time (s) Overshoot (%)

1. 5.1 0.3695 0.7159 0

2. 6.2 0.2808 0.5865 0

3. 8.6 0.1468 0.4708 0

4. 11 0.1108 0.4354 3.4523

5. 12 0.1003 0.4247 6.9488
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Moving forward, the design for ωg = 8.6 rad/s is used for roll and pitch angle

command following. As seen in Table 5.5, there is no associated overshoot at this

bandwidth, and a peak sensitivity of 3dB is adequately low, given that the maximum

sensitivity is 6dB in most stable systems [8].

46



Chapter 6

HIGH LEVEL CONTROL OF A SINGLE QUADCOPTER- POSITION AND

VELOCITY TRACKING

6.1 Overview

In Chapter 5, the low level control system is defined for angular rate control, as

well roll/pitch angle command following. From Chapter 4, the quadcopter model

has 12 states, with Xrig = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ.p, q, r] to stabilize. Having outlined

control strategies for 5 of those states, (namely p ,q ,r , φ and θ), this section deals

primarily with the control of the remaining 7 states of the single quadcopter, with the

objective of establishing high level path following control for a fleet leader. This is

implemented through use of an inverse mapping function and an LQ servo controller

(as chosen in earlier literature [3]), which are described subsequently.

6.2 Inverse Mapping Function

It is desired that the leader quadcopter will be able to follow specified trajectories

in the X, Y and Z axes. Given this requirement, the high level controller must be

able to map trajectory commands as feasible low level control inputs for the motors.

From contemporary literature [28], the concept of Differential Flatness can be used

in order to achieve this mapping for trajectory generation.
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Differential Flatness

A differentially flat system is one in which any state and input can be represented

as a function of the output, without any derivation or integration required. The

quadcopter system can be modeled as such, shown in Equations 6.1 through 6.3

[3][28]

yp = yp(x, u, u̇, ü, ...) (6.1)

xp = xp(y, ẏ, ÿ, ...) (6.2)

u = u(y, ẏ, ÿ, ...) (6.3)

with yp = [x, y, z, ψ]T , xp = [yp, ẏp]
T , and u = [yp, ẏp, ÿp].

This allows us to map control inputs for the x,y,z and yaw accelerations respec-

tively, using the nonlinear quadcopter dynamic model obtained in Chapter 4. From

Equations (4.13) and (4.14), we obtain a model for the desired control inputs ẍ,ÿ,z̈,and

ψ̇, shown in Equations 6.4 and 6.5


ẍ

ÿ

z̈

 =


− cos(φ) sin(θ)cos(ψ)− sin(φ) sin(ψ)

− cos(φ) sin(θ)sin(ψ) + sin(φ) cos(ψ)

cos(φ) cos(θ)

 T

m
+


0

0

−g

 (6.4)

ψ̇ =
sin(φ)

cos(θ)
p+

cos(φ)

cos(θ)
r (6.5)

From [3] and [28], the (x, yz) acceleration terms can be used to map desired yaw

(ψ) angle - in other words, a linear solution can be found for the system without
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considering ψ̇ as a constant [3]. Thus, we have Equation 6.6 and 6.7 representing the

control law for high level trajectory control.

fp(x, v) = RT
z (ψ)RT

y (θ)RT
x (φ)


0

0

1

 T

m
= up (6.6)

fψ(x, v) =
sin(φ)

cos(θ)
p+

cos(φ)

cos(θ)
r = uψ (6.7)

From the above, we obtain a state space representation for the system shown in

Equations (6.8) through (6.11)

ẋ = Ax+Bu+ hg (6.8)

where

A =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



(6.9)
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B =



0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



(6.10)

h =



0

0

0

0

0

−1

0



(6.11)

The low level control input vector V can then be computed as shown in Equation

6.12

V =



T

φ

θ

r


=

f−1
p (x, v)

f−1
ψ (x, v)

 (6.12)

where fp(x, v) and fψ(x, v) are the high level control inputs, as given in equation

6.6 and 6.7 respectively.

From these equations, the desired low level control inputs [T, φ, θ, r] are obtained.

To evaluate the thrust term T, we use equations 6.13 and 6.14 shown below.
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up = RT
z (ψ)RT

y (θ)RT
x (φ)


0

0

1

 T

m
(6.13)

from which we obtain

T = m
√
u2
p1 + u2

p2 + u2
p3 (6.14)

To evaluate φ, θ and r commands, we multiply both sides of equation 6.13 by

Rz(ψ)m
T

to obtain equation 6.15

Rz(ψ)up
m

T
= RT

y (θ)RT
x (φ)


0

0

1

 =


z1

z2

z3

 (6.15)

From the values of z1,z2 and z3 computed, the φ and θ commands are computed

using equations 6.16 and 6.17

φ = arcsin(z2) (6.16)

θ = arctan(
−z1

z3
) (6.17)

from which r is obtained using equation 6.18

r = uψ
cos(θ)

cos(φ)
+ q

sin(φ)

cos(φ)
(6.18)

Thus, the inverse mapping function is defined, using the concept of Differential

Flatness, to map desired trajectory commands to low level control inputs.
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6.3 Linearization at Hover

In order to define a linear state feedback system for trajectory following, the

quadcopter model must be linearized about a chosen operating point. From Chapter

4 and in previous literature [29], each single quadcopter is linearized about the hover

position where φ = θ = ψ = 0◦ and T = mg. This yields a state space model for the

quadcopter, as shown in equations 6.19 and equation 6.20

ẋp = Apxp +Bpup (6.19)

yp = Cpxp +Dpup (6.20)

where up = [T, φ, θ, r]T , xp = [x, y, z, ẋ, ẏ, ż, ψ]T , yp = [x, y, z, ψ]T .

For finding the state space matrices [Ap, Bp, Cp, Dp] we have the linear matrices

shown in equations 6.21 and 6.22 without coordinate transform.

Ap1 =



0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



, Bp1 =



0 0 0 0

0 0 0 0

0 0 0 0

−9.81 0 0 0

0 9.81 0 0

0 0 1/m 0

0 0 0 1



(6.21)

Cp1 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 1


, Dp1 =

[
04×7

]
(6.22)
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Therefore, at low frequencies, the high level plant transfer matrix (for outputs of

interest [x, y, z, ψ] is shown in Equation 6.23. It is noted that for [x, y, z] position

control the respective plant transfer functions are all second order.

P (s) = Cp(sI − Ap)−1Bp =



−0.17122
s2

0 0 0

0 0.17122
s2

0 0

0 0 1.502
s2

0

0 0 01
s


(6.23)

As described in [30], a coordinate transformation must be performed for the ma-

trices in equation 6.21 and 6.22, to convert from degrees to radians. Transformation

matrices are shown in Equation 6.24.

Su =



180
π

0 0 0

0 180
π

0 0

0 0 1 0

0 0 0 180
π


, Sx =

I6×6 06×1

01×6
180
π

 , Sy =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 180
π


(6.24)

from which the transformation is applied to obtain [Ap, Bp, Cp, Dp] (equations

6.25-6.28)

Ap = SxAp1S
−1
x (6.25)

Bp = SxBp1S
−1
u (6.26)

Cp = SyCp1S
−1
x (6.27)

Dp = SyDp1S
−1
u (6.28)
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Thus, a linear state space model is obtained for the system. Using this model,

a state feedback control law can be defined using the LQR optimization method to

achieve robust LQ servo control, which is described subsequently in this chapter. The

high level feedback block diagram for the single quadcopter is shown in Figure 6.1 [3].

Figure 6.1: High Level Block Diagram - Lead Quadcopter Trajectory Generation

6.4 LQR Algorithm and LQ Servo Design - Key Plots and Observations

To model a high level controller the decoupled model (near hover) is used without

the coordinate transformation. This is because the attitude (low level) control system

was designed in units of radians, and as such position control must be designed using

the same units.

To address LQ servo design, an integrator must be added to each state to guarantee

zero steady state error in command following. Thus, we have state space matrices

[A,B,C,D] for the LQ servo as shown in Equation 6.29 (derived from [3])

A =

Ap 07×4

Cp 04×4

 , B =

 Bp

04×4

 , C =

[
I7×7

]
, D = [07×4] (6.29)

The objective of the algorithm is to find a stable solution u (corresponding to

control input) using Equations 6.30 and 6.31
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u = −Gx (6.30)

G = R−1BTK (6.31)

In Equation 6.26, K is the unique symmetric solution to the Control Algebraic

Ricatti Equation (CARE) shown in Equation 6.32

0 = KA+ ATK +MTM −KBR−1BTK (6.32)

With Q = diag(10, 10, 10, 10, 10, 10, 100, 100, 100, 100, 1) and R = 0.2I4×4, the G

matrix obtained using the LQR optimization algorithm (CARE) is shown in Equation

6.33.

G =



30.93 0 0 −20.28 0 0 0 −22.36 0 0 0

0 30.93 0 0 20.28 0 0 0 22.36 0 0

0 0 21.32 0 0 9.05 0 0 0 22.36 0

0 0 0 0 0 0 22.46 0 0 0 2.24


(6.33)

The block diagram for LQ servo control is as shown in Figure 6.2 [3]

where

Gy =



30.93 0 0 −20.28 0 0 0

0 30.93 0 0 20.28 0 0

0 0 21.33 0 0 9.05 0

0 0 0 0 0 0 22.46


, (6.34)
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Figure 6.2: LQ Servo Control - State Space Block Diagram

Gz =



−22.3607 0 0 0

0 22.3607 0 0

0 0 22.3607 0

0 0 0 2.2361


(6.35)

The LQ sensitivity and complementary sensitivity plots for this controller are

shown in Figures 6.3 and 6.4 respectively. As shown on Figure 6.3, all frequencies

below 0.7 radians per second are attenuated by at least 20 dB, and the system shows

good low frequency disturbance attenuation. As peak complementary sensitivity is

below 4dB (approximately 3.2 dB), the system shows good command following re-

sponse at low frequencies, and rejects any output noise above 8 radians per second

as seen in Figure 6.4 (a measure of the system bandwidth).
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Figure 6.3: LQ Servo Control - Input Sensitivity Frequency Response

Figure 6.4: LQ Servo Control - Closed Loop Frequency Response

The command following (time domain) responses are shown on the facing pages,

for x,y,z, and ψ step commands issued by the base station to the leader quadcopter,

in Figures 6.5 through 6.8 respectively

57



Figure 6.5: Time Domain Response - X-Axis Position Step Command (r=[1 0 0 0
0 0 0])

Figure 6.6: Time Domain Response - Y-Axis Position Step Command (r=[0 1 0 0
0 0 0])
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Figure 6.7: Time Domain Response - Z-Axis Position Step Command (r=[0 0 1 0 0
0 0])

Figure 6.8: Time Domain Response - ψ Angle Step Command (r=[0 0 0 0 0 0 1])

The control input responses for x,y,z, and ψ are shown in Figures 6.9 through

6.12 respectively
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Figure 6.9: Control Input Response - X-Axis Position Step Command (r=[1 0 0 0
0 0 0])

Figure 6.10: Control Input Response - Y-Axis Position Step Command (r=[0 1 0 0
0 0 0])
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Figure 6.11: Control Input Response - Z-Axis Position Step Command (r=[0 0 1 0
0 0 0])

Figure 6.12: Control Input Response - ψ Step Command (r=[0 1 0 0 0 0 0])

61



From Figure 6.5 and 6.6, X and Y commands show an overshoot of around 38%,

but it is noted that in both cases, the control response (pitch and roll values) is not

aggressive where either angle goes from approximately -30◦ to 30◦. For altitude (Z-

axis) command, the output response has a relatively low overshoot of 23%. It is also

noted that this design has proven to work well with quadcopter hardware (in [3]) and

so this model is used as a basis for each agent for platoon control analysis.
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Chapter 7

PLATOONING CONTROL FOR A FLEET OF QUADCOPTERS

7.1 Overview

Having established high level trajectory tracking (using the LQR optimization

detailed in section 6) we now address platooning (or separation) control for a fleet

of 6 quadrotors, which is the focus of the modeling and simulations presented in this

chapter. Specifically, in this section, the performance of different controllers (chosen

for a bandwidth sweep) is analyzed, by observing the spacing between each follower

quadcopter when the leader is commanded to perform complex maneuvers. Thus,

a classical control law is proposed to minimize spacing errors between quadcopters

in the fleet. The analysis is primarily focused on minimizing the accordion effect on

follower units in the fleet.

7.2 Approach for Separation Control in Quadcopter Fleets - The Accordion Effect

Design of separation control laws is a major aspect of vehicle fleet management in

aerial and terrestrial applications alike. In the 1992 seminal paper by Dr. Charles Des-

oer and Dr. Shahab Sheikholeslam [4], a controller is designed in order to maintain

desired inter vehicular spacing between multiple cars in traffic. This is performed

by considering a leader-follower approach, where the vehicle in front is considered

the leader of traffic. All vehicles behind the leader are considered as followers, and

controllers are designed for each follower in order to maintain a fixed spacing or sepa-

ration from it’s immediate neighbors in the fleet, based on a predetermined separation

vector.
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The major observation from this seminal paper was that any change in the leader

vehicle’s velocity would result in positioning errors between the follower vehicles. In

subsequent and contemporary research, this phenomenon is referred to as the ”accor-

dion” effect. In leader-follower control, the accordion effect is found to arise mainly

because of fluctuations in lead vehicle acceleration. Therefore, as the high level control

inputs for the quadcopter correspond directly to desired acceleration, the separation

control law for the quadcopter system must regulate the acceleration commanded

of follower quadcopters, subject to fluctuations in lead quadcopter velocity along a

specified trajectory.

In contemporary research ([3],[19],[20]) the leader follower approach has been im-

plemented in different ways, with a focus on optimizing control input with state

feedback. The optimization methods in these papers are described for models where

leader state information is available to follower vehicles, with string stability assumed.

Thus, the focus of this paper is to analyze and quantify the effect of leader feedback on

string stability (as defined in [22]) within a quadcopter fleet, by assuming a nominal

case where no leader feedback information is available. Leader acceleration informa-

tion is then fed back to all quadcopters in the fleet, to observe the effect of lead vehicle

acceleration on the separation controller output in line and circle trajectories.
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7.3 Modeling of Platoon Dynamics - Separation Control Diagram and Equations

As introduced in the previous subsection, we first consider a nominal model

wherein each quadcopter only receives position information from it’s immediate pre-

decessor in the fleet. The assumptions for this model are listed below.

� Each quadrotor is treated as identical for modeling the controller

� Each quadrotor transmits it’s state information (x,y,z position and velocity

data) to it’s immediate neighbor in the fleet. It is envisaged that in current

and evolving network technologies such as 5G, ad hoc wireless communication

of states between quadrotors is feasible without significant packet loss-packet

drop analysis is not included in the scope of this thesis.

� Communication of the position,velocity, and acceleration information is unidi-

rectional: from the lead vehicle to each follower in succession

As described in chapter 2, the work presented by Dr. Desoer and Sheikholeslam

[cite: accordion main paper 1, and no lead info paper 2] is used as a primary reference

for modeling a separation controller for the quadcopter using classical PID control

methods. In [4] and [5], the proposed platoon configuration is as shown in Figure 7.1.
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Figure 7.1: Platoon Configuration Model, with 1 Leader and 4 followers

It is assumed that in the quadcopter fleet, the distance L is assigned prior to

take-off - in other words, each agent is aware of the spacing it must maintain from it’s

immediate neighbor. The ∆ values shown in Figure 7.1 represent the deviation of the

respective follower from it’s assigned position (determined by L). Using Figure 7.1,

the relevant kinematic equations for the platoon controller are shown in Equations

7.1 through 7.3 [4]

∆i(t) = xi−1(t)− xi(t)− L (7.1)

∆̇i(t) = ẋi−1(t)− ẋi(t) (7.2)

∆̈i(t) = ẍi−1(t)− ẍi(t) (7.3)

With the assumption of ad hoc position data communication between the fleet

(from one follower to the next), the value of ∆i(t) can be directly computed by the

ith quadcopter using feedback of it’s own position data. In this implementation,

in order to maintain longitudinal and lateral spacing control within the fleet, two

controllers are used to minimize deviation from the desired X axis coordinate (∆x)

66



as well as for the desired Y axis coordinate (∆y). Using the X and Y coordinates

communicated by the previous quadcopter in the fleet, the ∆x controller generates an

X axis acceleration term and the ∆y controller generates a Y axis acceleration term.

These terms act as high level plant inputs for the inverse mapping function on each

follower (as described in Chapter 6).

As the model is linearized about a hover position, it is assumed that lateral and

longitudinal separation controller will be similar, as the roll and pitch dynamics of

each respective quadcopter are nearly identical.

7.4 Nominal Model (Ad-hoc Communication)

For the quadcopter fleet, the analysis is first performed assuming no leader infor-

mation feedback. In this case, the leader quadcopter follows the trajectory specified

by the base station, using high level path following control described in Chapter 4,

and the model is as shown in Figure 6.1. For the follower units, high level inputs

(X and Y axis accelerations) are computed using the calculated X axis and Y axis

position deviation respectively. The model for the ith follower is shown in Figure 7.2.

Figure 7.2: Model Diagram for i-th Follower
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In Figure 7.2, the ∆ (Separation) controller K∆ is modeled as a PD design, with

a first order high frequency roll-off term for noise attenuation and phase margin of 60

degrees. It is noted that the fuselage harmonics for each quadcopter begin around 30

rad/s, and so the separation controller bandwidth should ideally not exceed 3 rad/s

for relative positioning/spacing commands (although slightly higher values are tested

in simulation). The phase margin is maintained at 60◦ to maintain good closed loop

properties [8].

The controller structure is as shown in Equation 7.4.

K∆ = K∆x = K∆y = g(s+ z)

(
r

(s+ r)

)
(7.4)

Where r = 10ωg (approximately a decade above desired bandwidth)

Using this model, a bandwidth sweep is performed for ∆x and ∆y control. A PD

controller with a high frequency roll-off is used in all cases. The PD controller ensures

that oscillations in the output are reduced, even at high gain. Moreover, as the high

level system is 2nd order at low frequency(from ẍ and ÿ, to x and y respectively,

as seen in Equation 6.23), a high frequency roll off term is sufficient to ensure zero

steady state errors in ∆x and ∆y response. Also, given that the inner loop has been

designed well, ∆x and ∆y can be modeled as SISO systems, given that the nonlinear

model for each quadcopter is fairly decoupled at low frequencies.

The closed loop magnitude response plots for ∆x and ∆y bandwidth sweep are

shown in Figures 7.3 and 7.4 respectively.

68



Figure 7.3: Closed Loop Frequency Response - ∆x Control

Figure 7.4: Closed Loop Frequency Response - ∆y Control

From the closed loop Bode magnitude plot, the peak dB values are all near 0dB,

which implies that all designs show good command following at low frequencies. The

closed loop sensitivity functions are plotted in Figures 7.5 and 7.6.
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Figure 7.5: Closed Loop Frequency Response - ∆x Control

Figure 7.6: Closed Loop Frequency Response - ∆y Control

It is observed that as bandwidth is increased, the peak sensitivity values for the

closed loop ∆x system increase as well. The peak sensitivity values are documented

in Table 7.1 below.
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Table 7.1: Bandwidth Sweep Results - Peak Sensitivity Values for ∆x Command
Following

SI No. ωg(rad/s) Peak sensitivity (dB)

1. 1 0.75

2. 2 1.39

3. 3 2.03

4. 4 2.70

5. 5 3.47

6. 6 4.26

A similar pattern is observed in the Deltay sensitivity response, with peak values

shown in Table 7.2 (similar to values in Table 7.1)

Table 7.2: Bandwidth Sweep Results - Peak Sensitivity Values for ∆y Command
Following

SI No. ωg(rad/s) Peak sensitivity (dB)

1. 1 0.743

2. 2 1.38

3. 3 2

4. 4 2.67

5. 5 3.43

6. 6 4.22

The command following responses (in time domain) for ∆x and ∆y are shown in

Figures 7.7 and 7.8
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Figure 7.7: ∆x Command Following Response

Figure 7.8: ∆y Command Following Response

From Figures 7.7 and 7.8, the step response characteristics are nearly identical for

X and Y command following. These characteristics are as shown in Table 7.3
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Table 7.3: ∆x and ∆y Command Following - Step Response Characteristics

SI No. ωg(rad/s) Rise time (s) Settling time (s) Overshoot (%)

1. 1 1.1916 7.2862 22.9260

2. 2 0.5645 4.1305 20.8512

3. 3 0.3637 3.3689 17.9774

4. 4 0.2561 3.3157 14.1498

5. 5 0.1927 3.6535 9.528

6. 6 0.1628 0.48(w/ error) 6.3

As noted in the table and seen in the figures, there is a steady state error in the

step response when ωg is increased beyond 5 rad/sec, with observed undershoot at

ωg = 6rad/s . It is also noted that there is a slight increase in settling time (by

0.3 s) when moving from 4 rad/s to 5 rad/s, while rise time continues to reduce as

bandwidth is increased upto 6 rad/s. Below 2 rad/s, there is high overshoot (¿20%)

which is not acceptable to maintain accuracy in spacing when taking the accordion

effect into account.

Thus, based on the observations above, analyses in future sections is restricted to

ωg = [234] rad/s.

7.4.1 Separation Control Along a Line, No Leader Feedback

With the bandwidth sweep presented in the previous section, ∆x and ∆y simula-

tion results are presented for each controller. 6 quadcopters are arranged in a platoon

configuration along the X axis, with desired separation of 2 m commanded between

each of them. In this section, the leader is given a straight line path in the X-Y plane,

with ẋ = ẏ = 1m/s, and x = ẋ ∗ t,y = ẏ ∗ t (t = time since takeoff(s)
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Figure 7.9: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Straight Line
Trajectory, ωg=2 rad/s

Figure 7.10: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Straight Line
Trajectory, ωg=2 rad/s
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Figure 7.11: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Straight Line
Trajectory, ωg=3 rad/s

Figure 7.12: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Straight Line
Trajectory, ωg=3 rad/s
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Figure 7.13: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Straight Line
Trajectory, ωg=4 rad/s

Figure 7.14: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Straight Line
Trajectory, ωg=4 rad/s
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It is noted that along a line, ∆x and ∆y all show zero steady state error, and the

initial accordion effect is stabilized without lead vehicle information. The settling

time improves when ωg is changed from 2 rad/s (settles in about 12 seconds) to 3

rad/s (settles in approximately 7 to 9 seconds), although there is little reduction in

settling time when bandwidth is increased beyond 3 rad/s. The overshoot in ∆y

response (observed during initial seconds/platoon formation) reduces with increasing

controller bandwidth, as expected.

7.4.2 Separation Control Along a Curve, No Leader Feedback

Having observed results or platooning control along a line, simulations are now

performed for curve path/circular trajectories. This curve trajectory has a radius of

curvature = 2.8 m, with commanded translational velocity along the curve fixed at

1.4 m/s. The simulation results are as shown from facing page
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Figure 7.15: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Circular/Curved
Trajectory, ωg=2 rad/s

Figure 7.16: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Circular/Curved
Trajectory, ωg=2 rad/s
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Figure 7.17: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Circular/Curved
Trajectory, ωg=3 rad/s

Figure 7.18: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Circular/Curved
Trajectory, ωg=3 rad/s
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Figure 7.19: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Circular/Curved
Trajectory, ωg=4 rad/s

Figure 7.20: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Circular/Curved
Trajectory, ωg=4 rad/s
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7.4.3 Analysis of Steady State ∆ Error in Curve Path

From the figures presented in the previous section, it is observed that when moving

along a curve, the controller does not drive steady state separation to 0 in the presence

of the accordion effect. The steady state response shows oscillatory behavior, which is

amplified downstream until the last follower. It is also observed that as the bandwidth

of the controller is increased, the peak value of steady state oscillation decreases and

convergence is achieved faster between all quadcopter trajectories.

Based on these observations, the ∆x and ∆y responses are observed when com-

manded velocity and radius of curvature for curved path are varied independently, to

determine suitable controller bandwidth requirements in order to stabilize the accor-

dion effect.

7.4.4 Separation Control Along a Curve, No Leader Feedback - Radius of

Curvature Sweep with Velocity=1 m/s, wg=2 rad/s

We first conduct a trade study for varying radius of curvature along a curve path

for the quadcopter fleet, given a fixed velocity of 1 m/s. This analysis is conducted

for omegag =2 rad/s. as well as for ωg =3 rad/s to study the effect of controller

bandwidth on peak steady state oscillation (for ∆x and ∆y respectively). The study

is first conducted for ωg =2 rad/s, with simulation results as presented from the facing

page.
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Figure 7.21: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 2 m, Velocity = 1 m/s, L (X-axis) = 2 m,
ωg = 2rad/s

Figure 7.22: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 2 m, Velocity = 1 m/s, L (X-axis) = 2 m,
ωg = 2rad/s
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Figure 7.23: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 2.5 m, Velocity = 1 m/s, L (X-axis) = 2 m,
ωg = 2rad/s

Figure 7.24: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 2.5 m, Velocity = 1 m/s, L (X-axis) = 2 m,
ωg = 2rad/s
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Figure 7.25: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 1 m/s, L (X-axis) = 2 m,
ωg = 2rad/s

Figure 7.26: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 1 m/s, L (X-axis) = 2 m,
ωg = 2rad/s
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Figure 7.27: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3.5 m, Velocity = 1 m/s, L (X-axis) = 2 m,
ωg = 2rad/s

Figure 7.28: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3.5 m, Velocity = 1 m/s, L (X-axis) = 2 m,
ωg = 2rad/s
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7.4.5 Separation Control Along a Curve, No Leader Feedback - Radius of

Curvature Sweep with velocity=1 m/s, wg=3 rad/s

Having presented the results for ωg= 2 rad/s in the previous section, the same

Radius of curvature sweep is presented for ωg = 3 rad/s in this section, with plots

shown below

Figure 7.29: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Trajec-
tory with Radius of Curvature = 2 m, Velocity = 1 m/s, L (X-axis) = 2 m ωg = 3rad/s
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Figure 7.30: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 2 m, Velocity = 1 m/s, L (X-axis) = 2 m,
ωg = 3rad/s

Figure 7.31: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 2.5 m, Velocity = 1 m/s, L (X-axis) = 2 m
ωg = 3rad/s
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Figure 7.32: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 2.5 m, Velocity = 1 m/s, L (X-axis) = 2 m
ωg = 3rad/s

Figure 7.33: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Trajec-
tory with Radius of Curvature = 3 m, Velocity = 1 m/s, L (X-axis) = 2 m ωg = 3rad/s
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Figure 7.34: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Trajec-
tory with Radius of Curvature = 3 m, Velocity = 1 m/s, L (X-axis) = 2 m ωg = 3rad/s

Figure 7.35: PPlot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve
Trajectory with Radius of Curvature = 3.5 m, Velocity = 1 m/s, L (X-axis) = 2 m
ωg = 3rad/s
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Figure 7.36: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3.5 m, Velocity = 1 m/s, L (X-axis) = 2 m
ωg = 3rad/s

Radius of Curvature Sweep -Key Observations

From the figure presented, it is observed that along a curve, as radius of curvature

decreases, steady state delta oscillation peak values increase when velocity is kept

constant at 1 m/s(at both controller bandwidth values). The peak values of ∆x and

∆y oscillation are nearly identical given a fixed bandwidth and v/R; these values are

as documented in Table 7.4

From the table, it is observed that peak ∆ oscillation values are reduced by factor

of around 0.5 when bandwidth is increased by 1.5 times (from 2 to 3 radians per

second). As radius of curvature is increased in 0.5 metre increments, the steady state

∆ error reduces by a factor of approximately 0.75.

In order to further analyze curve path oscillation, a velocity sweep is presented

for curve trajectories commanded of the lead vehicle.
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Table 7.4: Radius of Curvature Sweep - Peak Steady State ∆ Values

ROC (m) Peak ∆ at ωg = 2 rad/s (m) Peak ∆ at ωg = 3 rad/s (m)

2 0.43 0.2

2.5 0.3 0.15

3 0.2319 0.1225

3.5 0.1868 0.1016

7.4.6 Separation Control Along a Curve, No Leader Feedback - Velocity Sweep

with Radius of Curvature=3 m, wg=2 rad/s

To perform a velocity sweep, the radius of curvature for the curve path is fixed at

3 m, with velocity varied from 0.4 m/s to 1 m/s. The simulation results are presented

in this section using the controller with ωg = 2 rad/s

Figure 7.37: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 0.4 m/s, L (X-axis) = 2 m
ωg = 2rad/s
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Figure 7.38: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 0.4 m/s, L (X-axis) = 2 m
ωg = 2rad/s

Figure 7.39: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 0.6 m/s, L (X-axis) = 2 m
ωg = 2rad/s
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Figure 7.40: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 0.6 m/s, L (X-axis) = 2 m
ωg = 2rad/s

Figure 7.41: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 0.8 m/s, L (X-axis) = 2 m
ωg = 2rad/s
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Figure 7.42: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 0.8 m/s, L (X-axis) = 2 m
ωg = 2rad/s

Figure 7.43: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Trajec-
tory with Radius of Curvature = 3 m, Velocity = 1 m/s, L (X-axis) = 2 m ωg = 2rad/s
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Figure 7.44: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Trajec-
tory with Radius of Curvature = 3 m, Velocity = 1 m/s, L (X-axis) = 2 m ωg = 2rad/s

7.4.7 Separation Control Along a Curve, No Leader Feedback - Velocity Sweep

with Radius of Curvature=3 m, wg=3 rad/s

The velocity sweep from the previous section is performed again using the con-

troller with ωg = 3 rad/s, with results presented from the facing page on.
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Figure 7.45: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 0.4 m/s, L (X-axis) = 2 m
ωg = 3rad/s

Figure 7.46: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 0.4 m/s, L (X-axis) = 2 m
ωg = 3rad/s
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Figure 7.47: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 0.6 m/s, L (X-axis) = 2 m
ωg = 3rad/s

Figure 7.48: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 0.6 m/s, L (X-axis) = 2 m
ωg = 3rad/s
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Figure 7.49: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 0.8 m/s, L (X-axis) = 2 m
ωg = 3rad/s

Figure 7.50: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Tra-
jectory with Radius of Curvature = 3 m, Velocity = 0.8 m/s, L (X-axis) = 2 m
ωg = 3rad/s
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Figure 7.51: Plot of ∆x (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Trajec-
tory with Radius of Curvature = 3 m, Velocity = 1 m/s, L (X-axis) = 2 m ωg = 3rad/s

Figure 7.52: Plot of ∆y (m) vs. Time (s) for 6 Quadcopter Platoon, Curve Trajec-
tory with Radius of Curvature = 3 m, Velocity = 1 m/s, L (X-axis) = 2 m ωg = 3rad/s
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Velocity Sweep - Key Observations

From the figure presented, it is observed that along a curve, as velocity increases,

steady state delta oscillation peak values increase as well when the radius of curvature

is kept constant at 3 m (for both controller bandwidth values). The peak values of

∆x and ∆y oscillation are nearly identical, and are documented in Table 7.5

Table 7.5: Velocity Sweep - Peak Steady State ∆ Values

Velocity (m/s) Peak ∆ (m), ωg = 2 rad/s Peak ∆ (m), ωg = 3 rad/s

1 0.232 0.1225

0.8 0.1363 0.075

0.6 0.07 0.04

0.4 0.03 0.017

From the table, it is observed that peak ∆ oscillation values are reduced by factor

of around 0.5 when bandwidth is increased by 1.5 times (as in the radius of curvature

sweep) but the effect of changing velocity on steady state ∆ appears more significant.

As velocity is decreased by 0.2 m/s, the steady state ∆ error reduces by a factor of

approximately 0.5 per decrement, which is a larger factor of reduction proportional

to change in velocity (as compared to 0.75 factor for 0.5 m decrements in radius of

curvature). In general, a relationship is observed and established between the desired

v/R moving along a curve, and the bandwidth required to maintain a low steady

state deviation. An attempt is made to quantify this relationship in the next section.
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7.5 Summary of Nominal Platoon Model - Comparison with Leader Feedback

Model

From the previous section, it is observed that the PD controller design works

well in stabilizing the accordion effect for a quadcopter platoon, when a straight line

path is commanded of the leader, with steady state ∆x and ∆y converging to zero

irrespective of bandwidth. Increasing controller bandwidth upto 4 radians per second

is found to decrease the convergence time for all quadcopters to reach steady state

∆x of 0.

When commanding a curve path for the leader, as described at the end of the

previous section, it is observed that a steady state ∆ arises in all follower vehicles,

with largest deviation observed in the last quadcopter. This is due to the fact that

along a curve, while translational velocity may be constant, the actual (x, y, z) ac-

celeration components are periodic, and as such there are constant changes in lead

vehicle acceleration specifically. The value of steady state delta is observed to be

inversely proportional to the radius of curvature and the bandwidth of the system

(approximately), but proportional to the velocity of the platoon along the curve. It

is noted that along a straight line path the radius of curvature is effectively infinite,

and steady state delta converges to zero with no oscillation even at higher velocities.

Based on these results, a trade study is conducted by varying v
R

where v is the ve-

locity along a curve and R is the radius of curvature. As v
R

corresponds to a frequency

term, the objective of the analysis is to determine a possible relationship between

this term and the frequency of ωg (or the control bandwidth). It is noted that as v is

measured in m/s and R is measured in m, the v
R

term has unit of Hertz, and so it is

converted to rad/s in order to compare with ωg frequency.

With v
R

varied from 0.7 to 2 (in radians per second), the minimum bandwidth
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required for a maximum steady state ∆ error of 5% is recorded; in this case, with L

= 2 m, it is assumed that the maximum error bound is [−0.1, 0.1]. The bandwidth

values obtained for each v
R

are documented in Table 7.6, and visualized in Figure 7.53

.

Table 7.6: v
R

Sweep - Required Bandwidth for 5% Peak Steady State ∆ Error

SI No. v
R
(rad/s) ωg for 5% maximum error (rad/s)

1. 0.7 0.8

2. 0.8 0.9

3. 1.0 1.2

4. 1.2 1.5

5. 1.4 1.8

6. 1.6 2.2

7. 1.8 2.6

8. 2.0 3

9. 2.1 3.2
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Figure 7.53: v
R

vs Bandwidth with No Leader Feedback- Visualization

From Figure 7.53, it is observed that a curvilinear relationship can be observed

between required separation control bandwidth for the quadcopter fleet, and the v
R

ratio for the curve trajectory commanded of the leader.As v
R

is increased from 1 to 2,

the required bandwidth for 5% peak error goes from around 1.1 times the desired v
R

(near v
R

= 1) to around 1.5 times the desired v
R

(near v
R

= 2) In general, the required

bandwidth is approx. 1.3 times desired V/R with no lead feedback information

7.5.1 Leader Feedback Comparison

Having addressed the desired nominal case (with no leader feedback information),

we simulate the v
R

lead quadcopter acceleration is provided to each quadcopter in

the fleet. It is assumed that with lead feedback information, the steady state ∆

oscillations reduce and in turn, the required control bandwidth for 5% peak ∆ error

also will reduce. To test this, lead quadcopter (x, y, z) accelerations are fed forward

directly to the PD separation controller on each follower, and reduced steady state

errors are observed when acceleration information is fed forward directly (i.e with
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no control action), as proportional/PD control is observed to increase ∆ convergence

time. The general model is shown in Figure 7.54, with ẍl = [ẍ, ÿ, z̈] of the leader

vehicle (added to control input)

Figure 7.54: Lead Feedback Model- Visualization of i-th Follower

Plots for Lead Acceleration Feedback Model (Comparison with Nominal

Model)

With ωg fixed at 3 rad/s on each separation controller, the ∆x and ∆y simulation

results are presented below, for a curve path with radius of curvature 3 m and velocity

= 1 m/s. These results are shown in parallel with the simulation outputs of the

nominal model when using the same control bandwidth and lead vehicle trajectory,

in order to compare responses.
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Figure 7.55: Plot of ∆x (m) vs. time (s) for 6 Quadcopter Platoon, Curve Trajectory
with Leader Feedback (Radius of Curvature = 3 m, Velocity = 1 m/s, L (X-axis) =
2 m)

Figure 7.56: Plot of ∆x (m) vs. time (s) for 6 Quadcopter Platoon, Curve Trajectory
with No Leader Feedback (Radius of Curvature = 3 m, Velocity = 1 m/s, L (X-axis)
= 2 m)
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Figure 7.57: Plot of ∆y (m) vs. time (s) for 6 Quadcopter Platoon, Curve Trajectory
with Leader Feedback (Radius of Curvature = 3 m, Velocity = 1 m/s, L (X-axis) =
2 m)

Figure 7.58: Plot of ∆y (m) vs. time (s) for 6 Quadcopter Platoon, Curve Trajectory
with No Leader Feedback (Radius of Curvature = 3 m, Velocity = 1 m/s, L (X-axis)
= 2 m)
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As observed in the figures presented in pages 105 and 106, provision of lead vehicle

acceleration is found to stabilize the accordion effect, with zero steady state error

in separation achieved within 7 to 8 seconds of simulation. It is to be noted that

undershoot is observed in the first follower separation response within the initial few

seconds of simulation, while subsequent followers show less undershoot due to the

initial accordion effect. All followers converge to desired spacing with little to no

delay.

As analysed for the nominal model, v
R

is varied from 0.7 to 2 (in radians per

second)in order to find minimum bandwidth required for a maximum steady state ∆

error of 5% given available leader acceleration information. The bandwidth values

obtained for each v
R

for the lead feedback model are documented in Table 7.7, and

visualized in Figure 7.59.

Table 7.7: v
R

Sweep - Required Bandwidth for 5% Peak Steady State ∆ Error, Lead
Acceleration Feedback Model

SI No. v
R
(rad/s) ωg for 5% maximum error (rad/s)

1. 0.7 0.13

2. 0.8 0.14

3. 1.0 0.2

4. 1.2 0.3

5. 1.4 0.4

6. 1.6 0.48

7. 1.8 0.57

8. 2.0 0.68

9. 2.1 0.72
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Figure 7.59: v
R

vs Bandwidth with Leader Feedback - Visualization

From Figure 7.59 and Table 7.7, it is observed that lead vehicle information sig-

nificantly reduces the required controller bandwidth in the presented model. As v
R

is

increased from 1 to 2, the required bandwidth for 5% peak error goes from around

0.2 times the desired v
R

(near v
R

= 1) to around 0.4 times the desired v
R

(near v
R

= 2).

For comparison, the curves from Figure 7.53 and 7.59 are plotted together, shown in

Figure 7.60.
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Figure 7.60: v
R

vs Bandwidth - Nominal (Ad-hoc) Model vs. Lead Feedback Model

It can be observed that the bandwidth requirements significantly reduce for a

desired v/R when lead vehicle acceleration feedback is available in the fleet. With

lead feedback, the required bandwidth for a maximum of 5% steady state error is

approximately 0.33 times desired v/R, a far smaller factor than in the nominal case

(where bandwidth required is 1.3 times desired v/R). In both curves, the relationship

between required bandwidth and desired v/R is found to be fairly linear between

v/R = 1 and v/R = 2. relationship observed between v/R = 1.2 and v/R = 2.2
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Chapter 8

SUMMARY

8.1 Conclusion

In this thesis, a model for quadcopter rotational and translational dynamics has

been designed and analyzed with trade-off studies. Classical controls are used to

design low-level control for angular rate and Euler angle command following, using

a cascade control scheme, and LQ Servo design is used to model high-level control

(path following) for a single quadcopter. Following this analysis, a model for platoon-

ing control is derived and analyzed, including a study of the string stability (accordion

effect) within each quadcopter. A classical control approach is used to design spacing

control for each follower vehicle, and results are simulated on MATLAB using a non-

linear quadcopter model based on the Mark 3 quadcopter design. From the analysis,

trade studies are conducted for curved paths (with constant change in lead vehicle

acceleration), and the controller is observed to perform well in minimizing steady-

state separation errors to 0. As expected, the controller performance is improved by

feeding forward lead quadcopter acceleration, as observed for multiple curved paths

with varying velocity and radius of curvature. With lead quadcopter acceleration

feedback in fleet, the reduce in required separation control bandwidth is observed

and quantified (given a desired v/R) for curved path trajectory following.
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8.2 Directions for Future Research

Based on the analyses conducted in this research, the following are directions for

building on the observed results

� Comparative modeling and trade studies for dynamic formations with variable

spacing, requiring increased cooperation and communication between followers

� Analysis of control strategies to stabilize steady state separation along a curve

without use of lead feedback information, including trade studies for phase mar-

gins greater than 60◦

� Study of communication requirements (latency, frequency, e.t.c) to enable lead

vehicle information feedback within a fleet, in the context of developing 5G en-

vironments.

� Study of optimal formation topologies to minimize the accordion effect and

improve scalability in leader-follower quadcopter fleets.
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APPENDIX A

SELECTED MATLAB CODE
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1. Trajectory file

function y = Traj(t)
%% Following a Straight Line
% h = 1;
% if (t < 10)

% x r acc = 0;
% y r acc = 0;
% z r acc = 0;
% x r vel = 1;
% y r vel = 1;
% z r vel = 0;
% x r = x r vel*t;
% y r = y r vel*t;
% z r = 1;
% psi = 0;
% psi vel = 0;
% psi acc = 0;

%% Curved path
% Parameters

b = 2.1213;
a = b;
h = 1;%default height
w1=0.3333;
w2=w1;

x r=a*sin(w1*t);
y r =b*cos(w2*t);
z r = h;
x r vel =a*w1*cos(w1*t);
y r vel =-b*w2*sin(w2*t);
z r vel = 0;
x r acc = -a*(w1ˆ2)*sin(w1*t);
y r acc = -b*(w2ˆ2)*cos(w2*t);
z r acc = 0;
psi = 0;
psi vel = 0;
psi acc = 0;

% % % % %

%% Output
% y (12 x 1)
y = [x r; y r; z r; x r vel; y r vel; z r vel; x r acc; y r acc;

z r acc; psi; psi vel];

end
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2. PD Control Design (Bandwidth and Robustness)

%% Roll off term included (for inner loop BW=22 rad/s)

function [gp,zp]=InnerLoopPDControllerDesignFinal(magPx,angPx,PM,wg)
zp=wg/(tand(PM-180-angPx+2*atand(wg/220)));
gp=((wgˆ2)+(220ˆ2))/((magPx)*(220ˆ2)*sqrt((wgˆ2) + (zpˆ2)));

3. Altitude Control Design (PD Control)

function [gp,zp]=PDControllerDesignAlt(magPx,angPx,PM,wg)

rolloff=100;
zp=wg/(tand(PM-180-angPx+atand(wg/rolloff)));
gp=sqrt((wgˆ2)+(rolloffˆ2))/(magPx)*(rolloff)*sqrt((wgˆ2)+(zpˆ2));

4. Low Level Control Simulation File

s=tf('s');
Ixx = 0.0019; % Moment of interia (x-axis) in [kg mˆ2]
Iyy = 0.00195; % Moment of interia (y-axis) in [kg mˆ2]
Izz = 0.00369; % Moment of interia (z-axis) in [kg mˆ2]

Pp=(1/Ixx)*(1/s);
Pq=(1/Iyy)*(1/s);
Pr=(1/Izz)*(1/s);

a=9.79;%Sconstant from actuator testing in Mark 3 design (Shi Lu)
ActDynamics=a/(s+a);

%% Angular rate control(Continuous)
PpActDynamicsCont=ActDynamics*Pp;
PqActDynamicsCont=ActDynamics*Pq;
PrActDynamicsCont=ActDynamics*Pr;
bode(PpActDynamics);
hold on;bode(PqActDynamics);
hold on;bode(PrActDynamics);
grid on;legend('Pp','Pq','Pr');
title('Bode Magnitude plots for angular rate plants')

%% Discretization (for DAC, given digital controller)

Ts=0.0025; %400 Hz Controller

PpActDynamicsDisc=c2d(PpActDynamicsCont,Ts,'zoh');
PqActDynamicsDisc=c2d(PqActDynamicsCont,Ts,'zoh');
PrActDynamicsDisc=c2d(PrActDynamicsCont,Ts,'zoh');

PpActDynamics=d2c(PpActDynamicsDisc,'zoh');
PqActDynamics=d2c(PqActDynamicsDisc,'zoh');
PrActDynamics=d2c(PrActDynamicsDisc,'zoh');

117



%% Inner loop angular rate control (bandwidth sweep results)
PM=60;
% wg=7;
% wg=15;
wg=22;
% wg=30;
% wg=35;
[magPp,angPp]=bode(PpActDynamics,wg);
[magPq,angPq]=bode(PqActDynamics,wg);
[magPr,angPr]=bodemag(PrActDynamics,wg/4);

[gpp,zpp]=InnerLoopPDControllerDesign(magPp,angPp,PM,wg);
[gpq,zpq]=InnerLoopPDControllerDesign(magPq,angPq,PM,wg);
[gpr,zpr]=InnerLoopPDControllerDesign(magPr,angPp,PM,wg/4);

Kp=gpp*(s+zpp)*((220/(s+220))ˆ2);
Kq=gpq*(s+zpq)*((220/(s+220))ˆ2);
Kr=gpr*(s+zpr)*((50/(s+50))ˆ2);

Lp=Kp*PpActDynamics;
Lq=Kq*PqActDynamics;

%% Outer loop angle control

%First order roll off
[gppF,zppF]=InnerLoopPDControllerDesignFinal(magPp,angPp,PM,wg);
[gpqF,zpqF]=InnerLoopPDControllerDesignFinal(magPq,angPq,PM,wg);

KpRollOff=gppF*(s+zppF)*((220ˆ2)/(s+220)ˆ2);
KqRollOff=gpqF*(s+zpqF)*((220ˆ2)/(s+220)ˆ2);
% Kr=gpr*(s+zpr);

LpRollOff=KpRollOff*PpActDynamics;
LqRollOff=KqRollOff*PqActDynamics;

Tp=feedback(LpRollOff,1);
Tq=feedback(LqRollOff,1);

%Kphi=5;

%Kphi=6;

%Kphi=8;

Kphi=9;

%Kphi=10;

Ktheta=Kphi;

Lphi=Kphi*(Tp)*(1/s);
Ltheta=Ktheta*(Tq)*(1/s);
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5. High Level Control Simulation File

s = tf('s');
g = 9.81;
m = 0.647;
Ap1 = [zeros(3,3) eye(3,3) zeros(3,1); zeros(4,3) zeros(4,3) ...
zeros(4,1)];
Bp1 = [zeros(3,3) zeros(3,1); -g 0 0 0; 0 g 0 0; 0 0 1/m 0;

0 0 0 1];
Cp1 = [eye(3,3) zeros(3,4); zeros(1,3) zeros(1,3) 1];
Dp1 = zeros(4,4);
% Changing Units from radians to degrees
r2d = 180/pi;
su = diag( [ r2d, r2d, 1, r2d ] );
sx = diag( [ 1, 1, 1, 1, 1, 1, r2d ] );
sy = diag( [ 1, 1 , 1, r2d ] );
Ap1 = sx*Ap1*inv(sx);
Bp1 = sx*Bp1*inv(su);
Cp1 = sy*Cp1*inv(sx);
Dp1 = sy*Dp1*inv(su);
%******************************************************
% Linearization Around Hover with Linear Drag
% beta = rho*Cd*vx e*Ss*
% vx e = 1 (m/s), Ss = 0.015625 (mˆ2), rho = 1.225, Cd = 0.47

beta = 0.0090;
Ap2 = [zeros(3,3) eye(3,3) zeros(3,1); zeros(3,3) -beta*eye(3,3) ...
zeros(3,1); zeros(1,7)];
Bp2 = [zeros(3,3) zeros(3,1); -g 0 0 0; 0 g 0 0; 0 0 1/m 0;

0 0 0 1];
Cp2 = [eye(3,3) zeros(3,4); zeros(1,3) zeros(1,3) 1];
Dp2 = zeros(4,4);
% Changing Units from radians to degrees
r2d = 180/pi;
su = diag( [ r2d, r2d, 1, r2d ] );
sx = diag( [ 1, 1, 1, 1, 1, 1, r2d ] );
sy = diag( [ 1, 1 , 1, r2d ] );
Ap2 = sx*Ap2*inv(sx);
Bp2 = sx*Bp2*inv(su);
Cp2 = sy*Cp2*inv(sx);
Dp2 = sy*Dp2*inv(su);
% --------------------------------------------------
% Plant Dimensions
%
[ns,nc] = size(Bp1); % Number of States, Number of ...
% Controls
[no,~] = size(Cp1);
% First System with no drag
[ns1,nc1] = size(Bp1); % Number of States, Number ...
% of Controls
[no1,~] = size(Cp1); % Number of Outputs
% Second System with drag
[ns2,nc2] = size(Bp2); % Number of States, Number ...
% of Controls
[no2,~] = size(Cp2); % Number of Outputs
% --------------------------------------------------

119



% Natural Modes: Poles (Eigenvalues), Eigenvectors
%
% First System with no drag
[evec1,eval1] = eig(Ap1) % evec contains eigenvectors
% eval contains poles or eigenvalues
% Second System with drag
[evec2,eval2] = eig(Ap2)
% --------------------------------------------------
% Transmission Zeros
%
% First System with no drag
plantzeros1 = tzero(ss(Ap1,Bp1,Cp1,Dp1)) % transmission zeros
% System has no finite transmission zeros
% Second System with drag
plantzeros2 = tzero(ss(Ap2,Bp2,Cp2,Dp2)) % transmission zeros
% System has no finite transmission zeros
% 209
% --------------------------------------------------
% SYSTEM TRANSFER FUNCTIONS: From u i to x j
%
% First System with no drag
% Plant zpk1 = zpk(ss(Ap1,Bp1,Cp1,Dp1)) % Zeros, Poles, and Gains
% from u i to x j
% Second System with drag
% Plant zpk2 = zpk(ss(Ap2,Bp2,Cp2,Dp2)) % Zeros, Poles, and Gains
% from u i to x j
% --------------------------------------------------
% Controllability
%
% First System with no drag
% cm1 = [Bp1 Ap1*Bp1 (Ap1ˆ2)*Bp1 (Ap1ˆ3)*Bp1 (Ap1ˆ4)*Bp1
% (Ap1ˆ5)*Bp1 (Ap1ˆ6)*Bp1]; % Controllability Matrix
% rcm1 = rank(cm1) % Rank of Controllability Matrix
% % Second System with drag
% cm2 = [Bp2 Ap2*Bp2 (Ap2ˆ2)*Bp2 (Ap2ˆ3)*Bp2 (Ap2ˆ4)*Bp2
% (Ap2ˆ5)*Bp2 (Ap2ˆ6)*Bp2]; % Controllability Matrix
% rcm2 = rank(cm2) % Rank of Controllability Matrix
% % --------------------------------------------------
% % Observability
% %
% % First System with no drag
% om1 = [Cp1; Cp1*Ap1; Cp1*(Ap1ˆ2); Cp1*(Ap1ˆ3); Cp1*(Ap1ˆ4); ...
% Cp1*(Ap1ˆ5); Cp1*(Ap1ˆ6)]; % Observability Matrix
% rom1 = rank(om1) % Rank of Observability Matrix
% % Second System with drag
% om2 = [Cp2; Cp2*Ap2; Cp2*(Ap2ˆ2); Cp2*(Ap2ˆ3); Cp2*(Ap2ˆ4); ...
% Cp2*(Ap2ˆ5); Cp2*(Ap2ˆ6)]; % Observability Matrix
% rom2 = rank(om2) % Rank of Observability Matrix
% % FREQUENCY RESPONSE: Singular Values
% %
% % u = [ theta (rad) phi (rad) T (N) r (rad/s) ]
% % x = [ x (m/s) y (m/s) z (m/s) vx (m/s) ...
% vy (m/s) vz (m/s) psi (rad) ]
% % y = [ x (m/s) y (m/s) z (m/s) psi (rad) ]
% %
% winit = -4;
% wfin = 1;
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% nwpts = 200;
% w = logspace(winit,wfin,nwpts); % Form vector of ...
% logarithmically spaced freq points
% sv = sigma(ss(Ap1, Bp1, Cp1, Dp1),w);
% sv = 20*log10(sv);
% figure; semilogx(w, sv, 'b')
% %clear sv
% title('Outputs: x, y, z (m), \psi (deg); Inputs: \theta,
%\phi (deg), T (N), r (deg/s)')
% grid
% xlabel('Frequency (rad/sec)')
% ylabel('Singular Values (dB)')
% hold on
% sv = sigma(ss(Ap2, Bp2, Cp2, Dp2),w);
% sv = 20*log10(sv);
% semilogx(w, sv, 'r')
% 210
% pause
% PLANT SVD ANALYSIS at Low Frequencies, w = 0.01 (rad/s)
%
% First System with no drag
% w0 = 0.01;
% P w0 = Cp1*inv(w0*eye(7,7)-Ap1)*Bp1;
% [udc1,sdc1,vdc1] = svd(P w0)
% Second System with drag
% P w0 = Cp2*inv(w0*eye(7,7)-Ap2)*Bp2;
% [udc2,sdc2,vdc2] = svd(P w0)
%% ...
% *******************************************************
%
% First Design for Linear Quadratic Regulator (LQR)
% Augment Plant with Integrators
% For Zero Steady Error to Step Commands
% This follows from the Internal Model Priciple
% State x = [xp xI]
% where
% xp is the state
% xI is the integrator state
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% First System with no drag
A1 = [Ap1 zeros(7,4); Cp1 zeros(4,4)];
B1 = [Bp1; zeros(4,4)];
C1 = [Cp1 zeros(4,4)];
D1 = zeros(4,4);
Cr1 = [0 0 0 1 0 0 0;
0 0 0 0 1 0 0;
0 0 0 0 0 1 0];
% Second System with drag
A2 = [Ap2 zeros(7,4); Cp2 zeros(4,4)];
B2 = [Bp2; zeros(4,4)];
C2 = [Cp2 zeros(4,4)];
D2 = zeros(4,4);
Cr2 = [0 0 0 1 0 0 0;
0 0 0 0 1 0 0;
0 0 0 0 0 1 0];
% LQR Design Parameters
rho = 0.2;
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Q = diag([10,10,10,10,10,10,100,100,100,100,1]);
R = rho * eye(4,4);
[G1, K1, clpoles1] = lqr(A1,B1,Q,R);
[G2, K2, clpoles2] = lqr(A2,B2,Q,R);
%********************************************************
%
% LQ OPEN LOOP FREQUENCY RESPONSE
%
gy1 = [G1(:,1:3) G1(:,7)];
gr1 = G1(:,4:6);
gz1 = G1(:,8:11);
gy2 = [G2(:,1:3) G2(:,7)];
gr2 = G2(:,4:6);
gz2 = G2(:,8:11);
% 211
% First System with no drag
aol1 = [ Ap1-Bp1*gr1*Cr1 Bp1*gz1;
zeros(4,7) zeros(4,4) ];
bol1 = [ Bp1*gy1;
eye(4,4) ];
col1 = [ Cp1 zeros(4,4) ];
dol1 = zeros(4,4);
ols1 = ss(aol1, bol1, col1, dol1);
% Second System with drag
aol2 = [ Ap2-Bp2*gr2*Cr2 Bp2*gz2;
zeros(4,7) zeros(4,4) ];
bol2 = [ Bp2*gy2;
eye(4,4) ];
col2 = [ Cp2 zeros(4,4) ];
dol2 = zeros(4,4);
ols2 = ss(aol2, bol2, col2, dol2);
w = logspace(-3,3,100);
% sv = sigma(ss(A1, B1, G1, 0*ones(4,4)),w);
% sv = 20*log10(sv);
% figure;semilogx(w, sv, 'b')
% %clear sv
% title('Open Loop Singular Values: Plant Input')
% grid
% xlabel('Frequency (rad/sec)')
% ylabel('Singular Values (dB)')
% hold on
% sv = sigma(ss(A2, B2, G2, 0*ones(4,4)),w);
% sv = 20*log10(sv);
% semilogx(w, sv, 'r')
% hold off
% pause
% w = logspace(-3,3,100);
% sv = sigma(ols1,w);
% sv = 20*log10(sv);
% figure;semilogx(w, sv, 'b')
% %clear sv
% title('Open Loop Singular Values: Error Signal')
% grid
% xlabel('Frequency (rad/sec)')
% ylabel('Singular Values (dB)')
% hold on
% sv = sigma(ols2,w);
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% sv = 20*log10(sv);
% semilogx(w, sv, 'r')
% pause
%return
%********************************************************
%
% LQ CLOSED LOOP FREQUENCY RESPONSE
%
% First System with no drag
acl1 = aol1 - bol1*col1;
% 212
bcl1 = bol1;
ccl1 = col1;
dcl1 = dol1;
cls1 = ss(acl1,bcl1,ccl1,dcl1);
% Second System with drag
acl2 = aol2 - bol2*col2;
bcl2 = bol2;
ccl2 = col2;
dcl2 = dol2;
cls2 = ss(acl2,bcl2,ccl2,dcl2);
% Closed Loop Poles
% First System with no drag
[Wn1,zeta1, clpoles1] = damp(cls1)
% Second System with drag
[Wn2,zeta2, clpoles2] = damp(cls2)
sv = sigma(ss(A1-B1*G1, B1, -G1, eye(4,4)-0*ones(4,4)),w);
sv = 20*log10(sv);
% figure(1);semilogx(w, sv, 'b')
% %clear sv
% title('LQ Sensitivity: Plant Input')
% grid
% xlabel('Frequency (rad/sec)')
% ylabel('Singular Values (dB)')
% hold on
% sv = sigma(ss(A2-B2*G2, B2, -G2, eye(4,4)-0*ones(4,4)),w);
% sv = 20*log10(sv);
% semilogx(w, sv, 'r')
% hold off
% pause
% sv = sigma(ss(acl1, bcl1, -ccl1, eye(4,4)-dcl1),w);
% sv = 20*log10(sv);
% figure;semilogx(w, sv, 'b')
% %clear sv
% title('LQ Sensitivity: Error Signal')
% grid
% xlabel('Frequency (rad/sec)')
% ylabel('Singular Values (dB)')
% hold on
% sv = sigma(ss(acl2, bcl2, -ccl2, eye(4,4)-dcl2),w);
% sv = 20*log10(sv);
% semilogx(w, sv, 'r')
% pause
% sv = sigma(ss(acl1, bcl1, ccl1, dcl1),w);
% sv = 20*log10(sv);
% figure;semilogx(w, sv, 'b')
% %clear sv
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% title('LQ Complementary Sensitivity: Plant Output')
% grid
% xlabel('Frequency (rad/sec)')
% ylabel('Singular Values (dB)')
% hold on
% sv = sigma(ss(acl2, bcl2, ccl2, dcl2),w);
% sv = 20*log10(sv);
% 213
% semilogx(w, sv, 'r')
% hold off
% pause
% %return
sv = sigma(ss(A1-B1*G1, B1, G1, 0*ones(4,4)),w);
sv = 20*log10(sv);
figure;semilogx(w, sv, 'b')
%clear sv
title('LQ Complementary Sensitivity: Plant Input')
grid
xlabel('Frequency (rad/sec)')
ylabel('Singular Values (dB)')
% hold on
% sv = sigma(ss(A2-B2*G2, B2, G2, 0*ones(4,4)),w);
% sv = 20*log10(sv);
% semilogx(w, sv, 'r')
% hold off
% pause
% %*****************************************************
%
% CLOSED LOOP COMMAND FOLLOWING
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% First System
%
% t = [0:0.02:10];
% [y, t, x] = step(cls1,t);
% %
% % POSITION IN X-AXIS COMMAND
% %
% % x: r = [1 0 0 0] x-axis position Command
% %
% figure(1);
% % subplot(2,1,1)
% % plot(t,y(:,:,1))
% % grid
% % title('Output Response To r = [1 0 0 0] Command')
% % ylabel('Outputs')
% % xlabel('Time (seconds)')
% % legend('x', 'y', 'z', 'psi')
% %
% % Controls: r = [1 0 0 0] x-axis position Command
% %
% u10 = [-G1 gy1]*[x(:,:,1)'
% ones(1, size(x(:,:,1)')*[0 1]')
% 0*ones(1, size(x(:,:,1)')*[0 1]')
% 0*ones(1, size(x(:,:,1)')*[0 1]')
% 0*ones(1, size(x(:,:,1)')*[0 1]')];
% plot(t,u10)
% grid
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% title('Input Response to X step Command')
% ylabel('Controls')
% xlabel('Time (seconds)')
% legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate')
% % 214
% % pause
% %
% % POSITION IN Y-AXIS COMMAND
% %
% % y: r = [0 1 0 0] y-axis position Command
% %
% figure(2);
% % subplot(2,1,1)
% % plot(t,y(:,:,2))
% % grid
% % title('Output Response To r = [0 1 0 0] Command')
% % ylabel('Outputs')
% % xlabel('Time (seconds)')
% % legend('x', 'y', 'z', 'psi')
% %
% % Controls: r = [0 1 0 0] y-axis position Command
% %
% u20 = [-G1 gy1]*[x(:,:,2)'
% 0*ones(1, size(x(:,:,2)')*[0 1]')
% ones(1, size(x(:,:,2)')*[0 1]')
% 0*ones(1, size(x(:,:,2)')*[0 1]')
% 0*ones(1, size(x(:,:,2)')*[0 1]')];
% % subplot(2,1,2)
% plot(t,u20)
% grid
% title('Input Response to Y step Command')
% % ylabel('Pitch, Roll (deg), Thrust (N), Yaw (deg/s)')
% xlabel('Time (seconds)')
% ylabel('Controls')
% legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate')
% % pause
% %
% % POSITION IN Z-AXIS COMMAND
% %
% % z: r = [0 0 1 0] z-axis position Command
% %
% figure(3);
% % subplot(2,1,1)
% % plot(t,y(:,:,3))
% % grid
% % title('Output Response To r = [0 0 1 0] Command')
% % ylabel('Outputs')
% % xlabel('Time (seconds)')
% % legend('x', 'y', 'z', 'psi')
% %
% % Controls: r = [0 0 1 0] z-axis position Command
% %
% u30 = [-G1 gy1]*[x(:,:,3)'
% 0*ones(1, size(x(:,:,3)')*[0 1]')
% 0*ones(1, size(x(:,:,3)')*[0 1]')
% ones(1, size(x(:,:,3)')*[0 1]')
% 0*ones(1, size(x(:,:,3)')*[0 1]')];
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% % subplot(2,1,2)
% plot(t,u30)
% % 215
% grid
% title('Input Response to Z step Command')
% ylabel('Controls')
% xlabel('Time (seconds)')
% legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate')
% % pause
% %
% % YAW COMMAND
% %
% % Yaw: r = [0 0 0 1] yaw Command
% %
% figure(4);
% % subplot(2,1,1)
% % plot(t,y(:,:,4))
% % grid
% % title('Output Response To r = [0 0 0 1] Command')
% % ylabel('Outputs')
% % xlabel('Time (seconds)')
% % legend('x', 'y', 'z', 'psi')
% %
% % Controls: r = [0 0 0 1] Yaw Command
% %
% u40 = [-G1 gy1]*[x(:,:,4)'
% 0*ones(1, size(x(:,:,4)')*[0 1]')
% 0*ones(1, size(x(:,:,4)')*[0 1]')
% 0*ones(1, size(x(:,:,4)')*[0 1]')
% ones(1, size(x(:,:,4)')*[0 1]')];
% % subplot(2,1,2)
% plot(t,u40)
% grid
% title('Input Response to Psi step Command')
% ylabel('Controls')
% xlabel('Time (seconds)')
% legend('Pitch', 'Roll', 'Thrust', 'Yaw Rate')

6. Inverse mapping - Trajectory generation file

function v = inverseMapping(u)
m = 0.647;
up1 = u(1);
up2 = u(2);
up3 = u(3);
up4 = u(4);
phi = u(5);
theta = u(6);
psi = u(7);
p = u(8);
q = u(9);
r = u(10);
t = u(11);

R psi = [cos(psi) sin(psi) 0;
-sin(psi) cos(psi) 0;
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0 0 1];
T d = m*sqrt(up1ˆ2+up2ˆ2+up3ˆ2);

% T d=m*(up3);
z = R psi*[up1; up2; up3]*m/(T d);
phi d = asin(z(2));

% phi d = up2/9.81;
theta d = atan(-z(1)/z(3));

% theta d= -up1/9.81;

r d = cos(theta)/cos(phi)*up4+q*tan(phi);
% r d= up4;

v = [T d; phi d; theta d; r d];
% v = [T dlin; phi dlin; theta dlin; r dlin];
end

7. Platooning Control - Simulation File

%% Plant model
% based on Inverse mapping and linearization at hover

Px=(-1/9.81)*TthetaFinal*(-9.81)*(1/s)*(1/s);
Py=(-1/9.81)*TphiFinal*(-9.81)*(1/s)*(1/s);

%Bandwidth sweep design
wg1=1;
wg2=2;
wg3=3;
wg4=4;
wg5=5;
wg6=6;
wg10=10;

[magPx0,angPx0]=bode(Px,wg1);
[magPx1,angPx1]=bode(Px,wg2);
[magPx2,angPx2]=bode(Px,wg3);
[magPx3,angPx3]=bode(Px,wg4);
[magPx4,angPx4]=bode(Px,wg5);
[magPx5,angPx5]=bode(Px,wg6);
[magPx6,angPx6]=bode(Px,wg10);

[magPy0,angPy0]=bode(Py,wg1);
[magPy1,angPy1]=bode(Py,wg2);
[magPy2,angPy2]=bode(Py,wg3);
[magPy3,angPy3]=bode(Py,wg4);
[magPy4,angPy4]=bode(Py,wg5);
[magPy5,angPy5]=bode(Py,wg6);
[magPy6,angPy6]=bode(Px,wg10);
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PM=60; %sufficient for closed loop properties, AAR book

% PD controller design

[gpd0,zpd0]=PDControllerDesign(magPx0,angPx0,PM,wg1);
[gpd1,zpd1]=PDControllerDesign(magPx1,angPx1,PM,wg2);
[gpd2,zpd2]=PDControllerDesign(magPx2,angPx2,PM,wg3);
[gpd3,zpd3]=PDControllerDesign(magPx3,angPx3,PM,wg4);
[gpd4,zpd4]=PDControllerDesign(magPx4,angPx4,PM,wg5);
[gpd5,zpd5]=PDControllerDesign(magPx5,angPx5,PM,wg6);
[gpd6,zpd6]=PDControllerDesign(magPx6,angPx6,PM,wg10);

% PID controller design

% [gpd0,zpd0]=PIDControllerDesign(magPx0,angPx0,PM,wg1);
% [gpd1,zpd1]=PIDControllerDesign(magPx1,angPx1,PM,wg2);
% [gpd2,zpd2]=PIDControllerDesign(magPx2,angPx2,PM,wg3);
% [gpd3,zpd3]=PIDControllerDesign(magPx3,angPx3,PM,wg4);
% [gpd4,zpd4]=PIDControllerDesign(magPx4,angPx4,PM,wg5);
% [gpd5,zpd5]=PIDControllerDesign(magPx5,angPx5,PM,wg6);
% [gpd6,zpd6]=PIDControllerDesign(magPx6,angPx6,PM,wg10);

% PD controller design
[gpdy0,zpdy0]=PDControllerDesign(magPy0,angPy0,PM,wg1);
[gpdy1,zpdy1]=PDControllerDesign(magPy1,angPy1,PM,wg2);
[gpdy2,zpdy2]=PDControllerDesign(magPy2,angPy2,PM,wg3);
[gpdy3,zpdy3]=PDControllerDesign(magPy3,angPy3,PM,wg4);
[gpdy4,zpdy4]=PDControllerDesign(magPy4,angPy4,PM,wg5);
[gpdy5,zpdy5]=PDControllerDesign(magPy5,angPy5,PM,wg6);
[gpdy6,zpdy6]=PDControllerDesign(magPy6,angPy6,PM,wg10);

% PID controller design

% [gpdy0,zpdy0]=PIDControllerDesign(magPy0,angPy0,PM,wg1);
% [gpdy1,zpdy1]=PIDControllerDesign(magPy1,angPy1,PM,wg2);
% [gpdy2,zpdy2]=PIDControllerDesign(magPy2,angPy2,PM,wg3);
% [gpdy3,zpdy3]=PIDControllerDesign(magPy3,angPy3,PM,wg4);
% [gpdy4,zpdy4]=PIDControllerDesign(magPy4,angPy4,PM,wg5);
% [gpdy5,zpdy5]=PIDControllerDesign(magPy5,angPy5,PM,wg6);
% [gpdy6,zpdy6]=PIDControllerDesign(magPy6,angPy6,PM,wg10);

% PD Controller Design
Kpd0=gpd0*(s+zpd0)*(500/(s+500));
Kpd1=gpd1*(s+zpd1)*(500/(s+500));
Kpd2=gpd2*(s+zpd2)*(500/(s+500));
Kpd3=gpd3*(s+zpd3)*(500/(s+500));
Kpd4=gpd4*(s+zpd4)*(500/(s+500));
Kpd5=gpd5*(s+zpd5)*(500/(s+500));
Kpd6=gpd6*(s+zpd6)*(500/(s+500));

%PID Controller Design
% Kpd0=(gpd0*(s+zpd0)/s);
% Kpd1=(gpd1*(s+zpd1)/s);
% Kpd2=(gpd2*(s+zpd2)/s);
% Kpd3=(gpd3*(s+zpd3)/s);
% Kpd4=(gpd4*(s+zpd4)/s);
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% Kpd5=(gpd5*(s+zpd5)/s);
% Kpd6=(gpd6*(s+zpd6)/s);

% PD Controller
Kpdy0=gpdy0*(s+zpdy0)*(1000/(s+1000));
Kpdy1=gpdy1*(s+zpdy1)*(1000/(s+1000));
Kpdy2=gpdy2*(s+zpdy2)*(1000/(s+1000));
Kpdy3=gpdy3*(s+zpdy3)*(1000/(s+1000));
Kpdy4=gpdy4*(s+zpdy4)*(1000/(s+1000));
Kpdy5=gpdy5*(s+zpdy5)*(1000/(s+1000));
Kpdy6=gpdy6*(s+zpdy6)*(1000/(s+1000));

% % PID Controller
% % Kpdy0=(gpdy0*(s+zpdy0)/s);
% % Kpdy1=(gpdy1*(s+zpdy1)/s);
% % Kpdy2=(gpdy2*(s+zpdy2)/s);
% % Kpdy3=(gpdy3*(s+zpdy3)/s);
% % Kpdy4=(gpdy4*(s+zpdy4)/s);
% % Kpdy5=(gpdy5*(s+zpdy5)/s);
% % Kpdy6=(gpdy6*(s+zpdy6)/s);

L0PD=Kpd0*Px;
L1PD=Kpd1*Px;
L2PD=Kpd2*Px;
L3PD=Kpd3*Px;
L4PD=Kpd4*Px;
L5PD=Kpd5*Px;
L6PD=Kpd6*Px;
%
%
L0PDy=Kpdy0*Py;
L1PDy=Kpdy1*Py;
L2PDy=Kpdy2*Py;
L3PDy=Kpdy3*Py;
L4PDy=Kpdy4*Py;
L5PDy=Kpdy5*Py;
L6PDy=Kpdy6*Py;
%
% % L1PID=Kpid1*Px;
% % L2PID=Kpid2*Px;
% % L3PID=Kpid3*Px;
% % L4PID=Kpid4*Px;
% % L5PID=Kpid5*Px;
%
T0PD=feedback(L0PD,1);
T1PD=feedback(L1PD,1);
T2PD=feedback(L2PD,1);
T3PD=feedback(L3PD,1);
T4PD=feedback(L4PD,1);
T5PD=feedback(L5PD,1);
%
T0PDy=feedback(L0PDy,1);
T1PDy=feedback(L1PDy,1);
T2PDy=feedback(L2PDy,1);
T3PDy=feedback(L3PDy,1);
T4PDy=feedback(L4PDy,1);

129



T5PDy=feedback(L5PDy,1);

S0PD=1-T0PD;
S1PD=1-T1PD;
S2PD=1-T2PD;
S3PD=1-T3PD;
S4PD=1-T4PD;
S5PD=1-T5PD;

S0PDy=1-T0PDy;
S1PDy=1-T1PDy;
S2PDy=1-T2PDy;
S3PDy=1-T3PDy;
S4PDy=1-T4PDy;
S5PDy=1-T5PDy;
%% Closed loop (T) and Sensitivity (S) Plots
figure(1);
bodemag(T0PD);
hold on;bodemag(T1PD);
hold on;bodemag(T2PD);
hold on;bodemag(T3PD);
hold on;bodemag(T4PD);
hold on;bodemag(T5PD);
grid on;legend('wg=1','wg=2','wg=3','wg=4','wg=5','wg=6');
title('T magnitude plots,X axis separation control');

figure(2);
bodemag(T0PDy);
hold on;bodemag(T1PDy);
hold on;bodemag(T2PDy);
hold on;bodemag(T3PDy);
hold on;bodemag(T4PDy);
hold on;bodemag(T5PDy);
grid on;legend('wg=1','wg=2','wg=3','wg=4','wg=5','wg=6');
title('T magnitude plots,X axis separation control');

figure(3);
bodemag(S0PD);
hold on;bodemag(S1PD);
hold on;bodemag(S2PD);
hold on;bodemag(S3PD);
hold on;bodemag(S4PD);
hold on;bodemag(S5PD);
grid on;legend('wg=1','wg=2','wg=3','wg=4','wg=5','wg=6');
title('S magnitude plots,X axis separation control');

figure(4);
bodemag(S0PDy);
hold on;bodemag(S1PDy);
hold on;bodemag(S2PDy);
hold on;bodemag(S3PDy);
hold on;bodemag(S4PDy);
hold on;bodemag(S5PDy);
grid on;legend('wg=1','wg=2','wg=3','wg=4','wg=5','wg=6');
title('S magnitude plots,Y axis separation control');
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% figure(5);
% step(T0PD);
% hold on;step(T1PD);
% hold on;step(T2PD);
% hold on;step(T3PD);
% hold on;step(T4PD);
% hold on;step(T5PD);
% grid on;legend('wg=1','wg=2','wg=3','wg=4','wg=5','wg=6');
% title('Step response plots for X axis separation control')
%
% figure(6);
% step(T0PDy);
% hold on;step(T1PDy);
% hold on;step(T2PDy);
% hold on;step(T3PDy);
% hold on;step(T4PDy);
% hold on;step(T5PDy);
% grid on;legend('wg=1','wg=2','wg=3','wg=4','wg=5','wg=6');
% title('Step response plots for Y axis separation control')

8. Curve trajectory generation- ROC and Velocity sweep

%Curve trajectory generation

b = 2.1213;
a = b;
w1=0.3333;
w2=w1;
velocity=sqrt(((a*w1)ˆ2)+((b*w2)ˆ2));
accel=sqrt(((a*(w1ˆ2))ˆ2)+((b*(w2ˆ2))ˆ2));
ROC=(velocityˆ2)/accel;

%%Test function, to compute a and b for desired V/R
ROCd=3;
% VoverRradpersec=1.8;

% velocityd=(VoverRradpersec*ROCd)/(2*pi);

velocityd=1;
a1d=ROCd/sqrt(2);
w1d=velocityd/ROCd;
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