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ABSTRACT

The recent trends in wireless communication, fueled by the demand for lower

latency and higher bandwidth, have caused the migration of users from lower fre-

quencies to higher frequencies, i.e., from 2.5GHz to millimeter wave. However, the

migration to higher frequencies has its challenges. The sensitivity to blockages is a

key challenge for millimeter wave and terahertz networks in 5G and beyond. Since

these networks mainly rely on line-of-sight (LOS) links, sudden link blockages highly

threaten the reliability of such networks. Further, when the LOS link is blocked,

the network typically needs to hand off the user to another LOS basestation, which

may incur critical time latency, especially if a search over a large codebook of narrow

beams is needed. A promising way to tackle the reliability and latency challenges lies

in enabling proaction in wireless networks. Proaction allows the network to anticipate

future blockages, especially dynamic blockages, and initiate user hand-off beforehand.

This thesis presents a complete machine learning framework for enabling proaction in

wireless networks relying on the multi-modal 3D LiDAR(Light Detection and Rang-

ing) point cloud and position data. In particular, the paper proposes a sensing-aided

wireless communication solution that utilizes bimodal machine learning to predict

the user link status. This is mainly achieved via a deep learning algorithm that

learns from LiDAR point-cloud and position data to distinguish between LOS and

NLOS(non line-of-sight) links. The algorithm is evaluated on the multi-modal wireless

Communication Dataset DeepSense6G dataset. It is a time-synchronized collection

of data from various sensors such as millimeter wave power, position, camera, radar,

and LiDAR. Experimental results indicate that the algorithm can accurately predict

link status with 87% accuracy. This highlights a promising direction for enabling high

reliability and low latency in future wireless networks.
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Chapter 1

INTRODUCTION

1.1 Motivation

In recent times, there has been an exponential rise in the demand for higher

data rates and low-latency communications to support a host of applications, in-

cluding but not limited to autonomous driving and Augmented Reality. Millimeter

wave (mmWave) and sub-terahertz (sub-THz) communications are dominating in

this regard. However, communication in these bands faces several challenges. In or-

der to guarantee sufficient receive power, these systems adopt large antenna arrays

and use narrow directive beams at both transmitters and receivers. Further, the

mmWave/sub-terahertz wireless communication systems rely on line-of-sight (LOS)

links to achieve sufficient receive signal power. Blocking these LOS links by the mov-

ing objects in the environment may disconnect the communication session or cause

sudden and significant degradation in the link quality. This is due to the high pen-

etration loss of the mmWave/sub-terahertz signals and the much less receive power

of the NLOS links compared to the LOS ones [1, 2]. All that highly challenges the

reliability and latency of the mmWave/sub-terahertz communication networks.

The reliance of mmWave/sub-THz systems on LOS draws an important parallel

with RGB-D cameras and LiDARs, in which visual data (e.g., images and video se-

quences) and 3D LiDAR point-cloud data capture visible, i.e., LOS, objects. This par-

allel is very interesting as these systems rely on machine learning and visible objects

to perform a variety of tasks depending on object appearance (image-based object de-

1



tection [3, 4], LiDAR-based object detection [5]) and/or behavior (action recognition

[6–8]). In a wireless network, visible objects in the environment are usually the cause

of link blockages. Hence, an object detection system powered by machine learning

could be utilized to provide a much-needed sense of surrounding to the network; it

enables the network to identify objects in its environment and their behavior and

utilize that to detect possible blockages. Such capability helps alleviate the strain

of link blockages, and as such, this work focuses on developing a LiDAR-aided link

identification solution for high-frequency wireless networks. In particular, we develop

a sensing-aided solution that enables the mmWave basestations to identify whether

or not a LOS link is blocked.

1.2 Prior Work: Sensing-Aided Wireless Communication

The use of sensing in wireless communications has been explored with much fervor

in recent times. Various examples may be observed through the myriad of academic

literature and discussions. Some of the prior work in guiding this thesis are summa-

rized below:

• In [9], RGB images from cameras were utilized in order to enable proactive link-

blockage predictions. A deep learning solution was utilized to predict the link

blockage status based on the observable sequence of image and beamforming

vectors. The approach was utilized in two separate basestations and was used

to perform proactive hand-off based on whether a link was blocked from the

perspective of either base station. The work achieved substantial gains over

solutions that only utilized wireless millimeter wave beam sequences in highly

dynamic environments.

• [10] utilized the position data to perform beam selection for the narrow beams.
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The positions were obtained from real-world measurement scenarios. The pro-

posed approach was evaluated against existing approaches, and a noticeable

improvement in the beam training overhead was observed. Furthermore, the

results were evaluated against those obtained from using synthetically gener-

ated data sets and a more suitable metric that attempts to quantize an end

system objective more suited to real-world operation.

• The literature in [11] proposes an approach that utilizes the LiDAR sensory

information to predict the future beam indices corresponding to beamforming

vectors. This sensory information was obtained through meticulous real-world

measurements. The approach shows promise through the ability to predict

the beams without any prior information on the previously optimal beams and

without any prior beam calibration. Consequently, the use of the LiDAR sensory

information resulted in a significant reduction in the beam training overhead.

• The work performed in [12] utilizes 2D LiDAR point clouds to predict future

LOS link blockages. The work involved dividing a simulated scene into various

grids and estimating the number of points within each grid block. The data

points located at distances greater than 25m away from the LiDAR were dis-

carded. The grid blocks were subsequently recombined to give a 3D histogram

which was utilized for NLOS/LOS prediction.

1.3 Summary of performed work

The work described in this thesis was performed over the greater part of 2 years

and is split into two halves. The first half was based on developing the multi-modal

sensing test bed. The initial work in this thesis includes but is not limited to building

the test bed, interfacing the LiDAR to work with the current test bed, data collection
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and verification of the data, and post-processing work. The second half of the work

involved using the processed data to perform machine learning to identify the trans-

mitter using the available LiDAR point clouds and using the 3D point cloud data to

predict the link status, either LOS or NLOS.

1.4 Abbreviations

The abbreviations used in this thesis are summarized in Table 1.1

1.5 Chapter Description

The contributions of this thesis are described in the following chapters as follows:

• Chapter 2 introduces the Real-World Multi-Modal Sensing, and Communication

Data set DeepSense6G [13] collected by the Wireless Intelligence Lab, led by

the Director of the lab: Dr. Ahmed Alkhateeb. The motivation behind this

data set, as well as the test bed utilized for the collection of the said dataset, is

described further in this chapter.

• Chapter 3 introduces the target problem, which is LiDAR-based blockage iden-

tification and link status prediction. The motivation behind the problem and

the selection of the LiDAR data is also included in the chapter. Finally, the

chapter concludes with the prescribed approach and its implementation.
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Table 1.1: Summary of Abbreviations

BS Base station
DNN Deep Neural Network
FOV Field of View

FMCW Frequency Modulated Continuous Wave
GNSS Global Navigation Satellite System
GPS Global Positioning System
I/Q In-Phase/Quadrature

JSON JavaScript Object Notation
LiDAR Light Detection and Ranging

LOS Line Of Sight
LRT Likelihood Ratio Test

MIMO Multiple Input Multiple Output
mmWave Millimeter wave

NLOS Non Line Of Sight
OFDM Orthogonal Frequency Division Multiplexing

PA Phased Array
PCAP Packet Capture
PDF Probability Density Function

Radar Radio Detection and Ranging
RGB-D Red Green Blue-Depth

RTK Real Time Kinematic
Rx Receiver

SNR Signal-to-Noise Ratio
TCP Transmission Control Protocol
Tx Transmitter

UDP User Datagram Protocol
UE User Equipment

ULA Uniform Linear Array
USRP Universal Software Radio Peripheral
UTC Universal Time Coordinated
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Chapter 2

MULTI-MODAL SENSING AND COMMUNICATIONS TEST BED

2.1 Motivation Behind DeepSense

DeepSense 6G is a real-world multi-modal dataset enabling sensing-aided wire-

less communication applications. It contains co-existing multi-modal data such as

vision, mmWave wireless communication, GPS data, LiDAR, and Radar, collected in

realistic wireless environments. This data set was collected in realistic environments,

in downtown urban environments and suburbs. The dataset is collected at multiple

locations, in different weather conditions, and at different times of the day to increase

the diversity. Deepsense6G has founded on the premise that sensing improves wireless

communication. In other words, machine learning and sensing information can allevi-

ate some of the challenges faced by mmWave/THz wireless communication systems.

It aids and enables various applications such as sensing-aided beam prediction and

tracking, blockage prediction, resource management, etc.

2.2 Data Collection Test Bed

The data collection was performed using two different types of testbeds: (i) one

includes scenarios with a person acting as the transmitter and (ii) scenarios with the

transmitter module being in a vehicle). The testbed consists of 2 units: the transmit-

ter and the receiver. Henceforth, the terms receiver unit and basestation refer to the

same collection of multi-modal sensors and may be used interchangeably. The various

components of the test bed are as follows: The Transmit unit consists of a raspberry
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CAMERA

mmWave RX

RADAR

LiDAR

GPS mmWave TX

Unit 2

Unit 1

Figure 2.1: This Figure Presents the Deepsense Testbed 1. It Shows the Different Sensing

Modalities at the Units 1 and 2.

pi, a USRP, and a Phased array antenna centered at 62.64 GHz(with 64 beam direc-

tions). The Phased array used here is a ULA (uniform linear array) with a 60GHz

patch antenna, with inbuilt beam steering capabilities by the integrated codebook.

The instrument allows full or fractional channels alongside 32-element transmit and

receive arrays. The raspberry pi, along with the USRP(which is programmed using

GNU radio on Python2 running on the raspberry pi), generates the OFDM symbols

fed to the Phased array. The phased array and its drivers are only supported on

Python2, hence the need to use an older version of Python here. The OFDM symbols

from the USRP output terminal are generated at an intermediate frequency of 1GHz.

The Phased array takes these symbols and up-converts them to 62.64GHz, and then

transmits the resulting OFDM symbols. The transmitting unit also consists of a
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

(g) Scenario 7 (h) Scenario 8 (i) Scenario 9

(j) Scenario 32 (k) Scenario 33 (l) Scenario 34

Figure 2.2: This Figure Shows an Example Image Sample from Scenarios 1 - 9 and

Scenarios 32- 34

GPS module placed on top of the vehicle and connected to a Windows machine. The

GPS module utilized for obtaining the user’s position is the RTK Express alongside a

GNSS Multi-band antenna, which works for both L1 and L2 frequencies. The GPS is
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being operated in Positioning with RTK mode, which provides high-accuracy position

measurements (with an accuracy of 1.4cm of the actual position). The GPS antenna

is placed on the roof of the vehicle in order to obtain accurate readings and is then

initialized using a python script. The GPS coordinates of the vehicle are captured

every 100ms, i.e., at a rate of 10 samples per second. The captured data is stored as

a text file on the machine.

mmWave Receive Power: The Receiver unit consists of the same Phased array

antenna(centered at 62.64Ghz), along with a camera and a GPS receiver to accurately

provide the location of the base station. It further possesses a Radar and a LiDAR

unit for obtaining out-of-band information about the environment and other objects

within the FOV of the receive antenna. We have three different machines at the

base station, owing to the large throughput and driver requirements of the various

sensors. The different sensors or modalities collect at a different rates. At the receiver

antenna, the received symbol is processed and passed through the USRP and gives

I/Q samples, where each sample would be a 1x64 vector. The received 2D power

matrix is averaged to compute the maximum power in each row. This would be the

received beam direction or, more specifically, beam index. This constitutes one of the

modalities.

Visual Data: The second modality is collected from an RGB camera. The RGB

camera captures an image that consists of RGB and depth. The camera is a 110-

degree FOV unit with wide-angle capabilities and an f/1.8 aperture. The camera

captures samples at 10Hz, i.e., 10 samples a second. The output of the camera is

RGB images of dimension 960 × 540 pixels.

Position Data: The third modality is GPS, which includes the GPS position of

the transmit unit and the GPS position of the basestation.

Radar Data: The fourth modality that is collected is the Radar. The module is

9



GPS Position, Orientation
Camera
LiDAR

Radar

100 ms 100 ms

t - 1 t + 1 t + 2t

current instance

t + k

Image Radar LiDAR GPS

t - 2

Image Radar LiDAR GPS

Sampling 
Clock

time instant
t - 2

time instant
t

Offline Data 
Synchronization

Processing 
Unit

Figure 2.3: The Illustrative Figure Presents the Overall Data Collection Process. It

Shows a mmWave Basestation Equipped with a nmWave Array, Camera, Radar, and LiDAR

Serving a UE.

a frequency-modulated continuous wave radar (FMCW) with an operating frequency

range of 76 to 81 GHz with 4 GHz bandwidth, with a maximum ranger of 100m.

The radar is programmed to collect at 10Hz. The entire radar data collection is done

through mmWave studio and python. The mmWave studio used a custom Lua script

which aids in this data collection. The data collected from the radar consists of 3D

complex I/Q radar measurements of (number of Rx antenna) x (samples per chirp)

x (chirps per frame).

LiDAR Data: Two types of LiDARs (2D and 3D) are used in the different
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DeepSense 6G testbeds. We present the details of both these LiDARs here.

• 2D LiDAR: The first sensor that was used is a 2-Dimensional LiDAR which

collects at 10Hz. The maximum range of this sensor is 14 meters. The sensor

utilizes an infrared laser at 905 nm to transmit and then record the reflected light

samples. The data collected here is a map of the environment within its current

plane. The plane here would refer to an x-y plane with respect to the LiDAR

sensor. A simple example here to explain this would be to imagine a sheet

of paper whose normal vector lies along the height of the LiDAR sensor. The

LiDAR collects coordinate data of moving objects(moving here is an arbitrary

term, the objects may be stationary as well) in the polar coordinate system.

The data is stored as sets of [r, theta], where r is the distance of an object from

the center of the sensor, and theta is the angle the r vector makes with the

vector normal to the front of the sensor. The distance ’r’ is in meters, and theta

is in radians( the range of theta is from -pi to +pi). The LiDAR collects 460

data points, each consisting of one [r, theta] pair every second.

• 3D LiDAR: The second sensor is a 3-Dimensional LiDAR, which has a 32-

channel inbuilt configuration. The word channel refers to the number of vertical

beams being used here. The sensor has 1024 horizontal beams, with its FOV

in azimuth being 360 degrees. In the vertical direction, the FOV is limited to

54 degrees, being split between 32 beams. The sensor operates in 2 sampling

modes. These are the 10Hz and the 20Hz modes. The maximum range of

the sensor is 120m; however, if we use the 20Hz sampling rate, we get a 15%

reduction in the maximum range. The sensor transmits infrared light at 865nm

in all directions. It then receives in all directions and generates the environment

map as a point cloud. The sensor data collection is performed through python.
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A stringent requirement of Python 3.6+ is required to use the packages in order

to run this sensor. The sensor continuously captures and transmits the data

to the machine through a UDP connection over Ethernet. Gigabit Ethernet

is a must here since the sensor generates a large amount of data. The sensor

is configured using the serial number and parameters such as the operating

mode. This sensor collects data in the form of large .pcap files(packet capture

files). Each .pcap file is over 20 gigabytes in size. The data contained in these

files is an environment map, or rather the continuous capture of a changing

environment with respect to time. The .pcap files contain a set number of

LiDAR frames, which is based on the mode of operation of the sensor. The

sensor is operated at 1024x20 mode. This means that we are collecting data

at 20Hz from this sensor. A better term here would be collecting data at 20

frames a second. In order to generate our required frames from this large .pcap,

MATLAB is utilized. The generated frames are each around 1.5 to 2MB in

size. However, a 20 GB .pcap can have more than 40000 frames, meaning that

the total size of all the frames combined would exceed 80 GB. Each generated

frame consists of several fields.They are timestamp,location,reflectivity,range

,and sensitivity. The timestamp field is used for time synchronization between

this sensor and the rest of the modalities. It holds the time(in milliseconds)

from the start of the data collection until the instant the frame was collected.

The second field(and arguable the most important one) is the location field,

which holds the xyz coordinate points of the environment, or rather the point

cloud map of the environment. MATLAB handles the conversion from spherical

to Cartesian through the Ouster LiDAR toolbox. The point cloud obtained is

particularly dense and contains very little noise.). The data captured from all

three machines are synchronized using UTC. The UTC may differ from system
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to system, but the start time between all the systems is synchronized using a

TCP socket connection and transmitting a start message to all the machines

simultaneously. The data is captured and stored on the various data collection

machines and then undergoes post-processing and manual filtering to obtain the

samples in which the transmitter is within the field of view of the basestation.

The FOV of the base station is the same as the minimum FOV amongst all

the utilized sensors. This is to ensure that the data is consistent within all the

sensors. Thus the FOV of the camera is used in this case to decide the FOV of

the base station.

2.3 Procedure For Data Collection

The UE/transmitter unit consists of the GPS with a Windows machine, a Phased

array antenna centered at 62.64GHz (the Tx antenna), a NI B210 USRP, and a

raspberry pi placed inside the vehicle. The GPS is first initialized and starts capturing

the vehicle’s position along with the UTC every 100ms. The phased array is then

initialized to transmit quasi-omni-directionally with a transmit gain of 90dBm. The

transmitted waveform is an OFDMwaveform at the previously noted center frequency.

The vehicle is then driven around the zone of interest. The Tx antenna is oriented in

a way such that it always faces the BS. The BS consists of a Phased array antenna

centered at 62.64 GHz (the Rx antenna), an RGB camera, a GPS unit, an FMCW

radar, and a 3D LiDAR unit are initialized sequentially. The data is collected from

all the sensors simultaneously, along with the UTC for each sample. This timestamp

is used to synchronize the sensor data during the post-processing phase. The overall

data collection process is presented in Figure 2.3. The detailed structure of the 3D

LiDAR data is presented next.
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2.4 Structure Of The LiDAR Data

The LiDAR maps the environment in two steps. The sensor transmits beams of

infrared lasers in all directions. Once the laser is reflected from any object, LiDAR

measures the time taken between the transmission and the reception of the beam.

It uses this time to calculate the distance where the object is located. The angles

at which the LiDAR can receive depend on the configuration of the LiDAR, i.e., the

number of vertical and horizontal beams along with the vertical and horizontal FOV.

In the case of the 3D LiDAR, the number of vertical beams is 32, with a FOV of 45

degrees. This gives a vertical resolution of 1.406 degrees. The azimuthal FOV is 360

degrees with 1024 beams. This gives a horizontal resolution of 0.351 degrees. The

LiDAR converts the received data into LiDAR data packets. Each packet consists of

16 azimuth blocks and is always 12608 bytes in length. The format is as follows:

Table 2.1: LiDAR Data Format

Word Azimuth Block 0 .. Azimuth Block 15

(Word 0,1) Timestamp .. Timestamp

(Word 2[0:15]) Measurement ID .. Measurement ID

(Word 2[16:31]) Frame ID .. Frame ID

(Word 3) Encoder Count .. Encoder Count

(Word 4,5,6) Channel 0 Data Block .. Channel 0 Data Block

(Word 7,8,9) Channel 1 Data Block .. Channel 1 Data Block

. . . .

(Word 193,194,195) Channel 63 Data Block .. Channel 63 Data Block

(Word 196) Azimuth Data Block Status .. Azimuth Data Block Status

Each azimuth blocks consists of the following data:
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Table 2.2: Packet Format

Word Byte 3 Byte 2 Byte 1 Byte 0

(Word 0) unused[31:24] range mm[19:16] range mm[15:8] range mm[7:0]

(Word 1) signal photons[31:24] signal photons[23:16] reflectivity[15:8] reflectivity[7:0]

(Word 2) unused[31:24] unused[23:16] noise photons[15:8] noise photons[7:0]

• Timestamp [64-bit unsigned int] - timestamp of the measurement in nanosec-

onds

• Measurement ID [16 bit unsigned int] : a sequentially incrementing azimuth

measurement counting from 0 to 511, or 0 to 1023, or 0 to 2047 depending on

LiDAR mode.

• Frame ID [16 bit unsigned int] - index of the LiDAR scan. Increments every

time the sensor completes a rotation, crossing the zero point of the encoder.

• Encoder Count [32-bit unsigned int] - an azimuth angle as a raw encoder count,

starting from 0 with a max value of 90111 - incrementing 44 ticks every azimuth

angle in 2048, 88 ticks in 1024, and 176 ticks in 512 modes.

• Data Block [96 bits] - 3 data words for each of the 16 or 64 pixels. The format

of the data block is provided

– Range [32-bit unsigned int - only 20 bits used] - range in millimeters,

discretized to the nearest 3 millimeters.

– Signal Photons [16 bit unsigned int] - signal intensity photons in the signal

return measurement are reported

– Reflectivity [16 bit unsigned int] - sensor signal photon measurements are
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scaled based on measured range and sensor sensitivity at that range, pro-

viding an indication of target reflectivity.

– Ambient Noise Photons [16 bit unsigned int] - ambient noise photons in

the ambient noise return measurement are reported

• Azimuth Data Block Status [32 bits]- indicates whether the azimuth block con-

tains valid data in its channels’ Data Blocks. Good = 0xFFFFFFFF, Bad =

0x0. If the Azimuth Data Block Status is bad (e.g., in the case of column data

being dropped), words in the data block will be set to 0x0, but Timestamp,

Measurement ID, Frame ID, and Encoder Count will remain valid.

The LiDAR packets are unusable in their current state. They need to be converted

into something which can be easily read and understood. The data may be trans-

formed into 3D Cartesian coordinates in the LiDAR coordinate frame. The following

data is available within a LiDAR packet:

• encoder count of the azimuth block (η)

• range from the data block of the i-th channel (r)

• beam altitude angles (α)

• beam azimuth angles (β)

The corresponding 3D point can be computed as

x = r cos(θ) cos(ϕ); (2.1)

y = −r sin(θ) cos(ϕ); (2.2)

z = r sin(ϕ), (2.3)

where θ = 2π
(

η
90112 + β[i]

360

)
, ϕ = 2π

(
α[i]
360

)
, and r is the range from the data block of the

i-th channel. The range of i here is from 1 to 63. In order to process the LiDAR data,
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a .pcap file is opened in MATLAB by using the corresponding .json configuration file

from the sensor. The data blocks within the packet are examined and the data within

each of the blocks are extracted. The data is converted to co-ordinate points within

the LiDAR coordinate system. This system is identical to a spherical co-ordinate

system. Finally, the frames are plotted and are saved as corresponding polygon files.

The timestamps of each of the frames are also saved to aid in time synchronization.
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Chapter 3

3D LiDAR Aided Link Status Identification

3.1 Introduction

Millimeter-wave (mmWave) and sub-terahertz (sub-THz) communications are be-

coming dominant directions for current and future wireless networks [1, 14]. With

their large bandwidths, they have the ability to satisfy the high data rate demands

of several applications such as wireless virtual/augmented reality (VR/AR) and au-

tonomous driving. Communication in these bands, however, faces several challenges

at both the physical and network layers. One of the key challenges arises from the

sensitivity of the high-frequency signals (i.e., mmWave and sub-THz) to blockages

[2]. These signals suffer from high penetration loss and attenuation, resulting in

strong dips in the received signal-to-noise ratio (SNR) whenever an object is present

in-between a basestation and a user. Such dips lead to sudden disruptions of the

communication channel, which severely impact the reliability of wireless networks.

Re-establishing LOS connection is usually done reactively, which incurs critical net-

work latency [15]. Given all that, high-frequency wireless networks need not only

maintain line-of-sight (LOS) connections but also do so proactively, which implies a

critical need for a sense of surrounding.

In wireless networks, the primary reason behind LOS link disruptions or blockages,

are visible objects. Thus one could identify when such objects would interrupt the

link. An object detection neural network utilizing the details captured in a 3D point

cloud could provide a much needed sense of the environment to the wireless network,
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facilitating the identification of objects by the wireless network and their behavior.

Such information could be utilized to detect possible blockages. Such capabilities

could alleviate the strain that blockages cause to a link, and thus this work focuses

on developing a LiDAR-aided link identification solution for high-frequency wireless

networks. In particular this work attempts to develop a sensing aided solution which

enables the mmWave basestations to identify whether or not a LOS link is blocked.

3.1.1 Prior Works

The problem of LOS link blockage has long been acknowledged as a critical chal-

lenge to high-frequency wireless networks [1, 16–18]. In those networks, the quality of

service highly deteriorates with link blockages. Therefore, solutions centered around

multi-connectivity are a major avenue to handle that problem [17]. For instance,

[18] proposes a multi-cell measurement reporting system to keep track of the link

quality between a mmWave user and multiple basestations. All basestation in that

system feed their measurements to a central unit that takes care of cell selection and

scheduling. This system is further studied and tested in [17] under realistic dynamic

scenarios. A slightly different look on multi-connectivity is presented in [19, 20]. In

[19], the authors propose a few approaches for multi-connectivity, all of which focus

on utilizing low-frequency bands (sub-6 GHz) to support the mmWave network. [20],

on the other hand, develops a multi-connectivity algorithm that does not only factor

in network reliability but also latency. Collectively, the work on multi-connectivity

has its promise and elegance, yet it is lacking on two important fronts. First, it is

inherently wasteful in terms of resource utilization; multiple basestations schedule

resources for one user as a precaution for probable LOS blockages. The other is its

reactive nature; the majority of the multi-connectivity algorithms are designed to

react to link blockages, not anticipate them.
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A new trend in addressing LOS blockages has been developing in recent years, in

which the driving power is machine learning [9, 12, 21–25]. The work in [21] studies

proactive blockage prediction and hand-off for a single-moving mmWave user in the

presence of stationary blockages. The proposed solution utilizes observed sequences

of mmWave beamforming vectors (beams) and uses a Gated Recurrent Unit (GRU)

network to learn beam patterns that proceed link blockages. Again, despite its appeal,

it still falls short in meeting the latency and reliability requirements as the sensory

data are only expressive of stationary blockages. On a different note, the work in

[22] explores a new dimension for blockage prediction in single user communication

settings. It proposes a modified residual network [26] that uses visual data to pre-

dict stationary blockages. However, like its wireless-data counterparts, it struggles in

dealing with complex scenarios with dynamic blockages. Predicting dynamic block-

ages require more information about these moving blockages in the environment. [9]

utilizes the optimal beam indices and the RGB images of the wireless environment

to predict dynamic link blockages proactively. However, this solution was based only

on synthetic dataset, raising an important question about its practicality, i.e., can

this promising solutions be achieved in real-world? Further, visual data is severely

impacted by poor weather and lighting conditions making it challenging for these

solutions to perform efficiently in real-world scenarios. In [12, 23], in-band mmWave

and sub-6GHz based wireless scattering signatures were used to identify/predict the

incoming mmWave link blockages. In particular,[23] proposes to use the sub-6GHZ

channels to decide whether or not the mmWave LOS link is blocked. These solu-

tions, however, are mainly capable of predicting immediate blockages and are hard

to scale to complex/crowded scenarios. Solutions based on radar and 2D LiDAR

sensory data were proposed for the first time in [12, 24, 25]. Despite their promising

results, easy sensing modality has its advantages and drawbacks. For example, radar
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Figure 3.1: The Illustrative Figure Shows a mmWave Basestation Equipped with a

mmWave Array and 3D LiDAR Serving Multiple Mobile Users. The Objective of This

Work Is to Utilize Position and 3D LiDAR Point-cloud Data to Predict the Link Status of

the User.

data are mainly suitable for uncrowded scenarios and 2D LiDAR sensors can only

capture limited information, making it difficult for these sensors to capture detailed

information of the real-world wireless environment.

3.1.2 Contribution

In [12, 27], the authors proposed a sensing-aided (image and 2D-LiDAR, respec-

tively) machine learning-based solution to predict the LOS link blockage proactively.

However, both these approaches were evaluated on real-world scenarios with station-

ary transmitter and receiver. Therefore, an important question that arises is can

we extend these solutions to a more realistic and challenging dynamic scenario with

mobile transmitters. In this paper, we attempt to answer this question. As such, this

work develops a deep neural network that learns to predict the LOS link status by

using the multi-modal 3D-LiDAR point cloud and the position data of the user. The
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main contributions of this paper could be summarized in the following few points:

• Formulating the 3D LiDAR-aided blockage identification problem in mmWave/THz

wireless networks considering 3D LiDAR point-cloud data collected in the real-

world.

• Developing a machine learning approach that is capable of (i) pre-processing

the real-world point-cloud data to enhance the link status identification perfor-

mance, (ii) extracting the relevant features about the scatterers/environment,

and (iii) efficiently predicting the user equipment (UE) link status.

• Providing the first real-world evaluation of 3D LiDAR-aided blockage prediction

based on our large-scale dataset, DeepSense 6G [13], that consists of co-existing

multi-modal sensing and wireless communication data.

3.2 System and Channel Model

In order to illustrate the potential of deep learning and additional sensing-data in

mitigating the link blockage problem, this work considers a high-frequency communi-

cation network where basestations utilize 3D LiDARs to capture relevant information

from the wireless environment. The following two subsections provide a detailed de-

scription of the system and wireless channel models adopted in this work.

3.2.1 System model

The communication system considers a small-cell mmWave basestation deployed

in an outdoor environment. The basestation is equipped with a uniform linear array

(ULA) with M elements and a 3D LiDAR sensor. For practicality [23], the bases-

tation is assumed to employ analog-only architecture with a single RF chain and M

phase shifters. As a result of this architecture, the basestation adopts a predefined
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beamforming codebook F = {fq}Q
q=1, where fq ∈ CM×1 and Q is the total number of

beamforming vectors. The choice for F in this paper is a beam-steering codebook

that follows from the choice of the antenna array, i.e., a ULA. For such a codebook,

each beamforming vector fq, ∀q ∈ {1, . . . , Q} is given by

fq = 1√
M

[
1, ej 2π

λ
d sin(ϕq), . . . , ej(M−1) 2π

λ
d cos(ϕq)

]T
, (3.1)

where λ is the wavelength, and ϕq ∈ {2πq
Q

}Q−1
q=0 is a uniform quantization of the azimuth

angle with an integer step of q. The communication system in this work adopts

OFDM with a cyclic prefix of length D and K subcarriers. For any mmWave user in

the wireless environment, its received downlink signal is given by

yu,k = hT
u,kfqx + nk, (3.2)

where yu,k ∈ C is the received signal of the uth user at the kth subcarrier, hu,k ∈ CM×1

is the channel between the BS and the uth user at the kth subcarrier, x ∈ C is a

transmitted complex symbol that satisfies the following constraint E [|x|2] = P , where

P is a power budget per symbol, and finally nk is a noise sample drawn from a complex

Gaussian distribution NC(0, σ2).

3.2.2 Channel model

The channel model adopted throughout this paper is a geometric mmWave channel

model with L clusters. This model captures the limited scattering property of the

mmWave band [28, 29]. The channel vector of the uth user at the kth subcarrier is

given by

hu,k =
D−1∑
d=0

L∑
ℓ=1

αℓe
−ȷ 2πk

K
dp (dTS − τℓ) a (θℓ, ϕℓ) , (3.3)

where L is number of channel paths, αℓ, τℓ, θℓ, ϕℓ are the path gains (including the

path-loss), the delay, the azimuth angle of arrival, and the elevation angle of arrival,
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respectively, of the ℓth channel path. TS represents the sampling time while D denotes

the cyclic prefix length (assuming that the maximum delay is less than DTS).

Modeling signal blockage: (3.3) is generic in the sense it can describe the channel

for both LOS and NLOS users. However, for the sake of clarity in this paper, the

equation will be adjusted to convey an explicit definition of LOS and NLOS channels.

Let w = [w1, . . . , wL]T where wℓ ∈ {0, 1}, ∀ℓ ∈ {1, . . . , L} represents a vector of

binary variables (indicators). Now, without loss of generality, let the first path in

(3.3), i.e., ℓ = 1, be defined as the LOS path going directly from a user to the BS.

The geometric channel model in (3.3) could be re-written as

hu,k =
D−1∑
d=0

L∑
ℓ=1

w
(u)
ℓ

[
αℓe

−ȷ 2πk
K

dp (dTS − τℓ) a (θℓ, ϕℓ)
]

. (3.4)

to model both a LOS and a NLOS channels. More to the point, a user u is considered

NLOS when its channel vector hu,k is accompanied with a binary vector w that has

w
(u)
1 = 0, and it is LOS when w

(u)
1 = 1.

3.3 Problem Formulation

A significant problem faced in high-frequency wireless networks is the LOS link

blockages. The severity of these problem mostly revolves around the mixed-dynamics

in the wireless environment, i.e., it is characterized by a mixture of dynamic and

stationary objects. Developing a solution is tightly linked to equipping the wireless

network with a sense of its surroundings; such sense transforms the network from

being reactive to its environment to being proactive in it. This simply means having

a network able to predict incoming blockages and initiate hand-off procedures before-

hand. With that in mind, this work attempts to utilize machine learning and a fusion

of 3D LiDAR point cloud and position data to enable that sense of surrounding in a

wireless network. In this work, we primarily focus on predicting whether or not the
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mmWave LOS link is blocked. The objective is to observe a multi-modal data sample

of LiDAR and position at a basestation and use that data sample to predict whether

the user is LOS or not. Such prediction task is made possible by two important facts:

(i) The LiDAR point-cloud data, in general, is rich with information about the scene

they depict, e.g., the type of objects, their relative positions to one another; and (ii)

the position data provides the directional information. The following two subsections

will lay the groundwork for the proposed solutions by providing formal definitions for

the link status identification problem.

3.3.1 Why LiDAR?

LiDAR utilizes beams of infra-red lasers are used to determine the location and the

shape of an object. The wavelength of the emitted radiation lies between 750 nm and

1.1µm. This constitutes the near-infra-red spectrum. 2D LiDAR uses a wavelength

of 905 nm, whereas 3D LiDAR uses a wavelength of 865nm. The larger optical

aperture of 3D LiDAR improves the sensor’s performance in dusty environments due

to only partial attenuation of the laser rather than complete obscuring of the laser.

The selected wavelength also improves performance in foggy environments due to the

minimum laser absorption by water vapor. LiDAR has an innate ability to capture

rich information about the spatial structure of the environment. In short, it generates

a 3-dimensional model of a dynamic environment in the form of a point cloud. This

rich information can be utilized to extract features of our region of interest within

the environment (the region where the transmitter can be found). The distance and

shape of the transmitter are some features that can be extracted from the point

clouds. Such information can be leveraged using machine learning. It can be used in

applications such as predicting the beam direction (beam indices) or detecting where

the transmitter will be based on an arriving sequence of point cloud data.
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A good question to ask here is, why not use images to perform the same task? The

answer to that question lies in the procurement of the data itself. Images require a

camera to be present at the base station. Using cameras, in some situations, opens up

a slew of problems, especially regarding privacy concerns; people are not so inclined

as to be recorded with their consent. LiDAR is a way around those problems. The

sensors do not capture details of a person’s face, which instead looks like a cluster

of random points in a 3D point cloud. The other advantage of LiDAR is the ability

to capture information even when there is no visible light. The same cannot be said

of cameras. LiDAR could even perform much better in low-light scenarios, as the

interference from sunlight is vastly reduced.

3.3.2 Link Status Identification

The primary objective of this paper is to utilize a multi-modal sensing data (3D

LiDAR point cloud of the wireless environment and position of the UE) and develop

a machine learning model that learns to predict whether the UE is LOS or NLOS.

Formally, this learning problem could be posed as follows. For any user u in the

environment, at any given time instant t, a LiDAR and position data pair is observed.

This can be expressed as

Su = {(Xu[t], bu[t])}, (3.5)

where bu[t] is the ground-truth position of the user consisting of the latitude and

longitude information at the tth time instance, Xu[t] is the LiDAR point cloud data

captured at the tth time instance. For robust network operation, the objective is to

observe Su and predict whether the link is blocked or not. Then, the overall link

status of the uth user can be defined as su ∈ 0, 1, where 0 indicates a LOS connection

and 1 indicates that the link is blocked.

The primary objective is attained using a machine learning model. It is developed
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to learn a prediction function fΘ(S) that takes in the observed sensing data and pro-

duces a prediction on the UE link status ŝ ∈ {0, 1}. This function is parameterized

by a set Θ representing the model parameters and learned from a dataset of labeled

samples. To put this in formal terms, let P(S, s) represent a joint probability distribu-

tion governing the relation between the observed data samples S and the current link

status s in some wireless environment, which reflects the probabilistic nature of link

status in the environment. A dataset of independent pairs D = {(Su, su)}U
u=1 where

(Su, su) is sampled at random from P(S, s)—su is serving as a label for the observed

samples Su. This dataset is then used to train the prediction function fΘ(S) such

that it maintains high-fidelity predictions for any dataset drawn from P(S, s). This

could be mathematically expressed as

max
fΘ(S)

U∏
u=1

P(ŝu = su|Su), (3.6)

where the joint probability in (3.6) is factored out as a result of the independent and

identically distributed samples in D. This conveys an implicit assumption that for

any user u in the environment, the success probability of fΘ(Su) predicting su only

depends on its observed sequence Su.

3.4 Proposed Solution

This section presents the proposed solution for predicting user link status in a

real-wireless environment with multiple candidates. It proposes a novel approach that

utilizes bimodal LiDAR and position data in D to identify the link status. A three-

step architecture is proposed for this task. The first step of the proposed architecture

relies on DNNs to produce bounding boxes enclosing relevant objects in the scene.

It is performed to detect all the probable transmitting objects in the environment.

In the second step, the DNN uses position data to predict the probable bounding-
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Figure 3.2: The Figure Presents the Proposed LiDAR-aided Link Status Identification

Model That Leverages Both LiDAR and Position Data to Predict Whether the Link Status

Is LOS or Not. It Highlights the Three Proposed Steps: (i) Scene Analysis, (ii) Object Role

Identification, and (iii) Decision Making.

box centers of the transmitting candidate. The last step involves predicting whether

the user is LOS or not. An in-depth overview of the three-step DNN architecture

is provided below. The detailed solution for single data sample-based transmitter

identification is presented in Fig. 3.2.

(i) Scene Analysis: In order to detect the transmitting candidate in real-wireless

settings, the first step is to identify all the relevant objects in the scene (scene anal-

ysis). A pre-trained object detector is adopted for this purpose. The object detector

generates bounding boxes of all objects in the scene that are of relevance to a wir-

less communication system. For example, in a scene depicting a city street, relevant

objects include, but are not limited to, cars, trucks, buses, pedestrians, and cyclists.

The generated set of bounding boxes are then filtered to only contain objects of the

class that we are interested in, notably cars and buses. By using those output bound-

ing boxes, the relevant-object matrix B ∈ RN×3 is constructed such that each row

has only the normalized coordinates of the center of a bounding box, where N is the

number of relevant objects in the scene.
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Figure 3.3: The Figure Presented Highlights the Decision Making Stage of the Proposed

Solution. The Decision of Whether the User Is LOS or not Is Made by Computing a

Threshold, i.e., If the Shortest Distance Is Greater than the Threshold, the User Is Blocked

and Vice-versa.

(ii) Object Role Identification: In this step, both relevant-object matrix B and

GPS position data are utilized to predict the bounding box center coordinates of the

user. This step involves learning a prediction function that estimates the bounding

box center of the user using the position data. The primary objective is to encode

the relation between the position data and object location in the LiDAR point cloud

data. The function is learned using a 4-layered feed-forward neural network. The

prediction function fΘ is parameterized by a set Θ representing the model parameters

and learned from the dataset D of the labeled data samples. Since b̂Tx is an initial

estimate that solely relies on position data, it is not expected to be a final prediction

but merely an estimate. The idea here is to use the initial estimate in conjunction

with the relevant-object matrix B to identify (or select) the object responsible for the

radio signal (transmitter).
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Table 3.1: Parameters of the 4-layered Neural Network

Layer Parameters

Input Layer Fully connected,size 2x20

Hidden Layer 1 Fully Connected,size 20x100

Activation Layer ReLU Activation

Hidden Layer 2 Fully Connected,size 100x400

Output Layer Fully Connected,size 400x3

In this step, using the additional modality, i.e., the position data, we can estimate

the approximate center coordinates of the transmitter in the scene. We can then uti-

lize these two pieces of information to identify the transmitter in the scene accurately.

This is done using the nearest neighbor algorithm with a Euclidean distance metric.

We first calculate the Euclidean distance between the predicted center coordinates

and all the objects in B. The element of B with the shortest distance to b̂Tx is picked

as the nearest neighbor and, hence, the predicted transmitter object. The assumption

here is that a well-trained prediction function fΘ can predict the center coordinates

close to the actual values, and hence the Euclidean distance-based metric can help in

accurately detecting the transmitter.

(iii) Decision Making: The final step involves deciding whether the user is LOS or

not. As presented in the previous step, we first calculate the Euclidean distance be-

tween the predicted bounding box centers and the different objects in the scene. The

next step involves selecting the object with the shortest distance from the predicted

center. However, if this distance is greater than a particular value, it might represent

a blocked user. In Fig. 3.3, we present the details of this stage. This decision of
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whether the user is LOS or not is made by computing a threshold, i.e., if the shortest

distance is greater than the threshold, the user is blocked and vice-versa. To compute

the threshold, we utilize the training dataset and then evaluate the performance on

the test set.

3.5 Development Dataset

To evaluate the performance of the proposed solution, we adopt several scenarios

of the DeepSense6G dataset. Specifically, scenarios 31, 32, 33, and 34, consisting

of multi-modal sensing and communications data, were utilized for this problem. A

closer examination of the three-dimensional LiDAR data reveals that the data is too

sparse to provide accurate beam prediction results. Small trees or shrubs block the

laser at larger distances, making it challenging to view the transmitter. However,

the data is still dense enough to visualize whether an object is being blocked or

not. Sequences of data containing many multi-user blockage instances were identified

from Scenarios 31, 32, 33, and 34 of the DeepSense6G dataset. The sequences were

Table 3.2: Details Of the Development Dataset

Scenario(s) LOS Samples NLOS Samples

Scenario 31 72 3

Scenarios 32, 33, 34 607 79

manually annotated using MATLAB’s groundTruthLabeler, for two class labels; Tx

and Distractor. Each bounding box represents a cuboid that contains the object of

interest within the point cloud frame of reference. The bounding box is a 1×9 vector

of the form [xctr, yctr, zctr, xlen, ylen, zlen, xrot, yrot, zrot], where:
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Figure 3.4: The Figure Presents How The 1 × 9 Vector Translate to a Cuboidal Bounding

Box

• xctr, yctr, and zctr specify the center of the cuboid.

• xlen, ylen, and zlen specify the length of the cuboid along the x-, y-, and z-axis,

respectively, before rotation has been applied.

• xrot, yrot, and zrot specify the rotation angles for the cuboid along the x-, y-,

and z-axis, respectively. These angles are clockwise-positive when looking in

the forward direction of their corresponding axes.

Fig. 3.4 presents how the above values translate to a cuboidal bounding box. The final

development dataset consists of 422 training samples and 257 test samples. The test

dataset contains all the samples from Scenario 31, meaning that the trained network

would be tested on a data set containing samples from the previously unseen Scenario

31 along with samples from Scenario 32, 33, and 34.
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Table 3.3: User Identification Performance

Parameter Observed Value

Prediction MSE 7.8 × 10−6

Tx ID Verification(Prediction Within 60cm) 91.4%

3.6 Performance Evaluation

In this section, we first discuss the neural network training parameters and the

adopted evaluation metrics. Next, we present the numerical evaluation of the pro-

posed solution.

Experimental Setup: The model is trained with an ADAM optimizer with an

initial learning rate of 1 × 10−3, for 150 epochs and a batch size of 128. All the

simulations were performed on a single NVIDIA Quadro 6000 GPU using the PyTorch

deep learning framework. We adopt the Mean Squared Error (MSE) loss to train the

model. We utilize the top-1 accuracy metric as the primary method of evaluating the

proposed solution.

Can 3D LiDAR and position data be utilized to identify the user?

To answer this question, we evaluate the proposed solution on the development

dataset as described in Section 3.5. In Table 3.3, we present: (i) The MSE between

the predicted and ground-truth centers of the user and (ii) the user identification

accuracy on the test set. It is observed that the proposed solution achieved an MSE

of 7.8 × 10−6 and an user identification of 91.4%. The extremely low MSE and high

prediction accuracy of the proposed approach highlights that sensing-aided solutions

can enable user identification in a multi-candidate scenario.

Can 3D LiDAR and position data aid in predicting link status? In Figure 3.5,
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we present the probability distribution of the shortest distance between the predicted

bounding box center and the nearest object for the LOS and NLOS cases. It also

shows the selected threshold to distinguish between the LOS and NLOS cases. This

plot is generated on the evaluation set of the development dataset which consists

of data from the previous scenarios along with samples from the unseen scenario

31. The problem now reduces to a binary hypothesis problem[30] defined on the

Euclidean distance x. The two distributions are the conditional distributions or more

appropriately: the conditional densities for the two hypotheses, are mathematically

defined as follows,

H0 : X ∈ PDF (Line of Sight link) (3.7)

H1 : X ∈ PDF (Non Line of Sight link) (3.8)

Computing the threshold may be performed using the Neyman-Pearson Likelihood

ratio test which partitions the observation space into two regions ΩH0 and ΩH1 [30].

Partioning the observation space in this manner is constrained on the probability

of false alarm. In the observed problem a false alarm occurring would be defined

as ’Predicting that a blockage has occurred when a blockage has not occurred’. The

Neyman-Pearson Likelihood ratio test may be mathematically described as follows,

tLRT ≜
P(x | H1)
P(x | H0)

H1
≷
H0

η (3.9)

where tLRT is the test statistic under the binary hypothesis , and η is the threshold.

Upon evaluating the formulated LRT we obtain a value of η = 3m. We next compute

the link status of the samples in the test dataset based on this calculated threshold.

It is observed that for this small development dataset, we achieve a 87% link status

prediction accuracy, highlighting the efficacy of the proposed solution.
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(a)

(b)

Figure 3.5: The Figure (a) Presents the Distributions of the Shortest Distance Between

the Predicted Bounding Box Center and the Nearest Object for The LOS and NLOS Cases;

Figure (b) Presents the Probability Densities of the Two Distributions Presented in Figure

(a)
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Chapter 4

Conclusion

This thesis focused on developing a solution that addresses a key challenge in

mmWave communications: the sensitivity of the mmWave link to blockages in the

environment. First, we propose applying sensory information about the environ-

ment as a practical means by which one could obtain the channel impulse response.

We then introduce the multi-modal sensing and communications dataset DeepSense

6G, which consists of co-existing wireless and sensory information. We discuss the

implementation of the testbed utilized for collecting the dataset, including but not

limited to the various sensory modalities employed, the procedure for collecting the

data, post-processing the data, time synchronization, etc. Furthermore, we discuss

the selection of 3D LiDAR as the sensory modality of choice and its advantages over

images. Secondly, we propose a DNN-based bi-modal solution to identify a transmit-

ter from a set of probable transmitting candidates by utilizing the 3D LiDAR point

cloud and the GPS position of the transmitter. The performance of the transmitter

identification is then evaluated. Consequently, we predict the bounding boxes of the

transmitter based on the position and utilize the bounding boxes to generate a set

of probability distribution functions based on Euclidean distances for both the LOS

and NLOS cases. Finally, we propose a binary hypothesis test on the Euclidean dis-

tance distributions examined under the Neyman-Pearson Likelihood Ratio test and

compute a threshold to predict the link status with high accuracy.
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