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ABSTRACT 

 

 Energy Expenditure (EE), a key diagnostic measurement for treatment of obesity, 

is measured via indirect calorimetry method through breath biomarkers of CO2 

production and/or O2 consumption rates (VCO2 and/or VO2, respectively). Current 

technologies are limited due to prevailing designs requiring wearable facial accessories 

that present accuracy, precision, and usability concerns with regards to free living 

measurement. A novel medical device and smart home system, named Smart Pad, has 

been developed, with the capability of energy expenditure assessment via VCO2 

measured from a room’s CO2 concentration. The system has 3 distinct capabilities: 

contactless EE measurement, air quality optimization via actuation of room ventilation, 

and efficiency optimization via ventilation actuation of only human-occupied 

environments. The Smart Pad shows accuracy of 90% for 14-19 minutes of resting 

measurement and accuracy of 90% for 4.8-7.0 minutes of exercise measurement after 

calibrating for air exchange rate (λ [hour-1]) using a reference method. Without reference 

instrument calibration, the Smart Pad system shows average accuracy of nearly 100% 

with correlations of Y=1.02X, R=0.761 for high resolution measurements and Y=1.06X, 

R=0.937 for averaged measurements over 50-60 minutes. In addition, the Smart Pad 

validation for contactless EE measurement has been performed in different environments, 

including a vehicle, medical office, a private office, and an ambulatory enclosure with 

rooms, ranging in volume from 3.1 m3 to 18.8m3. It was concluded that contactless EE 

measurements can be accurately performed in all tested scenarios with both low and high 

air exchange environments with λ ranging from 1.5 Hours-1 to 10.0 Hours -1.  The system 
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represents a new way to assess EE of individuals under free-living conditions in an 

unobstructive, passive, and accurate manner, and it is comparable or better in single 

breath gas measurement accuracy (with comparisons sourced from FDA data) than 

other medical devices (e.g. Vyntus CPXTM, MasterScreen CPXTM, Oxycon ProTM, and 

MedGemTM) which were 510(k) cleared by the FDA for prescription use in 

metabolic/cardiopulmonary diagnostics.   
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CHAPTER1 

1 INTRODUCTION, BACKGROUND, AND PROJECT MOTIVATION 

1.1 Importance of Caloric Balance and Energy Expenditure to Weight Loss 

According to the world health organization (WHO, 2020), energy balance is at the 

heart of weight loss/gain and consists of 2 different parameters: “Calories in”, which is 

food intake in kcal/day, an excess of which results in weight gain, and “calories out”, 

which is calories “burned” over the course of a day in kcal/day, also known as energy 

expenditure (EE [kcal/day]), an excess of which results in weight loss. In common 

clinical practice, the energy needs of a patient are determined through estimation of 

various predictive equations (Mifflin et al., 1990). Althought the equations provide the 

predicted population’s average value for resting energy expenditure (REE), they do not 

accurately assess individual resting energy expenditure. Individual’s REE values can 

deviate positively or negatively in ±900 kcal/day, which is a significant margin when 

compared to total energy expenditures (TEE) within a single day (Deng & Scott, 2019; 

McClave et al., 2016). Theser errors can are especially problematic considering that 

typical caloric deficits in the range of 500 kcal/day for a successful weight loss diet (Fock 

& Khoo, 2013), and this is the U.S. NIH suggested caloric deficit for person suffering 

from class I obesity (NIH, 1998). As such, errors in measurement or estimation of REE 

can lead to unsuccessful weight loss.   

Daily EE assessment can offer newfound accuracy in true average EE 

measurements over a longitudinal period, which may offer greater clinical utility for 

obesity treatment since EE is known to vary significantly from day to day. Even with 
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highly controlled dietary regiments and limited physical activity, day-to-day 24-hour EE 

varies by as much as 8-10% (Donahoo et al., 2004; Ravussin et al., 1986; Rumpler et al., 

1990). Pooled mean of day-to-day variability (in terms of CV) for free-living EE in 21 

studies has been shown to be 11.8% (Black & Cole, 2000). Specifically, in the treatment 

of obesity, it is common for EE to change significantly over time. This occurs when a 

person undertakes a caloric deficit diet, often causing the body’s REE to also decrease 

(de Jonge, Bray, et al., 2012; A. Dulloo & Schutz, 2015; A. G. Dulloo & Jacquet, 1998; 

Hill et al., 2012; Jebb et al., 1996), resulting in what is referred to as a “weight loss 

plateau”, where the rate of weight loss slows down or stops completely despite consistent 

dieting in terms daily caloric intake. For obese patients who often undergo deficit diets 

for months, accounting for changes in REE is often beneficial for continued success in a 

weight loss program. There is strong evidence suggesting that accounting for fluctuations 

in EE via repeated EE measurement improves weight loss outcomes (Bray, 2004; 

Campos et al., 2006; Criscione et al., 2013; Elliot et al., 1987, 1989; McDoniel et al., 

2008; Seagle et al., 2009; Stump et al., 2017). 

1.2 Current Technological Challenges to Energy Expenditure Measurement 

Measurement of REE is not commonly adopted by clinical practices. Instead, an 

erroneous technique of using predictive equations for estimation of TEE is commonplace, 

which is a potential cause for limited success in treatment of clinical obesity. These 

predictive equations have low measured accuracies, based on N=337 measurements of a 

representative population (Frankenfield, 2013), with the best performing and most widely 

used, Mifflin St. Joer equation (Mifflin et al., 1990) only being observed to have an 82% 

accuracy for a 90% CI. Many studies have observed similar findings (Cancello et al., 
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2018; Hasson et al., 2011; Purcell et al., 2019; Siervo et al., 2014). Besides application to 

obesity medicine, personalized metabolic assessment has invigorated a passion for 

personal health monitoring and calorie tracking across the world, evidenced by 

worldwide Smartwatch adoption, although, this technology has notably low accuracy for 

EE measurement (Chowdhury et al., 2017). As such, a convenient and accurate EE 

measurement technology could substantially benefit both obesity patients and individuals 

interested in their own personal health. 

Given known inaccuracies of predictive equations for TEE, it is reasonable to 

wonder why EE measurement tools are not used extensively in clinical practice. EE 

measurement using current technologies is a technique affected by widely recognized 

issues (Simonson & DeFronzo, 1990) that are a result of a fundamental design flaw of 

these devices: they typically require a subject to breathe into a mouthpiece, mask, or 

some object worn on the subject’s face. Wearing a facial accessory possible results in 

errors including elevated VCO2 and VO2 from hyperventilation occurring while wearing 

an object for breath gas collection on the face, or, alternatively, mistakenly breathing into 

an EE measurement medical device that is not fitted in an airtight manner to the subject’s 

face. These tools have the added operational issues related to wearing an object on the 

subject’s face, including discouraged repeated measurement due to discomfort, which is 

important given high day-to-day variability in TEE, 11.8% (Black & Cole, 2000). Other 

considerations are related to sterilization of facial accessories, an aspect which increases 

both device cost (purchase of additional single use accessories), procedural time 

requirements (sterilization of facial accessories), and inherently increases the risk of 

transmission of various pathogens. There is some evidence to support that these wearable 
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accessories may actually interfere with free-living metabolism measurement (Horner et 

al., 2001). In addition to usability concerns, many current FDA cleared/approved (FDA, 

2003, 2006) technologies for REE measurement have reproducibility errors worse than 

±10% (68% CI) by multiple definitions of reproducibility (Cooper et al., 2009).  

Alternatively, there is a technique for EE measurement from ambient sensors, in 

what is referred to as an “indirect calorimeter room” (Grunwald et al., 2003; Rising et al., 

2015; M. Sun et al., 1994). The indirect room calorimeter method is similar to the 

technique presented in this work, however, in principle it relies on gas composition 

measurements for the inlet and outlet for the ventilation system of the room and therefore 

at its very basis requires a great deal of installation and a specially constructed 

environment (T. Nguyen et al., 2003). Current methodologies for development of an 

indirect calorimeter room are remiss in the sense that they are not portable and require 

extensive installation time, and therefore, unsuitable for widespread clinical adoption. 

Another non-intrusive technique is referred to as doubly labeled water method. This  

technique requires urine collection and the usage of bulky laboratory equipment for 

isotope analysis (Ainslie et al., 2003) that is prohibitively expensive and not a point of 

care measurement. In this technique, a subject is given a dose of isotope-doped water 

(18O and 2H) and resulting isotope excretion rates over the course of several weeks are 

measured using a mass spectrometer. Based on this fundamental principle, the technique 

requires multiple lab visits for a single subject and a large amount of resources for lab 

equipment, isotope-doped water, and non-trivial time for execution of the isotope 

analysis (Schoeller & van Santen, 1982). Table 1 below summarizes many shortcomings 
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of current metabolic measurement technologies, and the potential advantages the Smart 

Pad system developed as the focus of this dissertation presents:  

Table 1. Comparison of Smart Pad System Versus Current Technologies

 
Doubly-

labeled 

water 

method 

Hand-

held 

breath 

analyzers 

Metabolic 

cart 

Metabolic 

rooms 

Smart Pad 

(This work) 

Measurement 

duration 

7-10 days 10 min, 

prior 

resting of 

20 min 

10 min, 

prior resting 

of 20 min  

1-7 days Variable: 15 

minutes to 

full days 

Sample Urine Breath breath Indoor air Indoor air 

Instruments Mass-

spectrometer 

and isotope 

doped water 

Point of 

care 

device 

Human-

sized 

instrument 

with wheels   

CO2 + O2 

analyzers, 

flowmeters, 

computer, 

pumps, etc. 

Ambient 

sensors  

Procedural 

requirement 

for subject 

Drink water 

and urinate 

(2 lab visits) 

Breathe 

into 

accessory 

for 10 

minutes. 

Breathe into 

accessory 

for 10 

minutes  

Minimum 1 

hour  

14-19 min 

occupancy 

(contactless) 

Procedural 

requirement 

for test 

administrator 

Brief subject. 

Calibrate 

GC/LC-MS 

(20+ min) 

and perform 

measurement 

(20+ min) 

Brief 

subject. 

Scan 

sensor QR 

code. 

Fasten 

facial 

accessory. 

Brief 

subject. 

Calibrate 

instrument 

(30 min 

warm up). 

Fasten facial 

accessory. 

Extensive 

weekly 

maintenance 

and 

ventilation 

modification 

None. Even 

unconscious

/sleeping/co

matose/criti

cally-ill 

persons can 

be evaluated  

Consumables 2H18O2 doped 

water with 

known 

concentration 

(100+$/test) 

Single use 

chemical 

sensors 

($3-5/test) 

Wearable 

face masks 

(reusable, 

but, $30+ 

each) 

No 

consumable 

No 

consumable 

 

To the best of the team’s knowledge, this is the first systematic study of an EE 

measurement technique requiring no wearable equipment and relying on CO2 

measurements within the bulk of a confined environment in lieu of inlet/outlet CO2 
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measurements, as is the funamental basis of the indirect calorimeter room method. Two 

attractive usage applications of the device are in clinician’s attending room, where the 

Smart pad could measure the resting EE of every single patient on a given day without 

requiring any wearable equipment, and also in a person’s personal office where it could 

be used to contactlessly measure that person’s EE daily for months or years. This creates 

an unparralleled wealth of data that is of great value for EE measurement, given that 

parameter’s high variation day-to-day (Black & Cole, 2000).  

As such, it is a great benefit to medicine to develop an EE assessment tool to 

combat “weight loss plateaus” and identify normal daily variability in EE that 1. Enables 

frequent EE measurements, to identify average EE for dietary planning, 2. Performs 

accurate indirect calorimetry, since inaccurate EE estimation can lead to large errors in 

energy balance, resulting in unsuccessful weight loss, And 3. Provides true free-living EE 

measurements, so that clinicians can prescribe dietary regiments to their patients based on 

EE measurements during their true uninterrupted daily living patterns. These factors were 

the motivation of the dissertation research compiled within this document.  

1.3 Research Knowledge Gap in Human Metabolism 

Additionally, numerous factors such as acute cognitive stress (Sawai et al., 2007; 

Gérald Seematter et al., 2002; G. Seematter et al., 2000), sleep (Benedict et al., 2011; de 

Jonge, Zhao, et al., 2012; Shlisky et al., 2012), physical activity (Speakman & Selman, 

2003), and exposure to environmental pollutants (Esparza et al., 2000; Manore et al., 

2009) can affect our body’s resting energy expenditure (REE). Longitudinal EE study in 

humans has greatly improved the research community’s understanding of slowly 

changing physiological parameters aging (Alfonzo-González et al., 2006; Lührmann et 
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al., 2009; Min Sun et al., 2001), bodyweight (de Jonge, Bray, et al., 2012; A. Dulloo & 

Schutz, 2015; A. G. Dulloo & Jacquet, 1998; Hill et al., 2012; Jebb et al., 1996), chronic 

disease progression (Gong et al., 2015; Magoffin et al., 2008; Scott et al., 2001), 

however, longitudinal assessment of more acute physiological factors: cognitive stress, 

sleep, physical activity (day-to-day effect) has been largely unstudied in the research 

community, and was one motivation for a portion of the research reported in this work. 

1.4 Research Knowledge Gap in Physical Modeling of Indoor Air  

The assessment of a room’s air exchange rate, referred to as λ in this work, is a 

critical challenge for measurement of REE from ambient CO2 accumulation patterns. λ, 

an important consideration for all occupied indoor environments, is commonly measured 

in hospitals striving to minimize pathogen transmission within operating rooms 

(Dascalaki et al., 2008), schools (Yang et al., 2009) where ventilation can influence 

learning performance (Bakó-Biró et al., 2012), and office buildings striving to maintain 

healthy levels of indoor pollutants (Bluyssen et al., 1996) to prevent incidences of sick 

building syndrome (Redlich et al., 1997). It has been characterized in previous scholarly 

works from human generated CO2 decay data (Batterman, 2017; Ramalho et al., 2013; 

Turanjanin et al., 2014), and the decay modelling procedure is in good agreeance with 

reference methods (e.g. tracer gas with constant injection rate) for λ measurement in 

temporarily unoccupied indoor environments (Claude-Alain & Foradini, 2002; Cui et al., 

2015). Recently, this decay λ value has been applied to CO2 accumulation data for 

determination of human CO2 emission rate in a recent study (Gall et al., 2021) to assess 

one physiological effect of stress. The fundamental model has been described previously 

in several academic works (Batterman, 2017; Haverinen-Shaughnessy et al., 2011; Ruiz 



 

8 

 

et al., 2018) and applied to CO2 accumulation data to assess λ. However, until the 

publication of this dissertation, there has never been a study of the CO2 accumulation 

model with a direct measurement of λ using a medical device to assess source CO2 

strength (referred to as kgen [ppm/hour] or VCO2 [ml/min], which capture essentially the 

same physical effect of CO2 production with differing units). As such, the research 

reported here challenges a fundamental assumption of previous works, which is that the 

presence of a human in an indoor environment has a negligible effect on air exchange.  
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CHAPTER 2 

2 SMART PAD: A CONTACTLESS DEVICE FOR METABOLIC MEASUREMENT 

2.1 Smart Pad System Overview 

The Smart Pad system (Forzani et al., 2018; Ruiz et al., 2018; Sprowls et al., 

2020; Sprowls, Serhan, et al., 2021; Sprowls, Victor, Mora, et al., 2021; Sprowls, Victor, 

Serhan, et al., 2021) consists of a sensor array integrated into a detection module located 

in the rear of a seat pad, within the seat pad’s back cushion (Shown in Figure 1A). The 

array monitors carbon dioxide (CO2) and related environmental parameters for correction 

to standard conditions (humidity, temperature, and barometric pressure) which are all 

used in the calculation of EE, the primary output measurement of the system. The data 

collected from the sensor array is transmitted to a user’s cell phone, where CO2 

accumulation regressions (swift package for automated CO2 analysis in iOS currently 

under development) and ventilation system control logic related to operation of the 

system are performed. During this dissertation work. CO2 data was collected with the 

Smart pad system and analyzed using OriginTM
 or programmatically using in house 

developed Python code. A functional HVAC (heating, ventilation, and air conditioning) 

actuator control system was developed which controls the room’s air ventilation via a set 

of inlet/outlet fans and is turned on/off when deemed necessary by the logic control unit 

of the system (programmed into a cell phone). The ventilation and actuator system are 

beneficial for the system optimization and advantageous for taking a large volume of 

energy expenditure measurements in a given timespan, but in principle, are not necessary 

for contactless EE measurement. That being said, the actuator system does have 

independent value in it’s potential to intelligently control building ventilation (i.e. turning 
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off ventilation when deemed unnecessary) for energy savings and also for the purpose of 

preventing CO2 accumulation beyond 1000 ppm, a level some have observed to result in 

negative cognitive effects (Satish et al., 2012) and potentially other health issues 

(Jacobson et al., 2019). A cutout showing the full integration and application of the Smart 

Pad system is shown below in Figure 1. 

 

Figure 1: Smart Pad System for Contactless Energy Expenditure (EE) Measurement. 

Consisting of (A) a sensor array discretely packaged within a seatpad (B) automated data 

analysis package for EE measure from CO2 data integrated with a user interface viewed 

from an application on a mobile device. (C) An actuator system which sends on/off signal 

to a set of inlet/outlet fans. The usage of the fan system allows for precise control of CO2 

within the target environment.   
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2.2 Smart Pad: Target Application Environment 

The Smart Pad has great potential for measurement of human metabolism in any 

environment where breath gases could possibly accumulate, including measurement in 

any medium-sized environment of suitable volume such as a private office (Sprowls, 

Victor, Mora, et al., 2021), medical office (Sprowls, Victor, Serhan, et al., 2021), 

bedroom, vehicle (Sprowls et al., 2020), clinician’s attending room, classroom (Ruiz et 

al., 2018), etc. Due to inherent ease of use and the completely passive nature of the 

proposed innovative measurement technique, the Smart pad system has enormous 

potential in both clinical and research settings. The system could be installed in an 

obesity clinician’s attending room, as shown in Figure 2, where it could measure the EE 

of all patients seen in that room on a given day, without a time-consuming use protocol 

for the clinician. Additionally, the system could be installed in a person’s bedroom or 

office where it could track their daily EE patterns over the course of months or years. 

Another promising application environment is within a vehicle, where the Smart pad 

could measure the EE of a person every single day during a 15 minute work commute. 

These use scenarios have great implications for clinical application, since the Smart pad 

could continuously transmit EE measurements to a clinician for optimal dietary planning 

based on real-time EE measurements. Alternatively, for research application, daily 

tracking of an individual’s EE patterns would provide unparalleled insight into the 

physiological significance of EE fluctuations and factors that might influence them. In 

this work, many different measurement environments were validated for contactless REE 

accuracy of ±10% including a moving vehicle (3.1m3), medical office (8.2 m3), private 

office (14.0 m3
), and a curtained enclosure (18.8 m3) within a larger room. 
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Figure 2: Smart Pad Target Application Environment. Patients often wait in an attending 

room for approximately 10-15 minutes to be seen by a healthcare provider. Given the 

Smart Pad’s contactless measurements and short assessment length, it is realistic to 

expect that the Smart Pad can be integrated into this type of environment to provide 

patients with valuable metabolic data at almost no time or consumable cost.  

2.3 Smart Pad Sensing Module 

The Smart Pad sensing module is the main, namesake (module integrated into seat 

pad) feature of the system and serves the primary purpose of recording gas concentration 

measurements and transmitting them to a cell phone for analysis via the equations 

developed as a part of this work. The PCB at the heart of the Smart pad system has 

surface mounted sensors for measurement of 8 different parameters including 

temperature, pressure, relative humidity, CO2 concentration, battery life, and also a 
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connector that allows the device to take measurements of 2 postural sensors. These 

sensors can potentially enable “occupancy determination” of whether or not a subject is 

seated on the Smart pad, but, more complex conclusions on a person’s posture may be 

made in the future from postural sensor data (i.e. slouching, seated upright, etc.). The 

sensing PCB has a built in Bluetooth module that allows for wireless communication of 

sensor data from the module to a user’s cell phone. The assembly process for the Smart 

Pad’s sensing module is shown below: 

 

Figure 3: Smart Pad Hardware Components and Assembly Process.  Measurement unit 

(houses sensor PCB shown in top left) and CO2 sensor are fitted for Smart Pad seat 

cushion opening. The Smart Pad is tied around an office chair, where it is used to take EE 

measurements for the seated person.  
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2.4 Smart Pad Actuation Module and Testing Environment 

Many different types of measurement environments were evaluated as a part of 

this dissertation research including a medical office, private building office, vehicle, and 

curtained area of a larger lab. All environments showed promising accuracy, ±10%, and 

comparable measures to FDA 510(k) cleared devices (see Table 19), but, in each case the 

ventilation system was modified in some way (with the exception of the vehicle, where 

recirculation mode was instead turned on). Over time, the CO2 accumulation model was 

refined, and the device was refined to be functional for REE measurement from only 14-

19 minutes of occupancy in a room with only the inlet and outlet HVAC vents blocked to 

disallow any significant airflow during CO2 accumulation periods. In all human occupied 

environments, it is essential that CO2 concentration within the metabolic chamber is kept 

below 2,000 ppm while occupied as a safety consideration, as concentrations exceeding 

this level have been observed to result in cognitive impairment (Allen et al., 2016; Satish 

et al., 2012; Zhang et al., 2015) after exposure for prolonged periods of time. To achieve 

this, an actuator system was developed which controls a set of inlet/outlet fans to allow 

for precise control of CO2 concentration within the operating environment. The actuation 

system is an IoT (internet of things) connected device via Bluetooth and receives an 

on/off signal from the user’s cell phone that turns the fans on to bring the CO2 level 

within the room to baseline and start new data collection. This on/off signal is sent 

automatically from the user’s cell phone or tablet depending on the lower/upper 

concentration threshold limits set within the mobile application for the experimental run. 

These lower/upper limits effectively define the length of the experiment and are of great 

operational importance, especially with regards to accuracy and measurement duration, as 
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covered later in this dissertation (Chapter 4). A commercially available Velcro door 

(RetrotecTM) was also repurposed to fully seal the operating environment described in 

Chapters 3 and 4. Eventually, the team will strive like to implement the system without 

the installation of the door or ventilation system and future work strives to accomplish 

this goal. That being said, this dissertation research lays the foundational groundwork for 

those goals, by validating successfully for the first time a contactless and portable 

technique for REE measurement.  

 

Figure 4: Smart Pad Measurement Environment and Actuator System. Top left: Shows 

actuation system (Bluetooth controlled) and connections to inlet/outlet fans. Top right: 

Bird’s eye view of testing environment for Chapter 3 and ventilation system with major 

components labeled. Bottom panel: Sealing of Velcro door to create airtight environment.  
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2.5 Smart Pad Data Analysis 

CO2 concentration, temperature, relative humidity, and pressure data are all 

collected for a subject in a medium sized room. Established equations for describing 

transient CO2 are applied to collected data, with only CO2 accumulation data being 

analyzed (see Figure 5). The CO2 accumulation model relates air exchange, 

mathematically represented by λAcc [hours-1], also referred to as air exchange rate (AER) 

or number of air volume changes (ACH) (Claude-Alain & Foradini, 2002) in the room 

per hour, to CO2 accumulation patterns. The term fundamentally represents the number of 

times the rooms volume is exchanged to the surrounding environment per hour. Prior to 

this work and the publication of the findings of Chapter 4, there was no distinguishment 

between λ (air exchange) assessed from CO2 accumulation resulting from human 

occupancy (λAcc) or from CO2 decay resulting after a human’s departure (λ0) in scientific 

literature. Since the findings of this work suggest there may be a significant difference 

between the two terms, this distinguishment is made here for consistency between λAcc 

and λ0. A sample of analyzed CO2 accumulation data is shown below in Figure 5.  
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Figure 5: Smart Pad Data Analysis Algorithm.  (A): Raw Smart Pad data for 2 EE 

measurement cycles. (B) model used in data analysis to determine EE from kgen.  

In the data analysis for the first growth curve, a VCO2 value for the occupant is 

measured directly via a medical device considered a high accuracy reference instrument. 

This allows for the direct measurement of λAcc using the mathematical model shown 

above (see example λAcc measurement in Figure 14, Figure 21, or Figure 24). Once λAcc is 

measured, every proceeding growth curve utilizes that λAcc to measure the occupant’s EE 

via analysis of the CO2 accumulation curve. This λAcc value assessed for regression of 

CO2 accumulation with known VCO2/kgen, based on generally accepted error propagation 

heuristics, should have a standard error closely correlated to standard error of VCO2 
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measurement from the reference method. Since this is the first ever report of using a high 

accuracy medical device to assess VCO2/kgen, and tracer gas techniques cannot be 

successfully applied in occupied indoor environments (for safety concerns regarding 

breathable air, i.e. most popular tracer gas is SF6 (Cui et al., 2015)), it is not unreasonable 

to state this work details the most accurate assessment of air exchange rate (λAcc) in an 

occupied environment.  

The following equations are the foundation of the contactless REE measurement, 

all derived from mass balance on CO2 within a defined volume where air exchange 

occurs to the surroundings. The equation does assume a first order relationship between 

CO2 concentration and λAcc, supported by previous empirical measurements (Ruiz et al., 

2018) and findings of other works (Batterman, 2017; Claude-Alain & Foradini, 2002; 

Haverinen-Shaughnessy et al., 2011): 

[𝑪𝑶𝟐] = [𝑪𝑶𝟐]𝟎 +
𝒌𝒈𝒆𝒏

𝝀𝑨𝒄𝒄
 (𝟏 − 𝒆−𝝀𝑨𝒄𝒄𝒕) +  [𝑪𝑶𝟐]𝒊𝒆

−𝝀𝑨𝒄𝒄𝒕 (1) 

Where [CO2] is the CO2 concentration [ppm] measured within the room, [CO2]0 is 

the baseline CO2 concentration [ppm] measured in the inlet duct during the experiment, 

kgen is the CO2 generation rate [ppm hour-1], and λAcc is the air exchange rate [hours-1].  

It was experimentally determined that VCO2 assessed did not fit perfectly with the 

assumptions made by the aforementioned model, one of which is that CO2 is perfectly 

mixed within the environment. An empirical correction factor, CFEnv, is used to adjust for 

differences between “ideal” kgen and “actual” kgen, henceforth defined as kgen’. This 

correction factor was validated for ±10% accuracy for contactless REE in 3 environments 

ranging in volume of 8.2-18.8m3. By design, CFEnv should be a property of the 



 

19 

 

environment that corrects for non-ideality in that setting, although, findings of this work 

suggest it may not vary significantly in room of similar size and ventilation regime:   

𝒌𝒈𝒆𝒏′ = 𝒌𝒈𝒆𝒏𝑪𝑭𝒊𝒅𝒆𝒂𝒍 (2) 

As described above, λAcc is assessed in the first measurement cycle, and then kgen 

is assessed for each subject from the second measurement cycle using equation 1. kgen’ is 

then used in the following equation to determine the value of VCO2 [ml/min]:  

𝑽𝑪𝑶𝟐 = 𝒌𝒈𝒆𝒏′ ∗ 𝑽𝑹𝒐𝒐𝒎 ∗ 𝑪𝑭𝑺𝑻𝑷𝑫/𝟔𝟎 (3) 

Where VCO2 is the subject’s volumetric production of CO2 [ml/min], VRoom is the 

volume of the room [ml] (experimentally measured and accounting for the volume of 

objects within the environment), and CFSTPD [dimensionless] is a correction factor to 

correct the VCO2 for standard temperature, pressure, and dry conditions, as the weir 

formula (shown below) utilizes VCO2 at standard conditions. The correction factor is 

calculated as follows:  

𝑪𝑭𝑺𝑻𝑷𝑫 =  
𝑷𝒃𝒂𝒓 −  𝑷𝑯𝟐𝟎

𝟕𝟔𝟎
∗

𝟐𝟕𝟑

𝑻 + 𝟐𝟕𝟑
 (4) 

Where Pbar [mmHg] is the barometric pressure inside the room, PH20 is the partial 

pressure of H2O [mmHg] within the environment (with PSat calculated from the Antoine 

equation and then also considering measured relative humidity % to find PH20), and T is 

the temperature within the environment [Celsius]. Finally, the EE [Kcal/day] of the 

subject was calculated using a simplified version of the Weir formula that assumes a 

constant respiratory quotient, or RQ, of 0.85 (although this changes due to study 

conditions e.g. fasting requirements). The respiratory quotient of a person is dependent 

on their ratio of fat to carbohydrate to protein consumption ratio specifically referring to 
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their body’s metabolic state. Since total fat consumption corresponds to an RQ of ~0.7, 

protein as ~0.82-0.88, and carbohydrate as ~1.0, an RQ selection of 0.85 for the model is 

a conservative estimate that minimizes overall error from high carbohydrate and high fat 

consumption test subjects (FDA, 2003; Marra et al., 2004; Matarese, 1997). The RQ 

value depends heavily on subject fasting status with RQ typically steady decreasing in 

hours follow a meal (Reed & Hill, 1996)). As such, the value of RQ is heavily dependent 

on study execution and measurement protocol: 

𝑬𝑬 (
𝒌𝒄𝒂𝒍

𝒅𝒂𝒚
) =  𝟑. 𝟗𝟒𝟏 ∗

𝑽𝑪𝑶𝟐

𝑹𝑸
+ 𝟏. 𝟏𝟎𝟔 ∗ 𝑽𝑪𝑶𝟐 

(5) 

 

𝑹𝑸 =  
𝑽𝑪𝑶𝟐

𝑽𝑶𝟐
 (6) 

In this manuscript, λ0 [hour-1] refers to air exchange (λ) assessed through CO2 

decay data. Equation (7) is as follows: 

[𝑪𝑶𝟐] = [𝑪𝑶𝟐]𝟎 +   ([𝑪𝑶𝟐]𝒊 − [𝑪𝑶𝟐]𝟎)𝒆−𝝀𝟎𝒕 (7) 

Sample fittings of equation (7) can be found in Figure 19, Figure 29, Figure 30, 

and Figure 31.  

 The findings of Chapter 4 lead to the development of a new, simplified 

mathematical model for REE measurement from CO2 accumulation data based equation 

(1). This model was developed by strong (p<0.0001) multicollinearity between λAcc and 

kgen that is a result of hypothesized physical effects resulting from a human’s presence 

(i.e. some combination of breath and/or heat appears to increase air exchange 

significantly) within the room.  
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To account for this multicollinearity, one may solve the system of equations of Eq 

(1) and the regression, Eq (8), shown in Figure 29, and reproduced below, leading to 

initial derivation of Eq (9) (see Chapter 4 for full derivation and sample regressions for 

each subject): 

This is a simple regression resulting from the findings of Chapter 4, where α 

[hours-1 min ml] is the change in λAcc resulting from a 1 unit increase in VCO2. The value 

of this term was determined to be 0.0107 [hours-1 min-1 ml] in the private office evaluated 

in Chapter 4.  

 

Where variable meanings and dimensions are the same as for Eq (1), except for a 

new term, β [ppm-1], which could be understood as a combined unit conversion (ml min-1
 

to ppm hour-1) and factor from Eq (8) that represents the change in λAcc resulting from a 1 

unit increase in kgen. The value of β is calculated from measurements of the application 

environment (i.e. room volume, temperature, pressure, humidity), all of which are already 

present in Eq (1). β can be calculated from a combination of mass conservation and the 

regression shown in Figure 29. β is calculated follows, where α is multiplied by 1/60 

hours min-1
 to change units the Figure 29 regression finding from those of VCO2 to kgen 

(i.e. from change in λAcc resulting from a 1 unit increase in VCO2 instead to kgen):  

 

𝝀𝑨𝒄𝒄 =  𝜶 𝒙 𝑽𝑪𝑶𝟐 (8) 

[𝑪𝑶𝟐] = [𝑪𝑶𝟐]𝟎 +
𝟏

𝜷
 (𝟏 − 𝒆−𝜷∗𝒌𝒈𝒆𝒏∗𝒕) +  ([𝑪𝑶𝟐]𝒊 − [𝑪𝑶𝟐]𝟎)𝒆−𝜷∗𝒌𝒈𝒆𝒏∗𝒕 (9) 

𝜷 =  
𝜶

𝟔𝟎
∗ 𝑪𝑭𝑬𝒏𝒗 ∗ 𝑽𝑹𝒐𝒐𝒎 ∗ 𝑪𝑭𝑺𝑻𝑷𝑫 (10) 
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Where variable and unit meaning are identical to those described in equation’s 

(2), (3), and (4). Equation (8), key to the innovation leading to equation (9), was derived 

from N=26 measurements taken from section 4.6. The model was evaluated on an 

independent dataset, N=56 measurements from N=5 subjects and the results were 

accurate with precision that can be mitigated with repeated measures (Altman & Bland, 

2005), up to levels of respectable FDA cleared devices (MGC Ultima CPXTM, Korr 

ReeVueTM (Cooper et al., 2009; FDA, 2003, 2006)) after only a few repeated measures. 

Without repeated measures using equation (9), equivalent accuracy to 4 FDA 510(k) 

cleared medical devices (including several metabolic carts) was observed in the N=56 

subject dataset (see Table 19). This dataset contained no overlap in individual 

measurements with regards to model development dataset and included data from several 

months prior to the collection of training set data with no single outlier being removed 

the evaluation of the test set. The new model is accurate for REE measure in comparison 

to a reference instrument although imprecision is notable (Y=1.02X, R=0.761). High R2 

values can be observed in fittings of CO2 data as well across multiple subjects in Figure 

29, Figure 32, Figure 33, Figure 34, Figure 35, and Figure 36. Additionally, the model 

uses the exact same CFEnv as was determined during the medical office study conducted 

in Chapter 3. This is considered a step forward if the result is reproducible in other 

environments, given the revised equation 1 model developed as a part of this work in 

equations 8-10 simplifies the contactless REE assessment significantly with only 1 set of 

CO2 accumulation data needed and no prior λ assessment from reference instrument 

(λAcc) or CO2 decay (λ0) measurements.   
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At all points within this dissertation, error relative to a reference instrument is 

defined as follows:  

𝐸𝑟𝑟𝑜𝑟 % =  
𝑆𝑚𝑎𝑟𝑡 𝑃𝑎𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒
 𝑥 100% (11) 

 In the equation above, it is most important to consider that the Smart Pad measure 

is the first term in the numerator difference calculation. As such, negative errors suggest 

Smart Pad underestimates. Throughout this manuscript, the most common reference 

measure was the MGC Ultima CPXTM
, considered perhaps the best indirect calorimeter in 

the medical device industry. One may be wise to pay special attention to the parameter of 

interest with regards to error calculation, as in some occasions REE is evaluated and 

others VO2 (typically for biking this parameter is reported).  

2.6 Characterization of Smart Pad Sensors in Controlled Environments 

2.6.1 Summary 

An environmental chamber was used to assess the accuracy of temperature and 

relative humidity measurement for the Smart Pad system’s environmental sensors, since 

these measurements (i.e. temperature and relative humidity) are fundamentally needed for 

correction to standard conditions via equation 4. The accuracy of temperature 

measurement was ±0.86 degrees Celsius across a range of 6-51 degrees Celsius, showing 

correlation of y=1.017x, R=1.000 with a reference measure. The accuracy for relative 

humidity measurement was ±10.0% across a relative humidity range of 3 to 98% showing 

a correlation of y=1.036x, R= 0.987 with a reference measure. Measurements for both 

parameters met or substantially exceeded measurement characteristics for a FDA cleared 

device for metabolic assessment, the Korr ReeVueTM  (FDA, 2003). Additionally, there 
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was no significant effect of Temperature, correction factor, or relative humidity on VCO2 

measurement within the chamber using a CO2 reference gas injection method and 

analyzing using equation (1), suggesting the model is robust across a wide range of 

environmental conditions.  

2.6.2 Methodology 

 

Figure 6. Environmental Chamber Set Up   

Figure 6 above shows how the environmental chamber was set up. First, the 

chamber was conditioned to a certain temperature and relative humidity and allowed to 

come to equilibrium (i.e. no transient changes in RH or Temperature). A full factorial 

design was conducted with 3 levels of Temperature and relative humidity with 3 replicate 

measures for each level. The design of experiments is shown below in Table 2. 
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Table 2. Design of Experiments for Environmental Chamber Measurements 

 Levels 

Factors -1 (“low”) 0 (“medium”) +1 (“high”) 

RH (%) 
Min achievable 

(~10%) 
45% 

Max achievable 

(~85%) 

Temperature 

(Celsius) 

Min achievable 

(5C) 
25 C 

50 C (Max rating 

for CO2 sensor) 

 

A minimum of 1 hour of data was collected at the equilibrium condition which 

included approximately 10 minutes of CO2 injection and a minimum of 50 minutes of 

CO2 decay (with longer decays collected for some runs but while maintaining the same 

environmental conditions). Over 10,000 parallel temperature and relative humidity 

measurements were collected from both the Smart Pad unit and reference device, referred 

to as the HoboTM Unit.  

2.6.3 Results 

Sample data and CO2 accumulation/decay analyses for the environmental 

chamber study is shown below in Figure 7: 

 

Figure 7. Environmental Chamber Study Sample Raw Data and Analysis  
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Temperature measurements correlated highly between both reference devices 

(R=1.000). Temperature accuracy was determined to be ±0.86 Celsius, comparable to 

specifications FDA 510(k) cleared devices used for metabolic assessment (FDA, 2003). 

The correlation between both devices is shown below in Figure 8.  

 

Figure 8. Comparison of Temperature Measured on Smart Pad and Reference Device 

Relative Humidity measurements correlated highly between both reference 

devices (R=0.987). Accuracy was determined to be ±10.0%, comparable to specifications 

FDA cleared devices for REE measurement, of which errors of ±10% are reported (FDA, 

2003). The correlation between both devices is shown below in Figure 9. Although this 

error may be considered large by some standards, the U.S. FDA finds this level of 

accuracy acceptable for REE measurement since humidity plays a minor, although 
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observable, effect in the calculation of the standard environmental condition factor, CF, 

as shown in equation 4. Clearly, the Smart Pad device is less accurate with regards to 

measurement of very humid (>90%) and very dry (<10%) conditions.  

 

 

Figure 9. Comparison of Humidity Measured on Smart Pad and Reference Device.   

The effects of various environmental conditions on the Smart Pad CO2 

accumulation model, equation 1, and CO2 decay model, equation 7, were asessed via 

regression analysis. Regression between λ0 and VCO2 error %, between ideal VCO2, 

calculated from mass balance with known injection gas concentration and flow rate, in 

specific were the outcome variables of interest. The effect of humidity on model 

outcomes are shown below in Figure 10.  



 

28 

 

 

Figure 10. Effect of Humidity on Air Exchange (λ0) and VCO2 Error %   

Clearly there is a low correlation between humidity and model parameters. The 

VCO2 error is high (i.e. large negative), and this is an important finding considering the 

assumption that λ was equal for CO2 decay and accumulation. This finding suggests that 

there may be some significant effect of CO2 injection (whether it is from a person’s 

breath, as observed in Chapter 4, or from a peristatic pump). The effect of temperature on 

air exchange and VCO2 error is shown below in Figure 11.  

 

Figure 11. Effect of Temperature on Air Exchange (λ0) and VCO2 Error %.   
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Some correlation between temperature and air exchange can be observed in 

Figure 11, although this correlation is weak and considered insignificant by statistical 

heuristics (P=0.286). Similar regression analyses were performed for the CF as calculated 

via equation 4 and also between λ0 and VCO2 error. The findings are shown in Table 3 

below.  

Table 3. Effect of Temperature, CF, and RH on Smart Pad Measurement

 Predictor 

Variable 

Response 

Variable 
Pearson’s R 

P-value 

(<0.05 = 

significant) 

Conclusion 

CF λ 0.236 0.227 Not Significant 

CF VCO2 Error -0.226 0.250 Not Significant 

RH λ 0.005 0.980 Not Significant 

RH VCO2 Error 0.091 0.646 Not Significant 

Temperature λ -0.210 0.286 Not Significant 

Temperature VCO2 Error 0.214 0.274 Not Significant 

λ VCO2 Error 0.236 0.227 Not Significant 

 

Table 3 shown above suggest that neither CF, RH, or temperature have any 

significant effect on λ0 or VCO2 error % as measured from the Smart Pad. Also, the 

finding above suggests that λ0 has little to no effect on VCO2 error, although, one should 

consider the injection gas supply rate in terms of VCO2 was held constant across all 27 

experiments.  
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2.6.4 Smart Pad Measurement Specifications 

 The Smart Pad device’s physical measurement specifications are shown below in 

Table 4: 

Table 4. Smart Pad System Measurement Specifications  

Parameter (Measurement) Accuracy and/or 

Precision 

Operating Range 

Temperature Measurement (°C) ±0.86 °C  6-51 °C 

Relative Humidity Measurement (%) ±10.0% 3-98% 

Barometric Pressure Measurement (hPa) ±0.1hPa 800-1100 hPa 

CO2 Measurement Accuracy ±50ppm (GE, 2021) 0-3300 ppm 

CO2 Measurement Repeatability ±20ppm (GE, 2021) 0-3300 ppm 

Parameter (Device Operation) Classification/Value Notes 

Sensing Device Communication Mode BLE 4.2 iOS supported 

Actuator Device Communication Mode BLE 4.2 iOS supported 

Mobile Application Operating System iOS 14.5 iPhone/iPad OS 

Operating Power Sensing Device (DC) 5 V/1A for Charging microUSB B 2.0 

Operating Power Actuator Device (AC) 120 V/60 Hz  U.S. Domestic 

Standard 

Sensing Device Weight <2.5 lbs (1.1kg)  

Sensing Device Dimensions 25c x 25cm x 10cm  

Battery life (Lithium Ion Rechargeable)  72 Continuous Hours  

 

2.6.5 Conclusions 

The Smart Pad system as described in Chapter 2 has achieved comparable 

accuracy to a FDA cleared predicate device (Korr ReeVueTM) for measurement of 

Temperature and Relative Humidity, two key parameters in the calculation of a clinically 

relevant VCO2, corrected to standard temperature and dry conditions. Neither CF, RH, or 

temperature have any significant effect on λ0 or VCO2 error % as measured from the 

Smart Pad. From that information, one may reasonably conclude that the Smart Pad’s 

measurement technique is effective across a wide variety of environmental conditions. 
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High errors in VCO2 as measured using λ0 from CO2 decay were observed, suggesting 

that there may be some significant difference between λ as measured from CO2 decay and 

accumulation, in line with findings from Chapter 4. 
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CHAPTER 3 

3 CLINICAL EVALUATION OF SMART PAD MEASUREMENTS 

3.1 Abstract 

Twenty healthy subjects were tested in a cross-sectional study to evaluate the 

performance of the aforementioned technique in measuring both resting energy 

expenditure (REE) and exercise energy expenditure using the proposed system (the 

“Smart pad”) and an U.S. Food and Drug Administration (FDA) 510(k) cleared reference 

instrument, MGC Ultima CPXTM, for EE measurement. For VCO2 and EE measurements, 

the method showed a correlation slope of 1.00 and 1.03 with regression coefficients of 

0.99 and 0.99, respectively, and Bland-Altman plots with a mean bias of -0.2% with 

respect to the reference instrument. Furthermore, two subjects were also tested as part of 

a proof-of-concept longitudinal study where EE patterns were simultaneously tracked 

with body weight, sleep, stress, and step counts using a smartwatch over the course of a 

month, to determine correlation between the aforementioned parameters and EE. 

Analysis revealed moderately high correlation coefficients (Pearson’s r) for stress 

(raverage=0.609) and body weight (raverage=0.597) for the 2 subjects and VCO2 

measurement accuracy of -1.2%±7.8 (SD) across 13 total longitudinal measures of both 

subjects. A correction factor, CFEnv, was developed, identified, and validated in 2 

additional operating environments across N=57 total human measurements to ±10% 

accuracy for VCO2 measurement. This corretion factor was later implemented 

successfully witin the equation (9) model, resulting in substantially equivalent 

performance to 4 FDA 510(k) cleared devices for VCO2 measurement using no reference 

instrument calibrtion.  
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3.2 Experimental Set Up 

The experimental set up is shown below in Figure 12. The subject stayed inside 

the room configured in the way shown in Figure 13. The room had the Smart pad system 

and the Smart pad with the sensing module in the back part of the seat. The subject  was 

instructed first to stay seated on the Smart pad pad (red pad in Figure 12) while 

performing the study tasks described below. The subject simultaneously wore a nose clip 

and a mouthpiece attached to the reference instrument (MGC Diagnostics, Ultima CPXTM 

instrument (MGC)) during all CO2 accunulation measurements. This allowed to evaluate 

the EE values and carbon dioxide production rate (VCO2) of the subject using both 

systems:  #1 the Smart pad – based method, and #2 – Reference MGC system. The 

subject’s tasks included: Task 1: sitting in a chair, and Task 2: biking at a  moderate, 

consistent pace in a Fitdesk V3.0 exercise bike or laying on a cot.  

 

 Figure 12. Experimental Set Up for Medical Office Validation Study.  Photographs 

includes Smart Pad, reference instrument, and bike. Activity 1 (sitting) was performed at 

the desk and then activity 2 (biking) was performed on the bike. 
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Each experiment consisted of 2 measurement cycles, for a total of 4 measurement 

cycles between the 2 tasks. The first and second measurement cycle were performed with 

the subject sitting at the desk, and the third and fouth cycles were performed with the 

subject biking or lying on the cot. The first and third cycle were used to account for air 

exchange patterns between the room and the outside environment by experimental 

determination of the value of the air exchange rate [hours-1] (i.e. λAcc) for the given 

experimental conditions.  The air exchage rate value must be assessed prior to metabolic 

assessment according to our group’s previously derived model (Ruiz et al., 2018). This 

first and third measurement cycles are termed “growth period #1 and #3” or “G1 and G3” 

for short. The growth period of the second and fourth measurement cycle (G2 and G4) to 

fit the new set of experimental data and then determine the exhaled CO2 volume, VCO2 

[ml/min] for the subject at resting (G2) and biking or liying condition (G4), respectively. 

The determined VCO2 value were used for estimation of EE, using a simplified version of 

the Weir equation (Weir, 1949) (see equation (6)) that assumes a constant value for the 

respiratory quotient, or RQ. In this way, the first and third measurement cycles provided 

air exchange data for that particular day since airflow patterns within the building could 

potentially differ from day to day. Since both the Smart Pad and the MGC Ultima CPXTM 

were used in parallel, a correlation study of measured VCO2 and estimated EE values by 

both methods for each subject at resting and biking or laying conditions was performed. 

During the metabolic assessment, a fan system within the room was turned on or 

off after fixed intervals of time. The fan system consisted of an inlet and outlet fan that 

cycled fresh air into the room when the system was turned on, to reduce the concentration 

of CO2 and other bio effluents, allowing CO2 specifically to return to baseline levels. The 
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fan system was turned off immediately prior to each metabolic assessment, to allow CO2 

levels within the room to increase. Other than the fan system, the room was specially 

sealed to insulate it from the building HVAC system. This special sealing includes both a 

RetrotecTM blower door with Velcro tape sorrounding the room door frame to prevent air 

leakage and the taping of interstitial space between ceiling tiles to fully minimize air 

leakage into/out of the plenum. Each measurement cycle lasted 25 minutes for task 1 

(Fans on for 5 minutes then fans off for 20 minutes) and 15 minutes for task 2 (Fans on 

for 5 minutes then fans off for 10 minutes). 

Inlet CO2 concentrations were also measured for each run as a quality control 

procedure and to determine whether or not they varied significantly from run to run. To 

do so, a Telaire 7001 CO2 sensor was placed in the initial opening inlet duct of the system 

on the hallway side. The geometry of the medical office and ventilation system can be 

seen below in Figure 13.  
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Figure 13. Diagram Showing Room Geometry for Medical Office Study.   

3.3 Cross Sectional Study  

3.3.1 Cross Sectional Study Methodology 

Study participants were recruited primarily from ASU’s Biodesign Insittute and 

Mayo Clinic Scottsdale and were carried out at Mayo Clinic, Scottsdale, Arizona. 

Subjects had their EE measured while performing a sequence of predetermined tasks 

under: 1. Resting condition (sitting in a chair), 2. Activity (fixed biking). During this study 

each subject’s EE was assessed using both the Smart pad and a reference instrument for 

EE measurement: MGC Diagnostics Ultima CPXTM. For the cross sectional study, 20 

subjects were recruited within the age range of 18-65 years . The subjects had an average 

weight of 69.4 ± 16.2 (SD) kilograms and height of 171.0  11.3 (SD) centimeters. The 
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study consisted of 10 males and 10 females. One subject elected not to bike for her 

assessment (due to pregnancy) and instead lied down on a cot for her metabolic analysis. 

Subjects were instructed to be fasted for at least 4 hours prior to the experiment, to ensure 

a negligible thermic effect of food, following the use protocol of a FDA cleared device 

for measurement of EE (Korr ReeVueTM) and also within the REE measurement protocol 

for the reference instrument, MGC Diagnostics Ultima CPXTM, which recommends 2 

hours fasting prior to REE (resting EE) assessment. However, post hoc literature review 

has revealed that at least 5-6 hours fasting is likely better sceintific practice, as only 78% 

of total TEF occurs within the first four hours following a meal (meaning 22% of total 

TEF from a meal occurs after hour 4) from a wide varitey of meals across 131 TEF tests 

(Reed & Hill, 1996). The subjects were allowed to bring a laptop or cell phone to use 

during task 1.  

3.3.2 Cross Sectional Study Results (n=20) 

For each assessment, experimental data was analyzed manually using OriginPro 

2017 (OriginLabTM) and data was carefully selected by hand so that it would be best 

representative of the beginning/end of each assessment. Temperature and relative 

humidity data are also used to make corrections to standard temperature dry conditions. 

Sample data analysis records for subjects with low and high metabolic rates are shown 

below in Figure 14: 
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Figure 14: Example of Data Analysis During the 2019 Clinical Study.  G1 & G3 are used 

to calibrate for environment specific factors (e.g. air flow). G2 & G4 are actual 

assessments from the Smart Pad system. A) low metabolic rate subject; B) high metabolic 

rate subject. 

Each EE & VCO2 result from G2 & G4 for each run were used to create a set of 

data with 40 data points total for all subjects tests and was compared to reference 

instrument readings for the same growth periods (G2 & G4). The resulting correlation 

plots were analyzed. Figure 15A shows the correlation plot for VCO2 from the Smart Pad 

in comparison with the reference instrument. As it can be observed a slope of 1.00 and 

regression coefficient of 0.99 was obtained, indicating a good correlation for VCO2 

assessment between the methods. Figure 15B shows the corresponding Bland-Altman 

plot, which indicates a mean bias close to zero (-2.4%), and  percentage errors between 

10% to -15% for 95% confidence interval. A similar analysis was performed for EE 

values. Figure 15C shows the correlation plot for EE from the Smart Pad and MGC 

system with a slope of 1.03 and regression coefficient of 0.99, indicating a good 

correlation for EE between the methods. Fig. 4D shows the corresponding Bland-Altman 



 

39 

 

plot for EE assessment, indicating a mean bias close to zero (-2.4%), and percentage 

errors 15% to -20% for 95% confidence interval. In addition, Figure 15D shows the 

average variability in a person's energy expenditure (Black & Cole, 2000), which is in 

average of ± 11.8%. As it can be observed the averge daily EE variability measured from 

Black and Cole is comprised in ~93% of the total assessed points. As such, a strong case 

can be made that using the Smart Pad system and taking multiple measurements with the 

device may potentially be more accurate in estimation of average longitudinal EE than a 

single time point EE measurement system, even with the Smart pad’s current 95% 

confidence interval for system accuracy. In terms of precision, these measurements 

indicate comparable perfomance characteristics with other respected indirect calorimeters 

(Cooper et al., 2009). 
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Figure 15: Smart Pad Accuracy During the 2019 Clinical Study for N=20 Subjects. A: 

Scatter plot of VCO2  for Smart Pad system and MGC Ultima CPXTM. Fig 7B: Bland–

Altman plot of VCO2 Error % for Smart Pad system and reference method for the cross 

sectional study. Solid black line represents the mean error % between the two systems; 

the dashed lines indicate +/- 11.8% (average variability in a person's metabolic rate 

(Black & Cole, 2000). Fig 7C: Scatter plot of EE for the Smart Pad system and reference 

method. Fig 7D: Bland–Altman plot of EE Error % for Smart Pad system and reference 

method for cross sectional study. Solid black line represents the mean Error % between 

the two systems; the dashed lines indicate +/- 1.96 SD (95% confidence interval).  
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3.3 Longitudinal Study  

3.3.1 Longitudinal Study: Accuracy Across All Longitudinal Measurements 

Figure 16 presents VCO2 measurements for both subjects across the longitudinal 

study. The slope of this plot (1.00) suggests that the EE correction (shown in Figure 15) 

was effective and that the system is valid for measurement of EE for the longitudinal 

study. The resulting Bland-Altman plot Figure 16B confirms that the Smart Pad system is 

effective at assessing EE in terms of mean bias which is -1.23% and with promising 

precision (SD = 7.81%). The plotted results showing EE from the Smart Pad system are 

shown for both subjects (Figure 16C-D). These plots also show stress patterns (hassles 

survey score) and hours of sleep per night (steps and bodyweight data collected but not 

shown in Figure 16C-D for simplicity). Statistical analysis for determining any 

correlation between the aforementioned quantities & energy expenditure (EE) is 

described below in section 3.3.2 & shown below in Figure 17 and Figure 18. Given the 

low number of subjects (N=2) and the low number of EE measurements throughout the 

tests (4-9 depending on subject), results should be interpreted conservatively. The study 

consists of the presentation of two study cases as a proof of concept of assessment of EE 

and other complementary physiological data under daily conditions.  
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Figure 16: Results from Longitudinal Study of Metabolism and Lifestyle Patterns. A: 

Scatter plot of VCO2 for the Smart Pad system and reference method (MGC Ultima 

CPXTM). B: Bland–Altman plot of VCO2 Error % for Smart Pad system and reference 

method. Solid black line represents mean Error % (-1.23%) between both systems; 

dashed lines indicate +/- 11.8%, the average variability in a person's metabolic rate 

(Black & Cole, 2000). C-D: Results of longitudinal study for 2 different subjects, one 

aged 22 (correlation analysis shown in Figure 17), the other aged 24 (correlation analysis 

shown in Figure 18).  

3.3.2 Longitudinal Study: Correlation Analysis 

Figure 16A-B shows the correlation plot and corresponding Bland-Altman plot 

for EE assessment during the longitudinal study by Smart Pad and the reference system. 
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The simulaneously collected EE data from both the Smart Pad and the MGC Ultima 

CPXTM showed evidence to support (mean bias ~0% for EE measurement for 

longitudinal study) the accuracy level of Smart Pad necessary to perform further 

correlation analysis between EE and lifestyle parameters of sleep, activity (steps), stress 

and body weight. As mentioned in the experimental section, stress was taken using 

hassles survey, and body weight from the Wi-Fi scale records for the corresponding dat 

of the EE assessment. The metric used to assess correlation was “Pearson’s r”, which 

ranges from -1 (high negative correlation) to +1 (high positive correlation) with a value 

close to 0 suggesting little to no correlation. The results of this correlation analysis are 

shown in Figure 17A-D for the 22 year old male (subject A) and in Figure 18A-D for the 

24 year old male (subject B).  

 The correlation coefficients resulting from correlation analysis between stress 

survey score and EE were r = 0.823 (n=5) for subject A, and r = 0.514 (n=4) for subject 

B. The correlation coefficients resulting from correlation analysis between body weight 

and EE were r =  0.602 (n=7) for subject A and r = 0.644 (n=3) for subject B. Stress and 

body weight showed the highest correlations with EE. The positive correlation between 

body weight and EE confirms a well known correlation (Roza & Shizgal, 1984). The 

correlation between hours of sleep the night before to the metabolic assessment and EE 

rendered r = -0.309 (n=8) for subject A, and r = 0.386 (n=3) for subject B did not show 

strong correlation. Evidences in literature suggest poor sleep generally results in lowered 

REE (Sharma & Kavuru, 2010) . The correlation between the number of steps the day of 

the assessment day (measured using a smartwatch) and EE measured the same day did 
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not show correlation with energy expenditure: r=0.263 (n=9) for subject A and r = -0.674 

(n=4) for subject B.  

 

Figure 17: Longitudinal Study Correlation Results for the 22 Year Old Male. Pearson’s r 

values for EE [kcal/day] and the various parameters measured: (A) sleep [hours] night 

before test, (B) stress questionnaire score, (C) steps measured on WithingsTM smartwatch, 

and (D) weight  
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Figure 18. Longitudinal Study Correlation Results for the 24-Year-Old Male.  Pearson’s r 

values for EE [kcal/day] and the various parameters measured: (A) sleep [hours] night 

before test, (B) stress questionnaire score, (C) steps measured on smartwatch, and (D) 

weight  

3.4 Conclusion 

The technique presented in this work has been shown to be an effective method of VCO2 

measurement under free-living conditions in comparison with a reference method, and 

therefore, has value in determination of energy expenditure (EE). The measurement 

technique is truly novel, being the first ever EE measurement technique that is both 

portable and capable of physical contact free measurements, therefore potentially 
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providing great utility for clinical treatement of obesity. The system presented has 

relatively good accuracy as evidenced by low mean biases when compared to the 

reference method for both the cross sectional and longitudinal studies. The system is 

unparalleled in its ability to be used daily and the fact that it does not require any 

wearable technology on part of the user (e.g. breathing tubes and noseclips).  
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CHAPTER 4 

4 ENGINEERING A FASTER, FULLY AUTOMATED SMART PAD 

4.1 Abstract 

Energy Expenditure (EE) [kcal/day], a key diagnostic for obesity treatment, is 

measured from CO2 production, VCO2 [ml/min], and/or O2 consumption, VO2 [ml/min]. 

Current technologies are limited due to prevailing designs requiring wearable facial 

accessories presenting accuracy, precision, and usability concerns with regards to free-

living measurement. A novel system is evaluated, the Smart Pad, which measures EE via 

VCO2 from transient changes in a room’s ambient CO2 concentration. Resting EE (REE) 

(N=113) and exercise VCO2 (N=46) measurements were recorded using Smart Pad and a 

reference instrument, MGC Ultima CPXTM, to study measurement duration’s influence 

on accuracy. The Smart Pad displayed 90% accuracy (68% Confidence Interval (CI)) for 

14-19 minutes of REE measurement and for 4.8-7.0 minutes of exercise VCO2 

measurement after air exchange rate (λ [hour-1]) calibration using a reference instrument. 

Additionally, the Smart Pad measured the REE of N=5 subjects with a wide range of 

body mass indexes (BMI) for a minimum of 5 measurements each, successfully 

validating system accuracy across a range of subject BMI’s (18.8 to 31.4 kg/m2) and 

REE’s (~1200 to ~3000 kcal/day). High correlation between subjects’ VCO2 (N=26) and 

λ [hour-1] for CO2 accumulation was observed (P<.00001, R=0.785) in a 14.0 m3 sized 

room used for this study. This finding lead to development of a new model for REE 

measurement from ambient CO2 without λ calibration using a reference instrument. The 

model correlated in high agreeance with reference instrument measures (y = 1.06x, 

R=0.937) using an independent averaged dataset (N=56).  
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4.2 Smart Pad: Physical Characteristics, Design, and Testing Environment 

The Smart Pad system is comprised of three components: a measurement system 

(seat pad comprised of sensors and an IoT enables electrical system shown in Figure 1A), 

actuator system (optional IoT controlled electrical system allowing for precise control of 

CO2 concentration within a room shown in Figure 1C), and iOS app (for logic control of 

the actuator system, and, eventually data analysis) with a portion of the user interface 

shown in Figure 1B and Figure 19A. The measurement system is a pad that fits over a 

chair with the red seatpad serving to house a commercial CO2 sensor (TelaireTM 7001D 

CO2 monitor) with CO2 measurements based on non-dispersive infrared (NDIR) 

absorption, and bluetoothTM enabled data logger that also records temperature, barometric 

pressure, and relative humidity using widely available electronics (but with electrical 

system and packing designed by our lab). A brand new CO2 measurement device was 

used for the entire study and factory calibration was validated using a CO2 reference gas 

and outdoor air, which is well known to contain approximately 415 ppm CO2 in most 

areas of the world (Tans & Keeling, 2020), to the rated accuracy of the CO2 

measurement device (±50ppm). An inlet tube with a diameter of approximately 0.3 cm 

was connected to the sample inlet port of the CO2 sensor, sealed with parafilm, and then 

allowed to rest approximately 5 cm out of the red seatpad. Data resolution was 1 

measurement/5 seconds for CO2, relative humidity, barometric pressure, and temperature.  
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Figure 19: Study Design for Optimization of Smart Pad Operating Parameters.  (A) 

Graphic showing Smart Pad mobile application and settings allowing for precise control 

of CO2 concentration. (B) Graphic showing top view of room layout and locations of 

various objects. (C) Subject during test procedure for parallel REE measurement with 

Smart Pad and Reference Instrument. (D) Graphical demonstration of Smart Pad’s kgen 

assessment with two CO2 accumulation data, using known λAcc from first CO2 

accumulation data. In the first CO2 accumulation cycle, the CO2 accumulation fitting is 

done using equation (1) and known kgen from the reference instrument. In the second CO2 

accumulation cycle, λAcc from the first accumulation cycle is used to determine kgen using 

equation (1). kgen is then used to calculate EE via combination of equations (3-6).   

 The Smart Pad was installed on a chair in a rectangular room with a measured 

volume of 14 m3, which accounts for the size of objects, and approximate dimensions of 

2.7m x 1.4m x 3.7m (shown below in Figure 20). The room was well sealed using tape to 

cover interstitial space between ceiling tiles and cardboard panels to block the room’s 
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built-in HVAC (heating, ventilation, and air conditioning) system. A special RetrotecTM 

(https://retrotec.com/) blower door was installed on the doorway fixed with an outlet fan 

and also a transparent plastic window allowing for observation of test subjects. Despite 

this, there was still a significant amount of leakage present, with almost all observed λ 

values greater than 1 hour-1, which is in agreeance with similar findings for unoccupied 

administrative offices (Cheong & Chong, 2001), suggesting that significant air exchange 

will still occur even with the room mostly sealed from the surrounding environment 

(RetrotecTM door’s opening for an outlet fan was likely the primary air exchange 

medium). Additionally, two 40 cm diameter mixing fans were pointed towards each other 

at opposite corners of the measurement environment to support mixing of CO2 in the 

room. The fans were left on continuously during both CO2 accumulation and decay 

periods. 
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Figure 20. Schematic of Testing Environment Layout for Chapter 4.  The room was a 

rectangular prism with one irregular corner. The MGC CPXTM Ultima would need to be 

moved slightly for biking assessments, but, the Smart Pad and bikes were kept in a 

constant location.  

4.3 Methodology: CO2 Measurement Range Optimization for REE assessment 

A single subject performed 113 REE measurements with both the Smart Pad and 

an MGC Ultima CPXTM Indirect Calorimeter (MGC Ultima CPXTM), a FDA cleared 

device, considered a reference method for both VCO2 and REE measurement. The device 

is considered a highly accurate reference instrument since it measures both VCO2 and 

VO2, which it does by direct physical measurement of flow rate (via pitot tube), O2 

concentration (via galvanic cell potential), and CO2 (via NDIR absorption). The 113 REE 
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measurements were split between 5 CO2 threshold ranges [ppm]: 500-600, 500-625, 500-

650, 500-675, 500-700. Multiple CO2 accumulation cycles are measured sequentially. 

λAcc was calibrated for using the first CO2 accumulation curve from that day and a 

reference kgen value generated from gold standard VCO2. The subject was fasted for 8 

hours prior to each REE assessment to minimize the well-studied effect of the thermic 

effect of food which is known to increase EE by a significant margin (Calcagno et al., 

2019).  

This section of the study was performed to build upon previous work published in 

the journal of breath research (Sprowls, Victor, Serhan, et al., 2021) showing relatively 

good system accuracy in measurement of VCO2 from 20 minute CO2 accumulation 

periods in a similarly sized room. This study strove to reduce the measurement time to 

lower than 20 minutes without sacrificing measurement efficacy. All 113 REE 

measurements were performed with both the Smart Pad and a FDA cleared (FDA, 2006), 

gold standard method for both VCO2 and REE measurement, the MGC Ultima CPXTM 

(https://mgcdiagnostics.com/products/ultima-ccm-indirect-calorimeter). A minimum of 

16 measurements were performed for each measurement cycle and up to 32 

measurements for the most promising threshold ranges in terms of accuracy. The λAcc 

value used for analysis was assessed from reference instrument VCO2, as follows. First, 

Multiple CO2 accumulation cycles are measured sequentially. For the first CO2 

accumulation cycle in the sequence, equations 2-3 are used to generate a reference kgen 

from the gold standard method’s VCO2 measurement. Then the reference kgen is applied 

to equation (1), fitting the CO2 accumulation data from the first measurement cycle.  A 

λAcc value can be ascertained from this first CO2 accumulation curve and can be applied 
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to every CO2 accumulation curve occurring after the first one to generate Smart Pad kgen 

values that lead to corresponding VCO2 and EE measurements from equations 2-6. This 

procedure can be seen in Figure 21, Figure 23, and Figure 24 below. Often times 8-12 

sequential CO2 accumulation curves were collected on the same day, all analyzed using 

the λAcc value (measured using the gold standard’s VCO2 reading) taken from the first 

CO2 accumulation curve from that day. For each new day of collected data, a λAcc value 

was always extracted from the first CO2 accumulation curve and applied to the CO2 

accumulation curves that followed that one (i.e. λAcc value applied to CO2 accumulation 

data was always assessed from that day’s collected data and no CO2 accumulation curve 

was analyzed using the λAcc value collected from a different day). All N=113 

measurements were performed on subject #1 (physical characteristics shown in Table 5). 

Since many CO2 accumulation curves were used for λAcc assessment, there are a total of 

N=135 growth curve measurements, which allowed for an assessment of the effect of 

CO2 threshold range on measurement duration.  

The Smart Pad showed evidence of substantial equivalence to multiple FDA 

cleared predicate devices based on the results of the study (see Table 19) and when λAcc 

was calibrated for using a well-respected reference method for VCO2 measurement. In 

this Chapter, the results of 4.7 are compared to (Cooper et al., 2009). Although differing 

units are reported, we believe both (Cooper et al., 2009) and the authors of this work have 

calculated CV and error SD in fundamentally the same manner and therefore both results 

could be reported together. That being said, one should take interpret differences in 

precision referred to above conservatively given (Cooper et al., 2009) does not provide a 
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formal definition (see Table 1 of the referenced work), although we suspect it does match 

our own.  

4.4 Methodology: CO2 Measurement Range Optimization for Exercise assessment  

Subject 1 (physical characteristics shown in Table 5 below) performed N=46 

simultaneous Smart Pad and MGC Ultima CPXTM VCO2 and exercise EE assessments 

while using a stationary bike. The subject often biked at a high intensity; however, no 

formal measure of exertion was recorded. The stationary bike was facing the Smart Pad 

unit (kept in the same geometric location between 4.3 and 4.4) and was approximately 1 

meter away from the seat pad (see Figure 19 for illustration of biking subject and nearby 

Smart Pad). Regression analysis was performed based on app settings and end/beginning 

points of CO2 accumulation data (not necessarily absolute CO2 [ppm]).  

There was a stationary bike also located in the measurement environment (shown 

in Figure 20) which was used to perform exercise EE measurements using the Smart Pad 

and gold standard. Analysis was performed in an identical manner to the method of 4.3, 

except that the λAcc assessment from gold standard instrument VCO2 always assessed λAcc 

from a CO2 accumulation curve occurring as a result of subject biking. The same set of 

threshold ranges were analyzed as in section 4.3 (i.e. 500-600, 500-625, 500-650, 500-

675, 500-700) for a total of N=40 measurements or N=8 measurements for each threshold 

range. Additionally, N=6 measurements were taken for an extended CO2 threshold range 

of 500-900 ppm. VCO2 measurement accuracy for the Smart Pad is the focus of this sub-

study, however, exercise EE is studied and reported as well within this section.  
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4.5 Methodology: Effect of REE on Accuracy for Optimized Measurement Range 

Test subjects were recruited with Arizona State University’s institutional review 

board’s approval (STUDY00006547) after giving consent to participate in the study and 

were asked to perform 6 sequential MGC Ultima CPXTM and Smart Pad measurements at 

the CO2 threshold range of 500-650 ppm (1 for λAcc assessment from reference method 

VCO2 and 5 comparative measurements). This was done to determine if subject BMI, 

VCO2, or EE have any significant effect on Smart Pad accuracy or λAcc.  

The physical characteristics of each subject are shown below in Table 5. 

Table 5: Subject Physical Characteristics for Optimized Smart Pad Study 

 

Subject 

# 

Height 

(cm) 

Weight 

(kg) 

BMI 

(kg/m2) 

Clinical Body 

Type  

Classification 

(CDC, 2021) 

Age 

(Years) 

Sex (male, 

female, or 

non-binary) 

1 178 79.4 25.1 Overweight 24 Male 

2 153 44 18.8 Normal Weight 27 Female 

3 185 107.3 31.4 Obese 26 Male 

4 155 63.5 26.4 Overweight 35 Female 

5 185 78.5 22.8 Normal Weight 25 Male 

 

4.6 Methodology: CO2 Decay: Study of Unoccupied Room Air Exchange (λ) 

In scientific literature (Batterman, 2017; Gall et al., 2021; Ramalho et al., 2013; 

Turanjanin et al., 2014), there is a general assumption that λ0 from CO2 decay following 

subject departure should be in agreeance with λAcc. In this study, reference measurement 

for VCO2 measurement was used to assess λAcc with high accuracy and compare it with 
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λ0 from CO2 decay following subject departure. N=26 CO2 accumulation periods and 

subsequent CO2 decay periods were collected with the actuator system turned off 

continuously to assess CO2 decay as a predictor of λAcc during CO2 accumulation periods. 

N=5 minimum assessments were performed for each of the following CO2 concentration 

ranges (ppm): 500-600, 500-625, 500-650, 500-675, and 500-700. For the 500-650 ppm 

data set, CO2 accumulation and subsequent CO2 decay was collected using N=1 

measurement from each subject # 2-5 and N=2 measurements from subject #1.  

4.7 Results: Measurement Range Optimization for REE assessment 

To control for the effect of REE, subject characteristics, and experimental 

methodology execution, a single subject was used as the population within this study 

section. That subject performed N=113 parallel REE assessments with the Smart Pad and 

reference instrument. Results shown below in Figure 21:  
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Figure 21. Effect of Measurement Duration on REE Measurement Accuracy (A) Effect of 

upper and lower threshold range settings on Smart Pad accuracy for REE measurement; 

(B) Effect of time per measurement on REE accuracy across all N=113 measurements; 

(C) Effect of threshold range settings on the time per measurement.  (D) Sample data 

analysis for 500-650 ppm threshold range.  

Figure 21 details the effect of Smart Pad threshold range on system precision and 

accuracy. The 500-650 ppm CO2 concentration range was concluded to be the most 

accurate and precise operating range with performance characteristics of -1.0% ± 10.5% 

(SD) for the subject across N=32 total REE measurements ranging from 1420 to 2990 

kcal/day. Figure 21B shows the effect of measurement duration directly on system 

accuracy and provides evidence of the overall robustness of Eq (1) with a low mean bias 
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(3.3%) across all 5 threshold ranges. Figure 21C shows the effect of CO2 threshold range 

on time per measurement, with time per measurement increasing consistently with 

increasing CO2 threshold range, an expected result as, in general, larger sets of data 

should take longer to collect. From Figure 21C, it is possible to provide a confidence 

interval for the expected time per measurement for the tested subject at the tested CO2 

threshold ranges. From this information, one may reasonably conclude that the 500-650 

ppm CO2 threshold range provides the optimal precision and accuracy, with REE 

measurement characteristics of 88.5% (68% CI) accuracy for 14-19 minutes per 

measurement (68% CI). For a singular measurement in the given experimental conditions 

on the singular subject with N=32 measurements for 500-650 ppm, the Smart Pad 

showed comparable accuracy to the most accurate REE estimating equation (at least as 

reported in (Frankenfield, 2013) for their N=337 subject population): 81.5% accuracy for 

the Smart Pad compared to 82% accuracy for the Mifflin St. Joer equation (both for a 

90% CI). Repeated measures can improve the Smart Pad accuracy significantly (see 

section 4.11) to levels above the Mifflin St. Joer, an inference based on implications of 

standard error (Altman & Bland, 2005). It is also interesting to note that the system when 

used the 500-650 ppm range shows evidence of similar precision by an alternative 

definition, the “within subject coefficient of variation (CV)” (relative to gold standard) as 

does current FDA cleared/approved medical devices for REE measurement (Cooper et 

al., 2009): the Korr ReeVueTM (FDA, 2003) and MedGraphics CPX UltimaTM (FDA, 

2006): Smart Pad error SD (68% CI): 10.5%, Korr ReeVueTM CV (68% CI): 11.1%, 

MedGraphics CPX UltimaTM CV:12.2% (68% CI).  
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A linear regression on the results of Figure 21B produced a R value of -0.193, 

suggesting “little to no correlation between Smart Pad Error percentage and measurement 

duration”. However, one should be skeptical of this conclusion, given a hypothesis test on 

the slope of the aforementioned regression resulted in a p-value of 0.041 (possibly 

deflated due to high sample size, N=113, which is known to inversely correlate with p-

value (Thiese et al., 2016)), only marginally significant by common statistical heuristics, 

and still suggesting the conclusion that per measurement has a significant effect on Smart 

Pad analytical accuracy. A similar, less refined Smart Pad system already did show 

relatively good accuracy for EE measurement in a N=20 subject study in collaboration 

with Mayo Clinic (Sprowls, Victor, Serhan, et al., 2021). This study section significantly 

builds on those results by effectively reducing the measurement time of the system by 

several minutes, an important consideration for medical practices with a limited number 

attending rooms and also for the purpose of repeated measurements as described in 

section 4.11. 

The authors suspect fitting in the reference instrument mask and potential leaks in 

the facial accessory to partly have influenced reproducibility (and therefore precision and 

final rated accuracy in this manuscript). Since fundamentally the observed variance in the 

results is an additive product of the total errors in both Smart Pad and MGC Ultima 

CPXTM systems, one might expect the rated precision of the presented device to decrease 

if errors in gold standard EE measurement were eliminated by using a more robust breath 

gas collection accessory (e.g. a mouthpiece accessory provided by supplier) or using a 

quality control product for respirator fitting such as BitrexTM as enumerated in the U.S. 

Occupational Safety and Health Administration regulatory statutes (OSHA, 2020). 
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Sample data fittings for Subject #1: 

 

Figure 22: Sample Raw Data for a CO2 Threshold Range of 500-650.  Red curve shows 

CO2 concentration measured from the Smart Pad. Blue curve shows the baseline adjusted 

CO2 concentration, which is used to fit an identical model to equation (1) but with 

simplification that the [CO2]0 term is subtracted from both sides of the equation.  
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Figure 23: Baseline Adjusted Fitting for REE using Reference Method Calibration.  First 

CO2 accumulation curve is fit with reference kgen to determine λAcc. Each sequential curve 

is analyzed with that same λAcc value. Last three CO2 accumulation curves are for biking 

assessment (i.e. for 4.4), with first being to calibrate for λAcc and second and third for 

Smart Pad VCO2/EE measurement.  
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Table 6: Results from Contactless REE Measurement (for Figure 23) 

Fitting # (Shown in 

Figure 23) 

REE Smart Pad 

[kcal/day] 

REE Reference Method 

[kcal/day] 

Error 

% 

#1 2552 2609 -2.2 

#2 2767 2618 5.7 

#3 3012 2987 0.8 

#4 2345 2187 7.3 

#5 2504 2225 12.5 

#6 2279 2199 3.7 

 

4.8 Results: Measurement Range Optimization for Exercise assessment 

Figure 24 (A-D) below shows Smart Pad VCO2 measurement performance for 

exercise (biking on a fixed bike).  
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Figure 24: Effect of CO2 Operating Range on VCO2 Measurement for Exercise.  (A) 

Effect of threshold range settings on Smart Pad accuracy for VCO2 measurement for 

exercise VCO2 assessment; (B) Effect of measurement duration on Smart Pad VCO2 

accuracy across all N=46 parallel measurements; (C) Effect of threshold range settings on 

the measurement duration for a biking subject. (D) Sample data analysis for 500-675 ppm 

threshold range.  

Figure 24A shows how the Smart Pad app’s CO2 threshold range affects system 

accuracy for VCO2 measurement, with the 500-675 threshold range showing optimal 

measurement characteristics (-0.8% mean bias). Figure 24B shows the effect of time per 

measurement on VCO2 assessment accuracy. Across all N=46 measurements spanning 

the six concentration ranges from 500-600 ppm to 500-900 ppm, a mean bias of -0.8% 

can be observed, suggesting that equation (1) is robust across a variety of CO2 
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concentration ranges. Figure 24C shows the effect of CO2 threshold range on 

measurement duration. A consistent increase in measurement duration with increasing 

size of CO2 threshold range was not observed, a logical result given the study design, 

given effort level on the bike was not a control variable of the study (a notable oversight). 

One promising note from Figure 24C is conveniently low time per measurement. For 

VCO2 measurements in the 500-675 ppm threshold range, errors of -0.8% ± 9.3% were 

observed from only 4.8-7 minutes of CO2 accumulation (68% CI).  

It is important to note that results reported thus far in section 4.8 are concerned 

fully on VCO2 measurement, the key parameter in measurement of EE. The other key 

parameter of consideration in the calculation of EE via the Weir formula (see equation 

(6)), RQ, is more difficult to confidently assume based on this study design for 

measurement of exercise EE. From this information, one may reasonably conclude that 

the Smart Pad is 83% (68% CI) accurate for a 4.8-7.0 minute exercise measurement when 

an RQ value of 0.85 is assumed. Users of this technique for exercise EE assessment 

should take great consideration of RQ assumption given the physiological parameter’s 

tendency to vary significantly during the course of exercise (Gorostiaga et al., 1989; 

Issekutz & Rodahl, 1961).  

According to current scientific knowledge of exercise physiology, RQ depends 

more highly on both exercise intensity (Issekutz & Rodahl, 1961) and the length of time 

for which the subject has been exercising (Gorostiaga et al., 1989) than it does fasting 

state. As such, results for exercise VCO2 are shown within 4.8 instead of EE since RQ 

can vary significantly during the course of the first five minutes of moderate intensity 

exercise (typically within the range of 0.7 to 1.0) a well-studied phenomenon which 
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occurs in both men and women within a wide range of exercise intensities (Issekutz & 

Rodahl, 1961). Since RQ is known to vary significantly during this time, and, since the 

majority of exercise EE assessments in the present study lasted approximately 5 minutes 

in length, an RQ 0.85 was assumed (median value from references described above). The 

500-900 range data was excluded for exercise EE assessment only (it is presented for 

VCO2 in the above text and Figure 24) since it lasted longer than 5 minutes, under which 

condition RQ should be expected to increase above 0.9 for continuous exercise 

(Gorostiaga et al., 1989). Under this RQ assumption, across all 5 lower concentration 

ranges spanning from 500-600 to 500-700, and specifically for EE measurement of a 

biking subject, the analytical accuracy and precision of the Smart Pad were (-) 6.2±10.7% 

(SD). 

Sample fitting of exercise EE data:  
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Figure 25. CO2 Fitting for Exercise EE using Reference Method Calibration.   

Table 7: Results for Exercise VCO2 Assessment (from Figure 25)

 Fitting # VCO2 Smart Pad 

[ml/min] 

VCO2 Reference Method 

[ml/min] 

Error 

100% 

#1 787.4  728.1 8.5 

#2 1090 952.8 14.4 

#3 1208.8 1158.5 4.4 

 

4.9 Results: Effect of REE on Accuracy for Optimized CO2 Measurement Range 

Specifically for the target application of this medical device, to aid in weight 

management for individual’s whose BMI is outside of a healthy range via accurate 

metabolic diagnostics, it is critical to have the capability of accurate measurement across 

a wide range of BMIs and EE values. To study this effect, 5 subjects with a relatively 
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wide range of BMIs were assessed using the Smart Pad for a minimum of 5 parallel 

measurements each. Subject #1 performed a total of N=32 measurements as part of the 

sub-study detailed in 4.7. As such, the full dataset of assessments for 4.5 contained N=52 

data points relating BMI with Smart Pad analytical accuracy. All assessments were 

performed at the CO2 threshold range of 500-650 ppm to control for the effect of CO2 

threshold range. Figure 26A-C below illustrates results of 4.5: 

 

Figure 26. Effect of BMI on Smart Pad REE Measurement Accuracy and Duration.  (A) 

Mean accuracy of the Smart Pad for measurement of REE categorically grouped based on 

BMI and ranging from just above the underweight cutoff (18.8 kg/m2) to obese (31.4 

kg/m2); (B) Accuracy of the Smart Pad for measurement of REE; (C) Effect of REE on 

measurement duration.  

Figure 26 shows a consistent effect of BMI on Smart Pad system measurement 

accuracy, however, despite this, all mean biases across all 5 subjects were within ±10% 

of the analytically accepted REE value for measurement. Even with the Pearson’s R = -

0.618, the slope was determined to be statistically insignificant (P=0.267) suggesting that 

the Smart Pad is accurate over a wide range of BMI values. Figure 26 confirms the low 

mean bias between the MGC Ultima CPXTM and the Smart Pad in accuracy for EE 

measurement across all N=52 measurements performed on the N=5 subjects (µ= -2.6%). 
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The figure also suggests that there is little correlation between REE and Smart Pad 

accuracy (Pearson’s R:-0.239) and a significance test on the slope suggests “here is no 

statistically significant effect of subject REE on Smart Pad accuracy (P=0.088). Figure 

26C shows the relationship between EE and the Smart Pad’s time per measurement while 

the CO2 threshold range is held constant at 500-650 ppm. There is a somewhat consistent 

(Pearson’s R = -0.618) trend between decreasing time per measurement with increased 

EE. This is an intuitive result based on the design of the system, as, while holding upper 

CO2 level constant, elevated CO2 generation rates will reach the upper CO2 level more 

quickly than would a reduced CO2 generation rate. In general, from regressions shown in 

Figure 26A and B, we conclude that neither subject BMI (P=0.267) nor subject REE 

(P=0.088) have statistically significant effects on Smart Pad accuracy when using a 

reference method to calibrate for λAcc.  

Measurement technique precision was not equal among subjects (±13.5% for 

subject 5 versus ±4.9% for subject 4), which, may potentially suggest a particular 

methodological error in the study with regards to the reference method instrument usage. 

Subject 4, who saw the highest level of precision for their 5 measurements (SD=±4.9%), 

had been previously trained to administer tests using the reference instrument, and, by 

their own estimate, had administered 50+ EE assessments previously using the MGC 

Ultima CPXTM. On the other hand, Subject 5, whose assessments were characterized by a 

much greater variance in Smart Pad accuracy (SD=±13.5%) had never used the reference 

instrument previously and was somewhat unfamiliar with its operation. As such, the 

authors reason inconsistency in observed Smart Pad accuracy may be a result of small 

leaks in the reference instrument’s wearable facial accessory, resulting in less apparent 
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precision within the REE measurement result. Three measurements from subject #2 were 

replaced with averages from 3 other measurements on the same subject due to an obvious 

error with the gold standard method (but with the Smart Pad still operating as intended). 

The author reason this is a logical approach, given the sample size of other recorded 

measurements (N=3) and low variance in other measurements (<3% Coefficient of 

variability). Within this study section, no datapoints were removed, with the exception of 

several runs that were not analyzed due to clear MGC Ultima CPXTM errors (i.e. errors on 

device display interrupting data collection).   

 

Figure 27: CO2 Accumulation for Subject #2 using Reference Method Calibration  
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Table 8: Results for Subject #2 REE Assessment (from Figure 27)

 Fitting # (Shown in 

Figure 27) 

REE Smart 

Pad 

[kcal/day] 

REE Reference 

Method 

[kcal/day] 

Error (% R2 of 

Fitting 

#1 1178 1264 -6.8% 0.969 

#2 1255 1291 -2.8% 0.924 

#3 1232 1229 26.8% 0.931 

#4 1075 1261 (estimated) -14.8% 0.941 

#5 1230 1261 (estimated) -2.5% 0.934 

 

 

Figure 28: CO2 Accumulation for Subject #3 using Reference Method Calibration   
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Table 9. Results for Subject #3 REE Assessment (from Figure 28).

Fitting # (Shown 

in Figure 28) 

REE Smart Pad 

[kcal/day] 

REE Reference 

Method [kcal/day] 

Error 

100% 

R2 of 

fitting 

#1 2021 2206 -8.4% 0.947 

#2 2146 2146 0.5% 0.944 

#3 1921 2154 -10.8% 0.952 

#4 1802 2113 -14.7% 0.940 

#5 1974 2244 -12.0% 0.946 

 

4.10 CO2 Concentration Decay: Evaluative Study of Room Air Exchange Rate (λ) 

A room’s air exchange rate (λ) can be determined safely within indoor 

environments with estimation of subject VCO2 during CO2 accumulation periods (λAcc) 

(Batterman, 2017; Haverinen-Shaughnessy et al., 2011), or recording CO2 decay 

following exit of human occupants from an environment (λ0) (Batterman, 2017; Gall et 

al., 2021; Ramalho et al., 2013; Turanjanin et al., 2014). In our previous study, λAcc was 

determined using a medical device to provide a measurement for VCO2 to use in equation 

(1) (Sprowls, Victor, Serhan, et al., 2021), and previous reports of λAcc assessed from CO2 

accumulation data (Batterman, 2017; Haverinen-Shaughnessy et al., 2011) were based on 

REE estimating equations (e.g.(ASTM D 6245, 2007; Mifflin et al., 1990)), widely 

reported to be limited in accuracy and therefore leading to propagation of standard error 

of regression for determination of λAcc. Here, we build upon the previous work by 

performing a correlative study between λAcc, using the most well respected indirect 

calorimeter device to provide a high accuracy value of kgen, and λ0 for CO2 decay in the 

exact same environment following the subject’s departure. In general, there is an 
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assumption that these results (i.e. λAcc and λ0) are in agreeance. However, in this 

experimental set up, we observed a significant disagreeance between those parameters. 

Subject #1 performed N=26 measurements of sequential CO2 accumulation and decay at 

the 5 threshold ranges (500-600, 500-625, 500-650, 500-675, 500-700 ppm) for a 

minimum of N=5 sequential measurements for each CO2 threshold range. Figure 29A 

shows the results of this correlative study of λ between sequential CO2 accumulation 

(λAcc) and decay (λ0) data:  
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Figure 29. Results of λAcc Correlative Study and Simplified CO2 Accumulation 

Model.  (A) λAcc and λ0 scatter plot showing little to no correlation (R=-0.228); (B) 

Correlation between VCO2 measured from the MGC Ultima CPXTM and λAcc; (C) Sample 

data analysis for sequential CO2 decay/accumulation experiments. (D) Sample data 

analysis using Eq (9) (E) Correlation between REE measured using Eq (9) and REE 

measured using MGC Ultima CPXTM for N=56 total measurements on N=5 subjects, (F) 

Correlation for the same dataset as (E) but presenting mean REE ± SD for each subject.  
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Surprisingly, Figure 29A shows little correlation (R=-0.228) between λAcc and λ0 

in the exact same measurement environment with the decay performed immediately 

following the accumulation period. Correlations between λAcc values were also regressed 

linearly with λ0 values from 15, 30, and 45 minutes of CO2 decay with similarly low 

correlation values: R=0.020, -0.138, and -0.234, respectively. In general there was 

relatively low variance in λ0 assessed from CO2 decay, with sample means of 1.9±0.2 

hour-1 (CV=11%), 1.9 ±0.2 hour-1 (CV=11%), and 1.8 ± 0.2 hour-1 (CV=11%) for 15, 30, 

and 45 minutes of CO2 decay respectively, whereas λAcc was characterized by a much 

greater level of variance, with a sample mean of 3.0±0.8 hour-1 (CV=27%) across the 

N=26 assessments performed in this sub study. Assuming there is no effect of the 

person’s occupancy on λAcc (the prevailing assumption of the scientific community), this 

is an odd observation, however, there is fundamental science supporting the observed 

results (discussed below).  

VCO2 measured from the reference method correlated highly with λAcc (R=0.785, 

P<.00001), also a surprising observation. From the data shown (Figure 29B), in general 

larger VCO2 values result in larger λAcc values. The authors suggest this is due to 

multicollinearity between VCO2, kgen, and λAcc where there was an unexpectedly high 

impact of the subject’s body heat and/or breath volume and/or movement (all expected to 

correlate with VCO2) on λAcc. A possible explanation is that the λAcc observed in this 

measurement environment is strongly influenced by aerodynamic effects of a subject’s 

presence, leading to a rise in air exchange across openings connecting the room with 

adjacent spaces. Such changes may be due to increased convection associated with body 

movements (which results in elevated EE and therefore VCO2), vertical stratification 



 

75 

 

(Auerswald et al., 2020; Novoselac & Srebric, 2003) due to human heat dissipation 

(which correlates with EE and therefore VCO2 (Lyden et al., 2014)), and increased 

convection associated with respiration where VCO2 is proportional to the produced 

breath volume, Ve (ml/min). These effects are maximized during biking tests where the 

subject’s heat flux is elevated from exercise and there is additional air perturbation due to 

pedaling.  

Since λ0 does not adequately predict λAcc for CO2 accumulation, it is vitally 

important to predict λAcc by some other method. To do so, one may solve the system of 

equations of Eq (1) and the regression, Eq (8), shown in Figure 29B leading to initial 

derivation of equation (9) (see 2.5 for equations): 

Where variable meanings and dimensions are the same as for Eq (1), except for a 

new term, β [ppm-1], which could be understood as a combined unit conversion (ml min-1
 

to ppm hour-1) and factor from equation (8) that represents the change in λAcc resulting 

from a 1 unit increase in kgen. The value of β is calculated from measurements of the 

application environment (i.e. room volume, temperature, pressure, humidity), all of which 

are already present in equation (1). β can be calculated from a combination of mass 

conservation and the regression shown in Figure 29B (equation (8)) and is shown in 2.5  

Where variable and unit meaning are identical to those described in Equations (2), 

(3), and (4). Equation (8), key to the innovation leading to Eq (9), was derived from 

N=26 measurements taken as part of the 4.6 sub study. The model was evaluated on an 

independent dataset, N=56 measurements from N=5 subjects analyzed using equation (1) 

originally in section 4.5. This dataset contained no overlap in individual measurements 

with regards to model development dataset. The results of the application of equation (9) 
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to independent data are shown in Figure 29E-F. Figure 29E shows how the REE 

measurement from equation (9) correlates with the REE measurement from the MGC 

Ultima CPXTM. The results show a low mean bias relative to reference instrument (Figure 

29E slope=1.02 versus 1.00 for ideal measurement), however, variance (R=0.761) is 

notable. Taking the mean of multiple repeated REE measures (Figure 29F) increases 

correlation with reference method (Pearson’s R=0.937), a logical consequence of 

standard error (Altman & Bland, 2005) and the general ability of measurement devices to 

mitigate imprecision using repeated measures, relevance and reasoning for the Smart Pad 

specifically are extensively discussed 4.11. This new model represents an important step 

forward from the progress made in (Sprowls, Victor, Serhan, et al., 2021) towards 

development of an contactless IoT device for REE measurement, given the promising 

application of equation (9) requires no calibration for λAcc using a VCO2 measurement 

reference method.   

Important note on all regressions shown in Figure 29: For Figure 29C, D, E, and F 

all y-intercepts were determined to be statistically insignificant (P>0.05) and Pearson’s R 

is shown for datasets (not regression lines, which are fitted with y-intercept set as zero). 

Regression lines for Figure 29B, C, and D were all fitted with no y-intercept, since it was 

determined to be statistically insignificant and slope is shown for that regression with no 

y-intercept.  
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Figure 30: Sample CO2 Accumulation/Decay Fittings for Subject #5.  5 discrete 

fittings performed for each of the N=26 decay experiments: 0-15, 0-30, 0-45 min and also 

15-45, 30-45 min. Figure 29B shows the one with the highest Pearson’s R). 30-45 min 

fittings showed relatively low R2 values for many runs. 

 

Table 10. Results for λ Evaluation from CO2 Accumulation and Decay (for Figure 30)

 Fitting (Shown in Figure 30) λ [hour-1] R2 

CO2 Accumulation fitting 1.41 0.953 

0-15 Minutes CO2 Decay Fitting 2.05 0.895 

0-30 Minutes CO2 Decay Fitting 2.04 0.963 

0-45 Minutes CO2 Decay Fitting 1.96 0.966 

15-45 Minutes CO2 Decay Fitting 1.74 0.870 

30-45 Minutes CO2 Decay Fitting 0.71 0.276 
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Figure 31. Sample CO2 Accumulation/Decay Fittings for Subject #1.   

 

Table 11. λAcc Evaluation from CO2 Accumulation and Decay #1 (for Figure 31) 

Fitting (Shown in Figure 31) λ [hour-1] R2 

CO2 Accumulation fitting 2.65 0.945 

0-15 Minutes CO2 Decay Fitting 1.84 0.931 

0-30 Minutes CO2 Decay Fitting 1.77 0.960 

0-45 Minutes CO2 Decay Fitting 1.69 0.960 

15-45 Minutes CO2 Decay Fitting 1.34 0.845 

30-45 Minutes CO2 Decay Fitting 0.94 0.282 
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Table 12. λAcc Evaluation from CO2 Accumulation and Decay #2 (for Figure 31)

Fitting (Shown in Figure 31)  λ [hour-1] R2 

CO2 Accumulation fitting 2.99 0.965 

0-15 Minutes CO2 Decay Fitting 1.98 0.876 

0-30 Minutes CO2 Decay Fitting 1.88 0.948 

0-45 Minutes CO2 Decay Fitting 1.80 0.960 

15-45 Minutes CO2 Decay Fitting 1.47 0.881 

30-45 Minutes CO2 Decay Fitting 1.42 0.602 

 

Equation (9) Derivation: 

Start with system of equations (1) and (8). 

[𝑪𝑶𝟐] = [𝑪𝑶𝟐]𝟎 +
𝒌𝒈𝒆𝒏

𝝀𝑨𝒄𝒄
 (𝟏 − 𝒆−𝝀𝑨𝒄𝒄𝒕) +  ([𝑪𝑶𝟐]𝒊 −  [𝑪𝑶𝟐]𝟎)𝒆−𝝀𝑨𝒄𝒄𝒕 (1) 

Combine equations (2) and (3) from the to produce equation (12): 

𝑽𝑪𝑶𝟐 = 𝒌𝒈𝒆𝒏 ∗ 𝑪𝑭𝒆𝒏𝒗 ∗ 𝑽𝑹𝒐𝒐𝒎 ∗ 𝑪𝑭𝑺𝑻𝑷𝑫/𝟔𝟎 (12) 

Solve equation (8) for VCO2 and substitute into equation (12) to develop equation (13)  

𝝀𝑪𝑶𝟐 𝑨𝒄𝒄𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 = (
𝜶

𝟔𝟎
) ∗ 𝑪𝑭𝑬𝒏𝒗 ∗ 𝑽𝑹𝒐𝒐𝒎 ∗ 𝑪𝑭𝑺𝑻𝑷𝑫 ∗  𝒌𝒈𝒆𝒏 (13) 

Then defining a new term, β, to simplify equation (13):  

This results in the simplified version of equation 13, which is equation 14:  

𝝀𝑪𝑶𝟐 𝑨𝒄𝒄𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 =  𝜶 𝒙 𝑽𝑪𝑶𝟐 (8) 

𝜷 = (
𝜶

𝟔𝟎
) ∗ 𝑪𝑭𝑬𝒏𝒗 ∗ 𝑽𝑹𝒐𝒐𝒎 ∗ 𝑪𝑭𝑺𝑻𝑷𝑫 (10) 
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𝝀𝑨𝒄𝒄 = 𝜷 ∗  𝒌𝒈𝒆𝒏 (14) 

This can simply be substituted into equation (1), resulting in equation (9):  

Sample equation (9) fittings:  

 

Figure 32. REE Measurements for Subject #1 using Simplified Accumulation Model.  No 

training set data shown for either experimental run (performed on separate day). Last 2/3 

CO2 accumulation curves for each day were not analyzed using equation (9) given they 

are for biking assessments. Analyzed data taken from 2+ months prior to training set data 

collection. 

 

[𝑪𝑶𝟐] = [𝑪𝑶𝟐]𝟎 +
𝟏

𝜷
 (𝟏 − 𝒆−𝜷∗𝒌𝒈𝒆𝒏∗𝒕) +  ([𝑪𝑶𝟐]𝒊 −  [𝑪𝑶𝟐]𝟎)𝒆−𝜷∗𝒌𝒈𝒆𝒏∗𝒕 (9) 
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Table 13. Smart Pad Accuracy for Subject #1 using Simplified Accumulation Model.

 Fitting # 

(Shown in 

Figure 32) 

REE Smart 

Pad using Eq 

(9) [kcal/day] 

REE Reference 

Method[kcal/day] 
Error % 

R2 of Eq (9) 

Model 

#1 2242 2518 -11.0% 0.988 

#2 2511 2609 -3.8% 0.990 

#3 2856 2619 9.1% 0.986 

#4 3295 2988 10.3% 0.990 

#5 2144 2187 -2.0% 0.994 

#6 2419 2225 8.7% 0.994 

#7 2021 2199 -8.1% 0.994 

 

 

Figure 33: REE Measurements for Subject #2 using Simplified Accumulation Model.  G6 

not included in Figure 29E-F (model validation dataset) since it was used to build the 

training set from Figure 29C.  
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Table 14. Smart Pad Accuracy for Subject #2 using Simplified Accumulation Model.

Fitting # 

(Shown in 

Figure 33) 

REE Smart Pad 

using Eq (9) 

[kcal/day] 

REE Reference 

Method 

[kcal/day] 

Error % 
R2 of Eq (9) 

Model 

#1 1346 1261 5.1% 0.961 

#2 1145 1264 -9.4% 0.968 

#3 1292 1291 0.0% 0.926 

#4 1245 1229 1.3% 0.931 

#5 975 1261 -22.7% 0.938 

 

 

Figure 34: REE Measurements for Subject #3 using Simplified Accumulation Model.  G6 

not included in Figure 29E-F (model validation dataset) since it was used to build the 

training set from Figure 29C. 
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Table 15. Smart Pad Accuracy for Subject #3 using Simplified Accumulation Model.

Fitting # 

(Shown in 

Figure 34) 

REE Smart Pad 

using Eq (9) 

[kcal/day] 

REE Reference 

Method 

[kcal/day] 

Error % R2 of Eq (9) 

Model 

#1 2717 2277 19.3% 0.929 

#2 2371 2206 7.5% 0.942 

#3 2612 2146 21.7% 0.958 

#4 2238 2154 3.9% 0.956 

#5 2017 2113 -4.6% 0.933 

 

 

Figure 35: REE Measurements for Subject #4 using Simplified Accumulation Model. 5th 

CO2 accumulation not analyzed due to gold standard method operating system error. G6 

not included in Figure 29E-F (model validation dataset) since it was used to build the 

training set from Figure 29C. 
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Table 16. Smart Pad Accuracy for Subject #4 using Simplified Accumulation Model. 

Fitting # 

(Shown in 

Figure 35) 

REE Smart Pad 

using Eq (9) 

[kcal/day] 

REE Reference 

Method 

[kcal/day] 

Error % 
R2 of Eq (9) 

Model 

#1 1462 1735 -15.6% 0.946 

#2 1155 1600 -27.8% 0.949 

#3 1275 1563 -18.4% 0.941 

#4 1377 1650 -16.6% 0.932 

#5 2117 1760 20.3% 0.904 

 

 

Figure 36: REE Measurements for Subject #5 using Simplified Accumulation Model.   

G6 not included in Figure 29E-F (model validation dataset) since it was used to build the 

training set from Figure 29C.  
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Table 17. Smart Pad Accuracy for Subject #5 using Simplified Accumulation Model.

Fitting # (Shown 

in Figure 36) 

REE Smart Pad using 

Eq (9) [kcal/day] 

REE Reference 

Method [kcal/day] 

Error 

% 

R2 of Eq 

(9) Model 

#1 2206 1659 33.0% 0.942 

#2 2494 2301 8.4% 0.952 

#3 2946 2298 28.3% 0.936 

#4 2499 1713 45.9% 0.937 

#5 2529 1735 45.7% 0.940 

 

4.11 Discussion: Compensation for Imprecision using Repeated Measures 

It is well known that repeated measurements can increase statistical confidence in 

a final result, even in the scenario where a measurement instrument is relatively 

imprecise. In fact, this is a major motivator and distinction between standard deviation 

and standard error  (Altman & Bland, 2005). Standard error of a particular measurement 

is correlated with the inverse square root of the number of measurements. Assuming the 

same level of accuracy as was observed during this study (a large assumption, only posed 

to offer the reader the “vision” of the Smart Pad), a user of the device would potentially 

see a substantial increase in the confidence of their final average REE measure via 

repeated assessment (which could be relatively easy, given the Smart Pad performs 

contactless measurements). This could be in the form of multiple monthly visits to a 

weight loss clinic, or, could potentially be in the form of 10 separate occupancy sessions 

(e.g. times that the subject has occupied the given environment for a minimum of 14-19 

minutes) of a home study, bedroom, bathroom, vehicle cabin (Deng et al., 2020), or 

office space (e.g. inside a business/institution). For the Smart Pad measurement technique 
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based on equation (9), the realized accuracy across the N=56 measurements were 

2.2±16.7% (68% CI).  

Here, accuracy is defined as the maximum error expected for a given confidence 

interval based on experimental findings for the Smart Pad, as follows:  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 % =  100% − (|𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 %| + 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐸𝑟𝑟𝑜𝑟) (15) 

 

Table 18. Implications of Standard Error with Regards to Equation (9) 

Number of Repeated 

Measurements 

Smart Pad Accuracy for Equation (9) (68% 

CI) 

1 81.1% 

3 88.2% 

5 90.3% 

10 92.5% 

 

This extrapolation based on generally accepted consequences of standard error 

was further analyzed to account for the effect of total measurement time across multiple 

measurements. Here, the extrapolated results are for the 500-650 ppm CO2 threshold 

range (where the 2.2±16.7% (68% CI) error was observed for the equation (9) model) 

was used, for which contactless REE measures were recorded in 14-19 minutes. For that 

reason, a mean measurement duration of 16.5 minutes was modelled below in Figure 37:  
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Figure 37. Smart Pad Accuracy using Eq (9) and Extrapolating from Standard Error.   

 

4.12 Conclusions 

A new contactless IoT device is evaluated, the Smart Pad, which displayed 

promising accuracy characteristics for contactless resting energy expenditure (REE) and 

exercise CO2 production rate (VCO2) measurements in a medium size room after 

calibrating for air exchange rate with a VCO2 measurement gold standard method once. 

The Smart Pad is capable of performing accurate REE measurements in 14-19 minutes 

and exercise VCO2 measurements in 5-7 minutes after calibrating with the gold standard 

once. In this configuration, measurement characteristics were comparable to multiple 

wearable (i.e. with facial accessories) FDA 510(k) cleared devices as reported by another 
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study and FDA sourced 510(k) submissions from several device manufacturers (see 

Table 19). Additionally, by performing the first ever study of sequential CO2 

accumulation and decay air exchange rates using a high accuracy VCO2 measurement 

device, disagreement between air exchange for CO2 accumulation and decay was 

observed in the same measurement environment. This led to development of a new model 

for REE assessment from ambient CO2, which does not require air exchange rate 

calibration using a gold standard method or CO2 decay rate. The model shows good 

agreeance for REE assessment (Y=1.02X, R=0.761) when evaluated on a dataset 

independent from the one used to develop the model. Limitations of the study include 

errors in reference method VCO2 measurements due to potential differences in fitting of 

the wearable facial accessory, a lack of air exchange assessed from subjects with low 

VCO2, and control of subject exercise intensity during biking EE assessments. Future 

work will focus on validation of equation (9) in a new environment and development of a 

contactless VO2 max test.  
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CHAPTER 5 

5 SMART PAD: VALIDATION IN AMBULATORY ENVIRONMENT AND 

DEVELOPMENT OF A CONTACTLESS EXERCISE TEST 

5.1 Abstract 

A new testing environment for the Smart Pad was developed and a subject was 

evaluated to study the effect of an ambulatory (enclosed by a curtain, as in many hospital 

rooms) measurement environment on accuracy. The testing environment is unique given 

it is not surrounded by rigid walls of a room, rather, the testing area is enclosed by a 

flexible curtain. Additionally, this is the largest environment tested as part of this thesis 

work, having a measured volume of approximately 18.8 m3. The area was enclosed and 

only one simple modification was made to the area’s inbuilt HVAC system with the inlet 

vent being sealed with a vinyl fabric. One outlet fan, connected to the Smart Pad’s 

actuator system, was installed in line with the curtain. In preliminary testing of the 

environment, the Smart Pad’s equation (1) resulted in errors of -3.1% for REE and 10.6% 

for exercise VCO2. The environment’s λ0 value was determined to be ~5.5 hours 1, 

approximately 3X larger than the private office evaluated as part of Chapter 4, suggesting 

that even in environments with significant leakage and significantly larger than the 

typical private office, the Smart Pad’s measurement principle is still accurate. 

Additionally, a contactless exercise test based on thermodynamic efficiency (CTET) was 

evaluated before final modifications were made to further seal the testing environment, 

showing similar characteristics to reference data upon visual analysis. This set up resulted 

in high unoccupied air exchange (12.0 Hours-1), yet, visually similar data to the reference 
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method, showing the technique captures a strong metabolic signal even in an ambulatory, 

semi-sealed environment.  

5.2 Methodology 

A room was developed for testing the Smart Pad at Arizona State University’s 

Health Futures center building in Phoenix Arizona. The room was built using a long 

curtain and VelcroTM with adhesive backing inside of a larger lab space of approximately 

3-5X the volume of the curtained area (18.8m3). Several experiments were performed at 

various stages of the curtained area’s construction and preliminary results suggested that 

the entire curtained area should be sealed to ensure adequately low unoccupied air 

exchange, λ0. A photo of the ambulatory area prior to sealing the top air gap is shown 

below in Figure 38 : 
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Figure 38. 4th Smart Pad Operating Environment During Construction.  Exercise bike, 

cot, and reference instrument all visible. Inlet fan (can be seen attached to ceiling) was 

totally sealed for all ambient VCO2 assessments. Photo taken from outside the 

ambulatory area through a window visible from the hallway.  

As part of the testing environment development process, preliminary data was 

collected for a newly funded study to develop a contactless physical fitness test. The test 

evaluates the thermodynamic efficiency of a human by evaluating the ratio of work 

output to total energy expenditure over the course of the CTET evaluation. The protocol 

for the preliminary data is shown below in Figure 39:  
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Figure 39. Test Protocol for Contactless Physical Fitness Assessment.  “CTET” simply 

stands for contactless thermodynamic efficiency test. Resistance refers to the braking 

resistance of electromagnetically braked exercise bike (Nautilus NB2000TM).  

 Phase I of the test protocol serves to acclimate the subject to the instrument and 

record a 5 minute measurement of resting energy expenditure (REE) which is common 

practice for indirect calorimeter measurement in a clinical setting (Horner et al., 2001). 

This practice eliminates unusually high respiratory quotient values in some subjects and 

generally provides the most consistent results. After 10 minutes, the subject bikes at a 

fixed low intensity for 10 minutes at a fixed work capacity (33W for this test), which can 

be achieved by monitoring pedalling speed (RPM) and keeping bike resistance constant 

across all subjects, providing a constant mechanical workload across all subjects. This 

practice can be used to provide a measure of thermodynamic efficiency (Jabbour & 

Majed, 2019), termed “CTET” (contactless thermodynamic efficiency test) for this 

project. Pedal velocity is also kept constant at 60 rpm to control for the effect of pedalling 

velocity/acceleration on air currents within the measurement environment. The CTET 
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score can be defined as follows, and is referred to net mechanical efficiency in some 

other works (Jabbour & Majed, 2019):  

𝐶𝑇𝐸𝑇 (%) =  
𝑃𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡  (𝑘𝑐𝑎𝑙)

𝐸𝑛𝑒𝑟𝑔𝑦 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 (𝑘𝑐𝑎𝑙) − 𝑅𝐸𝐸(𝑘𝑐𝑎𝑙)
 (16) 

 In equation (16) above, CTET refers to “contactless thermodynamic efficiency 

test”, with the general physical meaning of thermodynamic efficiency of the human body, 

considering energy expenditures over resting (i.e. accounting for the fact that REE 

produces no measurable work external to the body). After 10 minutes of biking during 

the CTET, a standard biking VO2, Max test (Fleg & Lakatta, 1988; Storer et al., 1990) is 

performed. This simply consists of ramping resistance by a fixed interval (for example, 

1/16 as shown in Figure 39) after fixed intervals of time (for example, 1 min as in Figure 

39) until the test subject can no longer increase the electromagnetic braking force 

successfully while maintaining 60 RPM of biking cadence. Data is recorded 

simultaneously using the Smart Pad and MGC Ultima CPXTM
 and an in house developed 

python algorithm was used to calculate overlapping 30 second VO2 averages from the 

MGC Ultima CPXTM, the maximum of which is generally accepted to be the person’s 

maximal oxygen consumption VO2, max (Fleg & Lakatta, 1988; Storer et al., 1990). The 

VO2, max assessment is generally accepted as the gold standard for cardiovascular physical 

fitness assessment and the future goal of this line of research is to find a correlation 

between the low intensity CTET test and the VO2, max test using the protocol described in 

Figure 39.  

 After preliminary biking data was collected, a decision was made to seal the top 

of the curtained area as well to increase sensitivity of the REE measurement by 
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decreasing λAcc. To do so, a metal collar was secured around a piece of plastic vinyl 

blocking the curtained area’s inlet vent after the air supply duct was disconnected (i.e. 

isolating the environment from the building’s HVAC system). Following this 

modification, the room’s layout and appearance from outside the curtained area shown 

below in Figure 40:  

                 

Figure 40. Layout of Measurement Environment at Health Futures Center. Left: diagram 

of curtained area. Right: Photograph taken from the curtain’s exterior. The right side of 

the curtain was used as an entry and sealed with VelcroTM during experiments (including 

CO2 decay data collection).  
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A photo from inside the curtained area is shown below in Figure 41:

 

Figure 41. View from within Health Futures Center Ambulatory Testing Environment.  

  For pilot data collected in this environment, 2 sequential CO2 accumulation 

datasets were collected for both contactless REE and biking VCO2 measurements, 

following the same reference instrument λAcc calibration procedure as described in 

Chapters 3 and 4.  

 5.3 Results 

Pilot results of initial testing of the protocol shown in Figure 39 and the 

environment photographed in Figure 40 is shown below:  
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Figure 42. Pilot Data for Smart Pad CTET Test at Health Futures Center.  Drop lines 

added to indicate start/end times for each phase and were determined by recording local 

time at the start/end of each event. A such, there is likely a slight time delay between 

event (i.e. start of CTET test) and CO2 sensor signal due to mass transport effects. 

 Clearly differing shape in curves can be observed for each phase, showing clear 

metabolic difference in activity even with high air exchange (11.96 Hours-1 is 

approximately six times the decay λ0 observed in Chapter 4). Phase I shows a slight 

increase in CO2 concentration due to the subject’s resting energy expenditure. The air 

exchange is too high in this set up to achieve a usable resting VCO2 signal in this 

environment (one motivation for the modifications made to seal air gaps near the top of 

the curtained area). There is a clear signal for the CTET test as well as the VO2, max data 
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suggesting that even this high air exchange environment could be used to assess human 

CO2 production from contactless CO2 concentration modelling. There was very little 

noise in the CO2 data and no data filtering was performed. The corresponding data from 

the reference instrument for parallel measurement and presenting VCO2 (analysed in 

Python using in house developed code) is shown below in Figure 43. There are clear 

differences in both plots, however, one might imagine that the VO2 signal shown below 

(expected to correlate highly with VCO2 via the respiratory quotient, RQ, (Weir, 1949)) 

would follow closely the first derivative of kgen (which changes due to increasing physical 

workload during the exercise test) in equation (1). To address this, Python code was 

developed to measure transient VCO2 (which results in a changing kgen), using 30 second 

averages from Smart Pad data (not reported in this work, code still under development).  
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Figure 43. MGC CPX UltimaTM VO2, max Test Data for CTET Pilot Testing.  3 

measurement smoothed moving average (SMA) is the 3-point rolling moving average of 

raw VO2 meatuses, a practice used to better visualize raw gas exchange data which is 

often noisy.  

 For the code developed for Figure 43, 30 second averages of VO2 near the relative 

maximum seed value (shown as red datapoint above) are analysed and the maximum of 

which is taken as the true VO2,max of the subject. The result of 30 second averaging can 

be visualized below in Figure 44. For this test, the subject’s VO2,max was 31.0 ml min-1 

kg-1. Results for a VO2, max test are typically reported in weight adjusted (kg-1) units to 

control for the effect of subject body mass (Fleg & Lakatta, 1988; Storer et al., 1990).  
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Figure 44. Automated VO2, max Analysis Results from Developed Python Code.   The 

maximum VO2, max result from the 30 second overlapping averaging window is reported 

as the subject’s true VO2, max.  

 The python algorithm developed has clear advantages of current techniques used 

to analyse VO2, max data from a breath gas analyser like the MGC Ultima CPXTM, which 

is to, by hand, find the largest 30 second average interval for VO2 data. Considering that 

tedious and error prone process, the python code described above provides the most 

accurate 30 second averaging interval, since it can provide all possible 30 second 

averages that would take a human much effort to calculate by hand, and can be ran with 

little to no technician input unlike current techniques for analysing VO2, max data. The 

VO2, max python program also has preset functions for automated CTET analysis for this 

project using reference instrument data (developed in house). The results of one pilot 

CTET test and analysis using the automated python code are shown below:  
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Figure 45. Raw Data from MGC Ultima CPXTM for CTET.  Protocol for CTET test 

described in Figure 39.   

 In Figure 45 above, the 3 distinct phases of the CTET test can be observed. The 

average REE from Phase I is subtracted from the known workload of the subject on a 

fixed electromagnetically braked exercise bike. The bike’s workload is simply calculated 

by the manufacturer, Nautilus, whose device calculated power output through the bike’s 

crankshaft from the bike’s RPM and known electromagnetic braking resistance forces. 

The RPM was kept constant at 60 rpm and was validated to 0.0% error using a video 

recording technique with triplicate measures, showing perfect agreeance to counting 

rotations per minute by visually (by pausing video each rotation). The results for the 

preliminary CTET test are shown below in Figure 46.  

  

Figure 46. Results of Preliminary CTET Measurement.  Left: Raw energy expenditure 

(EE) measurements from the MGC Ultima CPXTM. Blue line shows average for REE. 

Red line shows average for biking EE. Right: CTET score derived from MGC Ultima 

CPXTM. Red line shows average of derived CTET measures over 8 minutes. 
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In comparison with literature values for net mechanical efficiency for the 

subject’s BMI group (Jabbour & Majed, 2019), CTET values from the MGC Ultima 

CPXTM are in agreeance with expected results. For the test shown, the CTET score was 

12.6%±1.9, meaning 12.6% of the energy consumed (above REE) during biking was 

actually transferred to mechanical work. The CTET test is also being  developed for the 

Smart Pad, but, further research is needed within this project to understand the best way 

to predict RQ, shown in equations 5-6, a key term relating VO2 (which the Smart Pad 

does not measure) to VCO2 (which the Smart Pad does measure) and energy expenditure. 

RQ is relatively easy to predict for REE measurements where it typically can assumed as 

0.85 for calorically balanced (in terms of energy intake in comparison with energy 

expenditure) subjects fasted for several hours (Marra et al., 2004; Matarese, 1997). The 

first 5 minutes of the REE assessment and first 2.5 minutes of the CTET assessment are 

ignored as the subject’s body takes some time to achieve equilibrium with the reference 

instrument or once they start biking, which typically increases EE until steady state is 

achieved.  

 From preliminary testing in the ambulatory environment, it was clear 

modifications were necessary to the room, as described and shown in Figure 40 and 

Figure 41. The primary modification was sealing the top air gap of the curtain. 

Preliminary results following this change in environment are shown below for the Smart 

Pad system:  
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Figure 47. Preliminary Smart Pad Performance at Health Futures Center.  Red dashed 

lines show fitting with equation (1) and blue lines show fitting with equation (7).  

 From Figure 47 it may be observed that the Smart Pad’s measurements were 

accurate in high air exchange, given the observed λ0 of ~5.5  Hours-1 which is 

approximately 3 times the air exchange observed in the environment from Chapter 4. 

Beyond that, good accuracy was maintained in the large environment, given the 

ambulatory area is 4/3 the size of the environment from Chapter 4 and 2 times the size of 

environment from Chapter 3. In these two ways, combined with the fact that the 

environment was filled with many different objects (Cot, metabolic cart, table, test 

subject, 2 mixing fans, and an exercise bike) and also that the curtain fabric itself is very 

flexible, the curtained area could certainly be considered non-ideal. Despite the many 

challenges posed by this environment, the ±10% accuracy of the device, comparative to 
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several FDA cleared devices (Cooper et al., 2009; FDA, 2003, 2006) considered 

respectable indirect calorimeters, was maintained during pilot testing. The results shown 

in Figure 47 are analyzed using the λAcc reference instrument calibration procedure 

utilized throughout Chapter 3 and 4. For contactless REE measurement, the Smart Pad 

was observed to have an accuracy of -3.1%. For contactless biking VCO2 measurement, 

the accuracy was observed to be 10.6%. In Figure 47 above, contactless exercise VCO2 

data is only analyzed as the second half of the CO2 accumulation curve. This is done to 

avoid errors due to a well-established human tendency to produce a large variance in 

respiratory quotient (RQ) during the first few minutes of exercise (Gorostiaga et al., 

1989; Issekutz & Rodahl, 1961). For REE assessment the same measurement time was 

preserved as within Chapter 4 (14-19 minutes) and a slightly larger timeframe of biking 

VCO2 data was collected the analyze the effect of performing ½ CO2 accumulation curve 

fittings, as shown in Figure 47 where the second ½ of CO2 accumulation data was fitted 

successfully with low error.  

It is also interesting to note that covering the top (approximately 1/10- 1/15th of 

the height of the full curtain) of the curtained area decreased the air exchange (λ0) by a 

factor of 2, from ~12.0 Hours-1 in Figure 42 to ~5.5 Hours-1 in Figure 47. These λ0 values 

are significantly higher than in the typical administrative office (Cheong & Chong, 2001), 

which typically are within the range of 1.5 to 4 Hours-1. It is reasoned this substantially 

increased air exchange is due to the construction of the curtained area as a “semi-

enclosed” environment given it truly is part of a larger room 3-5X the volume of the 

curtained area alone, making this curtained enclosure the perfect area for characterization 

of the Smart Pad’s performance in an environment that is on the limits of non-ideality 
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that might be encountered in practice. Additionally, the findings of Figure 47 suggest the 

Smart Pad system is effective at contactless REE/VCO2 assessment while maintaining 

good air quality using only 1 outlet fan (no inlet fan or vent). The authors suggest this 

works as the curtained area (as any room) is nearly impossible to fully seal and the air 

displacement of one fan is sufficient for the purpose of exchanging high CO2 air to the 

surrounding, resulting in displacement of low CO2 concentration air into the curtained 

enclosure from the surroundings. This finding also makes sense with regards to other 

measurements, as the air pressure has been observed not to increase by any significant 

margin during ventilation on periods of subject tests in Chapter 3 or during any CO2 

accumulation period by more than a few mbar (the Smart Pad measures barometric 

pressure and it’s values are often observed to be unchanging throughout all phases of 

contactless REE measurement including when the actuator system is on). 

These findings suggests the revised equations (especially with regards to CFEnv, 

which corrects for non-ideality in equation (1)) presented in Chapter 3 are conclusively 

accurate for contactless VCO2 measurement, given they were validated in Chapter 3’s 

longitudinal study (N=10+ parallel measures), Chapter 4 (N=52+ parallel measures), and 

now in the findings of Chapter 5 (N=2 pilot testing). To clarify, no training set data was 

collected with regards to equations 1-7 since the completion of the 20 subject Mayo 

Clinic study and therefore it is reasonable to conclude the technique is definitively 

accurate for REE measurement. See Table 19 for more details on comparison with 

current FDA 510(k) medical devices from past 25 years used as indirect calorimeters. 
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5.4 Conclusions 

The Smart Pad’s contactless VCO2 measures was tested in an ambulatory 

enclosure to validate design controls as to the most challenging environment for device 

application. The testing area was a large, high air exchange, object-filled, environment 

connected to a larger room and enclosed with a flexible curtain. The system only used 

one outlet fan. Preliminary results only using previously established equations show 

validated ±10% accuracy, comparable to in respectable, FDA 510(k) cleared indirect 

calorimeters commonly used in clinical practice suggesting the Smart Pad system as part 

of this study is accurate even in the non-ideal environments, such as an ambulatory 

enclosure. A contactless exercise test was developed, and experimental results show 

similar curvature to reference instrument measure in a very high air exchange 

environment (12.0 Hours-1), however, additional system development is needed to 

accurately capture subject’s with non-constant energy expenditure, as is typical during a 

graded exercise test where intensity is increased over time. 
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CHAPTER 6 

6 VEHICLES: A USEFUL ENVIRONMENT FOR METABOLIC ASSESSMENT  

6.1-Abstract 

This work investigated the effects of air recirculation mode and vehicle speed on 

transient CO2 accumulation profiles within a mid-size sedan. CO2 concentration profiles 

were measured during driving at five different speeds in the range 0 – 70 MPH. Air 

exchange rate (Acc [hours-1]) was assessed for several vehicle speeds, and was observed 

to have the following relationship: Acc = 0.060*(speed) – 0.88 when driving faster than 

17 MPH.  The driver’s energy expenditure was estimated as EE = 1620±140 kcal/day, by 

determining CO2 generation rates from 16 CO2 accumulation curves, which compares 

well with reference measurements for the same subject by conventional indirect 

calorimetry, EE =1550±150 kcal/day, from the average of 10 measurements.  CO2 

concentration profiles were simulated to predict effects of vehicle speed, air exchange 

rate, presence of multiple occupants within the vehicle and driver’s energy expenditure, 

providing broader insights on the factors affecting transient CO2 accumulation within 

vehicle cabins.   

6.2 Methodology 

During the test, the sensing system was placed on top of the front passenger seat, 

approximately one meter from the driver. Real-time CO2 concentration, temperature, and 

humidity were recorded with a resolution of 1 s-1. All tests were conducted at times of 

low traffic for consistent driving speed and to avoid introducing CO2 by air exchange 

with the outside environment, since CO2 effluent from surrounding vehicle exhaust could 
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enter the vehicle cabin as car exhaust is a form of highly concentrated CO2 (relative to 

regular atmospheric levels). Additionally, it is reasonable to postulate exhaust streams are 

at a higher pressure than the internal car cabin pressure (due to engine heat, among other 

factors) and are high in CO2 concentration since they are fuel effluent which would serve 

as a source of error for observed CO2 accumulation patterns if it were not controlled by 

driving at low traffic times.  

A picture of the vehicle model used in the study is shown in Figure 48a. Figure 

48b shows the AC dashboard, including 4 fan speed levels and an independent control to 

select between RC or air exchange mode. 

 

Figure 48. Vehicle Used and Study Design. a) Vehicle used in this study; b) AC control 

panel; c) Two different testing conditions, see text for detail. 

Two different ventilation conditions were evaluated, as described in Figure 48c 

and enumerated in more detail below:  
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Ventilation Condition #1: All-time RC (recirculation) mode was on and the fan 

was kept at level 1 during the tests. Five different driving speeds were tested under this 

condition: 0 MPH (miles per hour), 15-17 MPH, 33-35 MPH, 48-50 MPH and 68-70 

MPH. To achieve different level of speed, the tests were conducted on residential roads 

(Broadway and Rural road in Tempe, AZ) and highway (AZ Loop 101, Loop 202 and 

Interstate 10 in Arizona) accordingly. The speed log of each test was recorded with the 

RunKeeper® app (ASICS Digital, Boston, MA). The test was stopped once the cabin 

CO2 concentration reached 2000 ppm or if the test had lasted 0.8 h. These tests were 

performed 3 times at each speed. One growth curve is provided at each speed as an 

example. This experimental condition was used to assess the air exchange rate, λAcc 

[Hours-1], for the vehicle at various speeds. It was determined experimentally that there is 

a linear relationship between the velocity of the vehicle and the apparent air exchange 

rate as analyzed from CO2 vs. time data.  

Ventilation Condition #2: Fan level 1 with air conditioning mode alternating 

between RC mode on and off, depending on the CO2 level within the cabin. The RC 

mode was initially on and was turned off for five minutes once the cabin CO2 

concentration reached around 1000-1100 ppm, to allow for air exchange with the external 

environment and reduction of CO2 levels within the vehicle cabin. Under this condition, 

four different driving speeds were tested: 0 MPH, 15-17 MPH, 33-35 MPH and 65-68 

MPH. The roads taken for this set of tests were the same as condition #1. Each test was 

performed within a single 1 hour span, The RC mode was switched on/off 4 times total 

within the hour for each speed tested. This rendered 4 separate accumulation curves and 
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therefore 4 separate metabolic rate measurements. These replicate measurements are the 

source of the error bars, presenting standard deviation, shown in Figure 52.  

6.3 Results 

Results from ventilation condition #1 are shown below:  

 

Figure 49. CO2 Accumulation Data from Recirculation Mode Across 0-70 MPH.  

The data from Figure 49 were analyzed using equation (1) with a reference kgen 

value generated from the Korr ReeVueTM’s REE value. The resulting λAcc versus vehicle 

speed dataset was used to build the following regression, shown below in Figure 50 and 

used as the training set for Figure 51. 
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Figure 50. Relationship Between Effective Air Exchange Rate (λ) and Driving Speed.  

Red line indicates linear regression curve above 17 MPH.  

Real-time CO2 profiles are shown in Figure 51. The model was applied for a λAcc 

of 0.05 hours-1, which is a non-null but negligible value for speeds lower than 18 MPH. 

The assessment of this condition was based on the experimental observation that at 

parked and at low speeds air exchange rate between the vehicle cabin and the 

environment was negligible. For speeds greater than 18 MPH, the λAcc was calculated 

from the regression equation shown in Figure 50 and used in equation (1) to determine 

the kgen for each CO2 growth period test cycle obtained during the periods of 36-48 

minutes driving at a certain speed.  
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Figure 51. Real Time Data from Contactless REE Measurements from in a Vehicle  a) 0 

MPH; b) 16 MPH; c) 37 MPH; d) 64 MPH. 

 Energy expenditure measured during driving tests were compared with those 

determined with conventional instrumentation. The subject’s energy expenditure while 

sitting in a computer and working was measured by indirect calorimetry using 2 different 

instruments: the desktop Korr ReeVueTM (www.korr.com, Salt Lake City, UT) and the 

Breezing ProTM (https://breezing.com/, Tempe, AZ) , obtaining an average of (1550±150) 

kcal/day for 10 measurements utilizing both indirect calorimetry instruments (5 readings 

each). This represents only ~4% difference in comparison with the Smart Pad’s 

calculated EE value. It should be noted that the participant did not perform any intense 

activity on the days of tests, since strenuous exercise increase a person’s instantaneous 

energy expenditure (McArdle, 2010). The results demonstrated that this model could be 
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used to determine EE of drivers, as the difference between mean values determined with 

each method was lower than the relative error for each of them. However, it is of course 

important to note that the subject did not perform the reference instrument EE 

assessments simultaneously while driving, due to safety concerns regarding vehicle 

operation. 

 

Figure 52: Contactless REE Measurement Accuracy within a Moving Vehicle.  Energy 

Expenditure (EE) estimates generated from experimental data shown in Fig 15 (shown as 

black points with error bars) and corresponding reference instrument (Korr ReeVueTM 

and Breezing ProTM) measurements shown as horizontal redline (average) ±1 standard 

error (taken from repeat measurements)  

6.3 Simulation of CO2 Accumulation Patterns Within a Vehicle Cabin 

The simulation presented in this work has been developed to extend the 

experimental findings introduced in this work’s assessment to several other conditions 

that could not be tested. The model estimated the car cabin volume to be 3.1 m3, a 
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baseline CO2 concentration of 400 ppm, a Acc of 1 hours-1 (unless indicated otherwise), a 

linear relationship between Acc and vehicle speed (validated by experimental findings 

presented in Figure 52), a linear relationship between CO2 generation and the number of 

occupants within the vehicles, and an occupant energy expenditure EE = 1700 kcal/day 

(unless indicated otherwise).   

To expand upon the experimental results shown in the previous sections of this 

work, a computational simulation was developed using MATLAB® to generate model 

CO2 growth profiles under various conditions that were not investigated experimentally 

in this study. Figure 53 simulates CO2 concentration growth profiles inside a car cabin 

(RC mode on) with different number of occupants under various speeds. A horizontal line 

has been drawn at both 1000 and 2500 ppm with a label to indicate the corresponding 

time at which a vehicle with a single occupant reaches the aforementioned CO2 

concentration, used as a reference from recent cognitive performance studies (Allen et al., 

2016; Norbäck et al., 2013; Satish et al., 2012; Zhang et al., 2015). The simulation 

predicts that CO2 levels within the car cabin reaches 1000 ppm for a single occupant in 

less than 15 minutes with RC mode on. CO2 accumulation is significantly higher for car 

cabins where there is more than 1 occupant; this is clearly evidenced in the simulation’s 

output where CO2 levels exceeding 2500 ppm are reached in under 15 minutes when the 

vehicle is occupied with at least 3 occupants, regardless of vehicle speed. 
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Figure 53. CO2 Concentration Profiles for Various Occupants/Driving Speeds. a) 0 MPH; 

b) 33 MPH; c) 49 MPH; d) 71 MPH. 

Figure 53 shows how a CO2 profile can be affected by changing the effective air 

exchange rate from 1 to a higher value, up to 22 hours-1, e.g. by alternating the RC mode 

on and off, and/or opening windows. The effect of different fan levels (with 

corresponding Acc values extrapolated from experimental data) were simulated using the 

aforementioned model. To keep the CO2 concentration below a desired level, it is 

necessary to increase Acc. At higher fan levels the CO2 concentration decreases faster to 

safer levels. 

Figure 54b demonstrates the effect of occupant metabolic rate on CO2 

accumulation within a vehicle. This parameter has a substantial influence on the CO2 
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concentration growth profile. A driver with a relatively high EE of 2500 kcal/day will 

reach a CO2 concentration of 1000 ppm in just 6.8 minutes, as compared with virtually 

twice as long (13.7 min) for a driver spending only 1300 kcal/day. The high-EE driver 

can reach a CO2 concentration of 2500 ppm in less than half an hour.  

 

Figure 54. Effects of EE and Air Exchange on CO2 Accumulation Patterns.  a) Model 

CO2 concentration profile showing effect of air exchange rate on CO2 level; b) Modeled 

CO2 concentration profile showing effect of metabolic rate on growth rate 
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CHAPTER 7 

7 SMART PAD AND INTEGRATION WITH MULTIPLE IOT DEVICES 

7.1 Abstract 

The research performed in this study strives to implement the Smart Pad system 

with wearable devices and complementary urine testing to initially test the feasibility of 

implementation of a multitude of research-level (i.e. not yet clinically validated) methods 

simultaneously in a “smart system”. The system comprises measures of balance, 

breathing, heart rate, metabolic rate, joint flexibility, hydration, and physical performance 

functions in addition to lab testing related to biological aging and mechanical cell 

strength. A proof-of-concept test is illustrated for two adult individuals disparate ages: a 

22-year-old and a 73-year-old matched in height and weight. The system has been tested 

in a pilot study, demonstrating functionality and age-related clinical relevance. Balance 

measurements indicated changes in sway area of 45.45% and 25.44%, respectively for 

before/after biking. The 22-year-old and the 73-year-old saw heart rate variabilities of 

0.11 and 0.02 seconds at resting conditions, and metabolic rate changes of 277% and 

222%, respectively, in comparison between the biking and seated conditions. A smart 

camera was used to assess biking speed and the 22- and 73-year-old subjects biked at 60 

rpm and 28.5 rpm, respectively. The study probed feasibility of 1) multi-metric 

assessment under free living conditions, and 2) tracking of the various metrics over time. 

7.2 Smart Pad Measurements 

The integrative sensor system described in as assembled in a single location to 

simultaneously collect raw sensor data in a time-stamped fashion. After data collection, 
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the data was synchronized for further analysis. Study participants of different ages 

(ranging from 22-75 year-old) were provided with sensors (shown in Figure 55) for 

simultaneous assessment of physical and chemical parameters while performing a 

sequence of predetermined tasks under three conditions (shown in Figure 55): 1. Resting 

(sitting in a chair), 2. Activity (walking and running in a treadmill/ fixed biking), 3. 

Supine (sleeping).  

 

Figure 55. Aging Pilot Study Design and Sequence of Events  

Smart Pad raw measurements were used to assess metabolic rate data as well as 

environmental data related to comfort (temperature and relative humidity). Metabolic rate 

generally decreases with age in humans, and with all other factors held constant, is a 

primary driver of age related weight gain (Piers et al., 1998). Figure 56A-B shows the 

metabolic rate assessment from the Smart Pad for the older and younger subject. Figure 

56C shows a summary of the metabolic rate values for the study subjects at sitting, biking 

and lying positions. It can be observed that the metabolic rates were significantly 

different between the young and aged subjects with similar BMI. Sudden drops in 

metabolic rate can lead to sudden weight gain in any individual if caloric intake is kept 

constant (due to an increased positive overall caloric balance). Therefore, if these sudden 
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changes in metabolic rate can be detected (in the frame of a few weeks/months), then the 

subject could potentially be immediately alerted and better able to manage their caloric 

needs via caloric tracking. On the contrary, if metabolic rate increases without a change 

in lifestyle (e.g., exercise), it may be a warning of increase of catabolic processes such as 

worsening of pulmonary obstructions (Agha & El Wahsh, 2013; Hugli et al., 1996), 

cancer proliferation (T. Y. V. Nguyen et al., 2016), and hormonal imbalances (Meunier et 

al., 2005; Mullur et al., 2014; Salomon et al., 1992).  Figure 56D shows a custom-made 

reproduction from (McArdle, 2010) and serves to delineate the changes in metabolic rate 

due to age. In Figure 56D, the orange line represents metabolic rate for males as a 

function of age and the pink line represents the metabolic rate for females as a function of 

age. The differences of metabolic rate observed in Figure 56C are supported by the 

information provided in Figure 56D. 
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Figure 56. Tracking Age Related Metabolic Changes using Smart Pad. Smart Pad sensor 

raw and fitted data for the young (A) and aged (B) subjects. (C) Metabolic rate results 

corresponding to data in (A-B). (D) Data reconstructed from (McArdle, 2010): The 

curves represent population average metabolic rate for males (orange) and female (pink) 

as a function of age.  

7.2 Smart Camera and Combined Metrics 

Figure 57 shows the results assessed with the smart camera obtained for the 

young and aged subjects of our study within the smart room. The results were 

simultaneously assessed with the aforementioned sensors, including the Smart Pad. The 

subjects were video recorded during their biking activity. The smart camera software 
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written in Python generated a realistic 3D model that encoded the various position of 

each subject’s angle, knee, and hip joints among other joints. The positions were then 

mathematically transformed using algorithms to generate pitch (knee angle) vs. time data. 

These data sets were then analyzed using Fast Fourier Transforms (FFTs) to determine 

the frequency distribution pattern of the biking frequency (RPM) for each subject. 

Knowing the biking frequency and the bike resistance, the biking power was calculated 

and correlated to the Smart Pad’s measured metabolic rate to assess each subject’s 

physical fitness level. It is worth noting that the physical fitness assessment of the study 

subjects could be exclusively performed by fusing the data from the smart sensors 

integrated in the Smart Pad and the Smart Camera. The younger subject showed higher 

physical fitness than the older subject given that the younger subject was able to perform 

same amount of power with less energy expenditure and oxygen consumption rate. 



 

121 

 

 

Figure 57. Smart Pad Integration with Contactless Human Tracking Software. (A) Smart 

camera images showing the joint angle identification, as well as the measurements of the 

pitch angle over time during biking for the two study subjects. (B) Fast Fourier 

Transform analysis of the data shown in (A), indicating the most frequent biking 

revolution-per-minute (RPM) for each subject. (C) Physical fitness assessment based on 

metabolic rate and oxygen consumption rate normalized by the subject’s corresponding 

body weight and power production (from RPM and load measurement of bike). 

Figure 57 shows that the Smart Pad system can be used to assess physical fitness 

for a test subject based on their power production, which can be calculated from bike load 

and RPM.  

A 

B 

C 
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7.3 Fifteen Month Follow-up for BMI Matched Young and Old Subjects 

Fifteen months later a follow up assessment was performed on the same set of test 

subjects with a similar physical fitness assessment performed. In neither physical fitness 

assessment was biking RPM or intensity a control variable, leading to drastically 

differences in energy efficiency. In the first assessment, both subjects cycled at a higher 

intensity, which has been observed to increase mechanical efficiency keeping other 

variables constant (Jabbour & Majed, 2019). In the latter experiment, pilot data was 

collected for a novel contactless low intensity exercise test for the purposes of 

cardiovascular diagnostics (Kharabsheh et al., 2006). Result are shown below in  

Figure 58.  

 

Figure 58. Changes in Physical Fitness and Metabolism Due to Aging and Injury.   

Figure 58A shows changes in contactless thermodynamic efficiency (CTET) for 

the 22 year old subject before and after the subject had undergone a collarbone surgery 

after a serious injury. His thermodynamic efficiency was measured as the ratio of the 

power output on a cycle ergometer to the energy expenditure of the person x 100%, with 

100% being the maximum possible thermodynamic efficiency for any abstract body, per 

the first law of thermodynamics (Ward-Smith, 1985). A slight decrease in 

thermodynamic efficiency was observed before the injury and 6 months after his 
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collarbone surgery, suggesting his cardiovascular fitness decreased over time, a logical 

result of sedentary behavior that is necessary after a significant surgical intervention.  

Figure 58B shows changes in physical fitness for both subjects over time. As 

mentioned previously, both subjects biked at a higher intensity during the first 

assessment. While biking at lower intensity, both subjects were less efficient (i.e. less 

power output in comparison with energy expenditure), a result observed as well in other 

works (Jabbour & Majed, 2019).  Figure 58C shows the difference in REE between both 

subjects 15 months after the initial metabolic assessment described earlier in this chapter. 

The older male’s REE did not see any significant change in that timeframe, a somewhat 

surprising result given the Mifflin St. Joer equation suggests age varies linearly with REE 

(Mifflin St Jeor, 1990). On the other hand, the younger male (24 years old at the time) did 

see a large increase in his REE, a somewhat surprising result given REE tends to be at a 

maximum near the early 20s in most males and decreases linearly with age, according to 

the Mifflin St. Joer equation (Mifflin St Jeor, 1990). However, this may simply speak to 

the large day to day variance in REE and also possibly changes in the subject’s muscle 

mass, bodyweight, stress, sleep, or a litany of other factors.
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CHAPTER 8 

8 SUMMARY AND FUTURE WORK 

8.1 Further Engineering Requirements for a Viable Product 

As currently designed, the Smart Pad system is a fully engineered medical device 

prototype with all necessary inputs and outputs for full functionality. REE measurement 

model and fundamental measurements performance of device have been validated for 

accuracy and reproducibility to current FDA standards for Type II medical devices with 

existing predicates for REE measurement. There is a current gap in a need for validation 

of the iOS application which has been developed as part of this dissertation project, 

however, this can be applied with relative ease to collected data from Chapters 3 and 4. 

There is also a gap in need for assessment of α in equation 10 or λAcc in equation 1. This 

can potentially be achieved via α assessment following the first installation of the Smart 

Pad in a room using a portable indirect calorimeter as a reference method to assess λAcc 

and kgen multicollinearity. There is the additional possibility of an absence of significant 

multicollinearity between λAcc and kgen as identified in equation 8, which may be true for 

some environments. In this case (α=0), λ0 from CO2 decay should likely suffice as an 

accurate predictor of λAcc. Additionally, there is a need for some type of ventilation 

blocking mechanism or integration of the actuator system with building controls. Either 

an external hardware product could be engineered, which fits over an existing ventilation 

source to a room, or a simple plastic cover could be purchased and utilized for blocking 

ventilation.  
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8.2 U.S. Regulatory (FDA/CLIA/IBC) Clearance Pathway 

U.S. regulatory approval is key to development of any trustworthy medical device 

or diagnostic technique. There are multiple approval pathways for the Smart Pad 

depending on application type. For use of the Smart Pad as a standalone medical device 

with no actuator system, FDA clearance may be approachable through the 510(k) 

pathways since the system would not present any clear safety characteristics (assuming 

no modifications to building ventilation). However, in this instance, it is likely best to 

assess feasibility of regulatory approval via strong evidence for substantial equivalence of 

accuracy for REE measurement predicate devices, which is notably low for multiple U.S. 

510(k) cleared predicate devices due to need for indirect measurement of energy 

consumption (Cooper et al., 2009). Fortunately, the measurement accuracy of the Smart 

Pad device in this work, when using the N=56 REE measurement dataset (a truly “clean” 

dataset with no outliers removed and distinct training/test set data) with no reference 

instrument calibration, was comparable to 4 FDA 510(k) cleared medical devices that are 

frequently used for metabolic assessment. A formal comparison with only FDA soured 

accuracy data is shown below in Table 19: 
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Table 19. Smart Pad Comparison with FDA 510(k) Cleared Indirect Calorimeters  

Indirect Calorimeter Device 

(U.S. FDA legally adjudicated 

device as “safe and effective” 

“for prescription use” w/ 

510(k) active). Only including 

510(k)’s from past 25 years. 

Single Breath Gas, 

VCO2 or VO2 

[ml/min], 

Measurement 

Accuracy 

Regulatory 

Considerations 

(no indirect 

calorimeter is 

FDA (515(c)) 

approved) 

Sensing 

Mechanism 

for Gas 

Analysis 

CareFusion (Becton Dickenson 

(BD)) MasterScreen CPXTM 

±50 ml/min (VCO2) 

(FDA, 2007, 2014) 

510(k) 

Cleared (FDA, 

2007, 2014) 

Thermal 

Conductive 

CareFusion (Becton Dickenson 

(BD)) Oxycon ProTM 

±50 ml/min (VCO2) 

(FDA, 2000, 2014) 

510(k) 

Cleared (FDA, 

2000, 2014) 

IR 

Absorption 

CareFusion (Becton Dickenson 

(BD)) Vyntus CPXTM 

±50 ml/min (VCO2) 

(FDA, 2014) 

510(k) 

Cleared  

(FDA, 2014) 

IR 

Absorption 

Microlife Medical Home 

Solutions MedGemTM 

Y=0.83X (R=0.81) 

(VO2) (FDA, 2002, 

2003) 

510(k) 

Cleared (FDA, 

2002, 2003) 

Florescent 

Quenching 

Smart Pad (with λAcc 

calibration) 

±24 ml/min (VCO2)  

(Sprowls, Victor, 

Mora, et al., 2021) 

Substantially 

equivalent 

accuracy to 5 

predicate 

devices 

IR 

Absorption 

Smart Pad (without λAcc 

calibration using Equation 9) 

±45 ml/min (VCO2) 

(Sprowls, Victor, 

Mora, et al., 2021) 

Substantially 

equivalent 

accuracy to 4 

predicate 

devices 

IR 

Absorption 

Smart Pad (without λAcc 

calibration using Equation 9) 

Y=1.05X (R=0.82) 

(VCO2) (Sprowls, 

Victor, Mora, et al., 

2021) 

Outperforms 

MedGemTM 

IR 

Absorption 
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The Smart Pad device is totally unique given the new contactless VCO2 

measurement principle, there is a possibility that the De Novo pathway is necessary, 

given the strong possibility that the contactless VCO2 measurement technique may raise 

fundamental questions of measurement efficacy, as defined by FDA standards which are 

based on measurements of physical quantities. In this case, U.S. regulatory approval 

would be more difficult, time-consuming, and costly to achieve (~$30,000 being the 

quoted amount for a De Novo classification (FDA, 2021)). However, one should be 

aware that the De Novo process may grant indirect protection and a form of extended 

patent protection for the entire class of new medical device granted through a De Novo 

(i.e. “contactless carbon dioxide production monitor”, which does not yet exist but could 

be founded through a De Novo). This is not intended by the FDA legislation, but, is a 

known consequence of 2011 changes to the code of federal regulations that must be 

considered for a novel medical device (Sherkow & Aboy, 2020), as, another 

manufacturer could potentially prevent the 510(k) clearance of a similar device via 

implementation of this patent extension strategy through a De Novo classification. This 

could potentially be achieved via implementation of a patented control technique (i.e. an 

occupancy sensor) in the De Novo submission. Through either route, the FDA should be 

contacted directly for specific comment on feasibility for regulatory clearance through a 

513(g) submission, although, notably, this costs nearly the full price of a 510(k) (FDA, 

2021). An additional consideration is that the FDA already does have a history of 

providing regulatory clearance for a contactless medical device (FDA, 2009) through the 

510(k) route and by comparison performance characteristics to a contact based medical 

device with the same intended use. As such, the Smart Pad currently has the 
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advantageous position of having the optionality to either begin a new device class 

through a De Novo submission or submitting a 510(k) to an existing device class, each 

with their own nuanced considerations.  

 Another possible avenue for application of this technology is using a fully 

integrated actuator and applying the technology as a smart home/building system for 

ventilation energy efficiency, air quality optimization, and occupant metabolic rate 

measurement. In this case, the international building code (IBC) is a relevant standard 

followed by many U.S. counties and in many other nations across the world. With 

regards to building code, there is a strong need to provide evidence of fundamental safety 

in terms of mechanical risk to a building’s ceiling and fire hazard risk. To address these, a 

lightweight (<10lbs) and fire resistance actuator door system was developed for quick 

and easy installation onto any ventilation inlet. Additionally, it is possible to develop 

lightweight ventilation-blocking accessories to remove intermittent ventilation from any 

small/medium sized rooms. Another avenue is to simply block the HVAC inlet and outlet 

duct to a small room by accessing the suspended ceiling and covering both parts of the 

duct with a metal collar and nonpermeable plastic fabric. Yet another solution is to 

integrate the system with a smart actuator system, controlled by the buildings ventilation 

control switchboard (and can be actuated automatically based on sensor data by multiple 

developed smart building products). Clearly, there are many ways to approach the HVAC 

modification need that is required for a true smart system and the convenience of each 

technique may vary from room to room depending on size/building/HVAC system. In 

this application, one promising approach would be to use the Smart Pad smart system as a 

U.S. regulatory (CLIA) approved laboratory developed test (LDT). In this application, it 
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would be necessary to install the Smart Pad system by any HVAC configuration within 

an office, and subsequently calibrate and validate the system’s REE measure using a 

FDA cleared predicate device (i.e. portable metabolic analyzer). This may offer a 

possible work-around to providing useful medical diagnostics without the necessity of 

tremendous resource cost for FDA approval through the premarket approval pathway.  

8.3 Future Scientific and Physiological Research Focused Work   

 Besides application as a respected FDA 510(k) cleared medical device for 

prescription or consumer use, the Smart Pad and techniques developed through this thesis 

work also provide immense potential to develop new fundamental scientific knowledge. 

One substantial research application of the device is in a better fundamental 

understanding of the accuracy and physiological effects of using contact-based metabolic 

analyzers. From personal experience and discussions with experienced researchers in the 

field, the first 5 minutes of data from a contact-based indirect calorimeter will not be in 

agreeance with data collected after the subject has reached steady state (Simonson & 

DeFronzo, 1990). That being said, this common occurrence has never been studied in 

great detail. A scientific work evaluating the agreeance of VCO2 measurements from 

randomized and sequential contactless and contact based indirect calorimetry has never 

been completed. The expected results of such a study could bring great knowledge and 

attention to this observed, but, not rigorously studied phenomena with regards to contact-

based indirect calorimeters.  

 Another research application of the device is for assessment of physiological 

stress (G. Seematter et al., 2000) where there is no well-established biomarker. Cortisol is 

commonly referred to as the principal stress biomarker, however, strong fundamental 
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concerns exists with regards to the body’s hormonal pathways and how that might affect 

Cortisol concentrations within blood and saliva (Hellhammer et al., 2009). Metabolic rate 

has a strong case to be the most comprehensive stress biomarker since all physiological 

responses must fundamentally result in changes in metabolism given all thermodynamic 

processes require energy. As such, one might expect a stressed person to see an elevated 

heart rate, breathing rate, and physical activity patterns, all of which would correlate with 

increased metabolic activity. With this all in mind, current indirect calorimeter medical 

devices cannot accurately assess cognitive or physiological stress without concern, given, 

the devices are incredibly distracting to wear and therefore will always raise fundamental 

questions of accuracy with regards to measurement of a person in their free-living state. 

Fortunately, the Smart Pad device can resolve this research gap given it does not obstruct 

in any way a person’s free living state. As such, a study design could be developed which 

assesses the validity of metabolism as the fundamental biomarker for physiological stress. 

The investigation might compare the cortisol and metabolic response of individuals under 

differing conditions known to induce stress. Any significant difference between the 

biomarkers would be worthy of scientific publication and agreeance as well would 

partially validate the accuracy of both biomarkers (cortisol and metabolic rate). A similar 

study was published (Gall et al., 2021), but, fundamental questions of accuracy must be 

raised in that publication based on the novel findings of this work.  

 Yet another research application of the device is to study the variability of 

metabolism in differing physiological groups. The variance of metabolism could be 

studied on the scale of hours, months, or years the physiological groups of interest might 

be (but are not limited to) persons differing in age, health status, biological sex, disease 
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status, or bodyweight. The application for this specific research protocol is left open 

ended since it might be best suited for a massive dataset, statistical analysis approach. 

Since the Smart Pad can be used to collect contactless data accurately, it would be logical 

to reason a singular person could generate 4-16 hours of metabolic data each day by 

installing the system in their bedroom or work office. If integrated with other non-

invasive physiological sensors (Sprowls, Serhan, et al., 2021), parallel assessments of 

multiple physiological parameters could generate a large wealth of inter-related health 

data (e.g. sleep cycle and sleep metabolism, for example) enabling newfound knowledge 

of human physiological as it relates to human metabolism.  

8.4 Conclusions 

The device developed as a result of this dissertation research project, the Smart 

Pad, shows immense potential for improving the both the clinical and research 

capabilities of energy expenditure assessment. Validation studies performed in multiple 

environments and across 25 total subjects suggests comparable accuracy to multiple FDA 

cleared devices including the Korr ReevueTM, MGC Ultima CPXTM, and the BreezingTM 

portable indirect calorimeter for measurement of REE using only contactless 

measurements.  Contactless REE measurements were performed in a moving vehicle, 

medical office, private office, and enclosed curtained area of a larger lab space 

successfully, once air exchange rate was calibrated for using a reference instrument. 

Exercise measurements were also shown to be recorded at good accuracy for VCO2, a 

key breath gas which can be used to estimate VO2, max the gold standard measurement for 

cardiovascular fitness assessment. A new model was developed for REE measurement 

which does not rely on air exchange assessment from reference instrument calibration or 
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CO2 decay analysis and was validated on 5 subjects over 56 total measurements. Air 

exchange measurements were performed in the first time within an occupied environment 

using a FDA 510(k) cleared reference instrument for CO2 source strength measurement.  
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