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ABSTRACT 

 

Advanced Polymer and Ceramic Matrix Composites (PMCs and CMCs) are currently 

employed in a variety of airframe and engine applications. This includes PMC jet engine 

fan cases and CMC hot gas path turbine components. In an impact event, such as a jet 

engine fan blade-out, PMCs exhibit significant deformation-induced temperature rises in 

addition to strain rate, temperature, and pressure dependence. CMC turbine components 

experience elevated temperatures, large thermal gradients, and sustained loading for long 

time periods in service, where creep is a major issue. However, the complex nature of 

woven and braided composites presents significant challenges for deformation, progressive 

damage, and failure prediction, particularly under extreme service conditions where global 

response is heavily driven by competing time and temperature dependent phenomena at 

the constituent level. In service, the constituents in these advanced composites experience 

history-dependent inelastic deformation, progressive damage, and failure, which drive 

global nonlinear constitutive behavior. In the case of PMCs, deformation-induced heating 

under impact conditions is heavily influenced by the matrix. The creep behavior of CMCs 

is a complex manifestation of time-dependent load transfer due to the differing creep rates 

of the constituents; simultaneous creep and relaxation at the constituent level govern 

macroscopic CMC creep. The disparity in length scales associated with the constituent 

materials, woven and braided tow architectures, and composite structural components 

therefore necessitates the development of robust multiscale computational tools. In this 

work, multiscale computational tools are developed to gain insight into the deformation, 

progressive damage, and failure of advanced PMCs and CMCs. This includes multiscale 

modeling of the impact response of PMCs, including adiabatic heating due to the 
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conversion of plastic work to heat at the constituent level, as well as elevated temperature 

creep in CMCs as a result of time-dependent constituent load transfer. It is expected that 

the developed models and methods will provide valuable insight into the challenges 

associated with the design and certification of these advanced material systems. 
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1 INTRODUCTION 

1.1 Background and Motivation  

Due to their light weight, high specific strength, stiffness, and toughness, energy 

absorption capabilities, and elevated temperature stability, advanced woven and braided 

fiber-reinforced composites are increasingly replacing monolithics in a variety of structural 

applications with extreme service environments. Two primary examples are the use of 

braided carbon-fiber reinforced polymer matrix composites (PMCs) in impact-resistant 

hardwall jet engine fan blade containment structures (Roberts et al., 2009) and the use of 

woven non-oxide ceramic matrix composites (CMCs) in hot gas path turbine components 

(Gowayed and Ojard, 2020). The former, per Federal Aviation Agency (FAA) regulations, 

are required to contain loose fan blades in the event of a blade-out whereas the latter must 

maintain structural integrity for thousands of hours or more (Naslain, 2004; Lara-Curzio, 

1999) in service conditions consisting of many periods/cycles of sustained loading at 

elevated temperatures followed by intermittent dwell times (i.e., due to repeated use). The 

weight reduction afforded by the use of braided PMCs over metallic fan cases provides the 

benefits of increased payload capability, higher thrust to weight ratio, reduced fuel 

consumption, and ultimately improved aircraft efficiency (Roberts et al., 2009). On the 

other hand, CMC hot gas path components also provide efficiency benefits, though they 

do so by operating at the highest possible temperature since turbine thermal efficiency is 

known to increase with the highest temperature in a cycle (Gowayed and Ojard, 2020). 

While the plethora of available constituent materials, their many potential 

architectural/geometric (i.e., woven, braided, etc.) arrangements, and available 

processing/fabrication methods present the unique opportunity for manufacturers to tailor 
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these composite systems to meet multiple, and often conflicting, performance 

requirements, the architectural and thermomechanical constitutive complexity present 

significant challenges for accurate prediction of deformation, progressive damage, and 

ultimate failure.  

Both PMCs and CMCs exhibit significant macroscopic constitutive nonlinearity and 

anisotropy due to a combination of damage and/or inelasticity at the constituent level. 

Damage may appear in the form of tow splitting, fiber/matrix debonding, tow/matrix 

debonding, and fiber failure. Aerospace epoxies tend to be ductile at high temperatures 

(relative to the glass transition temperature) and low strain rates and brittle at low 

temperatures and high strain rates. The elastic properties and saturation stress of the 

polymer matrix generally increase with decreasing temperature and increasing strain rate. 

Furthermore, unlike metals, for which plastic deformation is generally considered to be 

deviatoric (volume preserving), the viscoplastic deformation of polymers is known to be 

pressure dependent. A manifestation of this pressure dependence is tension-compression 

asymmetry; the magnitude of the compressive saturation stress is greater than the tensile 

saturation stress (Kolling et al., 2005; Siviour and Jordan, 2016). As such, inelastic 

constitutive laws based on the (pressure-independent) von Mises or Hill yield criteria are 

generally not suitable for plastically dilatant materials, such as polymers, soils, and 

composites with plastically dilatant matrices. Additionally, high strain rate deformation is 

not isothermal; as the rate of deformation increases, the rate of heat generation due to 

plastic deformation is much faster than the characteristic thermal diffusion time, and the 

thermodynamic condition transitions from isothermal to adiabatic (Garg et al., 2008). For 

PMCs subjected to ballistic impact events, heat is generated locally within the polymer 
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matrix due to the conversion of plastic work to heat, but the rapid nature of the impact 

event does not allow sufficient time for significant heat transfer to occur via conduction, 

causing adiabatic conditions to prevail. Local deformation-induced temperature rises in an 

impact event could exceed the matrix glass transition temperature (Johnston et al., 2018), 

which can lead to substantial thermal softening and subsequent deformation localization if 

softening effects outweigh strain and strain rate hardening effects (Chiou et al., 2007), and 

therefore must be accounted for in computational models.  

Non-oxide CMCs rely on a weak fiber coating (interphase), typically boron nitride 

(BN) or pyrolytic carbon (PyC), to deflect matrix cracks and facilitate load transfer 

between the fibers and matrix, adding pseudo ductility and toughness to what would 

otherwise be a brittle multiphase material (Gowayed and Ojard, 2020). Damage in woven 

CMCs can appear at various length scales in the form of intertow and intratow matrix 

microcracks, fiber-matrix interfacial debonding, and progressive fiber failure. In a woven 

CMC material subjected to room temperature quasi-static tensile loading, transverse 

intratow microcracks tend to initiate in the transverse tows at a stress level below the 

proportional limit (first matrix cracking) stress (Santhosh and Ahmad, 2013). As the load 

is increased, intertow cracking, splitting, and microcrack growth all contribute to 

nonlinearity in the stress-strain response before the fibers ultimately fracture, and lead to 

ultimate failure of the CMC (Santhosh and Ahmad, 2013; Borkowski and Chattopadhyay, 

2015). Despite their intrinsic high strength, toughness, quasi-ductility, and ability to 

maintain structural integrity at elevated temperatures, SiC-fiber-based CMCs are known to 

creep at temperatures above about 1000-1100 ̊C (Gauthier and Lamon, 2009; Mital et al., 

2018), which is the approximate maximum usage temperature for super alloys (Ohnabe et 
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al., 1999). Creep is therefore a major source of inelastic deformation in CMCs (Santhosh 

et al., 2018). In CMCs, when one constituent creeps, it subsequently unloads onto the other 

more creep-resistant constituents, which can alter any as-produced residual stresses in the 

composite (Santhosh et al., 2018). Either the fibers or matrix may be the dominant creeping 

constituent and distinctly different damage modes result depending on whether the fibers 

unload to the matrix during creep or vice versa.  

Both micromechanical and macromechanical approaches have been used to model the 

nonlinear constitutive behavior of composite materials. In micromechanical approaches, 

the individual constituents are explicitly modeled; constituent interaction is realized 

through homogenization, which allows prediction of the effective composite behavior 

based on the properties, arrangement, and volume fractions of the constituents (Aboudi et 

al., 2012). The micromechanical approach is advantageous in that it is highly accurate, able 

to resolve constituent fields, and allows the application of simpler constitutive and 

damage/failure models (i.e., isotropic) at a more fundamental length scale (constituent 

level) than the macromechanical approach, which treats the composite as a smeared 

homogeneous continuum. The macromechanical approach is as advantageous in that it is 

more computationally efficient than the micromechanical approach and the experimental 

testing used for model calibration implicitly accounts for all in-situ effects (interface, 

damage, residual stresses, etc.) (Aboudi et al., 2012). Despite the advantages of 

macromechanical models, their calibration requires extensive experimental testing (each 

variation in fiber volume fraction, architecture, orientation, and constituent material 

properties essentially must be characterized like a new material) and requires the 

application of more advanced constitutive and damage/failure theories (i.e., anisotropic). 
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Moreover, the macromechanical approach only tends to work well for fiber dominated 

loading scenarios and in the linear, isothermal deformation regime (Aboudi et al., 2012).  

A practical concern in physics-based computational modeling is the well-known 

tradeoff between model accuracy and computational efficiency. Multiscale methodologies 

differ in the way information is passed between the relevant length scales of the problem. 

This scale-dependent information transfer in computational multiscale modeling is known 

as scale bridging or “handshaking”. Multiscale scale bridging methodologies can be 

broadly categorized as concurrent, hierarchical, or synergistic (Aboudi et al., 2012; Pineda 

et al., 2017). Hierarchical models are characterized by an uncoupled one-way (“bottom-

up” or “top-down”) flow of information across length scales and are the most 

computationally efficient, but least accurate. Examples of hierarchical scale bridging 

include: i) effective property determination for subsequent input into finite element (FE) 

software (“bottom-up”); ii) determination of local/constituent stresses and strains based on 

FE integration point strain-time histories as a postprocessing step (“top-down”). Despite 

the efficiency, the uncoupled nature and lack of two-way information transfer between 

length scales precludes the consideration of path-dependent material nonlinearity, limiting 

the hierarchical approach to linear elastic constitutive behavior (Aboudi et al., 2012). 

Concurrent multiscale models represent all constituents in a single model (i.e., 

concurrently) and involve simultaneous computation at all length scales, resulting in the 

highest accuracy but lowest computational efficiency of the three scale bridging 

techniques. Synergistic models provide a compromise between fidelity and efficiency via 

a two-way flow of information between length scales. Multiscale methodologies, whether 

hierarchical, synergistic, or concurrent, may be further categorized as analytical (Reuss, 
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1929; Voight, 1887), semi-analytical (Aboudi et al., 2012), or fully numerical (Feyel, 

1999). Analytical methods offer the highest computational efficiency and lowest accuracy 

whereas numerical methods offer the highest fidelity and lowest efficiency. Semi-

analytical micromechanics-based multiscale methods represent a compromise between 

analytical and numerical approaches and therefore a balance between fidelity and 

efficiency.  

Some of the earliest micromechanics-based multiscale models (analytical linear and 

semi-analytical nonlinear) were developed by Chamis et al. (Chamis, 1984; Murthy and 

Chamis, 1986; Chamis and Hopkins, 1988). These models provide simplified 

micromechanics equations for the prediction of strength, fracture toughness, impact 

resistance, and environmental effects of multiphase materials in a very computationally 

efficient manner owing to their simplifying assumptions. The semi-analytical generalized 

(Paley and Aboudi, 1992; Aboudi, 1995) method of cells (Aboudi, 1989) (GMC), high-

fidelity GMC (HFGMC), and their respective efficient reformulations (Pindera and 

Bednarcyk, 1999; Bansal and Pindera, 2004; Arnold et al., 2004) are micromechanics 

theories proposed for nonlinear thermomechanical two-scale analyses of thermo-

viscoelastic-viscoplastic heterogeneous materials with arbitrary microstructures and are the 

basis of NASA GRC’s MAC/GMC micromechanics analysis code (Bednarcyk and Arnold, 

2002). The core of these theories is the determination of strain concentration matrices that 

relate global strains to local subcell-level strains through enforcement of displacement and 

traction continuity conditions (in an average sense) between adjacent subcells and adjacent 

unit cells, the latter of which enforces periodicity. Once global strains are localized to the 

subcell/constituent level, an arbitrary constitutive law may be used to compute the subcell 
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stresses, which are homogenized to determine the global stresses. The GMC employs first 

order subcell field (e.g., displacement and/or temperature) expansions, which result in: i) 

constant subcell-level stresses, strains, and temperatures; ii) lack of normal-shear coupling 

in the sense that adjacent subcells do not transfer load to one another via shear. The 

HFGMC addresses the lack of normal-shear coupling in GMC by employing second-order 

subcell field expansions (Aboudi et al., 2012), resulting in linearly varying stress, strain 

and temperature fields at the subcell level. However, the higher accuracy afforded by 

HFGMC comes at a significant computational expense and additionally results in a mesh 

size dependence similar to that of the FE method, necessitating a finer spatial discretization 

to ensure convergence and therefore a higher computational cost. Therefore, based on 

computational efficiency considerations, GMC is more often used as a constitutive model 

in continuum-scale progressive damage and life prediction tools due to its computational 

efficiency despite its lack of normal-shear coupling.  

The multiscale GMC (MSGMC) (Liu, 2011; Liu et al., 2011) is a generalization of the 

GMC to an arbitrary number of length scales, facilitating efficient multiscale analyses of 

composites with more complex material architectures, such as woven and braided 

composites. While the lack of normal-shear coupling in MSGMC has been stated to not 

present significant problems (Aboudi et al., 2012), this is questionable when there are more 

than two analysis length-scales. For example, when modeling a woven or braided material, 

MSGMC would not account for normal-shear coupling at the weave/braid level, implying 

an undulating tow would not experience any shear deformation at the point of undulation 

when a normal deformation is applied to the woven repeating unit cell (RUC). To 

circumvent the lack of normal-shear coupling in MSGMC, multi-step homogenization 
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procedures (Liu,  2011; Liu et al. 2011; Borkowski and Chattopadhyay, 2015) have been 

employed, the determination of which may not be apparent a-priori. Despite this, MSGMC 

has been successfully applied to efficiently predict progressive damage and inelastic 

deformation in woven PMC (Liu et al., 2011) and CMC (Aboudi et al., 2012; Liu et al., 

2011; Borkowski and Chattopadhyay, 2015; Skinner and Chattopadhyay, 2021) material 

systems.  

The research presented in this dissertation is focused on the development of robust and 

computationally efficient multiscale computational models/tools applicable to braided and 

woven composites under extreme service environments. Particularly, the research is 

focused on the high strain rate behavior of braided PMCs and elevated temperature CMC 

creep.  

1.2 Objectives  

The principal objectives of this work are as follows: 

• Develop a robust and computationally efficient synergistic multiscale modeling 

framework to simulate the architecturally dependent impact response of advanced 

braided PMCs; approximate heterogeneity at the highest analysis length scale; model 

effects of local matrix adiabatic heating due to the conversion of plastic work to heat 

and subsequent thermal softening on macroscopic response   

• Develop a thermodynamically consistent polymer constitutive formulation for use in 

multiscale analyses of PMCs under impact loading that has the following features: 1) 

Strain rate, temperature, and pressure dependence; 2) Ability to account for tension-

compression asymmetry; 3) Nonnegative plastic dissipation (thermodynamic 

consistency); 4) Exhibits physically realistic plastic flow; 5) Suitable for calibration 
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against experimental tests conducted over a range of strain rates, temperatures, and 

loading conditions  

• Implement developed PMC constitutive models into commercial transient dynamic FE 

code LS-DYNA (Hallquist, 2006) to facilitate simulation of PMC coupons and 

structural components 

• Investigate effects of time-dependent constituent load transfer on CMC creep  

• Investigate effects of creep-induced constituent stress redistribution on room 

temperature CMC proportional limit (first matrix cracking) stress level 

1.3 Outline  

The document is structured as follows:  

Chapter 2 discusses the development of a rate-, temperature-, and pressure-dependent 

unified thermo-viscoplastic constitutive formulation. A new plastic potential function is 

proposed, and elementary loading conditions are utilized to determine relations between 

model constants to ensure the potential function is nonnegative, which is shown to 

guarantee nonnegative plastic work, a necessary thermodynamic requirement. Expressions 

for the tensile and compressive plastic Poisson’s ratios are derived and used to determine 

bounds on the model constants to ensure physically realistic plastic flow. The components 

of the inelastic strain rate tensor are modified to explicitly depend on temperature based on 

the Arrhenius equation for nonisothermal processes. A procedure for the determination of 

the model constants based on neat epoxy test data is presented. Temperature rises, due to 

the conversion of plastic work to heat, and subsequent thermal softening are computed via 

the adiabatic heat energy equation.   
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In Chapter 3, the unified thermo-viscoplastic polymer constitutive formulation 

developed in Chapter 2 is implemented into the GMC micromechanics framework (Aboudi 

et al., 2012) to investigate the effects of matrix adiabatic heating on unidirectional (UD) 

PMC response. A micromechanics-based multiscale approach is taken used to allow 

adiabatic heating to be modeled at the constituent level, where it has been experimentally 

observed to be predominant in resin-rich regions in PMC flat panel impact tests (Johnston 

et al., 2018). Simulation results indicate significant adiabatic heating in matrix dominated 

deformation modes. The micromechanics model, including the developed thermo-

viscoplastic polymer constitutive formulation, is implemented into the commercial 

transient dynamic FE code LS-DYNA (Hallquist, 2006) as a user defined material (UMAT) 

subroutine. An existing subcell-based approach to approximate the heterogeneity of the 

triaxially braided architecture at the highest analysis length scale is extended to facilitate 

synergistic multiscale analysis. A methodology to identify and partition the mesoscale 

composite RUC into an assemblage of mesoscale UD composite subcells, with stacking 

sequences determined from the braid architecture, is discussed. Serial sectioning and 

optical microscopy is performed to identify the dimensions and fiber volume fractions of 

UD plies in the mesoscale subcells. The UMAT is used in the context of the subcell-based 

approach to simulate quasi-static and flat panel impact experiments conducted on a 

triaxially braided PMC, using available experimental data for model calibration and 

validation.  

In Chapter 4, a three-dimensional orthotropic viscoplasticity model is formulated 

based on the Norton-Bailey/Nutting (Norton 1929, Bailey 1935, Nutting 1921, Nutting 

1943) creep law, the orthotropic Hill (1948) plastic potential, and the Arrhenius equation 
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for nonisothermal processes. The three-dimensional viscoplacitity formulation is then used 

as a constitutive model in the GMC micromechanics framework to simulate the creep 

deformation of SiC/SiC microcomposites for which experimental data is available in the 

literature (Rugg et al., 1999). The viscoplasticity formulation is then used to investigate the 

effects of time-dependent constituent load transfer, fiber-matrix creep mismatch ratio 

(Holmes and Chermant, 1993), and fiber volume fraction on CMC creep deformation. 

Lastly, a computational study is conducted to investigate the effects of creep-induced 

constituent load redistribution on the room temperature proportional limit stress.  

The final chapter discusses the contributions made in this dissertation as well as plans 

for future work. 
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2 STRAIN RATE, TEMPERATURE, AND PRESSURE DEPENDENT UNIFIED 

VISCOPLSATIC POLYMER CONSTITUTIVE MODEL 

2.1 Introduction 

 Due to their excellent energy absorption capability, carbon fiber reinforced PMCs are 

often used in aerospace applications such as jet engine fan blade containment systems that 

are subjected to high velocity impact loading in the event of blade-out. The energy is 

absorbed through various complicated deformation and damage mechanisms, some of 

which are difficult to detect experimentally. A thorough understanding of the material 

response under dynamic conditions is therefore required for the assurance of structural 

reliability and safety of composites in such mission critical components. To this end, 

physics based constitutive models that span the relevant length scales and capture key 

deformation, damage, and failure mechanisms in an impact event are indispensable tools 

that could expedite the design and certification timeline of impact resistant PMC structures.   

 The development of predictive computational models for PMCs under impact loading 

conditions is complicated by the inherent material heterogeneity and anisotropy, the 

multiscale nature (i.e., disparity of length scales associated with constituent materials, 

tows, braid/weave architecture, and structural components), and complex interactions 

between the fiber reinforcement and the strain rate, temperature, and pressure dependent 

polymer matrix. Unlike metals, for which inelastic deformation is generally considered to 

be deviatoric (volume preserving and pressure independent), the inelastic deformation of 

polymers, and therefore of PMCs, is known to be pressure dependent (Kolling et al., 2005; 

Siviour and Jordan, 2016). Additionally, high rate deformation is not isothermal, as is often 

erroneously assumed. It is well known that a portion of the work required to inelastically 
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deform polymeric materials is dissipated as heat (Chou et al., 1973; Arruda et al., 1995; 

Rittell, 1999; Garg et al., 2008), particularly at high strain rates. Under quasi-static 

conditions, where the duration of loading is large compared to the characteristic thermal 

diffusion time, heat generated locally due to plastic dissipation has sufficient time to diffuse 

throughout (and convect away from) the deforming body, which remains in an isothermal 

condition. As the rate of deformation increases, the rate of heat generation gradually 

exceeds the rate of heat loss due to conduction/convection, resulting in a gradual 

temperature rise in the material. Under high rate deformation, where the duration of loading 

is negligible compared to the characteristic thermal diffusion time, there is insufficient time 

for significant heat transfer to occur. Adiabatic conditions can therefore often be assumed 

for dynamic loading (Li and Lambros, 2001; Kendall and Siviour, 2013; Trojanowski et 

al., 1997; Garg et al., 2008; Chou et al., 1973). Local adiabatic temperature rises, which 

could exceed the matrix glass transition temperature (Johnston et al., 2018), cause thermal 

softening (Arruda, et al. 1995, Garg et al. 2008, Rittell 1999) and a potentially substantial 

effect on the high rate constitutive behavior of polymers and PMCs if the effects of thermal 

softening outweigh the effects of strain and strain rate hardening (Li and Lambros, 2001; 

Chiou et al., 2007; Walley et al., 1989).   

To model the high strain rate behavior of PMCs, Thiruppukuzhi and Sun (1998) used 

a three-dimensional (3D) pressure-dependent quadratic plastic potential, assuming 

transverse isotropy and no plasticity in the fiber direction. The potential is characterized by 

one parameter. Rate dependence is accounted for by using a three-parameter power law 

viscoplasticity model. It is noted that, though the 3D plastic potential function is pressure 

dependent, the assumption of transverse isotropy results in a pressure-independent 
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potential (Thiruppukuzhi and Sun, 1998). Weeks and Sun (1998) used the Chen and Sun 

(1993) 3D plastic potential to develop two 3D rate-dependent plasticity models. The 

authors assume no plasticity in the fiber direction and transverse isotropy, which reduces 

the potential to that used by Thiruppukuzhi and Sun (1998). Rate dependence was modeled 

using both a two-parameter power law model and a viscoplasticity model similar to the 

Johnson-Cook (Meyers, 1994) model. Robinson et al. (1994) and Robinson and Binienda 

(2001) extended the isotropic unified viscoplastic Bodner-Partom (Bodner and Partom, 

1975) model to account for transverse isotropy and hydrostatic stress dependence by 

proposing an effective stress that depends on pressure and other invariants that reflect 

transverse isotropy. Bounds on material constants were determined by considering natural 

stress states for the model. While pressure-dependent, none of the aforementioned models 

are able to account for the tension-compression asymmetry characteristic of polymeric 

deformation since they are all based on quadratic plastic potential functions that are even 

functions of hydrostatic stress.  

Yokozeki et al. (2007) proposed a simple extension to the one-parameter Sun and Chen 

(1989) model to incorporate tension-compression asymmetry. This was done by adding a 

hydrostatic pressure term (and an associated model constant) to the effective stress given 

by Sun and Chen (1989). An extra term was also added into the square root term in the 

effective stress to enforce nonnegativity of the plastic potential. The model (Yokozeki et 

al., 2007) is applicable to quasi-static plane stress loading conditions. Starting with a 

generalized anisotropic yield function, Wang and Xiao (2017a) took a similar approach to 

Yokozeki et al. (2007) and extended the one-parameter Sun and Chen (1989) model to 

capture tension-compression asymmetry. The model, which incorporates a parameter 
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representing the ratio of transverse tensile to transverse compressive yield stress, is rate 

dependent, but is limited to plane stress conditions. The model was later extended by the 

authors to be fully 3D (Wang and Xiao, 2017b).  

In addition to the well known strain rate-, temperature- and pressure-dependence of 

polymeric deformation, experimental results have indicated significant heat generation can 

accompany the high rate deformation of polymers. While Kolsky (1949) and Davies and 

Hunter (1963) were some of the first researchers to investigate the effects of dynamic 

loading on polymeric material response, the work of Chou et al. (1973) is largely regarded 

as the first attempt at measuring heat generation in polymers due to mechanical 

deformation. Chou and coworkers (Chou et al., 1973) tested four hard plastics across a 

range of strain rates and measured deformation-induced temperature rises using 

thermocouples. Rittell (1999) used embedded thermocouples to investigate temperature 

rises due to inelastic deformation of polycarbonate at high strain rates, reporting 

temperature rises up to 40°C. Garg et al. (2008) used infrared imaging techniques to 

measure temperature rises in an amorphous thermoplastic and a thermoset epoxy during 

high strain rate compression, reporting a significant portion of post yield work to be 

dissipated as heat. These results imply the high rate deformation of polymers is not 

isothermal, as is often erroneously assumed. Despite the aforementioned experimental 

studies, the effects of thermomechanical coupling and subsequent thermal softening on the 

high-rate deformation of PMCs is still not well understood. In one available study, Johnston 

and coworkers (Johnston et al., 2018) conducted a series of flat panel impact tests (ASTM, 

2017) on two [0°/60°/–60°] triaxially braided PMC material systems, T700/PR520 and 

T700/3502. The two material systems, which consisted of the same high-strength Toray T700 
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triaxially braided carbon fiber reinforcement, exhibited drastically different behavior under 

impact conditions due to the different thermoset matrix materials; PR520 is a ductile resin 

with a thermoplastic toughening phase whereas 3502 is a more brittle, untoughened material 

system. The T700/PR520 material exhibited highly localized damage near the impact zone 

accompanied by significant local adiabatic heating in resin rich regions; local temperature 

rises greater than the matrix glass transition temperature were observed. However, the 

T700/3502 material system exhibited a much more diffuse damage morphology and more 

modest temperature rises for similar impact velocities. Though there was less visible impact 

damage in the T700/3502 material, post impact test C-scan results (Johnston et al., 2018) 

indicated the T700/3502 system exhibited drastically more barely visible impact damage 

(BVID), indicating a widespread shattering of the 3502 matrix. Additionally, while the 

T700/PR520 system exhibited higher in-plane strengths than the T700/3502 system under 

quasi-static loading, the T700/3502 exhibited a higher ballistic limit, and therefore is capable 

of absorbing more energy than the T700/PR520 system under impact conditions. It is evident 

that there are competing hardening and softening mechanisms at play; the material response 

is highly dependent on whether the effects of strain and strain rate hardening outweigh thermal 

softening in the matrix material. Given these nonintuitive results, physics based multiscale 

computational models are necessary to gain a better understanding of the role of 

deformation-induced heating in PMCs under impact conditions. The work of Johnston et al. 

(2018) largely motivated the work presented in the current and next chapter of this 

dissertation.  

 Since the mechanical properties of carbon fiber are much less sensitive to rate and 

temperature compared to typical polymer matrix materials, the rate and temperature 
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dependence of carbon fiber reinforced PMCs is primarily a manifestation of the rate and 

temperature dependence of the matrix constituent. Moreover, given the aforementioned 

experimental evidence regarding deformation-induced heat generation, the dynamic 

behavior of polymers and therefore PMCs is clearly not isothermal. Thus, in order to 

develop predictive models for the high strain rate response of PMCs, it is necessary to 

accurately model heat generation in the polymer matrix due to the conversion of plastic 

work to heat. However, multiscale modeling approaches that consider local deformation-

induced heat generation on the high rate deformation of PMCs are significantly missing 

from the literature. In one available study, Bednarcyk et al. (2019) developed a higher-

order two-way thermomechanically coupled multiscale micromechanics model to 

investigate the impact response of carbon/epoxy and SiC/Ti composites, where the Bodner-

Partom (Bodner and Partom, 1975) viscoplastic model was employed to model the 

viscoplastic response of the epoxy and Ti matrices, respectively. The Bodner-Partom 

(Bodner and Partom, 1975) model has a single isotropic state variable to represent isotropic 

hardening and uses an effective stress based on the J2 flow potential and is, therefore, 

pressure independent and incapable of simulating tension-compression asymmetry of the 

epoxy matrix of the carbon/epoxy composite considered (Bednarcyk et al., 2019). 

Additionally, Bednarcyk et al. (2019) report negative plastic work, which is 

thermodynamically inconsistent (Allen, 1991; Chow and Lu, 1989; Faria et al., 1998; 

Kawai et al., 2010; Laudau et al., 1960).  

 Goldberg et al. (2005) extended the Bodner-Partom (Bodner and Partom, 1975) model 

to include hydrostatic stress effects to enable simulation of the strain rate and pressure 

dependent viscoplastic deformation of polymers, including tension-compression 
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asymmetry. The description of this model (Goldberg et al., 2005) is intentionally kept brief 

here, as it is described in detail later in this chapter.  

 In this chapter, several improvements are made to the Goldberg model (Goldberg et al., 

2005) to facilitate its use in a multiscale framework to investigate the effects of local 

adiabatic heating on the high strain rate behavior of PMCs. The model is extended to i) 

incorporate temperature-dependent viscoplastic flow; ii) more accurately account for the 

tension-compression asymmetry observed in the response of polymeric materials; iii) 

ensure physically realistic plastic flow (plastic Poisson’s ratios); iv) ensure thermodynamic 

consistency (nonnegative plastic dissipation). A new plastic potential function is proposed, 

where two newly introduced constants control the level of influence of hydrostatic stress 

on viscoplastic deformation. Elementary loading conditions are utilized to derive relations 

between these hydrostatic constants to enforce the thermodynamic requirement of 

nonnegative plastic power density, which are then used to derive bounds on 

thermodynamically admissible values of the plastic Poisson’s ratio. The proposed plastic 

potential function allows independent specification of the tensile and compressive plastic 

Poisson’s ratios and is capable of simulating the nonisochoric plastic deformation 

characteristic of polymers. This allows calibration of the extended model against pure 

shear, uniaxial tensile, and uniaxial compressive test data, which is generally not possible 

in the original Goldberg model (Goldberg et al., 2005). Based on the Arrhenius equation 

for nonisothermal processes, the components of the inelastic strain rate tensor are modified 

to explicitly capture temperature dependence. A calibration procedure is described to 

facilitate identification of all model parameters. The constitutive model is then calibrated 

against available Epon 862 (E862) epoxy resin pure shear, uniaxial tensile, and uniaxial 
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compressive data (Gilat et al., 2007; Littell, 2008; Littell et al., 2008) from tests conducted 

over a range of strain rates and temperatures. Temperature rises due to the conversion of 

plastic work to heat are computed via the adiabatic heat energy equation, where the 

proposed model extensions are demonstrated to preclude thermodynamically inconsistent 

predictions of negative plastic power density; i.e., the thermodynamic consistency 

introduced via the proposed extensions guarantees plastic deformation can only lead to an 

increase in temperature. A methodology based on shifting neat resin DMA data with strain 

rate and temperature is used to approximate the rate and temperature dependence of elastic 

properties, which allows the simulation of thermal softening (i.e., reduction in elastic 

properties) due to adiabatic heating. The ability of the modified constitutive model to 

capture thermal softening associated with plastically deforming polymers at high rates of 

strain is demonstrated by simulating the high strain rate pure shear, uniaxial tensile and 

uniaxial compressive response of E862 epoxy over a range of strain rates and temperatures.  

2.2 Description of the Goldberg Viscoplastic Constitutive Model  

 The unified Bodner-Partom (Bodner and Partom, 1975) state variable viscoplastic 

constitutive model, which was originally developed to model viscoplastic deformation in 

metals above one half of their melting temperature, was modified by Goldberg et al. (2005) 

to include hydrostatic stress effects. As aforementioned, a manifestation of this pressure 

dependence is the difference in tensile and compressive saturation stresses (Siviour and 

Jordan, 2016). The Goldberg model (Goldberg et al., 2005) is unified in the sense that no 

distinction is made between creep strain and plastic strain (Bhattachar and Stouffer, 1993); 

instead, a single (unified) inelastic strain that is assumed to be very small during elastic 

deformation is used for all levels of stress. Unlike classical rate-independent plasticity 
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models, unified viscoplasticity models do not employ a defined yield surface or load-

unload conditions. Instead, rate dependent saturation and nonlinearity is controlled by the 

evolution of state variables that are defined represent the average effects of various 

deformation mechanisms. The governing equations of the Goldberg (Goldberg et al., 2005) 

model are shown below to facilitate discussion of the extensions made in this chapter. 

휀�̇�𝑗
𝐼 = 2𝐷0𝑒𝑥𝑝 [−

1

2
(
𝑍

𝜎𝑒
)
2𝑛

] (
𝑠𝑖𝑗

2√𝐽2
+ 𝛼𝛿𝑖𝑗) 

(2.2-1) 

 

𝑓 = √𝐽2 + 𝛼𝜎𝑘𝑘 (2.2-2) 

𝜎𝑒 = √3𝑓 = √3𝐽2 + √3𝛼𝜎𝑘𝑘 (2.2-3) 

�̇� = 𝑞(𝑍1 − 𝑍) �̇�𝑒
𝐼 (2.2-4) 

�̇� = 𝑞(𝛼1 − 𝛼) �̇�𝑒
𝐼  (2.2-5) 
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�̇�𝑖𝑗
𝐼 �̇�𝑖𝑗
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�̇�𝑖𝑗
𝐼 = 휀�̇�𝑗

𝐼 −
휀�̇�𝑘
𝐼

3
𝛿𝑖𝑗 

(2.2-7) 

𝐽2 =
1

2
𝑠𝑖𝑗𝑠𝑖𝑗 

(2.2-8) 

𝑠𝑖𝑗 = 𝜎𝑖𝑗 −
𝜎𝑘𝑘
3
𝛿𝑖𝑗 

(2.2-9) 

 In Equations 2.2-1 through 2.2-9, 휀�̇�𝑗
𝐼  are the components of the inelastic strain rate 

tensor, 𝑓 is the plastic potential function, n is a constant that controls strain rate sensitivity, 

D0 is a constant that represents the maximum inelastic strain rate, 𝛼 is a time-dependent 

state variable that controls the influence of hydrostatic stress effects, Z is a time-dependent 

state variable that represents the resistance to internal stress (captures strain hardening), q 

is a material constant that controls the hardening rate, 𝜎𝑖𝑗 are the components of the Cauchy 

stress tensor, 휀�̇�𝑘
𝐼  is the trace of the inelastic strain rate tensor, �̇�𝑖𝑗

𝐼  are the components of 
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the deviatoric inelastic strain rate tensor, 𝜎𝑒 is the effective stress, and 휀�̇�
𝐼 = �̇�𝑒

𝐼  is the 

effective deviatoric inelastic strain rate. Summation convention on dummy indices is 

assumed to apply. It is noted that the expression for the effective inelastic strain rate 휀�̇�
𝐼  was 

determined (Goldberg et al., 2005) via the principal of the equivalence of plastic power 

density, i.e., �̇�𝐼 = 𝜎𝑖𝑗휀�̇�𝑗
𝐼 = 𝜎𝑒휀�̇�

𝐼 , which states that the tensor product (full contraction) of 

the Cauchy stress tensor and the inelastic strain rate tensor must be equal to the product of 

the scalar effective stress and effective inelastic strain rate. The symbol �̇�𝑒
𝐼  is utilized to 

indicate the effective inelastic strain rate in the Goldberg (Goldberg et al., 2005) model is 

only a function of the deviatoric inelastic strain rate tensor components. While the original 

Bodner-Partom (Bodner and Partom, 1975) model is based on the pressure-independent J2 

flow potential, the extension proposed by Goldberg (Goldberg et al., 2005) accounts for 

pressure-dependence via the 𝛼𝜎𝑘𝑘 term in the plastic potential (Equation 2.2-2) and the 𝛼𝛿𝑖𝑗 

term in the expression for the inelastic strain rate tensor components (Equation 2.2-1). The 

state variables Z and 𝛼 evolve in time with the effective deviatoric inelastic strain rate, �̇�𝑒
𝐼 , 

according to Equations 2.2-4 and 2.2-5. The hydrostatic state variable, 𝛼, allows the model 

to capture the tension-compression asymmetry typical in polymeric deformation by 

allowing the plastic potential function to take on different values in tension and 

compression. Overall, the model requires the determination of seven state variables, D0, n, 

Z0, Z1, q, 𝛼0, and 𝛼1. Further details of the model and its derivation can be found in 

Goldberg et al. (2005).  

While the Goldberg model has been shown to be capable of predicting the rate 

dependent response over a variety of thermoset epoxies over a range of strain rates, several 

extensions are required to facilitate its use to predict local matrix adiabatic heating in a 
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PMC impact problem. First, the model in its current state is isothermal. However, 

temperature dependence is necessary because regions associated local adiabatic heating in 

PMCs subjected to impact loading are unknown a-priori. In a numerical simulation, these 

temperatures must be computed based on the local stress state, the inelastic strain rate as 

well as thermal properties (density and specific heat). These local adiabatic temperature 

rises due to the conversion of inelastic work to heat result in thermal softening of the elastic 

properties as well as the inelastic properties. As such, explicit temperature dependence 

must be incorporated. The second issue that must be addressed is that, once the model 

(Goldberg et al., 2005) is calibrated based on experimental pure shear and uniaxial tensile 

stress-strain data, there is no way to characterize the model to match compressive stress-

strain data; the model is capable of modeling tension-compression asymmetry, but there is 

no way to independently control the magnitudes of the tensile and compressive saturation 

stresses due to the single hydrostatic state variable. An implication of this that will be 

discussed in greater detail later in this chapter is that physically realistic values of the 

tensile plastic Poisson’s ratio correspond to physically unrealistic values of the 

compressive plastic Poisson’s ratio and vice-versa. Lastly, and of most importance for the 

present goal of predicting local matrix adiabatic heating, it was discovered that, under 

certain loading conditions, negative plastic work density could result. This is problematic 

because, according to the second law of thermodynamics, the inelastic work rate density 

must be nonnegative (Allen, 1991; Chow and Lu, 1989; Faria et al., 1998; Kawai et al., 

2010; Laudau et al., 1960). Negative plastic dissipation implies a decrease in temperature 

due to inelastic deformation, which is nonphysical. It is therefore essential to prevent this 
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possibility to ensure thermodynamic consistency of the model for general multiaxial 

loading. These extensions are described in the next section.  

2.3 Improved Viscoplastic Model Formulation  

2.3.1 Isothermal Governing Equations  

 A new piecewise plastic potential function that is dependent upon the first invariant of 

the Cauchy stress tensor, 𝐼1 = 𝜎𝑘𝑘, and the second invariant of the deviatoric stress tensor, 

𝐽2, is defined as follows:  

𝑓 = {

√𝐽2 + 𝐴𝜎𝑘𝑘                    𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 ≠ 0

√𝐽2                                  𝑖𝑓 𝜎𝑘𝑘 = 0 𝑎𝑛𝑑 𝐽2 ≠ 0

𝐴𝜎𝑘𝑘                                 𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 = 0

 (2.3-1a) 

              

        where                                𝐴 = (√𝛾𝑠𝑖𝑔𝑛(𝜎𝑘𝑘) + 𝜉) (2.3-1b) 

 

In Equation 2.3-1b, 𝛾 & 𝜉 are constants that control the influence of hydrostatic stress on 

plastic deformation. The hydrostatic constant 𝛾 is defined to be nonnegative whereas the 

sign of the hydrostatic constant 𝜉 is not restricted. The implications of positive, negative, 

and zero valued 𝜉 is discussed later in this chapter. As in the Goldberg model (Goldberg et 

al., 2005), an associative flow rule is used, where the components of the inelastic strain 

rate tensor, 휀�̇�𝑗
𝐼 , are assumed to be equal to the product of the partial derivative of the plastic 

potential function, 𝑓, with respect to the components of the Cauchy stress tensor, 𝜎𝑖𝑗, and 

the scalar rate of the plastic multiplier, �̇�, as follows: 

휀�̇�𝑗
𝐼 = �̇�

𝜕𝑓

𝜕𝜎𝑖𝑗
. 

(2.3-2) 

Evaluating the partial derivative of the plastic potential function with respect to the 

components of the Cauchy stress tensor shown in Equation 2.3-2 results in the following:  
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𝜕𝑓

𝜕𝜎𝑖𝑗
=

{
 
 

 
 
𝑠𝑖𝑗

2√𝐽2
+ 𝐴𝛿𝑖𝑗          𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 ≠ 0

𝑠𝑖𝑗

2√𝐽2
                     𝑖𝑓 𝜎𝑘𝑘 = 0 𝑎𝑛𝑑 𝐽2 ≠ 0

𝐴𝛿𝑖𝑗                         𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 = 0

 (2.3-3) 

In Equation 2.3-3, 𝑠𝑖𝑗 are the components of the deviatoric stress tensor and 𝛿𝑖𝑗 is the 

Kronecker delta. The reason for employing a piecewise plastic potential function is because 

the partial derivative of √𝐽2 + 𝐴𝜎𝑘𝑘 with respect to 𝜎𝑖𝑗 is not defined for pure shear, 𝜎𝑘𝑘 =

0 and 𝐽2 ≠ 0, (derivative of sign function is undefined when its argument is zero: 
𝜕𝐴

𝜕𝜎𝑖𝑗
=

𝜕

𝜕𝜎𝑖𝑗
(√𝛾𝑠𝑖𝑔𝑛(𝜎𝑘𝑘) + 𝜉) = 0 when 𝜎𝑘𝑘 ≠ 0) or purely hydrostatic loading, 𝜎𝑘𝑘 ≠ 0 and 

𝐽2 = 0 (division by 𝐽2 = 0). The piecewise definition of the plastic potential also prevents 

plastic dilation under pure shear loading. The rate of the plastic multiplier, �̇�, is obtained 

by substituting Equation 2.3-3 into Equation 2.3-2 and taking the tensor product of the 

inelastic strain rate tensor with itself. The result is shown in Equation 2.3-4.  

�̇� =

{
 
 
 
 

 
 
 
 
√
2휀�̇�𝑗

𝐼 휀�̇�𝑗
𝐼

1 + 6𝐴2
            𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 ≠ 0

√2휀�̇�𝑗
𝐼 휀�̇�𝑗

𝐼                 𝑖𝑓 𝜎𝑘𝑘 = 0 𝑎𝑛𝑑 𝐽2 ≠ 0

√
휀�̇�𝑗
𝐼 휀�̇�𝑗

𝐼

3𝐴2
                 𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 = 0

 (2.3-4) 

 

In Equation 2.3-4, �̇�𝑖𝑗
𝐼  and are the components of the deviatoric inelastic strain rate tensor, 

�̇�𝑖𝑗
𝐼 = 휀�̇�𝑗

𝐼 −
1

3
휀�̇�𝑘
𝐼 𝛿𝑖𝑗, and 휀�̇�𝑘

𝐼  is the trace of the inelastic strain rate tensor. Next, the effective 

stress is defined as:  
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𝜎𝑒 = √3𝑓 = {

√3𝐽2 + √3𝐴𝜎𝑘𝑘          𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 ≠ 0

√3𝐽2                              𝑖𝑓 𝜎𝑘𝑘 = 0 𝑎𝑛𝑑 𝐽2 ≠ 0

√3𝐴𝜎𝑘𝑘                         𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 = 0

 (2.3-5) 

 

It is evident from Equation 2.3-5 that, under pure shear loading, or if the hydrostatic 

constants 𝛾 and 𝜉 are both equal to zero, the effective stress simplifies to the classical 

definition of √3𝐽2, which reduces to the applied stress for uniaxial tensile loading and to 

the absolute value of the applied stress for uniaxial compressive loading. The effective 

inelastic strain rate, 휀�̇�
𝐼 , is determined through the principle of the equivalence of plastic 

work rate density: 

�̇�𝐼 = 𝜎𝑖𝑗휀�̇�𝑗
𝐼 = 𝜎𝑒휀�̇�

𝐼 ≥ 0 (2.3-6) 

 

By combining Equations 2.3-2 and 2.3-3, substituting the result as well as the effective 

stress (Equation 2.3-5) into Equation 2.3-6, the effective inelastic strain rate is determined 

and is shown in Equation 2.3-7.   

휀�̇�
𝐼 =

{
 
 
 
 

 
 
 
 
√

2휀�̇�𝑗
𝐼 휀�̇�𝑗

𝐼

3(1 + 6𝐴2)
            𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 ≠ 0

√
2

3
휀�̇�𝑗
𝐼 휀�̇�𝑗

𝐼                      𝑖𝑓 𝜎𝑘𝑘 = 0 𝑎𝑛𝑑 𝐽2 ≠ 0

√휀�̇�𝑗
𝐼 휀�̇�𝑗

𝐼

3|𝐴|
                       𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 = 0

 (2.3-7) 

 

Note that if the hydrostatic constants are set to zero, the value of 𝐴 given by Equation 2.3-

1b is also zero. In this case, 휀�̇�
𝐼  should be set to zero for the 𝜎𝑘𝑘 ≠ 0 and 𝐽2 = 0 case in a 

numerical code to avoid division by zero in the third expression of Equation 2.3-7. By 

defining 
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√3

2
휀�̇�
𝐼 = 𝐷0𝑒𝑥𝑝 [−

1

2
(
𝑍

𝜎𝑒
)
2𝑛

] 
(2.3-8) 

 

based on the work of Bodner and Partom (1975) and Bodner (2001), substituting the rate 

of the plastic multiplier back into Equation 2.3-2, and simplifying, the inelastic strain rate 

tensor components are obtained:  

휀�̇�𝑗
𝐼 =

{
 
 
 

 
 
 2𝐷0𝑒𝑥𝑝 [−

1

2
(
𝑍

𝜎𝑒
)
2𝑛

] (
𝑠𝑖𝑗

2√𝐽2
+ 𝐴𝛿𝑖𝑗)          𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 ≠ 0

2𝐷0𝑒𝑥𝑝 [−
1

2
(
𝑍

𝜎𝑒
)
2𝑛

] (
𝑠𝑖𝑗

2√𝐽2
)                     𝑖𝑓 𝜎𝑘𝑘 = 0 𝑎𝑛𝑑 𝐽2 ≠ 0

2𝐷0𝑒𝑥𝑝 [−
1

2
(
𝑍

𝜎𝑒
)
2𝑛

] (𝐴𝛿𝑖𝑗)                      𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 = 0

 (2.3-9) 

 

In Equations 2.3-8 and 2.3-9, n is a constant that controls strain rate sensitivity (as n 

increases, rate dependence decreases), D0 is a constant scale factor that represents the 

maximum inelastic strain rate, and Z is a scalar state variable that represents the resistance 

to internal stress (captures isotropic hardening). The state variable Z evolves from its initial 

value of 𝑍0 to its final value of 𝑍1, where 𝑍1 > 𝑍0, according to the following expression:  

�̇� = 𝑞(𝑍1 − 𝑍)휀�̇�
𝐼  (2.3-10) 

 

It is noted that an effective stress of zero implies no inelastic deformation; to prevent 

division by zero (in Equation 2.3-9) in a numerical code, the components of the inelastic 

strain rate tensor (Equation 2.3-9) should be set to zero in this case. The expressions for 

the inelastic strain rate given by Equation 2.3-9 are isothermal. The next section discusses 

the nonisothermal extension of the model.  
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2.3.2 Nonisothermal Governing Equations - Temperature Dependent Viscoplastic 

Plastic Flow 

To account for the temperature dependence of the saturation stress, the components of 

the inelastic strain rate tensor are modified to explicitly capture temperature dependence 

based on the Arrhenius equation for nonisothermal processes (Bhattachar and Stouffer, 

1993), which states that the inelastic strain rate is proportional to the exponential of the 

dimensionless expression (
−Q

KT
), as follows 

휀̇𝐼 𝛼 𝑒𝑥𝑝 (
−𝑄

𝐾𝑇
) 

(2.3-11) 

where Q is the activation energy, K is Boltzmann’s constant, and T is the absolute 

temperature. By inserting the dimensionless expression (
−Q

KT
) into the exponential term in 

the original expression for the components of the inelastic strain rate tensor (Bhattachar 

and Stouffer, 1993), Equation 2.3-9, and defining a new state variable Z̅ as 

�̅� =
𝑄𝑍

𝐾
, (2.3-12) 

the new temperature-dependent components of the inelastic strain rate tensor are expressed 

as  

휀�̇�𝑗
𝐼 =

{
 
 
 
 

 
 
 
 2𝐷0𝑒𝑥 𝑝 [−

1

2
(
�̅�

𝑇𝜎𝑒
)

2𝑛

] (
𝑆𝑖𝑗

2√𝐽2
+ 𝐴𝛿𝑖𝑗)         𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 ≠ 0

2𝐷0𝑒𝑥 𝑝 [−
1

2
(
�̅�

𝑇𝜎𝑒
)

2𝑛

] (
𝑆𝑖𝑗

2√𝐽2
)                    𝑖𝑓 𝜎𝑘𝑘 = 0 𝑎𝑛𝑑 𝐽2 ≠ 0

2𝐷0𝑒𝑥 𝑝 [−
1

2
(
�̅�

𝑇𝜎𝑒
)

2𝑛

] (𝐴𝛿𝑖𝑗)                     𝑖𝑓 𝜎𝑘𝑘 ≠ 0 𝑎𝑛𝑑 𝐽2 = 0

 (2.3-13) 

where Z̅ is a temperature-dependent state variable that controls the resistance to internal 

stress at a given temperature, and the other parameters were defined previously. The 
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components of the inelastic strain tensor are computed by integrating the components of 

the inelastic strain rate tensor (Equation 2.3-13) forward in time. Even though polymers 

can exhibit large deformations, especially at low strain rates and at temperatures close to 

or above their glass transition temperature, infinitesimal strain theory has been assumed to 

apply, which permits the additive decomposition of the total strain tensor into its respective 

elastic, inelastic, and thermal components. This is justified because the intended 

application for the unified viscoplastic constitutive formulation is multiscale modeling of 

the high-rate deformation of PMCs, where finite strains in the matrix are not expected. 

Based on the work of Bhattachar and Stouffer (1993) it is assumed that Z̅ evolves in the 

same way as Z, that is,  

�̇̅� = 𝑞(�̅�1 − �̅�)휀�̇�
𝐼  (2.3-14a) 

which can be integrated in time to yield 

�̅� = �̅�1 − (�̅�1 − �̅�0)𝑒𝑥𝑝 (−𝑞휀𝑒
𝐼), (2.3-14b) 

where q is a constant that controls the hardening rate and �̅�0 & �̅�1 are the temperature-

dependent initial and final values of �̅�, respectively. Under isothermal conditions, 

Equations 2.3-14a and 2.3-14b are identical. However, under nonisothermal conditions, 

Equation 2.3-14b should be used instead of Equation 2.3-14a to allow the value of Z̅0 to 

change with temperature (Bhattachar and Stouffer, 1993; Bhattachar, 1991). It is noted that 

the dimension of the hardening state variable Z in the Goldberg model (Goldberg et 

al., 2005) is stress whereas the dimension of Z̅ is stress times absolute temperature (Kelvin).  
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2.3.3 Bounds on Hydrostatic Constants  

By examining Equation 2.3-7, it is apparent that the effective inelastic strain rate, 휀�̇�
𝐼 , 

is always nonnegative. According to the second law of thermodynamics, plastic power 

density (Equation 2.3-6) must be nonnegative (Allen, 1991; Chow and Lu, 1989; Faria et 

al., 1998; Kawai et al., 2010; Laudau et al., 1960). Since plastic power density (Equation 

2.3-6) is equal to the product of the scalar effective stress (Equation 2.3-5) and scalar 

effective inelastic strain rate (Equation 2.3-7), a relationship between γ and ξ must be 

determined to ensure the effective stress is also nonnegative. To this end, hydrostatic tensile 

and compressive load cases are considered. For hydrostatic tensile loading (𝛔 =

diag([σ, σ, σ])), the effective stress is:  

𝜎𝑒 = 3√3𝛾𝜎 + 3√3𝜉𝜎 ≥ 0 (2.3-15) 

For hydrostatic compressive loading (𝛔 = diag([−σ,− σ,−σ])), the effective stress is:  

𝜎𝑒 = 3√3𝛾𝜎 − 3√3𝜉𝜎 ≥ 0 (2.3-16) 

 

According to Equations 2.3-15 and 2.3-16, the effective stress, and therefore the plastic 

power density (Equation 2.3-6), will always be nonnegative as long as the following 

condition is satisfied:  

−√γ ≤ ξ ≤ √γ (2.3-17) 

 

The next section explains the implications of the inequality given by Equation 2.3-17 in 

regards to thermodynamically admissible values of plastic Poisson’s ratios.  

2.3.4 Plastic Poisson’s Ratios 

To obtain physically realistic transverse plastic strains in uniaxial tensile and 

compressive loading, it is useful to derive expressions for the tensile and compressive 
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plastic Poisson’s ratios. For uniaxial loading in the 1-direction, the plastic Poisson’s ratio 

is defined as:  

𝜈𝑝 =
−휀22

𝐼 ̇

휀11
�̇�

=
−휀33

𝐼 ̇

휀11
�̇�

= −

(
𝑠22
2√𝐽2

+ 𝐴)

(
𝑠11
2√𝐽2

+ 𝐴)

 

(2.3-18) 

 

Since the signs of the hydrostatic stress and deviatoric stress components are opposite for 

uniaxial tensile and compressive loading, the tensile and compressive plastic Poisson’s 

ratios, νp,T and νp,C, can, in general, be different and are defined as follows:  

𝜈𝑝,𝑇 = −

(
𝑠22
𝑈𝑇

2√𝐽2
+ 𝐴𝑈𝑇)

(
𝑠11
𝑈𝑇

2√𝐽2
+ 𝐴𝑈𝑇)

=
√3 − 6𝐴𝑈𝑇

2√3 + 6𝐴𝑈𝑇
 

 

(2.3-19a) 

𝐴𝑈𝑇 = √𝛾 + 𝜉 (2.3-19b) 

 

𝜈𝑝,𝐶 = −

(
𝑠22
𝑈𝐶

2√𝐽2
+ 𝐴𝑈𝐶)

(
𝑠11
𝑈𝐶

2√𝐽2
+ 𝐴𝑈𝐶)

=
√3 + 6𝐴𝑈𝐶

2√3 − 6𝐴𝑈𝐶
 

 

(2.3-20a) 

𝐴𝑈𝐶 = −√𝛾 + 𝜉 (2.3-20b) 

 

In Equations 2.3-19 and 2.3-20, “UT” denotes uniaxial tensile loading whereas “UC” 

denotes uniaxial compressive loading. By manipulating Equations 2.3-19a and 2.3-20a, 

expressions for AUT and AUC in terms of the tensile and compressive plastic Poisson’s ratios 

are obtained:  

𝐴𝑈𝑇 =
−(𝑠11

𝑈𝑇𝜈𝑝,𝑇 + 𝑠22
𝑈𝑇)

2√𝐽2(1 + 𝜈𝑝,𝑇)
=
√3 − 2√3𝜈𝑝,𝑇

6(1 + 𝜈𝑝,𝑇)
 

(2.3-21) 
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𝐴𝑈𝐶 =
−(𝑠11

𝑈𝐶𝜈𝑝,𝐶 + 𝑠22
𝑈𝐶)

2√𝐽2(1 + 𝜈𝑝,𝐶)
=
−(√3 − 2√3𝜈𝑝,𝐶)

6(1 + 𝜈𝑝,𝐶)
 

(2.3-22) 

 

To determine the bounds on the tensile and compressive plastic Poisson’s ratios, 

consider Equations 2.3-17, 2.3-19b, and 2.3-20b. Equations 2.3-19b and 2.3-20b can be 

solved for 𝜉 and √𝛾 to yield √𝛾 =
1

2
(−𝐴𝑈𝐶 + 𝐴𝑈𝑇) and 𝜉 =

1

2
(𝐴𝑈𝐶 + 𝐴𝑈𝑇), respectively. 

Combining Equations 2.3-19b and 2.3-20b with Equation 2.3-17 implies 𝐴𝑈𝐶 ≤ 0 and 

𝐴𝑈𝑇 ≥ 0, which imply, based on Equations 2.3-19a and 2.3-20a,  𝜈𝑝,𝐶 ≤ 0.5 and 𝜈𝑝,𝑇 ≤

0.5. By evaluating the limit of 𝜈𝑝,𝑇 (Equation 2.3-19a) as 𝐴𝑈𝑇 tends to infinity and the limit 

of 𝜈𝑝,𝐶 (Equation 2.3-20a) as 𝐴𝑈𝐶  tends to negative infinity, the lower bounds of the tensile 

and compressive plastic Poisson’s ratios are obtained to be negative one (-1). Nonnegative 

plastic power density therefore implies −1 < 𝜈𝑝,𝐶 ≤ 0.5 and −1 < 𝜈𝑝,𝑇 ≤ 0.5. It is 

interesting to note that these are the same bounds as on the elastic Poisson’s ratio for an 

isotropic material, except the tensile and compressive plastic Poisson’s ratios can be equal 

to 0.5 (as is the case in deviatoric plasticity models) whereas the elastic Poisson’s ratio 

cannot since it would result in an infinite bulk modulus. Note that for 0 ≤ 𝜈𝑝,𝐶 ≤ 0.5 and 

0 ≤ 𝜈𝑝,𝑇 ≤ 0.5, −
√3

6
≤ A ≤

√3

6
.  

There are a several special cases of the model that merit a brief discussion. A pressure 

independent model is obtained by setting both hydrostatic constants equal to zero (γ = ξ =

0). In this case, the effective stress reduces to the von Mises effective stress (√3J2), which 

implies the plastic deformation is deviatoric (tensile and compressive plastic Poisson’s 

ratios are equal to 0.5) and the tensile and compressive saturation stresses are equal. A 
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temperature dependent version of the Goldberg model (Goldberg et al., 2005) is obtained 

by setting γ equal to zero (ξ ≠ 0); this should not be done, as the model will inherent the 

same deficiencies as the original model (Goldberg et al., 2005). A pressure-dependent 

model that does not exhibit tension-compression asymmetry is obtained by setting ξ equal 

to zero (γ ≠ 0). In this case, the tensile and compressive yield stresses and plastic Poisson’s 

ratios are equal; γ ≥ 0 ensures −1 < 𝜈𝑝,𝐶 ≤ 0.5 and −1 < 𝜈𝑝,𝑇 ≤ 0.5 whereas 0 ≤ γ ≤

1

12
 ensures 0 < 𝜈𝑝,𝐶 ≤ 0.5 and 0 < 𝜈𝑝,𝑇 ≤ 0.5.  

2.3.5 Tension-Compression Asymmetry  

Plasticity formulations that employ plastic potential functions that are even functions 

of hydrostatic pressure are capable of simulating nonisochoric deformation, but incapable 

of simulating tension-compression asymmetry. For tension-compression asymmetry, the 

value of the effective stress in uniaxial tension should be greater than the value of the 

effective stress in uniaxial compression for the same absolute value of applied uniaxial 

stress. In other words, a greater uniaxial stress would need to be applied in tension, 𝜎𝑈𝑇, 

than in compression, 𝜎𝑈𝐶 , to achieve equivalent values of the effective stress. Using 

Equation 2.3-5,  this can be expressed as:   

𝜎𝑒 = 𝜎𝑈𝑇(1 + √3𝐴𝑈𝑇) = 𝜎
𝑈𝐶(1 − √3𝐴𝑈𝐶) (2.3-23) 

Therefore, for tension-compression asymmetry (𝜎𝑈𝐶 > 𝜎𝑈𝑇), 𝐴𝑈𝐶 > −𝐴𝑈𝑇, which implies 

the hydrostatic constant 0 < 𝜉 < √γ.  

2.3.6 Summary of Constraints on Model Parameters and Special Cases 

The conditions for nonnegative plastic dissipation, tension-compression asymmetry, 

and model special cases are summarized in Table 2.3.1.  
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Table 2.3.1: Conditions for Nonnegative Plastic Dissipation, Tension-Compression 

Asymmetry, and Model Special Cases 

Condition Remark 

−√γ ≤ ξ ≤ √γ Nonnegative plastic power density 

0 < ξ < √γ Nonnegative plastic power density and 

tension-compression asymmetry  

ξ = √γ Plastically incompressible in compression 

ξ = γ = 0 Pressure independent model; deviatoric 

plastic strain tensor; equal uniaxial tensile 

and compressive saturation stresses 

γ ≠ 0, ξ = 0 Pressure dependent model with no 

tension-compression asymmetry  

γ = 0, ξ ≠ 0 Deficient model; possibility of negative 

plastic power density and plastic 

Poisson’s ratios that are out of bounds 

 

2.4 Adiabatic Heating  

The heat energy equation, which expresses the relationship between mechanical 

deformation and spatial-temporal temperature change, is as follows 

𝑘∇2𝑇 − 𝛼𝑀(3𝜆 + 2𝜇)𝑇휀�̇�𝑘
𝑒 + 𝛽𝝈: �̇�𝑰 = 𝜌𝐶�̇� (2.4-1) 

where k is the thermal conductivity, T is the absolute temperature, 𝛼𝑀 is the coefficient of 

thermal expansion, 𝜆 and 𝜇 are Lame’s constants, 휀�̇�𝑘
𝑒  is the elastic volumetric strain rate, 

𝝈 is the Cauchy stress tensor, �̇�𝐼 is the inelastic strain rate tensor, 𝜌 is the density, 𝐶 is the 

specific heat, and 𝛽 is the inelastic heat fraction, which represents the fraction of inelastic 

work converted to heat. As aforementioned, the intended application of the unified 

viscoplastic constitutive formulation is in multiscale analyses of PMCs subjected to impact 

loading, where the assumption of adiabatic conditions is generally reasonable (Li and 

Lambros 2001, Kendall and Siviour 2013, Trojanowski 1997, Garg et al. 2008, Chou et al. 

1973). It is useful to derive a characteristic thermal diffusion time to justify the assumption 
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of adiabatic conditions for high rate loading. To this end, consider the one-dimensional 

heat (diffusion) equation:   

𝑘
∂2𝑇

∂x2
= 𝜌𝐶

∂𝑇

∂𝑡
. (2.4-2) 

By replacing the partial derivatives in Equation 2.4-2 with finite differences, the following 

expression is obtained for the characteristic thermal diffusion time, Δtd, 

∆𝑡𝑑 =
(∆𝑥)2

𝐷
, (2.4-3) 

where D is the thermal diffusivity (𝐷 =
𝑘

𝜌𝐶
) and ∆𝑥 is a characteristic length, which can be 

taken as the distance between the center of the deforming region of a test specimen and the 

nearest heat sink (Arruda et al., 1995). If the time over which a given experiment takes 

place is small compared to the characteristic thermal diffusion time, adiabatic conditions 

can be assumed to prevail (Li and Lambros, 2001; Kendall and Siviour, 2013; Trojanowski, 

1997; Garg et al., 2008; Chou et al., 1973) and the conduction term in Equation 2.4-1 can 

be neglected. The characteristic thermal diffusion time can also be used to compute an 

approximate strain rate at which the system would be expected to behave adiabatically, 

∆𝑡𝑑
−1. More details regarding the characteristic thermal diffusion time for E862 resin are 

given in later in this chapter. The thermoelastic term in Equation 2.4-1 is often negligible 

compared to the thermoplastic term (Li and Lambros, 2001; Varghese and Batra, 2009; 

Pan et al., 2016; Siviour and Jordan, 2016), reducing the heat energy equation to: 

𝛽𝝈: �̇�𝑰 = 𝜌𝐶�̇�. (2.4-4) 

Assuming the inelastic heat fraction, 𝛽, is known, either measured experimentally or 

assumed, Equation 2.4-4 can be integrated in time to compute the temperature change due 
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to the conversion of plastic work to heat at each timestep in an incremental solution 

procedure. 

2.5 Temperature and Strain Rate Dependence of Elastic Properties 

It is well known that polymers exhibit an increased stiffness and reduced strain to 

failure when the applied rate of loading is increased. Since the mechanical properties of 

carbon fiber are much less sensitive to rate and temperature compared to the epoxy, the 

rate and temperature dependence of carbon fiber reinforced PMCs is primarily a 

manifestation of the rate and temperature dependence of the matrix constituent. For this 

reason, material properties backed out based on quasi-static test data will not suffice to 

describe the material response under dynamic loading. Thus, a methodology to rapidly 

determine the elastic properties of the polymer matrix over a broad range of strain rates 

and temperatures is necessary.   

A time-temperature shifting methodology, similar to the Decompose-Shift-

Reconstruct (DSR) method originally developed by Mulliken and Boyce (2006), is utilized 

to compute temperature and strain rate dependent shifts in elastic moduli based on dynamic 

mechanical analysis (DMA) tests conducted on neat resin at various frequencies. Since the 

frequency at which a DMA test is conducted corresponds to a particular strain rate 

(depending on the specimen geometry), rate-dependent shifts in the shear modulus can 

therefore be obtained by conducting DMA tests at various frequencies and performing a 

temperature sweep. A schematic of the shifting of the shear storage modulus versus 

temperature curve with strain rate is shown in Figure 2.5-1 for E862 epoxy DMA data 

available in the literature (Gilat et al., 2007).  
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Figure 2.5-1: Illustration of Shifting of Epon 862 Epoxy DMA Data (Gilat et al., 2007) 

with Strain Rate 

 

It is interesting to note that the glass transition temperature is indeed rate dependent, 

increasing with increasing strain rate (Mulliken and Boyce, 2006). In this research, it is 

assumed that the shear modulus is equal to the shear storage modulus. While the shear 

modulus is technically defined as the square root of the sum of the squares of the shear 

storage modulus, G’, and shear loss modulus, G’’ (Menard and Menard, 2008), i.e., 𝐺 =

√(G’)2 + (𝐺′′)2, the justification of the aforementioned assumption, 𝐺 = 𝐺′, is supported 

by the fact that the shear loss modulus, at least for the E862 epoxy considered herein, has 

a relatively low value in comparison with the shear storage modulus over a wide range of 

temperatures. Figure 2.5-2 shows the shear storage modulus, the shear loss modulus, the 

corresponding loss tangent (i.e., the ratio of the shear loss modulus and shear storage 

modulus) for E862 DMA data presented in Gilat et al. (2007). Also shown in Figure 2.5-2 

is the total shear modulus and the ratio of the total shear modulus to the loss tangent. The 

total shear modulus was computed using the data presented in Gilat et al. (2007) using the 
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aforementioned relation: 𝐺 = √(G’)2 + (𝐺′′)2. The plot in Figure 2.5-2 has two y-axes; 

the moduli are referred to the left y-axis whereas the loss tangent and the ratio of the total 

shear modulus to the shear storage modulus are referred to the right y-axis.  

 

Figure 2.5-2: Comparison between shear modulus (denoted “total”), shear storage, 

shear loss moduli, and the loss tangent 

It is evident from Figure 2.5-2 that, except for a range of temperatures corresponding to 

the glass transition, the shear loss modulus is nominal compared to the shear storage 

modulus. The maximum value of the ratio of the total shear modulus to the storage modulus 

is approximately 1.2 and occurs at a temperature of approximately 138 °C. This implies 

the assumption of 𝐺 = 𝐺′ would be a maximum of 20% underpredicted near the glass 

transition. Since the goal of this chapter is to extend the Goldberg model (Goldberg et 

al., 2005) to enable thermodynamically consistent adiabatic temperature rise predictions 

and the resulting thermal softening, and not to develop a polymer constitutive model 

describing the glass transition process, this was deemed acceptable.  
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Assuming the elastic Poisson’s ratio is independent of temperature and strain rate 

(Mulliken and Boyce, 2006; Jordan et al., 2008; Varghese and Batra, 2009), the shifting of 

the DMA data allows the elastic properties to be determined at various strain rates (can 

also be extrapolated to higher/lower strain rate values than those at which the DMA tests 

were conducted) and temperatures. To perform the horizontal (temperature direction) 

shifting of the shear storage modulus versus temperature curve with strain rate, it is 

necessary to determine a reference strain rate, 휀̅�̇�𝑒𝑓, with respect to which the shifting 

occurs. Since the DMA shear storage modulus versus temperature curve for E862 presented 

in Gilat et al. (2007) corresponds to a strain rate of 0.02 s-1, this value has been taken as the 

reference strain rate. To perform the shifting numerically, the logarithm (base ten) of the 

ratio of the actual strain rate to the reference strain rate, the “log strain rate ratio”, must be 

computed and multiplied by what is referred to herein as the “DMA shift factor”. The log 

strain rate ratio quantifies the number of decades the actual strain rate is above or below 

the reference strain rate. For example, an actual strain rate of 0.2 s-1 and reference strain 

rate of 0.02 s-1 would result in a log strain rate ratio of one (since the actual strain rate in 

this case would be ten times greater than the reference strain rate and the logarithm of ten 

is one).  

The DMA shift factor quantifies how much the shear storage modulus versus 

temperature shifts horizontally per decade change in strain rate with respect to the reference 

strain rate. Since a tabular approach has been taken, the value of the DMA shift factor must 

be determined via trial and error during the calibration procedure. In this work, a DMA 

shift factor of 5 Kelvin per decade strain rate was found to provide a reasonably accurate 

description of the rate and temperature dependence of E862 elastic properties. If DMA data 
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is unavailable, it is recommended to at least approximate the rate and temperature 

dependence of the elastic modulus of the material of interest. This can be done by 

measuring the elastic properties over a range of temperatures and strain rates and 

determining an approximate functional dependence of the moduli on rate and temperature. 

The reader is referred to Richeton et al. (2007) for an example of an analytical description 

of the rate and temperature and dependence of the elastic moduli. Note that if the 

temperature dependence of the elastic moduli is not accounted for, adiabatic temperature 

rises predicted using the viscoplasticity model will not be able to predict thermal softening 

of the elastic properties, which is caused because the elastic moduli decrease with 

increasing temperature. It should also be noted that, if the unified viscoplasticity 

formulation is implemented into a FE code as a UMAT subroutine, a strain rate below 

which no shifting of the shear storage modulus versus temperature curve occurs should be 

defined. This is because, at least in explicit FE simulations, integration point effective 

strain rates will be zero until deformation occurs. Since the limit of the logarithm function 

as its argument approaches zero is negative infinity, a strain rate of zero would result in a 

shift factor of negative infinity, which would cause numerical problems.  

2.6 Model Calibration – Determination of Nonisothermal Viscoplastic Model 

Parameters 

The nonisothermal polymer viscoplastic constitutive model requires determining five 

constants (𝐷0, n, q, 𝛾, and 𝜉) and two functions of temperature, �̅�0(𝑇) and �̅�1(𝑇). The 

characterization procedure is based on neat resin isothermal test data at different 

temperatures. Once the temperature-dependent state variables, �̅�0 and �̅�1, are known at 

multiple temperatures, they can be expressed as functions of temperature using regression 
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techniques. The value of 𝐷0 is currently assumed to be equal to 106 s-1 (Goldberg et al., 

2005). The procedure for the determination of the remaining model parameters is described 

below.   

Since the hydrostatic stress is zero a pure shear stress state, the initial calibration is 

based on pure shear stress-strain data. The values of n and �̅�1 at a given temperature are 

determined as follows using Equation 2.3-13, simplified for the case of pure shear loading 

(J2 = τ
2; σe = √3|τ|):  

휀̇𝐼 =
�̇�𝐼

2
= 𝐷0 𝑒𝑥𝑝(−

1

2
(
�̅�(𝑇)

√3|𝜏|𝑇
)

2𝑛

)(
𝜏

|𝜏|
). 

(2.6-1) 

where γ̇I is the inelastic engineering shear strain rate. Equation 2.6-1 is then manipulated 

to yield:  

𝑙𝑛 (−2𝑙𝑛 (
�̇�𝐼

2𝐷0
)) = 2𝑛 ∗ 𝑙𝑛(�̅�(𝑇)) − 2𝑛 ∗ 𝑙𝑛(√3|𝜏|𝑇). 

(2.6-2) 

To obtain the value of the constant n and Z̅1 at a particular temperature, constant strain rate 

pure shear tests at various strain rates (ideally at least three) at the temperature of interest 

are used. The value of the saturation shear stress, τs, (the stress level where the stress-strain 

curve flattens out and the inelastic strain rate becomes equal to the total strain rate) is then 

substituted in for τ in Equation 2.6-2. Since at saturation, the inelastic strain rate is equal 

to the total strain rate, the value of the inelastic engineering shear strain rate, γ̇I, is set equal 

to the total applied engineering strain rate, γ̇0. For each available shear stress-strain curve, 

data pairs of the total applied engineering shear strain rate and the corresponding saturation 

shear stress (one pair for each curve) are used. The values of the absolute test temperature 

and the constant Do are also substituted into Equation 2.6-2. Least squares regression is 
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then performed on the data pairs of shear strain rates and corresponding saturation shear 

stresses for each test. The value of Z̅ is taken to be the value at saturation, �̅�1. As evident 

from Equation 2.6-2, the slope of the line of best fit is equal to -2n and the intercept is equal 

to 2𝑛 ∗ 𝑙𝑛(�̅�1(𝑇)). The values Z̅1 for a given temperature and n are now known. This 

procedure is repeated for pure shear tests at various rates at other temperatures to determine 

the temperature-dependence of Z̅1. In this research, n is assumed to be constant, however 

a possible inverse relationship between n and temperature (i.e., higher rate sensitivity for 

higher temperatures) has been suggested (Bodner, 2001). 

To obtain the value of Z̅0 at a particular temperature, Equation 2.6-1 is rearranged as 

follows:  

�̅�(𝑇) = [−2𝑙𝑛 (
�̇�𝐼

2𝐷0
)]

1
2𝑛

√3|𝜏|𝑇. 

(2.6-3) 

The values of shear stress and corresponding inelastic engineering shear strain rate where 

the shear stress-strain curves deviate appreciably from linearity are used in Equation 2.6-3 

for the values of τ and γ̇I, respectively. One hundredth of the constant strain rate used in 

the test has been found by trial and error to be a good approximation the value of γ̇I 

(Goldberg et al., 2005). Equation 2.6-3 is then evaluated for Z̅, which is set equal to Z̅0. 

This procedure is repeated for multiple temperatures to determine the temperature-

dependence of Z̅0. 

To determine the value of q for Equations 2.3-14a and 2.3-14b, Equation 2.3-14a is 

integrated for the case of pure shear loading, resulting in 

�̅�(𝑇) = �̅�1(𝑇) − (�̅�1(𝑇) − �̅�0(𝑇))𝑒𝑥𝑝 [
−𝑞

√3
𝛾𝐼] (2.6-4) 
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where γI is the engineering shear strain. At saturation, Z̅(T) approaches Z̅1(T) and the 

exponential term approaches zero. It is assumed saturation occurs when the following 

condition is satisfied (Goldberg et al., 2005) 

𝑒𝑥𝑝 [
−𝑞

√3
𝛾𝑠
𝐼] = 0.01 

(2.6-5) 

where γs
I  is the inelastic shear strain at saturation. Equation 2.6-5 is then solved for the 

hardening rate, q.  

To determine the values of the hydrostatic constants, γ & ξ, uniaxial tensile and 

uniaxial compressive test data are used. Ideally, one would measure the tensile and 

compressive plastic Poisson’s ratios in the uniaxial tests using digital image correlation 

(DIC) and use Equations 2.3-21 and 2.3-22 to determine the values of AUT and AUC. The 

values of AUC and AUT would then be used in Equations 2.3-19b and 2.3-20b to determine 

the values of the hydrostatic constants:  

[
−1 1
1 1

] [
√𝛾

𝜉
] = [

𝐴𝑈𝐶
𝐴𝑈𝑇

]   →    [
√𝛾

𝜉
] =

1

2
[
−1 1
1 1

] [
𝐴𝑈𝐶
𝐴𝑈𝑇

] 
(2.6-6) 

However, it is well known that, after the peak load, plastic instabilities (necking in tension 

and barreling in compression) cause nonuniform stress and strain states in the gage section 

(Poulain et al., 2013; Poulain et al., 2014) and, thus, the plastic Poisson’s ratios are likely 

not material constants (Kolling et al., 2005). The plastic Poisson’s ratios may change with 

temperature, strain rate, and the level of deformation. However, to keep the constitutive 

model tractable, the tensile and compressive plastic Poisson’s ratios are assumed to be 

constant. If it is found that the characterization is precluded by the assumption of constant 

plastic Poisson’s ratios, evolution equations for the hydrostatic parameters, similar to those 

in Goldberg et al. (2005) (Equation 2.2-5), could be used, though care should be taken to 
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ensure the constraints summarized in Section 2.3.6 (Table 2.3.1) are satisfied. If 

information regarding the permanent volume change in uniaxial tensile and compressive 

tests is available, this information can be used to facilitate the determination of the 

hydrostatic constants as well. For example, if there is no permanent volume change in a 

uniaxial compression test, it suggests a compressive plastic Poisson’s ratio of 0.5 

(plastically incompressible in compression). If values of the tensile and compressive plastic 

Poisson’s ratios are unavailable, it can be assumed that the effective stresses (Equation 2.3-

5) at saturation in pure shear, uniaxial tension, and uniaxial compression are equal for a 

given strain rate and temperature (i.e., the shear, tension, and compression tests should be 

conducted at approximately the same temperature and strain rate). This results in the 

following two equations 

√3𝜏𝑠 = 𝜎𝑠𝑡(1 + √3𝛾 + √3𝜉) (2.6-7) 

 

√3𝜏𝑠 = 𝜎𝑠𝑐(1 + √3𝛾 − √3𝜉) (2.6-8) 

where τs, σst, and σsc are the shear, tensile, and compressive stresses at saturation, 

respectively. It is evident that, for a pressure independent material (𝛾 = 𝜉 = 0), the well-

known relation between the shear, tensile, and compressive stresses at saturation is 

obtained: √3𝜏𝑠 = 𝜎𝑠𝑡 = 𝜎𝑠𝑐. By inserting the saturation values of the experimental shear, 

tensile, and compressive stresses, Equations 2.6-7 and 2.6-8 can be solved for the two 

unknown hydrostatic constants, γ and ξ. The values of these constants are assumed to be 

independent of rate and temperature, so the results from tests at one strain rate and 

temperature are sufficient to find the necessary values. Note that in this model, for a given 

strain rate and temperature, the larger the tensile and/or compressive plastic Poisson’s ratio, 
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the larger the tensile and/or compressive saturation stresses. Thus, the maximum tensile 

and compressive saturation stresses for a given strain rate and temperature are therefore 

obtained for plastic Poisson’s ratios of 0.5.  

2.7 Results and Discussion  

2.7.1 Monolithic Polymer Response  

To demonstrate the capability of the modified constitutive model, it is calibrated for 

E862 epoxy using available data (Gilat et al., 2007; Littell, 2008; Littell et al., 2008) from 

uniaxial tension, uniaxial compression and pure shear tests conducted over a range of strain 

rates and temperatures. In this section, the 620 s-1 tensile curves are from Gilat et al. (2007) 

whereas the rest of the data is from Littell (2008) and Littell et al. (2008). Note that all tests 

used for characterization were conducted below the E862 glass transition temperature 

reported by Gilat et al. (2007), 133°C, which was determined from a DMA test conducted 

in oscillatory shear at 10 rad/s, which corresponds to a shear strain rate of 0.02 s-1 (Gilat et 

al., 2007). The experimental E862 stress-strain data presented in Littell (2008) and Littell 

et al. (2008) is in terms of engineering stress and a local strain determined by averaging 

digital image correlation (DIC) measurements at several points in the middle of the 

specimen gage sections (Littell, 2008; Poulain et al., 2013). The DIC strains presented in 

Littell (2008) and Littell et al. (2008) are therefore assumed to be the true strains whereas 

the true stresses were computed using the following equation (Poulain et al., 2013):  

𝜎𝑡𝑟𝑢𝑒 =
𝜎𝑒𝑛𝑔

𝑒𝑥𝑝( 2휀𝑇
𝑡𝑟𝑢𝑒)

  
(2.7-1) 

where 휀𝑇
𝑡𝑟𝑢𝑒 is the transverse true strain measured by the DIC in the uniaxial tension and 

uniaxial compression tests. Since the relationship between longitudinal and transverse true 
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strain for uniaxial loading is 휀𝑇
𝑡𝑟𝑢𝑒 = −𝑣휀𝐿

𝑡𝑟𝑢𝑒 and the relation between engineering normal 

strain and true normal strain is 휀𝑡𝑟𝑢𝑒 = ln (휀𝑒𝑛𝑔 + 1), the relationship between the 

longitudinal and transverse engineering strain for uniaxial loading is (1 + 휀𝑇
𝑒𝑛𝑔

) =

(1 + 휀𝐿
𝑒𝑛𝑔

)
−𝑣

 (Arnold et al., 2019). It is therefore evident that, for a Poisson’s ratio of 0.5, 

Equation 2.7-1 reduces to the well-known conversion between true stress and engineering 

stress, 𝜎𝑡𝑟𝑢𝑒 = 𝜎𝑒𝑛𝑔(1 + 휀𝐿
𝑒𝑛𝑔

) = 𝜎𝑒𝑛𝑔exp (휀𝐿
𝑡𝑟𝑢𝑒), which assumes incompressibility. 

The shear test data presented in Littell (2008) and Littell et al. (2008) was unmodified.  

The E862 resin material properties and model parameters obtained from the calibration 

and used in the simulation results presented in this section are shown in Table 2.7.1. To 

illustrate how the values of the hydrostatic constants were obtained, consider the room 

temperature shear, tension, and compression data presented in Figures 2.7-1a, 2.7-2a, and 

2.7-3a. The saturation stresses for the shear, tension, and compression tests conducted at 

strain rates of 1.6x10-1 s-1, 1x10-1 s-1, and 1x10-1 s-1 are 64.99 MPa, 103.83 MPa, and 112.23 

MPa, respectively. Using these values in Equations 2.6-7 and 2.6-8 yields tensile and 

compressive plastic Poisson’s ratios of 0.3836 and 0.4955. These values were slightly 

adjusted manually to obtain an optimal fit with the pure shear, uniaxial tension, and 

uniaxial compression test data at the various other test temperatures and strain rates; the 

values of 𝛾 and 𝜉 in Table 2.7.1 correspond to tensile and compressive plastic Poisson’s 

ratios of 0.3827 and 0.5, respectively.  

In the simulation results presented in this section, the inelastic heat fraction has been 

set to zero (isothermal conditions; no adiabatic heating) since i) many of the experiments 

were conducted at low strain rates, where adiabatic heating due to the conversion of plastic 

work to heat can be assumed to be negligible and ii) the available high strain rate test data 
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exhibited fairly low failure strains, where the material response displayed minimal 

nonlinearity, and thus likely limited adiabatic heating due to viscoplastic deformation. 

Using Equation 2.4-3, E862 material properties (𝜌 = 1,200 
𝑘𝑔

𝑚3 (Littell, 2008), 𝑘 =

0.18
𝑊

𝑚−𝐾
 (Spurgeon, 2018), 𝐶 = 1,260

𝐽

𝑘𝑔−𝐾
  (Rowghanian and Hoa, 2011), and assuming 

the characteristic length in Equation 2.4-3, Δx, is equal to half of the initial test coupon 

gage diameter used in the E862 neat resin tension and compression tests presented in Littell 

(2008) and Littell et al. (2008) (Δ𝑥 = 1.5875 𝑚𝑚, which is equal to the test coupon initial 

gage radius), the characteristic thermal diffusion time is found to be 21.17 seconds. The 

corresponding approximate strain rate at which the system would be expected to behave 

adiabatically, ∆𝑡𝑑
−1, is 0.047 s-1. Note that this approximation does not account for the 

potential temperature dependence of the thermal properties of the material or the fact that 

the characteristic length, ∆𝑥, changes throughout the test as the specimen deforms. 

Additionally, in reality, the transition from roughly isothermal to roughly adiabatic 

conditions spans a range of strain rates. Garg et al. (2008) conducted uniaxial compression 

tests on E862 and found experimentally that, for cubic specimens of 5 mm and 10 mm side 

lengths, a strain rate of 0.5 s-1 provided approximately adiabatic conditions. However, 

using the thermal properties mentioned above, Equation 2.4-3, and considering the 

characteristic length to be half the side length of the cubic specimens (Garg et al., 2008), 

the approximate transition strain rates for the 5 mm and 10 mm side length cubic specimens 

are 0.019 and 0.0048, respectively, which are roughly 26 and 104 times less than reported 

value of 0.5 s-1 (Garg et al., 2007). This implies that the strain rate at which the E862 tests 

presented in Littell (2008) and Littell et al. (2008) exhibit approximately adiabatic 

conditions could potentially be between 1.2 s-1 and 4.9 s-1 (26 and 104 times greater than 
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the value computed using Equation 2.4-3). It is therefore reasonable to assume isothermal 

conditions for the simulations in this section. The fact that Garg et al. (2007) observed 

approximately adiabatic conditions at a strain rate of 0.5 s-1 helps to further justify the 

adiabatic assumption for dynamic loading, such as impact events, where much larger strain 

rates are expected. Also note that Poulain (2010) has suggested that the post-peak softening 

observed in the E862 compression response (Littell, 2008; Littell et al., 2008) is intrinsic 

material behavior, not thermal softening.  

Figures 2.7-1, 2.7-2, and 2.7-3 show the simulated and experimental pure shear, 

uniaxial tensile, and uniaxial compressive stress-strain response of E862 epoxy resin at 

room temperature (25°C), 50°C, and 80°C for various strain rates. Reasonably good 

correlations with experimental data are obtained for all the strain rates and temperatures 

for shear, tensile and compressive loading. Based on the characterization, it was found that 

�̅�0 and �̅�1 decrease approximately linearly with temperature, as shown in Table 2.7.1, 

which is why the model slightly underestimates the shear saturation stresses at 50°C 

(Figure 2.7-1b). Due to the significant change in elastic properties above the glass transition 

temperature, it is likely that �̅�0 and �̅�1 would exhibit a different (nonlinear) functional 

dependence than shown in Table 2.7.1 near and above the glass transition. Therefore, 

modeling �̅�0 and �̅�1 as piecewise functions of temperature or using a tabular approach may 

be more appropriate. Regardless of the method used to model the temperature dependence 

of �̅�0 and �̅�1, these functions must decrease with increasing temperature (resistance to 

internal stress decreases as temperature increases). Care should also be taken to ensure �̅�0 

and �̅�1 are always positive and that �̅�1 is always greater than �̅�0 for temperature ranges of 

interest; this may require setting these parameters to be constant for very high temperatures. 
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It is evident that in Figure 2.7-3a that the room temperature saturation stresses in the 10-3 s-1 

and 10-5 s-1 strain rate uniaxial compression simulations are slightly lower than the 

experimental values. This is interesting because the compressive plastic Poisson’s ratio in 

the model is 0.5 and therefore the compressive saturation stresses are the highest they can 

possibly be (since the saturation stress increases with plastic Poisson’s ratio and 0.5 is the 

upper bound). Figure 2.7-3c shows that the 80°C saturation stress in the 10-3 s-1 strain rate 

compression simulation is slightly higher than the experimental value. This could suggest 

a nonconstant compressive plastic Poisson’s ratio. As evident in Figures 2.7-1, 2.7-2, and 

2.7-3, the model does not simulate the intrinsic strain softening observed in the 

compressive material response or the second hardening observed in the tensile and 

compressive response at large strains. This is assumed to be acceptable since the matrix in 

PMCs will likely fail at small strains before these effects become significant. 
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Table 2.7.1: Epon 862 Material Properties and Model Parameters 

Young’s Modulus (GPa) *Taken from DMA curve (Figure 2.5-1)* 

    Temperature (°C) 

    30 50 80 

S
tr

ai
n
 R

at
e 

(s
-1

) 10-3 2.90 2.58 2.00 

1 3.27 2.81 2.29 

1,000 3.65 3.14 2.58 

 

Poisson’s Ratio 0.4 

Density (kg/m3) 1,200 

Specific Heat (J/kg-K) 1,260 

CTE (1/K) 5.4e-5 

D0 (s
-1) 106 

n 0.6351 

q 74.4073 

𝛾 0.0006 

𝜉 0.02449 

�̅�0(𝑇) (Pa-K) −(1.462𝑒9)𝑇 + 7.421𝑒11 

�̅�1(𝑇) (Pa-K) −(2.365𝑒9)𝑇 + 1.232𝑒12 
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a)  

b)  

c)  

Figure 2.7-1: Simulated and Experimental Shear Stress-Strain Response of Epon 862 

Epoxy at a) Room Temperature (25°C); b) 50°C; c) 80°C 
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a)  

b)  

c)  

Figure 2.7-2: Simulated and Experimental Tensile Stress-Strain Response of Epon 862 

Epoxy at a) Room Temperature (25°C); b) 50°C; c) 80°C 
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a)  

b)  

c)  

Figure 2.7-3: Simulated and Experimental Compressive Stress-Strain Response of 

Epon 862 Epoxy at a) Room Temperature (25°C); b) 50°C; c) 80°C 
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2.7.2 Effect of Inelastic Heat Fraction  

Figures 2.7-4a) through 2.7-4c) show the effect of varying the inelastic heat 

fraction between zero and unity for pure shear, uniaxial tensile, and uniaxial compressive 

loading for an applied total strain rate of 1000 s-1 and an initial temperature of 25°. 

Higher temperature rises, resulting in more thermal softening, are observed for higher 

inelastic heat fractions for all loading cases, as expected.  
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a)  

b)  

c)  

Figure 2.7-4: Effect of Varying Inelastic Heat Fraction on a) Pure Shear; b) Uniaxial 

Tensile; c) Uniaxial Compressive Stress-Strain and Temperature-Strain Response 
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2.7.3 Comparison Between Goldberg Model and Improved Model  

To demonstrate the improvements made to the Goldberg (Goldberg et al., 2005) 

model, the response of the improved model is compared to the Goldberg model at 25°C. 

All the Goldberg model parameters are identical to those in the improved model, except 

Z0, Z1, and the hydrostatic constants. In the Goldberg model, the components of the 

inelastic strain rate tensor components are not temperature dependent. Therefore, the values 

of 𝑍0(𝑇) and 𝑍1(𝑇) in the Goldberg model are equal to those in the improved model 

divided by the absolute temperature to facilitate the comparison. Additionally, since the 

Goldberg model employs a single hydrostatic state variable, α, its initial and final values 

(α0 and a1) have been set equal to the value of 𝐴𝑈𝑇 (0.049), which results in constant plastic 

Poisson’s ratios.  

Figure 2.7-5 shows the stress and total Poisson’s ratio predicted by the improved 

model and the Goldberg model as a function of strain in the load direction for simulated 

uniaxial tensile and uniaxial compressive loading under an applied total strain rate of 1000 

s-1. In Figure 2.7-5a, the tensile saturation stresses are the same, but the compressive 

saturation stresses are different. This implies that the Goldberg model is capable of 

simulating the same response as the improved model in tension and shear, but not in 

compression. Figure 2.7-5b shows the total Poisson’s ratios in tension and compression for 

both models, where the total Poisson’s ratios were computed as the negative ratio of the 

transverse total strain rate to the longitudinal total strain rate. The total Poisson’s ratios 

start at their elastic values of 0.4 (Table 2.7.1) and, in the case of the improved model, 

approach their plastic values as the deformation progresses. However, in the Goldberg 
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model predictions the compressive Poisson’s ratios exceed the upper bound of 0.5 derived 

in Section 2.3.4.  

a)  

b)  

Figure 2.7-5: a) Stress and b) Poisson’s Ratio as a Function of Strain in the Load 

Direction for Simulated Uniaxial Tensile and Uniaxial Compressive Loading  

The following illustrates the importance of the fact that the expression for the 

parameter, A, given by Equation 2.3-1b, (A = √𝛾𝑠𝑖𝑔𝑛(𝜎𝑘𝑘) + 𝜉), changes with the sign 

of the hydrostatic stress, 𝜎𝑘𝑘. Figure 2.7-6 shows the response of the improved model and 

the Goldberg model to a hydrostatic stress state, which was achieved by applying uniform 

strain-controlled compression at a strain rate of 1000 s-1 in each of the three normal 

directions simultaneously at 25°C. Recall that the compressive plastic Poisson’s ratio for 

E862, determined via calibration against experimental data (Littell, 2008; Littell et al., 

2008), is 0.5, which implies the material is plastically incompressible in compression. For 
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solely the simulation results presented in Figure 2.7-6, the tensile and compressive plastic 

Poisson’s ratios have been set to 0.3 and 0.4, respectively (𝛾 =  0.00423; 𝜉 = 0.0238) so 

that the model can simulate nonisochoric plastic deformation under hydrostatic 

compression. Additionally, since the inelastic strain rate in the Goldberg model (Equation 

2.2-1) is technically not defined for hydrostatic loading (due to division by 𝐽2 = 0), the 

third line of Equation 2.3-9 was used to compute the inelastic strain rate tensor components, 

where A is set equal to 𝐴𝑈𝑇, which in this case is 0.089. All other model parameters in the 

Goldberg model (Goldberg et al., 2005) and the improved model are unchanged. In Figure 

2.7-6a, the Goldberg model (Goldberg et al., 2005) pressure versus volumetric strain curve 

becomes nearly vertical at a volumetric strain of approximately -0.1. In Figure 2.7-6b, the 

plastic volumetric strain has the wrong sign because the deviatoric stresses are zero and the 

hydrostatic state variable in the Goldberg model does not change signs with hydrostatic 

stress. In the improved model, the elastic and plastic volumetric strains are both negative, 

as they should be under hydrostatic compression. Figure 2.7-6c shows the effective stress 

and the accumulated plastic work density as a function of the accumulated effective 

inelastic strain. The Goldberg model results in a negative effective stress because the 

hydrostatic state variable does not change signs with pressure. Since the effective inelastic 

strain in the Goldberg model is always nonnegative due to the nonnegativity of the effective 

inelastic strain rate (Equation 2.2-6), the plastic work density is negative, which is 

thermodynamically incorrect. The improved model predicts positive plastic work density 

because the effective stress is guaranteed to be nonnegative as long as the constraints 

derived in Section 2.3.6 and shown in Table 2.3.1 are satisfied.  
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a)  

b)  

c)  

Figure 2.7-6: Response of Goldberg et al. (2005) Model and Improved Model to 

Hydrostatic Stress State: a) Pressure vs. Volumetric Strain; b) Elastic, Plastic and Total 

Volumetric Strain Components vs. Total Volumetric Strain  
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2.8 Conclusions 

A nonisothermal and thermodynamically consistent extension of the rate- and pressure-

dependent Goldberg (Goldberg et al., 2005) unified viscoplastic constitutive formulation, 

resulting in a rate-, temperature-, and pressure-dependent viscoplasticity formulation 

suitable for use in multiscale PMC impact problems has been presented. A new plastic 

potential function was proposed, where two hydrostatic constants control the level of 

influence of hydrostatic stress on plastic deformation. Elementary loading conditions were 

used to derive relations between model constants to ensure physically realistic plastic flow 

(i.e., tensile and compressive plastic Poisson's ratios between -1 and 0.5) and a nonnegative 

effective stress, which subsequently guarantees nonnegative plastic dissipation, a 

necessary thermodynamic requirement. Relations between the tensile and compressive 

plastic Poisson's ratios and the two hydrostatic constants were derived and a procedure to 

determine their values, as well as the other model constants, was presented. The model is 

strain rate, temperature, and pressure dependent and was shown to be capable of 

representing test data of a representative epoxy over a range of strain rates, temperatures, 

and loading conditions (pure shear, uniaxial tension, and uniaxial compression). The two 

hydrostatic constants used in the model permit the user to independently vary the tensile 

and compressive yield stresses and plastic Poisson’s ratios, which would not be possible 

using a single hydrostatic constant. The intended application of the improved unified 

viscoplastic constitutive formulation is the multiscale analysis of PMCs subjected to 

impact loading, where it is suitable to predict the rate, temperature, and pressure dependent 

inelastic deformation, as well as adiabatic heating and subsequent thermal softening, of the 

polymer matrix. The next chapter discusses the implementation of the viscoplasticity 
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model developed in this chapter into a micromechanics-based multiscale framework as 

well as its use in a subcell-based approach to model the impact response of braided PMCs. 
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3 MULTISCALE MODELING OF TRIAXIALLY BRAIDED POLYMER 

MATRIX COMPOSITES UNDER IMPACT LOADING 

3.1 Introduction 

In the first part of this two-part chapter, the extended version of the Goldberg model 

(Goldberg et al., 2005) described in the previous chapter is implemented into the semi-

analytical GMC (Aboudi et al., 2012) micromechanics framework to investigate the effects 

of adiabatic heating on the high strain rate deformation of a T700/E862 UD composite. A 

micromechanics-based multiscale approach is used to allow adiabatic heating to be 

modeled at the matrix constituent level, where it has been experimentally observed to be 

predominant in flat panel impact tests conducted on triaxially braided PMCs (Johnston et 

al., 2018). Results indicate significant thermal softening due to adiabatic heating for matrix 

dominated deformation modes (transverse tension, transverse compression, and in-plane 

shear).     

In the second part of this chapter, a synergistic multiscale approach is taken to 

investigate the quasi-static and impact response of a T700/E862 [0°/60°/–60°] triaxially 

braided composite. The GMC micromechanics model described in the first part of this 

chapter, including the nonisothermal viscoplasticity formulation presented in the last 

chapter, is implemented into the commercial transient dynamic FE code LS-DYNA 

(Hallquist, 2006) as a UMAT. A previously developed subcell-based modeling approach 

(Littell, 2008; Blinzler, 2012; Cheng and Binienda, 2008; Li et al., 2009; Goldberg et al., 

2012; Xiao et al., 2011; Cater et al., 2014; Cater et al., 2015) is extended and used to 

approximate the mesoscale composite braid architecture as an assemblage of laminated 

composite subcells to approximate the heterogeneity at the highest analysis length scale. 
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Fiber failure is incorporated into the analyses using both the maximum stress criterion and 

the Curtin (1991) progressive fiber damage model. A top-down approach is used to 

determine/calibrate the failure properties to correlate with straight-sided quasi-static 

coupon tests.  

Impact simulation results indicate significant heat generation in an impact event due 

to adiabatic heating in the polymer matrix. The synergistic multiscale approach undertaken 

herein is beneficial in that it allows the rate- and temperature-dependent matrix constituent 

properties to be determined based on the effective strain rate experienced locally, which, 

due to the complexity of an impact event, cannot be determined a-priori and vary both 

spatially within a structure and temporally in an impact event. Simulation results are 

compared with test data provided by NASA Glenn Research Center and discrepancies 

between simulation and test results are discussed.   

3.2 Micromechanical Modeling of the Effects of Adiabatic Heating on the High 

Strain Rate Deformation of Polymer Matrix Composites 

3.2.1 Micromechanical Modeling Using the Generalized Method of Cells 

Micromechanics Theory 

To investigate the effects of adiabatic heating on the effective constitutive behavior of 

a UD composite, the rate-, temperature-, and pressure-dependent viscoplasticity model 

developed in the previous chapter is implemented into the existing GMC micromechanics 

framework (Aboudi et al., 2012). In the micromechanics model used herein, a doubly 

periodic RUC consisting of one fiber subcell and three matrix subcells, shown in Figure 

3.2-1, is employed for the micromechanical analyses. The subcells in Figure 3.2-1 are 

denoted with indices (𝛽, 𝛾). As indicated in the figure, the 1-direction corresponds to the 
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fiber direction and the RUC is doubly periodic in the 23-plane. Though the RUC is doubly 

periodic, the effective (global/average) and local (constituent/subcell) constitutive relations 

are indeed fully three-dimensional. 

 

Figure 3.2-1: Schematic of Four-Subcell Microscale Repeating Unit Cell for GMC 

Micromechanics Analysis 

 

The GMC (Aboudi et al., 2012) assumes a first order subcell displacement field and, 

via the enforcement of displacement and traction continuity conditions between adjacent 

subcells and adjacent RUCs in an average (integral) sense, elastic and inelastic strain 

concentration matrices, A and D, are determined. These concentration matrices relate local 

subcell strains, 𝜺𝒔, to the global (i.e., homogenized) strain tensor applied to the RUC, �̅�, 

and local inelastic and thermal strains, 𝜺𝑺
𝑰  and 𝜺𝑺

𝒕𝒉, according to 

𝜺𝒔 = 𝑨�̅� + 𝑫(𝜺𝑺
𝑰 + 𝜺𝑺

𝒕𝒉)    (3.2-1) 

where 𝜺𝒔, 𝜺𝑺
𝑰 , and 𝜺𝑺

𝒕𝒉 are vectors that contain the respective total, inelastic, and thermal 

strain components of all subcells in the RUC. The global strains applied to the RUC, �̅�, are 

considered known quantities. The strain tensor for a particular subcell (𝛽, 𝛾) is expressed 

in terms of the average total strain applied to the RVE, �̅�, and the concentration submatrices 

corresponding to the subcell (𝛽, 𝛾), 𝑨(𝛽,𝛾) and 𝑫(𝛽,𝛾), as follows:  
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𝜺(𝛽,𝛾) = 𝑨(𝛽,𝛾)�̅� +  𝑫(𝛽,𝛾)(𝜺𝑺
𝑰 + 𝜺𝑺

𝒕𝒉)    (3.2-2) 

The local Cauchy stress tensor in each subcell (𝛽, 𝛾), 𝝈(𝛽,𝛾), is then calculated using the 

generalized Hooke’s law:  

𝝈(𝛽,𝛾) = 𝑪(𝛽,𝛾)(𝜺(𝛽,𝛾) − 𝜺𝑰(𝛽,𝛾) − 𝜺𝒕𝒉(𝛽,𝛾))    (3.2-3) 

Once the subcell stress tensor, 𝝈(𝛽,𝛾), is known, the global RUC stress tensor, �̅�, is then 

determined via homogenization  

�̅� =
1

ℎ𝑡𝑜𝑡𝑙𝑡𝑜𝑡
∑∑𝝈(𝛽,𝛾)ℎ𝛽

𝑵𝛾

𝛾=1

𝑙𝛾

𝑵𝛽

𝛽=1

 

   (3.2-4) 

where ℎ𝑡𝑜𝑡 and 𝑙𝑡𝑜𝑡 denote the total lengths of the RUC in the 2- and 3-directions, ℎ𝛽 and 

𝑙𝛾 denote the subcell dimensions in the 2- and 3-directions, and 𝑁𝛽 and 𝑁𝛾 denote the total 

number of subcells in the 2- and 3-directions.  

Expressions for the effective RUC stiffness matrix, �̅�, the effective RUC inelastic 

strain tensor, �̅�𝐼, and the effective RUC thermal strain tensor, �̅�𝒕𝒉, are determined by 

substituting Equation 3.2-2 into Equation 3.2-3 to obtain an expression for the local subcell 

stress tensor, 𝝈(𝛽,𝛾), in terms of the average total strain applied to the RVE, �̅�, and the 

concentration submatrices corresponding to the subcell (𝛽, 𝛾) ), 𝑨(𝛽,𝛾) and 𝑫(𝛽,𝛾). The 

resulting expression is then substituted into Equation (3.2-4), resulting in:   

�̅� =
1

ℎ𝑡𝑜𝑡𝑙𝑡𝑜𝑡
∑∑𝑪(𝛽,𝛾)(𝑨(𝛽,𝛾)�̅� +  𝑫(𝛽,𝛾)(𝜺𝑺

𝑰 + 𝜺𝑺
𝒕𝒉) − 𝜺𝑰(𝛽,𝛾) − 𝜺𝒕𝒉(𝛽,𝛾))ℎ𝛽

𝑵𝛾

𝛾=1

𝑙𝛾

𝑵𝛽

𝛽=1

 

(3.2-5) 
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The effective RUC stiffness matrix, �̅�, the effective RUC inelastic strain tensor, �̅�𝐼, and the 

effective RUC thermal strain tensor, �̅�𝒕𝒉, are then identified comparing Equation 3.2-5 with 

the effective RUC constitutive law and collecting the respective terms associated with the 

total, inelastic, and thermal effects:   

�̅� = �̅�(�̅� − �̅�𝐼 − �̅�𝒕𝒉)    (3.2-6) 

 

�̅� =
1

ℎ𝑡𝑜𝑡𝑙𝑡𝑜𝑡
∑∑𝑪(𝛽,𝛾)𝑨(𝛽,𝛾)ℎ𝛽

𝑵𝛾

𝛾=1

𝑙𝛾

𝑵𝛽

𝛽=1

 

   (3.2-7) 

 

�̅�𝐼 =
−�̅�

ℎ𝑡𝑜𝑡𝑙𝑡𝑜𝑡
∑∑𝑪(𝛽,𝛾)(𝑫(𝛽,𝛾)𝜺𝑺

𝑰 − 𝜺𝑰(𝛽,𝛾))ℎ𝛽

𝑵𝛾

𝛾=1

𝑙𝛾

𝑵𝛽

𝛽=1

 

   (3.2-8) 

 

�̅�𝒕𝒉 =
−�̅�

ℎ𝑡𝑜𝑡𝑙𝑡𝑜𝑡
∑∑𝑪(𝛽,𝛾)(𝑫(𝛽,𝛾)𝜺𝑺

𝒕𝒉 − 𝜺𝒕𝒉(𝛽,𝛾))ℎ𝛽

𝑵𝛾

𝛾=1

𝑙𝛾

𝑵𝛽

𝛽=1

 

   (3.2-9) 

 

In Equations 3.2-8 and 3.2-9, �̅� = �̅�−𝟏 is the effective compliance matrix of the RUC. For 

more information regarding GMC and its formulation, the reader is referred to Aboudi et 

al. (2012).  

In the simulation results presented in the next section, the extended version of the 

Goldberg model (Goldberg et al., 2005) presented in the last section is used to compute the 

viscoplastic strain rates in the matrix subcells, �̇�𝑰(𝛽,𝛾),  which are integrated forward in time 

to determine the local viscoplastic strains. The rates of heat generation due to the adiabatic 

conversion of inelastic work to heat are also computed at the matrix constituent level 

according to the adiabatic heat energy equation:  
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�̇�(𝛽,𝛾) =
𝛽𝝈(𝛽,𝛾): �̇�𝑰(𝛽,𝛾)

𝜌(𝛽,𝛾)𝐶(𝛽,𝛾)
 

   (3.2-10) 

Equation 3.2-10 is the same as Equation 2.4-4 in Chapter 2, except in the context of the 

GMC (Aboudi et al., 2012) micromechanics model it is applied at the subcell level. The 

local rates of heat generation computed using Equation 3.2-10 are integrated forward in 

time to compute local adiabatic temperature rises in the matrix subcells. It is noted that, 

while the same local density and specific heat, 𝜌(𝛽,𝛾) and 𝐶(𝛽,𝛾), are used for each of the 

matrix subcells, the local stress tensor, 𝝈(𝛽,𝛾), and inelastic strain rate tensor, �̇�𝑰(𝛽,𝛾), and 

therefore the rate of heat generation given by Equation 3.2-10 will in general be different 

in each subcell. The RUC average temperature, �̅�, is computed by volume averaging the 

local temperatures of the subcells in the RUC according to the following equation:  

�̅� =
1

ℎ𝑡𝑜𝑡𝑙𝑡𝑜𝑡
∑∑𝑇(𝛽,𝛾)ℎ𝛽

𝑵𝛾

𝛾=1

𝑙𝛾

𝑵𝛽

𝛽=1

 

   (3.2-11) 

 

3.2.2 Results and Discussion – Unidirectional Composite Response  

The effects of adiabatic heating on the axial tensile, axial compressive, transverse 

tensile, transverse compressive, and in-plane shear response of a unidirectional composite 

are investigated in this section. Simulation results are presented for a T700/E862 

unidirectional composite with a 60% fiber volume fraction at strain rates of 100 s-1 and 

1000 s-1. The T700 fiber properties used in the simulations are presented in Table 3.2.1 

(Cater et al., 2015). The fibers are modeled as transversely isotropic and linear elastic and 

their material properties are assumed to not vary with temperature. The properties used for 

the matrix subcells are given in Table 2.7.1 in the previous chapter. It is noted that, 
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currently, there is no unidirectional T700/E862 composite test data available; this material 

system was selected due to the availability of fiber and matrix material properties and 

experimental data (for E862). To examine qualitatively the effects of adiabatic heating, 

simulations were also conducted with a nonzero inelastic heat fraction. Both isothermal 

(𝛽 = 0) and adiabatic simulations are presented in this section. The inelastic heat fraction 

has been set to unity (i.e., all plastic work is assumed to be converted to heat) for all the 

nonisothermal results that follow. This implies that the simulated temperature rises in this 

section represent an upper bound, though Garg et al. (2008) found experimentally that 

nearly all the inelastic work was converted to heat in high strain rate uniaxial compression 

of polycarbonate, implying that assuming an inelastic heat fraction of unity may be fairly 

accurate for adiabatic conditions. It is noted that damage and failure are not included in the 

simulations in this section; all nonlinearity is due to inelasticity.  

Table 3.2.1: T700 Carbon Fiber Elastic Properties 

Axial Young’s Modulus 230 GPa 

Transverse Young’s Modulus 15 GPa 

Axial Poisson’s Ratio 0.2 

Transverse Poisson’s Ratio 0.3 

In-Plane Shear Modulus 27 GPa 
 

The simulated room temperature (25°C) response of the unidirectional composite 

subjected to axial tensile and axial compressive loading is presented in Figures 3.2-2 and 

3.2-3 respectively. Linear elastic response is observed for both strain rates in both loading 

cases. Since the axial tensile/compressive response of a unidirectional composite is fiber 

dominated, no significant thermal softening is observed due to adiabatic heating in the 

matrix. 



 

68 

 

a)  

b)  

Figure 3.2-2: Simulated Response of Unidirectional Composite Subjected to Axial 

Tensile Loading at Strain Rates of a) 100 s-1 and b) 1000 s-1 
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a)  

b)  

Figure 3.2-3: Simulated Response of Unidirectional Composite Subjected to Axial 

Compressive Loading at Strain Rates of a) 100 s-1 and b) 1000 s-1 

The simulated response of the unidirectional composite subjected to transverse tensile 

loading at strain rates of 100 s-1 and 1000 s-1 at room temperature is shown in Figures 3.2-

4a) and 3.2-4b), respectively. The response of the unidirectional composite subjected to 

transverse compressive loading at the same strain rates is shown in Figures 3.2-5a and 3.2-

5b. Since the transverse tensile and compressive response of a unidirectional composite is 

matrix dominated, significant adiabatic heating and thermal softening are observed for both 

transverse tensile (Figure 3.2-4) and compressive (Figure 3.2-5) loading. The RUC average 

temperature rises for the 100 s-1 and 1000 s-1 strain rate transverse tension simulations were 

21.60°C and 25.12°C, respectively, whereas the maximum local (subcell level) temperature 

rises were 94.92°C and 110.33°C. The RUC average temperature rises for the 100 s-1 and 
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1000 s-1 strain rate transverse compression simulations were 27.12°C and 31.20°C, 

respectively, whereas the maximum local (subcell level) temperature rises were 117.36°C 

and 132.48°C. It is evident that, for the same strain rate and level of total deformation, the 

transverse compression simulations exhibited larger temperature rises than the transverse 

tension simulations. It is evident from Figures 3.2-4 and 3.2-5 that the tension-compression 

asymmetry in the composite response is captured in the simulations; the magnitude of the 

transverse compressive saturation stress is larger than the transverse tensile saturation 

stress.  

a)  

b)  

Figure 3.2-4: Simulated Response of Unidirectional Composite Subjected to 

Transverse Tensile Loading at Strain Rates of a) 100 s-1 and b) 1000 s-1 
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a)  

b)  

Figure 3.2-5: Simulated Response of Unidirectional Composite Subjected to 

Transverse Compression Loading at Strain Rates of a) 100 s-1 and b) 1000 s-1 

Figures 3.2-6a and 3.2-6b show the simulated response of the unidirectional composite 

subjected to in-plane shear loading at room temperature at engineering shear strain rates of 

100 s-1 and 1000 s-1, respectively. Significant thermal softening due to adiabatic heating in 

the matrix is observed. The RUC average temperature rises for the 100 s-1 and 1000 s-1 

engineering shear strain rate simulations were 9.79°C and 11.51°C, respectively. The 

maximum local (subcell level) temperature rises were 48.37°C and 58.75°C. 
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a)  

b)  

Figure 3.2-6: Simulated Response of Unidirectional Composite Subjected to In-Plane 

Shear Loading at Strain Rates of a) 100 s-1 and b) 1000 s-1 

 

3.2.3 Conclusions 

The improved version of the Goldberg (Goldberg et al., 2005) model developed in the 

previous chapter was used as a constitutive model in the GMC micromechanics framework 

to computationally investigate the effects of adiabatic heating on the response of a 

T700/E862 unidirectional composite with a 60% fiber volume fraction under various 

loading conditions. The adiabatic heat energy equation (Equation 3.2-10) was used to 

compute temperature rises due to the conversion of inelastic work to heat at the subcell 

level based on the local plastic power density, local density, and local specific heat of each 

of the matrix subcells. Significant thermal softening due to adiabatic heating was observed 
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for simulated transverse tensile, transverse compressive, and in-plane shear loading 

whereas a nominal amount of thermal softening was observed in simulated longitudinal 

tensile and longitudinal compressive loading cases. These results are consistent with 

experimental observations in flat panel impact tests conducted on triaxially braided PMCs 

(Johnston et al., 2018), where local regions of impact induced adiabatic heating have been 

observed in resin-rich regions (Johnston et al., 2018). In the next part of this chapter, the 

GMC micromechanics model, including the viscoplasticity formulation presented in 

Chapter 2, is implemented into the commercial transient dynamic FE code LS-DYNA as a 

UMAT and used to simulate quasi-static tensile tests and a flat panel impact test conducted 

on T700/E862 [0°/60°/–60°] triaxially braided composite. The UMAT is used in the 

context of a subcell-based modeling approach to approximate the mesoscale composite 

braid architecture as an assemblage of laminated composite subcells.  

3.3 Multiscale Modeling of Triaxially Braided Polymer Matrix Composites Using 

a Subcell-Based Approach 

Though several constitutive models exist in LS-DYNA (Hallquist, 2006) for 

composite material analysis, many of them have shortcomings that deem them incapable 

of simultaneously modeling all the phenomena of interest in an impact event: complex 

interaction between the constituent materials (fiber and matrix); adiabatic heating and 

subsequent thermal softening in the rate, temperature, and pressure dependent polymer 

matrix; tension-compression asymmetry; material nonlinearity due to a combination of 

matrix progressive damage and inelasticity; ultimate failure. To account for the interaction 

between constituent materials at the microscale, a micromechanics-based constitutive 

model must be used. However, the only micromechanics-based composite model in LS-
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DYNA is MAT_235 (Micromechanics Dry Fabric). This model was developed by Tabiei 

and Ivanov (2002) and Ivanov and Tabiei (2004) to model the elastic response of loose dry 

fabric, including yarn reorientation effects, not woven or braided composites (Cousigné et 

al., 2014). The MAT_058 and MAT_158 (Laminated Composite Fabric and Rate Sensitive 

Composite Fabric) material models are continuum-level models based on the work of 

Matzenmiller et al. (1995). They are suitable for modeling woven fabric laminates and are 

capable of simulating nonlinear behavior in all material directions. These models have been 

used in PMC impact analyses (Littell, 2008; Blinzler, 2012; Carney et al., 2013), though 

failure strains determined from quasi-static coupon tests often need to be adjusted to 

correlate to experimentally measured ballistic limits. In MAT_058 and MAT_158, all 

material nonlinearity is due to damage evolution rather than a combination of inelasticity 

and damage; since plastic strains are not computed, these models are incapable of 

simulating temperature rises due to the conversion of plastic work to heat. Though 

developed to model the rate dependent response of metals, an orthotropic material model 

that is capable of modeling temperature rises due to inelastic deformation is MAT_264 

(Tabulated Johnson Cook Orthotropic Plasticity), which is based on the Johnson-Cook 

(Meyers, 1994) plasticity model. Since plastic deformation in metals is assumed to be 

deviatoric, this model is not applicable to the analysis of PMCs, for which the matrix 

response exhibits a significant dependence on hydrostatic pressure.  

Since none of the composite material models currently available in LS-DYNA are 

capable of modeling all the phenomena of interest, the micromechanics model described 

in the first part of this chapter has been implemented into LS-DYNA as a UMAT, where it 

is used in the context of a subcell-based approach to approximate the heterogeneity of a 
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triaxially braided PMC at the highest analysis length scale. In the remainder of this chapter, 

the subcell methodology (Littell, 2008; Blinzler, 2012; Cheng and Binienda, 2008; Li et 

al., 2009; Goldberg et al., 2012; Xiao et al., 2011; Cater et al., 2014; Cater et al., 2015) is 

described and applied to a representative triaxially braided PMC. Straight-sided quasi static 

coupon tests as well as a flat panel impact test conducted at NASA Glenn Research Center 

are simulated with the developed UMAT and compared to available experimental data.  

3.3.1 Subcell Methodology  

The material system under investigation in this chapter is a T700/Epon 862 [0°/60°/–

60°] triaxially braided composite. Epon 862 is a low viscosity, high flow thermoset epoxy resin 

(Littell, 2008; Littell et al., 2008) and T700 is a high strength carbon fiber manufactured by 

Toray. The triaxially braided carbon fiber preform (no resin), shown in Figure 3.3-1a, consists 

of 24K tows in the axial direction (red arrow) and 12K tows in the bias/braider (blue arrows) 

directions. Braided tow architectures are known to be resistant to failures driven by 

interlaminar stresses (Cater et al., 2015) and the particular [0°/60°/–60°] triaxial braid 

considered herein is known to approximately exhibit quasi-isotropic elastic properties (Littell, 

2008; Kohlman, 2012). Due to the relatively large RUC compared to the size of structural 

components (dimensions shown in Figure 3.3-1b), the deformation and progressive damage 

behavior of the triaxial braid is a function of the material architecture. To account for the 

material heterogeneity at the highest analysis length scale, a subcell-based approach (Littell, 

2008; Blinzler, 2012; Cheng and Binienda, 2008; Li et al., 2009; Goldberg et al., 2012; 

Xiao et al., 2011; Cater et al., 2014; Cater et al., 2015) is utilized, whereby the braided 

composite RUC is discretized into an assemblage of adjacent UD composites, with stacking 

sequences determined from the braid architecture. The subcell methodology, illustrated in 
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Figure 3.3-1, consists of identifying the braided composite RUC and discretizing it in-plane 

into a series of mesoscale subcells depending on the presence of axial and/or braider tows or 

lack thereof. The mesoscale subcells are then discretized through their thicknesses into an 

approximation of UD plies with layups determined by the braid architecture. It can be seen in 

Figure 3.3-1d that subcells A and C have antisymmetric stacking sequences whereas subcells 

B and D have symmetric stacking sequences. The RUC discretization shown in Figure 3.3-1d 

was developed by Cater et al. (2015) and is known as the absorbed matrix model (AMM) 

because pure matrix layers are not explicitly modeled; braider plies are assumed to be a 

homogenized representation of braider tows and surrounding pure matrix regions (Cater et al., 

2014; Cater et al., 2015).  

 

Figure 3.3-1: a) Triaxially Braided PMC Mesoscale RUC Identification; b) Enlarged 

Image of Identified RUC with Dimensions Shown; c) Identification of Four Adjacent 

Subcell Regions; d) Through-Thickness Discretization of Each Mesoscale Subcell into 

an Approximation of Unidirectional Plies 

Figure 3.3-2 shows a coarse FE mesh of the triaxially braided RUC (Figure 3.3-1d), 

where each mesoscale subcell has been modeled in LS-DYNA (Hallquist, 2006) as a single 

thick shell element with three through thickness integration points, each corresponding to 

a UD ply. Thick shells have the advantage over 2D shell elements in that they are able to 
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admit a full 3D stress state, which is crucial in impact problems, where large transverse 

normal and transverse shear stresses are expected. It is noted that previous versions of the 

subcell model employed 2D shell elements (Littell, 2008; Blinzler, 2012; Cheng and 

Binienda, 2008; Li et al., 2009; Goldberg et al., 2012; Xiao et al., 2011; Cater et al., 2014; 

Cater et al., 2015). All material properties and model constants used in the analyses that 

follow have been presented in previous chapters.   

 

Figure 3.3-2: Coarse Finite Element Mesh of Triaxially Braided RUC; Each Thick 

Shell Element Represents One Subcell and Consists of Three Through-Thickness 

Integration Points 

 

The synergistic multiscale approach taken in this chapter to model the triaxially 

braided PMC differs from previous subcell models (Littell, 2008; Blinzler, 2012; Cheng 

and Binienda, 2008; Li et al., 2009; Goldberg et al., 2012; Xiao et al., 2011; Cater et al., 

2014; Cater et al., 2015) in that the nonlinear constitutive behavior of each UD ply in the 

laminated composite subcells (Figures 3.3-1c and 3.3-1d) is represented using the 

aforementioned UMAT. As such, in the current work, there is a two-way (i.e., combined 

top-down/bottom-up) information transfer between the microscale, mesoscale, and 

macroscales. In contrast, previous versions of the subcell methodology utilized a bottom-

up hierarchical micromechanics approach to determine the elastic properties of the UD 

plies in the each subcell of the mesoscale RUC. While computationally efficient, a major 
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drawback of this bottom-up approach is that it does not allow the UD ply, laminated 

composite subcells, or the mesoscale RUC elastic properties to change with strain rate in 

an impact simulation. Due to the bottom-up nature, the elastic properties of the UD plies 

in previous subcell models are fixed (i.e., constant) once values that correlate well with the 

stiffnesses of quasi-static coupon tests are determined. As such, once these properties are 

determined, there is a two-way (top-down/bottom-up) information transfer between the 

mesoscale and macroscales, but the microscale is effectively disregarded once the bottom-

up approach is used to determine the properties of the UD plies, which are modeled as 

smeared homogeneous continua in previous subcell models. This is likely inaccurate for 

high strain rate analyses considering the rate-, temperature-, and pressure-dependence, as 

well as the effects of adiabatic heating, are primarily due to the matrix. This also implies 

the UD ply elastic properties in previous subcell models correspond to their quasi-static 

values, which will undoubtedly be inaccurate for an impact problem given that the strain 

rate dependence of PMCs is primarily due to the rate dependence of the polymer matrix. 

Consider the E862 matrix properties presented in Table 2.7.1 in Chapter 2. For a 

temperature of 30°C, the DMA shifting methodology described in Section 2.5 results in 

E862 elastic modulus values of 2.9 GPa and 3.65 GPa for effective strain rates of 10-3 s-1 

and 1000 s-1, respectively; the elastic modulus increases by 22.9% from its value associated 

with the quasi-static strain rate of 10-3 s-1  to the dynamic strain rate of 1000 s-1. In the 

synergistic approach taken herein, the fact that there is a two-way flow of information down 

to the microscale allows the properties of the matrix, and subsequently the properties of 

the UD plies in laminated composite subcells as well as the mesoscale RUC to be 
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determined automatically for any strain rate once the DMA shift factor described in Section 

2.5 has been calibrated based on neat resin data.  

3.3.2 Microstructure Quantification and RUC Development  

To determine the mesoscale subcell UD layer dimensions and fiber volume fractions, 

serial sectioning and optical microscopy was performed on samples cut from a pristine 

triaxially braided composite panel obtained from NASA Glenn Research Center. The panel 

consisted of the same [0°/60°/–60°] triaxially braided preform as the T700/E862 material 

system, but a different matrix (Cycom PR520) material. It is assumed that microscopy 

measurements of the T700/PR520 material system are representative of the T700/E862 

material system. The panel was 3.175 mm thick and consisted of six layers of triaxially braided 

preform through the thickness. Since the mesoscale RUC is representative of one layer of the 

triaxial braid, its total height is 0.53 mm (i.e., one sixth of the total panel thickness).  

The widths of the UD mesoscale subcell layers were determined via optical microscopy. 

Three images of the mesostructure of the triaxial braid were taken and are shown in Figure 3.3-

3. Measurements of the widths of the axial tows were taken from these mesostructural images. 

The average width of the axial tows was 5.626 mm, which was taken as the width of subcells 

A and C. Based on the total width of the RUC (17.78 mm), the width of subcells B and D were 

taken as 3.264 mm.   
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Figure 3.3-3: T700/PR520 Mesostructure Used for Determination of Subcell Widths  

The fiber volume fractions of the UD mesoscale subcell layers were also determined via 

optical microscopy. Figure 3.3-4 shows three micrographs of various locations in the axial 

tows. A total of 261 micrographs were taken and an image processing code was developed in 

MATLAB to compute the fiber volume fraction of each micrograph using a simple approach 

based on threshold pixel intensity.  

 

Figure 3.3-4: T700/PR520 Intratow Micrographs (Taken Within Axial Tows) 

The axial volume fraction data was fit to a log normal distribution since the fiber volume 

fraction cannot be negative valued. The probability density and cumulative distribution 

functions for the axial tow fiber volume fraction are shown in Figures 3.3-5 and 3.3-6. The 

mean and standard deviation of the axial tow fiber volume fraction were 65.6% and 4.94%, 



 

81 

 

respectively. The mean value of 65.6% was used for the axial tows in the AMM (Cater et 

al., 2014; Cater et al., 2015) subcell discretization (Figure 3.3-1). It is noted that in the 

modeling results presented in this section, the fiber volume fraction of the axial tows is 

deterministic.  

 

Figure 3.3-5: Probability Density Function for Axial Tow Fiber Volume Fraction 

 

 

Figure 3.3-6: Cumulative Distribution Function for Axial Tow Fiber Volume Fraction  

To determine the fiber volume fractions of the braider tows in mesoscale subcells 

A/C and B/D, knowledge of the subcell dimensions and total composite fiber volume 
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fraction of 56% were utilized. It is also assumed that the middle UD layers of the mesoscale 

subcells are twice the thickness as the outer layers. Based on the microscopy-informed 

assumption that mesoscale subcells A and C each have a fiber volume fraction of 60%, the 

fiber volume fraction of the braider tows in subcells A and C (𝑉𝑓,𝑏𝐴𝐶) is computed as 

follows:  

𝑉𝑓,𝑏𝐴𝐶 =
𝑉𝑓,𝐴𝐶 − ℎ𝑎𝐴𝐶𝑉𝑓,𝑎𝐴𝐶

2ℎ𝑏𝐴𝐶
 

(3.3-1) 

 

where 𝑉𝑓,𝑎𝐴𝐶 &  𝑉𝑓,𝐴𝐶 are the fiber volume fractions of the axial tows in subcell A/C and 

ℎ𝑎𝐴𝐶  & ℎ𝑏𝐴𝐶 are the heights of the axial and braider tows in mesoscale subcell A/C divided 

by the total RUC height. The fiber volume fraction of subcell B/D, 𝑉𝑓,𝐵𝐷, is then computed 

to ensure a total RUC fiber volume fraction of 56% as follows:  

𝑉𝑓,𝐵𝐷 =
𝑉𝑓,𝑅𝑈𝐶(𝑊𝐴𝐶 +𝑊𝐵𝐷) −𝑊𝐴𝐶𝑉𝑓,𝐴𝐶

𝑊𝐵𝐷
 

(3.3-2) 

 

where 𝑉𝑓,𝑅𝑈𝐶 is the fiber volume fraction of the mesoscale RUC (56%) and 𝑊𝐴𝐶 & 𝑊𝐵𝐷 

are the widths of subcells A/C and B/D, respectively. It is assumed that the fiber volume 

fraction of all the UD layers in mesoscale subcells B and D have the same fiber volume 

fraction (𝑉𝑓,𝐵𝐷). The UD ply thicknesses and fiber volume fractions are summarized in 

Table 3.3.1.  
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Table 3.3.1: Summary of Unidirectional Ply Volume Fractions and Ply 

Thicknesses 

Subcell A Layup Braid Angle Fiber Vf (%) Thickness (%) 

Braider Tow -60° 54.4 25 
Axial Tow 0° 65.6 50 

Braider Tow 60° 54.4 25 
Subcell B Layup Braid Angle Fiber Vf (%) Thickness (%) 

Braider Tow -60° 49.1 25 
Braider Tow 60° 49.1 50 
Braider Tow -60° 49.1 25 

Subcell C Layup Braid Angle Fiber Vf (%) Thickness (%) 

Braider Tow 60° 54.4 25 
Axial Tow 0° 65.6 50 

Braider Tow -60° 54.4 25 
Subcell D Layup Braid Angle Fiber Vf (%) Thickness (%) 

Braider Tow 60° 49.1 25 
Braider Tow -60° 49.1 50 
Braider Tow 60° 49.1 25 

aShown as percent of overall subcell thickness 

 

3.3.3 Fiber Failure  

Two different existing methods of modeling fiber failure are considered. The first 

method is a simple maximum stress criterion, which is applied to microscale fiber subcells. 

Once the longitudinal tensile stress in the fiber reaches the specified fiber tensile strength, 

all the stiffness components are reduced to nominal values (1/10,000th of their initial 

values). The fibers have only been permitted to fail due to longitudinal tensile stress.  

In a longitudinal tensile test on a UD composite, the individual fibers will generally fail 

progressively due to the variation in their individual tensile strengths. However, employing 

a microscale RUC (Figure 3.2-1) with a statistically significant number of fiber subcells 

would be prohibitively computationally expensive for use in explicit FE simulations. It is 

therefore desirable to model the single fiber in the microscale RUC as an effective fiber, 

where the stiffness is progressively reduced to reflect the failure of individual fibers. The 

existing Curtin (1991) model is adopted in this research for this purpose. The model, which 



 

84 

 

is based on fiber Weibull strength statistics combined with a shear lag analysis, specifies 

the following relationship between the damaged, 𝐸𝑓
∗, and undamaged, 𝐸𝑓, fiber longitudinal 

modulus:  

𝐸1𝑓
∗ =

1

2
{1 + exp [− (

𝜎𝐿
𝜎𝐶
)
𝑚+1

]} 𝐸1𝑓 (3.3-3) 

𝜎𝐶 = (
𝜎0
𝑚𝜏𝐿𝑜
𝑟

)

1
𝑚+1

 
(3.3-4) 

where 𝜎𝐿 is the fiber longitudinal stress. The Curtin (1991) model parameters are the gauge 

length, L0, characteristic strength, σ0, Weibull modulus, m, and the fiber-matrix interfacial 

frictional sliding resistance, τ. The corresponding failure strain and strength of the model 

are given by:  

휀1
𝑢 =

𝜎𝐶
𝐸1𝑓

ℎ(
1

𝑚+1
)
 

(3.3-5) 

𝜎1𝑓
𝑢 =

1

2
𝜎𝐶ℎ

(
1

𝑚+1
)[1 + exp (−ℎ)] 

(3.3-6) 

where h is the lowest positive value that satisfies the following equation:  

1 + [1 − (𝑚 + 1)ℎ] exp(−ℎ) = 0  (3.3-7) 

Once the longitudinal tensile fiber stress reaches the maximum stress, 𝜎1𝑓
𝑢 , the fiber moduli 

are reduced to 1/10,000th of their initial values. The values of L0, σ0, m used in the 

simulations to follow are 8 mm, 4.41 GPa, and 12.06, respectively, and were obtained from 

the fiber strength data presented in Zhou et al. (2010). The value of the interfacial sliding 

resistance in the Curtin (1991) model, τ, and the fiber strength for the maximum stress 
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failure criterion are calibrated based on quasi-static coupon level test data, which is 

described in the next section.  

3.3.4 Quasi-Static Straight-sided Coupon Simulation Results and Discussion 

In this section, axial and transverse straight-sided coupon tests conducted by Littell 

(2008) and Littell et al. (2008) are simulated and compared to experimental data. In these 

tests (Littell, 2008; Littell et al., 2008), axial (0°) and transverse (90°) tension tests, the test 

specimens were cut such that the axial tows were oriented parallel and perpendicular to the 

loading direction. The coupons used in the experiments were 304.8 mm in length, 35.8 mm 

in width, 3.175 mm in thickness, and had a gage length of 203.2 mm. Each physical coupon 

had six through-thickness layers of triaxially braided preform. The axial and transverse 

coupon FE meshes, shown in Figure 3.3-7, were spatially discretized with 1920 and 1932 

thick shell elements (ELFORM=5) (Guo, 2000; Chatiri et al., 2009), respectively, each with 

three through-thickness integration points and LS-DYNA type 6 hourglass control 

(Belytschko and Bindeman, 1993). As aforementioned, each of the three through-thickness 

integration points corresponds to a UD ply in subcells A, B, C and D of the mesoscale RUC 

(Figure 3.3-2). Six thick shell elements were used through the thickness to represent each 

of the six layers of preform in the physical coupons. No contact was used between layers 

(elements of adjacent layers share nodes) and only the coupon gage sections were modeled. 

In the simulations, all the nodes of one end of the model were prevented from translating 

and rotating in all directions whereas the nodes on the other end were only permitted move 

in the load direction. The nodes permitted to move in the load direction were displaced at 

a constant rate of 0.0106 mm/sec, the same rate used in the experiments (Littell, 2008; 

Littell et al., 2008). Due to the nominal nodal accelerations, mass scaling was used to 
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achieve a reasonable explicit timestep in the FE simulations. It should be noted that a mesh 

refinement study has not been performed in this work and that, due to the mesh density 

used in the current models, no through thickness nesting of axial tows could be modeled; 

in all models, the axial tows in each layer run parallel to and lie directly on top of each 

other through the thickness.  

a)       b)         

Figure 3.3-7: Finite Element Meshes of Straight-Sided a) Axial and b) Transverse 

Tensile Coupon Gage Sections 

 

The simulated stress-strain curves for the axial and transverse tensile coupon tests 

superimposed with the experimental data (Littell et al., 2008) are shown in Figures 3.3-8 

and 3.3-9. Results are shown for simulations conducted with the maximum stress fiber 

failure criterion and the Curtin (1991) progressive fiber damage model. Since the quasi-

static axial tension test failed due to a longitudinal tensile failure the axial tows, the fiber 

strength for the maximum stress model, 4.205 GPa, and fiber-matrix interfacial frictional 

sliding resistance for the Curtin model, 10 MPa, were calibrated such that the failure of the 
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quasi-static longitudinal tension simulation correlated to the experimental failure strain in 

the longitudinal tension test. The aforementioned values were used for the fibers in all UD 

layers (Figure 3.3-1d) of the mesoscale subcell regions (Figure 3.3-1c).  

The simulated transverse tensile stress-strain response is initially in agreement with 

the experimental data, but overpredicts the experimental failure strain and fails to capture 

the nonlinearity observed in the test after about 0.25% strain, which has been attributed 

(Kohlman, 2012) to transverse splitting of the tows that terminate at the free edge. Since 

matrix damage is not considered in the multiscale model, this nonlinearity is not captured 

in the simulation. It is emphasized that, while the fiber failure properties used in the 

simulations are calibrated (backed out) based on the failure strain in the axial tensile 

coupon tests, the simulated elastic stiffness properties are a result of the UD ply fiber 

volume fractions and ply thicknesses in the triaxial braid subcell discretization in addition 

to the E862 matrix properties, which were calibrated based on neat resin test data in Chapter 

2. The UD ply fiber volume fractions were determined through optical microscopy, as 

explained in Section 3.3.2, and were not altered to correlate with the experimental elastic 

stiffnesses. These quasi-static tests can therefore be viewed as: i) validation of the elastic 

properties resulting from the subcell discretization; ii) calibration of the fiber failure 

properties.  
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Figure 3.3-8: Simulated and Experimental Axial Tensile Stress-Strain Curves 

 

 

Figure 3.3-9: Simulated and Experimental Transverse Tensile Stress-Strain 

Curves 

 

3.3.5 Impact Simulation Results and Discussion 

As part of an ongoing investigation into the impact response of braided PMC 

structures, a series of flat panel impact experiments have been conducted by NASA 

personnel on a variety of triaxially braided composite material systems according to ASTM 

standard D8101 (ASTM, 2017). The experiments consist of impacting triaxially braided 
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PMC panels with a cylindrical, spherical nose aluminum projectile. The braided composite 

panels are square with side lengths of 30.48 cm and a thickness of approximately 3.175 

mm. During the impact tests, the braided composite panels are held in place by a circular 

fixture with an aperture diameter of 25.4 cm by twenty-eight bolts (Pereira et al., 2010; 

Pereira et al., 2016). The cylindrical section of the semi-hollow aluminum projectile had a 

radius of 2.53 cm and a wall thickness of 0.76 mm; the front face of the spherical nose had 

a radius of 3.81 cm and a nose thickness of 0.635 cm; the projectile length was 4.95 cm 

(Carney et al., 2013). In the impact experiments, digital image correlation (DIC) was used 

to monitor the strains and displacements of a square section on the back side of the test 

panels with side lengths of roughly 70 mm (3 inches). More details regarding the impact 

test setup and projectile geometry can be found in Pereira et al. (2010) and Pereira et al. 

(2016).  

The experimental impact data in this section has been provided by Revilock (2017, 

personal communication). The impact velocity and initial temperature in the experiment 

were 163.058 m/s and 21°C, respectfully. The same impact velocity and initial temperature 

were used in the simulations. Like the straight-sided test coupons, the flat panels consisted 

of six layers of the triaxially braided perform through the panel thickness. As such, the flat 

panel mesh was discretized with six through thickness layers of thick shell elements with 

LS-DYNA type 6 hourglass control (Belytschko and Bindeman, 1993). The panel mesh 

consisted of 19398 thick shell elements and is shown in Figure 3.3-9. A side view of the 

FE mesh of the panel and the aluminum projectile are shown in Figure 3.3-9a whereas 

Figure 3.3-9b shows the back of the plate mesh. To simulate the 25.4 cm diameter fixture 

used to hold the composite panels, a single point constraint (SPC) was applied to all 
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translational and rotational degrees of freedom of all nodes outside a 25.4 cm diameter 

circle; the bolts were not explicitly modeled. The aluminum projectile, which was 

discretized with 17760 reduced integration solid elements with standard LS-DYNA type 1 

viscous hourglass control, was set up to impact the plate at the center of the 25.4 cm 

diameter circle of unconstrained nodes. The LS-DYNA automatic single surface contact 

card (*CONTACT_AUTOMATIC_SINGLE_SURFACE) was used to simulate contact 

between the projectile and panel meshes.  

a)  
b)  

Figure 3.3-10: a) Side View of Plate Mesh with Projectile Mesh Shown; b) Back View 

of Plate Mesh with DIC Area, Section, and Points Labeled 

 

In Figure 3.3-10b, the blue region on the panel mesh corresponds to the area on the back 

of the test panel monitored by DIC in the impact tests. Additionally, the out of plane 

displacement of the points labeled “Point 1”, “Point 2”, and “Center Point”, as well as the 

“Center Section”, are monitored during the experiments. The density, Young’s modulus, 

and Poisson’s ratio of the aluminum projectile used in the simulations are 2700 kg/m3, 74 
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GPa, and 0.3, respectively. The elastic modulus of the polymer matrix in each microscale 

subcell is determined (automatically) based on the integration point effective strain rate 

and the subcell temperature using the DMA shifting methodology described in Chapter 2. 

Figures 3.3-11a through 3.3-11c show the simulated and experimental out-of-plane 

displacement time histories for three points shown in Figure 3.3-10b (Point 1, Point 2, 

Center Point). Time t=0 ms corresponds to the time the tip of the projectile contacts the 

plate. Simulations have been conducted using both the maximum stress and Curtin (1991) 

failure models with inelastic heat fractions of zero (isothermal conditions) and unity 

(adiabatic conditions with 100% of plastic work converted to heat). Simulation results with 

no fiber failure are also shown to compare the effects of these various combinations of fiber 

failure models and thermal conditions (isothermal or adiabatic). In Figure 3.3-11a, the 

experimental out-of-plane displacement curve stops at approximately 0.15 ms due to a loss 

of paint required by the DIC. The isothermal and adiabatic simulations with no fiber failure 

predict nearly identical out-of-plane displacement time histories for the three points 

identified in Figure 3.3-10b. However, when fiber failure is included, the adiabatic 

simulations (for both maximum stress and Curtin model predictions) result in larger out of 

plane displacements than the simulations with no failure due to the thermal softening in the 

matrix. The isothermal maximum stress model predictions are very similar to the 

isothermal Curtin model predictions; the same is true for the adiabatic simulations.  

It is evident from Figures 3.3-11a through 3.3-11c that the simulations with no fiber 

failure result in an overly stiff response, which is why the simulated and experimental time 

histories become out of phase after the first peak in the out of plane displacement versus 

time curves. Even in impact tests where projectile penetration does not occur, such as the 
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one simulated in this section, there is still significant matrix damage and fiber breakage, 

both visible and barely visible. It is hypothesized that this impact damage would reduce 

the effective wave speed of the material in damaged areas. This would imply the time it 

takes the initial stress wave (i.e., due to the projectile impact) to propagate from the center 

of the panel to the circular boundary in the experiment is less than the time it takes for the 

reflected stress wave to propagate from the circular boundary back to the center of the 

panel (since the reflected wave must traverse damaged areas with lower effective elastic 

properties and therefore lower effective wave speeds than undamaged areas). In the 

simulations with no fiber failure, the effective wave speeds of elements near the impact 

zone after the first impact are likely higher than they should be, which is likely why the 

simulated second peaks in out-of-plane displacement occur at earlier times than the 

experimental peaks. It is evident that the out-of-plane displacement time histories predicted 

by the models with fiber failure are more in-phase with the experimental results. However, 

in both the isothermal an adiabatic cases, the simulations with fiber failure overpredict the 

experimental out-of-plane displacements.  

 

 



 

93 

 

a)  

b)  

c)  

Figure 3.3-11: Simulated and Experimental Out-of-Plane Displacement Time 

Histories for a) Center Point; b) Point 1; c) Point 2  
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Figure 3.3-12 shows the experimental and simulated out-of-plane displacement 

contours on the back side of the panel (i.e., the side opposite of that impacted by projectile) 

0.15 milliseconds after the aluminum projectile impacts the plate. The simulation results 

in Figure 3.3.12 correspond to the fully adiabatic simulation with no fiber failure. This case 

was chosen since it resulted in the closest correlation with the first peak in the out-of-plane 

displacement versus time curves shown in Figure 3.3-11. The white spaces on the 

experimental contour plots in Figure 3.3-11 are due to loss of the speckle pattern required 

by the DIC to compute the out-of-plane displacement.  

Simulation Experiment Fringe levels 

   

Figure 3.3-12: Simulated and Experimental Contours of Out-of-Plane Displacement at 

t=0.15 Milliseconds for Simulation 1; Z-Displacement is in Meters 

 

Figures 3.3-13a through 3.3-13f show simulated contours of the maximum value of 

the microscale subcell absolute (Kelvin) temperature 0.15 milliseconds after impact for 

each of the six through thickness layers of thick shell elements for the fully adiabatic 

simulation with no fiber failure presented in Figure 3.3-11. Layer 1 designates the layer 

impacted by the projectile whereas layer 6 denotes the back of the plate. It is evident that 

the highest simulated temperature rises occur in the middle two layers, with the maximum 

temperature of 401.95 Kelvin (128.8°C) occurring in the 4th layer of thick shell elements. 
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It is also interesting to note that the simulation predicts higher temperature rises on the back 

layer than the layer the projectile comes into contact with. Note that no IR measurements 

of impact-induced temperature rises were available for T700/E862 impact tests.  
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a) Layer 1 b) Layer2  

 

 

 

c) Layer 3 d) Layer 4  

 

 

 

e) Layer 5 f) Layer 6  

 

 

 

Figure 3.3-12: Contours of Maximum Subcell Temperature Rise on Each of the Six 

Through-Thickness Layers in the Fully Adiabatic Simulation with No Fiber Failure at 

t=0.15 Milliseconds; Layer One Designates the Layer Impacted by the Projectile 

Whereas Layer Six Denotes the Backside of the Plate 
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3.3.6 Conclusions 

Details regarding the development of a UMAT designed to facilitate the analysis of 

PMCs with complex fiber architectures subjected to ballistic impact loading conditions, 

including effects of adiabatic heating due to high-rate inelastic deformation of the polymer 

matrix, have been presented. To preserve heterogeneity at the highest length scale in FE 

models, the UMAT was used in the context of a subcell-based approach (Littell, 2008; 

Blinzler, 2012; Cheng and Binienda, 2008; Li et al., 2009; Goldberg et al., 2012; Xiao et 

al., 2011; Cater et al., 2014; Cater et al., 2015), whereby the mesoscale RUC of the triaxial 

braid is discretized into unique subcell regions based on the braid architecture. Quasi-static 

straight-sided coupon tests conducted by Littell (2008) and Littell et al. (2008) and a flat 

panel impact test conducted by NASA personnel on a T700/E862 [0°/60°/–60°] triaxially 

braided composite material system were simulated using the synergistic multiscale 

framework. Simulations of straight-sided quasi-static axial tension tests were in excellent 

agreement with experimental data whereas simulations of straight-sided quasi-static 

transverse tensile coupon tests were unable to accurately capture the nonlinearity observed 

in the test. This is because the nonlinearity in the straight-sided transverse tensile coupon 

test was due to progressive matrix damage that initiated at the coupon free edges (Kohlman, 

2012). However, matrix progressive damage has not been included in the current multiscale 

framework. To examine the effects of matrix adiabatic heating, an impact test conducted 

at NASA Glenn Research Center on a T700/E862 [0°/60°/–60°] triaxially braided composite 

panel was simulated. The impact simulation predicted local matrix temperature rises of over 

105°C, though no measurements of impact-induced temperature rises were recorded in the 

experiment to compare this result with. Simulation results with no fiber failure indicate the 
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effects of adiabatic heating have no significant effect on the out of plane displacement versus 

time response of the panel. However, when fiber failure is considered, the impact simulation 

predicted additional out of plane displacement for adiabatic simulations compared to the 

isothermal case. While the results of the adiabatic simulations with fiber failure overpredict the 

first peak of the out of plane displacement versus time curves, the additional out of plane 

displacement predicted for the adiabatic case is consistent with the hypothesis that adiabatic 

heating does indeed play a role in the impact response of PMCs. It is expected that, once 

matrix progressive damage and failure are incorporated into the analysis, accounting for 

the effects of strain rate, temperature, pressure, and adiabatic heating will play a major role 

in accurately predicting the impact response of PMC structures.   
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MULTISCALE MODELING OF CREEP IN CERAMIC MATRIX COMPOSITES  

4.1 Introduction  

The ability of non-oxide CMCs with silicon carbide (SiC) matrices, and either Carbon 

(C) or silicon carbide (SiC) fibers (C/SiC and SiC/SiC CMCs), to perform exceptionally in 

extreme environments make them materials of choice in several high-temperature 

applications. This includes land- and air-based turbines (Spriet, 2014), advanced jet engine 

components, advanced rocket components, and other space applications (Staehler and 

Zawada, 2000; Naslain and Christin, 2003; Fohey et al., 1995; Spriet and Habarou, 1996; 

Brockmeyer, 1992). During service, CMCs are subjected to elevated temperatures 

(>1000 ̊C), sustained loading, transients – either planned or accidental (Lara-Curzio, 1999), 

and gaseous oxidants for extended time periods. In such applications, CMC components 

are required to maintain structural integrity for thousands of hours or more (Naslain, 2004). 

Despite their intrinsic high strength, toughness, quasi-ductility, and ability to maintain 

structural integrity at elevated temperatures, SiC-fiber-based CMCs are known to creep at 

temperatures above about 1000-1100 ̊C (Gauthier and Lamon, 2009; Mital et al., 2018), 

which is the approximate maximum usage temperature for super alloys (Ohnabe et al., 

1999). In composites, when one constituent creeps, it subsequently unloads to the other 

more creep-resistant constituents and can substantially alter the as-produced residual 

stresses in the composite (Santhosh et al., 2018).  

Depending on the CMC, either the fibers (Begley et al., 1995; Santhosh and Ahmad, 

2013) or the matrix (Rugg et al., 1999; Santhosh et al., 2018) may be more prone to creep. 

To categorize the creep behavior in CMCs, Holmes and Chermant (1993) defined the fiber-

matrix creep mismatch ratio (CMR) as the ratio of the effective fiber creep strain rate to 
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the effective matrix creep strain rate: CMR=휀�̇�
𝐼/휀�̇�

𝐼 . For CMR<1, 휀�̇�
𝐼 < 휀�̇�

𝐼  and the matrix 

relaxes and unloads onto the more creep-resistant fibers, which can result in fiber failures 

(Rugg et al., 1999). For CMR>1, 휀�̇�
𝐼 > 휀�̇�

𝐼 and the fibers relax and unload to the matrix. In 

this case (CMR>1), the time-dependent increase in matrix stress due to load transfer from 

the fibers can lead to progressive matrix cracking in high stiffness matrices, such as 

chemical vapor infiltrated (CVI) SiC. In an oxidizing environment, such as that 

experienced by turbine hot gas path components, matrix cracking creates pathways for 

gaseous oxidants to attack the CMC interior (Sullivan, 2016; Morscher et al., 2000; Xu et 

al., 2014; Lara-Curzio, 1999). It is therefore evident that creep in CMCs is a manifestation 

of simultaneous creep and relaxation in the constituents, even when the global mechanical 

loading on the composite is constant. Since high temperature CMCs typically consist of 

woven fabric architectures with tows woven in two perpendicular directions, this time-

dependent constituent load transfer is inherently more complex. Further, the presence of 

multiple length scales in woven CMCs combined with the inability to produce neat ceramic 

samples representative of the highly porous in-situ CMC matrix presents significant 

modeling challenges. As a result, nonlinear constitutive laws describing creep and 

progressive damage in the constituents must be backed out based on coupon level test data. 

Moreover, it is generally unknown a-priori whether the fibers or matrix are more prone to 

creep. Thus, to facilitate the timely design and certification of next generation CMC 

material systems, physics based multiscale computational models able to admit three-

dimensional stress states are necessary to investigate the time-dependent constituent load 

transfer responsible for their macroscopic creep deformation under sustained loading at 

elevated temperatures.  
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Macroscopic models, which treat the CMC as a smeared homogeneous continuum, 

have been proposed by several authors (Bessho et al., 2005; Gowayed et al., 2011). 

However, since macroscopic models do not explicitly model the constituents, they are 

incapable of simulating the complex constituent interaction and time-dependent load 

transfer responsible for macroscopic CMC creep. Since effective CMC constitutive 

behavior is a function of that of the constituents, their arrangement, and interactions, 

multiscale micromechanics-based approaches, which explicitly model the constituents, are 

more suitable for modeling CMC creep, particularly since creep may occur in both the fiber 

and matrix constituents. Holmes and Wu (1995), Rugg et al. (1999), and Almansour and 

Morscher (2019) developed one-dimensional uniaxial models to simulate the creep 

behavior of CMC single fiber microcomposites and single tow minicomposites; however, 

the one-dimensionality of the models precludes analyses of woven composites, where the 

tows experience multiaxial stress states. These one-dimensional models are also unsuitable 

for incorporation in micromechanics-based multiscale models, even for unidirectional fiber 

architectures, since these require fully three-dimensional material constitutive models. 

Santhosh and Ahmad (2013) and Santhosh et al. (2018) developed three-dimensional 

models for creep and damage in woven CMCs, where creep was solely modeled in one 

constituent. Pineda et al. (2015) used a three-dimensional temperature-dependent Norton-

Bailey (Norton, 1929; Bailey, 1935) creep law as a constitutive model in the GMC (Aboudi 

et al., 2012) micromechancs framework to study the effect of stochastically varying creep 

model parameters on the creep behavior of a unidirectional SCS-6 SiC fiber-reinforced 

RBSN matrix composite lamina; creep was modeled in the fibers and matrix. 
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In this chapter, a three-dimensional temperature-dependent viscoplastic creep model 

is formulated based on the well-known Norton-Bailey/Nutting (Norton, 1929; Bailey, 

1935; Nutting, 1921; Nutting, 1943) creep law with Arrhenius temperature dependence, 

Hill’s (1948) orthotropic plastic potential, and an associative flow rule. Time hardening 

and strain hardening formulations of the model are considered to contrast these two widely 

used approaches. The three-dimensional time-hardening model is then used as a 

constitutive law in the GMC micromechanics framework (Aboudi et al., 2012) to simulate 

creep of SiC/SiC microcomposites for which data is available in the open literature (Rugg 

et al., 1999). The effects of time-dependent constituent load transfer, CMR, and fiber 

volume fraction are investigated and compared with the results presented in Rugg et al. 

(1999). Lastly, a computational study of the effects of creep-induced constituent stress 

redistribution on the room temperature proportional limit (first matrix cracking) stress level 

is presented, where an existing progressive damage law (Liu, 2011; Liu and Arnold, 2011; 

Liu, Chattopadhyay, and Arnold, 2011; Liu and Arnold, 2013) is utilized to simulate 

damage initiation and progression in the ceramic matrix.   

4.2 Viscoplastic Creep Model Formulation   

In this section, the formulation of a three-dimensional orthotropic viscoplastic creep 

constitutive model is presented. It is emphasized that this model is to be applied at the 

constituent level. While this study focuses on CMCs with SiC fiber reinforcement, which 

are generally considered mechanically pseudo-isotropic (Gowayed and Ojard, 2020), the 

model is formulated for the more general orthotropic case to facilitate modeling of carbon 

fibers, which are generally considered to be mechanically transversely isotropic (Daniel 

and Ishai, 2006) and are also a widely used CMC fiber reinforcement.   
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The general form of Hill's (1948) orthotropic quadratic plastic potential is expressed 

as: 

𝑓 = √
𝐹(𝜎22 − 𝜎33)2 + 𝐺(𝜎33 − 𝜎11)2 + 𝐻(𝜎11 − 𝜎22)2

+2𝐿𝜏23
2 + 2𝑀𝜏13

2 + 2𝑁𝜏12
2  

(4.2-1) 

where, F, G, H, L, M, and N are coefficients that characterize the inelastic orthotropy of 

the material. It is noted that the Hill (1948) potential reduces to the isotropic von Mises 

potential when 𝐹 = 𝐺 = 𝐻 =
1

6
 and 𝐿 = 𝑀 = 𝑁 =

1

2
. An associative flow rule is utilized, 

where the components of the inelastic (creep) strain rate tensor, 휀�̇�𝑗
𝑐𝑟, are assumed to be 

equal to the product of the rate of the plastic multiplier, �̇�, and the partial derivative of the 

plastic potential with respect to the components of the Cauchy stress tensor, 𝜎𝑖𝑗, as follows:  

휀�̇�𝑗
𝑐𝑟 = �̇�

𝜕𝑓

𝜕𝜎𝑖𝑗
 

(4.2-2) 

The effective stress, 𝜎𝑒, is next defined as  

𝜎𝑒 = √3𝑓    (4.2-3) 

which, for an isotropic material, reduces to the applied stress for uniaxial tensile or uniaxial 

compressive loading. The rate of the plastic multiplier, �̇�, is related to the effective inelastic 

strain rate, 휀�̇�
𝑐𝑟, by invoking the principle of equivalence of plastic power density:  

�̇�𝑐𝑟 = 𝜎𝑖𝑗휀�̇�𝑗
𝑐𝑟 = 𝜎𝑒휀�̇�

𝑐𝑟 ≥ 0 (4.2-4) 

which must be nonnegative due to thermodynamic requirements (Allen, 1991; Chow and 

Lu, 1989; Faria et al., 1998; Kawai et al., 2010; Laudau et al., 1960). By evaluating the 

partial derivative specified in Equation 4.2-2 and substituting Equations 4.2-2 and 4.2-3 
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into Equation 4.2-4, the relationship between the rate of the plastic multiplier and the 

effective inelastic strain rate is obtained as follows:  

�̇� = √3휀�̇�
𝑐𝑟 (4.2-5) 

The effective inelastic strain rate in this work is determined using the Norton-Bailey 

(Norton 1929, Bailey 1935), also known in the literature as the Nutting (1921, 1943), creep 

power law. The Norton-Bailey/Nutting creep power law was originally developed for 

constant uniaxial stress and constant temperature conditions and is given by: 

휀𝑒
𝑐𝑟 = 𝐴𝜎𝑒

𝑛𝑡𝑚𝑒𝑥𝑝 (−
𝑄

𝑘𝑇
) = 𝐴𝜎𝑒

𝑛𝑡𝑚𝑒𝑥𝑝 (−
𝑃

𝑇
) 

(4.2-6) 

where Q is the activation energy, k is Boltzmann’s constant, T is the absolute (Kelvin) 

temperature, t is time, 𝑃 =
𝑄

𝑘
 and 𝐴,  𝑛 > 1, and 𝑚 < 1 are model parameters that may be 

taken as functions of temperature (Kraus, 1980; Penny and Marriott, 2012). As suggested 

by Dorn (1955), an Arrhenius term has been introduced in Equation 4.2-6 to explicitly 

capture the temperature dependence of the creep rate (Skrzypek and Hetnarski, 1993; 

Aboudi et al., 2012). Since the Norton-Bailey/Nutting creep law was originally developed 

for uniaxial stress states, the uniaxial stress and uniaxial creep strain have been replaced 

with the effective stress, 𝜎𝑒, and effective creep strain, 휀𝑒
𝑐𝑟, in Equation 4.2-6. The 

dimensions of the parameters A, n, and m in Equation 4.2-6 are such that the effective 

inelastic strain is dimensionless (units given in Table 4.3.1). For conditions of varying 

stress, such as experienced by the constituents in a composite under creep, it is desirable to 

work with the creep strain rate, which is determined by evaluating the partial derivative of 

Equation 4.2-6 with respect to time:   
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휀�̇�
𝑐𝑟 = 𝐴𝜎𝑒

𝑛𝑚𝑡(𝑚−1)𝑒𝑥𝑝 (−
𝑃

𝑇
) (4.2-7) 

Equation 4.2-7 is known as the time-hardening formulation. Note that, since the partial 

derivatives with respect to temperature and stress have been neglected in deriving Equation 

4.2-7, it is technically limited to cases where the stress and temperature change slowly 

(Stouffer and Dame, 1996). However, this is likely not an issue for CMC creep modeling, 

where it can be reasonably assumed that components will experience slowly varying 

stresses and temperatures.  It should be noted that, since m < 1, the creep strain rate given 

by Equation 4.2-7 is undefined when time is equal to zero; for this case, the integrated form 

of the time-hardening formulation (Equation 4.2-6) should be used to compute the initial 

creep strain increment (Stouffer and Dame, 1996; Kraus, 1980). To derive the strain-

hardening formulation of Equation 4.2-7, where accumulated inelastic strain is used as a 

state variable instead of time, Equation 4.2-6 is solved for time and the resulting expression 

is substituted into Equation 4.2-7, yielding:  

휀�̇�
𝑐𝑟 = 𝐴(

1
𝑚
)𝜎𝑒

(
𝑛
𝑚
)
𝑚(휀𝑒

𝑐𝑟)(
𝑚−1
𝑚

)𝑒𝑥𝑝 (−
𝑃

𝑚𝑇
) (4.2-8) 

In Equation 4.2-8, the effective inelastic strain rate depends on the accumulated 

effective creep strain, 휀𝑒
𝑐𝑟, which is computed by integrating Equation 4.2-8. Note that, 

since the accumulated effective creep strain is initially zero, the integrated form of the time 

hardening formulation, Equation 4.2-6, should be used to compute the initial creep strain 

rate for the strain hardening formulation (Stouffer and Dame, 1996). By combining 

Equations 4.2-2, 4.2-5, 4.2-7, and 4.2-8, the inelastic strain rate tensor components for the 
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time and strain hardening formulations are determined (Kraus, 1980; Skrzypek and 

Hetnarski, 1993; Penny and Marriott, 2012) and are shown in Equations 4.2-9 and 4.2-10.  

휀�̇�𝑗
𝑐𝑟 = √3𝐴𝜎𝑒

𝑛𝑚𝑡(𝑚−1)𝑒𝑥𝑝 (−
𝑃

𝑇
)
𝜕𝑓

𝜕𝜎𝑖𝑗
 (4.2-9) 

 

휀�̇�𝑗
𝑐𝑟 = √3𝐴

(
1
𝑚
)𝜎𝑒

(
𝑛
𝑚
)
𝑚(휀𝑒

𝑐𝑟)(
𝑚−1
𝑚

)𝑒𝑥𝑝 (−
𝑃

𝑚𝑇
)
𝜕𝑓

𝜕𝜎𝑖𝑗
 (4.2-10) 

Since the Hill (1948) potential is independent of hydrostatic stress, ε̇𝑘𝑘
𝑐𝑟 = 0 and the 

components of the inelastic strain rate tensor are equal to the components of the deviatoric 

inelastic strain rate tensor, �̇�𝑖𝑗
𝑐𝑟 = ε̇𝑖𝑗

𝑐𝑟 −
1

3
ε̇𝑘𝑘
𝑐𝑟 𝛿𝑖𝑗 = ε̇𝑖𝑗

𝑐𝑟, implying the plastic deformation is 

isochoric. Since creep deformations are relatively small, infinitesimal deformation theory 

has been assumed to apply, which permits the additive decomposition of the total strain 

tensor into its respective elastic, inelastic (creep), and thermal components.  

4.3 Micromechanical Creep Modeling Using the Generalized Method of Cells   

To facilitate modeling of CMCs with arbitrary microstructures, the three-dimensional 

time hardening and strain hardening viscoplastic creep formulations (Equations 4.2-9 and 

4.2-10) are used as inelastic constitutive models in the GMC micromechanics framework 

(Aboudi et al., 2012). The same microscale RUC used in Chapter 3 (Figure 3.2-1) is used 

and is therefore omitted from this section for brevity. The fiber volume fractions used in 

the simulations are mentioned as the results are presented and discussed in the next section.  

4.4 Results and Discussion  

In this section, simulation results of the previously described models are compared 

against experimental and numerical results from the literature (Rugg et al., 1999). Results 

are presented for CMC microcomposites consisting of single Hi-Nicalon fibers embedded 
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in a chemically vapor deposited (CVD) SiC matrix with various fiber volume fractions 

(Rugg et al., 1999). The constituent properties are shown in Table 4.3.1, where the creep 

properties have been adopted from Rugg et al. (1999). Since the model presented in Rugg 

et al. (1999) is one-dimensional and therefore does not include effects of Poisson’s ratio, 

the creep model parameters have been slightly modified manually to obtain a reasonable 

fit with the experimental data (Rugg et al., 1999). In the results that follow, the matrix and 

fibers are modeled as elastically and inelastically isotropic (Pineda et al., 2015, Mital et al., 

2018). Note that inelastic isotropy (𝐹 = 𝐺 = 𝐻 =
1

6
 and 𝐿 = 𝑀 = 𝑁 =

1

2
) reduces the 

orthotropic Hill (1949) potential to the isotropic von Mises potential, 𝑓 = √𝐽2, where 

𝐽2 =
1

2
𝑠𝑖𝑗𝑠𝑖𝑗. In the case of inelastic isotropy, 

𝜕𝑓

𝜕𝜎𝑖𝑗
=

𝑠𝑖𝑗

2√𝐽2
. The fiber-matrix interphase is 

not explicitly modeled to facilitate comparison with the one-dimensional model presented 

in Rugg et al. (1999), which solely considered the fiber and matrix constituents.  

Table 4.3.1. Fiber and Matrix Elastic and Creep (Rugg et. al., 1999) Properties  

 A (min-m Pa-

n) 

m n P (K) E 

(GPa) 

ν 

Matrix 2.33×10-17 0.49 1.9 9607 420 0.20 

Hi-Nicalon 

Fiber 
1.29×10-7 0.48 1.42 32042 200 0.35 

 

 

4.4.1 Time Hardening and Strain Hardening Formulation Comparison   

Before using the developed models to study the creep response of the Hi-Nicalon/CVD 

SiC microcomposites (Rugg et al., 1999), it is useful to compare the time hardening and 

strain hardening creep formulations (Equations 4.2-9 and 4.2-10). Figure 4.4-1 shows the 

simulated longitudinal creep strain versus time response of a) pure Hi-Nicalon fiber, b) 

pure SiC matrix, and c) Hi-Nicalon/CVD SiC microcomposite with a fiber volume fraction 
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of 0.5 subjected to three different global uniaxial loading cases using both the time 

hardening and strain hardening formulations. The temperature used in the simulations is 

1300 oC. Two of the loading cases consist of constant uniaxial global stresses of 100 MPa 

and 200 MPa whereas the other load case consists of a constant global uniaxial stress of 

100 MPa for 0 ≤ 𝑡 ≤ 1000 minutes, after which the global stress is abruptly increased 

from 100 MPa to 200 MPa over the time interval 1000 ≤ 𝑡 ≤ 1001 minutes, and is then 

held constant at 200 MPa for the remainder of the simulation. It is evident that the simulated 

creep strain versus time curves for the time and strain hardening formulations are identical 

for pure fiber (Figure 4.4-1a) and pure matrix (Figure 4.4-1b) under constant global 

uniaxial stresses. However, the results differ when a nonconstant global uniaxial stress is 

applied. In Figure 4.4-1a, for the nonconstant stress loading case on the pure Hi-Nicalon 

fiber, the time hardening and strain hardening model predictions are identical for 

0 ≤ 𝑡 ≤ 1000 minutes. When the global stress is increased to 200 MPa, the responses 

differ. When the stress is changed to 200 MPa in the time hardening formulation, the strain 

versus time curve for the constant stress of 200 MPa is shifted vertically (normal to the 

time axis, see the solid gray arrow) to the end of the response. In contrast, when the stress 

is changed to 200 MPa in the strain hardening formulation, the curve for the constant stress 

of 200 MPa is shifted horizontally (normal to the strain axis, see the dashed black arrow) 

to the end of the response. The same trends are observed in Figures 4.4-1b for the pure SiC 

matrix. 

It is evident from Figures 4.4-1a and 4.4-1b that, for a given constant stress level and 

temperature, the SiC matrix creeps more than the Hi-Nicalon fiber and is therefore less 

creep resistant (CMR<1). Therefore, when the composite is subjected to a constant global 
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longitudinal stress, the matrix unloads onto the fiber, leading to a decrease in matrix stress 

and an increase in the fiber stress in time, as will be shown later in the chapter. Because of 

the nonconstant stresses in the constituents when a composite begins to creep, the time and 

strain hardening formulations differ slightly under both constant and varying global stress 

conditions. Additionally, the shifting of the curves normal to the time and strain axes does 

not occur for the composite in the same way it does for a monolithic material when 

subjected to variable stress loading, as shown in Figure. 4.4-1c.  
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a)  

 

b)  

 

c)    

 

Figure 4.4-1. Longitudinal Creep Strain Versus Time for a) Pure Hi-Nicalon Fiber; b) 

Pure SiC Matrix; c) Composite (Vf= 0.5) for Three Different Loading Cases 



 

111 

 

Though the time and strain hardening formulations provide identical results for a 

monolithic material under sustained loading, as shown in Figure 4.4-1, the time hardening 

formulation is more widely used in the literature due to its ease of implementation (Kraus, 

1980). The main shortcoming of the time hardening formulation is that it is not objective 

with respect to time, as all physical laws should be (Stouffer and Dame, 1996). Despite 

this, it has been used successfully by many authors due to its simplicity and ease of 

implementation. Since both formulations produce very similar results for the composite, 

the time hardening formulation is used in the remainder of this chapter.   

4.4.2 Time-Dependent CMC Deformation and Constituent Load Transfer  

Figure 4.4-2 shows the simulated total strain versus time of a Hi-Nicalon/CVD SiC 

microcomposite with a 52% fiber volume fraction (Rugg et al., 1999) subjected to a 

constant RUC average longitudinal stress of 100 MPa at 1300 oC. The total composite 

strain is initially nonzero and purely elastic since there is no initial creep strain. The 

constituents subsequently start to creep under the applied stress, resulting in a strain versus 

time response that increases in time at a decreasing rate (i.e., primary creep) until reaching 

an approximate steady state around 500 minutes, after which the creep strain increases 

approximately linearly in time (i.e., secondary creep).  
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Figure. 4.4-2. Simulated and Experimental (Rugg et al. 1999) Total Strain Versus Time 

Response of 52% Fiber Volume Fraction Hi-Nicalon/CVD SiC Microcomposite 

Subjected to Sustained Loading of 100 MPa at 1300  oC 

Figure 4.4-3 shows the simulated constituent longitudinal stress versus time results 

corresponding the total strain versus time results shown in Figure 4.4-2. The results agree 

favorably with the results of the one-dimensional model presented in Rugg et al. (1999), 

which are also shown in Figure 4.4-3. It is evident that the constituent longitudinal stresses 

are initially unequal due to the different elastic moduli of the Hi-Nicalon fibers (200 GPa) 

and the CVD SiC matrix (420 GPa). The larger matrix elastic modulus causes the initial 

matrix stress to be greater than that of the more compliant fiber. Due to the differing 

constituent creep rates, the matrix unloads onto the more creep resistant fiber, which 

implies a CMR<1 for the Hi-Nicalon/CVD SiC microcomposites (Rugg et al., 1999). As 

such, the fiber stress increases in time whereas the matrix stress decreases. The creep 

mismatch decreases until both constituents creep at approximately the same rate and an 

approximate steady state is reached. The fiber and matrix longitudinal stresses saturate at 

approximately 500 minutes, after which they remain at roughly constant values of 120 MPa 

and 78 MPa, respectively, for the remainder of the simulation. These values are in good 

agreement with one-dimensional model results from the literature (Rugg et al., 1999), for 
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which the fiber and matrix approximately saturate at longitudinal stress levels of 118 MPa 

and 80 MPa, respectively. The difference between the simulation results herein and the 

literature results (Rugg et al., 1999) can be attributed to the use of slightly different creep 

properties and the presence of Poisson’s effects in the current work. The time at which 

approximate saturation of the constituent stresses occurs in Figure 4.4-3 corresponds to the 

time at which the total strain increases approximately linearly in time in Figure 4.4-2.  

 
Figure 4.4-3. Simulated and Experimental (Rugg et al. 1999) Constituent Longitudinal 

Stress Time History of 52% Fiber Volume Fraction Hi-Nicalon/CVD SiC 

Microcomposite Subjected to Sustained Loading of 100 MPa at 1300 oC 

 

 

4.4.3 Effects of Fiber-Matrix Creep Mismatch Ratio  

Figure 4.4-4 shows the simulated CMR versus time for the Hi-Nicalon/CVD SiC 

microcomposite with 52% fiber volume fraction subjected to a constant global stress level 

of 100 MPa at 1300 oC. The results in Figure 4.4-4 correspond to the total strain versus 

time results in Figure 4.4-2 and the constituent longitudinal strain versus time results in 

Figure 4.4-3. Since there are three matrix subcells in the GMC RUC (see Figure 3.2-1), the 

matrix effective inelastic strain rate was volume averaged to compute the CMR shown in 
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Figure 4.4-4. It should be noted that the effective inelastic strain rates in the matrix subcells 

were almost equivalent for the duration of the simulation. It is evident that the time at which 

the CMR approximately reaches unity in Figure 4.4-4 (approximately 500 minutes) 

corresponds to the time in Figure 4.4-2 where the creep strain begins to increase 

approximately linearly in time (nearly constant inelastic strain rate; secondary creep) and 

the time in Figure 4.4-3 where the constituent stresses approximately saturate. 

 
Figure 4.4-4: CMR Versus Time for a Hi-Nicalon/CVD Microcomposite with 52% 

Fiber Volume Fraction Subjected to a Constant Stress of 100 MPa at 1300 oC 

 

4.4.4 Effects of Volume Fraction  

Figure 4.4-5 illustrates the effects of the fiber volume fraction on the Hi-Nicalon 

microcomposite creep response. The total strain-time curves in Figure 4.4-5 with solid lines 

are the simulation results whereas the dashed lines are experimental results from Rugg et 

al. (1999). The constant global stress levels (130 MPa and 147 MPa), volume fractions 

(0.44 and 0.28), and temperature (1300 oC) used in the simulations are the same as those 

in the experiments (Rugg et al., 1999). A good agreement is observed between the 

simulation results and the experimental data (Rugg et al., 1999) in Figure 4.4-5a. Since the 

simulations presented in Figure 4.4-5a are conducted for different constant global 
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longitudinal stress levels, a general statement technically cannot be made regarding the 

effect of the fiber volume fraction on the microcomposite creep response. To allow a direct 

comparison, a simulation was conducted with a fiber volume fraction of 0.28 and a constant 

global stress level of 130 MPa and compared to results of the simulation with a volume 

fraction of 0.44 and a constant global stress level of 130 MPa (i.e., same stress level, 

different volume fraction); the results are shown in Figure 4.4-5b. It is evident from Figure 

4.4-5b that, for a given global stress and temperature, the total strain increases as the fiber 

volume fraction decreases. It is emphasized that this is only the case for CMR<1, where 

the matrix creeps first and unloads onto the fiber. Moreover, comparing the results of the 

simulation with a fiber volume fraction of 0.28 and a constant global stress of 130 MPa in 

Figure 4.4-5b to the simulation with a fiber volume fraction of 0.28 and a constant global 

stress of 147 MPa in Figure 4.4-5a, it is evident that larger applied stress results in more 

longitudinal strain, as expected.  
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a)  

 

 

b)  

 

Figure 4.4-5. Hi-Nicalon/CVD SiC Results: Effects of Different Fiber Volume 

Fractions Under (a) Different Constant Applied Longitudinal Stress; (b) Same Constant 

Applied Longitudinal Stress 

 

In general, for a given constant stress level, temperature, and time, the creep strain 

increases when the volume fraction of the less creep resistant constituent increases. So, 

when CMR<1, as is the case for the Hi-Nicalon/CVD SiC microcomposites (Rugg et al., 

1999), the creep strain increases with decreasing fiber volume fraction whereas the 

opposite is true for CMR>1. Figure 4.4-6 illustrates the effect of fiber volume fraction for 

the CMR>1 case and shows: a) simulated total strain-time history of a UD CMC with fiber 

and matrix properties (elastic and inelastic) equal to that of the Hi-Nicalon fiber, except for 
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the parameter A of the matrix, which is set equal one tenth of the value of that of the fiber 

to achieve CMR>1; b) the CMR versus time. The fiber volume fractions used for this 

comparison are 0.52 and 0.3. The temperature and constant global stress level used in the 

simulation are 1300 oC and 100 MPa. Figure 4.4-6a shows that, for a given constant global 

stress and temperature, the creep strain increases with increasing fiber volume fraction 

when CMR>1. Since 𝐴𝑚 =
𝐴𝑓

10
, where 𝐴𝑚 and 𝐴𝑓 refer to the A parameter (Table 4.3.1) of 

the matrix and fiber, respectively, the CMR (Figure 4.4-6b) is initially 10 and then 

gradually decreases to unity as an approximate steady state is reached (Figure 4.4-6a).  

a)  

b)  

Figure 4.4-6. a) Simulated Creep Versus Time Response of a Microcomposite with 

CMR>1; b) CMR Versus Time 
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4.4.5 Effects of Creep on Room Temperature Proportional Limit Stress Level 

The purpose of this section is to computationally investigate the effects of elevated 

temperature creep on the post-creep room temperature proportional limit (first matrix 

cracking) stress level for the Hi-Nicalon/CVD SiC CMC microcomposites (Rugg et al., 

1999) considered in the previous sections of this chapter. It is noted that, since post-creep 

room temperature quasi-static tensile tests were not considered by Rugg et al. (1999), solely 

computational results are presented in this section. While not considered in the results 

presented in previous sections of this chapter, it is necessary to employ a suitable 

progressive damage model. To this end, an existing bilinear isotropic progressive damage 

model (Liu and Arnold, 2011) is employed to simulate the initiation and propagation of 

matrix damage at the subcell level in the GMC micromechanics model (Aboudi et al., 

2012) and is briefly described in the following paragraph prior to discussing the results.  

The damage model (Liu and Arnold, 2011) consists of a scalar damage variable, 𝜙, 

that reduces the initial elastic stiffness properties. The generalized Hooke’s law with 

damage is as follows:   

𝜎𝑖𝑗 = (1 − 𝜙)𝐶𝑖𝑗𝑘𝑙
0 (휀𝑘𝑙

𝑡𝑜𝑡 − 휀𝑘𝑙
𝑡ℎ − 휀𝑘𝑙

𝑐𝑟) (4.4-1) 

where 𝜎𝑖𝑗, 𝐶𝑖𝑗𝑘𝑙
0 , 휀𝑘𝑙

𝑡𝑜𝑡, 휀𝑘𝑙
𝑡ℎ, and 휀𝑘𝑙

𝑐𝑟 are the respective components of the Cauchy stress, 

undamaged elastic stiffness, total strain, thermal strain, and inelastic (creep) strain tensors. 

The scalar damage variable, 𝜙, ranges from an initial value of zero to unity, the former 

representing the initial undamaged material and the latter representing a complete loss of 

stiffness. The isotropic nature of the damage model implies the damaged ceramic matrix 

retains the elastic isotropy of the initial undamaged matrix. However, since the damage 

model is applied to the matrix constituent in the GMC micromechanics model (Aboudi et 
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al., 2012), the effective RUC elastic properties due to local matrix damage are not 

necessarily isotropic. The local undamaged and damaged elastic stiffness tensor 

components, 𝐶𝑖𝑗𝑘𝑙
0  and 𝐶𝑖𝑗𝑘𝑙, are related according to: 𝐶𝑖𝑗𝑘𝑙 = (1 − 𝜙)𝐶𝑖𝑗𝑘𝑙

0 . Damage 

initiation and progression are controlled by the first invariants of the Cauchy stress and 

elastic strain tensors (Liu and Arnold, 2011), i.e., the hydrostatic stress, 𝜎𝑘𝑘, and 

hydrostatic elastic strain, 휀𝑘𝑘
𝑒𝑙 = 휀𝑘𝑘

𝑡𝑜𝑡 − 휀𝑘𝑘
𝑡ℎ − 휀𝑘𝑘

𝑐𝑟 . Damage initiates when the hydrostatic 

stress exceeds a critical nonnegative value, 𝜎𝑐𝑟𝑖𝑡. The nonnegativity of 𝜎𝑐𝑟𝑖𝑡 implies that 

damage can only initiate and accumulate for stress states with a tensile hydrostatic 

component. When the hydrostatic stress in any of the matrix subcells exceeds the critical 

value, 𝜎𝑘𝑘 > 𝜎𝑐𝑟𝑖𝑡, the satisfaction of the following incremental damage law governs the 

subsequent propagation of damage:  

𝑓 = 3𝑛𝐾0∆휀𝑘𝑘
𝑒𝑙 − ∆𝜎𝑘𝑘 = 0 (4.4-2) 

where 𝐾0 is the initial (undamaged) bulk modulus and 𝑛 is the damage normalized secant 

bulk modulus (Liu and Arnold, 2011; Borkowski and Chattopadhyay, 2015). In Equation 

4.4-2, ∆𝜎𝑘𝑘 and ∆휀𝑘𝑘
𝑒𝑙  denote hydrostatic stress and hydrostatic elastic strain increments, 

which relate values at the next (i+1) and current (i) increments as: 𝜎𝑘𝑘
𝑖+1 = 𝜎𝑘𝑘

𝑖 + ∆𝜎𝑘𝑘 and 

휀𝑘𝑘
𝑒𝑙,𝑖+1 = 휀𝑘𝑘

𝑒𝑙,𝑖 + ∆휀𝑘𝑘
𝑒𝑙 . An expression for the damage variable at the next increment, 𝜙𝑖+1, 

is obtained by considering the hydrostatic component of the constitutive law, 𝜎𝑘𝑘 = 3𝐾휀𝑘𝑘
𝑒𝑙 , 

where 𝐾 = (1 − 𝜙)𝐾0 is the damaged bulk modulus, in incremental form:  

∆𝜎𝑘𝑘 = 3𝐾∆휀𝑘𝑘
𝑒𝑙 + 3∆𝐾휀𝑘𝑘

𝑒𝑙 = 3(1 − 𝜙)𝐾0∆휀𝑘𝑘
𝑒𝑙 + 3(1 − 𝜙)𝐾0휀𝑘𝑘

𝑒𝑙  (4.4-3) 
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Substituting the expression for ∆𝜎𝑘𝑘 given by Equation 4.4-3 into Equation 4.4-2 and 

simplifying results in the following expression for the damage variable at the next 

increment:   

𝜙𝑖+1 = (1 −
𝑛Δ휀𝑘𝑘

𝑒𝑙(𝑖+1)
+ (1 − 𝜙𝑖)휀𝐻

𝑒𝑙(𝑖+1)

(Δ휀𝐻
𝑒𝑙(𝑖+1) + 휀𝐻

𝑒𝑙(𝑖+1)
)

) 

 

(4.4-4) 

where the relations 𝐾𝑖+1 = (1 − 𝜙𝑖+1)𝐾0 and 𝐾𝑖 = (1 − 𝜙𝑖)𝐾0 have been used to obtain 

Equation 4.4-4. It is noted that, when implementing the damage update given by Equation 

4.4-4, it is necessary to prevent negative values of 𝜙𝑖+1, damage accumulation during 

unloading, and the values of damage from decreasing, the latter of which requires 

𝜙𝑖+1 ≥ 𝜙𝑖. This can be accomplished in a numerical implementation by: i) setting 𝜙𝑖+1 to 

zero if Equation 4.4-4 results in a negative value; ii) setting 𝜙𝑖+1 = 𝜙𝑖 if 𝜙𝑖+1 < 𝜙𝑖.  

To investigate the effects of time-dependent constituent load transfer on the RT 

proportional limit, simulations of CMC creep at various constant stress levels (50 MPa, 

150 MPa, 220 MPa) followed by quasi-static monotonic tensile loading are presented and 

discussed in the remainder of this section. Specifically, the simulated thermomechanical 

loading consists of: i) two-hour stress-free thermal cooldown from an assumed processing 

temperature of 1450 °C to RT (25 °C) followed by a one-hour stress-free reheating to 1300 

°C; ii) subsequent application of monotonic longitudinal tensile loading over 15 minutes 

to a given creep stress level; iii) roughly 19 hours (1120 minutes) of sustained creep 

loading; iv) monotonic unloading from the creep stress level to zero stress over 15 minutes; 

v) stress-free cooldown from 1300 °C to RT (25 °C); vi) monotonic quasi-static tensile 

loading. The simulation results to follow are for a Hi-Nicalon/CVD SiC microcomposite 
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with a 52% fiber volume fraction. The constituent coefficients of thermal expansion and 

matrix damage parameters used in the simulations are given in Table 4.4.2.  

Table 4.4.2: CMC Thermal Properties (Rugg, 1997) and Damage Parameters (Liu and 

Arnold, 2011)  

 CTE (°C-1) n 𝜎𝑐𝑟𝑖𝑡 (MPa)  

SiC Matrix 4.7x10-6 0.04 180 

Hi-Nicalon Fiber 4.8x10-6 N/A N/A 
 

 

The damage parameters in Table 4.4.2 were obtained from Liu and Arnold (2011) whereas 

the CTEs were obtained from Rugg (1997). Note that Rugg (1997) states that the CTE for 

Hi-Nicalon for temperatures between 20 °C and 900 °C is 4.6x10-6 °C-1, though also 

mentions that values up to 5.3x10-6 °C-1 have been measured. Rugg (1997) also states that 

little to no thermal residual stress would be expected in the matrix of Hi-Nicalon based 

microcomposites. Given that the majority of the Hi-Nicalon CTE values between 

4.6x10-6 °C-1 and 5.3x10-6 °C-1 are above the SiC matrix CTE of 4.7x10-6 °C-1 (Rugg, 1997), 

a CTE of 4.8x10-6 °C-1 was utilized for Hi-Nicalon.  

Figures 4.4-7 and 4.4-8 show the constituent longitudinal (Figure 4.4-7) and 

hydrostatic (Figure 4.4-8) stresses versus time for the aforementioned simulated 

thermomechanical loading. The prescribed RUC effective longitudinal stress and 

temperature history are also shown, the latter of which is plotted on the right y-axes. The 

subfigures (a, b, and c) in Figures 4.4-7 and 4.4-8 correspond to sustained (from 195 

minutes to 1315 minutes) longitudinal creep stress levels of 50 MPa, 150 MPa, and 220 

MPa, respectively. Other than the creep stress level, the prescribed loading in each case is 

identical. It is noted that the matrix progressive damage model and the viscoplastic creep 

model are employed for the entire duration of these simulations, i.e., the damage and creep 

models are not selectively turned on/off for various portions of the prescribed loading.   
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During the initial thermal cooldown from the stress-free processing temperature of 

1450 °C to RT (0 to 120 minutes), the constituent CTE mismatch results in tensile stresses 

(longitudinal and hydrostatic) in the fiber and compressive stresses (longitudinal and 

hydrostatic) in the matrix. This is because the fiber CTE is greater than that of the matrix. 

For a given decrease in temperature, the fiber, if unconstrained by the surrounding matrix, 

would exhibit a larger magnitude thermal contraction than the matrix. However, in the 

composite, the matrix constrains the thermal contraction of the fiber, resulting in 

longitudinal and hydrostatic tension in the fiber and compression in the matrix. The 

magnitudes of the constituent hydrostatic thermal residual stresses (Figure 4.4-7) are larger 

than those in the longitudinal direction (Figure 4.4-8) because, though not shown, the 

transverse residual stresses are of the same sign as those in longitudinal direction for a 

given constituent (tensile for fiber and compressive for matrix). Since the simulated creep 

test temperature (1300 °C) is less than the stress-free processing temperature (1450 °C), 

the constituents retain a portion of the thermal residual stress due to the initial cooldown 

prior to the application of monotonic uniaxial tensile loading to the creep stress level, which 

occurs from 180 to 195 minutes.  

Once the creep stress level is reached at 195 minutes, it is sustained until 1315 minutes. 

Similar to the results in the previous sections of this chapter, the matrix longitudinal 

stresses are larger than those of the fiber at the beginning of the creep loading (195 minutes) 

since the elastic modulus of the matrix (420 GPa) is greater than that of the fiber (200 GPa). 

This is true for the longitudinal stresses (Figure 4.4-7) for all creep stress levels considered 

(50 MPa, 150 MPa, and 220 MPa), though not as apparent for the 220 MPa case. In Figure 

4.4-8, it is evident that the progressive application 220 MPa longitudinal stress on the 
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composite causes the local matrix hydrostatic stress to exceed the critical damage initiation 

stress (Table 4.4.2) of 180 MPa, which results in degradation of the effective matrix (matrix 

subcell volume average) elastic modulus from 420 GPa to approximately 204 GPa at the 

beginning of the creep loading (195 minutes). It is noted that matrix damage also occurs 

during loading to the creep stress level in the 150 MPa case, as is evident in Figure 4.4-8, 

though the resulting matrix damage is nominal in this case. No matrix damage occurred 

upon loading to the creep stress level in the 50 MPa case (Figures 4.4-7a and 4.4-8a). Since 

the CMR<1, the matrix unloads onto the more creep resistant fiber during the sustained 

creep loading (195 to 1315 minutes) for all creep stress levels considered. As such, no 

matrix damage occurs during creep in any of the simulations (i.e., since the matrix is 

unloading). Comparing the 50 MPa (Figures 4.4-7a and 4.4-8a) and 150 MPa (Figures 

4.4-7b and 4.4-8b) load cases, it is evident that the larger applied creep stress level causes 

the local stresses to redistribute more quickly and results in a larger disparity in the 

approximate saturation stress levels of the constituents.  

At the conclusion of the sustained creep loading (1315 minutes), the global 

longitudinal creep stress is reduced to zero over 15 minutes (from 1315 to 1330 minutes) 

while the creep temperature (1300 °C) is maintained. Comparing the constituent stresses 

at 180 minutes (after heating to the creep test temperature and before application of the 

creep stress) and 1330 minutes (before cooldown from creep test temperature and after 

removal of creep load), it is evident that creep alters the constituent residual stresses by the 

relative change in stress experienced by the constituent during creep. The time-dependent 

matrix stress relaxation during creep therefore results in (additional) compressive stresses 

in the matrix upon removal of the mechanical load (1330 minutes). As such, the matrix 
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residual compressive stresses at 1330 minutes are larger in magnitude than the compressive 

thermal residual stresses at 180 minutes. Since CMR<1, the time-dependent increase in 

fiber stress due to stress transfer from the matrix during creep results in (additional) tensile 

stresses in the fiber. The fiber tensile residual stresses at 1330 minutes are therefore larger 

in magnitude than the tensile thermal residual stresses. It is noted that the opposite behavior 

would be expected for CMR>1, where the fiber unloads onto the matrix. In this case 

(CMR>1), creep would result in the development of compressive stresses in the fiber and 

tensile stresses in the matrix. Once mechanical unloading is complete (at 1330 minutes), 

cooldown from the creep temperature to RT is applied from 1330 to 1440 minutes, which 

results in additional residual tension in the fiber and compression in the matrix since the 

CTE of the fiber is greater than that of the matrix. The opposite behavior would occur if 

the CTE of the matrix was greater than that of the fiber.  
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a)  

b)  

c)  

Figure 4.4-7: Constituent Longitudinal Stresses for Hi-Nicalon/CVD SiC 

Microcomposite with 52% Fiber Volume Fraction Subjected to Simulated 

Thermomechanical Loading for Longitudinal Creep Stress Levels of a) 50 MPa; b) 150 

MPa; c) 220 MPa 
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a)  

b)  

c)  

Figure 4.4-8: Constituent Hydrostatic Stresses for Hi-Nicalon/CVD SiC 

Microcomposite with 52% Fiber Volume Fraction Subjected to Simulated 

Thermomechanical Loading for Longitudinal Creep Stress Levels of a) 50 MPa; b) 150 

MPa; c) 220 MPa 

 

Figure 4.4-9 shows simulated RT quasi-static monotonic tensile stress-strain curves 

for composites subjected to the previously-described simulated thermomechanical loading 
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conditions. The stress levels in the legend of Figure 4.4-9 refer to the sustained stress levels 

applied to the composite in the creep portion of the simulations prior to RT monotonic 

tensile loading. Also included in Figure 4.4-9 are stress-strain curves for composites that 

were: i) not subjected to the thermomechanical loading (denoted by “No residual” in the 

legend); ii) subjected solely to thermal cooldown from 1450 °C to RT prior to monotonic 

tensile loading (denoted by “As-produced” in the legend).  

The proportional limit stress for each case shown in Figure 4.4-9 can be identified as 

the level of stress corresponding to the point at which the stress-strain curve deviates 

appreciably from linearity. For the composite with no residual stresses (blue curve), the RT 

proportional limit is approximately 140 MPa. It is evident that the simulated proportional 

limit for the composites that include the effects of residual stresses are all greater than that 

of the composite with no residual stresses. This is because the simulated thermomechanical 

loading results in compressive hydrostatic residual stresses in the matrix for the composites 

(CMR<1 and fiber CTE greater than matrix CTE) and loading cases considered in this 

section. Since matrix damage initiation and progression requires a local matrix hydrostatic 

tensile stress greater than the critical damage initiation stress (Table 4.4.2), any residual 

hydrostatic compression in the matrix must be overcome prior to damage initiation, thereby 

increasing the RT composite proportional limit. The amount by which the RT proportional 

limit increases is dependent on the magnitude of residual compression in the matrix; larger 

residual compressive stresses tend to increase the composite RT proportional limit stress 

by a greater amount. It is noted that the initial elastic modulus of the stress-strain curve 

(green curve) corresponding to the thermomechanical loading with the 220 MPa creep 

stress level (Figures 4.4-7c and 4.4-8c) is less than that of the other curves since significant 
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matrix damage occurred in the simulation while monotonically loading to the creep stress 

level, as was previously mentioned. It is also interesting to note that, while the proportional 

limit stresses of the composites subjected to simulated creep loading prior to monotonic 

tension increase with increasing creep stress level, the composite subjected to the 220 MPa 

creep load resulted in a compressive residual stress between that of the 50 MPa and the 150 

MPa creep load cases. Despite this, the lower matrix modulus due to the progressive matrix 

damage that occurred during loading to the 220 MPa creep stress level still resulted in a 

larger proportional limit than the composite subjected to the 150 MPa creep stress level.  

While fiber failure was not explicitly included in the simulations presented in this 

Chapter, the stress-strain curves in Figure 4.4-9 are shown up to the point at which the fiber 

stress reached an assumed strength of 900 MPa. While the actual strength of Hi-Nicalon 

fibers is 2.8 GPa (Gowayed and Ojard, 2020), the value of 900 MPa was selected, 

somewhat arbitrarily, to gain insight into the effect of creep-induced constituent residual 

stresses on the strain to failure as a post-processing step. It is evident in Figure 4.4-9 that 

the composite with no thermal residual stresses (blue curve), which has the lowest 

proportional limit stress of the cases considered, has the highest strain to failure. Other than 

the 220 MPa stress-strain curve in Figure 4.4-9, the simulated composite strain to failure 

decreases with increasing creep stress level. This is because the creep-induced stress 

transfer from the matrix to the fiber for the UD CMC considered herein (CMR<1) results 

in residual longitudinal tension in the fibers prior to the application of the monotonic tensile 

loading. As such, less composite longitudinal strain is required for the tensile prestressed 

fibers to reach the assumed fiber strength of 900 MPa. For all cases shown in Figure 4.4-9 

other than the 220 MPa case, the increase in the proportional limit stress with increasing 
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creep stress level is accompanied by a reduction of the strain to failure (for CMR<1). In 

the 220 MPa case, the matrix damage that occurred during the simulated loading to the 

creep stress level prior to the simulated monotonic tensile loading results in the strain to 

failure being between that of the 50 MPa and 150 MPa cases. It is noted that, for CMCs 

with CMR>1, it is expected that, in the absence of matrix damage prior to simulated 

monotonic tensile loading, the RT proportional limit stress level would decrease and the 

strain to failure would increase after being subjected to elevated temperature creep with 

increasing constant stress levels. 

The reduction of the strain to failure associated with the increase in the RT 

proportional limit stress for the CMCs with CMR<1 considered in this section are 

consistent with results reported by Pineda et al. (2015) for a UD CMC for which the fibers 

are more creep resistant than the matrix and therefore CMR<1. The increase in proportional 

limit in CMCs previously subjected to creep at increasing constant creep stress levels 

observed in the simulations presented in this section is also consistent with results reported 

by Santhosh et al. (2018) for a Sylramic-iBN/MI-SiC cross-ply CMC with CMR<1.  
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Figure 4.4-9: Simulated Room Temperature Quasi-Static Monotonic Tensile Stress-

Strain Curves for UD CMCs Previously Subjected to Thermomechanical Loading  

 

4.5 Conclusions  

In this chapter, the formulation of a three-dimensional viscoplastic creep constitutive 

model based on the Hill (1948) orthotropic plastic potential, an associative flow rule, and 

the Norton-Bailey/Nutting creep law with Arrhenius temperature dependence was 

presented. Time hardening and strain hardening formulations were implemented and 

discussed. The three-dimensional viscoplasticity model was implemented into the GMC 

micromechanics theory, which was subsequently used to investigate the effects of time-

dependent constituent load transfer, CMR, and fiber volume fraction on the creep response 

of Hi-Nicalon/CVD SiC CMC microcomposites for which experimental data was available 

in the open literature (Rugg et al., 1999). Though the constituent materials were both 

modeled as elastically and inelastically isotropic, the formulation is sufficiently general to 

describe orthotropic constitutive behavior. It is therefore applicable to CMC systems with 

orthotropic constituents, such as carbon-fiber reinforced CMCs. Results indicate that, when 
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a composite experiences creep, internal stress transfer is driven by the CMR, which is 

dependent on the mismatch in constituent elastic and creep properties. The rate of change 

of constituent stresses decreases in time as the CMR approaches unity an approximate 

steady state (secondary creep) is reached. When CMR>1, the fibers unload onto the matrix 

for whereas the matrix unloads onto the fibers for CMR<1. In general, for a given stress 

and temperature, more creep deformation is observed with increasing volume fraction of 

the less creep resistant constituent. So, when CMR<1, the creep strain increases with 

decreasing fiber volume fraction. For CMR>1, the creep strain increases with increasing 

fiber volume fraction. Both cases are possible in CMCs, though CMR<1 for the Hi-

Nicalon/CVD SiC microcomposites (Rugg et al., 1999) considered in this chapter. Lastly, 

a computational study of the effects of creep-induced constituent stress redistribution on 

the room temperature proportional limit (first matrix cracking) stress level was also 

presented, where an existing bilinear progressive damage law (Liu and Arnold, 2011) was 

utilized to simulate the initiation and progression of damage in the ceramic matrix. Results 

of this computational study indicated an increase in the RT proportional limit due to 

creep-induced constituent stress redistribution when CMR<1, which is consistent with 

results reported by Santhosh et al. (2018) for a cross-ply CMC with CMR<1. Overall, 

simulation results are in good agreement with experimental and numerical results available 

in the literature and provide valuable insight into the mechanisms governing creep in 

CMCs.  
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5 CONTRIBUTIONS AND FUTURE WORK 

5.1 Contributions 

The primary objective of the research presented in this dissertation was to develop 

relevant multiscale computational tools and nonlinear constituent material constitutive 

models to better understand the complex multiscale behavior of fiber-reinforced composite 

materials. In particular, these models were used to gain insight into the nonintuitive 

mechanisms governing macroscopic PMC and CMC response in extreme service 

environments, including the high strain rate and impact behavior of PMCs (Chapters 2 and 

3) and the elevated-temperature creep behavior of CMCs (Chapter 4).  

In Chapter 2, a nonisothermal and thermodynamically consistent extension of the rate- 

and pressure-dependent Goldberg (Goldberg et al., 2005) unified viscoplastic polymer 

constitutive formulation was presented. In Chapter 3, the polymer viscoplasticity 

formulation developed in Chapter 2 was used as a constitutive model in the GMC 

micromechanics framework to computationally investigate the effects of adiabatic heating 

due to the conversion of plastic work to heat on the deformation of a T700/E862 UD 

composite. Significant adiabatic heating and thermal softening was observed for simulated 

matrix-dominated deformation modes. The GMC micromechanics model, including the 

nonisothermal polymer viscoplasticity model, was subsequently implemented as an 

LS-DYNA UMAT and used in the context of a subcell-based approach to approximate the 

heterogeneity of the braid architecture of a triaxially braided T700/E862 PMC to simulate 

quasi-static tensile tests (Littell, 2008) and a flat-panel impact test. Impact simulations 

predicted additional out of plane displacement for adiabatic simulations when fiber failure was 

considered. While the results of the adiabatic impact simulations with fiber failure 
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overpredicted experimentally observed out of plane displacements, it is consistent with 

experimental evidence (Johnston et al., 2018) that adiabatic heating does indeed play a role in 

the impact response of PMCs. While not considered in this work, it is expected that the 

consideration of matrix progressive damage and failure, in addition to local matrix 

adiabatic heating considered in this work, will play a major role in accurately predicting 

the impact response of PMC structures.  

In Chapter 4, the formulation of a three-dimensional viscoplastic creep constitutive 

model based on Hill’s orthotropic plastic potential, an associative flow rule, and the 

Norton-Bailey/Nutting creep law with Arrhenius temperature dependence was presented. 

Both time hardening and strain hardening formulations were implemented and discussed. 

The three-dimensional viscoplastic creep formulation was subsequently used as a 

constitutive model in the GMC micromechanics framework, where it was used to model 

creep in both the fiber and matrix constituents. The model was then used to simulate the 

creep behavior of two microcomposites for which test data was available in the literature 

(Rugg et al., 1999). The effects of fiber volume fraction, fiber-matrix creep mismatch ratio, 

and time-dependent constituent load transfer were investigated. The effects of time-

dependent constituent load transfer on as-produced thermal residual stresses and the room 

temperature proportional limit stress was also investigated using a previously developed 

progressive damage model (Liu and Arnold, 2011) to simulate the initiation and 

propagation of matrix damage. Simulation results were in good agreement with 

experimental data available in the literature, when available, and provide valuable insight 

into the mechanisms governing creep in CMCs.  
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5.2 Future Work 

While the research presented in this dissertation provides an improved understanding 

of some of the nonintuitive mechanisms governing the nonlinear constitutive behavior of 

PMCs under high strain rate loading and CMCs under sustained loading at elevated 

temperatures, further developments are necessary to maximize the fidelity, effectiveness, 

and predictive capability of the techniques and methods described herein. Additional study 

and future work is essential to provide a more thorough understanding of the complex 

interplay between deformation, progressive damage, and failure mechanisms such that 

these mechanisms can be better exploited to meet the multiple, and often conflicting, design 

and certification criteria of advanced PMC and CMC structures. The future research 

directions are summarized in the remainder of this section.  

The predictions of adiabatic temperature rises in polymers and PMCs presented in 

Chapters 2 and 3 can be improved by approximating the inelastic heat fraction using neat 

resin mechanical test data for which thermal measurements are available. Since the 

inelastic heat fraction is likely nonconstant, its dependence upon on various quantities, such 

as strain, strain rate, temperature, and stress state, should also be investigated. At moderate 

rates of deformation, where neither isothermal or adiabatic assumptions hold, coupled 

thermodynamic conditions must be considered.  The fully adiabatic (𝛽 = 1) simulations 

considered in in Chapters 2 and 3 should therefore be viewed as upper bounds on the 

possible deformation-induced temperature rises. For moderate deformation rates it is 

necessary to consider the conduction term in the heat energy equation. Lastly, further 

improvements can be made by considering the thermoelastic term in the heat energy 

equation, which will allow modeling thermoelastic cooling/heating.  
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The polymer and PMC related work in Chapters 2 and 3 can be further improved by 

developing a thermodynamically consistent progressive damage and failure model for the 

polymer matrix. Since polymers are pressure-dependent and generally more ductile at low 

deformation rates and high temperatures, the matrix progressive damage law will likely 

need to be strain rate, temperature, and pressure dependent. The damage model could be 

assumed to be isotropic and therefore employ one or multiple scalar damage variables, as 

well as a suitable set of internal state variables to control progressive stiffness reduction. 

In addition to the deformation-induced heating due to plastic dissipation considered in this 

dissertation, the dissipated energy associated with the progression of damage may also 

result in notable heating in the material at high strain rates. It is therefore necessary to 

account for dissipated energy due to progressive stiffness reduction resulting from damage. 

The damage model can be calibrated using data from cyclic load-unload tests conducted 

on neat resin to partition material nonlinearity due to inelasticity and damage. If it is 

desirable to account for the nonlinear unloading typically observed in polymers, it will 

likely be necessary to also consider viscoelasticity. The viscoelastic behavior can be 

characterized using data from DMA tests, creep tests, relaxation tests, as well as cyclic 

tests conducted on the neat polymer of interest. 

The micromechanics simulations presented in Chapters 3 and 4 employed relatively 

simple idealized doubly-periodic microscale RUCs, which represent the effective 

constitutive behavior of tows in a woven or braided composite. The periodicity in these 

micromechanics simulations implies a perfectly ordered intratow fiber packing 

arrangement, which is not the case for the tows in actual composites (see Figure 3.3-4). 

The subcell-based approach used in Chapter 3 to approximate the heterogeneity of the 
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considered T700/E862 triaxially braided PMC also represents an idealized approximation 

of the true braid architecture (Figure 3.3-3). Particularly, the approximation lacks bias tow 

continuity since each mesoscale subcell region is approximated as a laminated composite. 

The fidelity of both the standalone micromechanics simulations (Chapters 3 and 4) and the 

triaxially braided PMC FE simulations (Chapter 3) could therefore be improved by 

considering more realistic high-fidelity RUCs, or representative volume elements (RVEs). 

These RVEs can be constructed using images of intratow regions (e.g., Figure 3.3-4) and 

braided or woven composite cross sections (e.g., Figure 3.3-3) obtained via optical 

microscopy. These images can then be used to construct periodic RVEs of varying levels 

of architectural variability (i.e., idealized and as-produced), which can subsequently be 

meshed and used for micromechanical analyses. Micromechanical analyses of the 

aforementioned RVEs should be conducted using either a higher-order micromechanics 

theory with normal-shear coupling, such as HFGMC, or using fully numerical FE-based 

micromechanics simulations with periodic boundary conditions.  

In Chapter 3, the volume fractions of UD plies in the discretization of the triaxially 

braided PMC mesoscale RUC were determined via microscopy and microscopy-informed 

assumptions. Particularly, the volume fraction of UD plies corresponding to the axial tows 

were assumed equal to the mean axial tow fiber volume fraction determined through optical 

microscopy (Figure 3.3-4). Additionally, while constituent material properties used in the 

work presented in this dissertation were assumed to be deterministic, these properties will 

vary spatially in a real composite. Architectural parameters such as the local tow fiber 

volume fraction in woven/braided composites will also vary spatially (e.g., between 

individual tows in a composite and along a given tow). The effects of variability in 
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constituent material properties and geometric parameters on the effective composite 

constitutive behavior is a critical consideration that must be addressed in future research. 

This can be done by considering the fiber volume fraction and constituent material 

properties to be random variables, determining suitable probably distributions for these 

random variables (e.g., Figure 3.3-5), and sampling from the distributions using an 

appropriate technique, such as Monte Carlo or Latin Hypercube sampling. This would 

result in a family or envelope of stress-strain curves for a given applied loading rather than 

a single curve as in the deterministic case. Consideration of material property and 

architectural/geometric variability would also be beneficial for calibration against test data, 

where variability is expected for repeated tests of the same type.  

While the UD creep simulations presented in Chapter 4 are a necessary first step to 

better understand the complex time-dependent constituent load transfer governing 

macroscopic CMC response, it is essential to consider woven architectures typically used 

in high-temperature CMC structural components. Additionally, due to the presence of 

moisture in the service environment of hot-gas-path CMC turbine components, oxidative 

degradation is a major life-limiting mechanism. Progressive matrix cracking creates 

pathways for gaseous oxidants to enter the CMC and attack the constituent materials. The 

effects of this oxidative degradation are known to be most critical at intermediate 

temperatures whereas, at elevated temperatures, oxidation products have been reported to 

seal matrix cracks and prevent further ingress of gaseous oxidants. A comprehensive model 

for the elevated temperature constitutive behavior of CMCs therefore must  account for the 

coupling between oxidative degradation and damage, including mechanisms responsible 

for temperature-dependent mechanistic changes.  
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