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ABSTRACT  

Mediation analysis is integral to psychology, investigating human behavior’s 

causal mechanisms. The diversity of explanations for human behavior has 

implications for the estimation and interpretation of statistical mediation models. 

Individuals can have similar observed outcomes while undergoing different causal 

processes or different observed outcomes while receiving the same treatment. 

Researchers can employ diverse strategies when studying individual differences in 

multiple mediation pathways, including individual fit measures and analysis of 

residuals. This dissertation investigates the use of individual residuals and fit 

measures to identify individual differences in multiple mediation pathways. More 

specifically, this study focuses on mediation model residuals in a heterogeneous 

population in which some people experience indirect effects through one mediator 

and others experience indirect effects through a different mediator. A simulation 

study investigates 162 conditions defined by effect size and sample size for three 

proposed methods: residual differences, delta 𝑧𝑧, and generalized Cook’s distance. 

Results indicate that analogs of Type 1 error rates are generally acceptable for the 

method of residual differences, but statistical power is limited. Likewise, neither 

delta 𝑧𝑧 nor gCd could reliably distinguish between contrasts that had true effects 

and those that did not. The outcomes of this study reveal the potential for statistical 

measures of individual mediation. However, limitations related to unequal 

subpopulation variances, multiple dependent variables, the inherent relationship 

between direct effects and unestimated indirect effects, and minimal contrast effects 

require more research to develop a simple method that researchers can use on single 

data sets.  
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DEDICATION  

   

To Jesse and the Scooby Gang.   
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Somehow, everything turns up Blinsky when you are around.
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CHAPTER 1 

INTRODUCTION 

Virgil foreshadowed the merit of statistical mediation when he stated, “Felix, 

qui potuit rerum cognoscere causas,” or, in the vernacular, “Happy is the person who 

can know the causes of things” (Virgil, 29 B.C.E, Book 2, line 490). Mediation 

analysis is integral to psychology because it investigates the causal mechanisms that 

underlie human behavior. However, the equifinal and multifinal natures of many 

behavioral processes as well as the multiplism inherent in scientific methods 

complicate the investigation of mediation (Cicchetti & Rogosch, 1996; Mayr, 1964, 

1988; Shadish, 1993; Wilden, 1980). Simply put, there can be a diversity of pathways 

that lead to a given outcome (equifinality), and various endpoints can be arrived at 

from any given starting point (multifinality). Moreover, multiple scientific strategies 

can be employed to predict or explain processes, while often, no single strategy can 

be unequivocally labeled “best” (multiplism).  

The diversity of explanations for any given human behavior has implications 

for estimating and interpreting statistical mediation models. Within the context of 

statistical mediation models, the principle of equifinality (Cicchetti & Rogosch, 1996; 

Mayr, 1964, 1988; Wilden, 1980) implies that individuals can have similar observed 

outcomes while undergoing different causal processes, which could manifest as 

differences in 𝑏𝑏-paths among multiple mediating variables. Likewise, the principle of 

multifinality (Cicchetti & Rogosch, 1996; Mayr, 1964, 1988; Wilden, 1980) suggests 

that individuals can have different observed outcomes while receiving the same 

treatment, which could manifest as differences in 𝑎𝑎-paths from a single treatment to 
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multiple mediators. Finally, the principle of multiplism (Shadish, 1993) affirms that 

researchers can use various strategies to study individual differences in multiple 

mediation pathways, including moderation, latent classes and profiles, multilevel 

models, configural frequency mediation, individual fit measures, and analysis of 

residuals.  

This dissertation investigates how individual residuals can identify 

individual differences in multiple mediation pathways. In addition, the investigation 

extends to three individual fit measures that are akin to residuals: delta 𝑧𝑧 (Pek & 

MacCallum, 2011), generalized Cook’s distance (gCd; Pek & MacCallum, 2011), and 

individual Chi-square (INDCHI; Reise & Widaman, 1999). More specifically, this 

study focuses on residuals in mediation effects in a heterogeneous population such 

that some people experience indirect effects through one mediator while other people 

experience indirect effects through a different mediator, assuming the same 

independent and dependent variables. Currently, literature on residual analysis and 

person-fit has focused on influential cases, outlier identification, and the comparison 

of person-fit and local influence measures in the context of regression and SEM 

(Asparouhov & Muthen, 2015; Cook, 1986; Lee & Tang, 2004; Pek & MacCallum, 

2011; Reise & Widaman, 1999; Zu & Yuan, 2010). Investigating individual case 

influence is necessary for understanding individual-level causal effects. 

Nevertheless, there appears to be no published research directly investigating 

person-centered mediation effects using techniques like case influence, person-fit 

indices, or residual analysis.  
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CHAPTER 2 

RESIDUALS AND INDIVIDUAL MODEL FIT 

Overview 

Residual analysis is a diagnostic tool that assesses data quality in regression 

models by identifying outliers and influential cases. Cook (1986) developed a method 

to determine local influence based on likelihoods and differential geometry, which 

became the foundation for local influence research. Another common residual 

analysis technique uses a series of model perturbations, such as a single case 

deletion scheme (Pek & MacCallum, 2011).  

Local influence analysis relies on the logic that outliers may exert more 

weight than other observations and be detectable as influential observations. 

Researchers are often concerned with cases that influence parameter estimates. In 

the context of mediation, if an observation has a true effect through a mediator that 

differs from the mediator specified in the model, then a downward bias towards zero 

would be predicted for the estimated parameter of the modeled mediator. Outliers 

and influential observations may also be detectable when associated with large 

residuals (Bollen & Arminger, 1991). Residuals may be larger when a different, 

unmodeled mediator is present but not included in the statistical model. Both ideas, 

that bias in parameter estimates and size of residuals could be indicators of which 

mediator is associated with an individual observation, could be investigated by 

comparing residuals and parameter estimates in different mediator models.  The 

comparison between residuals for models with different mediators is the basis of the 

simulation proposed below. 



  4 

Bollen and Arminger (1991) described the estimation of individual residuals 

in the context of factor analysis, which can be expanded to mediation models 

estimated in a latent variable framework. Unstandardized residuals can be 

computed as the difference between the observed dependent variable and the factor 

scores of the latent predictor variables. In equation 2.1, 𝜖𝜖𝑖𝑖 is the individual 

unstandardized residual for observation i, Yi is the observed outcome, Λ is a matrix 

of factor loadings, and 𝜂𝜂𝑖𝑖 is a vector of random latent variables. 

𝜖𝜖𝑖𝑖 = 𝑌𝑌𝑖𝑖 − Λ𝜂𝜂𝑖𝑖 (2.1) 

The latent variables represented by 𝜂𝜂𝑖𝑖 are the estimated weighted function of 

the observed outcome, as in equation 2.2, where �̂�𝜂𝑖𝑖is the estimated factor score, W is 

a weight matrix, and 𝑌𝑌𝑖𝑖 is the individual observed score on the outcome. The 

combination of equations 2.1 and 2.2 results in equation 2.3, which highlights the 

role of the weight matrix in estimating individual residuals in a latent variable 

model. 

�̂�𝜂𝑖𝑖 = 𝑊𝑊𝑌𝑌𝑖𝑖  (2.2) 

𝜖𝜖𝑖𝑖 = 𝑌𝑌𝑖𝑖(I − Λ𝑊𝑊) (2.3) 

There are two common methods for estimating the weight matrix, W. The 

first is based on least square estimation and involves minimizing the sum of squares 

of the latent variables. The second is Bartlett’s method, which minimizes the sum of 

squares divided by their standard deviations (Lawley & Maxwell, 1971). In a 

simulation study, Bollen and Arminger (1991) found that standardized residuals 

calculated via Bartlett’s method could detect outlying variables. 

Delta z and Generalized Cook’s Distance 
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Local influence measures can be extended from regression diagnostics to a 

model fit measure in SEM. Pek and MacCallum (2011) showed that individual cases 

could affect different aspects of model results, like model fit and parameter 

estimates, which require different diagnostic measures depending on the goal of the 

analysis. In addition, they noted the distinction between influential cases and 

outliers, namely that not all outliers are necessarily influential, and not all 

influential cases are outliers.  

Pek and MacCallum (2011) measured case influence on overall model fit by 

adapting the likelihood distance deletion statistic. The deletion statistic measures 

the displacement in the likelihood function that occurs when a case is deleted. The 

direction of change of a parameter estimate is computed as the standardized 

difference between the parameter value with and without the observation in 

question (δθ; see equation 2.4). This computation is much like the DFBETAS from a 

regression analysis. A positive 𝛿𝛿𝛿𝛿 indicates a reduction in the parameter, while a 

negative 𝛿𝛿𝛿𝛿 indicates an increase in the parameter. Significant model effects that 

are robust to the deletion of any single observation would have a range of δ𝛿𝛿𝑖𝑖 from 

all the delete-one samples that do not include the parameter value from the full 

sample. Pek and MacCallum (2011) found that this measure summarized case 

influence on model fit and indicated whether the case was consistent with the 

specified model.  

δ𝛿𝛿𝑖𝑖 =
�𝛿𝛿� − 𝛿𝛿�𝑖𝑖�

�𝑉𝑉𝑎𝑎𝑉𝑉�𝛿𝛿�𝚤𝚤�� �
1
2

 (2.4) 
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To investigate how a single case influences the magnitude of parameter 

estimates, Pek and MacCallum (2011) used generalized Cook's Distance (gCd) to 

determine the absolute magnitude of change when case i is deleted (see equation 2.5) 

𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖 = �𝛿𝛿� − 𝛿𝛿�𝑖𝑖�
′𝑉𝑉𝑎𝑎𝑉𝑉� �𝛿𝛿�𝑖𝑖�

−1 �𝛿𝛿� − 𝛿𝛿�𝑖𝑖� (2.5) 

Equation 2.5 can also be written in terms of δ𝛿𝛿𝑖𝑖. 

𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖 = [δ𝛿𝛿𝑖𝑖]2 (2.6) 

The delete-one observation perturbation scheme described by Pek and 

MacCallum (2011) can be applied to indirect effects using the Sobel 𝑧𝑧 statistic. In 

equation 2.7, the change in the general parameter estimate, 𝛿𝛿, is replaced by the 

change in the mediated effect calculated as the product of two regression coefficients 

(MacKinnon, 2008; Pek & MacCallum, 2011).   

Δ𝑧𝑧 =  
𝑎𝑎𝑏𝑏� − 𝑎𝑎𝚤𝚤𝑏𝑏� 𝑖𝑖

�𝑎𝑎𝚤𝚤�
2𝑠𝑠𝑏𝑏𝚤𝚤�

2 + 𝑏𝑏�𝑖𝑖
2𝑠𝑠𝑎𝑎𝚤𝚤�

2
 (2.7) 

Individual Chi-Square 

Model fit measures generally rely on the log-likelihood to evaluate goodness 

of fit. Reise and Widaman (1999) demonstrated a method of determining model fit 

for individual observations based on the log-likelihood of individual responses, 

individual Chi-square (INDCHI). INDCHI is a person fit statistic for structural 

equation models that quantifies an individual’s contribution to the overall model 

Chi-square statistic by comparing individual fit in hypothesized and saturated 

models, similar to the overall model Chi-square statistic.  

Individual model fit is assessed with INDCHI values by partitioning a model’s 

overall log-likelihood into contributions made by each observation using equation 2.8 
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(Lange et al., 1976), where 𝑝𝑝 is a vector of variables, 𝑥𝑥𝑖𝑖 is a vector of responses for 

individual 𝑖𝑖, and 𝑀𝑀 is a vector of sample means. The first part of the formula is a 

constant that applies to all the observations in a sample, while the second part is the 

Mahalanobis squared distance for the individual. 

𝑃𝑃𝐿𝐿𝐿𝐿 = −
1
2 �
𝑝𝑝 ln(2𝜋𝜋) + ln|Σ∗| + (𝑥𝑥𝑖𝑖 − 𝑀𝑀)Σ∗−1(𝑥𝑥𝑖𝑖 − 𝑀𝑀)� (2.8) 

Coffman and Millsap (2006) found that individual contribution to misfit was 

low, even among the highest -2PLL values. However, the rank order of percent 

contribution was robust, such that observations with lower -2PLL values had even 

lower percent contributions to overall model misfit.  Logically, as the number of 

observations increases, the maximum percentage that any single observation can be 

expected to contribute towards the overall model Chi-square decreases. Therefore, 

making relative rather than absolute comparisons of percentage contribution is 

reasonable. 

The individual LL is calculated for a saturated model and the proposed 

model. The difference between these two person-level log-likelihoods is the 

individual contribution of that observation to the overall model’s Chi-square. As the 

absolute value of INDCHI increases for an individual observation, that observation is 

less likely given the proposed model and therefore contributes more to the misfit of 

the model implied covariance matrix and observed covariance matrix. INDCHI is 

computed as -2 times the difference between the individual level log-likelihoods of 

the estimated and saturated models (see equation 2.9).  Individuals with large 

INDCHI values contribute more to the model's misfit.  

𝐼𝐼𝐼𝐼𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶 =  −2 �𝑃𝑃𝐿𝐿𝐿𝐿ℎ𝑦𝑦𝑦𝑦 − 𝑃𝑃𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑠𝑠� (2.9) 
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Reise and Widaman (1999) found that INDCHI was less confounded with 

individual trait levels than raw individual log-likelihood values, resulting in 

correlations between the statistic and latent trait scores near zero in simulated data.  

INDCHI can be used to identify observations that are not congruous with 

estimated parameters. For mediation, this statistic has potential as an indicator of 

observations inconsistent with an estimated mediator because of true effects 

transmitted through a different mediator. When a direct effect is established 

between treatment and outcome, it is reasonable to theorize that more than one 

mediation pathway may connect the two variables and that individuals may have 

different pathways at work. Given that, if individual observations are inconsistent 

with the modeled mediation pathway, then it is also reasonable to hypothesize that 

effects for those individuals may be transmitted from the 𝑋𝑋 to 𝑌𝑌 through a different 

mediation pathway.   

There is a conceptual difference between an individual for whom a proposed 

mediation path is not applicable and an individual for whom a different mediation 

path is applicable. An individual may not conform to a specified mediation model 

because there is no mediating mechanism at work, rather than having a different 

mechanism at work. These two scenarios may be distinguished by the total effect 

of 𝑋𝑋 on 𝑌𝑌. In the first case, where an individual has no mediation mechanisms at 

work, there are two possibilities. Either there is no relation between 𝑋𝑋 and 𝑌𝑌, or the 

change in 𝑌𝑌 is completely explained by 𝑋𝑋. The existence of a relation between 𝑋𝑋 and 𝑌𝑌 

can be tested statistically. Whether 𝑋𝑋 can completely explain 𝑌𝑌 is a matter of theory 

and relies on subject knowledge expertise and the aggregation of prior evidence. The 
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current project assumes that if an observation is inconsistent with the estimated 

mediation mechanism, then there is an alternative, unmodeled mechanism that can, 

at least partially, explain the relationship observed between 𝑋𝑋 and 𝑌𝑌, the 

independent variable, and the outcome.  

In terms of interpreting INDCHI values, “relatively large” negative individual 

log-likelihoods indicate outliers that are “relatively unlikely” given the proposed 

model (Reise & Widaman, 1999). Because INDCHI values are -2 times the difference 

in PLLs, relatively large positive values of INDCHI would suggest a greater 

contribution to model misfit. Negative values would be interpreted as contributing to 

model fit (Sterba & Pek, 2012). “Relatively large” and “relatively unlikely” are 

unhelpful terms for deciding whether any observation is consistent with a specified 

mediation mechanism. Therefore, one aspect of this project is to investigate whether 

there are reliably discernable values where individual misfit is suggestive of 

alternative mediating mechanisms rather than random noise. 
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CHAPTER 3 

TRADITIONAL MEDIATION 

Single Mediator Model 

The purpose of mediation analysis is to explain how the effect of an 

independent variable, 𝑋𝑋, is transmitted to a dependent variable, 𝑌𝑌. The causal 

process or processes that relate 𝑋𝑋 and 𝑌𝑌 can be described as the effect of 𝑋𝑋 on one or 

several mediators and the subsequent effect of the mediating variable(s) on 𝑌𝑌. A 

basic model includes a single mediator, M, a single predictor, 𝑋𝑋, and a single 

outcome, 𝑌𝑌. Equations 2.1-2.3 describe the relationships between these variables 

through three regression equations. The total effect of 𝑋𝑋 on 𝑌𝑌 is represented by the 𝑐𝑐 

coefficient. The effect of 𝑋𝑋 on 𝑀𝑀 is represented by the 𝑎𝑎 coefficient. If 𝑋𝑋 is a 

randomized experimental variable and there are no unmeasured confounders, the 

effect of 𝑋𝑋 on both 𝑀𝑀 and 𝑌𝑌 will have causal interpretations. The effect of 𝑀𝑀 on 𝑌𝑌 is 

represented by the 𝑏𝑏 coefficient, which does not have a causal interpretation even 

when 𝑋𝑋 is randomized. Causal interpretations of the b-path require additional 

assumptions regarding the absence of unmeasured confounders of the 𝑀𝑀 to 𝑌𝑌 

relation and added design-based or statistical techniques to strengthen causal 

interpretations (Valente et al., 2017). 

𝑌𝑌 = 𝑖𝑖1 + 𝑐𝑐𝑋𝑋 + 𝑒𝑒1 (3.1) 

 

𝑀𝑀 = 𝑖𝑖2 + 𝑎𝑎𝑋𝑋 + 𝑒𝑒2 (3.2) 

 

𝑌𝑌 = 𝑖𝑖3 + 𝑐𝑐′𝑋𝑋 + 𝑏𝑏𝑀𝑀 + 𝑒𝑒3 (3.3) 
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The indirect effect of 𝑋𝑋 on 𝑌𝑌 that is transmitted through 𝑀𝑀 can be estimated 

in several ways. Point estimates can be computed as the difference 𝑐𝑐 −  𝑐𝑐’ using 

coefficients from equations 3.1 and 3.3 or as the product 𝑎𝑎𝑏𝑏 using coefficients from 

equations 3.2 and 3.3. The product of coefficients is the most general method for 

mediation analysis and therefore is used for the proposed study (MacKinnon et al., 

2002). The statistical significance of the ab estimate is generally tested using either 

a Sobel standard error or confidence limits computed from the asymmetric 

distribution of the product (MacKinnon et al., 2007; Tofighi & MacKinnon, 2011). 

Parallel Mediators 

The single mediator model in equations 3.1-3.3 can be expanded to include 

more than one mediating variable. In a parallel two-mediator model, the indirect 

effect of a single independent variable 𝑋𝑋 is transmitted to a single outcome 

variable, 𝑌𝑌, through two different mediators that are not directly connected in a 

causal path (𝑀𝑀1, 𝑀𝑀2). Equations 3.4-3.6 describe the relationships between the four 

variables. In the first two equations, the effect of 𝑋𝑋 on each of the mediators is 

estimated separately. The third equation estimates the outcome using 𝑋𝑋, 𝑀𝑀1, and 

𝑀𝑀2, as predictors.  

𝑀𝑀1 = 𝑖𝑖𝑀𝑀1 + 𝑎𝑎1𝑋𝑋 + 𝑒𝑒𝑀𝑀1 (3.4) 

 

𝑀𝑀2 = 𝑖𝑖𝑀𝑀2 + 𝑎𝑎2𝑋𝑋 + 𝑒𝑒𝑀𝑀2 (3.5) 

 

𝑌𝑌 = 𝑖𝑖𝑌𝑌 + 𝑐𝑐′𝑋𝑋 + 𝑏𝑏1𝑀𝑀1 + 𝑏𝑏2𝑀𝑀2 + 𝑒𝑒𝑌𝑌 (3.6) 
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Three indirect effects can be estimated in this two-mediator model: two 

specific indirect effects through each mediator individually and one total indirect 

effect, which is the sum of the two specific effects. Point estimates of these effects 

can be computed using the product of coefficients method, where the two specific 

indirect effects are the estimates 𝑎𝑎1𝑏𝑏1 from the coefficients in equations 3.4 and 3.6 

and 𝑎𝑎2𝑏𝑏2 from the coefficients in equations 3.5 and 3.6. The point estimate for the 

total indirect effect is the sum of the two products, 𝑎𝑎1𝑏𝑏1 +  𝑎𝑎2𝑏𝑏2. The significance of 

each indirect effect and the equality of the two specific indirect effects can be tested. 

Finally, adding a second mediator introduces the possibility that the paths that 

make up the indirect effects can differ in sign and magnitudes in ways that appear 

to cancel each other out or otherwise complicate the interpretation of the total 

indirect effect.   

Mediation and Moderation  

Inferences from mediation analysis generally apply to the population, and for 

good reason, as there are many applications of mediation that show mechanisms 

that seem consistent across a population of persons (MacKinnon, 2008). Traditional 

mediation is a nomothetic approach for investigating causal relations among three 

or more variables. One of the mathematical assumptions of statistical mediation is 

that the mediating process is homogeneous in the population. Therefore, estimated 

mediation effects are assumed to describe uniform processes within a population 

(MacKinnon, 2008).  

However, researchers and clinicians may be interested in making inferences 

about individual clients or subpopulations of people.  Traditional mediation analysis 
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does not account for mechanisms that may differ among subgroups of a population 

or between individuals (Collins et al., 1998; Faldowski, 2009; von Eye et al., 2009). 

Carroll (2021) argued for a personalized medicine approach to studying substance 

use disorders (SUD) and their treatment, citing heterogeneity in individuals with 

SUD, the expression of the disorder along several dimensions (e.g., type of 

substance, severity, comorbidities), and the types of interventions necessary to 

target a variety of relevant mechanisms of addiction. Similarly, Witkiewitz et al. 

(2007) and Hsiao et al. (2020) discuss heterogeneity of drinking outcomes following 

treatment, noting that these observations are not independent but may be 

conditionally independent based on subgroups of alcohol use disorder types. 

Similarly, studies of the natural history of some diseases, such as rheumatoid 

arthritis, suggest multiple possible disease processes that may be distinguished by 

individual characteristics (Deane & Holers, 2019; Holers et al., 2018). 

Moderation is currently the standard method for examining individual 

differences in mediation. If a population comprises subpopulations that experience 

different mediation processes, then an individual difference variable can moderate 

the mediation effect (Baron & Kenny, 1986; Edwards & Lambert, 2007; James & 

Brett, 1984). Models with concurrent mediators and moderators can address several 

research questions, such as whether participants experience different processes 

through which an intervention works and whether mediation explains an interaction 

effect (Fairchild & MacKinnon, 2009). The first question concerns generalizability 

and is answered by testing whether the a-path, b-path, or both depend on a 

moderator. The second question concerns causality and is answered by testing 

whether an interaction effect predicts a mediator that, in turn, predicts the outcome. 
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Adding moderating variables creates a non-linear mediation model that can 

estimate different mechanisms based on categories of participants. Statistical and 

conceptual complexities can make interpreting the relevant interactions difficult. 

Including mediators and moderators in a study requires resources to determine 

relevant a priori theories, careful attention to the statistical and conceptual 

complexities of interpreting such a model, and pragmatic concerns related to data 

collection.  The interaction between a mediator and moderator may result in 

mediated moderation (Edwards & Lambert, 2007), where a mediator transmits the 

interaction effect to the outcome, or moderated mediation (James & Brett, 1984), 

where the effects of the mediator are contingent upon values of the moderator. 

Morgan-Lopez and MacKinnon (2006) framed this distinction as whether a 

moderator influenced the a-path (mediated moderation) or the b-path (moderated 

mediation).  

Baseline values of mediators and outcomes can also be informative 

moderators. Tien et al. (2004) analyzed real-world intervention data using baseline 

values of the mediators and outcomes as moderators. The intervention investigated 

the effects of a parenting program on internalizing and externalizing behaviors in 

children of divorced parents and found that the program's effects on internalizing 

problems occurred for a subgroup of children who had poor mother-child 

relationships before the intervention (Wolchik et al., 2000). Improvement in 

relationship quality induced by the intervention program mediated the effect. These 

findings confirmed a hypothesis about the mediators outlined in Wolchik et al. 

(2000), who illustrated how evidence from individualized mediation analysis could 
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provide information for improving the efficiency of interventions by identifying 

populations for whom the program is likely to be most effective. 

A great deal of methodological and applied work has been done using models 

with concurrent mediators and moderators over the last four decades; however, 

there are still serious limitations to consider. For example, the concurrent effects of 

mediators and moderators are often assessed using a regression approach (Baron & 

Kenny, 1986; Edwards & Lambert, 2007; Hayes, 2018; MacKinnon, 2008; Muller et 

al., 2005; Preacher et al., 2007). However, the regression approach assumes no 

measurement error in the variables, an assumption that is expected to be violated 

(Cheung & Lau, 2017).  

In addition, there is statistical ambiguity as to whether a variable operates 

as a mediator or a moderator. No general statistical framework can determine 

whether a variable addresses causality in a model (i.e., mediator) or generalizability 

(i.e., moderator). To make this distinction, a researcher must employ theory and 

critical thinking to determine the function of the variables in question in any dataset 

(Edwards & Lambert, 2007; MacKinnon, 2008; Muller et al., 2005).  

Generalized models with moderation and mediation involve multiple 

interaction terms, and the power to detect these effects is often low in real data 

(Fairchild & MacKinnon, 2009; MacKinnon, 2008; Morgan-Lopez & MacKinnon, 

2006).  However, researchers can improve arguments for moderation effects by 

considering effect sizes even if the coefficient is not significant. The magnitude of an 

effect indicates whether a more powerful test (e.g., a larger sample size) might 

detect the moderation effect, which can inform future studies and replications. 

Statistical power can also be improved by incorporating a mediational selection 
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strategy for participant recruitment (Pillow et al., 1991). This method involves 

screening participants based on baseline values of a target mediator, assuming those 

with lower values will see greater benefits from the intervention (see Howe, 2019). 

Participant screening can improve program cost-effectiveness and reduce the 

potential for iatrogenic effects. Pillow et al. (1991) developed a mediational screening 

instrument for children of divorce and found that it reliably predicted symptoms of 

behavioral problems. 

A limitation of particular interest is that of defining individual difference 

variables, which are often related to demographics (e.g., race, sex, class) and are 

colloquially referred to as “usual suspects” (Howe, 2019). A more individualized 

approach might include response patterns that cut across a range of observed 

variables as a categorical moderator rather than natural subgroupings. Configural 

frequency analysis (von Eye, 1990, 2002) is a method for analyzing response 

patterns. Previous work on configural frequency mediation (Smyth & MacKinnon, 

2021; von Eye et al., 2009; Wiedermann & Von Eye, 2021) can be extended to include 

the moderation of the mediated effect. 
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CHAPTER 4 

INDIVIDUAL MEDIATION 

Individual Mediation Effects 

Researchers with hypotheses involving differing mechanisms among 

subgroups or individuals have limited statistical methods to test individualized 

mediation. Ignoring individual differences can have consequential effects, especially 

for research in prevention, medicine, clinical psychology, epidemiology, and public 

health, where a non-significant effect may obscure iatrogenic treatments (Fairchild 

& Mackinnon, 2014; MacKinnon, 2011). Inconsistent mediation or suppression 

effects can manifest if subgroups respond differently to the mediator in a single 

mediator model or respond to different mediators in a multiple mediator model. For 

both scenarios, a traditional test of the mediated effect may be non-significant, 

which can conceal significant but opposing subgroup effects.  

In contrast, individual mediation acknowledges that mediating processes 

may differ across persons, thereby avoiding the ecological fallacy of treating 

population-level effects as true for individuals.  Despite the potential for individual 

differences in mediating processes, there are few well-studied person-oriented 

mediation methods in the literature.  Recognizing the need for personalized 

intervention, Howe et al. called for ". . . a flexible framework. . . from genetic 

moderation of preventative intervention effects to prescriptive implications for 

prevention" (Howe et al., 2016, p.1). The framework must deal with persistent 

constraints on individualized inference, such as statistical fallacies. Krull and 

MacKinnon (1999) pointed out that although statistical methods can evaluate 

interventions, the clinical purpose of an intervention is usually to effect change on 
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individuals, not on an aggregated group. However, inferences about subgroups or 

individuals cannot be made from traditional analysis, as doing so would be an 

ecological fallacy. 

Similarly, Reise and Widaman assert that while a good-fitting statistical 

model can be descriptive of a portion of the population under some circumstances, 

“…there simply is no such thing as a universalistic, nomothetically applicable CSA 

model that adequately represents important psychological phenomena equally well 

for all individuals in a given population.” (1999, p. 4). This echoes Bem and Allen's 

claim that constructs in the realm of personality psychology apply to "some of the 

people, some of the time" (Bem & Allen, 1974, p. 506), and Allport's claim that ". . . 

no two persons ever have precisely the same trait. . . (Allport, 1937, p. 295). 

Behavioral research is costly in terms of time, money, and intangible 

resources, so it is preferable to extract as much information as possible from the 

collected data (Kraemer et al., 2001; Morgan & Winship, 2007; Tein et al., 2004). 

Traditional mediation analysis provides researchers with a tool that goes beyond 

investigating correlated effects to investigate mechanisms, processes, and even 

causation when appropriate assumptions are met. The ability to extend mediation 

analysis to estimate individualized effects can further improve the efficiency and 

effectiveness of research programs.  

Individualized mediation could identify either subgroups or individuals who 

may have mediation processes that differ from the larger sample or population. For 

example, if there are two different but opposing mechanisms at work within a 

population, these effects would cancel out in traditional analysis, resulting in the 

erroneous conclusion that there is no mediation among the variables of interest. An 
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individualized mediation method could uncover the distinct processes and identify 

for whom each mediation path is relevant. As Muthén et al. (Muthén et al., 2002) 

point out, assessing differential intervention effects based on subgroup trajectories 

can lead to more effective intervention design strategies. Applications such as 

personalized medicine, clinical psychology, public health programs, and adaptive 

intervention programs could improve outcomes for more people. Additionally, 

publicly funded programs would be more effective and efficient while improving the 

information available for policy-making decisions. 

There are robust bodies of research on both mediation analysis and 

individual differences. However, there is a noticeable gap in knowledge concerning 

individual differences in mediated effects. Only a handful of papers have been found 

that tackle the subject (Faldowski, 2009; Geuke et al., 2019; MacKinnon et al., 2022; 

Smyth & MacKinnon, 2021; von Eye et al., 2009; Wiedermann & Von Eye, 2021). By 

providing a better understanding of individualized mediation effects, psychological 

and behavioral research in social science will be improved practically by having 

more information to design better programs and theoretically by providing more 

information to refine causal theories. Ignoring individualized mediation effects can 

lead to unwanted results, such as concluding that there is no mediated effect when 

there may be multiple mechanisms at work. 

A common assumption of the linear mediation model is that the causal 

mechanism is homogeneous in the population. However, the population might 

include subpopulations that experience different mediation processes. If these 

subpopulations are defined by a measurable individual difference variable, such as a 

demographic category, then a traditional moderation analysis may be sufficient to 



  20 

test and describe heterogeneity in the mediated effect. However, it may be the case 

that individuals who respond differentially to mediating processes may not be so 

easily clustered together. 

Combining Individual Fit and Individual Mediation 

The model residuals and individual fit measures described in Chapter 1 are 

intended to signal when individual observations may have an outlying influence on 

the results of a statistical model. When one subpopulation has a mediated effect and 

another does not, differences in individual fit measures are expected depending on 

whether or not that mediator is included in the model. A scenario where a true 

mediator is left out of a model does not suggest that any observations would rise to 

the level of being an influential variable based on its true mediated effect. Therefore, 

a direct application of these methods for identifying individual mediation is unlikely 

to bear interesting fruit. 

However, this dissertation proposes a novel use for these methods that 

involves studying the differences in residuals and fit measures in a simulation study 

where there are known differences in mediated effect within the sample. The logic of 

this new application rests in the difference of the values of residuals and individual 

fit measures in a series of models in which various mediation effects are estimated 

using the same dataset. One aim of this study is to investigate how the magnitude, 

direction, and significance of the difference in residuals is influenced when the true 

mediated effects in the sample are heterogeneous, and there is variation in whether 

all the pertinent mediators are specified in the model. 
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CHAPTER 5 

PILOT STUDY 

Methods 

A pilot study was conducted to obtain preliminary information about the 

methods for individual-level mediation useful for a proposed simulation. The pilot 

study explored if residuals provide information about which mediated effect 

corresponds to individual observations when two different mediating processes are 

present in a population.  

The methods under investigation in the pilot study include comparisons of 

residual direction and magnitude when mediators are and are not included in the 

estimated model. These comparisons were made with raw and standardized 

residuals (i.e., delta 𝑧𝑧 statistic and generalized Cook’s distance.) An individual 

likelihood-based method was also examined. 

A general aim of the pilot study was to demonstrate that the methods were 

promising under ideal conditions first before investigating more fine-grained 

conditions in the proposed study. To this end, extremely large effect sizes and a large 

sample size were specified. The results below demonstrate that each method showed 

promise for individual-level mediated effects and provided motivation for evaluating 

the methods with effect sizes more commonly observed with real data.  

Data Generation 

Data for one population condition were generated using SAS software, 

Version 9.4 of the SAS system for Windows. Variables 𝑋𝑋, 𝑀𝑀1, 𝑀𝑀2, and 𝑌𝑌 were 

generated using the RAND function and random seed 1920201. The 𝑋𝑋 variable was 
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generated as a continuous variable from 𝐼𝐼(0,1). 𝑀𝑀1, 𝑀𝑀2, and 𝑌𝑌 were generated 

according to equations 5.1-5.3. In these equations, iM1, iM2, and iY are intercepts and 

have been set to 0; eM1, eM2, and eY are errors; the a-paths represent the effects of 𝑋𝑋 

on 𝑀𝑀1 and 𝑀𝑀2; the b-paths represent the effects of 𝑀𝑀1 and 𝑀𝑀2 on  𝑌𝑌 while controlling 

for 𝑋𝑋; and the c’-path represents the direct effect of 𝑋𝑋 on 𝑌𝑌, controlling for 𝑀𝑀1 and 𝑀𝑀2.  

𝑀𝑀1 = 𝑖𝑖𝑀𝑀1 + 𝑎𝑎1𝑋𝑋 + 𝑒𝑒𝑀𝑀1 (5.1) 

 

𝑀𝑀2 = 𝑖𝑖𝑀𝑀2 + 𝑎𝑎2𝑋𝑋 + 𝑒𝑒𝑀𝑀2 (5.2) 

 

𝑌𝑌 = 𝑖𝑖𝑌𝑌 + 𝑐𝑐′𝑋𝑋 + 𝑏𝑏1𝑀𝑀1 + 𝑏𝑏2𝑀𝑀2 + 𝑒𝑒𝑌𝑌 (5.3) 

 

A sample of N=1500 observations was generated from a population model 

with two parallel mediators and was made up of three subpopulations of equal size. 

The population 𝑐𝑐’ path equaled 0 for all three subpopulations. The paths for 𝑎𝑎1 and 

𝑏𝑏1 were equal, as were 𝑎𝑎2 and 𝑏𝑏2. For each of the two subpopulations, the true 

indirect effect of the independent variable was transmitted through only one of the 

mediators. For the first subgroup, 𝑎𝑎1 = 𝑏𝑏1 = 9, and 𝑎𝑎2 = 𝑏𝑏2 = 0. In the second 

subgroup, 𝑎𝑎1 = 𝑏𝑏1 = 0, and 𝑎𝑎2 = 𝑏𝑏2 = 9. The third subgroup data were generated to 

have no relationships between 𝑋𝑋, 𝑀𝑀1, 𝑀𝑀2, or 𝑌𝑌. Data for the subpopulations were 

generated as separate files and then combined into a single data file for analysis.  

The true parameter value of 9 for 𝑎𝑎 and 𝑏𝑏-path effects and 81 for the indirect 

effects (𝑎𝑎1𝑏𝑏1 and 𝑎𝑎2𝑏𝑏2) were intentionally made extremely large to examine whether 

the methods under investigation are at least conceptually viable from first 

principles. One goal of the full simulation is to ascertain whether these methods are 
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viable under conditions more like actual psychological and public health data. A 

summary of true coefficient values for this condition is in table 1.  

Analysis 

Index Plots 

Within the dataset, observations 1-500 had a true mediated effect through 

paths 𝑎𝑎1 and 𝑏𝑏1, observations 501-1000 had a true mediated effect through paths 𝑎𝑎2 

and 𝑏𝑏2, and observations 1001-1500 had no mediated effect. Regression equations 

were estimated and predicted 𝑌𝑌 values saved for three models: a single mediator 

model through 𝑀𝑀1, a single mediator model through 𝑀𝑀2, and a two-mediator model 

through both mediators. The observed and predicted values of 𝑌𝑌 from each model 

were plotted by observation number.  

Raw Residuals 

 The data were analyzed using Models 0-3, described below (see equations 

5.4, 5.6-5.7, 5.9-5.10, and 5.12). Residuals were calculated for individual 

observations (see equations 5.5, 5.8, 5.11, and 5.13). For each of the 1500 

observations in the sample, four separate residual values were computed and 

labeled 𝑒𝑒𝑗𝑗𝑖𝑖 for j = 0, 1, 2, 3 and i = 1, 2, …, n. The subscript j is the index for the four 

models, while subscript i is the index for individual observations.  In the following 

equations, 𝑌𝑌𝑗𝑗𝑖𝑖 is the observed value of 𝑌𝑌 of model j for observation i; 𝑌𝑌�𝑗𝑗 is the 

predicted mean of 𝑌𝑌 for model j; n is the number of observations in the sample; 𝑒𝑒𝑗𝑗𝑖𝑖 is 

the residual for individual i and model j; M1 is the first mediator; M2 is the second 

mediator; 𝑋𝑋 is the predictor.  
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Model 0 is the mean of 𝑌𝑌 across all observations in each dataset, as in 

equation 5.4. Residual 0 is calculated for each observation as the difference between 

observed 𝑌𝑌 and the mean of 𝑌𝑌, as in equation 5.5.  

𝑌𝑌�0 =
∑ 𝑌𝑌𝑖𝑖1
𝑛𝑛

(5.4) 

𝑒𝑒0𝑖𝑖 = 𝑌𝑌0𝑖𝑖 − 𝑌𝑌�0 (5.5) 

Model 1 is a single mediator model through mediator 1 (𝑀𝑀1) estimated with 

equations 5.6 and 5.7. Residual 1 is calculated for each observation in equation 5.8 

as the difference between observed 𝑌𝑌 and the predicted 𝑌𝑌 from equation 5.7.  

𝑀𝑀�1 = 𝑖𝑖𝑀𝑀1 + 𝑎𝑎1𝑋𝑋 (5.6) 

𝑌𝑌�1 = 𝑖𝑖𝑌𝑌1 + 𝑐𝑐′𝑋𝑋 + 𝑏𝑏1𝑀𝑀1 (5.7) 

𝑒𝑒1𝑖𝑖 = 𝑌𝑌1𝑖𝑖 − 𝑌𝑌�1 (5.8) 

Model 2 is a single mediator model through mediator 2 (𝑀𝑀2) estimated with 

equations 5.9 and 5.10. Residual 2 is calculated for each observation in equation 5.11 

as the difference between observed 𝑌𝑌 and the predicted 𝑌𝑌 from equation 5.10.  

𝑀𝑀�2 = 𝑖𝑖𝑀𝑀2 + 𝑎𝑎2𝑋𝑋 (5.9) 

𝑌𝑌�2 = 𝑖𝑖𝑌𝑌2 + 𝑐𝑐′𝑋𝑋 + 𝑏𝑏2𝑀𝑀2 (5.10) 

𝑒𝑒2𝑖𝑖 = 𝑌𝑌2𝑖𝑖 − 𝑌𝑌�2 (5.11) 

Model 3 is a two-mediator model through both mediators estimated with 

equations 5.6, 5.9, and 5.12. Residual 5 is calculated for each observation in equation 

5.13 as the difference between observed 𝑌𝑌 and the predicted 𝑌𝑌 from equation 5.12. 

𝑌𝑌�3 = 𝑖𝑖𝑌𝑌3 + 𝑐𝑐′𝑋𝑋 + 𝑏𝑏1𝑀𝑀1 + 𝑏𝑏2𝑀𝑀2 (5.12) 

𝑒𝑒3𝑖𝑖 = 𝑌𝑌3𝑖𝑖 − 𝑌𝑌�3 (5.13) 

Delta z 
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 A Sobel test for the indirect effect adapted from methods described in Pek 

and MacCallum (delta z; 2011) was conducted using 1500 jackknife replicates of 

(n=1499) computed by systematically removing one observation at a time. A two-

mediator model was estimated in PROC CALIS for the full sample (n=1500) and a 

full set of jackknife samples (n=1499 each). Estimates were computed for the 

mediated effect through 𝑀𝑀1 (𝑎𝑎1𝑏𝑏1), the mediated effect through 𝑀𝑀2 (𝑎𝑎2𝑏𝑏2), the total 

mediated effect (𝑎𝑎1𝑏𝑏1 + 𝑎𝑎2𝑏𝑏2) and the difference between the mediated effects 

(𝑎𝑎1𝑏𝑏1− 𝑎𝑎2𝑏𝑏2). 

The Sobel 𝑧𝑧 statistic was computed for estimates in the complete N=1500 

sample according to equations 5.14-5.17. In these equations, 𝑎𝑎1𝑏𝑏1 and 𝑎𝑎2𝑏𝑏2  are 

mediated effects through 𝑀𝑀1 and 𝑀𝑀2; 𝑎𝑎1 and 𝑎𝑎2  are the effects of 𝑋𝑋 on 𝑀𝑀1 and 𝑀𝑀2; 

𝑏𝑏1 and 𝑏𝑏2  are the effects of 𝑀𝑀1 and 𝑀𝑀2 on 𝑌𝑌 controlling for 𝑋𝑋; 𝑠𝑠𝑎𝑎�1
2  and 𝑠𝑠𝑏𝑏�1

2  are the 

variances of 𝑎𝑎1  and 𝑏𝑏1; 𝑠𝑠𝑎𝑎�2
2  and 𝑠𝑠𝑏𝑏�2

2  are the variances of 𝑎𝑎2  and 𝑏𝑏2; and 𝑠𝑠𝑎𝑎1�𝑎𝑎2�  and 

𝑠𝑠𝑏𝑏1�𝑏𝑏2�   are the covariances for the 𝑎𝑎 and 𝑏𝑏-paths. 

𝑧𝑧𝑎𝑎1𝑏𝑏1 =  
𝑎𝑎1𝑏𝑏1�

�𝑎𝑎1�
2𝑠𝑠𝑏𝑏1�

2 + 𝑏𝑏1�
2𝑠𝑠𝑎𝑎1�

2
(5.14) 

 

𝑧𝑧𝑎𝑎2𝑏𝑏2 =  
𝑎𝑎2𝑏𝑏2�

�𝑎𝑎2�
2𝑠𝑠𝑏𝑏2�

2 + 𝑏𝑏2�
2𝑠𝑠𝑎𝑎2�

2
(5.15) 

 

𝑧𝑧𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2 =  
𝑎𝑎1𝑏𝑏1� + 𝑎𝑎2𝑏𝑏2�

�𝑎𝑎1�
2𝑠𝑠𝑏𝑏1�

2 + 𝑏𝑏1�
2𝑠𝑠𝑎𝑎1�

2 + 𝑎𝑎2�
2𝑠𝑠𝑏𝑏2�

2 + 𝑏𝑏2�
2𝑠𝑠𝑎𝑎2�

2 + 2𝑎𝑎1�𝑎𝑎2�𝑠𝑠𝑏𝑏1�𝑏𝑏2� + 2𝑏𝑏1�𝑏𝑏2�𝑠𝑠𝑎𝑎1�𝑎𝑎2�

(5.16) 
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𝑧𝑧𝑎𝑎1𝑏𝑏1−𝑎𝑎2𝑏𝑏2 =  
𝑎𝑎1𝑏𝑏1� −𝑎𝑎2𝑏𝑏2�

�𝑎𝑎1�
2𝑠𝑠𝑏𝑏1�

2 + 𝑏𝑏1�
2𝑠𝑠𝑎𝑎1�

2 + 𝑎𝑎2�
2𝑠𝑠𝑏𝑏2�

2 + 𝑏𝑏2�
2𝑠𝑠𝑎𝑎2�

2 − 2𝑎𝑎1�𝑎𝑎2�𝑠𝑠𝑏𝑏1�𝑏𝑏2� − 2𝑏𝑏1�𝑏𝑏2�𝑠𝑠𝑎𝑎1�𝑎𝑎2�

(5.17) 

The difference in the Sobel statistic between each jackknife replicate and the 

complete sample was computed for each estimate according to equations 5.18-5.21. 

In these equations, the subscript i refers to the jackknife sample in which 

observation i has been removed. 

Δ𝑧𝑧𝑎𝑎1𝑏𝑏1 =  
𝑎𝑎1𝑏𝑏1� −𝑎𝑎1𝚤𝚤𝑏𝑏1𝚤𝚤�

�𝑎𝑎1�
2𝑠𝑠𝑏𝑏1�

2 + 𝑏𝑏1�
2𝑠𝑠𝑎𝑎1�

2
(5.18) 

Δ𝑧𝑧𝑎𝑎2𝑏𝑏2 =  
𝑎𝑎2𝑏𝑏2� −𝑎𝑎2𝚤𝚤𝑏𝑏2𝚤𝚤�

�𝑎𝑎2�
2𝑠𝑠𝑏𝑏2�

2 + 𝑏𝑏2�
2𝑠𝑠𝑎𝑎2�

2
(5.19) 

 

Δ𝑧𝑧𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2 =  
(𝑎𝑎1𝑏𝑏1� + 𝑎𝑎2𝑏𝑏2)� − (𝑎𝑎1𝚤𝚤𝑏𝑏1𝚤𝚤� + 𝑎𝑎2𝚤𝚤𝑏𝑏2𝚤𝚤)�

�𝑎𝑎1�
2𝑠𝑠𝑏𝑏1�

2 + 𝑏𝑏1�
2𝑠𝑠𝑎𝑎1�

2 + 𝑎𝑎2�
2𝑠𝑠𝑏𝑏2�

2 + 𝑏𝑏2�
2𝑠𝑠𝑎𝑎2�

2 + 2𝑎𝑎1�𝑎𝑎2�𝑠𝑠𝑏𝑏1�𝑏𝑏2� + 2𝑏𝑏1�𝑏𝑏2�𝑠𝑠𝑎𝑎1�𝑎𝑎2�

(5.20) 

 

Δ𝑧𝑧𝑎𝑎1𝑏𝑏1−𝑎𝑎2𝑏𝑏2 =  
�𝑎𝑎1𝑏𝑏1� −𝑎𝑎2𝑏𝑏2��− �𝑎𝑎1𝚤𝚤𝑏𝑏1𝚤𝚤� −𝑎𝑎2𝚤𝚤𝑏𝑏2𝚤𝚤� �

�𝑎𝑎1�
2𝑠𝑠𝑏𝑏1�

2 + 𝑏𝑏1�
2𝑠𝑠𝑎𝑎1�

2 + 𝑎𝑎2�
2𝑠𝑠𝑏𝑏2�

2 + 𝑏𝑏2�
2𝑠𝑠𝑎𝑎2�

2 − 2𝑎𝑎1�𝑎𝑎2�𝑠𝑠𝑏𝑏1�𝑏𝑏2� − 2𝑏𝑏1�𝑏𝑏2�𝑠𝑠𝑎𝑎1�𝑎𝑎2�

(5.21) 

 

gCd 

Delta 𝑧𝑧 is useful for determining the direction of change in parameter 

estimates. At the same time, generalized Cook’s distance (gCd) measures the 

absolute change in magnitude of parameter estimates when case i is deleted from 

the sample. Equation 2.5 shows gCd computed as a function of the parameter 

estimates from the full sample and delete-one samples and the covariances of the 
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parameter estimates. In the matrix formula, 𝛿𝛿� is a vector of parameter estimates 

from the full sample, 𝛿𝛿�𝑖𝑖 is a vector of estimates from each jackknife sample, and 

𝑉𝑉𝑎𝑎𝑉𝑉(𝛿𝛿�𝚤𝚤)�  is a covariance matrix of parameter estimates from the jackknife sample.  

Delta 𝑧𝑧 and gCd are closely related as gCd can be computed as the square of 

delta 𝑧𝑧.  The gCd statistic is bounded by zero. A small value shows that excluding 

observation i leads to small changes in the parameter estimate. Larger values 

suggest that excluding that observation leads to a larger change in the parameter 

estimate.  

Individual Chi-Square 

 INDCHI is defined as -2 times the difference between the individual log-

likelihood computed in the hypothetical model and the PLL computed in a saturated 

model, as shown in equation 2.8 (PLL; Lange et al., 1976).  In equation 2.8, p is a 

vector of variables, xi is a vector of responses for individual i, and 𝑀𝑀 is a vector of 

sample means. The first part of the formula is a constant that applies to all the 

observations in a sample, while the second part is the Mahalanobis squared distance 

for the individual. 

INDCHI measures an individual observation’s contribution to a structural 

model’s Chi-square value. The PLL of the saturated model is treated as the expected 

value for that person (which parallels the logic of comparisons in configural 

frequency mediation).  Large INDCHI values indicate an observation that contributes 

more to the overall misfit of the model. In the simulated data, it is known that some 

observations have an effect through an unmodeled mediator. Therefore, it is 

expected that these observations would contribute to the misfit of the model.  
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Results 

Index Plots for Observed and Predicted Y 

The index plot suggested that there was more variability in observed 𝑌𝑌 for the 

first 1000 observations than the last 500, showing that observed values of 𝑌𝑌 

appeared to have more variability around the mean when a mediator was included 

in the data generation process (see panels 1a.-3a. of figure 1). This pattern is 

expected. 

There was more variability in predicted 𝑌𝑌 for the first 500 observations when 

𝑀𝑀1 was modeled, the second 500 observations when 𝑀𝑀2 was modeled, and the first 

1000 observations when both 𝑀𝑀1 and 𝑀𝑀2 were modeled. Predicted values of 𝑌𝑌 had 

more variability when the modeled mediator matched the mediator in the data 

generation process.   

Raw Residuals 

The residuals from Models 0-3 were saved for each observation. Model 0 was 

the difference between observed 𝑌𝑌 and the mean of 𝑌𝑌 with no predictors. Model 1 was 

a single mediator model through 𝑀𝑀1. Model 2 was a single mediator model through 

𝑀𝑀2. Model 3 was a two-mediator model. For individual observations, the residuals 

from each model can be compared. For any given observation, the size of the residual 

should describe how well that model predicts for that individual. 

Visual comparisons can be made using the index plots in figure 2. First, it 

was predicted that if someone has no mediated effect (𝑆𝑆3) then the residuals would 

be the same across all four models. However, looking at the last third of the 

observations shows that the residuals for this subpopulation are only similar when 
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either 𝑀𝑀1 or 𝑀𝑀2 is included in the model (panels 2 and 3).  For someone with effects 

through 𝑀𝑀1 (𝑆𝑆1), it was predicted that residuals in Model 2 would be higher than 

residuals for someone with effects through 𝑀𝑀2 (𝑆𝑆2), which is seen by comparing 

subpopulations 1 and 2 in panel 3. Likewise, it was expected that the residuals for 

𝑆𝑆1 would be similar in Models 1 and 3, which are the two models in which 𝑀𝑀1 was 

modeled, which is seen by comparing 𝑆𝑆1 in panels 2 and 4. 

Because the magnitude of effects through 𝑀𝑀1 and 𝑀𝑀2 were held constant, it 

was expected that effects for 𝑆𝑆2 would mirror those seen for 𝑆𝑆1. For example, in a 

comparison of subpopulations 1 and 2 in panel 2, residuals for individuals with the 

unmodeled mediator are larger on average (𝑆𝑆2) than those with the modeled 

mediator (𝑆𝑆1). The mean values of model residuals are summarized in table 2. 

Delta z 

 It was expected that for observations with a larger effect through 𝑀𝑀1, the 

difference between 𝑎𝑎1𝑏𝑏1 in the full sample and the jackknife sample that has the 

observation deleted would be larger than the difference between 𝑎𝑎2𝑏𝑏2 in the full 

sample and jackknife sample. Similarly, the discrepancy for 𝑎𝑎2𝑏𝑏2 would be greater 

for observations with a larger effect through 𝑀𝑀2. The plots in figure 3 show that the 

discrepancies in 𝑎𝑎1𝑏𝑏1 (panel A) and 𝑎𝑎2𝑏𝑏2 (panel B) differ for observations that have 

larger effects through 𝑀𝑀1 or 𝑀𝑀2, respectively. Table 2 also summarizes the mean 

values of delta 𝑧𝑧 for subpopulations 1 and 2, which shows a similar pattern of 

positive values of delta 𝑧𝑧 for mediated effects through the “correct” mediator (i.e., 𝑀𝑀1 

for 𝑆𝑆1 and 𝑀𝑀2 for 𝑆𝑆2), and negative values for mediated effects through the 
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“incorrect” mediator (i.e., 𝑀𝑀2 for 𝑆𝑆1 and 𝑀𝑀1 for 𝑆𝑆2). The absolute values of delta 𝑧𝑧 

appear to be similar in magnitude for both mediated effects in both subpopulations. 

gCd 

It was expected that removing observations that had mediated effects 

corresponding to the modeled mediator would lead to larger changes in parameter 

estimates and, therefore, larger gCd values. For example, removing observations 

from 𝑆𝑆1 would lead to larger gCd values than removing observations from 𝑆𝑆2 when 

𝑀𝑀1 was the only modeled mediator. Table 2 also summarizes the mean gCd values 

for each subpopulation and is suggestive of the expected pattern, although the range 

of mean gCd values is narrow. 

Figure 4 shows the subpopulation with no mediated effects (𝑆𝑆3) has gCd 

values more like the subpopulation with an unmodeled mediated effect (i.e., 𝑆𝑆2 in 

panel A and 𝑆𝑆1 in panel B). However, 𝑆𝑆3 appears to have less variability. 

Observations with large effects on the unmodeled mediator (i.e., 𝑆𝑆2 in panel A and 

𝑆𝑆1 in panel B) have, on average, smaller gCd values than observations with large 

mediated effects on the modeled mediator (See table 2). Visual inspection of figure 4 

suggests the mean gCd in the subpopulation with the unmodeled mediator may be 

driven by a few influential values. 

A comparison of gCd and delta 𝑧𝑧 in table 2 shows that the discrepancies 

between 𝑆𝑆1 and 𝑆𝑆2 have similar absolute magnitudes in both measures; however, 

they have opposite signs in delta 𝑧𝑧. This difference in sign is obscured in gCd 

because the statistic is bounded by zero. Although the magnitudes of difference are 
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very small in the context of statistical testing, the pattern of values and variability 

related to whether mediated effects are correctly modeled appears to be consistent. 

Individual Chi-Square 

A two-mediator model was estimated in Mplus, and PLL values were saved. 

The PLL values summed to the model log-likelihood (LL = -14125.134) of the two-

mediator model. Because the two-mediator model is the proper data generation 

model, the PLLs from this model were used as the saturated individual likelihoods 

(𝑃𝑃𝐿𝐿𝐿𝐿𝑠𝑠𝑎𝑎𝑠𝑠) for the INDCHI formula in equation 2.9. A single mediator model through 𝑀𝑀1 

was also estimated, and the PLL values were saved. These values sum to the model 

log-likelihood (LL = -11792.686) of the single mediator model and functioned as the 

hypothesized individual likelihoods (𝑃𝑃𝐿𝐿𝐿𝐿ℎ𝑦𝑦𝑦𝑦) for the INDCHI formula in equation 2.9 

above. Figure 5 shows that in this limited examination, a visual distinction can be 

made between the subpopulation with no mediation effects (𝑆𝑆3) and the other two 

subpopulations. However, there is not a visible difference between 𝑆𝑆1, which has a 

true effect through the modeled mediator (𝑀𝑀1), and 𝑆𝑆2, which has a true effect 

through an unmodeled mediator (𝑀𝑀2). The mean INDCHI values by subpopulation are 

summarized in table 2.  

The difference in 𝑆𝑆3 suggests that INDCHI has the potential to distinguish 

whether there is a mediated effect or not for a given observation. However, more 

work needs to be done to determine a method for computing INDCHI values between 

models to distinguish between observations that have similarly sized effects on 

different mediators. 

Summary of Pilot Results 
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The pilot study revealed several results that inform the proposed simulation. 

First, residuals for observations with no mediated effect were smallest in a model 

with no predictors and largest when one mediator was included in the model. 

Residuals were smaller for observations with effects through 𝑀𝑀1 compared to 

observations for effects through 𝑀𝑀2 when only 𝑀𝑀1 was modeled. A parallel result 

was seen for observations with effects through 𝑀𝑀2 when only 𝑀𝑀2 was included in the 

model.  Residuals were visually indistinguishable between subpopulations when 

both mediators were included in the model.  

Second, it was observed that delta 𝑧𝑧 values were positive in observations 

whose true mediated effect matched the estimated specific mediated effect. However, 

delta 𝑧𝑧 was negative for observations whose true mediated effect did not match the 

estimated specific mediated effect. In addition, there appeared to be more variability 

in delta 𝑧𝑧 when it was positive. Third, a pattern was seen with gCd, such that the 

mean value of the statistic was larger in the subpopulation that had true mediated 

effects corresponding to the modeled mediator; however, the range of values was 

narrow, and the difference between groups was not statistically tested. Finally, in an 

index plot of INDCHI values, 𝑆𝑆3 was visually distinct, but no difference could be seen 

between observations with effects through 𝑀𝑀1 and those with effects through 𝑀𝑀2.  

This pilot study shows the feasibility of a simulation design comparing four 

models with different specified mediators. Encouraging results were achieved when 

investigating raw residuals and delta 𝑧𝑧, implying these two methods have the most 

promise for indicating which observations have effects through a given mediator. 

Because delta 𝑧𝑧 and gCd are algebraically related, it is expected these two measures 
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would lead to similar conclusions in a simulation; however, because gCd is 

constrained to positive values, it may provide less information than delta 𝑧𝑧. Finally, 

INDCHI has the potential to distinguish whether or not there is a mediated effect for 

a given observation. Still, the pilot study suggests this statistic may be less useful in 

distinguishing which mediator is at work in a given observation. 
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CHAPTER 6 

METHODS 

Overview 

A Monte Carlo simulation study investigated whether individual mediation 

effects can be identified using model residuals. Previous work with configural 

frequency mediation has used statistically significant differences between expected 

and observed frequencies to investigate response patterns consistent with mediation 

in categorical data (Smyth & MacKinnon, 2021; von Eye et al., 2009; Wiedermann & 

Von Eye, 2021). The current study extends this logic to continuous data by 

substituting the difference in cell counts with comparisons of residuals and local fit 

measures across several mediation models. The study's primary aim is to investigate 

whether any of the methods in question can identify which of two mediation 

processes is at work for a given observation. The following terminology is used to 

distinguish between the nested series of pairwise differences that form the study's 

design.  First, there are differences between analysis models, referred to as Model 

Contrasts. Second, there are differences between known subpopulations, referred to 

as Subpopulation Contrasts. For each individual fit measure (i.e., residuals, delta 𝑧𝑧, 

and gCd), there are six possible Model Contrasts (see equations 6.26-6.43) and six 

possible Subpopulation Contrasts for a total of 36 possible combinations. However, 

not all combinations are of theoretical interest, and some of the combinations are 

redundant. Therefore, this study will focus on Model Contrasts between a model 

with no predictors (Model 0) and models with effects through Mediator 1 (Model 1) 

or effects through Mediator 2 (Model 2). 
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Here is a general overview of the steps of the simulation study, with further 

details on each step below. First, data were generated from four known 

subpopulations with different true mediated effects. Second, individual fit methods 

(i.e., residuals, delta 𝑧𝑧, and gCd) were estimated for four analysis models with 

differing mediated effects that match the four known subpopulations. Third, six 

pairwise Model Contrasts of residuals, delta 𝑧𝑧, and gCd were computed across the 

four analysis models, as shown in table 4. The dependent variables for the 

simulation were the contrasts for differences in residuals (i.e., 𝛿𝛿1- 𝛿𝛿6), differences in 

delta 𝑧𝑧 (i.e., 𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧1- 𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧6), and differences in gCd (i.e., 𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿1- 𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿6). Fourth, 

ANOVAs were conducted to assess known subpopulation differences in Model 

Contrasts for each individual fit method. Outcomes included raw values and rank-

orders of the Model Contrasts.  

Data Generation 

A Monte Carlo simulation was conducted using SAS software, Version 9.4 of 

the SAS system for Windows. Data were generated from a population model with 

two parallel mediators using the RAND function. Data for the subpopulations were 

generated as separate files with random seeds of 19800303, 19960303, 20010303, 

and 20220303. The four data files were combined into a single file for analysis with 

the proposed methods. The 𝑋𝑋 variable was generated as a continuous variable from 

N(0,1). 𝑀𝑀1, 𝑀𝑀2, and 𝑌𝑌 were generated according to equations 6.1-6.3 with a normally 

distributed residual.  In these equations, iM1, iM2, and iY are intercepts and have been 

set to 0; eM1, eM2, and eY are errors; the a-paths represent the effects of 𝑋𝑋 on 𝑀𝑀1 and 

𝑀𝑀2; the b-paths represent the effects 𝑀𝑀1 and 𝑀𝑀2 on 𝑌𝑌 while controlling for 𝑋𝑋. The c’-



  36 

path represents the direct effect of 𝑋𝑋 on 𝑌𝑌, controlling for 𝑀𝑀1 and 𝑀𝑀2, and was set to 

zero for all conditions and subpopulations in the simulation study. 

𝑀𝑀1 = 𝑖𝑖𝑀𝑀1 + 𝑎𝑎1𝑋𝑋 + 𝑒𝑒𝑀𝑀1 (6.1) 

𝑀𝑀2 = 𝑖𝑖𝑀𝑀2 + 𝑎𝑎2𝑋𝑋 + 𝑒𝑒𝑀𝑀2 (6.2) 

𝑌𝑌 = 𝑖𝑖𝑌𝑌 + 𝑐𝑐′𝑋𝑋 + 𝑏𝑏1𝑀𝑀1 + 𝑏𝑏2𝑀𝑀2 + 𝑒𝑒𝑌𝑌 (6.3) 

Figure 6 shows a path diagram for the data generating model. Each 

generated population consisted of four subpopulations of equal size (𝑆𝑆1-𝑆𝑆4). Each 

subpopulation was 25%of the total population and was generated with a different 

mediation model by setting parameters in equations 6.1, 6.2, and 6.3 to be zero or 

nonzero.  In each generated population, 25% percent of the sample had a true 

mediated effect through only 𝑀𝑀1 (𝑆𝑆1), 25% had a true mediated effect through only 

𝑀𝑀2 (𝑆𝑆2), 25% had true mediated effects through both mediators (𝑆𝑆3), and the final 

25% had no associations among the variables (𝑆𝑆4) (see table 3). In summary, the 

two-mediator model was used to generate all four subpopulations with population 

coefficients constrained to zero to reflect subpopulations with different mediating 

processes. The data generation program is in Appendix C. 

Independent Variables 

Two samples size were tested (200, 1000) for residual differences. Due to 

computational complexity, only the smaller sample size was tested for delta 𝑧𝑧 and 

gCd. These sample sizes represent sizes typically used in psychological research 

while accommodating four equal-sized subpopulations in each sample. The size of 

each subgroup was one-fourth the overall sample size (50, 250).  The magnitude of 

path coefficients also varied. Let the subscript g, where g = 1- 4, represent the 

subpopulations that make up each dataset. Each subpopulation was defined by five 
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paths, 𝑎𝑎1𝑔𝑔,𝑎𝑎2𝑔𝑔, 𝑏𝑏1𝑔𝑔,𝑏𝑏2𝑔𝑔, and𝑐𝑐′𝑔𝑔. Therefore, each population condition was defined by 

a combination of 20 path coefficients (i.e., five paths for each of the four 

subpopulations). As described in the data generation section, approximately 73% of 

the parameters were constrained to zero. Three effect sizes were simulated for the 

coefficients of the 𝑎𝑎 and 𝑏𝑏 paths (0, .39, .99). These values approximate zero, and 

medium effects as defined by Cohen (1988), and an extra-large effect of . 99 following 

the results of the pilot study that suggested that large effects may be needed for the 

proposed methods. These effect sizes were chosen to investigate the feasibility of the 

concepts proposed in the simulation across a reasonable range of effects. 

Corresponding 𝑎𝑎 and 𝑏𝑏 paths were equal in each subpopulation condition (i.e., 𝑎𝑎1𝑔𝑔  =

 𝑏𝑏1𝑔𝑔, and 𝑎𝑎2𝑔𝑔  =  𝑏𝑏2𝑔𝑔). The 𝑐𝑐’ paths were all equal to 0. There were 162 simulation 

conditions generated and replicated 500 times each for a total of 81,000 datasets and 

48.6 million observations. 

Analysis Models 

Four analysis models were estimated with the simulated datasets: a model 

with no predictors (Model 0), a single-mediator through Mediator 1 (Model 1), a 

single-mediator model through Mediator 2 (Model 2), and a two-mediator model 

through both Mediators (Model 3). The estimated mediators for each model are 

summarized in table 5. Let the subscript j index the four models while subscript i is 

the index for individual observations.  In the following equations, 𝑌𝑌𝑖𝑖 is the observed 

value of 𝑌𝑌 for observation i;  𝑌𝑌�𝑗𝑗𝑖𝑖 , 𝑀𝑀1�𝑗𝑗𝑖𝑖 , and 𝑀𝑀2�𝑗𝑗𝑖𝑖 are the predicted values of 𝑌𝑌, 𝑀𝑀1, 

and 𝑀𝑀2 for model j and individual i, n is the number of observations in the sample; 
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𝑀𝑀1 is the first mediator; 𝑀𝑀2 is the second mediator; 𝑋𝑋 is the predictor, and intercepts 

are denoted with a normal sized i. 

Model 0 serves as a baseline and is the mean of 𝑌𝑌 across all observations in 

each dataset, as in equation 6.4.  

𝑌𝑌�0𝑖𝑖 =
∑ 𝑌𝑌𝑖𝑖𝑖𝑖
1
𝑛𝑛

 (6.4) 

Model 1 is a single mediator model through Mediator 1 (𝑀𝑀1) estimated with 

equations 6.5 and 6.6.  

𝑀𝑀1� 1𝑖𝑖 = 𝑖𝑖𝑀𝑀1 + 𝑎𝑎1𝑋𝑋𝑖𝑖 (6.5) 

𝑌𝑌�1𝑖𝑖 = 𝑖𝑖𝑌𝑌1 + 𝑐𝑐′𝑋𝑋𝑖𝑖 + 𝑏𝑏1𝑀𝑀1𝑖𝑖 (6.6) 

Model 2 is a single mediator model through Mediator 2 (𝑀𝑀2) estimated with 

equations 6.7 and 6.8.  

𝑀𝑀2� 2𝑖𝑖 = 𝑖𝑖𝑀𝑀2 + 𝑎𝑎2𝑋𝑋𝑖𝑖 (6.7) 

𝑌𝑌�2𝑖𝑖 = 𝑖𝑖𝑌𝑌2 + 𝑐𝑐′𝑋𝑋𝑖𝑖 + 𝑏𝑏2𝑀𝑀2𝑖𝑖 (6.8) 

Model 3 is a two-mediator model through both mediators estimated with 

equations 6.5, 6.7, and 6.9. 

𝑌𝑌�3𝑖𝑖 = 𝑖𝑖𝑌𝑌3 + 𝑐𝑐′𝑋𝑋𝑖𝑖 + 𝑏𝑏1𝑀𝑀1𝑖𝑖 + 𝑏𝑏2𝑀𝑀2𝑖𝑖 (6.9) 

Individual Fit Methods 

Residuals 

Each dataset was analyzed using the four models described above. For each 

observation, four residuals were calculated and labeled 𝑒𝑒𝑗𝑗𝑖𝑖 for j = 0, 1, 2, 3 and i = 1, 

2, …, n.  Residual 0 (𝑒𝑒0𝑖𝑖) is calculated as the difference between observed 𝑌𝑌 for 

individual 𝑖𝑖 and the mean of 𝑌𝑌 with no predictors, as in equation 6.10.  

𝑒𝑒0𝚤𝚤� = 𝑌𝑌𝑖𝑖 − 𝑌𝑌�0 (6.10) 
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Residual 1 (𝑒𝑒1𝑖𝑖) is calculated in equation 6.11 as the difference between 

observed 𝑌𝑌 for individual 𝑖𝑖 and the predicted 𝑌𝑌 from equation 6.6.  

𝑒𝑒1𝚤𝚤� = 𝑌𝑌𝑖𝑖 − 𝑌𝑌�1𝑖𝑖 (6.11) 

Residual 2 (𝑒𝑒2𝑖𝑖) is calculated in equation 6.12 as the difference between 

observed 𝑌𝑌 for individual 𝑖𝑖 and the predicted 𝑌𝑌 from equation 6.8.  

𝑒𝑒2𝚤𝚤� = 𝑌𝑌𝑖𝑖 − 𝑌𝑌�2𝑖𝑖 (6.12) 

Residual 3 (𝑒𝑒3𝑖𝑖) is calculated in equation 6.13 as the difference between 

observed 𝑌𝑌 for individual 𝑖𝑖 and the predicted 𝑌𝑌 from equation 6.9. 

𝑒𝑒3𝚤𝚤� = 𝑌𝑌𝑖𝑖 − 𝑌𝑌�3𝑖𝑖 (6.13) 

Delta z  

Jackknife samples were computed for each dataset by iteratively deleting one 

observation (i) and saving the (n – i) sample. The four analysis models in equations 

6.4 – 6.9 were estimated using the jackknife samples and estimates for the mediated 

effect through 𝑀𝑀1 (a1b1), the mediated effect through 𝑀𝑀2 (a2b2), and the total 

mediated effect (a1b1 + a2b2) were saved for the full sample and each jackknife 

sample. The Sobel test statistic was computed for each of the mediated effect 

estimates in the full sample according to equations 6.14-6.17.  

𝑧𝑧𝑌𝑌�0 =  
𝑒𝑒0𝚤𝚤�
𝜎𝜎𝑌𝑌�0

 (6.14) 

 

𝑧𝑧𝑎𝑎1𝑏𝑏1 =  
𝑎𝑎1𝑏𝑏1�

�𝑎𝑎1�
2𝑠𝑠𝑏𝑏1�

2 + 𝑏𝑏1�
2𝑠𝑠𝑎𝑎1�

2
 (6.15) 
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𝑧𝑧𝑎𝑎2𝑏𝑏2 =  
𝑎𝑎2𝑏𝑏2�

�𝑎𝑎2�
2𝑠𝑠𝑏𝑏2�

2 + 𝑏𝑏2�
2𝑠𝑠𝑎𝑎2�

2
 (6.16) 

 

𝑧𝑧𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2 =  
𝑎𝑎1𝑏𝑏1� + 𝑎𝑎2𝑏𝑏2�

�𝑎𝑎1�
2𝑠𝑠𝑏𝑏1�

2 + 𝑏𝑏1�
2𝑠𝑠𝑎𝑎1�

2 + 𝑎𝑎2�
2𝑠𝑠𝑏𝑏2�

2 + 𝑏𝑏2�
2𝑠𝑠𝑎𝑎2�

2 + 2𝑎𝑎1�𝑎𝑎2�𝑠𝑠𝑏𝑏1�𝑏𝑏2� + 2𝑏𝑏1�𝑏𝑏2�𝑠𝑠𝑎𝑎1�𝑎𝑎2�

 (6.17) 

The change in 𝑧𝑧 attributable to individual observations was computed by 

comparing estimates for the full sample with each jackknife sample as in equations 

6.18 - 6.21.  

∆𝑧𝑧𝑌𝑌�0 =  
𝑒𝑒0𝚤𝚤� − 𝑒𝑒0𝚤𝚤𝚤𝚤�
𝜎𝜎𝑌𝑌�0𝑖𝑖

 (6.18) 

 

Δ𝑧𝑧𝑎𝑎1𝑏𝑏1 =  
𝑎𝑎1𝑏𝑏1� −𝑎𝑎1𝚤𝚤𝑏𝑏1𝚤𝚤�

�𝑎𝑎1𝚤𝚤�
2𝑠𝑠𝑏𝑏1𝚤𝚤�

2 + 𝑏𝑏1𝚤𝚤�
2𝑠𝑠𝑎𝑎1𝚤𝚤�

2
(6.19) 

Δ𝑧𝑧𝑎𝑎2𝑏𝑏2 =  
𝑎𝑎2𝑏𝑏2� −𝑎𝑎2𝚤𝚤𝑏𝑏2𝚤𝚤�

�𝑎𝑎2𝚤𝚤�
2𝑠𝑠𝑏𝑏2𝚤𝚤�

2 + 𝑏𝑏2𝚤𝚤�
2𝑠𝑠𝑎𝑎2𝚤𝚤�

2
(6.20) 

 

Δ𝑧𝑧𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2 =  
(𝑎𝑎1𝑏𝑏1� + 𝑎𝑎2𝑏𝑏2)� − (𝑎𝑎1𝚤𝚤𝑏𝑏1𝚤𝚤� + 𝑎𝑎2𝚤𝚤𝑏𝑏2𝚤𝚤)�

�𝑎𝑎1𝚤𝚤�
2𝑠𝑠𝑏𝑏1𝚤𝚤�

2 + 𝑏𝑏1𝚤𝚤�
2𝑠𝑠𝑎𝑎1𝚤𝚤�

2 + 𝑎𝑎2𝚤𝚤�
2𝑠𝑠𝑏𝑏2𝚤𝚤�

2 + 𝑏𝑏2𝚤𝚤�
2𝑠𝑠𝑎𝑎2𝚤𝚤�

2 + 2𝑎𝑎1𝚤𝚤�𝑎𝑎2𝚤𝚤�𝑠𝑠𝑏𝑏1𝚤𝚤� 𝑏𝑏2𝚤𝚤� + 2𝑏𝑏1𝚤𝚤�𝑏𝑏2𝚤𝚤�𝑠𝑠𝑎𝑎1𝚤𝚤� 𝑎𝑎2𝚤𝚤�

(6.21) 

gCd 

Pek and MacCallum (2011, p. 207) showed gCd could be expressed in terms of 

𝛥𝛥𝛿𝛿; therefore, gCd values for each model were computed by squaring the delta 𝑧𝑧 

values above, as in equations 6.22-6.25. 

𝑔𝑔𝑔𝑔𝛿𝛿𝑌𝑌�0 = �∆𝑧𝑧𝑌𝑌�0𝑖𝑖�
2 (6.22) 



  41 

𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1 = (Δ𝑧𝑧𝑎𝑎1𝑏𝑏1)2 (6.23) 

𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎2𝑏𝑏2 = (Δ𝑧𝑧𝑎𝑎2𝑏𝑏2)2 (6.24) 

𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2 = (Δ𝑧𝑧𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2)2 (6.25) 

 

Dependent Variables 

The raw and rank-order values of the six Model Contrasts between the 

individual fit measures were the dependent variables in the analysis of the 

simulation results.  There are six possible pairwise Model Contrasts among Models 

0-3, shown in table 4. The first contrast compares the independent model and a 

mediator model through Mediator 1. The second contrast compares a model through 

Mediator 1 and a model through Mediator 2. The third contrast compares a model 

through Mediator 1 and a two-mediator model through Mediator 1 and Mediator 2. 

The fourth contrast compares the independent model and a model through Mediator 

2. The fifth contrast compares a model through Mediator 2 with a two-mediator 

model. The final contrast compares the independent model and a two-mediator 

model. These six Model Contrasts were made for the three individual fit measures: 

regression residuals, delta 𝑧𝑧, and gCd.  

Residual Model contrasts 

The six pairwise Model Contrasts of residuals from Models 0-3 are shown in 

equations 6.26-6.31. In the first three Model Contrasts (δ1- δ3), residuals from a 

model with effects through Mediator 1 (equation 6.6) are compared to residuals from 

a model with no predictors (equation 6.4), a model with effects through Mediator 2 

(equation 6.8), and the two-mediator model (equation 6.9).  

𝛿𝛿1 = 𝑒𝑒0𝑖𝑖 − 𝑒𝑒1𝑖𝑖 (6.26) 
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𝛿𝛿2 = 𝑒𝑒1𝑖𝑖 − 𝑒𝑒2𝑖𝑖 (6.27) 

𝛿𝛿3 = 𝑒𝑒1𝑖𝑖 − 𝑒𝑒3𝑖𝑖 (6.28) 

The next two Model Contrasts (δ4 and δ5) compare the residuals from a 

model with effects through Mediator 2 (equation 6.8) with residuals from a model 

with no predictors (equation 6.4) and the two-mediator model (equation 6.9). 

𝛿𝛿4 = 𝑒𝑒0𝑖𝑖 − 𝑒𝑒2𝑖𝑖 (6.29) 

𝛿𝛿5 = 𝑒𝑒2𝑖𝑖 − 𝑒𝑒3𝑖𝑖 (6.30) 

The final Model Contrast (δ6) is between the residuals from a model with no 

predictors (equation 6.4) and the two-mediator model (equation 6.9). 

𝛿𝛿6 = 𝑒𝑒0𝑖𝑖 − 𝑒𝑒3𝑖𝑖 (6.31) 

Delta z Model Contrasts  

The Model Contrasts of delta 𝑧𝑧 in equations 6.32-6.34 mirror the residual 

differences computed in equations 6.26-6.31. In the first three Model Contrasts, 

delta 𝑧𝑧 for the mediated effect through Mediator 1 (a1b1) is compared to delta 𝑧𝑧 for a 

model with no predictors (equation 6.32), delta 𝑧𝑧 for the mediated effect through 

Mediator 2 (a2b2) (equation 6.33), and delta 𝑧𝑧 for the total mediated effect (a1b1 + a2b2) 

(equation 6.34). 

𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧1 = ∆𝑧𝑧𝑌𝑌�0 − 𝛥𝛥𝑧𝑧𝑎𝑎1𝑏𝑏1 (6.32) 

𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧2 = 𝛥𝛥𝑧𝑧𝑎𝑎1𝑏𝑏1 − 𝛥𝛥𝑧𝑧𝑎𝑎2𝑏𝑏2 (6.33) 

𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧3 = 𝛥𝛥𝑧𝑧𝑎𝑎1𝑏𝑏1 − Δ𝑧𝑧𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2 (6.34) 

In equations 6.35 and 6.36, delta 𝑧𝑧 for the mediated effect through Mediator 2 

(a2b2) is compared with delta 𝑧𝑧 from the mean of 𝑌𝑌, and delta 𝑧𝑧 for the total mediated 

effect. 

𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧4 = ∆𝑧𝑧𝑌𝑌�0 − 𝛥𝛥𝑧𝑧𝑎𝑎2𝑏𝑏2 (6.35) 
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𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧5 = 𝛥𝛥𝑧𝑧𝑎𝑎2𝑏𝑏2 − Δ𝑧𝑧𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2 (6.36) 

The final Model Contrast is between delta 𝑧𝑧 for the mean of 𝑌𝑌 with no 

predictors and delta 𝑧𝑧 for the total mediated effect (equation 6.37). 

𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧6 = ∆𝑧𝑧𝑌𝑌�0 − Δ𝑧𝑧𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2 (6.37) 

gCd Model contrasts 

Model Contrasts for the change in generalized Cook’s distance were computed 

according to equations 6.38-6.43. These Model Contrasts mirror the differences in 

delta 𝑧𝑧 computed in equations 6.32-6.37. 

𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿1 = 𝑔𝑔𝑔𝑔𝛿𝛿𝑌𝑌�0 − 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1 (6.38) 

𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿2 = 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1 − 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎2𝑏𝑏2 (6.39) 

𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿3 = 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1 − 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2  (6.40) 

𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿4 = 𝑔𝑔𝑔𝑔𝛿𝛿𝑌𝑌�0 − 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎2𝑏𝑏2  (6.41) 

𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿5 = 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎2𝑏𝑏2  − 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2 (6.42) 

𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿6 = 𝑔𝑔𝑔𝑔𝛿𝛿𝑌𝑌�0 − 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2 (6.43) 

 

Statistical Analysis 

A one-way ANOVA was conducted to test the null hypothesis that the mean 

values of individual fit Model Contrasts were equal among the known 

subpopulations, shown in equation 6.44. A priori contrasts were also conducted to 

test simple comparisons between known subpopulations, as in equations 6.45-6.50.  

𝐻𝐻01: 𝜇𝜇𝑆𝑆1 = 𝜇𝜇𝑆𝑆2 = 𝜇𝜇𝑆𝑆3 = 𝜇𝜇𝑆𝑆4 (6.44) 

𝐻𝐻02: 𝜇𝜇𝑆𝑆1 = 𝜇𝜇𝑆𝑆2 (6.45) 

𝐻𝐻03: 𝜇𝜇𝑆𝑆1 = 𝜇𝜇𝑆𝑆3 (6.46) 

𝐻𝐻04: 𝜇𝜇𝑆𝑆1 = 𝜇𝜇𝑆𝑆4 (6.47) 
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𝐻𝐻05: 𝜇𝜇𝑆𝑆2 = 𝜇𝜇𝑆𝑆3 (6.48) 

𝐻𝐻06: 𝜇𝜇𝑆𝑆2 = 𝜇𝜇𝑆𝑆4 (6.49) 

𝐻𝐻07: 𝜇𝜇𝑆𝑆3 = 𝜇𝜇𝑆𝑆4 (6.50) 

Coffman and Millsap (2006) observed that while the contribution of 

individual cases to model misfit is small (especially as sample size increases), the 

rank ordering of the percent contribution is a useful method for identifying the 

relative importance of individual cases. Because the magnitude of individual fit 

Model Contrasts was expected to be small and potentially difficult to detect 

statistically, the rank ordering of the individual fit Model Contrasts was also 

investigated. Therefore raw and rank-ordered values of the Model Contrasts were 

used as dependent variables. 

Evaluation Criteria 

Significance Testing 

Pairwise contrasts between known subpopulations are expected to have true 

differences when the Model Contrast includes the data generation model of only one 

subpopulation. For example, in a Model Contrast between a model with no 

predictors and a model through Mediator 1, the Subpopulation Contrast between 

individuals with effects through Mediator 1 and individuals with effects through 

Mediator 2 would have a true effect. The true effect occurs because the model with 

Mediator 1 is the data generation model for the subpopulation with effects through 

Mediator 1, and neither the independent model nor the model with Mediator 1 is the 

data generation model for the subpopulation with effects through Mediator 2.  

There are two scenarios in which Subpopulation Contrasts are not expected 

to have a true difference. The first is when the generating models for both 
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subpopulations are included in the Model Contrast. For example, in the Model 

Contrast between a model through Mediator 1 and a model through Mediator 2, the 

contrast between individuals with effects through Mediator 1 and individuals with 

effects through Mediator 2 would not have a true effect because the model with 

Mediator 1 is the data generating model for the subpopulation with effects through 

Mediator 1 and the model with Mediator 2 is the data-generating model for the 

subpopulation with effects through Mediator 2.  The second scenario is when neither 

data-generating model is included in the Model Contrast. For example, there is no 

true effect for the Subpopulation Contrast between individuals with effects through 

Mediator 2 only and individuals with effects through both Mediators 1 and 2 when 

the model with no predictors and a model through Mediator 1 are contrasted. 

Neither an independent model nor a model through Mediator 1 are data-generating 

models for subpopulations with effects through Mediator 2 only or with effects 

through both Mediators 1 and 2. 

The logic for determining true and null differences for Model Contrasts and 

Subpopulations Contrasts is the same. The subtraction of a small value from a large 

value will result in a larger difference than the subtraction of two large or two small 

values. Known subpopulations are expected to have smaller residuals when the data 

generation and analysis models are the same and larger residuals when they are 

different.  Therefore, individual residual differences will be larger when the Model 

Contrast involves the individual’s data generation model since a larger residual and 

smaller residual will be subtracted from each other. Individual residual differences 

will be smaller when the data generation model is not included in the Model 

Contrast because two larger residuals will be subtracted from each other.  
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Type 1 Error Rate and Power Analogs. Because the study design involves 

contrasts of subpopulations within contrasts of model residuals, the traditional 

definition of Type 1 error does not apply. However, the proportion of replications per 

condition where the mean difference between subpopulations is significant when 

there is no true difference can be used as an analog for Type 1 error rates. The 

power analog was computed as the proportion of replications per condition where the 

mean differences between known subpopulations were statistically significant and 

only one of the known subpopulations had a true effect.  

There is no difference in the dependent variable (i.e., the value of the Model 

Contrast) between known subpopulations when either both subpopulations have a 

true difference or neither have a true difference. Each Model Contrast has different 

Subpopulation Contrasts for which Type 1 error analog applies.  Table 6 summarizes 

select Model Contrast and Subpopulation Contrast combinations that result in true 

differences (i.e., statistical power) and true null differences (i.e., Type 1 error). For 

example, there is no true effect between subpopulations 𝑆𝑆1and 𝑆𝑆4 when Model 0 (i.e., 

no predictors) and Model 1 (i.e., with Mediator 1) are contrasted. However, there is 

an effect between subpopulations 𝑆𝑆1and 𝑆𝑆2 when Models 0 and 1 are contrasted.  
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CHAPTER 7 

RESULTS 

Organization 

One-way ANOVAs were conducted to test for significant differences between 

known subpopulations. A successful method should find significant differences when 

they are present and not find significant differences when they are not present. 

Results for the Model Contrast between a model with no predictors (Model 0) and a 

model with effects through Mediator 1 (Model 1) and the Model Contrast between 

Model 0 and a model with effects through Mediator 2 (Model 2) are similar; 

therefore, only the results for the Model Contrast between Model 0 and Model 1 are 

presented here.  The Model Contrasts compared residuals, delta 𝑧𝑧, and gCd between 

estimated regression models.  Two a priori Subpopulation Contrasts are described: 

the Subpopulation Contrast between a known subpopulation with no effects (𝑆𝑆4) and 

a known subpopulation with effects through Mediator 1 (𝑆𝑆1) and the Subpopulation 

Contrast between a known subpopulation with effects through Mediator 1 (𝑆𝑆1) and a 

known subpopulation with effects through Mediator 2 (𝑆𝑆2). A path diagram outlining 

the subpopulations is in figure 6. 

Simulation results are organized into two sections. The first section describes 

the proportion of significant replications when there is no true difference between 𝑆𝑆1 

and 𝑆𝑆4, which is analogous to examining Type 1 error rates.  The second section 

describes the proportion of significant replications when there is a true difference 

between 𝑆𝑆1 and 𝑆𝑆2, which is analogous to examining statistical power. Within each 
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section, results are divided by method (i.e., residuals, delta 𝑧𝑧, and gCd). Results for 

raw differences and rank-ordered differences are presented simultaneously.  

Proportion of Significant Replications (S1 – S4) 

Residuals  

Table 7 shows the proportion of significant replications for the contrast 

between subpopulations 1 and 4 for residual differences, delta 𝑧𝑧, and gCd. The first 

six rows of table 7 summarize the proportion of significant replications for raw and 

rank-ordered residual differences. The proportion of significant replications that 

occurred when there was no true subpopulation difference was between . 01 − .07 for 

raw residual differences and between . 03− .07 for rank-ordered residual differences. 

For all parameter combinations, the proportion of significant replications was below 

the upper bound of the Type 1 error robustness interval (i.e., . 075).  

Delta z  

 The proportion of significant replications when there were no true 

subpopulation differences was between . 00 − 1.00  for raw delta 𝑧𝑧 differences and 

between . 04 − .97 for rank-ordered delta 𝑧𝑧 differences. The middle section (rows 7 to 

10) of table 7 summarizes the proportion of significant replications for raw and rank-

ordered delta 𝑧𝑧 differences. The proportion of significant replications increased as 

the 𝑆𝑆1 effects through Mediator 1 increased in size, which is unexpected since there 

is no true subpopulation difference. Similar patterns were seen in both raw and 

rank-ordered differences. 

gCd  
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 The proportion of significant replications when there were no true 

subpopulation differences was between . 00 − .068 for raw gCd differences and 

between . 02 − .033 for rank-ordered gCd differences. The bottom section (last three 

rows) of table 7 shows that cThe pattern of results was similar for raw and rank-

ordered differences, although the proportion of significant rank-ordered differences 

was smaller than raw differences when the 𝑆𝑆1 effects were large. 

Proportion of Significant Replications (S1 – S2) 

Residuals 

The proportion of significant replications that occurred when there were true 

subpopulation differences was between . 01 − .09 for raw residual differences and 

between . 03 − .08 for rank-ordered residual differences. The first 18 rows of table 8 

summarize the proportion of significant replications for raw and rank-ordered 

residual differences. For the smaller sample size (N=200), there is a slight increase 

in the proportion of significant results as the size of 𝑆𝑆1 effects through Mediator 1 

increases. This pattern occurs for both raw and rank-ordered differences. However, 

the proportions don’t increase with sample size, and when N =1000, the increase in 

significant proportions doesn’t occur until the 𝑆𝑆1 effects are large. There was no 

noticeable difference in significant proportions between sample sizes, and the overall 

low proportions suggest that the observed pattern is slight, if present at all; 

therefore, further research is needed to determine whether mediation effect sizes 

truly influence the proportion of significant residual differences.   

Delta z 
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The proportion of significant replications when there were true subpopulation 

differences was between . 03 − 1.00 for raw delta 𝑧𝑧 differences and between . 03 − .98 

for rank-ordered delta 𝑧𝑧 differences. The middle section of table 8 shows that the 

proportion of significant replications increased as the 𝑆𝑆1 effects increased, but the 

was not a noticeable increase as the 𝑆𝑆2 effects increased. Because delta 𝑧𝑧 is 

computed by systematically deleting single observations, when observations from 𝑆𝑆1 

(with effects through Mediator 1) are deleted, there is a greater impact on the 

mediated effect and, therefore, on the differences in delta 𝑧𝑧. Therefore, an increase 

in significant replications would be expected as the effects of 𝑎𝑎1 and 𝑏𝑏1 increase. 

gCd 

The proportion of significant replications when there were true subpopulation 

differences was between . 00 − .69 for raw gCd differences and between . 02 − .36 for 

rank-ordered gCd differences. The pattern for delta 𝑧𝑧 was also present for gCd such 

that the proportion increased as the 𝑆𝑆1 effects through Mediator 1 increased. The 

impact of the 𝑆𝑆2 effects can be seen in table 8, where the proportion of significant 

replications was higher when the 𝑆𝑆1 effects were zero and the 𝑆𝑆2 effects were larger 

compared to when the 𝑆𝑆1 effects were medium and the 𝑆𝑆2 effects were zero (see rows 

6 and 7 from the bottom of table 8).  

Summary 

None of the three methods showed adequate performance for the Type 1 error 

and power analogs (i.e., proportions of significant results when there was and was 

not a true difference). For residual differences, all significant proportions were low, 

which meant the residuals method performed well when there was no true difference 
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but performed poorly when there was a true difference. In other words, the residual 

differences method could not distinguish the true difference between known 

subpopulations.  The significant proportions for delta 𝑧𝑧 were small when 𝑆𝑆1 effects 

were small and larger when 𝑆𝑆1 effects were larger, and this pattern occurred across 

all parameter combinations and Subpopulation Contrasts (i.e., the contrast of 𝑆𝑆1 vs. 

𝑆𝑆4, or 𝑆𝑆1 vs. 𝑆𝑆2). The pattern of significant replications for gCd was small when the 

𝑆𝑆1 effects were small or medium and larger when the 𝑆𝑆1 effects were large. This 

pattern also occurred across all parameter combinations. Therefore, delta 𝑧𝑧  and gCd 

methods could not distinguish true differences because the pattern of significant 

replications was the same in both Subpopulation contrasts. 

Overall, the proportion of significant replications when there was no true 

difference was best for residual differences, as both delta 𝑧𝑧 and gCd resulted in 

proportions greater than the traditional robustness interval for Type 1 errors (i.e., 

. 025 − .075). Correspondingly, the proportion of significant replications when there 

was a true difference was negligible for raw residual differences and higher for delta 

𝑧𝑧, with the proportion of significant gCd differences falling between the other two 

methods. In all three methods, the significant proportion increased as the 𝑆𝑆1 effects 

increased. However, for residual differences, the increases in proportion were slight 

and were not associated with increases in sample size. Delta 𝑧𝑧 and gCd had only one 

sample size, so no comparison was made for those two methods.  Similar results 

were seen for raw and rank-ordered differences across all three methods. 
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CHAPTER 8 

DISCUSSION 

Traditional mediation analysis investigates causal mechanisms of human 

behavior, assuming that causal processes are the same for everyone. There are few 

statistical methods available to investigate mediated effects at the individual level.  

This dissertation aimed to introduce and test a novel method for investigating 

mediation when the population’s causal process is heterogeneous. This method 

involves taking the difference in individual fit measures between a model with no 

predictors and a model with a mediated effect. Three individual fit measures were 

investigated: regression residuals, delta 𝑧𝑧, and gCd (Pek & MacCallum, 2011). Data 

were generated with 25% of observations having an effect through Mediator 1, 25% 

with an effect through Mediator 2, 25% with effects through both Mediator 1 and 

Mediator 2, and 25% of observations with no mediated effects. A simulation study 

was conducted to test whether there was a significant difference in individual fit 

measures between these four known subpopulations. 

Summary of Simulation Results 

The method of differences in individual fit measures was evaluated using 

analogs of Type 1 error and power, where the proportion of significant replications 

when there was no true difference corresponds to Type 1 error, and the proportion of 

significant replications when there was a true difference corresponds to statistical 

power.  

The proportion of significant replications for residual differences was 

negligible across all parameter combinations, ranging from .01 - .09, and increased 
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slightly as effects through Mediator 1 became larger. In contrast, the proportion of 

significant replications for delta 𝑧𝑧 and gCd ranged from 0.0 –  1.0, with greater 

increases as effects through Mediator 1 got larger compared to residual differences. 

In summary, the method using residual differences resulted in few significant 

replications, while the method using delta 𝑧𝑧 and gCd resulted in a greater proportion 

of significant replications as effects increased. However, there was no difference in 

the pattern of significant replications when there was no true difference between 

known subpopulations compared to when there was a true difference. Several 

possible explanations for the poor performance of all three individual fit methods are 

described below. 

Limitations  

Several limitations are mentioned next, which will inform future studies. 

This study provides a methodology for exploring Model Contrasts that can evaluate 

future individual fit methods, such as the individual chi-square (Reise & Widaman, 

1999). This study also represents the initial work necessary to understand how this 

novel methodology functions under reasonable parameters. Future studies should 

work to either replicate the findings of this study or uncover flaws in the logic of the 

methodology presented before applying the contrasts method to other individual fit 

methods.  

Although findings suggest that the residual differences individual fit 

measure performs differently from delta 𝑧𝑧 or gCd in the number of significant 

replications, none of the methods are adequate in their current form. It may be that 

the size of individual fit measure differences is simply too small to detect or that 
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heterogeneity of variance between subpopulations washes out any statistically 

significant group differences. Additionally, unmodeled mediation effects 

incorporated in the direct effect make distinguishing the residuals between two 

different mediators impossible. Finally, there may be logical flaws in how true 

effects were defined for Type 1 error and power analogs. Each of these alternatives 

are discussed below. 

The pilot study results in table 2 show that mean residuals were relatively 

small for all subpopulations across all models. By extension, the differences in 

individual fit between known subpopulations for the same model were often small. 

Similar results apply to differences in individual fit for the same subpopulation 

across different models. Note that the pilot study used extremely large effect sizes to 

maximize results as a proof of concept. The main study used effect sizes that are 

more common in psychological studies and resulted in smaller residuals and 

residual differences than the pilot study. Given that the magnitudes of the 

differences are small, it may be that true differences exist between subpopulations 

but are indistinguishable from noise using the method described in the study, 

especially considering that the differences in standard deviations (see table 2) were 

large in comparison to the differences in residuals. 

The heterogeneity of variance observed between subpopulations may account 

for the method’s inability to detect mean differences. Returning to table 2, for 

Models 0, 1, and 2, there is a subpopulation whose standard deviation is noticeably 

smaller than the other subpopulations. The subpopulation with a smaller standard 

deviation corresponds to the subpopulation expected to have the smallest residual 

for that model, suggesting that if the absolute values of individual fit measures and 
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differences in individual fit measures are too small to detect, perhaps a method 

focused on the variability between subpopulations would be more efficacious. 

Observed study results may have occurred because unmodeled mediator 

effects are incorporated into the effect of 𝑋𝑋, which would reduce the residual for that 

model. The residuals for models with and without the mediator should be the same 

because the effect of the unmodeled mediator is absorbed into the direct effect of 𝑋𝑋. 

Therefore, contrasted residuals from these two models would not distinguish 

between the modeled and unmodeled mediator. This alternative explanation 

represents a potential flaw in the current study's design that can be improved upon 

in further research. To address the issue, a second pilot study is described under 

Future Directions and in Appendix F. 

 Finally, the current study relied on definitions of true effects and analogs of 

Type 1 error and power that may limit the method's performance. Specifically, true 

subpopulation differences were defined using a two-step process. The first step 

assumed that the various individual fit measures would be smaller or larger for each 

model relative to each subpopulation. The second step assumed that subtracting 

values of relatively different sizes would result in a true difference while subtracting 

values of relatively similar sizes would result in no true difference. There are two 

potential problems with this strategy. First, the magnitudes of the individual fit 

measures and their differences are ill-defined and rely on relative comparisons (i.e., 

one is smaller than the other, or one is larger than the other) rather than explicit 

definitions of small and large magnitudes. Second, there are two qualitatively 

different scenarios in which two values of similar size are subtracted: when both 
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individual fit measures are small (or zero), or both values are large. For example, if 

both residuals in a comparison are small, the data generating process for both 

subpopulations matches the estimated model. However, if both residuals are large, 

neither subpopulation’s data-generating process matches the estimated model. 

While the inferences one would draw from each of these scenarios are likely 

different, the current method of defining no true differences does not distinguish 

these two scenarios. 

Future Directions 

The following section discusses future research that addresses the limitations 

and alternative explanations for the study results discussed above. A secondary pilot 

data set was generated and analyzed for models that excluded 𝑋𝑋 as a predictor to 

address the fact that unmodeled mediation effects become incorporated in modeled 

direct effects. Details and results of the pilot simulation are reported in Appendix F. 

Initial results suggest that subpopulation differences in delta 𝑧𝑧 and gCd could be 

distinguished in a one-way ANOVA when mediators alone are used to predict 𝑌𝑌. 

Originally, the study design contained 36 contrasts between four mediation 

models and four known subpopulations. However, it became apparent that several 

contrasts were redundant because residuals for different mediators could not be 

distinguished. Additionally, it was unclear how some contrasts should be 

interpreted, such as Subpopulation Contrasts when one subpopulation has mediated 

effects through both mediators or when mediated effects represented by the Model 

Contrast do not correspond with mediated effects present in the known 

subpopulations. Future research can address these, and other limitations related to 
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the complexity of the original study design by focusing more narrowly on the Model 

Contrast between a model with one mediator versus a model with no predictors or a 

model with only a direct effect. Limiting the study design to only two models that 

compare one mediator to no mediators will make it clearer under which 

circumstances there are subpopulation differences before extending the research to 

multiple mediators. Finally, the methods used in this study were designed to detect 

single influential cases and outliers. However, the current study used 

subpopulations of equal proportions rather than single observations with differing 

mediation effects. A future simulation may look at how different proportions in the 

subpopulations affect results. 

Implications 

The causal processes that influence human behavior often apply to most 

individuals in a population. Mediation studies that involve constructs like social 

norms, subject-matter knowledge, or self-efficacy can describe processes that are 

relevant to many people. However, some disease processes, such as substance use 

disorder or rheumatoid arthritis, are thought to be heterogenous and dependent on 

individual characteristics  (Carroll, 2021; Deane & Holers, 2019; Holers et al., 2018; 

Hsiao et al., 2020). Identifying individual mediation effects could help researchers 

identify more effective treatment protocols for people who respond differently or 

have different mediation processes at work.  

The results from this study suggest that a method comparing individual fit 

methods across models with different mediators is limited in its ability to detect 

differences between people who have effects through one mediator compared to 
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people who do not. Focusing on the variability of individual fit differences may be 

more productive than studying raw values; however, this may be difficult if an 

atypical mediation process only occurs for a small proportion of the population. 

Heterogeneity of variance was observed in the current study, where each mediation 

process existed for 25% of the sample.  

The current study focused on a method that used comparisons of residuals, 

delta 𝑧𝑧, and gCd across multiple mediation models. By incorporating improvements 

discussed in the limitations section, this methodology could be used to test other 

individual fit or effect size measures to investigate individual mediation effects, such 

as Individual Chi-square (Reise & Widaman, 1999). Individual fit measures are only 

one possible approach to individual mediation. Moderation of mediation effects, 

latent class models, and multi-level models are all statistical methods that 

incorporate information on individual mediation as part of the model. The method of 

contrasting mediation models presented in this study could conceivably be applied to 

these other statistical methods to investigate individual differences in mediation.  

The current study does not provide conclusive evidence for the viability of the 

described method or the utility of individual fit measures for investigating 

individual mediation effects. However, it can provide a framework for future studies 

to improve upon the method and apply it to other measures of individual effects. 
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Table 1       
True Coefficient Values for Pilot Study 

Subpopulation n a1 a2 b1 b2 c’ 
S1 500 9 9 0 0 0 
S2 500 0 0 9 9 0 
S3 500 0 0 0 0 0 
Total 1500 - - - - - 
Average - 3 3 3 3 0 
Note. Parameter magnitudes are uncharacteristically large whole numbers to 
show conceptual viability. 
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Table 2    
Means by Model and Subpopulation 

Subpopulation N Mean Std Dev 
Residuals - Model 0 

S1 500 -.322 84.538 
S2 500 -1.680 81.483 
S3 500 2.002 0.995 
Full Sample 1500 .000a 67.763 

Residuals - Model 1 
S1 500 0.031 5.033 
S2 500 -1.890 41.496 
S3 500 1.859 41.361 
Full Sample 1500 .000a 33.963 

Residuals - Model 2 
S1 500 -1.616 41.366 
S2 500 -.078 5.010 
S3 500 1.694 42.897 
Full Sample 1500 .000a 34.531 

Residuals - Model 3 
S1 500 -.520 8.223 
S2 500 -.223 8.823 
S3 500 .743 13.077 
Full Sample 1500 .000a 10.278 

Delta z  - Mediation Path a1b1 
S1 500 .036 .057 
S2 500 -.019 .027 

Delta z  - Mediation Path a2b2 
S1 500 -.020 .029 
S2 500 .035 .054 

gCd - Mediation Path a1b1 
S1 500 .005 .018 
S2 500 .001 .004 

gCd - Mediation Path a2b2 
S1 500 .001 .005 
S2 500 .004 .016 

INDCHI 
S1 500 2.812 1.015 
S2 500 2.845 1.032 
S3 500 3.670 2.110 
Note. aNon-zero values rounded to three decimal places. 
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Table 3   
Summary of Subpopulations 

Subpopulation True Effects 
S1 M1 
S2 M2 
S3 M1 and M2 
S4 None 
Note. M1 refers to a mediated effect 
through Mediator 1, while M2 refers to a 
mediated effect through Mediator 2.  
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Table 4    
Summary of Possible Model Contrasts 
Models Compared Residual 

Differences 
Delta z Differences gCd Differences 

Model 0 – Model 1 𝛿𝛿1 = 𝑒𝑒0𝑖𝑖 − 𝑒𝑒1𝑖𝑖 𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧1 = ∆𝑧𝑧𝑌𝑌�0 − 𝛥𝛥𝑧𝑧𝑎𝑎1𝑏𝑏1  𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿1 = 𝑔𝑔𝑔𝑔𝛿𝛿𝑌𝑌�0 − 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1  
Model 1 – Model 2 𝛿𝛿2 = 𝑒𝑒1𝑖𝑖 − 𝑒𝑒2𝑖𝑖   𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧2 = 𝛥𝛥𝑧𝑧𝑎𝑎1𝑏𝑏1 − 𝛥𝛥𝑧𝑧𝑎𝑎2𝑏𝑏2  𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿2 = 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1 − 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎2𝑏𝑏2  
Model 1 – Model 3 𝛿𝛿3 = 𝑒𝑒1𝑖𝑖 − 𝑒𝑒3𝑖𝑖  𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧3 = 𝛥𝛥𝑧𝑧𝑎𝑎1𝑏𝑏1 − Δ𝑧𝑧𝑎𝑎1𝑏𝑏1+𝑎𝑎2  𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿3 = 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1 − 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏   
Model 0 – Model 2 𝛿𝛿4 = 𝑒𝑒0𝑖𝑖 − 𝑒𝑒2𝑖𝑖  𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧4 = ∆𝑧𝑧𝑌𝑌�0 − 𝛥𝛥𝑧𝑧𝑎𝑎2𝑏𝑏2  𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿4 = 𝑔𝑔𝑔𝑔𝛿𝛿𝑌𝑌�0 − 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎2𝑏𝑏2   
Model 2 – Model 3 𝛿𝛿5 = 𝑒𝑒2𝑖𝑖 − 𝑒𝑒3𝑖𝑖  𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧5 = 𝛥𝛥𝑧𝑧𝑎𝑎2𝑏𝑏2 − Δ𝑧𝑧𝑎𝑎1𝑏𝑏1+𝑎𝑎2  𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿5 = 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎2𝑏𝑏2  − 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏  
Model 0 – Model 3 𝛿𝛿6 = 𝑒𝑒0𝑖𝑖 − 𝑒𝑒3𝑖𝑖   𝛿𝛿𝛿𝛿𝑒𝑒𝛿𝛿𝛿𝛿𝑎𝑎𝑧𝑧6 = ∆𝑧𝑧𝑌𝑌�0 − Δ𝑧𝑧𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2 𝛿𝛿𝑔𝑔𝑔𝑔𝛿𝛿6 = 𝑔𝑔𝑔𝑔𝛿𝛿𝑌𝑌�0 − 𝑔𝑔𝑔𝑔𝛿𝛿𝑎𝑎1𝑏𝑏1+𝑎𝑎2𝑏𝑏2 

Note. This table demonstrates all possible Model Contrasts; however, several of 
these contrasts are redundant. Simulation results focus on the first row which is the 
contrast between Models 0 and 1. 
 



  70 

  
 
  

Table 5   
Summary of Mediators Estimated in each Model 

Model M1 M2 
Model 0 NE NE 
Model 1 E NE 
Model 2 NE E 
Model 3 E E 
Note. Cells designated with an ‘NE’ mean the mediator is not 
estimated in the model. Cells designated with an ‘E’ mean the 
mediator is estimated in the model. 
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Table 6    
Effects of Significant Replications 
Subpopulation Contrasts Analysis Model Contrasts 

 𝛿𝛿1 = 𝑒𝑒0𝑖𝑖 − 𝑒𝑒1𝑖𝑖  𝛿𝛿4 = 𝑒𝑒0𝑖𝑖 − 𝑒𝑒2𝑖𝑖 𝛿𝛿6 = 𝑒𝑒0𝑖𝑖 − 𝑒𝑒3𝑖𝑖 
S1 - S2 Effect Effect No Effect 
S1 - S3  Effect No Effect Effect 
S1 - S4 No Effect Effect Effect 
S3 - S4 Effect Effect No Effect 
Note. This table summarizes whether a Subpopulation Contrast is expected 
to have a true effect for each Model Contrast. Model Contrasts are defined 
in table 4. 
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Table 7    
Proportion of Significant Replications (S1 – S4) 

Parameter combination Significant Proportiona 

N a1=b1 
(S1)b a1=b1 (S4)b Raw difference Rank-ordered 

difference 
Residuals 

200 0 0 0.03 0.04 
 0.39 0 0.03 0.05 
 0.99 0 0.05 0.06 
1000 0 0 0.03 0.04 
 0.39 0 0.04 0.05 
 0.99 0 0.06 0.06 

Delta z 
200 0 0 0.03 0.05 

 0.39 0 0.38 0.36 
 0.99 0 0.97 0.93 

gCd 
200 0 0 0.02 0.04 

 0.39 0 0.05 0.04 
 0.99 0 0.34 0.15 

Note. Results are from the Model Contrast between a model with no predictors 
and a model with effects through Mediator 1 and the Subpopulation Contrast 
between a subpopulation with no mediated effects and a subpopulation with 
effects through Mediator 1.   
 
aValues are analogous to Type 1 error. bS1 is the subpopulation with effects 
through Mediator 1. S4 is the subpopulation with no mediated effects. 
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Table 8     
Proportion of Significant Replications (S1 – S2) 

Parameter combination Significant Proportiona 
N a1=b1 (S1)b a2=b2 (S2)b Raw difference Rank-ordered difference 

Residuals 
200 0 0 0.03 0.04 

  0.39 0.03 0.04 
  0.99 0.04 0.05 
 0.39 0 0.04 0.05 
  0.39 0.04 0.05 
  0.99 0.05 0.06 
 0.99 0 0.07 0.07 
  0.39 0.07 0.07 
  0.99 0.07 0.07 

1000 0 0 0.04 0.04 
  0.39 0.04 0.04 
  0.99 0.04 0.04 
 0.39 0 0.04 0.05 
  0.39 0.04 0.05 
  0.99 0.04 0.05 
 0.99 0 0.06 0.06 
  0.39 0.05 0.06 
  0.99 0.05 0.05 

Delta z 
200 0 0 0.04 0.05 

  0.39 0.04 0.05 
  0.99 0.06 0.07 
 0.39 0 0.44 0.40 
  0.39 0.45 0.41 
  0.99 0.49 0.45 
 0.99 0 0.97 0.92 
  0.39 0.97 0.92 
  0.99 0.99 0.96 

gCd 
200 0 0 0.03 0.04 

  0.39 0.02 0.04 
  0.99 0.12 0.12 
 0.39 0 0.06 0.05 
  0.39 0.05 0.05 
  0.99 0.11 0.08 
     
 0.99 0 0.31 0.11 
  0.39 0.30 0.12 
  0.99 0.26 0.22 

Note. Results are from the Model Contrast between a model with no predictors and a model with 
effects through Mediator 1, and the Subpopulation Contrast between a subpopulation with effects 
through Mediator 1 and a subpopulation with effects through Mediator 2.  
 
aValues are analogous to statistical power. bS1 is the subpopulation with effects through Mediator 1. 
S2 is the subpopulation with effects through Mediator 2. 
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APPENDIX B 

FIGURES 
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Figure 1  

Index Plots of Observed and Predicted Y by Observation 

  

1a. 1b. 

  

2a. 2b. 

  

3a. 3b. 

Note. Panel columns are plots of observed (left) and 
predicted (right) values. Rows are different models. The 
dashed reference lines show the last replicate representing S1 
and the last replicate representing S2 (replicate 500 and 1000). 
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Figure 2  

Index Plots of Residuals by Observation 

  

Panel 1 Panel 2 

  

Panel 3 Panel 4 

Note. Panel 1 shows a model for Y with no predictors. Panel 2 shows a model 
through M1 only. Panel 3 shows a model through M2 only. Panel 4 shows a 
through both M1 and M2. 
The dashed reference lines show the last replicate representing S1 and the last 
replicate representing S2 (replicate 500 and 1000). Observations 1-500 reflect S1, 
501-1000 reflect S2, and 1001-1500 reflect S3. 
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Figure 3  

Index Plot of Delta z by Observation and Subpopulation 

  

Panel A Panel B 

Note.  The dashed reference lines show the last replicate representing S1 and the last 
replicate representing S2 (replicate 500 and 1000). 
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Figure 4  

Index Plots of gCd by Observation and Subpopulation 

  

Panel A Panel B 

Note.   The dashed reference lines show the last replicate representing S1 and the 
last replicate representing S2 (replicate 500 and 1000). 
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Figure 5 

Index Plot of INDCHI by Observation and Subpopulation 

 

Note.   The dashed reference lines show the last replicate 
representing S1 and the last replicate representing S2 
(replicate 500 and 1000). 
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Figure 6 

 

Note. S1 has effects through M1 only, S2 has effects through M2 only, S3 has effects through 
M1 and M2, and S4 has no effects 

 
  

a1S1 =  b1S1  ≠ 0
a1S2 =  0

a1S3 =  b1S3  ≠ 0
a1S4 =  0

 

 

a2S1 =  0
a2S2 =  b2S2  ≠ 0
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a2S4 =  0

 

 

a1S1 =  b1S1  ≠ 0
b1S2 = 0

a1S3 =  b1S3  ≠ 0
b1S4 =  0
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APPENDIX C 

SAS PROGRAM FOR DATA GENERATION 
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libname a "D: "; 
 
*imports csv file with true values for the simulation conditions; 
 
PROC IMPORT OUT= WORK.conds  
DATAFILE= "D: \conditions.csv"  
     DBMS=CSV REPLACE; 
     GETNAMES=YES; 
     DATAROW=2;  
RUN; 
 
/* reads through csv file and creates a macro variable for each simulation parameter  
and appends a number to each value corresponding to the condition it is associated with. */ 
 
data conds; length ii $8; set conds; 
i+1; 
ii=left(put(i, 8.)); 
call symput ('FILE'||ii, FILE); 
call symput ('NSIM'||ii, NSIM); 
call symput ('NOBS'||ii, NOBS); 
call symput ('TNOBS'||ii,TNOBS); 
call symput ('S1A1'||ii, S1A1); 
call symput ('S1B1'||ii, S1B1); 
call symput ('S1A2'||ii, S1A2); 
call symput ('S1B2'||ii, S1B2); 
call symput ('S1CP'||ii, S1CP); 
call symput ('S2A1'||ii, S2A1); 
call symput ('S2B1'||ii, S2B1); 
call symput ('S2A2'||ii, S2A2); 
call symput ('S2B2'||ii, S2B2); 
call symput ('S2CP'||ii, S2CP); 
call symput ('S3A1'||ii, S3A1); 
call symput ('S3B1'||ii, S3B1); 
call symput ('S3A2'||ii, S3A2); 
call symput ('S3B2'||ii, S3B2); 
call symput ('S3CP'||ii, S3CP); 
call symput ('S4A1'||ii, S4A1); 
call symput ('S4B1'||ii, S4B1); 
call symput ('S4A2'||ii, S4A2); 
call symput ('S4B2'||ii, S4B2); 
call symput ('S4CP'||ii, S4CP); 
call symput ('n', _n_); 
drop i; 
run; 
 
 
DATA SUMMARY; SET _NULL_; 
%MACRO 
SIMULATE(NSIM,NOBS,TNOBS,FILE,S1A1,S1B1,S1A2,S1B2,S1CP,S2A1,S2B1,S2A2,S2B
2,S2CP,S3A1,S3B1,S3A2,S3B2,S3CP,S4A1,S4B1,S4A2,S4B2,S4CP); 
 
TITLE 'SIMULATION OF MEDIATION RESIDUALS'; 
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/*SUBPOP 1 EFFECTS THROUGH M1*/ 
DATA SIM1; 
totaln=&NSIM*&NOBS; 
DO I=1 TO totaln; 
 sgrp=1; 
 N=&NOBS; 
 xmean = 0; 
 x_std = 1; 
 
 intM1 = 0; 
 bM1X = &S1A1; 
 
 intM2 = 0; 
 bM2X = &S1A2; 
 
 intY = 0; 
 bYX = &S1CP; 
 bYM1 = &S1B1; 
 bYM2 = &S1B2; 
 
 e_stdM1 = 1; 
 e_stdM2 = 1; 
 e_stdY = 1; 
 
call streaminit( 19800303 ); 
  x = RAND('Normal', xmean, x_std); 
  m1 = intM1 + bM1X*x + e_stdM1*RAND('Normal', 0,1);  
  m2 = intM2 + bM2X*x + e_stdM2*RAND('Normal',0,1); 
  y = intY + bYX*x + bYM1*m1 + bYM2*m2 + e_stdY*RAND('Normal',0,1); 
  OUTPUT; 
 END; 
 
/*ASSIGNING REPLICATION NUMBERS TO OBSERVATIONS*/ 
DATA SIM1; set SIM1; 
J=&nobs; 
DO J=0 to totaln by &nobs; 
IF 1+J<=I<=&NOBS+J then rep=1+(J/&nobs); 
end; 
 
/*SUBPOP 2 EFFECTS THROUGH M2*/ 
DATA SIM2; 
totaln=&NSIM*&NOBS; 
DO I=1 TO totaln; 
 sgrp=2; 
 N=&NOBS; 
 xmean = 0; 
 x_std = 1; 
 
 intM1 = 0; 
 bM1X = &S2A1; 
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 intM2 = 0; 
 bM2X = &S2A2; 
 
 intY = 0; 
 bYX = &S2CP; 
 bYM1 = &S2B1; 
 bYM2 = &S2B2; 
 
 e_stdM1 = 1; 
 e_stdM2 = 1; 
 e_stdY = 1; 
 
call streaminit( 19960303 ); 
  x = RAND('Normal', xmean, x_std); 
  m1 = intM1 + bM1X*x + e_stdM1*RAND('Normal', 0,1);  
  m2 = intM2 + bM2X*x + e_stdM2*RAND('Normal',0,1); 
  y = intY + bYX*x + bYM1*m1 + bYM2*m2 + e_stdY*RAND('Normal',0,1); 
  OUTPUT; 
 END; 
/*ASSIGNING REPLICATION NUMBERS TO OBSERVATIONS*/ 
DATA SIM2; set SIM2; 
J=&nobs; 
DO J=0 to totaln by &nobs; 
IF 1+J<=I<=&NOBS+J then rep=1+(J/&nobs); 
end; 
 
/*SUBPOP 3 EFFECTS THROUGH BOTH */ 
DATA SIM3; 
totaln=&NSIM*&NOBS; 
DO I=1 TO totaln; 
 sgrp=3; 
 N=&NOBS; 
 xmean = 0; 
 x_std = 1; 
 
 intM1 = 0; 
 bM1X = &S3A1; 
 
 intM2 = 0; 
 bM2X = &S3A2; 
 
 intY = 0; 
 bYX = &S3CP; 
 bYM1 = &S3B1; 
 bYM2 = &S3B2; 
 
 e_stdM1 = 1; 
 e_stdM2 = 1; 
 e_stdY = 1; 
 
call streaminit( 20010303 ); 
  x = RAND('Normal', xmean, x_std); 
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  m1 = intM1 + bM1X*x + e_stdM1*RAND('Normal', 0,1);  
  m2 = intM2 + bM2X*x + e_stdM2*RAND('Normal',0,1); 
  y = intY + bYX*x + bYM1*m1 + bYM2*m2 + e_stdY*RAND('Normal',0,1); 
  OUTPUT; 
 END; 
 
/*ASSIGNING REPLICATION NUMBERS TO OBSERVATIONS*/ 
DATA SIM3; set SIM3; 
J=&nobs; 
DO J=0 to totaln by &nobs; 
IF 1+J<=I<=&NOBS+J then rep=1+(J/&nobs); 
end; 
 
/*SUBPOP 4 EFFECTS THROUGH NEITHER*/ 
DATA SIM4; 
totaln=&NSIM*&NOBS; 
DO I=1 TO totaln; 
 sgrp=4; 
 N=&NOBS; 
 xmean = 0; 
 x_std = 1; 
 
 intM1 = 0; 
 bM1X = &S4A1; 
 
 intM2 = 0; 
 bM2X = &S4A2; 
 
 intY = 0; 
 bYX = &S4CP; 
 bYM1 = &S4B1; 
 bYM2 = &S4B2; 
 
 e_stdM1 = 1; 
 e_stdM2 = 1; 
 e_stdY = 1; 
 
call streaminit( 20220303 ); 
  x = RAND('Normal', xmean, x_std); 
  m1 = intM1 + bM1X*x + e_stdM1*RAND('Normal', 0,1);  
  m2 = intM2 + bM2X*x + e_stdM2*RAND('Normal',0,1); 
  y = intY + bYX*x + bYM1*m1 + bYM2*m2 + e_stdY*RAND('Normal',0,1); 
  OUTPUT; 
 END; 
 
/*ASSIGNING REPLICATION NUMBERS TO OBSERVATIONS*/ 
DATA SIM4; set SIM4; 
J=&nobs; 
DO J=0 to totaln by &nobs; 
IF 1+J<=I<=&NOBS+J then rep=1+(J/&nobs); 
end; 
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/*COMBINING SUBPOPULATIONS INTO SINGLE POPULATION*/ 
DATA FULL; SET SIM1 SIM2 SIM3 SIM4; 
NOBS=&NOBS; 
FILE="&FILE"; 
drop J totaln; 
run; 
 
/*Save each condition to a new file*/ 
Data a.&file; set FULL; 
run; 
 
%MEND simulate; 
%MACRO Condloop; 
 %do i=1 %to &n; 
%SIMULATE(NSIM=&&NSIM&i,NOBS=&&NOBS&i,TNOBS=&&TNOBS&i,FILE=&&FIL
E&i,S1A1=&&S1A1&i,S1B1=&&S1B1&i,S1A2=&&S1A2&i,S1B2=&&S1B2&i,S1CP=&&S1C
P&i,S2A1=&&S2A1&i, 
S2B1=&&S2B1&i,S2A2=&&S2A2&i,S2B2=&&S2B2&i,S2CP=&&S2CP&i,S3A1=&&S3A1&i,
S3B1=&&S3B1&i,S3A2=&&S3A2&i,S3B2=&&S3B2&i,S3CP=&&S3CP&i, 
S4A1=&&S4A1&i,S4B1=&&S4B1&i,S4A2=&&S4A2&i,S4B2=&&S4B2&i,S4CP=&&S4CP&i)
; 
 %end; 
%mend condloop; 
%condloop; run; 
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APPENDIX D 

SAS PROGRAM FOR ANALYSIS OF RESIDUALS 
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libname a "D:\Sync\Science Binders\028-dissertation\028-data"; 
 
OPTIONS PS=59 LS=80 REPLACE NONOTES; 
FILENAME NULLOG DUMMY 'C:\NULL'; 
PROC PRINTTO LOG=NULLOG; 
 
PROC IMPORT OUT= WORK.conds  
 DATAFILE= "D:\Sync\Science Binders\028-dissertation\028-code\memo 
run\CONDITIONS.csv"  
 DBMS=CSV REPLACE; 
    GETNAMES=YES; 
    DATAROW=2;  
 GUESSINGROWS=500; 
RUN; 
 
data conds; length ii $8; set conds; 
i+1; 
ii=left(put(i, 8.)); 
call symput ('FILE'||ii, FILE); 
call symput ('NSIM'||ii, NSIM); 
call symput ('NOBS'||ii, NOBS); 
call symput ('TNOBS'||ii,TNOBS); 
 
call symput ('S1A1'||ii, S1A1); 
call symput ('S1B1'||ii, S1B1); 
call symput ('S1A2'||ii, S1A2); 
call symput ('S1B2'||ii, S1B2); 
call symput ('S1CP'||ii, S1CP); 
 
call symput ('S2A1'||ii, S2A1); 
call symput ('S2B1'||ii, S2B1); 
call symput ('S2A2'||ii, S2A2); 
call symput ('S2B2'||ii, S2B2); 
call symput ('S2CP'||ii, S2CP); 
 
call symput ('S3A1'||ii, S3A1); 
call symput ('S3B1'||ii, S3B1); 
call symput ('S3A2'||ii, S3A2); 
call symput ('S3B2'||ii, S3B2); 
call symput ('S3CP'||ii, S3CP); 
 
call symput ('S4A1'||ii, S4A1); 
call symput ('S4B1'||ii, S4B1); 
call symput ('S4A2'||ii, S4A2); 
call symput ('S4B2'||ii, S4B2); 
call symput ('S4CP'||ii, S4CP); 
 
call symput ('n', _n_); 
drop i; 
run; 
 
data SUMMARY2; set _null_; 
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data SUMMARY2b; set _null_; 
 
%macro 
RESIDS(NSIM,NOBS,TNOBS,FILE,S1A1,S1B1,S1A2,S1B2,S1CP,S2A1,S2B1,S2A2,S2B2,S2
CP,S3A1,S3B1,S3A2,S3B2,S3CP,S4A1,S4B1,S4A2,S4B2,S4CP); 
 
data SUMMARY; set _null_; 
data SUMMARYB; set _null_; 
 
DATA SIMALL; SET A.&FILE; 
run; 
 
 
%split(nobs=&&nobs&i,TNOBS=&&Tnobs&i, NSIM=&&nSIM&i); 
run; 
 
data new2; set SUMMARY2; 
run; 
 
data SUMMARY2; set new2 SUMMARY; 
run; 
 
data new2b; set SUMMARY2b; 
run; 
 
data SUMMARY2b; set new2b SUMMARYb; 
run; 
 
%mend RESIDS; 
run; 
quit; 
 
%MACRO split (nobs, TNOBS, NSIM); 
%do k=1 %to &&nsim&i; 
 
Data SIM; set SIMALL(where=(Rep=&k)); run; 
 
/*ESTIMATE FOUR MODELS IN ORIGINAL DATA*/ 
/*Model 0*/ 
title; 
proc reg data=SIM noprint; 
Model y= /p r; 
output out=pr0 p=p0 r=r0 stdr=SEr0; 
run;QUIT; 
 
/*Model 1*/ 
proc reg data=SIM noprint; 
ModelM: model m1=x; 
ModelY: model y=x m1/p r; 
output out=pr1 p=p1 r=r1 stdr=SEr1; 
run;QUIT; 
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/*Model 2*/ 
proc reg data=SIM noprint; 
ModelM: model m2=x; 
ModelY: model y=x m2/p r; 
output out=pr2 p=p2 r=r2 stdr=SEr2; 
run;QUIT; 
 
/*Model 3*/ 
proc reg data=SIM noprint; 
ModelM1: model m1=x; 
ModelM2: model m2=x; 
ModelY: model y=x m1 m2/p r; 
output out=pr3 p=p3 r=r3 stdr=SEr3; 
run; 
quit; 
 
/*MERGE RESIDUALS INTO DATASET */ 
DATA FOURMODRES; 
merge pr0 pr1 pr2 pr3; 
label p0 = 'p0' r0 = 'r0' p1 = 'p1' r1 = 'r1' p2 = 'p2' r2 = 'r2' p3 = 'p3' r3 = 'r3' SEr0 = 'SEr0' 
SEr1 = 'SEr1' SEr2 = 'Ser2' Ser3 = 'Ser3' ; 
run; 
 
/*COMPUTE RESIDUAL DIFFERENCES*/ 
data FOURMODRES; set FOURMODRES; 
d1 = R0-R1; 
d2 = R1-R2; 
d3 = R1-R3; 
d4 = R0-R2; 
d5 = R2-R3; 
d6 = R0-R3; 
resvar0 = SEr0**2; 
resvar1 = SEr1**2; 
resvar2 = SEr2**2; 
resvar3 = SEr3**2; 
run; 
 
/*ITERATIVELY SAVING REPLICATION RESULTS*/ 
data new; set summary; 
run; 
 
data summary; set new FOURMODRES; 
run; 
 
/*BOOTSTRAP RESAMPLING*/; 
%LET NBOOT=1000; 
proc surveyselect data=A.RESIDS noprint out=RESBOOT  method=urs sampsize=&TNOBS 
rep=&NBOOT outhits; 
BY REP; 
run; quit; 
 
/*ESTIMATE FOUR MODELS IN BOOTSTRAP SAMPLES*/ 
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/*Model 0*/ 
title; 
proc reg data=RESBOOT noprint; 
BY REP REPLICATE; 
Model y= /p r; 
output out=PR0B p=p0b r=r0b stdr=SEr0b; 
run;QUIT; 
 
data PR0B; set PR0B; 
label p0b = 'p0b' r0b = 'r0b' SEr0b = 'SEr0b'; 
run; 
 
/*Model 1*/ 
proc reg data=RESBOOT noprint; 
BY REP REPLICATE; 
ModelM: model m1=x; 
ModelY: model y=x m1/p r; 
output out=PR1B p=p1b r=r1b stdr=SEr1b; 
run;QUIT; 
 
data PR1B; set PR1B; 
label p1b = 'p1b' r1b = 'r1b'  SEr1b = 'SEr1b' ; 
run; 
 
/*Model 2*/ 
proc reg data=RESBOOT noprint; 
BY REP REPLICATE; 
ModelM: model m2=x; 
ModelY: model y=x m2/p r; 
output out=PR2B p=p2b r=r2b stdr=SEr2b; 
run;QUIT; 
 
data PR2B; set PR2B; 
label p2b = 'p2b' r2b = 'r2b'  SEr2b = 'SEr2b'; 
run; 
 
/*Model 3*/ 
proc reg data=RESBOOT noprint; 
BY REP REPLICATE; 
ModelM1: model m1=x; 
ModelM2: model m2=x; 
ModelY: model y=x m1 m2/p r; 
output out=PR3B p=p3b r=r3b stdr=SEr3b; 
run; 
quit; 
 
data PR3B; set PR3B; 
label p3b = 'p3b' r3b = 'r3b' SEr3b = 'SEr3b'; 
run; 
 
DATA FOURMRBOOT; 
merge RESBOOT pr0B pr1B pr2B pr3B; 
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run; 
 
/*COMPUTE RESIDUAL DIFFERENCES IN BOOTSTRAP SAMPLES*/ 
data FOURMRBOOT; set FOURMRBOOT; 
d1b = R0b-R1b; 
d2b = R1b-R2b; 
d3b = R1b-R3b; 
d4b = R0b-R2b; 
d5b = R2b-R3b; 
d6b = R0b-R3b; 
resvar0b = SEr0b**2; 
resvar1b = SEr1b**2; 
resvar2b = SEr2b**2; 
resvar3b = SEr3b**2; 
run; 
 
/*COMPUTING LCL AND UCL*/ 
proc univariate data=FOURMRBOOT noprint; 
var d1b; 
output out=bootd1 
pctlpts = 2.5, 97.5 
pctlpre = Pd1_; 
run; 
 
proc univariate data=FOURMRBOOT noprint; 
var d2b; 
output out=bootd2 
pctlpts = 2.5, 97.5 
pctlpre = Pd2_; 
run; 
 
proc univariate data=FOURMRBOOT noprint; 
var d3b; 
output out=bootd3 
pctlpts = 2.5, 97.5 
pctlpre = Pd3_; 
run; 
 
proc univariate data=FOURMRBOOT noprint; 
var d4b; 
output out=bootd4 
pctlpts = 2.5, 97.5 
pctlpre = Pd4_; 
run; 
 
proc univariate data=FOURMRBOOT noprint; 
var d5b; 
output out=bootd5 
pctlpts = 2.5, 97.5 
pctlpre = Pd5_; 
run; 
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proc univariate data=FOURMRBOOT noprint; 
var d6b; 
output out=bootd6 
pctlpts = 2.5, 97.5 
pctlpre = Pd6_; 
run; 
 
data cisa; merge bootd1-bootd6;run; 
 
DATA FOURMRBOOT; MERGE FOURMRBOOT CISA;RUN; 
 
/*COPY CIS DOWN ROWS*/ 
DATA FOURMRBOOT 
(DROP = XPd1_2_5 XPd1_97_5 XPd2_2_5 XPd2_97_5 XPd3_2_5 XPd3_97_5 XPd4_2_5 
XPd4_97_5 XPd5_2_5 XPd5_97_5 XPd6_2_5 XPd6_97_5) ; 
SET FOURMRBOOT ; 
RETAIN XPd1_2_5 ;  
IF NOT MISSING(Pd1_2_5) THEN XPd1_2_5 = Pd1_2_5 ;  
Pd1_2_5 = XPd1_2_5 ; 
RETAIN XPd1_97_5 ;  
IF NOT MISSING(Pd1_97_5) THEN XPd1_97_5 = Pd1_97_5 ;  
Pd1_97_5 = XPd1_97_5 ; 
RETAIN XPd2_2_5 ;  
IF NOT MISSING(Pd2_2_5) THEN XPd2_2_5 = Pd2_2_5 ;  
Pd2_2_5 = XPd2_2_5 ; 
RETAIN XPd2_97_5 ;  
IF NOT MISSING(Pd2_97_5) THEN XPd2_97_5 = Pd2_97_5 ;  
Pd2_97_5 = XPd2_97_5 ; 
RETAIN XPd3_2_5 ;  
IF NOT MISSING(Pd3_2_5) THEN XPd3_2_5 = Pd3_2_5 ;  
Pd3_2_5 = XPd3_2_5 ; 
RETAIN XPd3_97_5 ; 
IF NOT MISSING(Pd3_97_5) THEN XPd3_97_5 = Pd3_97_5 ;  
Pd3_97_5 = XPd3_97_5 ; 
RETAIN XPd4_2_5 ;  
IF NOT MISSING(Pd4_2_5) THEN XPd4_2_5 = Pd4_2_5 ;  
Pd4_2_5 = XPd4_2_5 ; 
RETAIN XPd4_97_5 ;  
IF NOT MISSING(Pd4_97_5) THEN XPd4_97_5 = Pd4_97_5 ;  
Pd4_97_5 = XPd4_97_5 ; 
RETAIN XPd5_2_5 ;  
IF NOT MISSING(Pd5_2_5) THEN XPd5_2_5 = Pd5_2_5 ;  
Pd5_2_5 = XPd5_2_5 ; 
RETAIN XPd5_97_5 ;  
IF NOT MISSING(Pd5_97_5) THEN XPd5_97_5 = Pd5_97_5 ;  
Pd5_97_5 = XPd5_97_5 ; 
RETAIN XPd6_2_5 ;  
IF NOT MISSING(Pd6_2_5) THEN XPd6_2_5 = Pd6_2_5 ;  
Pd6_2_5 = XPd6_2_5 ; 
RETAIN XPd6_97_5 ;  
IF NOT MISSING(Pd6_97_5) THEN XPd6_97_5 = Pd6_97_5 ;  
Pd6_97_5 = XPd6_97_5 ; 
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RUN ; 
 
 
/*variable to code if residual differences are in CIs*/ 
data FOURMRBOOT; set FOURMRBOOT; 
d1sig=0; d2sig=0; d3sig=0; d4sig=0; d5sig=0; d6sig=0; 
IF d1 lt Pd1_2_5 then d1sig=1; IF d1 gt Pd1_97_5 then d1sig=1; 
IF d2 lt Pd2_2_5 then d2sig=1; IF d2 gt Pd2_97_5 then d2sig=1; 
IF d3 lt Pd3_2_5 then d3sig=1; IF d3 gt Pd3_97_5 then d3sig=1; 
IF d4 lt Pd4_2_5 then d4sig=1; IF d4 gt Pd4_97_5 then d4sig=1; 
IF d5 lt Pd5_2_5 then d5sig=1; IF d5 gt Pd5_97_5 then d5sig=1; 
IF d6 lt Pd6_2_5 then d6sig=1; IF d6 gt Pd6_97_5 then d6sig=1; 
run; 
 
/*COMPUTING SIGNIFICANT FREQUENCIES */ 
proc freq data=FOURMRBOOT NOPRINT; 
tables d1sig /OUT=F1; 
tables d2sig /OUT=F2; 
tables d3sig /OUT=F3; 
tables d4sig /OUT=F4; 
tables d5sig /OUT=F5; 
tables d6sig /OUT=F6; 
run; 
 
DATA F1A; SET F1; IF D1SIG=1; RENAME COUNT = D1_COUNT; LABEL COUNT = 
'D1_COUNT'; DROP PERCENT D1SIG;RUN; 
DATA F2A; SET F2; IF D2SIG=1; RENAME COUNT = D2_COUNT; LABEL COUNT = 
'D2_COUNT'; DROP PERCENT D2SIG;RUN; 
DATA F3A; SET F3; IF D3SIG=1; RENAME COUNT = D3_COUNT; LABEL COUNT = 
'D3_COUNT'; DROP PERCENT D3SIG;RUN; 
DATA F4A; SET F4; IF D4SIG=1; RENAME COUNT = D4_COUNT; LABEL COUNT = 
'D4_COUNT'; DROP PERCENT D4SIG;RUN; 
DATA F5A; SET F5; IF D5SIG=1; RENAME COUNT = D5_COUNT; LABEL COUNT = 
'D5_COUNT'; DROP PERCENT D5SIG;RUN; 
DATA F6A; SET F6; IF D6SIG=1; RENAME COUNT = D6_COUNT; LABEL COUNT = 
'D6_COUNT'; DROP PERCENT D6SIG;RUN; 
 
DATA FREQ; MERGE F1A F2A F3A F4A F5A F6A;  
RUN; 
 
DATA FOURMRBOOT; MERGE FOURMRBOOT FREQ; RUN; 
 
DATA FOURMRBOOT 
(DROP = XD1_COUNT XD2_COUNT XD3_COUNT XD4_COUNT XD5_COUNT 
XD6_COUNT) ; 
SET FOURMRBOOT ; 
RETAIN XD1_COUNT  ;  
IF NOT MISSING(D1_COUNT) THEN XD1_COUNT = D1_COUNT ;  
D1_COUNT = XD1_COUNT ; 
RETAIN XD2_COUNT  ;  
IF NOT MISSING(D2_COUNT) THEN XD2_COUNT = D2_COUNT ;  
D2_COUNT = XD2_COUNT ; 
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RETAIN XD3_COUNT  ;  
IF NOT MISSING(D3_COUNT) THEN XD3_COUNT = D3_COUNT ;  
D3_COUNT = XD3_COUNT ; 
RETAIN XD4_COUNT  ;  
IF NOT MISSING(D4_COUNT) THEN XD4_COUNT = D4_COUNT ;  
D4_COUNT = XD4_COUNT ; 
RETAIN XD5_COUNT  ;  
IF NOT MISSING(D5_COUNT) THEN XD5_COUNT = D5_COUNT ;  
D5_COUNT = XD5_COUNT ; 
RETAIN XD6_COUNT  ;  
IF NOT MISSING(D6_COUNT) THEN XD6_COUNT = D6_COUNT ;  
D6_COUNT = XD6_COUNT ; 
RUN ; 
 
 
DATA FOURMRBOOT; SET FOURMRBOOT; 
CN = &TNOBS*&NBOOT; 
D1SIGRAT = ((D1_COUNT)/CN); 
D2SIGRAT = ((D2_COUNT)/CN); 
D3SIGRAT = ((D3_COUNT)/CN); 
D4SIGRAT = ((D4_COUNT)/CN); 
D5SIGRAT = ((D5_COUNT)/CN); 
D6SIGRAT = ((D6_COUNT)/CN); 
RUN; 
 
DATA FOURMRBOOT 
(DROP = XD1SIGRAT XD2SIGRAT XD3SIGRAT XD4SIGRAT XD5SIGRAT XD6SIGRAT) ; 
SET FOURMRBOOT ; 
RETAIN XD1SIGRAT  ;  
IF NOT MISSING(D1SIGRAT) THEN XD1SIGRAT = D1SIGRAT ;  
D1SIGRAT = XD1SIGRAT ; 
RETAIN XD2SIGRAT  ;  
IF NOT MISSING(D2SIGRAT) THEN XD2SIGRAT = D2SIGRAT ;  
D2SIGRAT = XD2SIGRAT ; 
RETAIN XD3SIGRAT  ;  
IF NOT MISSING(D3SIGRAT) THEN XD3SIGRAT = D3SIGRAT ;  
D3SIGRAT = XD3SIGRAT ; 
RETAIN XD4SIGRAT  ;  
IF NOT MISSING(D4SIGRAT) THEN XD4SIGRAT = D4SIGRAT ;  
D4SIGRAT = XD4SIGRAT ; 
RETAIN XD5SIGRAT  ;  
IF NOT MISSING(D5SIGRAT) THEN XD5SIGRAT = D5SIGRAT ;  
D5SIGRAT = XD5SIGRAT ; 
RETAIN XD6SIGRAT  ;  
IF NOT MISSING(D6SIGRAT) THEN XD6SIGRAT = D6SIGRAT ;  
D6SIGRAT = XD6SIGRAT ; 
RUN ; 
 
 
/*ITERATIVELY SAVE BOOTSTRAP RESULTS*/ 
data newB; set summaryB; 
run; 
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data summaryB; set newB FOURMRBOOT; 
run; 
 
 
%end; 
%mend split; 
%MACRO Condloop; 
 
 %do i=1 %to &n; 
%RESIDS(NSIM=&&NSIM&i,NOBS=&&NOBS&i,TNOBS=&&Tnobs&i,FILE=&&FILE&i,S
1A1=&&S1A1&i,S1B1=&&S1B1&i,S1A2=&&S1A2&i,S1B2=&&S1B2&i,S1CP=&&S1CP&i,S
2A1=&&S2A1&i, 
S2B1=&&S2B1&i,S2A2=&&S2A2&i,S2B2=&&S2B2&i,S2CP=&&S2CP&i,S3A1=&&S3A1&i,
S3B1=&&S3B1&i,S3A2=&&S3A2&i,S3B2=&&S3B2&i,S3CP=&&S3CP&i, 
S4A1=&&S4A1&i,S4B1=&&S4B1&i,S4A2=&&S4A2&i,S4B2=&&S4B2&i,S4CP=&&S4CP&i)
; 
 %end; 
 %mend condloop; 
%condloop; run; 
 
DATA A.RESIDS; SET SUMMARY2; RUN; 
DATA A.RESIDSB; SET SUMMARY2B; RUN; 
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APPENDIX E 

SAS PROGRAM FOR ANALYSIS OF DELTA Z AND GCD   
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OPTIONS PS=59 LS=80 REPLACE NONOTES; 
FILENAME NULLOG DUMMY 'C:\NULL'; 
PROC PRINTTO LOG=NULLOG; 
 
/*/*CREATE DATA SET OF CONDITIONS FROM CSV*/*/; 
PROC IMPORT OUT= WORK.conds  
 DATAFILE= "D:\Sync\Science Binders\028-dissertation\028-
code\DZGCDRUN\condlg2.csv"  
 DBMS=CSV REPLACE; 
    GETNAMES=YES; 
    DATAROW=2;  
 GUESSINGROWS=500; 
RUN; 
 
 
/*/*CREATE MACRO VARIABLES FROM CONDITIONS LIST*/*/; 
data conds; length ii $8; set conds; 
i+1; 
ii=left(put(i, 8.)); 
call symput ('FILE'||ii, FILE); 
call symput ('NSIM'||ii, NSIM); 
call symput ('NOBS'||ii, NOBS); 
call symput ('TNOBS'||ii,TNOBS); 
call symput ('JKNOBS'||ii,JKNOBS); 
 
call symput ('S1A1'||ii, S1A1); 
call symput ('S1B1'||ii, S1B1); 
call symput ('S1A2'||ii, S1A2); 
call symput ('S1B2'||ii, S1B2); 
call symput ('S1CP'||ii, S1CP); 
 
call symput ('S2A1'||ii, S2A1); 
call symput ('S2B1'||ii, S2B1); 
call symput ('S2A2'||ii, S2A2); 
call symput ('S2B2'||ii, S2B2); 
call symput ('S2CP'||ii, S2CP); 
 
call symput ('S3A1'||ii, S3A1); 
call symput ('S3B1'||ii, S3B1); 
call symput ('S3A2'||ii, S3A2); 
call symput ('S3B2'||ii, S3B2); 
call symput ('S3CP'||ii, S3CP); 
 
call symput ('S4A1'||ii, S4A1); 
call symput ('S4B1'||ii, S4B1); 
call symput ('S4A2'||ii, S4A2); 
call symput ('S4B2'||ii, S4B2); 
call symput ('S4CP'||ii, S4CP); 
 
call symput ('n', _n_); 
drop i; 
run; 
 
 
/*/*READ IN CONDITION DATA FILE AND INVOKE SPLIT MACRO*/*/; 
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%macro 
JACKDZ(NSIM,NOBS,TNOBS,JKNOBS,FILE,S1A1,S1B1,S1A2,S1B2,S1CP,S2A1,S2B1,S
2A2,S2B2,S2CP,S3A1,S3B1,S3A2,S3B2,S3CP,S4A1,S4B1,S4A2,S4B2,S4CP); 
 
 
DATA SIMALL; SET a.&file; 
run; 
 
%split(nobs=&&nobs&i,TNOBS=&&Tnobs&i, NSIM=&&nSIM&i, 
JKNOBS=&&JKNOBS&i); 
run; 
 
/*/*/*CLEAR WORK LIBRARY*/*/; 
PROC DATASETS LIB=WORK KILL NOLIST;  
RUN;  
QUIT; 
; 
%mend JACKDZ; 
run; 
quit; 
 
 
/*/*ANALYZE CONDITION BY SIMULATION REPLICATION*/*/; 
%MACRO split (nobs, TNOBS, NSIM, JKNOBS); 
%do k=1 %to &&nsim&i; 
 
Data SIM; set SIMALL(where=(Rep=&k)); run; 
 
 
data jack; 
 do replicate = 1 to numrecs;  
  do rec = 1 to numrecs; 
   set SIM nobs=numrecs point=rec;  
   if replicate ^= rec then output; 
  end; 
 end; 
stop; 
run; 
 
/*Model 0*/ 
PROC CALIS data=JACK method=ML cov outest=F0 NOPRINT ; 
BY REPLICATE; 
LINEQS 
Y= C0 INTERCEPT+E0; 
VARIANCE 
E0=EE0; 
run; quit; 
 
/*Model 1*/ 
PROC CALIS data=JACK method=ML cov outest=F1 noprint; 
BY REPLICATE; 
LINEQS 
M1=a1 X + E1, 
Y=c X + b1 M1 + E2; 
VARIANCE 
E1=EE1, 
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E2=EE2; 
run; quit; 
 
 
/*Model 2*/ 
PROC CALIS data=JACK method=ML cov outest=F2 noprint; 
BY REPLICATE; 
LINEQS 
M2=a2 X + E3, 
Y=c X + b2 M2 + E4; 
VARIANCE 
E3=EE3, 
E4=EE4; 
run; quit; 
 
/*Model 3*/ 
PROC CALIS data=JACK method=ML cov outest=F3 noprint; 
BY REPLICATE; 
LINEQS 
M1=a1 X + E5, 
M2=a2 X + E6, 
Y=c X + b1 M1 + b2 M2 + E7; 
VARIANCE 
E5=EE5, 
E6=EE6, 
E7=EE7; 
run; quit; 
 
/*ZERO*/ 
data a; 
set F0; 
if _TYPE_='PARMS'; C0i=C0; EE0i=EE0;  
DROP _TYPE_ _NAME_ _RHS_ ; 
KEEP REPLICATE C0i EE0i; 
RUN; 
 
data b; 
set F0; 
if _TYPE_ = 'STDERR'; sdC0i=C0; varC0i= C0*C0;  
DROP _TYPE_ _NAME_ _RHS_; 
KEEP REPLICATE sdC0i varC0i; 
RUN; 
 
/*ONE*/ 
data C; 
set F1; 
if _TYPE_='PARMS'; a1i=a1;  b1i=b1; CP1i=C; EE1i=EE1; EE2i=EE2;  
DROP _TYPE_ _NAME_ _RHS_ _Add1; 
KEEP REPLICATE a1i b1i CP1i EE1i EE2i; 
RUN; 
 
data D; 
set F1; 
if _TYPE_ = 'STDERR'; sda1i=a1; vara1i= a1*a1;  
sdb1i=b1; varb1i = b1*b1; SDCP1i=C; VARCP1i=C*C;  
DROP _TYPE_ _NAME_ _RHS_ _Add1; 
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KEEP REPLICATE sda1i sdb1i sdCP1i vara1i varb1i varCP1i; 
RUN; 
 
/*TWO*/ 
data E; 
set F2; 
if _TYPE_='PARMS'; a2i=a2;  b2i=b2; CP2i=C; EE3i=EE3; EE4i=EE4;  
DROP _TYPE_ _NAME_ _RHS_ _Add1 ; 
KEEP REPLICATE a2i b2i CP2i EE3i EE4i; 
RUN; 
 
data F; 
set F2; 
if _TYPE_ = 'STDERR'; sda2i=a2; vara2i= a2*a2;  
sdb2i=b2; varb2i = b2*b2; SDCP2i=C; VARCP2i=C*C;  
DROP _TYPE_ _NAME_ _RHS_  _Add1; 
KEEP REPLICATE sda2i sdb2i sdCP2i vara2i varb2i varCP2i; 
RUN; 
 
/*THREE*/ 
data G; 
set F3; 
if _TYPE_='PARMS'; a13i=a1; a23i=a2; b13i=b1; b23i=b2; CP3i=C; 
EE5i=EE5; EE6i=EE6; EE7i=EE7;  
DROP _TYPE_ _NAME_ _RHS_ _Add1; 
KEEP REPLICATE a13i a23i b13i b23i CP3i EE5i EE6i EE7i; 
RUN; 
 
data H; 
set F3; 
if _TYPE_ = 'STDERR'; sda13i=a1; vara13i= a1*a1; sda23i=a2; 
vara23i=a2*a2; 
sdb13i=b1; varb13i = b1*b1; sdb23i=b2; varb23i=b2*b2; SDCP3i=C; 
VARCP3i=C*C; 
DROP _TYPE_ _NAME_ _RHS_ _Add1; 
KEEP REPLICATE sda13i sda23i sdb13i sdb23i SDCP3i vara13i vara23i 
varb13i varb23i VARCP3i; 
RUN; 
 
data I; 
set F3; 
if _TYPE_ = "COV" AND _NAME_ = "a1"; cova13a23i=a2; 
DROP _TYPE_ _NAME_ _RHS_ _Add1; 
KEEP REPLICATE cova13a23i; 
RUN;  
 
data J; 
set F3; 
if _TYPE_ = "COV" AND _NAME_ = "b1"; covb13b23i=b2; 
DROP _TYPE_ _NAME_ _RHS_  _Add1; 
KEEP REPLICATE covb13b23i; 
RUN;  
 
data K; merge A B C D E F G H I J; run; 
 
DATA K; SET K; 
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/*mediation point estimates*/ 
a1b1i=a1i*b1i; 
a2b2i=a2i*b2i; 
a13b13i=a13i*b13i; 
a23b23i=a23i*b23i; 
totmedi=a13b13i+a23b23i; 
/*standard error components*/ 
a1a1i = a1i*a1i; 
b1b1i = b1i*b1i; 
a13a13i = a13i*a13i; 
b13b13i = b13i*b13i; 
a1sqvarb1i = a1a1i*varb1i; 
b1sqvara1i = b1b1i*vara1i; 
a13sqvarb13i = a13a13i*varb13i; 
b13sqvara13i = b13b13i*vara13i; 
 
a2a2i=a2i*a2i; 
b2b2i=b2i*b2i; 
a23a23i=a23i*a23i; 
b23b23i=b23i*b23i; 
a2sqvarb2i= a2a2i*varb2i; 
b2sqvara2i = b2b2i*vara2i; 
a23sqvarb23i= a23a23i*varb23i; 
b23sqvara23i = b23b23i*vara23i; 
 
 
/*standard errors*/ 
sa1b1i = sqrt(a1sqvarb1i+b1sqvara1i); 
sa2b2i = sqrt(a2sqvarb2i+b2sqvara2i); 
sa13b13i = sqrt(a13sqvarb13i+b13sqvara13i); 
sa23b23i = sqrt(a23sqvarb23i+b23sqvara23i); 
stotmi = 
sqrt(a13sqvarb13i+b13sqvara13i+a23sqvarb23i+b23sqvara23i+2*a13i*a23i*co
vb13b23i+2*b13i*b23i*cova13a23i); 
 
z0i = C0i / sdc0i; 
z1a1b1i = a1b1i / sa1b1i; 
z2a2b2i = a2b2i / sa2b2i; 
z3totmi = totmedi / stotmi; 
 
za13b13i = a13b13i / sa13b13i; 
za23b23i = a23b23i / sa23b23i; 
run; 
 
DATA JACK; MERGE JACK K; BY REPLICATE; RUN; 
 
/*Analyzing original sample*/ 
/*Model 0*/ 
PROC CALIS data=SIM method=ML cov outest=F0O NOPRINT ; 
BY FILE REP; 
LINEQS 
Y= C0 INTERCEPT+E0; 
VARIANCE 
E0=EE0; 
run; quit; 
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/*Model 1*/ 
PROC CALIS data=SIM method=ML cov outest=F1O noprint; 
BY FILE REP; 
LINEQS 
M1=a1 X + E1, 
Y=c X + b1 M1 + E2; 
VARIANCE 
E1=EE1, 
E2=EE2; 
run; quit; 
 
 
/*Model 2*/ 
PROC CALIS data=SIM method=ML cov outest=F2O noprint; 
BY FILE REP; 
LINEQS 
M2=a2 X + E3, 
Y=c X + b2 M2 + E4; 
VARIANCE 
E3=EE3, 
E4=EE4; 
run; quit; 
 
/*Model 3*/ 
PROC CALIS data=SIM method=ML cov outest=F3O noprint; 
BY FILE REP; 
LINEQS 
M1=a1 X + E5, 
M2=a2 X + E6, 
Y=c X + b1 M1 + b2 M2 + E7; 
VARIANCE 
E5=EE5, 
E6=EE6, 
E7=EE7; 
run; quit; 
 
/*ZERO*/ 
data L; 
set F0O; 
if _TYPE_='PARMS'; C0=C0; EE0=EE0;  
/*REPLICATE = 0;*/ 
DROP _TYPE_ _NAME_ _RHS_ ; 
KEEP REP FILE C0 EE0 ; 
RUN; 
 
data M; 
set F0O; 
if _TYPE_ = 'STDERR'; sdC0=C0; varC0= C0*C0;  
/*REPLICATE = 0;*/ 
DROP _TYPE_ _NAME_ _RHS_; 
KEEP REP FILE sdC0 varC0 ; 
RUN; 
 
/*ONE*/ 
data N; 
set F1O; 
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if _TYPE_='PARMS'; a1=a1;  b1=b1; CP1=C; EE1=EE1; EE2=EE2;  
/*REPLICATE = 0;*/ 
DROP _TYPE_ _NAME_ _RHS_ _Add1; 
KEEP REP FILE A1 b1 CP1 EE1 EE2 ; 
RUN; 
 
data O; 
set F1O; 
if _TYPE_ = 'STDERR'; sda1=a1; vara1= a1*a1;  
sdb1=b1; varb1 = b1*b1; SDCP1=C; VARCP1=C*C;  
/*REPLICATE = 0;*/ 
DROP _TYPE_ _NAME_ _RHS_ _Add1; 
KEEP REP FILE sda1 sdb1 sdCP1 vara1 varb1 varCP1 ; 
RUN; 
 
/*TWO*/ 
data P; 
set F2O; 
if _TYPE_='PARMS'; a2=a2;  b2=b2; CP2=C; EE3=EE3; EE4=EE4;  
/*REPLICATE = 0;*/ 
DROP _TYPE_ _NAME_ _RHS_ _Add1 ; 
KEEP REP FILE  a2 b2 CP2 EE3 EE4 ; 
RUN; 
 
data Q; 
set F2O; 
if _TYPE_ = 'STDERR'; sda2=a2; vara2= a2*a2;  
sdb2=b2; varb2 = b2*b2; SDCP2=C; VARCP2=C*C;  
/*REPLICATE = 0;*/ 
DROP _TYPE_ _NAME_ _RHS_  _Add1; 
KEEP REP FILE sda2 sdb2 sdCP2 vara2 varb2 varCP2 ; 
RUN; 
 
/*THREE*/ 
data R; 
set F3O; 
if _TYPE_='PARMS'; a13=a1; a23=a2; b13=b1; b23=b2; CP3=C; EE5=EE5; 
EE6=EE6; EE7=EE7;  
/*REPLICATE = 0;*/ 
DROP _TYPE_ _NAME_ _RHS_ _Add1; 
KEEP  REP FILE a13 a23 b13 b23 CP3 EE5 EE6 EE7 ; 
RUN; 
 
data S; 
set F3O; 
if _TYPE_ = 'STDERR'; sda13=a1; vara13= a1*a1; sda23=a2; vara23=a2*a2; 
sdb13=b1; varb13 = b1*b1; sdb23=b2; varb23=b2*b2; SDCP3=C; VARCP3=C*C; 
/*REPLICATE = 0;*/ 
DROP _TYPE_ _NAME_ _RHS_ _Add1; 
KEEP  REP FILE sda13 sda23 sdb13 sdb23 SDCP3 vara13 vara23 varb13 
varb23 VARCP3 ; 
RUN; 
 
data T; 
set F3O; 
if _TYPE_ = "COV" AND _NAME_ = "a1"; cova13a23=a2; 
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/*REPLICATE = 0;*/ 
DROP _TYPE_ _NAME_ _RHS_ _Add1; 
KEEP REP  FILE cova13a23 ; 
RUN;  
 
data U; 
set F3O; 
if _TYPE_ = "COV" AND _NAME_ = "b1"; covb13b23=b2; 
/*REPLICATE = 0;*/ 
DROP _TYPE_ _NAME_ _RHS_  _Add1; 
KEEP REP FILE covb13b23 ; 
RUN;  
 
data V; merge L M N O P Q R S T U; BY REP;run; 
 
DATA V; SET V; 
/*mediation point estimates*/ 
a1b1=a1*b1; 
a2b2=a2*b2; 
a13b13=a13*b13; 
a23b23=a23*b23; 
totmed=a13b13+a23b23; 
/*standard error components*/ 
a1a1 = a1*a1; 
b1b1 = b1*b1; 
a13a13 = a13*a13; 
b13b13 = b13*b13; 
a1sqvarb1 = a1a1*varb1; 
b1sqvara1 = b1b1*vara1; 
a13sqvarb13 = a13a13*varb13; 
b13sqvara13 = b13b13*vara13; 
 
a2a2=a2*a2; 
b2b2=b2*b2; 
a23a23=a23*a23; 
b23b23=b23*b23; 
a2sqvarb2= a2a2*varb2; 
b2sqvara2 = b2b2*vara2; 
a23sqvarb23= a23a23*varb23; 
b23sqvara23 = b23b23*vara23; 
 
 
/*standard errors*/ 
 
sa1b1 = sqrt(a1sqvarb1+b1sqvara1); 
sa2b2 = sqrt(a2sqvarb2+b2sqvara2); 
sa13b13 = sqrt(a13sqvarb13+b13sqvara13); 
sa23b23 = sqrt(a23sqvarb23+b23sqvara23); 
 
stotm = 
sqrt(a13sqvarb13+b13sqvara13+a23sqvarb23+b23sqvara23+2*a13*a23*covb13b2
3+2*b13*b23*cova13a23); 
 
z0 = C0 / sdc0; 
z1a1b1 = a1b1 / sa1b1; 
z2a2b2 = a2b2 / sa2b2; 
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z3totm = totmed / stotm; 
 
za13b13 = a13b13 / sa13b13; 
za23b23 = a23b23 / sa23b23; 
run; 
 
DATA JACK; MERGE JACK V; RUN; 
 
 
DATA JACK 
(DROP = XC0 XEE0 XsdC0 XvarC0 Xa1 Xb1 XEE1 XEE2 XCP1 Xsda1 Xvara1 Xsdb1 
Xvarb1 XSDCP1 XVARCP1 Xa2 Xb2 XEE3 Xee4 XCP2 Xsda2 Xvara2 
Xsdb2 Xvarb2 XSDCP2 XVARCP2 XEE5 XEE6 XEE7 XA13 XA23 XB13 Xb23 XCP3 
Xsda13 xvara13 
xsda23 xvara23 xsdb13 xvarb13 xsdb23 xvarb23 XSDCP3 XVARCP3 Xcova13a23 
Xcovb13b23 
Xa1b1 Xa2b2 Xa13b13 Xa23b23 Xtotmed Xa1a1 Xb1b1 Xa13a13 Xb13b13 
Xa1sqvarb1 Xb1sqvara1 
Xa13sqvarb13 Xb13sqvara13 Xa2a2 Xb2b2 Xa23a23 Xb23b23 Xa2sqvarb2 
Xb2sqvara2 
Xa23sqvarb23 Xb23sqvara23 Xsa1b1 Xsa2b2 Xsa13b13 Xsa23b23 Xstotm Xz0 
Xz1a1b1 
Xz2a2b2 Xz3totm Xza13b13 Xza23b23) ; 
SET JACK; 
RETAIN XC0 ; IF NOT MISSING(C0) THEN XC0 = C0 ; C0 = XC0 ; 
RETAIN XEE0 ; IF NOT MISSING(EE0) THEN XEE0 = EE0 ; EE0 = XEE0 ; 
RETAIN XsdC0 ; IF NOT MISSING(sdC0) THEN XsdC0 = sdC0 ; sdC0 = XsdC0 ; 
RETAIN XvarC0 ; IF NOT MISSING(varC0) THEN XvarC0 = varC0 ; varC0 = 
XvarC0 ; 
RETAIN Xa1 ; IF NOT MISSING(a1) THEN Xa1 = a1 ; a1 = Xa1 ; 
RETAIN Xb1 ;IF NOT MISSING(b1) THEN Xb1 = b1 ; b1 = Xb1 ; 
RETAIN XEE1 ; IF NOT MISSING(EE1) THEN XEE1 = EE1 ; EE1 = XEE1 ; 
RETAIN XEE2 ; IF NOT MISSING(EE2) THEN XEE2 = EE2 ; EE2 = XEE2 ; 
RETAIN XCP1 ; IF NOT MISSING(CP1) THEN XCP1 = CP1 ; CP1 = XCP1 ; 
RETAIN Xsda1 ; IF NOT MISSING(sda1) THEN Xsda1 = sda1 ; sda1 = Xsda1 ; 
RETAIN Xvara1 ; IF NOT MISSING(vara1) THEN Xvara1 = vara1 ; vara1 = 
Xvara1 ; 
RETAIN Xsdb1 ; IF NOT MISSING(sdb1) THEN Xsdb1 = sdb1 ; sdb1 = Xsdb1 ; 
RETAIN Xvarb1 ; IF NOT MISSING(varb1) THEN Xvarb1 = varb1 ; varb1 = 
Xvarb1 ; 
RETAIN XSDCP1 ; IF NOT MISSING(SDCP1) THEN XSDCP1 = SDCP1 ; SDCP1 = 
XSDCP1 ; 
RETAIN XVARCP1 ; IF NOT MISSING(VARCP1) THEN XVARCP1 = VARCP1 ; VARCP1 
= XVARCP1 ; 
RETAIN Xa2 ; IF NOT MISSING(a2) THEN Xa2 = a2 ; a2 = Xa2 ; 
RETAIN Xb2 ; IF NOT MISSING(b2) THEN Xb2 = b2 ; b2 = Xb2 ; 
RETAIN XEE3 ; IF NOT MISSING(EE3) THEN XEE3 = EE3 ; EE3 = XEE3 ; 
RETAIN Xee4 ; IF NOT MISSING(ee4) THEN Xee4 = ee4 ; ee4 = Xee4 ; 
RETAIN XCP2 ; IF NOT MISSING(CP2) THEN XCP2 = CP2 ;CP2 = XCP2 ; 
RETAIN Xsda2 ; IF NOT MISSING(sda2) THEN Xsda2 = sda2 ; sda2 = Xsda2 ; 
RETAIN Xvara2 ; IF NOT MISSING(vara2) THEN Xvara2 = vara2 ; vara2 = 
Xvara2 ; 
RETAIN Xsdb2 ; IF NOT MISSING(sdb2) THEN Xsdb2 = sdb2 ; sdb2 = Xsdb2 ; 
RETAIN Xvarb2 ; IF NOT MISSING(varb2) THEN Xvarb2 = varb2 ; varb2 = 
Xvarb2 ; 
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RETAIN XSDCP2 ; IF NOT MISSING(SDCP2) THEN XSDCP2 = SDCP2 ; SDCP2 = 
XSDCP2 ; 
RETAIN XVARCP2 ;IF NOT MISSING(VARCP2) THEN XVARCP2 = VARCP2 ; VARCP2 = 
XVARCP2 ; 
RETAIN XEE5 ; IF NOT MISSING(EE5) THEN XEE5 = EE5 ;EE5 = XEE5 ; 
RETAIN XEE6 ; IF NOT MISSING(EE6) THEN XEE6 = EE6 ; EE6 = XEE6 ; 
RETAIN XEE7 ; IF NOT MISSING(EE7) THEN XEE7 = EE7 ; EE7 = XEE7 ; 
RETAIN XA13 ; IF NOT MISSING(A13) THEN XA13 = A13 ; A13 = XA13 ; 
RETAIN XA23 ; IF NOT MISSING(A23) THEN XA23 = A23 ; A23 = XA23 ; 
RETAIN XB13 ; IF NOT MISSING(B13) THEN XB13 = B13 ; B13 = XB13 ; 
RETAIN Xb23 ;IF NOT MISSING(b23) THEN Xb23 = b23 ;b23 = Xb23 ; 
RETAIN XCP3 ; IF NOT MISSING(CP3) THEN XCP3 = CP3 ; CP3 = XCP3 ; 
RETAIN Xsda13 ; IF NOT MISSING(sda13) THEN Xsda13 = sda13 ;sda13 = 
Xsda13 ; 
RETAIN Xvara13 ;IF NOT MISSING(vara13) THEN Xvara13 = vara13 ;vara13 = 
Xvara13 ; 
RETAIN Xsda23 ; IF NOT MISSING(sda23) THEN Xsda23 = sda23; sda23 = 
Xsda23; 
RETAIN Xvara23; IF NOT MISSING(vara23) THEN Xvara23 = vara23;vara23 = 
Xvara23; 
RETAIN Xsdb13 ; IF NOT MISSING(sdb13) THEN Xsdb13 = sdb13; sdb13 = 
Xsdb13; 
RETAIN Xvarb13; IF NOT MISSING(varb13) THEN Xvarb13 = varb13;varb13 = 
Xvarb13; 
RETAIN Xsdb23; IF NOT MISSING(sdb23) THEN Xsdb23 = sdb23; sdb23 = 
Xsdb23; 
RETAIN Xvarb23; IF NOT MISSING(varb23) THEN Xvarb23 = varb23; varb23 = 
Xvarb23; 
RETAIN XSDCP3 ;IF NOT MISSING(SDCP3) THEN XSDCP3 = SDCP3;SDCP3 = 
XSDCP3; 
RETAIN XVARCP3; IF NOT MISSING(VARCP3) THEN XVARCP3 = VARCP3;VARCP3 = 
XVARCP3; 
RETAIN Xcova13a23; IF NOT MISSING(cova13a23) THEN Xcova13a23 = 
cova13a23;cova13a23 = Xcova13a23; 
RETAIN Xcovb13b23;IF NOT MISSING(covb13b23) THEN Xcovb13b23 = 
covb13b23; covb13b23 = Xcovb13b23; 
RETAIN Xa1b1; IF NOT MISSING(a1b1) THEN Xa1b1 = a1b1; a1b1 = Xa1b1; 
RETAIN Xa2b2; IF NOT MISSING(a2b2) THEN Xa2b2 = a2b2; a2b2 = Xa2b2; 
RETAIN Xa13b13; IF NOT MISSING(a13b13) THEN Xa13b13 = a13b13; a13b13 = 
Xa13b13; 
RETAIN Xa23b23; IF NOT MISSING(a23b23) THEN Xa23b23 = a23b23; a23b23 = 
Xa23b23; 
RETAIN Xtotmed; IF NOT MISSING(totmed) THEN Xtotmed = totmed; totmed = 
Xtotmed; 
RETAIN Xa1a1; IF NOT MISSING(a1a1) THEN Xa1a1 = a1a1; a1a1 = Xa1a1; 
RETAIN Xb1b1;IF NOT MISSING(b1b1) THEN Xb1b1 = b1b1; b1b1 = Xb1b1; 
RETAIN Xa13a13; IF NOT MISSING(a13a13) THEN Xa13a13 = a13a13 ; a13a13 = 
Xa13a13; 
RETAIN Xb13b13; IF NOT MISSING(b13b13) THEN Xb13b13 = b13b13;b13b13 = 
Xb13b13; 
RETAIN Xa1sqvarb1;IF NOT MISSING(a1sqvarb1) THEN Xa1sqvarb1 = 
a1sqvarb1; a1sqvarb1 = Xa1sqvarb1; 
RETAIN Xb1sqvara1;IF NOT MISSING(b1sqvara1) THEN Xb1sqvara1 = 
b1sqvara1; b1sqvara1 = Xb1sqvara1; 
RETAIN Xa13sqvarb13; IF NOT MISSING(a13sqvarb13) THEN Xa13sqvarb13 = 
a13sqvarb13;a13sqvarb13 = Xa13sqvarb13; 
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RETAIN Xb13sqvara13; IF NOT MISSING(b13sqvara13) THEN Xb13sqvara13 = 
b13sqvara13;b13sqvara13 = Xb13sqvara13; 
RETAIN Xa2a2; IF NOT MISSING(a2a2) THEN Xa2a2 = a2a2;a2a2 = Xa2a2; 
RETAIN Xb2b2; IF NOT MISSING(b2b2) THEN Xb2b2 = b2b2 ; b2b2 = Xb2b2; 
RETAIN Xa23a23; IF NOT MISSING(a23a23) THEN Xa23a23 = a23a23;a23a23 = 
Xa23a23; 
RETAIN Xb23b23; IF NOT MISSING(b23b23) THEN Xb23b23 = b23b23;b23b23 = 
Xb23b23; 
RETAIN Xa2sqvarb2; IF NOT MISSING(a2sqvarb2) THEN Xa2sqvarb2 = 
a2sqvarb2; a2sqvarb2 = Xa2sqvarb2; 
RETAIN Xb2sqvara2; IF NOT MISSING(b2sqvara2) THEN Xb2sqvara2 = 
b2sqvara2; b2sqvara2 = Xb2sqvara2; 
RETAIN Xa23sqvarb23;IF NOT MISSING(a23sqvarb23) THEN Xa23sqvarb23 = 
a23sqvarb23;a23sqvarb23 = Xa23sqvarb23; 
RETAIN Xb23sqvara23; IF NOT MISSING(b23sqvara23) THEN Xb23sqvara23 = 
b23sqvara23; b23sqvara23 = Xb23sqvara23; 
RETAIN Xsa1b1; IF NOT MISSING(sa1b1) THEN Xsa1b1 = sa1b1;sa1b1 = 
Xsa1b1; 
RETAIN Xsa2b2; IF NOT MISSING(sa2b2) THEN Xsa2b2 = sa2b2; sa2b2 = 
Xsa2b2; 
RETAIN Xsa13b13; IF NOT MISSING(sa13b13) THEN Xsa13b13 = sa13b13; 
sa13b13 = Xsa13b13; 
RETAIN Xsa23b23; IF NOT MISSING(sa23b23) THEN Xsa23b23 = 
sa23b23;sa23b23 = Xsa23b23; 
RETAIN Xstotm; IF NOT MISSING(stotm) THEN Xstotm = stotm;stotm = 
Xstotm; 
RETAIN Xz0; IF NOT MISSING(z0) THEN Xz0 = z0; z0 = Xz0; 
RETAIN Xz1a1b1; IF NOT MISSING(z1a1b1) THEN Xz1a1b1 = z1a1b1; z1a1b1 = 
Xz1a1b1; 
RETAIN Xz2a2b2; IF NOT MISSING(z2a2b2) THEN Xz2a2b2 = z2a2b2; z2a2b2 = 
Xz2a2b2; 
RETAIN Xz3totm;IF NOT MISSING(z3totm) THEN Xz3totm = z3totm; z3totm = 
Xz3totm; 
RETAIN Xza13b13; IF NOT MISSING(za13b13) THEN Xza13b13 = za13b13; 
za13b13 = Xza13b13; 
RETAIN Xza23b23; IF NOT MISSING(za23b23) THEN Xza23b23 = za23b23; 
za23b23 = Xza23b23; 
RUN ; 
 
 
/*compute delta zs and comparisons*/ 
DATA JACK; SET JACK; 
DZ0 =(z0-z0i)/sdc0i; 
DZ1 =(z1a1b1-z1a1b1i)/sa1b1i; 
DZ2 =(z2a2b2-z2a2b2i)/sa2b2i; 
DZ3 =(z3totm-z3totmi)/stotmi; 
gcd0 = dz0**2; 
gcd1 = dz1**2; 
gcd2 = dz2**2; 
gcd3 = dz3**2; 
 
/*compute comparisons*/ 
deltadz1 = DZ0-DZ1; 
deltadz2 = DZ1-DZ2; 
deltadz3 = DZ1-DZ3; 
deltadz4 = DZ0-DZ2; 
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deltadz5 = DZ2-DZ3; 
deltadz6 = DZ0-DZ3; 
deltagcd1 = gcd0-gcd1;  
deltagcd2 = gcd1-gcd2; 
deltagcd3 = gcd1-gcd3; 
deltagcd4 = gcd0-gcd2; 
deltagcd5 = gcd2-gcd3; 
deltagcd6 = gcd0-gcd3; 
RUN; 
 
data b.DZ&file&k; set jack; 
run; 
 
%end; 
%mend split; 
 
 
%MACRO Condloop; 
 
 %do i=1 %to &n; 
%JACKDZ(NSIM=&&NSIM&i,NOBS=&&NOBS&i,TNOBS=&&Tnobs&i,JKNOBS=&&JKNOBS&i, 
FILE=&&FILE&i,S1A1=&&S1A1&i,S1B1=&&S1B1&i,S1A2=&&S1A2&i,S1B2=&&S1B2&i,S
1CP=&&S1CP&i,S2A1=&&S2A1&i, 
S2B1=&&S2B1&i,S2A2=&&S2A2&i,S2B2=&&S2B2&i,S2CP=&&S2CP&i,S3A1=&&S3A1&i,S
3B1=&&S3B1&i,S3A2=&&S3A2&i,S3B2=&&S3B2&i,S3CP=&&S3CP&i, 
S4A1=&&S4A1&i,S4B1=&&S4B1&i,S4A2=&&S4A2&i,S4B2=&&S4B2&i,S4CP=&&S4CP&i); 
 %end; 
 %mend condloop; 
%condloop; run;   
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APPENDIX F 

SECONDARY PILOT WITH A SINGLE DATASET 
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A single dataset was generated to demonstrate how residual differences or 

delta 𝑧𝑧  could differentiate mediators in individual observations. For simplicity and 

illustration of the concept, data were generated with very large effects through 

Mediator 1 for only one subpopulation (𝑎𝑎1 = 𝑏𝑏1 = 9). All other effects were zero for 

all subpopulations. The sample size was N=200. Additionally, because the direct 

effects of 𝑋𝑋 absorb unmodeled mediator effects, analysis of residual differences uses 

residuals from a regression model where 𝑋𝑋 has been excluded as a predictor of 𝑌𝑌 to 

test differences between the two mediators directly. The analyses of delta 𝑧𝑧  and gCd 

include 𝑋𝑋 as a predictor of 𝑌𝑌. 

 The example compares residuals for a model with no predictors of 𝑌𝑌, and a 

model where Mediator 1 is the only predictor of 𝑌𝑌. Differences in delta 𝑧𝑧 and gCd for 

the mediated effect (i.e., 𝑎𝑎1𝑏𝑏1) are also tested. Dependent variables are the 

differences in residuals, delta 𝑧𝑧 and gCd, the absolute value of the differences, and 

the rank ordering of the differences. The independent variable is known 

subpopulation. 

 Results 

 Residual Differences. The mean residual difference for known subpopulations 

was not significant,  𝐹𝐹 (3, 196)  =  .65,𝑝𝑝 =  .59. However, Levene’s test showed a 

significant difference in variance between subpopulations, 𝐹𝐹 (3, 196)  =  29.64,𝑝𝑝 <

.0001. The mean residual difference for 𝑆𝑆1 was (𝑀𝑀 =  7.12,𝑆𝑆𝑔𝑔 =  83.90). For 𝑆𝑆2, it 

was (𝑀𝑀 =  −1.13,𝑆𝑆𝑔𝑔 =  9.05). The mean residual difference for 𝑆𝑆3 was (𝑀𝑀 =

 −2.52,𝑆𝑆𝑔𝑔 =  9.12) and for 𝑆𝑆4 was (𝑀𝑀 =  −3.47,𝑆𝑆𝑔𝑔 =  6.86).  

 Residual Differences (Absolute value). A second analysis found a significant 

effect of subpopulation on the absolute value of the residual difference, 𝐹𝐹 (3, 196)  =
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 89.73,𝑝𝑝 < .0001, such the mean absolute value residual difference of 𝑆𝑆1 was 

significantly different from the other three subpopulations, 𝑝𝑝 < .0001. The mean 

absolute value residual difference for 𝑆𝑆1 was (𝑀𝑀 =  69.83,𝑆𝑆𝑔𝑔 =  45.99). For 𝑆𝑆2, it was 

(𝑀𝑀 =  7.70,𝑆𝑆𝑔𝑔 =  4.77). The mean absolute value residual difference for 𝑆𝑆3 was (𝑀𝑀 =

 7.64,𝑆𝑆𝑔𝑔 =  5.49) and for 𝑆𝑆4 was (𝑀𝑀 =  6.23,𝑆𝑆𝑔𝑔 =  4.43). Levene’s test was also 

significant, 𝐹𝐹 (3, 196)  =  20.25,𝑝𝑝 < .0001. 

 Residual Differences (Ranked absolute value). There was a significant effect 

of subpopulation predicting the rank ordering of the absolute value residual 

difference, 𝐹𝐹 (3, 196)  =  54.51,𝑝𝑝 < .0001, such that observations from 𝑆𝑆1 were more 

likely to have larger residual differences than the other subpopulations. The mean 

ranking for 𝑆𝑆1 was (𝑀𝑀 =  167.46,𝑆𝑆𝑔𝑔 =  37.98). For 𝑆𝑆2, it was (𝑀𝑀 =  82.98,𝑆𝑆𝑔𝑔 =

 42.40). The mean ranking for 𝑆𝑆3 was (𝑀𝑀 =  80.85,𝑆𝑆𝑔𝑔 =  46.90) and for S4 was (𝑀𝑀 =

 70.71,𝑆𝑆𝑔𝑔 =  44.47). Levene’s test was not significant. 

 Delta 𝑧𝑧. There was a significant effect of subpopulation predicting delta 𝑧𝑧 for 

the mediated effect, 𝑎𝑎1𝑏𝑏1, 𝐹𝐹 (3, 196)  =  12.83,𝑝𝑝 < .0001. 𝑆𝑆1 differed from the other 

three subpopulations in that the delta 𝑧𝑧 difference was negative, of a greater 

magnitude, and had more variance than the other three subpopulations.  The mean 

delta 𝑧𝑧 difference for 𝑆𝑆1 was (𝑀𝑀 =  −.04, 𝑆𝑆𝑔𝑔 =  .07). For 𝑆𝑆2, it was (𝑀𝑀 =  .00,𝑆𝑆𝑔𝑔 =

 .01). The mean delta 𝑧𝑧 difference for 𝑆𝑆3 was (𝑀𝑀 =  .00,𝑆𝑆𝑔𝑔 =  .02) and for 𝑆𝑆4 was 

(𝑀𝑀 =  .00,𝑆𝑆𝑔𝑔 =  .02). Levene’s test was also significant, 𝐹𝐹 (3, 196)  =  4.58,𝑝𝑝 =  .004. 

Delta 𝑧𝑧 (Absolute value). There was also a significant effect of subpopulation 

on the absolute value of the delta 𝑧𝑧 difference, 𝐹𝐹 (3, 196)  =  9.55,𝑝𝑝 < .0001, such the 

mean absolute value delta 𝑧𝑧 difference of 𝑆𝑆1 was significantly different from the 

other three subpopulations, 𝑝𝑝 < .0001. The mean absolute value delta 𝑧𝑧 difference 
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for 𝑆𝑆1 was (𝑀𝑀 =  0.4,𝑆𝑆𝑔𝑔 =  .07). For 𝑆𝑆2, it was (𝑀𝑀 =  .01,𝑆𝑆𝑔𝑔 =  .01). The mean 

absolute value delta 𝑧𝑧 difference for 𝑆𝑆3 was (𝑀𝑀 =  .01, 𝑆𝑆𝑔𝑔 =  .01) and for 𝑆𝑆4 was (𝑀𝑀 =

 .01, 𝑆𝑆𝑔𝑔 =  .01). Levene’s test was also significant, 𝐹𝐹 (3, 196)  =  4.31,𝑝𝑝 =  .006. 

 Delta z (Ranked). There was a significant effect of subpopulation predicting 

the rank ordering of the delta 𝑧𝑧 difference, 𝐹𝐹 (3, 196)  =  4.42,𝑝𝑝 =  .005, such that 

observations from 𝑆𝑆1 were more likely to have smaller delta 𝑧𝑧 differences than the 

other subpopulations. The mean ranking for 𝑆𝑆1 was (𝑀𝑀 =  76.16 𝑆𝑆𝑔𝑔 =  67.67). For 

𝑆𝑆2, it was (𝑀𝑀 =  102.73,𝑆𝑆𝑔𝑔 =  50.98). The mean ranking for 𝑆𝑆3 was (𝑀𝑀 =

 112.74,𝑆𝑆𝑔𝑔 =  55.23) and for 𝑆𝑆4 was (𝑀𝑀 =  110.37,𝑆𝑆𝑔𝑔 =  50.15). Levene’s test was 

also significant, 𝐹𝐹 (3, 196)  =  8.14,𝑝𝑝 < .0001. 

Delta z (Ranked absolute value). There was a significant effect of 

subpopulation predicting the rank ordering of the absolute value of the delta 𝑧𝑧 

difference, 𝐹𝐹 (3, 196)  =  4.49,𝑝𝑝 =  .005, such that 𝑆𝑆1 was more likely to have larger 

absolute value delta 𝑧𝑧 differences than the other subpopulations. The mean ranking 

for 𝑆𝑆1 was (𝑀𝑀 =  124.91 𝑆𝑆𝑔𝑔 =  64.78). For 𝑆𝑆2, it was (𝑀𝑀 =  86.73, 𝑆𝑆𝑔𝑔 =  54.60). The 

mean ranking for 𝑆𝑆3 was (𝑀𝑀 =  97.90,𝑆𝑆𝑔𝑔 =  55.07) and for 𝑆𝑆4 was (𝑀𝑀 =  92.46, 𝑆𝑆𝑔𝑔 =

 50.20). Levene’s test was also significant, 𝐹𝐹 (3, 196)  =  2.85,𝑝𝑝 =  .04. 

gCd. The effect of subpopulation on gCd difference was not significant. 

gCd (Ranked). There was a significant effect of subpopulation predicting the 

rank ordering of the gCd difference, 𝐹𝐹 (3, 196)  =  11.19,𝑝𝑝 < .0001, such that 𝑆𝑆1 was 

more likely to have larger gCd differences than the other subpopulations. The mean 

ranking for S1 was (𝑀𝑀 =  138.15 𝑆𝑆𝑔𝑔 =  70.16). For 𝑆𝑆2, it was (𝑀𝑀 =  93.00, 𝑆𝑆𝑔𝑔 =

 48.38). The mean ranking for 𝑆𝑆3 was (𝑀𝑀 =  82.14,𝑆𝑆𝑔𝑔 =  48.61) and for 𝑆𝑆4 was (𝑀𝑀 =

 88.71,𝑆𝑆𝑔𝑔 =  44.59). Levene’s test was also significant, 𝐹𝐹 (3, 196)  =  7.99,𝑝𝑝 < .0001. 
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Summary 

 This example illustrates how Model Contrasts in a single dataset can 

differentiate subpopulations with different mediating effects. In this example, the 

absolute value of residual differences showed that the subpopulation with an effect 

through Mediator 1 had significantly larger residual differences with more variance 

than the subpopulations with no effect through Mediator 1. Similar results were 

obtained for delta 𝑧𝑧 and its absolute value. Subpopulation predicted rank order of 

the differences, which suggests differences between a subpopulation with a mediated 

effect and subpopulations without a mediated effect.  

 
 


