
Enhancing Binary Analysis through Cognitive Load Theory

by

Sean Smits

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2022 by the
Graduate Supervisory Committee:

Ruoyu Wang, Co-Chair
Yan Shoshitaishvili, Co-Chair

Adam Doupé

ARIZONA STATE UNIVERSITY

May 2022

ABSTRACT

Reverse engineering is a process focused on gaining an understanding for the in-

tricacies of a system. This practice is critical in cybersecurity as it promotes the

findings and patching of vulnerabilities as well as the counteracting of malware. Dis-

assemblers and decompilers have become essential when reverse engineering due to

the readability of information they transcribe from binary files. However, these tools

still tend to produce involved and complicated outputs that hinder the acquisition of

knowledge during binary analysis. Cognitive Load Theory (CLT) explains that this

hindrance is due to the human brain’s inability to process superfluous amounts of

data. CLT classifies this data into three cognitive load types — intrinsic, extraneous,

and germane — that each can help gauge complex procedures.

In this research paper, a novel program call graph is presented accounting for

these CLT principles. The goal of this graphical view is to reduce the cognitive load

tied to the depiction of binary information and to enhance the overall binary analysis

process. This feature was implemented within the binary analysis tool, angr and it’s

user interface counterpart, angr-management. Additionally, this paper will examine a

conducted user study to quantitatively and qualitatively evaluate the effectiveness of

the newly proposed proximity view (PV). The user study includes a binary challenge

solving portion measured by defined metrics and a survey phase to receive direct par-

ticipant feedback regarding the view. The results from this study show statistically

significant evidence that PV aids in challenge solving and improves the overall un-

derstanding binaries. The results also signify that this improvement comes with the

cost of time. The survey section of the user study further indicates that users find

PV beneficial to the reverse engineering process, but additional information needs to

be included in future developments.

i

DEDICATION

A little more than a year ago, I started my journey into the world of cybersecurity,

clueless of its vastness and depth. Luckily, I had great navigational guides – Yan

and Fish.

I distinctly remember the fear Yan struck into me in the first lecture of pwn.college.

His cautionary words of the difficulty, required skills, and time commitment was

unparalleled to any previous course I had taken. However, Yan’s passion for the

topics we planned to cover and his promise that his students can become sufficient

“yellow belt” hackers inspired me to continue. After completing pwn.college, Yan

invited me to join his more advanced course to start becoming a “real-world” hacker.

This opportunity allowed me to harness the previous skills I learned and apply it

directly to securing modern software services, ultimately leading me to acquiring my

first CVE. To top it off, Yan invited me to join ASU’s renowned SEFCOM Lab.

Thank you Yan, for providing so many opportunities and accompanying me each

step along the way.

The first time I met Fish I mistakenly took him for another student. I was asking

for help on his class server and he reached out to me via a private message. Since

this was the first experience I had in which a professor went out of his way to

directly offer support, I assumed it was simply a sympathetic peer. Ever since that

first embarrassing encounter, Fish has always been just a message away providing

me with guidance and instruction, whether it be questions pertaining to his courses

or merely a personal side project. Thank you Fish, for always making the time and

giving me valuable advice I can continue to use throughout my career.

ii

ACKNOWLEDGMENTS

I would like to further express my sincerest gratitude to my committee member,

Professor Adam Doupé. Without Adam’s guidance and personal efforts, this project

would not have been possible. I would also like to thank Professor Tiffany Bao for

providing valuable input and feedback throughout the course of this project.

Additionally, I would like to thank the rest of the SEFCOM Lab for warmly

welcoming me and providing me with continuous insight into our field. Lastly, I

would like to thank my family and friends for their constant love and support

throughout all my endeavors.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 3

2.1 Binary Analysis Tools . 3

2.1.1 Disassembly & Decompilation . 3

2.1.2 Control Flow Graph . 4

2.1.3 IDA’s Proximity Browser . 5

2.2 Cognitive Load Theory . 5

2.2.1 Information Filtering . 6

2.2.2 Information Organization . 6

3 PROBLEM STATEMENT . 7

4 DESIGN . 8

4.1 Overview. 8

4.2 Proximity Call Graph . 8

4.3 Proximity Nodes . 9

4.4 User Interaction . 11

5 IMPLEMENTATION . 12

5.1 Preliminary Measures . 12

5.2 Proximity Analysis . 14

5.3 Proximity View . 16

5.3.1 Blocks . 16

5.3.2 Arrows . 17

iv

CHAPTER Page

5.3.3 Graph. 17

5.3.4 View . 18

6 USER STUDY . 19

6.1 Participants . 19

6.2 Experiment Environment . 19

6.3 Challenges . 20

6.4 Survey . 21

7 EVALUATION . 22

7.1 Results . 22

7.1.1 Quantitative Results . 22

7.1.2 Qualitative Results . 26

7.2 Discussion . 28

8 FUTURE WORK . 29

9 CONCLUSION . 31

REFERENCES . 32

APPENDIX

A RECRUITMENT ANNOUNCEMENTS . 34

B CHALLENGE QUESTIONS . 36

C SURVEY QUESTIONS — PROXIMITY GROUP . 38

D SURVEY QUESTIONS — CONTROL GROUP . 40

E CONTROL GROUP RESPONSES . 42

F IRB APPROVAL OF USER STUDY . 44

LIST OF TABLES

Table Page

7.1 Control v. Proximity: Quantitative Metrics . 24

7.2 Evaluating Statistical Significance . 24

B.1 Challenge Questions. 37

C.1 Proximity View Survey Questions . 39

D.1 Control Survey Questions . 41

vi

LIST OF FIGURES

Figure Page

2.1 Disassembly View CFG . 4

2.2 IDA’s Proximity Browser . 5

4.1 Proximity View CFG. 10

4.2 Expanded function call Nodes . 11

5.1 AIL CFG. 13

7.1 Participant Background Impact on Challenges . 25

7.2 Participant Background Impact on Solve Times . 26

7.3 Positive Feedback Questions . 27

7.4 Negative Feedback Questions . 27

D.1 Image Used in the Control Group Survey . 41

E.1 Responses Regarding PV . 43

E.2 Image Used in the Control Group Survey . 43

vii

Chapter 1

INTRODUCTION

Reverse engineering (RE) is a technique for obtaining knowledge about the inner

workings of a system without the requirement of high-level instruction. This proce-

dure is widely used in the field of cybersecurity and is viewed as a powerful defense

to combat against cyberattacks. One reason for RE’s effectiveness is due to the dif-

ference in analysis perspective. Rather than focusing on software through traditional

program syntax review, understanding is acquired through the examination of low-

level internal building blocks. With this narrow and magnified scope, many of the

details that would otherwise be invisible become more apparent. This is particularly

relevant when dealing with binaries. Binaries are compiled, executable code files

that are interpretable by computers and other programs, but not readily identifiable

externally. Because of this, RE is an essential process when investigating binaries.

Binary analysis tools have been developed to partially automate the RE process.

These tools are capable of translating illegible binary byte sequences to a comprehen-

sible medium through disassembly and decompilation. Despite this, the complexity of

the generated outputs and the plethora of information provided can induce cognitive

overload for users [14]. An oversupply of information, even when containing meaning-

ful details, can deluge the working memory [14]. Consequently, this inhibits reverse

engineers’ ability to process data and properly acquire knowledge - the fundamentals

of the RE process.

In this paper, a newly designed control flow graph is proposed to address this cog-

nitive overload problem. The intention behind this graph view, titled proximity view

(PV), is to allow users to quickly acquire information and insight about a decompiled

1

binary through the application of techniques based on Cognitive Load Theory. Fur-

thermore, the goal of the presented program call graph is to ultimately improve the

binary analysis process.

This paper also includes the examination of said view through a 41 participant

user study. These participants, ranging from students with a minimal background

in RE to active professionals with years of experience, were tasked with solving 3

Capture the Flag (CTF) style RE challenges. Questions pertaining to the partici-

pants’ understanding of the challenges together with their overall perceptions of PV

were gathered throughout the study. The results from this study provide statisti-

cally significant evidence that PV improved participants’ understanding scores and

the amount of solved challenges. However, the results also indicate that participants

that solved challenges using PV were on average slower than those without the view.

The overall feedback signified users found PV useful and easy to use, but lacking in

some relevant information.

2

Chapter 2

BACKGROUND

This section briefly covers necessary concepts for the understanding of proximity view

and its application in the reverse engineering process of binary analysis.

2.1 Binary Analysis Tools

Binary analysis tools, often called disassemblers or decompilers, are developed

software programs that aid in the process of reverse engineering compiled files by

extracting and translating binary data into a high-level language. Hex-Rays Decom-

piler (IDA Pro) [11], angr [18], rev.ng [8], and Bap [2] are just a few of the tools

actively used within the field of binary analysis research. Further research of these

tools has lead to the development of Phoenix [3], Dream [27], and Dream++ [26]. Each

of these works focus on effectively converting binary information into a simplified and

readable medium while preserving accurate control-flow of the program. This is done

through the processes of disassembly and decompilation.

2.1.1 Disassembly & Decompilation

Disassembly is a procedure of recovering a symbolic representation of a program’s

assembly instructions from its binary form by mapping hexadecimal values back to

instruction mnemonics [16]. Decompilation is the complex process of reconstruct-

ing a program to a high-level language from a low-level language [10]. Put simply,

decompilation is the reverse engineered method of compilation.

3

2.1.2 Control Flow Graph

One commonly used data structure to represent program control flow is a control

flow graph (CFG) [5, 6]. A CFG, or call graph, is simply a directed graph (digraph)

composed of various types of nodes and directed edges. These digraphs are utilized

in binary analysis as it signifies all traversal paths between code blocks and outlines

the hierarchy of a program. These graphs are multi purposed data structures that 1)

readily allow for optimizations to improve decompiler output [5, 6, 11, 18, 12, 26, 27, 3]

and 2) provides users with an organized visual representation of information.

Figure 2.1: Disassembly View CFG

4

2.1.3 IDA’s Proximity Browser

IDA Pro’s proximity browser introduced a unique call graph focused on visualizing

the relationships between functions, variables, and constants. Unlike the traditional

disassembly CFG where nodes house assembly instructions, the browser’s decompiled

nodes only portray callee and caller functions, global variables, and constants as

shown below in Figure 2.2 [15].

Figure 2.2: IDA’s Proximity Browser

2.2 Cognitive Load Theory

In order to perceive the relevance of the proposed proximity view, it is essential

gain a general comprehension of Cognitive Load Theory.

All cognitive processes, the mental action of gaining knowledge and comprehen-

sion, rely on working memory. Working memory is recognized as a system in which

information gathered in the short-term is temporarily held and processed before be-

ing stored into long-term memory. This same system is responsible for focusing and

engaging in problem solving tasks [19]. Cognitive load theory (CLT) states there is

a limited amount of information that can be effectively handled due to the restricted

capacity of an individual’s working memory [20, 21, 22, 23, 24, 25]. Hence, cogni-

tive load is a measurement of the amount of information that can held in working

5

memory. Furthermore, CLT explains that cognitive overload leads to the inability to

properly process, understand, and retain information [20, 21, 22, 23, 24, 25]. During

cognitive processing, cognitive load is categorized into three types: (a) intrinsic load,

the representation of the difficulty and complexity of a task (b) extraneous load, the

presentation of irrelevant information and (c) germane load, the construction of a

knowledge schema (a conceptual system for understanding) for the long-term mem-

ory [7, 20, 21, 22, 23, 24, 25]. The reduction of cognitive load is achieved through

several methods, however those relevant to the study will solely be covered.

2.2.1 Information Filtering

One of the most straightforward techniques for managing cognitive overload is

information filtering (IF). Since cognitive load increases with respect to the amount

of information presented, filtering out extraneous data (i.e. reducing extraneous load)

will inherently decrease the demand on the working memory [20, 21, 22, 23, 24, 25].

IF is also important as it prioritizes obtaining quality, applicable information over

the availability of more information [17].

2.2.2 Information Organization

Another method for limiting cognitive load is the organization of complex material.

Information that is presented in a manner that registers with a user’s schema can be

readily incorporated into their knowledge base [17]. On the contrary, unfamiliar

formatting of portrayed information can add to cognitive load and cause confusion.

Put simply, data categorized in a manner that a user is accustomed to promotes a

greater understanding of the material.

6

Chapter 3

PROBLEM STATEMENT

Reverse engineering binaries is a process that inherently has a high intrinsic load

due to the complexity entailed in analyzing code from a low to high level. Numerous

studies [27, 26, 5, 6, 4, 9, 10, 3, 11, 18, 12] have been conducted that explore improving

this process through optimizing disassembly and decompilation. However, binary

analysis tools still contribute to high extraneous loads when portraying many lines of

intricate assembly instructions or obscure decompiled code. This extensive demand

on the working memory leads to cognitive overload and inhibits reverse engineers’

ability to examine, extract, and evaluate information. The focal point of this paper is

on reducing the high intrinsic and extraneous cognitive loads rampant within binary

analysis to enhance this reverse engineering process.

7

Chapter 4

DESIGN

In this section, a novel optimized proximity view is proposed which provides re-

verse engineers a simplified and interactable graphical representation of a binary. The

goal of this feature is to enhance the binary RE process through the CLT methods

of information filtering and information organization. More specifically, the view’s

design prioritizes providing quality relevant data, removing extraneous information,

and presenting output in a format conducive to common RE knowledge schemata.

4.1 Overview

The proposed angr-management proximity view harnesses a similar concept of

Ida Pro’s proximity browser with respect to CLT, leading to several deviations in

call graph design. It should be noted that PV is a feature intended to be paired

with other views within the angr-management framework as it is inherently designed

to limit the amount of presented information to accelerate general understanding of

a binary. From this gathered knowledge, reversers can then formulate assumptions

about the binary and begin to look at code blocks under a more detailed view.

4.2 Proximity Call Graph

Under the lens of CLT, CFGs are an effective organizational architecture to use for

PV [13]. By creating a knowledge schema familiar to reverse engineers (i.e. a CFG),

germane load will be increased promoting a greater understanding. Furthermore, this

systematic structuring makes it easier to comprehend code which, in turn, reduces

intrinsic load.

8

Kruegel et al. [16], Andriesse et al. [1], to name a few, each highlight the impor-

tance of CFGs when recovering the symbolic representation of a program’s assembly

instructions from its binary form. Due to the significance of these generated CFGs in

the disassembly process, it is counter intuitive to disregard this structural integrity

when designing a simplified view such as PV. Rather, the graph integrity should be

upheld and extraneous information should be properly filtered. This is the first dis-

tinct design difference when compared to Ida Pro’s proximity browser. Since edges

are the skeleton of the CFG, they should remain intact. The nodes, however, contain

an excess of information that can be refined.

4.3 Proximity Nodes

Functions are essential pieces to understanding code functionality, hence it is

important to include them in PV. Intuitively, functions are represented by function

and function call nodes within the CFG. Function nodes, or parent nodes, are the

caller functions within the CFG. Function call nodes, or children nodes, are the callee

functions that are decedents from the ancestral function node in the CFG.

Variables and constants are also imperative to comprehending code, however,

these are trickier to include in the PV schema. As PV is primarily focused on reduc-

ing intrinsic and extraneous cognitive load, the inclusion of all instructions utilizing

variables and constants would be counter productive. Instead, PV filters this infor-

mation and recognizes variables and constants as relevant only when as arguments

for function call nodes. The inclusion of this information only in the function call

nodes also differs from Ida Pro’s proximity browser. This new design provides users

with a high-level insight into what variables and constants maybe used for without

overloading the working memory. Moreover, the intrinsic load is reduced as removing

variable and constant nodes from the control flow of the program is more intuitive to

9

follow.

As general instruction semantics are regularly ignored when creating function and

function call nodes, the same should remain true for code segments without function

calls. However, these blocks cannot be entirely disregarded since the structure of the

CFG should be maintained, as addressed above. This justifies the addition of an

empty node as shown below in Figure 4.1.

Figure 4.1: Proximity View CFG

10

4.4 User Interaction

The proposed user interaction of PV is also designed to aid in the RE process. By

creating an interactable CFG, users will have the ability to move the graph within

the window and adjust magnification when needed. This interactable control graph

also expedites navigation. Users can select CFG nodes within PV they wish to ex-

amine and PV will redirect them to the correlating code block in the disassembly

view. This directly supports the notion of pairing multiple angr-management views

to gain knowledge through different perspectives. Additionally, when hovering over

PV nodes, all incoming and outgoing edges will be highlighted to show all traversal

paths. PV also supports function call node expansion and collapsing. This allows re-

verse engineers to run proximity analysis on multiple functions within the same view,

and to close them when desired. A visual of this is provided in Figure 4.2 below.

Figure 4.2: Expanded function call Nodes

11

Chapter 5

IMPLEMENTATION

Within this section, the initial implementation of the proposed design framework

of proximity view is discussed. The implementation of PV can be broken down into

two primary components, the analysis that generates the proximity graph within

angr, and the graphical user interface (GUI) view that presents the analysis within

angr-management. Both components total to approximately 500 lines of contributed

Python 3 code. These elements will be addressed in the following Proximity Analysis

and Proximity View sections respectively. General functionality for preexisting angr

analyses and angr-management features utilized in development will be explained for

contextual purposes.

5.1 Preliminary Measures

Before any proximity analysis can be conducted, first a binary must be translated

into a interpretable representation. Within the angr library, disassembly is conducted

through the CFG analysis. This analysis will disassemble a given binary into assembly

language blocks represented in the form of a CFG.

1 >>> import angr

2 # load a binary

3 >>> proj = angr.Project("hello_world", auto_load_libs=False)

4 <Project hello_world>

5 # disassemble binary

6 >>> cfg = proj.analyses.CFG()

7 <CFG Analysis Result at 0x7fc2483390a0>

12

From here, further simplification happens through angr’s Decompiler analysis.

This analysis takes in a given function and the disassembly, and will output a decom-

piled, high-level language.

1 # load the main function

2 >>> func = cfg.kb.functions['main']

3 <Function main (0x401160)>

4 # decompile

5 >>> dec = proj.analyses.Decompiler(func, cfg=cfg.model)

6 <ProximityGraphAnalysis Analysis Result at 0x7fc2385869a0>

During the process of decompilation, it is important to note that angr first creates

an intermediate representation called angr intermediate language (AIL). As the name

suggests, AIL is a form in between low and high level language. Because of this, AIL

also has a CFG (shown in Figure 5.1) directly corresponding to the disassembly CFG.

Figure 5.1: AIL CFG

13

Finally, the target function, the disassembled CFG, and the decompilation can be

passed to the proximity analysis.

1 >>> prox_graph = proj.analyses.Proximity(func, cfg.model, cfg.kb.xrefs,

decompilation=dec)↪→

2 <ProximityGraphAnalysis Analysis Result at 0x7fc2385869a0>

5.2 Proximity Analysis

Proximity analysis will first create its own digraph utilizing the networkx library.

The target function, in this case ‘main’, will be the root function node as described

in the design. Throughout the rest of the analysis function, information from the

provided data structures will be scanned and passed to nodes within the PV graph.

Since angr essentially parses the disassembly to translate to AIL, it makes sense

to utilize the AIL CFG generated to gather relevant data. This eliminates the need to

create a new function to parse the disassembly or the decompiled high-level language.

In order to process this data, each AIL instruction within every AIL node will be

checked and any relevant information found will be temporarily stored. Traversing

the AIL instructions is done through the angr class AILBlockWalker.

1 bw = AILBlockWalker()

2 for ail_edge in ail_graph.edges:

3 for ail_node in ail_edge:

4 bw.walk(ail_node)

5 ...

Within the AILBlockWalker, all types of AIL statements and expressions are

handled. By PV design, call statements and call expressions are the only handlers

14

that need modification. When a call statement or call expression is met by the

AILBlockWalker, the handler must check all of the arguments for variables, strings,

and constants. After this check, a new function call node will be created which will

include any arguments if found. Once the block walker finishes handling all statements

and expressions, the found function call nodes and their arguments can be added to

the PV graph in their calling order. In the event that the AILBlockWalker fails to

find any call statements or expressions within an AIL node, an empty node must be

added.

1 ...

2 if self.handled_stmts:

3 # Add each handled stmt to the graph in calling order

4 for idx, current in enumerate(self.handled_stmts):

5 if idx > 0:

6 graph.add_edge(self.handled_stmts[idx - 1], current)

7 if block == ail_edge[0]:

8 proxi_node = self.handled_stmts[-1]

9 else:

10 proxi_node = self.handled_stmts[0]

11 self.handled_stmts = []

12 else:

13 proxi_node = BaseProxiNode(ProxiNodeTypes.Empty, {block.addr})

14 new_edge += (proxi_node,)

15 graph.add_edge(*new_edge)

Now that the core logic of proximity analysis is covered, the action of function

call expansion can be understood. When a user triggers the expansion event in the

front end, proximity analysis is rerun with an additional list argument containing the

target functions to expand. When those functions are met by the AILBlockWalker,

15

a function node is created instead of a function call node. After the initial PV

graph is generated, a new PV sub-graph will be created for the function node. Once

both graphs are created, a connector function is called to insert the sub-graph into

the main PV graph. First, the nodes succeeding the function node are temporarily

stored. Next, the edges from the function node to its successors are removed and a

new edge is drawn from the function node to the root node of the sub-graph. Finally,

all sub-graph end nodes are then pointed to the previously stored list of successor

nodes.

5.3 Proximity View

Proximity View is the interactive medium that presents all of the information

gathered from the proximity analysis. As the content within the CFG has been altered

in the backend, much of the angr-management code for the preexisting digraphs

within views can be reused. PV can be better conceptualized by understanding each

of its working parts from low to high level. This includes the the nodes within the

graph, the arrows between nodes, the visual of the graph inside the view, and the

view itself within the angr-management window.

5.3.1 Blocks

As previously covered, PV supports 3 primary nodes: function, function call, and

empty. Empty nodes are represented by the base graph block, an empty block with

set dimensions. This block class also has several event listeners. One listener checks

for mouse double clicks; when this event occurs the disassembly view will be opened

to node with an address corresponding to the clicked block. Other listeners check for

when a mouse is hovering over a block; this information gets relayed back to PV to

be handled.

16

Function nodes are represented by function blocks which inherit the characteristics

and events from the base block. These function blocks simply contain the text of

a caller function name. All function blocks in a graph have been passed through

proximity analysis. Due to this, function blocks have a listener that checks for CTRL +

Double-Click. When this event is triggered, proximity view collapses the proximity

subgraph of that function block and returns it to a normal call block.

Lastly, the function call nodes are represented by call blocks. These blocks also

inherit from the base block. Within the call block, the callee function name is shown

as well as all arguments. These arguments include strings, integers, stack variables,

and unresolvable arguments. Call blocks also have an added event listener that checks

for CTRL + Double-Click. When this event is triggered, the listener expands the the

call function and generates a proximity view for the triggered function block.

5.3.2 Arrows

To signify control flow between blocks, graph arrows are created to represent edges.

These graph arrows have already been implemented for all other CFGs and can be

further applied to PV. These arrows essentially have length and bent corners based

on their direction and distance between nodes.

5.3.3 Graph

The interactable graph is an essential piece to PV as it presents all the valu-

able information gathered from proximity analysis. The proximity graph class inher-

its from the QZoomableDraggbleGraphicsView which is an angr-management base

graph class that supports graph movement and magnification. The proximity graph

class then passes all graph blocks to angr-management’s GraphLayouter. This lay-

outer organizes the graph based on node sizes and passed margin values. Finally,

17

arrows are generated between each laid out block node.

5.3.4 View

The view itself is the last component that ties all the pieces together. The prox-

imity view class inherits from the BaseView. The BaseView is a base class which

defines the characteristics of a main window view within angr-management. When

the proximity view is requested, initialization of a graph widget occurs. This widget

is essentially an empty initialized proximity graph. PV then decompiles the focused

function and passes this to the proximity analysis in the backend. A CFG represen-

tation of the target function is then output. PV then iterates over all the nodes in

the CFG and converts them to graph blocks. The proximity graph, which is also the

graph widget, then orients the blocks and draws directed edge arrows. The graph

widget is then reloaded and a visual representation of the target function’s CFG is

visible.

One unique event that gets handled in the view is user hovering. When the mouse

enters within a block’s dimensions, the hover enter event will passed from block to

view to the graph widget (i.e. proximity graph). Proximity graph then checks finds

all in-edge arrows and out-edge arrows of that block to be highlighted. Similarly,

when the mouse leaves the block’s dimensions, the hover leave event will continually

passed until the graph widget removes the highlighted effect on the arrows.

18

Chapter 6

USER STUDY

In this section, the organization of the user study will be discussed. The goal of this

study was to test the impact of proximity view on the binary analysis process. In order

to both quantitatively and qualitative assess the feature’s effectiveness, participants

were tasked with solving 3 challenge problems alongside taking a feedback survey to

measure user perception and satisfaction.

6.1 Participants

As this feature focuses on improving the complex process of binary analysis, a

certain level of knowledge is required to properly evaluate proximity view and to solve

the challenges. For this reason, specific language was used when conducting outreach

as shown in Appendix A. Participants with valid experience that expressed interest

were then sent a unique session key to access the web-based experiment platform.

6.2 Experiment Environment

Within the experiment platform, participants were provided with a sequence of

pages including: a consent form, a study overview, Remote Desktop Protocol (RDP)

connection instructions, an introduction on angr-management, 3 challenge question

pages, and a feedback survey. Upon session key approval, participants were randomly

assigned to either a control group or a proximity group, and the order of their challenge

questions were shuffled. These actions were taken to eliminate any bias in group

assignment and task order.

When users were ready to connect to a Virtual Machine (VM), the website would

19

clone a controlled image instance and provide credentials to the participant. In-

side the VM, participants were restricted to guest privileges, preventing them from

installing other tools or damaging the experiment environment. Furthermore, an

angr-management wrapper was developed for the experiment to control the sequence

of presented challenges, and to limit participants to specific views. Participants within

the control group had restricted access only to angr-management’s disassembly, func-

tions, strings, and hex views. Members of the proximity group were permitted the

same views with the addition of the newly developed proximity view. All other as-

pects of the VM and angr-management were permitted, unless specifically stated in

the instructions. Participants’ VMs were recorded to ensure adherence to guidelines

and the legitimacy of given answers.

Upon successful connection, the website then provided users with further instruc-

tion of angr-management. Participants in the proximity group received additional

guidance regarding the concept of proximity view and its features. When ready,

participants could then proceed to the challenge solving phase.

6.3 Challenges

The participants’ task was to analyze each presented binary and determine a

specific input that would cause the file to output an answer flag. All answers abided

by the format flag{...} to be clearly identifiable by participants. Participants were

allotted 10 minutes to solve each challenge, however, if desired, they were permitted

to continue reversing once time expired. Each participant, regardless of group, was

presented with the same 3 challenges in a randomized sequence. These challenges

include: a) quad — an RE challenge that forces users to find an integer password,

mathematically solve (using the quadratic equation) for two additional integers, and

find a string password b) letters — a binary that checks for a specific range of bytes

20

that must be even valued and totals the bytes ordinal value compared to 0xbeef and

c) maze — a convoluted function maze in which users can select which function to

go to in attempt to find the “win” function.

After each challenge, participants were asked to provide details explaining their

working process and the input needed if they were successful in reversing the binary.

These questions can be found within Table B.1 on page 37.

6.4 Survey

Following the completion of the last challenge, participants were then given a

feedback survey to measure user perception and satisfaction. Both groups were asked

the same background survey questions pertaining to user expertise. Control group

members were then shown an example proximity view analysis and asked questions re-

garding its perceived relevance (see Table D.1 on page 41). Proximity group members

were instead asked questions regarding the usability of the view and its effectiveness

(see Table C.1 on page 39).

21

Chapter 7

EVALUATION

In this section, the study results pertaining to the conducted user study are pre-

sented and discussed.

7.1 Results

A total of 78 session key invitations were sent out to individuals that expressed

interest in the study. Of these distributed keys, the target goal was getting 30 par-

ticipants.

51 individuals used their unique session key and began the study. 10 of these par-

ticipants stopped midway through the experiment and their data has been removed,

leaving a total of 41 participants that completed the experiment in its entirety.

Of the 41 participants, 18 (44%) were randomly assigned the control group and 23

(56%) were assigned to proximity group. Within the control group, 11 participants

identified as having 1 year or less experience in RE compared to the 7 that claimed

to have 2 or more years experience. In the proximity group, 13 stated to have 1 year

or less RE experience and 10 identified as having 2 years or more. For information

readability, it should be noted those who claimed to have 1 year or less experience are

labelled as Beginners and those who claimed to have 2 or more years of RE experience

are labelled as Experts.

7.1.1 Quantitative Results

To better understand the impact of PV on binary analysis, results are categorized

into the following metrics: Overall Understanding, Overall Completion, and Comple-

22

tion Solve Time.

Overall Understanding is measured through a calculated score. Each of the par-

ticipant’s responses were evaluated and assigned a value of 0, 0.5, or 1. Participants

that were unable to solve the challenge and did not show a significant understanding

of the challenge were given a 0. Those participants that could not find the correct

input, but provided an in-partial answer and signified a majority comprehension were

awarded a 0.5. Lastly, those that were able to solve the challenge with an explanation

were scored a 1. The scoring of these challenges was conducted without the knowledge

of group type to eliminate any bias.

Overall Completion is the metric used to signify participants ability to completely

solve each of the challenges by providing a correct input to output the flag.

Completion Solve Time metrics are the recorded times for these completely solved

challenges. It is important to note the scoring metrics and solve time metrics are kept

as separate results since partial solves awarded with 0.5 are not proper indicators of

solve time.

To test the statistical significance of PV’s positive influence on these metrics, the

null hypothesis for each metric states the means between proximity group and control

group are equal. The alternative hypotheses for Overall Understanding and Overall

Completion state the mean of proximity group will be greater than control group.

The alternative hypothesis for Completion Solve Times states the mean of proximity

group will be less than the control group. For 95% confidence, the probability error

level of each metric will be set to α = 0.05.

23

CONTROL — 18 Participants

Challenges Avg. Score Complete Solves Complete Solve % Avg. Solve Time

Quad 75.00% 13 72.22% 576.96 s

Letters 11.11% 0 0.00% -

Maze 38.89% 5 27.78% 593.63 s

PROXIMITY — 23 Participants

Challenges Avg. Score Complete Solves Complete Solve % Avg. Solve Time

Quad 89.13% 20 86.96% 639.80 s

Letters 17.39% 0 0.00% -

Maze 67.39% 14 60.87% 983.75 s

Table 7.1: Control v. Proximity: Quantitative Metrics

Table 7.1 above summarizes the results of the experiment. Participants that

were permitted the use of proximity view successfully solved more challenges (higher

Overall Completion) and received a higher score for each challenge (greater Overall

Understanding). Interestingly, this came with the cost of time spent to solve the

challenge (higher Completion Solve Time).

Overall Understanding Overall Completion Completion Solve Time

Test 2 Sample T-Test 2 Proportion Z-Test 2 Sample T-Test

Alpha α = 0.05 α = 0.05 α = 0.05

Null

Hypothesis
H0 : µp = µc H0 : µp = µc H0 : µp = µc

Alternative

Hypothesis
H1 : µp > µc H1 : µp > µc H1 : µp < µc

p-value 0.0246 0.0378 0.9291

Outcome
Reject Null

Hypothesis

Reject Null

Hypothesis

Accept Null

Hypothesis

Table 7.2: Evaluating Statistical Significance

24

Table 7.2 (see above), breaks down the statistical significance of the set quantita-

tive metrics. Since the null hypothesis was rejected for both Overall Understanding

and Overall Completion, there is sufficient evidence to conclude that the PV improved

the average scoring and increased the mean completion of challenges. However, since

the null hypothesis was accepted for Completion Solve Time, there is insufficient

evidence to claim PV participants have a lower average solve time.

Figure 7.1: Participant Background Impact on Challenges

Figure 7.1 (see above) highlights another observation pertaining to RE experi-

ence. Participants with proximity view that had 1 year or less experience (Begin-

ners), nearly matched control group Experts (2 or more years of RE experience) in

Quad score and out performed them in solving Maze. Similarly, in Figure 7.2 (see

below), the solve times are shown with respect to these experience groups. The let-

ters challenge was redacted since there were no complete solves. The Maze times

were particularly interesting as the control Experts had significant lower solve times,

25

and proximity group Beginners had considerably longer solve times. This graph ex-

plains how control group participants, on average, solved Quad 1 minute and Maze

6.5 minutes faster than those with PV.

Figure 7.2: Participant Background Impact on Solve Times

7.1.2 Qualitative Results

In order to get insight beyond raw data, participants were also asked questions

pertaining to their perceptions of proximity view. In Figure 7.3 and Figure 7.4 (see

below), positive sentiment towards PV can be seen in the dark and light green sections

whereas negative sentiment can be seen in the light and dark read areas. Overall,

feedback for PV was positive on most fronts including usability, utility, and read-

ability. Despite this, user’s widely agreed that PV is lacking valuable information.

Control group participants also expressed positive interest in PV as shown in Figure

E.1 in Appendix E.

26

Figure 7.3: Positive Feedback Questions

Figure 7.4: Negative Feedback Questions

27

7.2 Discussion

Although the 95% confidence level accounts for 5% of error, there are several

experiment factors to mention when accounting for this resulting data. The first

factor to mention is the Letters challenge. This challenge was intended to be one

step greater in difficulty compared to Quad, however, with the suggested 10 minute

time limit, no participants were able to solve. A pilot study was taken to test the

entire framework along with the challenges, but this was an unpredictable outcome

that could not have been caught by the test run.

Another factor to consider lies within the Maze challenge. The Maze challenge

was designed to be a complicated web of functions in which users could not easily

follow. Due to a design flaw in the challenge, there was an unintended solution that

introduced an unintentional bias. Many participants provided with PV used the view

to solve the challenge by viewing control flow and finding the correct traversal path.

However, control group participants lacking this view had to revert to alternative

methods of solving. Because of this, many control participants, especially the Ex-

perts, found the unintended solution which expedited the solving process, ultimately

lowering Completion Solve Times.

The last factor relates back to the web-based experiment platform. Since the

website and the VMs were being hosted on a single server in North America, there

were several occasions in which the server faced too much demand and crashed. A

few participants were actively taking the study during these occasional crashes, hence

their data has been removed due to incompleteness. Similarly, some participants

noted difficulties when solving challenges due to latency when connected to the server

hosted VMs which also could potentially impact the results.

28

Chapter 8

FUTURE WORK

As the presented proximity view in this paper explores improving binary analysis

through methods described in CLT, there are numerous avenues to continue research

in this regard.

One area in particular that can be investigated is the presentation of information

specific to PV. As the idea behind PV is to quickly provide an overview and a general

understanding of a given binary without overwhelming a user, the current design fil-

ters information that is deemed irrelevant in this context. Empty nodes, for example,

were implemented to hide blocks of code lacking any function calls, as these details

would likely be explored later in the process of reverse engineering. Feedback from

several participants in the user study suggested that including some details within

these empty blocks, such as cmp instructions for branch conditions, may aid in un-

derstanding control flow. Future research should be conducted to determine 1) the

amount of information that can be presented without inducing cognitive overload and

2) whether the inclusion of these details within PV proves beneficial.

Another research avenue that should be explored is the user interactability of

proximity view and the impact this has on productivity. Several participants from the

user study blindly agreed that adding the ability to toggle disassembled code within

PV’s CFG nodes would be more beneficial than being redirected to a disassembly

view. Multiple participants also suggested implementing an action that finds traversal

paths between specific nodes and generates a new CFG. Future work can be done to

create these features and examine their effects.

Further studies can also be conducted to examine the influence of binary dimen-

29

sions and complexity on the effectiveness of proximity view. In this study, 3 different

binaries were tested to see if PV proved useful in each instance. The intricacy and

size of these binaries was limited as each challenge was intended to be solved within

a 10 minute time frame. However, this view may prove to be more useful for high

complexity binaries with a larger code base as cognitive overload is more likely to

occur. More research can be done to determine the legitimacy of this claim.

Lastly, proximity view is only one proposed solution to the immense cognitive

demand of binary analysis. Other binary analysis tools, such as disassembly or de-

compilation, should be studied through the lens of Cognitive Load Theory.

30

Chapter 9

CONCLUSION

This paper first discussed the complex process of reverse engineering binaries and the

immense cognitive load inherently associated with it. Second, through the principles

of information filtration and information organization derived from Cognitive Load

Theory, a newly designed program call graph was proposed. The primary objective

of this implemented tool was to enhance the process of understanding functionality

through reducing complexity and cognitive load for users. This paper continued to

examine the efficacy of a new proximity view on binary analysis through a conducted

user study. The user study provided statistically significant data that highlighted the

improvement in challenge understanding and the increase in challenges solved due

to PV. Contrarily, the results also suggested participant solve times were prolonged

because of the use of the view. Overall, participants regarded PV as a useful and

easy to use tool that aided in binary analysis, but needs slight modification to the

amount of presented information.

31

REFERENCES

[1] Andriesse, D., X. Chen, V. Van Der Veen, A. Slowinska and H. Bos, “An in-
depth analysis of disassembly on full-scale x86/x64 binaries”, in “25th USENIX
Security Symposium (USENIX Security 16)”, pp. 583–600 (2016).

[2] Brumley, D., I. Jager, T. Avgerinos and E. J. Schwartz, “Bap: A binary analysis
platform”, in “International Conference on Computer Aided Verification”, pp.
463–469 (Springer, 2011).

[3] Brumley, D., J. Lee, E. J. Schwartz and M.Woo, “Native x86 decompilation using
semantics-preserving structural analysis and iterative control-flow structuring”,
in “22nd USENIX Security Symposium (USENIX Security 13)”, pp. 353–368
(2013).

[4] Chang, B.-Y. E., M. Harren and G. C. Necula, “Analysis of low-level code using
cooperating decompilers”, in “International Static Analysis Symposium”, pp.
318–335 (Springer, 2006).

[5] Cifuentes, C., Reverse compilation techniques (Citeseer, 1994).

[6] Cifuentes, C., D. Simon and A. Fraboulet, “Assembly to high-level language
translation”, in “Proceedings. International Conference on Software Maintenance
(Cat. No. 98CB36272)”, pp. 228–237 (IEEE, 1998).

[7] DeLeeuw, K. E. and R. E. Mayer, “A comparison of three measures of cognitive
load: Evidence for separable measures of intrinsic, extraneous, and germane
load.”, Journal of educational psychology 100, 1, 223 (2008).

[8] Di Federico, A., M. Payer and G. Agosta, “rev. ng: a unified binary analysis
framework to recover cfgs and function boundaries”, in “Proceedings of the 26th
International Conference on Compiler Construction”, pp. 131–141 (2017).

[9] Engel, F., R. Leupers, G. Ascheid, M. Ferger and M. Beemster, “Enhanced struc-
tural analysis for c code reconstruction from ir code”, in “Proceedings of the 14th
International Workshop on Software and Compilers for Embedded Systems”, pp.
21–27 (2011).

[10] Fokin, A., E. Derevenetc, A. Chernov and K. Troshina, “Smartdec: approaching
c++ decompilation”, in “2011 18th Working Conference on Reverse Engineer-
ing”, pp. 347–356 (IEEE, 2011).

[11] Guilfanov, I., “Decompilers and beyond”, Black Hat USA 9, 46 (2008).

[12] Gussoni, A., A. Di Federico, P. Fezzardi and G. Agosta, “A comb for de-
compiled c code”, in “Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security”, p. 637–651 (ACM, 2020), URL
https://dl.acm.org/doi/10.1145/3320269.3384766.

32

[13] Huang, W., P. Eades and S.-H. Hong, “Measuring effectiveness of graph visual-
izations: A cognitive load perspective”, Information Visualization 8, 3, 139–152
(2009).

[14] Kirsh, D., “A few thoughts on cognitive overload”, Intellectica 1, 30 (2000).

[15] Koret, J., “New feature in ida 6.2: The proximity browser”, URL
https://hex-rays.com/blog/new-feature-in-ida-6-2-the-proximity-browser/
(2011).

[16] Kruegel, C., W. Robertson, F. Valeur and G. Vigna, “Static disassembly of ob-
fuscated binaries”, in “USENIX security Symposium”, vol. 13, pp. 18–18 (2004).

[17] Quiroga, L. M., M. E. Crosby and M. K. Iding, “Reducing cognitive load”, in
“37th Annual Hawaii International Conference on System Sciences, 2004. Pro-
ceedings of the”, pp. 9–pp (IEEE, 2004).

[18] Shoshitaishvili, Y., R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher,
J. Grosen, S. Feng, C. Hauser, C. Kruegel and G. Vigna, “SoK: (State of) The
Art of War: Offensive Techniques in Binary Analysis”, in “IEEE Symposium on
Security and Privacy”, (2016).

[19] Sorden, S. D., “A cognitive approach to instructional design for multimedia
learning.”, Informing Science 8 (2005).

[20] Sweller, J., “Cognitive load during problem solving: Effects on learning”, Cog-
nitive science 12, 2, 257–285 (1988).

[21] Sweller, J., “Evolution of human cognitive architecture”, Psychology of learning
and motivation 43, 216–266 (2003).

[22] Sweller, J., “The redundancy principle in multimedia learning”, The Cambridge
handbook of multimedia learning pp. 159–167 (2005).

[23] Sweller, J., “Cognitive bases of human creativity”, Educational Psychology Re-
view 21, 1, 11–19 (2009).

[24] Sweller, J., “Element interactivity and intrinsic, extraneous, and germane cog-
nitive load”, Educational psychology review 22, 2, 123–138 (2010).

[25] Sweller, J., “Cognitive load theory”, in “Psychology of learning and motivation”,
vol. 55, pp. 37–76 (Elsevier, 2011).

[26] Yakdan, K., S. Dechand, E. Gerhards-Padilla and M. Smith, “Helping johnny to
analyze malware: A usability-optimized decompiler and malware analysis user
study”, in “2016 IEEE Symposium on Security and Privacy (SP)”, pp. 158–177
(2016).

[27] Yakdan, K., S. Eschweiler, E. Gerhards-Padilla and M. Smith, “No more gotos:
Decompilation using pattern-independent control-flow structuring and semantic-
preserving transformations.”, in “NDSS”, (Citeseer, 2015).

33

APPENDIX A

RECRUITMENT ANNOUNCEMENTS

34

When recruiting student participants in Arizona State University affiliated Dis-
cord servers, the following message 1 was posted:

Have you taken ASU’s CSE 365, CSE 466, or CSE 545 or do you have a back-
ground in reverse engineering, debugging, and exploiting binaries? If you answered
“yes” to either of these questions, you are invited to participate in a research study
conducted by Arizona State University! You will be asked to solve various challenges
using a tool called angr management in order to research the effectiveness of new
features on the platform. Prior experience with angr management is not necessary.
The research study is approximately 1.75 hours (100 minutes) and can be taken at
your time of choice. Your participation will be rewarded with a $50 Amazon gift card
upon completion. Participation in this study is voluntary.

When recruiting participants in other reverse engineering related Discord servers,
the following message1 was posted:

Do you have a background in reverse engineering, debugging, and exploiting binaries?
If you answered “yes”, you are invited to participate in a research study conducted
by Arizona State University! You will be asked to solve various challenges using a
tool called angr management in order to research the effectiveness of new features
on the platform. Prior experience with angr management is not necessary. The re-
search study is approximately 1.75 hours (100 minutes) and can be taken at your
time of choice. Your participation will be rewarded with a $50 Amazon gift card
upon completion. Participation in this study is voluntary.

1Contact information has been redacted from the message

35

APPENDIX B

CHALLENGE QUESTIONS

36

Table B.1: Challenge Questions

Questions Answers

Have you seen this challenge before? Yes No
I prefer not
to answer

Briefly describe what you did during this challenge
(bullet point explanation is acceptable):

[text box]

Were you able to solve this challenge? Yes No
I prefer not
to answer

What input(s) did you provide to
solve this challenge?

[text box]

37

APPENDIX C

SURVEY QUESTIONS — PROXIMITY GROUP

38

Table C.1: Proximity View Survey Questions

Questions Answers
How many years experience do you

have in reverse engineering?
None

Less than
1 year

1 year 2 years 2+ years
I prefer not
to answer

What is your perceived reverse
engineering skill level?

Novice Beginner Competent Proficient Expert
I prefer not
to answer

Have you used angr management
before your participation today?

Yes No
I prefer not
to answer

What is your perceived comfort
level with angr management?

Novice Beginner Competent Proficient Expert
I prefer not
to answer

I am sure that I correctly understood
what the code of each challenge does

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I prefer not
to answer

I saw no need to use proximity
view to solve these challenges

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I prefer not
to answer

Proximity view aided in
understanding the challenges

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I prefer not
to answer

Proximity view is lacking
in valuable information

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I prefer not
to answer

I find proximity view useful
Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I prefer not
to answer

Proximity view is redundant
and unnecessary

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I prefer not
to answer

Proximity view was clear
and easy to understand

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I prefer not
to answer

Proximity view confused me
Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I prefer not
to answer

Feedback - If any, what improvements could be made to make proximity view more user friendly?

39

APPENDIX D

SURVEY QUESTIONS — CONTROL GROUP

40

Table D.1: Control Survey Questions

Questions Answers
How many years experience do
you have in reverse engineering?

None
Less than
1 year

1 year 2 years 2+ years
I prefer not
to answer

What is your perceived reverse
engineering skill level?

Novice Beginner Competent Proficient Expert
I prefer not
to answer

Have you used angr management
before your participation today?

Yes No
I prefer not
to answer

What is your perceived comfort
level with angr management?

Novice Beginner Competent Proficient Expert
I prefer not
to answer

I am sure that I correctly understood
what the code of each challenge does

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I prefer not
to answer

I found it difficult to
understand these challenges

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I prefer not
to answer

An overview of the challenges like in the
image below would have been helpful

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I prefer not
to answer

This view in the image below
seems confusing and unnecessary

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

I prefer not
to answer

Figure D.1: Image Used in the Control Group Survey

41

APPENDIX E

CONTROL GROUP RESPONSES

42

Figure E.1: Responses Regarding PV

Figure E.2: Image Used in the Control Group Survey

43

APPENDIX F

IRB APPROVAL OF USER STUDY

44

EXEMPTION GRANTED

Adam Doupe
SCAI: Computing and Augmented Intelligence, School of
-
doupe@asu.edu

Dear Adam Doupe:

On 2/21/2022 the ASU IRB reviewed the following protocol:

Type of Review: Initial Study
Title: Expediting Binary Analysis Through Data

Dependency Graphs and Proximity Control Flow
Graphs

Investigator: Adam Doupe
IRB ID: STUDY00015332

Funding: Name: DOD: Defense Advanced Research Projects
Agency (DARPA), Funding Source ID: FP00017167

Grant Title: CHECRS: Cognitive Human Enhancements for Cyber
Reasoning Systems

Grant ID: FP00017167
Documents Reviewed: • Consent_Form, Category: Consent Form;

• DARPA Proposal, Category: Sponsor Attachment;
• Debugging and Vulnerability Challenge Questions,
Category: Measures (Survey questions/Interview
questions /interview guides/focus group questions);
• Debugging_and_Vulnerability_Survey, Category:
Measures (Survey questions/Interview questions
/interview guides/focus group questions);
• Entire Experiment Text Outline, Category:
Participant materials (specific directions for them);
• Instructions / Greeting, Category: Recruitment
Materials;
• IRB Form, Category: IRB Protocol;
• Recruitment Message, Category: Recruitment
Materials;
• Reverse Engineering Challenge Questions,

45

Category: Measures (Survey questions/Interview
questions /interview guides/focus group questions);
• Reverse_Engineering_Survey, Category: Measures
(Survey questions/Interview questions /interview
guides/focus group questions);

The IRB determined that the protocol is considered exempt pursuant to Federal
Regulations 45CFR46 (2) Tests, surveys, interviews, or observation, (3)(i)(A) - benign
behavioral interventions on 2/21/2022. As a part of IRB review, scientific merit was
considered.

In conducting this protocol you are required to follow the requirements listed in the
INVESTIGATOR MANUAL (HRP-103).

If any changes are made to the study, the IRB must be notified at
research.integrity@asu.edu to determine if additional reviews/approvals are required.
Changes may include but not limited to revisions to data collection, survey and/or
interview questions, and vulnerable populations, etc.

REMINDER - Effective January 12, 2022, in-person interactions with human subjects
require adherence to all current policies for ASU faculty, staff, students and visitors. Up-
to-date information regarding ASU’s COVID-19 Management Strategy can be found
here. IRB approval is related to the research activity involving human subjects, all other
protocols related to COVID-19 management including face coverings, health checks,
facility access, etc. are governed by current ASU policy.

Sincerely,

IRB Administrator

cc: Sean Smits
Sean Smits
Zeming Yu
Adam Doupe
Ruoyu Wang
Bailey Capuano

46

