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ABSTRACT 
 

Robotic assisted devices in gait rehabilitation have not seen penetration into 

clinical settings proportionate to the developments in this field. A possible reason for this 

is due to the development and evaluation of these devices from a predominantly 

engineering perspective. One way to mitigate this effect is to further include the 

principles of neurophysiology into the development of these systems. To further include 

these principles, this research proposes a method for grounded evaluation of three 

machine learning algorithms to gain insight on what modeling approaches are able to 

both replicate therapist assistance and emulate therapist strategies.  The algorithms 

evaluated in this paper include ordinary least squares regression (OLS), gaussian process 

regression (GPR) and inverse reinforcement learning (IRL). The results show that 

grounded evaluation is able to provide evidence to support the algorithms at a higher 

resolution.  Also, it was observed that GPR is likely the most accurate algorithm to 

replicate therapist assistance and to emulate therapist adaptation strategies.  
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1. INTRODUCTION 

A. Background  

Strokes are currently among the leading causes of prolonged disability in 

America.  It is estimated that over 6.6 million Americans suffer a stroke annually and 

projections show that this number will increase by 3.4 million by 2030 [1].  Victims who 

suffer from this acute condition often develop another condition known as hemiparesis. 

Hemiparesis is the impairment of one side of the body that manifests as muscular 

weakness, spasticity, or loss of motor control in a limb. [2] Consequently, affected 

individuals may not be able to live independently due to their inability to perform 

activities of daily living (ADLs) like walking or feeding themselves.  Although it is 

possible to regain motor function that was lost due to a stroke, this process is complex 

and requires numerous hours of intense physical therapy. 

To understand the process of gait rehabilitation, it is first important to obtain a 

basic understanding of neurophysiology as it pertains to regaining motor function for 

patients who have deficits.  The process of walking involves complex interactions 

between the spinal cord and brain. The former is capable of generating simple patterns of 

locomotion while the latter provides fine motor control, voluntary changes to the gait 

pattern and processing of sensory feedback to adapt to the requirements of the 

environment. Post-stroke patients exhibit impairment to areas of the brain like the motor 

cortex, cerebellum, and brain stem while the spinal cord remains intact [3].  This means 

that the spinal cord can be used to reorganize the cortex for walking by providing the 

appropriate proprioceptive input during the task.  This is the underlying concept behind 
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the traditional, bottom-up approach to rehabilitation therapy that uses the mechanics of 

neural plasticity to help patients overcome their deficits through high dose and high 

intensity rehabilitation [4]. 

Generally, early and intense rehabilitation is shown to benefit patient’s ability to 

perform a task like walking [5]. All rehabilitation approaches progress, depending on the 

level of impairment, through stages of preparatory exercises, direct manipulation of the 

limb by a therapist over a regular surface and assisted walking over ground. The 

principles of neurological gait rehabilitation that are seen throughout all of these stages 

can be classified as either neurophysiological or motor learning techniques [4]. 

Neurophysiological techniques refer to providing a sensory input or stimulus in 

order to facilitate voluntary movement.  This is typically done by a therapist facilitating 

the correct movement patterns while the patient remains passive [6].  Many different 

methods within this approach have been proposed to address muscle spasticity through 

passive mobilization, reflex stimulation, peripheral sensory inputs [4] but, for the 

purposes of the research, we will mainly focus on motor learning techniques. 

In contrast to the neurophysiological approach, motor learning stresses active 

engagement in the exercises which is critical for the patient’s recovery of motor function. 

Typically these exercises are done with the context of a the functional task that is being 

trained [4].  Assisted overground walking (AOW) is one example of a functional task.  

During AOW, a patient is instructed to walk while therapists provide weight support and 

movement assistance to stimulate the correct proprioceptive input.  Furthermore, assisted 

overground walking is the rehabilitation context that this paper is investigating. 
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Even though there are several strategies for improving rehabilitation outcomes, 

conventional gait therapy typically does not allow stroke patients to recover their full 

normal gait pattern.  A possible cause of this is that the neurophysiological mechanisms 

involved in recovering motor function is largely unknown. Consequently, there are still 

many open questions in the field of gait rehabilitation. Answers to these questions could 

have significant impacts on how rehabilitation is conducted. This, coupled with the 

potential implications on the quality of living for an increasing population of post-stroke 

patients’, makes for an active field of research. The subset of this field that this paper will 

be addressing is assistive robotic devices in assisted overground rehabilitation.  Research 

contributions of robotic devices to the field of rehabilitation is unique because these 

devices can address issues that would otherwise be challenging through conventional 

therapy methods.  

One of the core challenges addressed by these devices is the accessibility of 

patients to occupational therapists. Accessibility mainly limits the therapy dosage which 

is widely considered to have a strong correlation with positive patient outcomes. An issue 

that is contributing to this challenge is that assisted overground walking usually requires 

at least two therapists; one to support the weight of the patient and the other to assist in 

providing the correct proprioceptive input for the patient’s leg. Robotic aids may provide 

a means to decrease the number of therapists needed per patient and reduce the manhours 

for an individual patient’s session. As a consequence, these devices have the potential to 

increase the availability of therapists at any given time and decrease healthcare costs [4] 

which can improve accessibility to low-income patients.   
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Another challenge with assisted overground walking is that it can quickly cause 

therapists to fatigue. To provide proper assistance, therapists are often put in 

uncomfortable positions for extended periods of time. This has the potential to limit the 

duration of a patient’s rehabilitation session due to fatigue of the therapist even though 

the patient could potentially continue. Consequently, therapist fatigue may limit the 

intensity and dosage of therapy sessions due to the physical demands and required 

therapist rest between sessions. Robotic aids address this challenge by reducing the strain 

of this labor-intensive task. This can be done by removing therapists from these positions 

with poor ergonomics and reducing physical actuation from a therapist [7]. Addressing 

therapist fatigue is significant since it will mitigate the mentioned limitations placed on 

both dosage and intensity. 

Robotic aids also bring a few novel benefits over conventional therapy. First, a 

robotic device is able to provide a more precise and consistent assistance due to the 

mechanical and quantifiable nature of the device. This has the potential to allow future 

robotic devices to provide a rehabilitation process that is more repeatable and specifically 

tuned to patient needs. Secondly, a robotic platform is able to measure quantifiable 

patient statistics like performance and motor impairment characteristics that can provide 

a better insight than current clinical scales [8,9]. [8], [9]. 

B. Problem Statement  

The current body of literature surrounding the field of robot assisted rehabilitation 

is rapidly progressing and advances to current wearable devices are being developed at an 

increasing rate. However, the penetration of these devices into practical clinical settings 

is disproportionate to the advancements made in the field.  A suspected source of this 
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disparity is due to much of the current volume of research approaching this field from a 

perspective highly focused on engineering-design instead of a clinical perspective 

grounded in the principles of occupational therapy [10]. Approaching the problem of 

modeling therapist interaction from a predominantly engineer perspective can cause a 

biased design and evaluation of a model.  This can present itself in the form of explicitly 

optimizing the system to replicate the data observed during a rehabilitation session.  

Although this criterion of evaluation is valid, the high variability of patients and 

therapists suggest that a more insightful approach to modeling and evaluation may be 

valuable to determining the ubiquity of a modeling method. Specifically, formulating the 

criteria can be done in such a way that the modeling and evaluation method is grounded 

in occupational therapy principles. This can be done by abstracting the criteria for 

evaluation from explicitly replicating an action to emulating strategies that determine that 

action. Evaluating modeling methods in such a way would more adequately address 

performance when considering the full scope of a clinical setting. 

C. Organization  

To fulfill the requirements of this paper, this document is organized as follows. 

First, a literature review on rehabilitation strategies used by therapists and methods for 

modeling therapist assistance will be given. Then, the objectives, significance and scope 

of this research will be described and followed by a description of the exoskeletal and 

data collection systems. Next, the theoretical framework for the machine learning 

algorithms and evaluation methods will be presented. After this, the methodology for data 

collection, processing and analysis will be described.  Finally, the results of this research 

will be reported and discussed. 



6 

2. LITERATURE REVIEW 

A. Therapist Strategies  

As previously stated, a critical contributor to patient motor learning outcomes is 

active patient engagement in the exercises. In a review of methods for incorporating 

neurophysiological perspectives into robotic devices [10], several therapist strategies 

were outlined to promote active physical and cognitive engagement from the patient. 

Adapting the assistance provided by the therapist can prevent overreliance on therapist 

support which would otherwise allow for a patient to reduce physical effort and automate 

their actions. A therapist can also adjust the difficulty or cognitive challenge of a task by 

providing additional impedance or altering the task environment. Additionally, providing 

therapist feedback can help motivate the patient and facilitate the desired motions for the 

proprioceptive input needed to activate neuroplastic mechanisms.   

Another widely accepted rehabilitation strategy is functional task performance. 

Rehabilitation training within the context of the desired functional task (e.g. walking) is 

an approach often employed to improve patient outcomes.  In [11], the reviewed studies 

relating to context specific training repeatedly show that this strategy more significantly 

impacts task performance over nonfunctional exercises like strength training. The 

suspected mechanisms that are actuated during performance of functional task and their 

effects on neural and cognitive systems is explained in [4]. Improved outcomes from 

performing a functional task are currently believed to be caused by the sensory inputs 

associated with the interaction between the patient and their environment and the 

integration of task-specific sensory inputs that are experienced during task performance. 

In other words, additional sensory inputs are available besides the peripheral sensory 
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inputs generated in response to the proprioceptive stimuli. Consequently, the mechanisms 

of neural plasticity can be actuated to a greater degree. An additional benefit of this 

strategy is provided in [12] where task-specific exercises can assist in not only the natural 

recovery of motor function but provide patients with a means to develop locomotion 

strategies that compensate for the impaired movement which some will never fully 

recover.  

The actions, strategies, and mechanisms involved in achieving positive 

rehabilitation outcomes are complex and often have many competing theories for how 

they should be defined. However, the methods and definitions defined in the reviewed 

literature were used to develop a basic model for how therapist strategies associate with 

different levels of the rehabilitation process. This model will later be used to develop the 

criteria for evaluation of therapist strategies and is shown in Figure 1. 
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Figure 1: Summary of Relevant Therapist Strategies 

B. Modeling Therapist Assistance   

The first problem that is presented when modeling therapist-patient interactions is 

that a valid method for capturing the patient kinematics and therapist assistance must be 

created.  Most methods for capturing patient kinematics include using either inertial 

measurement units (IMU) [13], a motion capture system [14], or kinematic linkages 

attached to the patient [15-16]. Methods for capturing therapist assistance typically 

involves force or pressure sensors located at critical points along the human body [13-

16]. [15] [16] 

In [13], IMUs and force sensors were placed at the hip to capture accelerations of 

the center of mass of the patient and the therapist’s assistive force to facilitate lateral 

balance. Using this data, a model for capturing timing and magnitude of lateral balance 

assistance was developed. A critical assumption in this work is that the patients center of 

mass is a good predictor of therapist assistance forces.  This assumption seemed to be 
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validated by the fact that the algorithm was able to accurately predict the therapist 

assistance 87% of the time. Additional analysis was performed on three features: 

magnitude, duration, impulse, and the plane in which the assistance took place. All of 

these metric does begin to incorporate metrics relating to the field of rehabilitation but do 

not necessarily measure high-level principles of OT like therapist strategies. 

In [15], patient kinematics were captured by attaching a zero-impedance 

kinematic arm to the patient and measuring the displacement of the links.  Therapist 

assistance was measured by having the therapist actuate force torque sensors attached to 

the links.  The goal of this study was to identify how therapist variation affects assistive 

characteristics.  Specifically, therapist variability considered the different skill level of 

trainers.  This feature was shown to have a strong correlation with better knee extension 

and fewer episodes of toe dragging. Each dependent variable was measured by a having a 

rehabilitation expert watch footage of the experiments and rate the performance of the 

trainers in various assistance characteristics. The method for evaluation in this study 

exemplifies the principles of grounded evaluation. Primarily this is because evaluation 

addressed performance of the trainers in terms that relate to and can be understood by an 

expert of neurophysiology (e.g. proper knee extension). This is in contrast to the 

dissociated, but still valid, methods for statistical evaluation of the predicted assistance 

(as seen in the first three metrics in [13]).  
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3. RESEARCH OBJECTIVES 

A. Objectives  

This research aims to provide a deeper insight on the relative advantages of 

various machine learning algorithms within the context of modeling therapist-patient 

interaction for gait rehabilitation. To accomplish this, a framework for evaluating 

machine learning algorithms that is grounded in the principles of occupational therapy 

must be developed. Therefore, the first objective is to identify: 

1. What therapist strategies can be quantitatively evaluated given the limitations of 

the system. 

2. Methods for grounding evaluation in principles of occupational therapy.  

The second objective is to evaluate and gain insight on different modeling approaches. 

Mainly,  this objective is concerned with using the grounded evaluation criteria to 

identify:  

1. How well the algorithms emulate therapist strategies and their practicality in a 

clinical setting. 

2. Possible sources for success or failure of each algorithm to emulate therapist 

strategies. 

Answering these questions will be done by comparatively evaluating the 

capabilities of ordinary least squares regression (OLS), gaussian process regression 

(GPR), and inverse reinforcement learning (IRL) algorithms to accurately emulate 

therapist strategies within the context of a one degree of freedom knee-exoskeleton.  
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B. Significance and Potential Contributions   

The intended contributions of this research primarily relate to the field of 

rehabilitation robotics. Specifically, this research aims to suggest a more insightful 

approach to modeling therapist assistance than some current methods that 

disproportionately consider, or exclude all together, a neurophysiological perspective. 

This insight creates the potential to broaden the scope of evaluation to include principles 

found in clinical settings. Significant conclusions from this work have implications on 

moving modeling approaches that would otherwise demonstrate this issue to a more well-

rounded and complete perspective.  Furthermore, this may provide an opportunity for 

devices to be more widely accepted by therapists and more effectively penetrate into 

practical settings.  

C. Scope and Limitations  

This research is framed within the context of a wearable 1 degree of freedom knee 

exosuit (Figure 3). The purpose of this device is not to replace or fully replicate the 

function of a therapist but rather to supplement a subset of therapist tasks. With this in 

mind, the exosuit was designed to provide assistance using a single actuator attached to 

the knee.  This implies that the moment of actuation around the knee, also interpreted as 

device-assistance, is normal to the sagittal plane and that assistive forces that fall outside 

of this definition are intended to remain in therapist control. Consequently, features like 

lateral assistance (e.g. facilitation of symmetric weight bearing and balance) cannot be 

properly defined within the sagittal plane and are therefore not considered to be 

observable.  It follows that the scope of therapist strategies capable of being used as 
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methods for evaluation is also limited.  A detailed procedure for identifying which 

strategies are applicable is available in Section 5.D. 

Relating to the second objective of this research, a breadth-first approach was 

chosen to select the algorithms that will be evaluated using the proposed methods. Three 

algorithms with high relative novelty were chosen to be the subjects of this research.   

Even though there are many more standardized modeling methods that are available in 

the literature, this small sample provides enough comparisons to develop an initial insight 

on the modeling approaches and evaluation criteria. 

A significant limitation that was experienced during this study was that access to 

patients for data collection was severely limited.  The initial intent was to evaluate data 

from multiple patients but due to technical issues in the data collection system and the 

limited access to patients, valid data from one patient was able to be collected. Therefore, 

this research is framed in the context of a case study. 

4. DEVICE DESCRIPTIONS 

A. Data Collection System  

A wireless data collection system was developed to collect the training and testing 

data uses several wearable sensors that aim to capture the patient kinematics, ground 

reaction forces and assistive torque around the knee that is provided by the therapist.  As 

this research mainly focuses on the modeling methods used for analyzing this data, 

further description of sensors like these can be found in [17]. 

Nonetheless, two IMUs are placed on the patient’s leg to measure thigh and shank  

displacements.  Additionally, a smart shoe was worn that contains four pressure sensors 
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to capture the current gait phase of the patient. An array of similar pressure sensors is 

then placed on both sides of the knee that will measure the location and magnitude of the 

force applied by the therapist on the patient. This system provides a relatively high 

resolution of observable features for an independent and mobile platform. A picture of 

the data collection system is given in Figure 2. 

 

Figure 2: Data Collection System 

B. Exoskeletal System  

As previously stated, the considered modeling algorithms are being developed in 

the context of a one degree of freedom knee exosuit.  This device uses a compliant 
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actuator that applies a torque located around the knee.  The axis of rotation for this 

assistive torque is normal to the sagittal plane.  Two links attached to the actuator are 

then connected to the patient’s thigh and shank using several hook-and-loop fasteners. 

The sensors in the data collection system were also implemented into the exoskeleton 

system to as a way of implementing these algorithms in the future. Other peripheral 

devices like controllers and batteries are attached to the hip using a padded waist strap. 

Figure 3 provides an image of the exoskeletal system in use. 

 

Figure 3: Knee Exoskeleton Attached to Leg 

5. THEORETICAL FRAMEWORKS 

The first three topics covered in this section have to do with the theoretical 

frameworks involved in modeling therapist assistance. This process can be framed as a 
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problem of learning from demonstration.  The goal of learning from demonstration is to 

use a set of demonstrated trajectories to recover a map, also known as a policy, that 

relates a set of observable states to actions.  Typically, these demonstrations are gathered 

by observing a human expert performing the task. Approaches to solving the learning 

from demonstration  problem can be divided into two major categories: behavioral 

cloning and apprenticeship learning. 

 Behavioral cloning methods attempt to directly mimic the observed expert 

trajectories. In other words, behavioral cloning uses supervised learning algorithms to 

directly learn a policy [18]. However, this method of learning has limitations in that the 

efficacy of the model can quickly become poor when it is applied to states that were not 

observed in the initial training data. This is of particular interest when attempting to learn 

in large or complex systems since capturing the full set of expert trajectories is likely 

infeasible [19]. 

This problem is the motivation for using apprenticeship learning algorithms.  

Apprenticeship learning attempts to learn the expert’s reward function, instead of a 

policy, that expresses an agent’s perceived utility of visiting a state. This reward function 

can also be interpreted as the goals of the agent.  The action of the agent is then 

determined by selecting the one that will move the agent to the state with the highest 

reward value.  This approach implies that observing the full set of trajectories is not 

required as long as the goals of the expert remain unchanged throughout all possible 

trajectories. Given this condition, apprenticeship learning “is the most succinct, robust, 

and transferable definition of the task” when learning from demonstrations [19]. 
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Two algorithms for behavioral cloning and an algorithm for apprenticeship 

learning through inverse reinforcement learning were selected as the methods for 

modeling therapist assistance. Specifically, the chosen algorithms include ordinary least 

squares regression (OLS) [20], gaussian process regression (GPR) [21], maximum 

entropy (MaxEnt) inverse reinforcement learning  (IRL) [22].  The justification for these 

algorithms is that each has a high relative novelty that increases the breadth of insights 

that can be gained.  

The last topic covered in this section relates to developing a framework for 

grounded evaluation of the proposed algorithms.   

A. Ordinary Least Squares Linear Regression  

OLS is one of the most commonly used regression methods and is often the first 

learning algorithm that people are exposed to.  This is because OLS is fairly intuitive, and 

the process can easily be visualized through the use of images like Figure 4. Following 

the formulation for linear regression given in Section 9.2 of [20], OLS aims to solve for a 

class of linear regression predictors by minimizing the squared loss defined by the 

deviations between the observed and predicted outputs. These deviations can be seen in 

Figure 4 by the vertical lines between the observed data points and the fitted polynomial. 



17 

 

Figure 4: Error of One Degree Polynomial [23] 

A one-dimensional polynomial of degree 𝑛 that describes the regression curve, 

given the class of predictors x and coefficients a, can be expressed in the form of  

𝑝(𝑥) = 𝑎 + 𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥  (1) 

 

Given a training data set 𝑺 = (𝑿, 𝒀), we can define the empirical risk 

minimization problem as our objective function that describes the squared loss: 

𝑎𝑟𝑔min
𝒘

𝐿 (ℎ ) = argmin
𝒘

1

𝑚
(< 𝒘𝒊, 𝒙𝒊 ≻ 𝑦 )  (2) 

This problem can then be framed as an optimization problem by calculating the 

gradient of this objective function and rewriting it in the form of 𝑨𝒘 = 𝒃: 
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2

𝑚
(< 𝒘, 𝒙𝒊 ≻ 𝑦 )𝒙𝒊 = 0 (3) 

𝐀 = 𝒙𝒊𝒙𝒊 , 𝒃 = 𝒚𝒊𝒙  (4) 

 

These results can be extended to polynomial predictors by reducing this problem 

to the previously formulated OLS method. By defining a map 𝜓: 𝑅 → 𝑅( )such that 

𝜓(𝑥) = (1, 𝑥, 𝑥 … 𝑥 ) we can write our polynomial expression in the form of  

𝑝 ψ(x) = 𝑎 + 𝑎 𝑥 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 =< 𝒂, 𝜓(𝑥) > (5) 

and find the optimal vector of coefficients using the method described above. 

OLS requires a few assumptions. First, it assumes that there is a linear 

relationship between the independent and dependent variables and that the dependent 

variable is continuous. It also assumes that errors are normally distributed, have 

homoscedasticity, are correlated with neither the independent nor dependent observations 

and are not caused by measurement errors [24].  Additionally, OLS is susceptible to 

strong influence from outliers and cause unwanted influences in the final model [25]. 

While not all of these conditions can be met by the observed dataset for therapist 

assistance, a basic model can be formulated to serve as a comparison for the other 

learning methods. 

B. Gaussian Process Regression 

GPR  is a machine learning tool that is able to produce powerful results by 

learning the probability distribution over all functions that fit the training data. A 
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significant advantage of GPR is that the variance of this distribution can be exploited as a 

means to interpret confidence of the prediction 𝜇 . In the context of developing models 

for a wearable exosuit, this is a significant result that can be used as a linear gain variable 

or used to determine if the system should assist at all [21].  

 It is important to note that this hypothesis class contains infinitely many 

functions that, for a given set of training points X, can perfectly fit the data.  To that end, 

a core goal of GPR is to model the underlying distribution of observed predictors X 

together with the set of observed outputs Y as a joint probability distribution 𝑃𝑿,𝒀 that 

describes the possible prediction values contained in the distribution of functions 

GPR relies on Bayesian Inference as a means to update the current hypothesis as 

new information is introduced to the system. This allows for the analysis of the 

conditional probability 𝑃 |  which is also distributed normally since the initial gaussian 

distribution is closed under conditioning [1].  

However, this hypothesis class is infinitely large and is not very powerful.  

Therefore, GPR restricts this class by assigning a probability to each function and 

creating a probability distribution over the functions.  This distribution has a mean 

function 𝝁 and covariance matrix Σ that describes which type of functions from the space 

of all possible functions are more probable.  Entries in the covariance matrix Σ are 

determined by a kernel k which will be discussed in Section 5.B.i.  

The restricted class of functions and their probabilities can then be used to extract, 

given a set of predictors 𝒙𝒊, the mean prediction 𝜇  value and the variance 𝜎  associated 

with that possible prediction. 
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Following the formulation given in [26], The first step is to define an initial, or 

prior, distribution 𝑃  where no training data has been introduced and the assumed mean 

is zero. This assumption is necessary for the later conditioning of the distribution.  Figure 

5 provides an example of a prior distribution that has not observed any training points 

and therefore has a mean 𝜇 =0 described by the dark purple line. The region lightly 

shaded purple describes the interval in which the algorithm is 95% confident that the true 

prediction lies within.  

 

Figure 5: Prior Distribution before Observing Training Points [27] 

 

𝑃  can be updated by first determining the marginalized probability distribution of 
the joint distribution 𝑃 ,   

𝑃 , =
𝑋
𝑌

~𝒩(𝜇, Σ) = 𝒩
𝜇
𝜇

Σ Σ
Σ Σ

 (6) 

  

𝑝 (𝑥) = 𝑝 , (𝑥, 𝑦)𝑑𝑦 = 𝑝 | (𝑥|𝑦)𝑝 (𝑦)𝑑𝑦 (7) 
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Using conditioning, the predictive distribution 𝑃 |  can be found from the joint 

distribution 𝑃 , .  This conditional distribution 𝑃 |  constrains the set of possible 

functions to pass through the training points (±ε). Figure 6 and Figure 7 describe 

progressively more constrained posterior distribution as more observations are introduced 

through the process of Bayesian Inference. 

 

Figure 6: Posterior Distribution after Observing Training Two Points [27] 
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Figure 7: Posterior Distribution after Observing All Training Points  [27] 

By using marginalization of each random variable, the mean 𝝁𝒊 and standard 

deviation 𝝈 = 𝚺𝒊𝒊 for 𝑖  observed output 𝑌 .  These variables can then be used to 

provide most probable output and an interpretation of confidence that 𝝁𝒊 is the output of 

the underlying function. 

i. Kernels  

Another powerful feature of GPR is the ability to include prior knowledge into the 

system by defining a covariance function k that is also referred to as a kernel.  This kernel 

describes the shape of the distribution and the characteristics of the predicted function.  

This is possible since the covariance matrix is determined by evaluating the covariance 

function pairwise to all points.  Kernels provide a map from two points  𝑡, 𝑡 ∈ ℛ𝓃 to a 

similarity measure between the two: 
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𝑘: ℛ𝓃𝑥ℛ𝓃 → ℛ, Σ = 𝐶𝑜𝑣(𝑋, 𝑋 ) = 𝑘(𝑡, 𝑡 ) (8) 

Kernels have many standardized forms and can be combined in various ways to 

achieve the desired effect.  A useful guide for determining a effective kernel is to use a 

kernel cookbook [28]. Figure 8 provides a basic example of the commonly used linear 

and periodic kernels and the effects of varying combinations on the posterior distribution. 

 

 

Figure 8: Effects of Kernel and Kernel Combinations on Posterior Distribution [27] 

C. Maximum Entropy Inverse Reinforcement Learning  

To address the IRL problem, we must first structure the space of learned policies 

to be a Markov Decision Process (MDP) where agents optimize an unknown reward 
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function by assigning reward weights that make the demonstrated behavior optimal. Paths 

in MDPs are determined by the action choices of agent in addition to random outcomes 

thereby making it an appropriate framework for modeling human decision making. MDPs 

can be parameterized by 𝑀 = { 𝑺, 𝑨, , 𝑇, 𝛾, 𝐷, 𝑅} where the agent’s behavior is modeled 

with states 𝑠 ∈ 𝑆, actions 𝑎 ∈ 𝐴,  an initial state distribution 𝐷(𝑠), transition dynamics 

𝑇 = 𝑝(𝑠’|𝑠, 𝑎), reward function R(s), and discount factor 𝛾 ∈ [0,1].  

Also, we must assume that the agent is attempting to optimize some “true” reward 

function, 𝑅∗(𝑠) = θ∗ ⋅ 𝜙(𝑠 )  that can be expressed through a linear combination of 

features 𝜙(𝑠) and that are weighted by the true reward weights 𝜃∗.  Using this, we can 

determine the value of a policy 𝜋(𝑎|𝑠) that maps states to a probability distribution of 

actions[29]. 𝑠  ∞ 

𝑉(𝜋) = 𝜃 ⋅ 𝐸 𝛾  𝜙(𝑠 ) |𝜋  (9) 

Where the feature expectations can be defined as the expected value of the discounted 

features for a given policy: 

μ(π) = 𝐸 𝛾  ϕ(𝑠 ) |π  (10) 

 

The algorithm proposed by Abbeel & Ng [29] the proposes finding the a policy 

that attempts to match the feature expectations from the expert demonstrations to a policy 

optimized through an iterative algorithm: 

E 𝛾  𝜙(𝑠 ) |𝜋 − 𝐸 𝛾  𝜙(𝑠 ) |𝜋  = |𝜃 𝜇(𝜋) − 𝜃 𝜇(𝜋)| (11) 
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In this framework, the “problem of imitation learning can be reduced to 

recovering the reward function that induces the demonstration trajectories.” However, 

recovering the reward weights is considered an ill-posed problem since multiple weights 

and degenerate solutions can make the demonstrated trajectories optimal [22]. 

i. Maximum Entropy  

Following the paper by Ziebart's et.al [22], the principle of Maximum Entropy 

(MaxEnt) can be used to help resolve this ambiguity. A trajectory’s reward value can be 

described by the reward weight applied to the path’s feature counts.  

𝑟𝑒𝑤𝑎𝑟𝑑 𝒇 = θ 𝒇 = θ 𝒇

∈ 

 (12) 

The MaxEnt IRL framework considers the class of all feasible paths through the 

MDP.  It then “resolves ambiguity by choosing the distribution that does not exhibit 

additional preferences beyond matching feature expectations” where the distribution is 

parameterized by reward weights 𝜃. Considering the space of action outcomes, T, and an 

outcome sample, o, that specifies the next state for every action.  Also, under the 

assumption that the transition randomness has minimal effect on the behavior and the 

partition function, 𝑍(θ), is constant for all 𝑜 ∈ 𝑇 we can obtain an approximation of the 

distribution over all paths. To this end, the MaxEnt IRL algorithm suggests that we can 

optimize for our reward weights by maximizing the likelihood of the observations under 

this distribution. 
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θ∗ = argmax 𝐿(θ) = argmax 𝑙𝑜𝑔𝑃(𝜁 , θ, T) (13) 

 

Optimization can be performed through a gradient descent algorithm where the 

gradient is the difference between the expected empirical feature counts and the learner’s 

expected feature counts.  This algorithm can be expressed using the expected state 

visitation frequency 𝐷  by using algorithm 1 in  [22]. 

 

∇𝐿(θ) = 𝒇 − 𝑃(𝜁 |θ, T)𝐟 = 𝒇 − 𝐷 𝒇  (14) 

Once the reward weights are returned, the policy can be recovered through 

reinforcement learning methods [29].  This policy will then be used to make predictions 

for the model.  

ii. Handling Unknown System Dynamics  

The transition dynamics for a given system are often not explicitly known in the 

real world. This problem can be resolved by a straightforward method for estimating 

transition probabilities by observing the transition counts.  However, it should be noted 

that is likely that not all possible transitions are observed and therefore the initial count 

for each transition should be started at one.  This will prevent a unobserved transitions 

from having no probability of occurring [30].  Here, we treat the observed dataset as 

samples from the true system dynamics and normalize the observed transition counts for 

each state action pair to obtain an estimated state transition probability distribution. 
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D. Grounded Evaluation  

Grounding the methods for evaluation in the principles of OT simply means that 

the measurements of performance should emerge from the principles and concepts that 

surround this field. Doing this has the potential to provide a more generalized 

measurement of performance that can be extended beyond the observed testing data. 

In contrast, standard methods for evaluating fitted models attempt to measure the 

model’s ability to directly reproduce the observed data.  The two main metrics for 

standard evaluation are the coefficient of determination (r2) and mean squared error 

(MSE).  The coefficient of determination represents the proportion of variation of the 

output that is explained by the model. The mean squared error describes the average 

squared deviation between the predictions and the observed outputs. Similarly, the mean 

absolute error can be used to measure the same feature through handling positive and 

negative deviations by taking the absolute value instead of the square. All of these values 

give a valid measurement on the goodness of a model but are limited in scope. Similar to 

the differences between behavioral cloning and apprenticeship learning, the results from 

these standard evaluation methods can only be used to make conclusions over the 

observed dataset. 

Figure 9 provides an illustration providing examples of how evaluation metrics 

can be progressively grounded in OT.  Weakly grounded methods, on the bottom, are the 

standard evaluation metrics that measure the performance of the model but do not include 

any considerations for neurophysiology. The middle section of this figure details 

intermediately grounded methods for evaluation due to the fact that the measurements 

emerge from the context of rehabilitation but do not capture any specific principle or 
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strategy used by the therapists. These measurements are concerned with describing the 

deviation from the observed characteristics of assistance 𝑪. A full list of variable 

definitions for 𝑪 can be found in Table 1. Finally, the grounded evaluation methods can 

be found at the top of the figure.  These metrics directly relate to and intend to capture the 

strategies to actuate the neurophysiological mechanism used in rehabilitation.   

 

Figure 9: Standard and Grounded Evaluation Metrics a C refers to the 

characteristics of assistance described in Table 1 b Functional task 

performance does list a quantifiable measurement because this strategy is 

either used or not and is therefore subject to continuous evaluation. 
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Table 1  
Characteristics of Assistance 

Variable Units Name Description 

𝜏̅  Nm Mean peak torque 
The mean of all of the maximum values 
evaluated on a per gait cycle basis. 

𝜏  Nm Significant torque 

Threshold that is considered significant 
actuation. This is considered because 
torque readings are received when the 
therapist has their hand on the sensors but 
are not in fact actuating.  For this analysis, 
significant torque is considered to be any 
value greater that 0.5 Nm. 

𝑡  %GC 
Significant 

actuations start 

The earliest time, in percent gait cycle, 
that the torque first exceeds the significant 
torque  
𝜏  threshold. 

𝑡  %GC 
Significant 

actuation end 

The latest time, in percent gait cycle, that 
the torque first exceeds the significant 
torque  
𝜏  threshold. 

∆ 𝑡  %GC 
Significant 

actuation duration 

The duration, in percent gait cycle, for 
which significant torque 𝜏  is observed 

𝑡̅  %GC Mean peak time 
Meantime, in percent gait cycle, that peak 
torque occurs 

𝜎  Nm2 Peak torque 
variance 

The variance between peak actuation 
torques 𝛕  

σ  Nm2 Actuation variance 
The variance of all predicted torques 
during any part of the gait cycle 

 

Several of the strategies summarized in Figure 1 are simply not within the 

collected data’s capability to measure or exosuit’ s ability to perform.  Therefore, this 
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model must be reduced to include only strategies that can be captured in a meaningful 

way. After excluding these features from the model, three main strategies are left for 

evaluation: adaptive assistance, adaptive task difficulty, and facilitation of proprioceptive 

inputs. Figure 10 illustrates how the previously model for the reviewed therapist 

strategies was modified to exclude features (grey) in order to make it fit this evaluation. 

It should be noted that the exosuit can only provide assistive forces around the 

knee and can consequently only adapt its assistance.  However, an interpretation of 

adapting task difficulty is still available since providing less assistive forces can be 

considered a method for increasing the task difficulty. This interpretation is weak since 

more practical task adaptation strategies include adding impedance (e.g. elastic band 

training). Nonetheless, these two adaptation strategies would present themselves in the 

exact same way when considering the amount of force actuated by the exosuit.  These 

two adaptation strategies are therefore consolidated into a single feature for the purpose 

of evaluation. 
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Figure 10: Modified Therapist Strategy Model a Indicates that a feature is 

not within the capabilities of the exosuit to perform, measure or effect. 

Consequently, these features is either not feasible or not applicable for the 

process of evaluation of the modeling methods. 

Now that the strategies that will be evaluated have been selected, three principal 

questions arise as the foundation for developing subsequent tests: 

1. How well do the algorithms emulate the characteristics of assistance demonstrated 

by the therapists? 

2. How well do the algorithms emulate the adaptation of assistance? 

3. To what extent can an algorithm emulate strategies demonstrated by different 

therapists? 
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To address these questions, two different methods for analysis were created.  The 

first method is to calculate the 𝑪 of each algorithm and compare to each of the observed 𝑪 

of therapist 1 and 2.  This requires six comparisons that are grouped per therapist: 

𝑪  =  𝑪  − 𝑪 , 𝑪  − 𝑪 , 𝑪  − 𝑪  

𝑪  =  𝑪  − 𝑪 , 𝑪  − 𝑪 , 𝑪  − 𝑪  

The second method for analysis focuses on the adaptation for CoA over the 

course of each therapists’ session. This can be done by observing the trend of CoA over 

time. Since the collected data does not observe time as one of the features, strides 𝑡  will 

be used for the time domain.  Comparisons for each algorithm can be expressed as 

follows 

 𝑪  =  𝑪𝑡ℎ𝑒𝑟𝑎𝑝𝑖𝑠𝑡 1 − 𝑪𝑂𝐿𝑆, 𝑪𝑡ℎ𝑒𝑟𝑎𝑝𝑖𝑠𝑡 1 − 𝑪𝐺𝑃𝑅, 𝑪𝑡ℎ𝑒𝑟𝑎𝑝𝑖𝑠𝑡 1 − 𝑪𝐼𝑅𝐿  

 𝑪  =  𝑪𝑡ℎ𝑒𝑟𝑎𝑝𝑖𝑠𝑡 2 − 𝑪𝑂𝐿𝑆, 𝑪𝑡ℎ𝑒𝑟𝑎𝑝𝑖𝑠𝑡 2 − 𝑪𝐺𝑃𝑅, 𝑪𝑡ℎ𝑒𝑟𝑎𝑝𝑖𝑠𝑡 2 − 𝑪𝐼𝑅𝐿  

Analysis can then be performed between the different therapists.  This will allow 

insights on if the algorithm is able to extend its presentation of strategies across multiple 

therapists that may be providing different strategies.  

 𝑪  x  𝑪  

Table 2 presents a summary of the above formulation and how it relates to each 

respective therapist strategies and Figure 11 provides a high-level model for how these 

methods were formulated.  
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Table 2 
Summary of Methods for Grounded Evaluation 

Therapist Strategy Question aAnalysis 

Facilitate appropriate 
proprioceptive input 

How well can an algorithm 
emulate the CoA 
demonstrated by the 
therapists? 

𝑪  and  𝑪  

Adaptive assistance and 
task difficulty  

How well can an algorithm 
emulate adaptation strategies?   𝑪  and    𝑪  

Adaptive assistance and 
task difficulty 

To what extent can an 
algorithm emulate strategies 
that are different ? 

 

(   𝑪 ) x (   𝑪 ) 

 

 

Figure 11: Grounded Evaluation Plan 

a Strategies for adaptive assistance and adaptive task difficulty were combined into a single 

feature since they are presented in the same way in the exosuit. 
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6. METHODOLOGY 

A. Sources of Data  

Data was collected from 4 patients during an in-person visit to a Barrow Medical 

Institute Treatment Center. The targeted group of patients are individuals presented with 

hemi-paretic gait with knee instability on the affected side during stance phase, who can 

ambulate with contact guard assist or less, with Manual Muscle Testing (MMT) of knee 

flexion/extension equal to or greater than 2/5. 

Three independent sessions lasting approximately five minutes were conducted 

during a single visit to the clinic.  Each session consisted of the patient walking with 

different levels or sources of assistance. In the first session, the patient received minimal 

to no assistance except for balance and weigh support when needed.  In the next session 

data was collected while one therapist provided movement assistance and the other 

provided weight support when needed. The last session the therapists switched roles. A 

member of the exosuit research team was present during each of these sessions to ensure 

that the data collection system maintained a proper fit to the patient and was operating 

appropriately. After data collection, all identifiers were removed from the data and stored 

on a password protected server.  

Patients were screened by the therapist to ensure they meet the following criteria 

to be an eligible candidate for this study: 

1. Male or female, between the ages of 18-60 years  

2. Weigh between 110-200 lb. (to be able to fit in the data collection system)  

3. Skin intact where it will interface with the sensors and markers  
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4. At least 100° of knee flexion to bilateral lower extremities via passive range of 

motion  

5. Manual Muscle Testing (MMT) of knee flexion/extension equal to or greater than 

2/5  

6. Modified Ashworth of hemi-paretic lower extremity less than or equal to 1+  

7. Ambulate with contact guard assist or less for up to 5 minutes with or without the 

use of single point cane and/or ankle foot orthosis (AFO)  

8. Present with hemi-paretic gait with knee instability on the affected side during 

stance phase  

9. Willing and able to provide written informed consent in compliance with the 

regulatory requirements. If a subject is unable to provide written informed 

consent, written informed consent may be obtained from the subjects’ legal 

representative (LAR). 

Criteria for exclusion from this study is as follows: 

1. Unwilling or unable to comply with the requirements of this protocol, including 

the presence of any condition (physical, mental, or social) that is likely to affect 

the subject’s ability to comply with the protocol.  

2. Flexion contracture of greater than 10° of passive range of motion  

3. Inability to understand or follow directions  

4. Para-paretic gait (gait disorders on both sides)  

5. Seizure activity within the last six months  

6. Pregnancy  

7. Unstable vitals  
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8. Osteoporosis  

9. Any other reasons that, in the opinion of the investigator, the candidate is 

determined to be unsuitable for entry into the study. 

B. Ethics and Human Participant Issues  

No more than minimal risk will be introduced to a patient during this study. Risks 

include possible slips and or falls which is mitigated by the therapists present and 

providing support for the patient. Safety considerations regarding attaching the data 

collection system include quick release of attachment mechanism, an on-site supervisor, 

and emergency stop capabilities. All aspects of this study were reviewed and approved by 

the St. Joseph’s Phoenix Institutional Review Board (IRB#: PHX-19-500-271-70-19). 

C. Data Collection Procedure  

Data collection was performed according to the following procedure: 

1. Attach the data collection system to the patient by having them: 

a. Put on the pressure sensitive shoe. 

b. Strap the thigh and shank sensor shells to the leg (with the assistance of a 

present researcher) 

c. Put on the control backpack. 

2. Have a present researcher validate that all straps are tightened and IMU’s are 

properly oriented. 
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3. Have a present researcher confirm that all devices are recording data by observing 

the synchronous serial output. 

4. Begin session one (no assistance) 

a. Have the patient stand straight for approximately 3 seconds with their 

knee set at zero displacement. 

b. Have the patient walk down to the end of the hallway. 

c. Have the patient turn 180 degrees and face the direction they will be 

walking in the next lap 

d. When the patient reaches the end of the lap, have the patient stand still for 

approximately 3 seconds while facing in the direction they were just 

walking.  

e. Repeat steps a-d for a duration of five minutes or until the patient is unable 

or unwilling to continue. 

5. Have a researcher validate that the data collection system is still attached 

appropriately and did not shift during session one 

6. Allow the patient to recover until they are comfortable to begin walking again 

7. Begin session two (assisted by therapist #1) 

a. Have the patient stand straight for approximately 3 seconds with their 

knee set at zero displacement. 
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b. Have the patient walk down to the end of the hallway while the therapist 

provides assistive forces on the thigh and shank sensor shells. 

c. During each stride have the therapist rate whether their assistance was 

good, bad or neutral 

d. Have the patient turn 180 degrees and face the direction they will be 

walking in the next lap. 

e. Have the patient stand still for approximately 3 seconds while facing in the 

direction they will be walking in 

f. Repeat steps a-e for three total laps. 

8. Begin session three (assisted by therapist #2) 

a. Follow the same procedure in step 6 

9. Have a researcher assist in removing the data collection system. 

10. Debrief the patient 

D. Data Processing 

i. IMU Data Processing  

The IMU data was carefully considered in the procedure by having the patient 

stand still for an extended period of time both at the beginning of each lap.  This was 

done for two reasons.  The first reason was to establish a clear period where the patient is 

turning around. This prevents periods of unassisted steps from entering the dataset. The 

second reason was to reinitialize the IMUs for each lap in an attempt to counteract 
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drifting of the IMU values and increase the accuracy over the period of the session. The 

IMUs were initialized by recording the rotation, expressed as a quaternion, received 

during the time that the patient’s knee was set to zero displacement 𝑞 .  The inverse of 𝑞  

can then be applied to the current rotation 𝑞 to obtain the relative rotation in relation, Δ𝑞, 

to the zero-knee displacement orientation. 

Δ𝑞 = 𝑞𝑞  (15) 

The result of this process is a timeseries dataset that describes the rotation of the 

thigh and shank of the patient at given time index 𝑡.  To calculate the desired features 

(hip and shank displacement), the initialized rotations for each IMU, Δ𝑞  and 

Δ𝑞 ,  is applied to an initial unit vector 𝑣 = [1,0,0] resulting in two vectors 

representing the thigh and shank,𝑣  and 𝑣 , in three-dimensional space.  There 

are methods for calculating the acute angle between quaternions, but a vector-based 

approach was chosen for ease of validation through simulation and visualization.  These 

vectors can then be used to calculate the hip and shank angle by computing the inverse 

cosine of the dot product of each and 𝑣 .  

θ = 𝑐𝑜𝑠
𝑣 ⋅ 𝑣

|𝑣 | 𝑣
 

θ = 𝑐𝑜𝑠
𝑣 ⋅ 𝑣

|𝑣 ||𝑣 |
 

Figure 12 provides an illustration of the displacements that were recorded by the 

IMUs. 
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Figure 12: Calculated Hip and Shank Displacements 

  

ii. Leg Pressure Sensors Processing  

Force vectors for 18 sensors on the thigh and 10 sensors on the shank were 

generated.  The direction of these force vectors was assigned to each sensor individually 

based on the location of the sensor on the curved shell. The net force for the thigh and 

shank were then calculated.  However, since the exosuit is only a one degree of freedom 

devices, only forces in the sagittal plane were used to calculate the torque around the 

knee which is also interpreted as the therapist assistance. 
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iii. Shoe Pressure Sensor Processing  

The shoe sensor contained four pressure sensors that measured the interaction 

forces between the affected leg of the patient and the ground. Using these force values, 

the time of heel strike and the toe leaving the ground were identified.  These two values 

were then used to linearly interpolate the percent gait phase values in between to obtain a 

measurement of gait phase. 

E. Generating Models  

During data collection, a therapist was instructed to rate their performance of 

assisting the patient on a scale of good, neutral, or poor.  However, some gait cycles 

required a therapist’s full attention thereby preventing them from responding. The 

additional option for no response was added to the scale as a consequence.  The data 

being considered only includes gait cycles that were rated good since other ratings 

introduced torques that were not readily explainable by the sensed features.   

Sensed features include orientation described by quaternions of two IMUs 

attached to the thigh and shank, the force vector of the therapist’s hand on the thigh and 

shank, and the location of greatest force on the foot. In order to reduce the dimensionality 

of the observed data, each of these sensed features were then interpreted as more simple 

states and actions that are directly observable by a therapist.  The resulting state space 

was used for training all algorithms.  Table 3 describes the interpretation of each sensed 

feature.  To clarify further, the range of the gait cycle feature only considered the stance 

phase of the affected leg (e.i. heel-strike to push off) which is generally considered to be 

[0,62]% of the gait cycle. The stance phase was then rescaled to range [0,100]% and 



42 

given the variable definition 𝑠  that express the percent progression through the stance 

phase. This was done because no significant and consistent actuation was observed 

during the swing phase and this was an opportunity to reduce the number of samples 

contained in the data. Figure 13 shows a full gait cycle (e.i. stance and swing phase) and 

the reduce range of considered observations.   

To address the discrete state and action space for IRL, the joint displacements 

were placed in  𝑛 = 10 uniform bins. The stance phase state was placed into 𝑛 = 5 

discrete bins representing the first five stages of the eight-stage model for a gait cycle 

described in Figure 13. These stages are initial contact (IC), loading response (LR), mid 

stance (MS), terminal stance (TS) and pre swing with ranges 𝑠 ∈ [0,5],𝑠 ∈ (5,19],𝑠 ∈

(50,81], and𝑠 ∈ (81,100] respectively.  The actions were divided into 𝑛 = 20 discrete 

bins. The values for  𝑛  and 𝑛  were manually tuned by varying these parameters and 

comparing the resulting models. Table 3 also provides a summary of the dimensionality 

reduction that was observed. 
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Figure 13: Reduced Gait Phase Feature to Stance Phase Feature [31] 

 

Table 3  
Summary of Dimensionality Reduction 

Type Sensed Feature Sensed Dim. Interpreted State State Dim. 

State 
Hip IMU 

Quaternion 
𝑞 ∈ ℛ 𝓍  Hip Displacement 𝜃 ∈ ℛ 

State 
Shank IMU 
Quaternion 

𝑞 ∈ ℛ 𝓍  Shank Displacement 𝜃 ∈ ℛ 

State 
Foot Pressure 

Sensor 
𝐹 ∈ ℛ 𝓍  Percent Stance Phase 𝑝 ∈ ℛ 

Action 
Thigh & Shank 

Pressure Sensors 
𝐹 ∈ ℛ 𝓍  Torque around the Knee τ ∈ ℛ 

 

For each proposed algorithm, the same set of predictors/states and actions were 

provided. 

𝑿 = 𝒔𝒑, 𝛉𝒉𝒊𝒑, 𝛉𝒔𝒉𝒂𝒏𝒌 ∈ 𝑅  

𝑦 = 𝝉𝒂 ∈ 𝑅  

where 𝑛 is the sample size and 𝑚 is the number of features in each sample.   
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The resulting dataset contains 70 strides for therapist 1 and 32 strides for therapist 

2. This data was then randomly split into 53 training strides and 17 testing strides for 

therapist 1 and 24. The resulting train-test split is 76%-24% respectively. Figure 14 and 

Figure 15 provide plots of the final training at testing datasets for each therapist over 𝑠 . 

 

 

Figure 14: Training Data 
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Figure 15: Testing Data 

 

F. Data Analysis and Strategies  

The objective of this research is to comparatively evaluate the capabilities of the 

aforementioned algorithms to accurately simulate therapist assistance and strategies 

within the context of a one degree of freedom exoskeleton. Using the observed states in 

the reserved testing data for therapist 1 (𝑿 ) and therapist 2 (𝑿 ), each algorithm 

will be used to generate a set of predictions for both therapist 1 and therapist 2.  To 

simplify the notation, algorithm predictions will be grouped by the therapist training data 

that was used for the predictions. 

𝒚  (𝑿 ) = {𝑦 , 𝑦 , 𝑦 } 



46 

𝒚  (𝑿 ) = {𝑦 , 𝑦 , 𝑦 } 

Once the algorithm predictions have been made for both therapists, three separate 

analyses will then be performed. 

The first evaluation method will measure performance of the algorithm to directly 

replicate the assistance for therapist 1 (𝑦 ) and therapist 2 (𝑦 ).  Results from 

𝒚  and 𝒚   will then be used to calculate the standard metrics for evaluation 𝑟  

and MSE.  The reported values for each prediction will be used to make comparisons on 

an intra-therapist and inter-therapist basis. 

The second method will be used to evaluate each algorithm’s ability to emulate 

the correct assistance to facilitate appropriate proprioceptive input.  This will be done 

through a comparison of the characteristics of assistance 𝑪 defined in Section 5.D.  𝑪 will 

be calculated for both observed therapist outputs (𝑪𝒐𝒃𝒔𝟏 and 𝑪𝒐𝒃𝒔𝟐) and for each 

algorithm per therapist. Notation is again simplified by grouping by therapist. 

𝑪𝒑𝒓𝒆𝒅𝟏 𝒚  = {𝑪𝑶𝑳𝑺𝟏, 𝑪𝑮𝑷𝑹𝟏, 𝑪𝑰𝑹𝑳𝟏} 

𝑪𝒑𝒓𝒆𝒅𝟐 𝒚  = {𝑪𝑶𝑳𝑺𝟐, 𝑪𝑮𝑷𝑹𝟐, 𝑪𝑰𝑹𝑳𝟐} 

The characteristics of assistance for each algorithm with then be used to make 

comparisons on an intra-therapist and inter-therapist basis. 

The third analysis will then evaluate the algorithms’ ability to emulate therapist 

adaptation strategies. Adaptation strategies will be observed through how 𝑪 changes for 

each stride 𝑡  as the session progresses. A trendline in the form of 𝑦 = 𝑚𝑥 + 𝑏 will be 

used to estimate the general behavior of how 𝑪 changes. Trendlines for each 

characteristic in 𝑪 will be generated using a one-degree linear regression algorithm. The 

slopes 𝑚 for each trendline will then be reported and compared to their respective 
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therapist to evaluate how well the algorithm emulates individual therapist adaptation 

strategies.  These results will then be used to perform an inter-therapist evaluation that 

will provide evidence on how well the algorithms generalize their behavior to emulate 

strategies of different therapists. 

7. RESULTS 

A. Analysis 1 Results: Standard Performance Metrics  

GPR was shown to have the most desirable value for three out of four of the 

standard metric tests.  The one metric that GPR did not exhibit the most desirable value, 

𝑟  for therapist 2, showed approximately a 54% decrease from the calculated value for 

therapist 1.  In contrast, OLS showed an increase of about 14% from therapist 1. OLS 

showed fairly consistent results compared to the other algorithms for both metrics across 

therapists showing a deviation of 14% and 21% between therapist 1 and 2 respectively.  

For both metrics OLS performed better on the therapist 2 test dataset. IRL demonstrated 

the least desirable results for all tests. For both 𝑟  and 𝑀𝑆𝐸, the performance of IRL for 

therapist 2 decreased by half of its performance for therapist 1. It was only able to explain 

41% and 26% of the variation in the output for therapist 1 and therapist 2 respectively. 

The results of the algorithms’ predictions for both therapist test datasets were plotted in 

Figure 16.  The plot for GPR shows the 95% confidence interval for its prediction in the 

gray shaded region. The full list of calculated values for 𝑟  and 𝑀𝑆𝐸 were reported in 

Table 4. 
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Figure 16: Algorithm Prediction Outcomes 

 

Table 4  
Standard Evaluation Metrics Results  

 Therapist 1  Therapist 2 

Metric OLS GPR IRL  aBest  OLS GPR IRL  aBest 
𝑟  0.65 0.8 0.41 GPR  0.74 0.37 0.26 OLS 

𝑀𝑆𝐸 0.62 0.43 1.03 GPR  0.79 0.65 2.23 GPR 
Notes: 
a Best refers to the algorithm that demonstrated the best performance for a given metric.  For 𝑟  the best 
algorithm will have the highest reported value while the best algorithm for 𝑀𝑆𝐸 will have the lowest 
reported value. 
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B. Analysis 2 Results: Emulating Therapist Assistance Characteristics 

The therapist assistance characteristics 𝑪 were calculated for all algorithm 

predictions over both therapist 1 and therapist 2 testing datasets. Table 5 provides the 

percent error in which the algorithms deviate from the observed therapist characteristic.  

The raw values for both the algorithm and therapist characteristics of assistance 𝑪 can be 

found in APPENDIX  A. 

GPR was the only algorithm to maintain the smallest amount of deviation from 

the observed therapist characteristics across both the therapist 1 and therapist 2 sessions.  

This happened in both the 𝜏̅  and 𝜎  features were GPR significantly outperformed 

the other algorithms. In the 𝜎  feature, GPR obtained a deviation of 24.71% and 

9.57% which is 18.97% and 26.43% better than the next closest algorithm; OLS.  In 

the 𝜏̅  characteristic, GPR was able to obtain a margin of error of 6.67% and 5.01% 

for therapist 1 and therapist 2 respectively which is again followed by OLS with percent 

errors of 15.95% and 13.91%. 

Although OLS and IRL tended to under-actuate, which resulted in their greater 

 𝜏̅  deviation, they outperformed GPR in matching the timing of the peak torque t̅  

For therapist 1, IRL deviated by an average of 0.10% from the timing of demonstrated 

peak torque.  This is in contrast to therapist 2’s session where IRL had the largest 

deviation from the true mean peak time with 11.37% error. OLS’s results were more 

consistent across therapist 1 and therapist 2 demonstrations with percent deviation if 

6.55% and 1.15% respectively. In all other of the timing characteristics, 𝑡 , 𝑡 , Δ𝑡 , 

OLS showed the smallest deviation in the therapist 1 test dataset. In the therapist 2 test 

dataset, the minimum deviations for 𝑡  and Δ𝑡  were produced by GPR with 2.33% 
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and 0.9% deviation respectively. IRL demonstrated the smallest deviation for  𝑡  with 

a 17.64%.  Across all therapists, the algorithms were more accurate in emulating the 𝑡  

characteristic than 𝑡 . 

No algorithm could sufficiently capture the peak variance feature (𝜎 ).  The 

minimum percent deviation throughout all trials was 44.12% and the next lowest being 

77.27%.  All but one of the results for this feature were caused by tight clustering of the 

peak variances when compared the how the therapists varied their peak actuation. 

Table 5  
Percent Error Deviation from Therapist Assistance Characteristics  

 Therapist 1  Therapist 2 

Metric OLS GPR IRL aBest  OLS GPR IRL aBest 
𝜏̅  15.95 6.67 20.71 GPR  13.91 5.01 31.91 GPR 

𝑡  12.18 29.18 -26.7 OLS  40.51 36.5 -17.64 IRL 
𝑡  -2.25 -2.44 5.79 OLS  -3.15 2.33 7.46 GPR 
∆ 𝑡  -4.86 -8.17 11.71 OLS  -7.27 -0.9 9.82 GPR 
t̅  6.55 -7.87 -0.10 IRL  -1.15 -7.91 -11.37 OLS 
𝜎  98.04 44.12 82.35 GPR  81.82 -93.18 77.27 IRL 
𝜎  43.68 24.71 52.3 GPR  36.3 9.57 59.41 GPR 

Notes: 
  a Best refers to the algorithm that has the smallest absolute deviation from the 
observed therapist torque characteristic.  

 
 

Figure 16 shows the predictions of each algorithm over the testing dataset.  First, 

it is clear that OLS was able to match the timing and shape of the observed therapist 

assistance for both sessions. However, the peak magnitude for these predictions is mostly 

constant which is not indicative of the varying peak assistance demonstrated by the 

therapists. This is in contrast the other two algorithms that varied their peak torque that 
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reflects, but necessarily matches the magnitude of, the therapist demonstrations. It is also 

apparent that the GPR algorithm has a higher confidence in its predictions for therapist 1. 

It should be noted that the results from the IRL algorithm were filtered using a 

modest linear filter to compensate for the fact that the predictions were discrete. The 

predictions from this model seem subject to a constant stochastic perturbation throughout 

both sessions. Additionally, more significant perturbations seem to invert the actuation 

behavior around select peaks.  The most significant example of this occurs at i=350 for 

the therapist 2 session.   

When the predictions are rescaled to fit within the domain of one stride, as seen in 

Figure 17, additional trends can be more easily observed. Primarily, the variance in 

predictions can be intuitively observed by the density of the prediction curves for each 

model. The most significant observation is that OLS has near zero variance in its 

predictions for therapist 1 and marginally more for therapist 2.   
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Figure 17: Algorithm Performance per Stride 

C. Analysis 3 Results: Emulating Therapist Adaptations 

To observe how well the algorithms emulated adaptation strategies, the assistance 

characteristics 𝑪 were calculated for each stride. For each characteristic, the result for all 

algorithms and therapists were plotted over the course of both sessions. Next, a trendline 

was used to identify how the characteristic varied over the course of a session. Figure 18 

provides an example of how the peak torque (top) varied for all algorithms over the 

course of a session, the calculated trendline (middle) that shows the adaptation of that 

characteristic as the session progresses and a bar graph (bottom) that compares the slope 

of each trendline.  For the sake of brevity, the reported results for this analysis will only 
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show the slope of the trendlines for each characteristic while the full calculation for each 

characteristic can be found in . 
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Figure 19. The full trend plots for these all characteristics can be found in 

Appendix B. Table 7 provides the full list of results for the calculated trend slopes of all 

algorithms and therapists for each session. 
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Figure 18: Adaption Trends for Peak Assistance 

Therapist 1 and therapist 2 demonstrated inverse strategies for adapting to their 

assistive torque (𝑢𝑛𝑖𝑡𝑠: 𝑁. 𝑚) over time. Therapist 1 increased the peak torque during 

each stride (m=0.14 
.

) as the session went on while therapist 2 provided less 

maximum assistance as the session continued (m=-0.25 
.

). For the session with 

therapist 1, GPR had the most similar trend (m=0.09). IRL demonstrated the incorrect 

trend (m=-0.03 
.

) to what therapist 1 demonstrated. For the session with therapist 2, 

all algorithms correctly identified the negative trend and deviated from the true peak 

torque adaptation trend by approximately the same amount.  

All algorithms were able to correctly identify the trend for varying the start of 

significant actuation 𝑡 (𝑢𝑛𝑖𝑡𝑠: 𝑝 ) in the therapist  session. However, GPR was the 

only algorithm to do so accurately with only a 2% deviation (𝑚=-1.26 )  from the 
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trend slope observed for therapist 1 (𝑚=-1.23 ).  OLS (𝑚=-0.37 ) and IRL 

(𝑚=-0.46 ) deviated by 70% and 63% respectively.  For therapist 2 (𝑚=1.12 ), 

only OLS (𝑚=1.10 ) was able to correctly identify the trend and was extremely 

accurate for with a deviation of 2%.  Additionally, OLS was the only algorithm to 

correctly match the adaptation trends for both therapists. 

For the 𝑡 (𝑢𝑛𝑖𝑡𝑠: 𝑝 ) adaption trend, both therapists displayed the same 

adaptation trend but differed in the rate of adaptation with slopes 𝑚=0.25  and 

𝑚=0.12  for therapists 1 and 2 respectively.  GPR (𝑚=0.04  𝑎𝑛𝑑 𝑚=1.13 

) was able to identify the correct trend for both therapists while IRL (𝑚=0.52 ) 

was only able to identify the correct trend for therapist 2.  OLS was able to identify 

neither trend correctly. No algorithm was able to significantly emulate the degree of 

adaptation. 

For the  Δ𝑡  (𝑢𝑛𝑖𝑡𝑠: 𝑝 ) adaption trend, the therapists displayed inverse 

adaptation trends with slopes 𝑚=1.49  and 𝑚=-1.00  for therapists 1 and 2 

respectively. All algorithms were able to correctly identify the trend for therapist 1 while 

OLS was the only algorithm to correctly identify both. For therapist 1 GPR had the 

closest slope ( m=1.3 ) that was deviated 13% from the observed adaptation trend.  

In regard to peak torque timing 𝑡  (𝑢𝑛𝑖𝑡𝑠: 𝑝 ), the therapists displayed inverse 

adaptation trends with slopes 𝑚=0.08  and 𝑚=-1.05  for therapists 1 and 2 

respectively. The adaptation for therapist 1 is not significant and is therefore likely to 

have no adaptation strategy in when considering peak assistance time. Nonetheless, GPR 
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was the only algorithm to correctly identify both adaptation trends while IRL was only 

able to identify the trend for therapist 1. 
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Figure 19: Adaption Trend Slopes for Characteristics of Assistance 
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Table 6  
Correctly Identified Trends and Correlation of Therapist Strategies 

Metric OLS GPR IRL aCorrelation 
τ  Both Both T2 Inverse 
𝑡  Both T1 T1 Inverse 
𝑡  Neither Both T1 Same 

∆ 𝑡  Both T1 T1 Inverse 
𝑡  Neither Both T1 Inverse 

Notes: 
a Correlation refers to the relationship between the slopes of therapist 1 and therapist 2.  
b T1 is shorthand for therapist 1 and T2 is shorthand for therapist 2 

 

Table 7  
Adaptation Trend Slopes  

 Therapist 1  Therapist 2 

Metric OLS GPR IRL aObs  OLS GPR IRL aObs 
τ  0.01 0.09 -0.03 0.14  -0.03 -0.03 -0.02 -0.25 
𝑡  -0.37 -1.26 -0.46 -1.23  1.10 -1.4 -1.53 1.12 
𝑡  -0.16 0.04 0.52 0.25  -0.97 1.13 -0.6 0.12 

∆ 𝑡  0.21 1.3 0.98 1.49  -2.15 2.53 0.93 -1.00 
𝑡  0.14 -0.28 -0.65 -0.08  -0.22 0.65 -0.50 1.05 

Notes: 
  a Obs refers to the observed slope for therapist 1 and therapist 2 

 

D. Inverse Reinforcement Learning’s Recovered Reward Map 

The recovered reward map from the MaxEnt IRL algorithm can be seen in Figure 

20. This map displays the perceived therapist utility for putting the patient in a specific 

state during a particular phase.  States colored yellow represent higher reward values 

while blue represents states with lower reward values.  During the initial contact phase, 

there is little preference for any state over the others but as the patient progresses to mid 

stance the recovered reward map shows that the assistance becomes more critical.  This 

can be seen by the differencing in the maximum reward value and the value of the 
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surrounding reward. During the initial contact, loading response and midstance phases 

the maximum agent utility is shown to be at 𝜃 ∈ [7,11] and 𝜃 ∈ [21,25].  In the 

terminal stance phase, the state of maximum utility begins to move to greater hip 

displacement and less shank displacement with angles of at 𝜃 ∈ [11,15] and 𝜃 ∈

[12,15].   Table 8 provides a full list of observations on the recovered reward map. 

 

Figure 20: Recovered Reward Map 

Table 8  
Observed Therapist Reward 

Phase Observed 

Initial Contact (IC) Little preference for any state. 

Loading Response (LR) r  at knee flexion 28° and 36° 

Mid Stance (MS) 
The mid-stance phase is observed to have the highest 
relative reward for 𝑟 . Max utility begins to increase in 
the θ  dimension and decrease in the θ  dimension. 

Terminal Stance (TS) 
Relative significance of 𝑟  decreases. Max utility 
continues to increase in the θ  dimension and decrease 
in the θ  dimension 

Pre-Swing (PS) 
Maximum utility continues to decrease in the θ  
dimension. 
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8. DISCUSSION 

This paper proposed the implementation and grounded evaluation of three 

machine learning algorithms to provide insight on methods for modeling therapists 

assistance. The approach to this problem was to develop methods to test performance of 

an algorithm’s ability to emulate characteristics of assistance and therapist adaptation 

strategies. The results from this analysis and additional modeling considerations will be 

discussed in the following sections. 

A. Information Loss from Unobserved Interactions 

The first source of information loss that is observed in this research is caused by 

reducing the scope of the sensed features. Capturing the full range of interactions like 

therapist assistance can be extremely challenging due to their inherent complexity. 

Attempting to capture a wider scope often requires more sensing which can impede the 

training process and decrease the validity of the observed data. To address this tradeoff, a 

reduced model for considered therapist actions was created to decrease the sensing 

requirements for observing the system. 

To justify this process of dimensionality reduction used in this research, it is 

helpful to discuss the set of all kinematic responses of the patient in response to a 

therapist.  The patient responses can be described by a six degree of freedom mechanism 

in Figure # at a joint. Immediately, we can neglect considerations of all translations since 

this motion would result in shearing of the joint which is not productive for gait training. 

This leaves three axis of rotation that the therapist can responsibly actuate: extension and 

flexion, varus and valgus, and axial rotation axes.  
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Figure 21: Joint Transformations [32] 

The reduced interaction dynamics this research is obtained by considering only 

therapist assistance that is actionable by the one degree of freedom knee exoskeleton that 

this research is intended to control.  Because the system is attached to the side of the 

knee, it can only actuate forces that contribute to rotating the limb around the knee 

extension and flexion rotation axis. Consequently, the only available action for the 

exoskeleton is apply to a torque around this same axis.  This makes considerations of 

assistance about the varus and valgus axis and axial rotation axis not as immediately 

relevant for predicting assistance provided by the knee exoskeleton. 

The simplified interaction model takes advantage of this by dividing the net force 

applied by the therapists into principal vector components that would contribute to only a 
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single one of the previously described axes of rotation.  To further clarify this model, a 

two-dimensional representation of how the applied force by a therapist’s hand is divided 

into these vector components is shown in Figure 22. In the image on the right, FEF refers 

to the force that would cause rotation around the axis of extension and flexion rotation 

and FVV around the axis of varus and valgus rotation. 

However, the lower relevance of the other axes of rotation does not imply that 

that they contain no information that would contribute to improving the performance of 

the predictors to model the assistive force around the axis of knee extension and flexion. 

For example, assistance with lateral weight shifting is not considered in this model since 

this would cause rotation about the axis of varus and valgus rotation instead of extension 

and flexion. However, lateral weight shifting can be correlated to improper knee 

extension. This would make lateral forces, or a derivative of lateral forces, a possible 

candidate for being a predictor of assistance about the axis of knee extension and flexion 

rotation.  
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Figure 22: Reduced Interaction Model 

Under the assumptions of this model, the data from the force sensors were able to 

generate a net force vector that describes the magnitude of the therapist’s applied force 

and the angle at which the force was applied to both the thigh and shank by the 

therapist’s hand or knee.  Knowing the placement of the force sensor relative to the leg 

allows for the calculation of the net force vector Fassist that is applied to the thigh and 

shank and divided into the described vector components that actuate a single axis of 

rotation within a joint.  Consequently, the assistive torque that is applied by the therapist 

around the axis of extension and flexion, FEF, can be observed and used as training of the 

machine learning algorithms to predict the observed force. 

iv. Assistance about the Axis of Varus and Valgus Rotation 

Varus and valgus rotation refer to the rotation of the leg such that it moves within 

the frontal plane of the patient.  Therapist can facilitate movements about this axis by 

providing a lateral force FVV that is perpendicular to the force that the exoskeleton can 
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actuate FEF by in Figure 22.  As previously discussed, these forces have no immediate 

effect on what action the exoskeleton would take because they operate in different 

principal axes.  However, this data could possibly provide access to features that can be 

extracted from this force. 

v. Assistance about the Axis of Axial rotation 

To control axial rotation, a therapist can grip the leg and rotate it about the length 

of the limb.  The gripping action by the therapist can enter the observed forces FEF by 

including the force necessary to maintain friction and the forces caused by the 

displacement of the sensors while rotating. Consider a therapist attempting to change the 

extension or flexion of a joint. In the left image of Figure 23, it can be seen how normal 

force of the hand FN that is needed to grip the sensor can introduce a force vector in the 

direction of FEF. It follows that these forces can be mistakenly interpreted as therapist 

assistance. The right image shows a possible consequence of rotating the sensor. During 

this time, the top and bottom of the sensor would begin to experience sheer forces that 

would also be sensed as assistance in the sagittal plane. 



66 

 

Figure 23: Effects of Axial Torques 

vi. Opposition Forces 

In addition to the forces applied to the front of the leg, therapists will often 

support the patient from the other side of the body similarly to Figure 24.  This creates an 

opposition force that allows the therapist to maintain a higher level of control of the 

patient’s leg by providing complementary forces that reduce the freely moving reactions 

of the patient.  It can then be said that the resulting force that is intended by the therapist 

to facilitate proper knee flexion would be the difference between these two 

complementary forces. 

Since sensors are not located behind the leg, this type of interaction was not 

observable by the data collection system.  As a consequence, the opposition force vector 

is assumed to be zero and likely cause the observed assistance Fobs to be lower than the 

intended net force FEF by the therapist that would actuate the intended rotation around the 

axis of extension and flexion. 
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Figure 24: Effects of Opposition Forces 

B. Information Loss from Dimensionality Reduction and Data Processing 

The data collection system that was used for this research included three sensor 

sub-systems: two IMUs, four force sensors in a shoe, and 28 force sensors attached to the 

thigh and shank. The total number of raw values that were returned from all sensors was 

33.  This was then reduced to the final four selected training features: thigh and shank 

displacements, percent progression through the stance phase, and assistive torque around 

the knee.   

For the IMU’s dimensionality reduction, the additional reduction step from thigh 

and shank displacement to knee flexion was available but caused a significant decrease in 

correlation to the observed actions.  Also, the relative rotation from zero displacement of 

the thigh and shank was chosen to increase accuracy and reliability of the data by 

reinitializing the reference position at the beginning of each lap, The trade-off for the lost 

absolute orientation information of the IMUs was deemed worth accounting for variation 

in initial conditions of attachment to the patient and drift over the long data collection 

sessions. 
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The initial GRFs data provided the ability to observe weight shifting and 

balancing characteristics. However, these are patient behaviors that are all addressed by 

lateral therapist assistance and are not relevant to the actuation of a one degree of 

freedom knee exoskeleton.  However, percent progression through the gait phase can be 

extracted by interpolating the observed times of heel strike and toe up from 0 to 100 

percent. Gait phase was assumed to be a good predictor since it defines what gait 

characteristics that the patient should be demonstrating given their progress through a 

step. 

The final feature that was subject to information loss is the assistive torque 

applied about the axis of rotation of the knee.  The primary motivation for choosing this 

feature was that it can be directly used as the control input for the knee-exoskeleton. The 

raw data contains 28 local force vectors applied to the thigh and leg which is not feasible 

to include the full dimensionality during training. Lucky, such high resolution is not 

necessary since all available response of the joint given a set of forces can be described in 

by the force components that cause rotations in axes described by Figure 21.  As 

previously discussed, the exosuit is constrained to actuate around the axis of knee 

extension and rotation and therefore the other axis components would not be as relevant 

to this device’s output. 

In summation, a significant amount of information is lost by only considering 

forces that contribute to a net torque around the axis of knee extension and flexion. 

However, the excluded forces do not have as high of relevance in determining the 

magnitude of assistive knee torque for the exoskeleton as forces in the direction of FEF.  

Also, it is likely that including these features would unreasonably increase computational 
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requirements of the learning algorithms and possibly decrease performance if the 

excluded features are not good predictors of the assistance we have defined as action for 

the exoskeleton. Also, there is loss of information through processing and interpretation 

of the raw sensor values that can be found in Figure 25 but the selected features were 

selected to optimize the tradeoff between tractability of training and the information 

retained. 

 

Figure 25: Dimensionality Reduction Steps and Losses 
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C. Sample Size for Therapist 1 and Therapist 2  

An observation that arises from all tests is that algorithms generally performed 

better on the test dataset for therapist 1. This is likely to be caused by the disproportionate 

number of strides in the training sets for therapist 1 (𝑛 = 53) and therapist 

(𝑛 = 24) which manifested as a bias that favored emulating characteristics of 

therapist 1. The number of samples that were collected per therapist session were subject 

to patient fatigue and is therefore the most likely cause for this observation since therapist 

2 data was collected after therapist 1.  

There are a few methods to address this for future works.  One method would be 

to truncate the data for therapist 1 to match therapist two thereby creating equal sample 

sizes. However, valid data was only able to be collected from one patient and reducing 

the number of strides in the training set would likely have negative consequences on 

performance.  Another method would be to weight the training data.  This would be a 

fairly simple method for accounting for this difference and will likely be implemented in 

a future iteration of this research.  

D. Standard and Grounded Evaluation Insights  

The standard methods for evaluation of predictive models, 𝑟  𝑎𝑛𝑑 𝑀𝑆𝐸, showed that 

GPR was most likely the best algorithm to be used to predict the therapist assistance. 

However, the results from Analysis 2 showed that GPR was not the most desirable model 

in every dimension.  For example, OLS was the best performing model for all features 

that concerned the period of significant actuation (𝑡 , 𝑡  𝑎𝑛𝑑 Δ𝑡 ) for therapist 1.  

Evaluating the algorithms with characteristics that relate to therapist assistance provides 



71 

analysis with a greater resolution.  This is a significant result since it is likely that not all 

characteristics would be valued equally.  Depending on the specific preferences of the 

occupational therapists, each one of the algorithms has the opportunity to be the optimal 

modeling method to choose.  This is in contrast to if the decision were only based upon 

the standard evaluation metrics where GPR would be the objectively best algorithm to 

choose. 

E. Ability to Emulate Assistance Characteristics 

A significant observation is the poor performance of all algorithms in 𝜎  and 

𝜎  characteristics.  This suggests that the therapists one of two possible conclusions.  

The first is that the variance in therapist assistance cannot be described by the observed 

states and that additional or alternative features would need to be used to increase 

accuracy for these characteristics.  The second is that observations these characteristics 

are significantly more stochastic than the others. In other words, the therapist processes 

that dictate these characteristics are not as deterministic and cannot be predicted by the 

observed states in a meaningful way. 

All algorithms were able to predict timing characteristics fairly well with the 

exception of 𝑡 . OLS and GPR tended to start significant actuation a little too early.  

A possible cause for this behavior is that both of these algorithms fit a linear function that 

maps the states to prediction where the therapist is under no such constraint.  

To simplify further discussion on relative performance of each algorithm, the 

number of times that each algorithm was rated either the best or worst was tallied and 

reported in Table 9 and plotted in Figure 26. OLS achieved least amount tallies for both 



72 

best and worst categories implying that it is a low-risk algorithm that limits the chance 

for optimal predictions. Although GPR and IRL both accumulated the same number of 

tallies for the worst rated algorithm, GPR did end up being the best algorithm to choose 

when all characteristics are weighted equally. 

Table 9 
Best and Worst Algorithm Tally 

Algorithm T1 # Best 
T1 # 
Worst 

T2 # 
Best 

T2 # 
Worst 

Total 
Best 

Total 
Worst 

OLS 2.0 1.0 0.0 3.0 2.0 4.0 
GPR 3.0 3.0 4.0 2.0 7.0 5.0 
IRL 2.0 3.0 3.0 2.0 5.0 5.0 
Cumulative 
Besta GPR OLS GPR GPR; IRL GPR OLS 

Notes: a Cumulative Best refers to either the most tallies for the “Best” category or 
the least number of tallies for the “Worst” category  
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Figure 26: Best and Worst Performance Tallies 

F. Ability to Emulate Therapist Strategies  

GPR and IRL were able to correctly identify a trend for every feature. In IRL’s 

case, four out of the five correctly identified trends were for therapist 1. This shows a 

strong bias to emulate therapist 1 and an inability to generalize its predictions strategies 

across multiple therapists. This is likely due to the difference in the number of samples in 

the training data. However, this bias is stronger for IRL than the others which suggest a 

higher sensitivity to the representation of different therapist characteristics and strategies 

in the training data. This bias could also explain the fact that IRL could not identify any 

trends for both therapists, but further analysis would be needed to confirm this.    
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 OLS and GPR showed the equal capability to generalize their predictions to 

match to both therapist’s adaptation trends. However, OLS was not able to correctly 

identify trends of either therapist in 𝑡   𝑎𝑛𝑑 𝑡 .  Therefore, GPR can be said to be 

more accurate in identifying the adaptation trends while both GPR and OLS are equally 

capable of extending their adaptation trends to both therapists.  

The most critical features that would be valued by a therapist would be the 

maximum assistance that is provided 𝜏  𝑎𝑛𝑑 the time that the peak torque occurs 

𝑡 .  These features are important since they control the maximum actuation of the 

system. Therefore, they are tied to patient safety and presumed time that the patient needs 

the most assistance during the gait cycle. GPR was able to match the adaptation trends 

more accurately for 𝜏  in session one than OLS. Also, GPR was able to correctly 

identify trends for both therapists in the 𝑡  feature where OLS was not. The fact that 

GPR was able to generalize its strategies for these critical features and the consistently 

high accuracy in matching the adaptation trend slope relative to other algorithms leads to 

the conclusion that GPR is likely the best algorithm to emulate therapist strategies. 

9. CONCLUSION 

The results of this research suggest that including a neurophysiological 

perspective into the evaluation of therapist modeling methods can provide additional 

insight into performance over standard methods. Mainly, an algorithm’s ability to 

emulate therapist assistance depends on what characteristics or strategies are being 

evaluated. Observing this is simply not available when using standard evaluation metrics.  

Also, OLS and GPR showed the potential to emulate and generalize their presentation of 
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therapist strategies across therapists. While the results from standard evaluation metrics 

suggest that GPR is the most beneficial to choose, the grounded evaluation provides 

support for both OLS and GPR depending on the needs of the designer.   In conclusion, 

the methods for evaluating algorithms in this way provides an opportunity to custom 

tailor the behavior of an algorithm to the needs of the platform. 

A. Implications on Existing Control Methods  

This research is intended to be an extension of existing impedance-based control 

methods that learn control parameters by observing therapist demonstrations during gait 

rehabilitation.  Previous works like [33] use a Gaussian mixture model to learn the virtual 

impedance of a knee exoskeleton given the kinematic data of the patient. Results can also 

be extended to systems that use soft actuators like [34] since the control parameters only 

differs in calculation of the kinematic equations for assistive torque about the knee.  

Implementing different learning methods in these contexts, as shown by the 

results of this research, have implications on the accuracy of mimicking assistance 

characteristics and the adaptation behaviors over the progression of the training session.  

Consequently, studies that control lower limb exoskeletons by observing therapist 

assistance like [33] and  [34] have the opportunity to improve the performance of their 

exoskeletal systems by considering alternative modeling methods and additional 

perspectives during evaluation.  

Specifically, the unique contribution that this research aims to add to these 

systems pertains to the level of insight included into the selection process of modeling 

methods for therapist assistance. This insight is gained by incorporating the grounded 

evaluation of algorithms that measures success in terms of emulating characteristics and 
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adaptation strategies of therapist assistance. This can be used as a framework when both 

considering new modeling methods and reevaluation of current methods for existing 

systems. Additionally, the data reported for the reviewed learning methods, OLS, GPR 

and IRL, can be directly used for comparison of performance to the methods used in 

other works.  The final motivation for improving the modeling method for therapist 

assistance in this way is to improve the performance of these knee exoskeletons and 

eventually add to the quality of care of patients who stand to benefit from this 

technology. 

B. Implications on the Field of Robotic Rehabilitation  

A common issue of assistive rehabilitation devices is  their lacking ability to 

incorporate the supervising therapist input into modifying the active assistance of the 

device. The therapist is instead asked only to provide the gait trajectories and initial 

motion primitives for the device while the controller is left to independently determine 

proper assistance and adapt to patient needs as they develop. This presents a missed 

opportunity to incorporate expert opinions as an input to the control system throughout 

the training session.  As a result, this approach that promotes minimal therapist 

intervention is often viewed negatively by resident therapists which leads to poor 

acceptance of these devices into clinical settings [35]. 

This results research provides a method for supporting the use of different 

predictive algorithms by evaluating performance and behaviors in metrics that are more 

accessible to a supervising therapist than specifying standard performance criteria. This 

can allow the therapist a way to be more appropriately incorporated into the decision-
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making process of selecting what controller should be considered to display the best 

performance.  

There is also the novel opportunity to promote more active therapist involvement 

in a robotic assisted rehabilitation session. This opportunity comes from the finding that 

different assistance characteristics and strategies can be generated over the same dataset 

by implementing different modeling algorithms.  Therefore, even with a low sample size, 

different impedance controller preferences and behaviors can be made available to the 

therapist so that they may select the one that most adequately matches the needs of the 

patient.   

For example, the impedance controller could implement a predictive model 

generated by a different algorithm if the patient had trouble synchronizing with the 

system or if the assistance from the device was impeding therapist intervention. In this 

scenario, OLS predictions could be used instead of GPR, which generally performed 

better during evaluation, because OLS demonstrate highly consistent timing and peak 

assistance characteristics across strides.  This behavior would be more predictable by the 

patient and therapist thereby improving the interaction if the context of the situation calls 

for it.  In this scenario, a therapist would be enabled to more actively involved in 

assistance and contribute to the active preferences and behavior of the impedance 

controller itself. 

Improvements to custom tailoring the assistance provided by a robotic device in 

this way can provide the necessary requirement to develop more effective and robust 

control systems. This in turn can affect the scope in which these devices are used. By 

generating devices that are able to generate the required behavior to compensate for 
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persistent motor deficits, in additional to functional therapy, assistive robotics could find 

their way out of the clinic and into the homes of the patients.  Primarily, improvements to 

existing control methods could facilitate the use of assistive devices into ADLs [16] to 

improve the persistent quality of life for these patients in addition to their care during gait 

training. 

C. Future Work 

The implementation of the proposed algorithms was limited by several factors. 

Addressing some of these issues may be able to provide a more valid insight on the 

relative benefits and performance of the described evaluation metrics.  

 Likely the most significant issue is that valid data was collected from one patient. 

Therefore, only an intra-patient evaluation can be conducted.  This limits 

evaluation of the observation of how assistance characteristics and strategies 

would present themselves when faced with patients with different impairment 

levels and gait characteristics. Work that expands upon this research in the future 

should collect data from multiple patients and evaluate inter-patient effects.  

 Including more machine learning algorithms would provide a better 

understanding of what approaches are best for emulating therapist assistance. 

 Increasing the number of sensed features would allow the evaluation process to 

consider other therapist strategies. 
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APPENDIX  A 

 RAW CHARACTERISTICS OF ASSISTANCE VALUES 
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Table 10 
 Algorithm and Therapist Assistance Characteristics 

 
 Therapist 1  Therapist 2 

Metric OLS GPR IRL Therapist  OLS GPR IRL Therapist 
𝜏̅  3.53 3.92 3.33 4.2  4.64 5.12 3.67 5.39 

𝑡  12.76 10.29 18.41 14.53  4.89 5.22 9.67 8.22 
𝑡  96.53 96.71 88.94 94.41  98.33 93.11 88.22 95.33 
∆ 𝑡  83.76 86.41 70.53 79.88  93.44 87.89 78.56 87.11 
t̅  54.47 62.88 58.35 58.29  48.22 51.44 53.09 47.67 
𝜎  0.02 0.57 0.18 1.02  0.16 1.7 0.2 0.88 

𝜎  0.98 1.31 0.83 1.74  1.93 2.74 1.23 3.03 
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APPENDIX  B 

 FULL ADAPTATION TREND PLOTS 
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Figure 27: Full Adaptation Trend Plot for Peak Torque 

 

Figure 28: Full Adaptation Trend Plot for Start Time of Significant Actuation 
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Figure 29: Full Adaptation Trend Plot for End Time of Significant Actuation 

 

 

Figure 30: Full Adaptation Trend Plot for Duration of Significant Actuation 
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Figure 31: Full Adaptation Trend Plot for Peak Actuation Time 


