
Semantic Information Extraction from Natural Language

using a Learning and Rule-based Approach

by

Varun Singh

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2023 by the
Graduate Supervisory Committee:

Srividya Bansal, Chair
Ajay Bansal

Alexandra Mehlhase

ARIZONA STATE UNIVERSITY

December 2023

ABSTRACT

Open Information Extraction (OIE) is a subset of Natural Language Processing

(NLP) that constitutes the processing of natural language into structured and machine-

readable data. This thesis uses data in Resource Description Framework (RDF) triple

format that comprises of a subject, predicate, and object. The extraction of RDF

triples from natural language is an essential step towards importing data into web on-

tologies as part of the linked open data cloud on the Semantic web. There have been

a number of related techniques for extraction of triples from plain natural language

text including but not limited to ClausIE, OLLIE, Reverb, and DeepEx. This pro-

posed study aims to reduce the dependency on conventional machine learning models

since they require training datasets, and the models are not easily customizable or

explainable. By leveraging a context-free grammar (CFG) based model, this thesis

aims to address some of these issues while minimizing the trade-offs on performance

and accuracy. Furthermore, a deep-dive is conducted to analyze the strengths and

limitations of the proposed approach.

i

DEDICATION

Dedicated to my family, and my best friend and companion, Spidey.

ii

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Dr. Srividya Bansal for her

continued guidance and support throughout my time at ASU. I would like to thank

my committee members Dr. Ajay Bansal and Dr. Alexandra Mehlhase for their

constructive feedback and valuable insights. I would like to extend my gratitude to

Smruthi, for her endless encouragement, love, and support.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Problem Definition. 2

1.3 Hypothesis . 3

2 RELATED LITERATURE . 5

2.1 Background . 5

2.1.1 The Semantic Web . 5

2.1.2 Natural Language Processing . 7

2.1.3 Key Technologies . 12

2.2 Related Work in Open Information Extraction . 13

2.2.1 Domain Based OIE Systems . 13

2.2.2 Rule Based OIE Systems . 14

2.2.3 Learning Based OIE Systems . 15

3 PROPOSED APPROACH AND HIGH-LEVEL DESIGN. 18

3.1 Overall Approach . 18

3.2 NLP Pipeline . 20

3.3 Prolog DCG . 21

3.4 CFG Rules . 21

3.4.1 Subject Rules . 22

3.4.2 Object Rules . 25

3.4.3 Predicate Rules . 26

iv

3.4.4 Sentence Rules . 27

3.5 High-Level System Design . 29

4 DATA COLLECTION AND PROCESSING . 33

4.1 Data Sources . 33

4.1.1 Datasets for Evaluation . 33

4.2 Pre-Processing. 37

5 EVALUATION AND RESULTS . 38

5.1 Experimental Setup . 38

5.2 Discussion . 38

5.3 Experimental Results . 44

6 FUTURE WORK . 46

6.1 Error Analysis . 46

6.1.1 Semantics . 46

6.1.2 Compound Predicates . 47

6.1.3 Special Characters . 49

6.1.4 Lack of entities or Relations . 50

6.2 Improvements . 50

6.3 Context-Focused Extraction . 52

7 CONCLUSION . 54

7.1 Our Contribution . 54

7.2 Hypothesis . 54

7.3 Summary . 56

7.4 Vision for Future Application . 57

v

CHAPTER Page

REFERENCES . 58

APPENDIX

A PROLOG PARSER CODE. 61

vi

CHAPTER Page

LIST OF TABLES

Table Page

3.1 Term0 Rules . 22

3.2 Term1 Rules . 23

3.3 Term2 Rules . 23

3.4 Term3 Rules . 24

3.5 Term4 Rules . 24

3.6 Term5 Rules . 24

3.7 Term6 Rules . 25

3.8 Sub Rules . 25

3.9 Simple Object Rules . 25

3.10 Subject Related Object Rules . 25

3.11 Complex Object Rules . 26

3.12 Simple Predicate Clauses . 26

3.13 Complex Predicate Clauses . 27

3.14 Verb Phrases . 27

3.15 Basic Sentences . 28

3.16 Nested Sentences . 28

3.17 Sentences with Complex Object Clauses . 29

3.18 Data at Each Stage of the Application . 30

4.1 Example Sentences from ReVerb Dataset . 34

4.2 Example Sentences from WIKI Dataset . 35

4.3 Example Sentences from NYT Dataset . 36

5.1 Quotations and Implied Statements . 39

5.2 Sentences with Nested/Embedded Clauses . 41

5.3 Correct Triples Extracted . 45

vii

5.4 Precision . 45

5.5 Recall . 45

5.6 F1 Score . 45

6.1 Semantic Errors . 46

6.2 Sentences with Complex Predicates . 47

6.3 Sentences with Special Characters . 49

6.4 Sentences Lacking Entities or Relationships . 50

viii

Table Page

LIST OF FIGURES

Figure Page

2.1 Graph Notation of a Triple . 5

2.2 Linked Open Data Cloud, Taken from Lod-cloud.Net 6

2.3 NLP Pipeline Example . 8

3.1 Data Pipeline . 31

3.2 Class Diagram of the Application . 32

7.1 Output of Trace Command in Prolog . 55

7.2 Summary of Our Hypothesis . 56

ix

Chapter 1

INTRODUCTION

With the growth of the semantic web and knowledge graphs, there is a dire need for

data to be processed and formatted into triples to allow integration into semantic

databases and linked open data clouds. Significant amounts of data are in the form

of documents in natural language that can be leveraged to add to these semantic

knowledge bases. There is a need for novel approaches for effective and accurate

extraction of semantic triples from natural language.

1.1 Motivation

There has been a lot of research in the area of Open Information Extraction (OIE)

since the late 2000s (1). The challenge has been to convert unstructured information

written using natural language into a structured representation. Different approaches

have been taken to solve this problem including learning-based approaches, rule-

based approaches, and clause-based approaches (2). With the growth of data on

the web and knowledge graphs, there is a greater need for the conversion of text

into structured formats. Semantic web technologies such as the Resource Description

Framework (RDF) data model use a triple format to represent data (3). The triple

comprises of a subject, predicate, and object describing a data resource. The authors

of Mold framework (4) focused on the extraction of entities (subject and object)

from given unstructured text as well as producing summarization paragraphs from

given structured triples. Current approaches rely heavily on machine-learning models

and/or require humans in the loop to validate the extracted patterns or produce

training data. This often required manually tagging instances of seed data. Several

1

approaches focus on a specific domain and cannot be used for different kinds of

information and terms. Handling heterogeneous datasets is a huge challenge. This

thesis focuses on the extraction of relations or properties for RDF triple generation

from unstructured text.

1.2 Problem Definition

This thesis aims to create a novel approach to the task of open information ex-

traction. More specifically, the problem is to come up with an effective approach to

convert given unstructured natural language text into RDF triples that can be inte-

grated into the available open knowledge graphs on the web. We aim to address some

of the issues with the current state of conventional machine learning (ML) methods.

Lack of training data - Traditional ML models require large annotated datasets

for training the models. This is a challenge when such datasets are not readily avail-

able, especially for domain-specific data. The latest advancements in Large Language

Models (5) have produced a lot of trained models for general-purpose text. However,

this remains a challenge for specific domains.

Customization - Most ML-based information extraction systems have been trained

on a wide variety of data to perform well in most situations. However, for domain-

specific tasks, or for tasks where there might be some deviations from the standard

grammar (of the language), it can be very expensive, resource-intensive, and may not

even be feasible to tweak ML models to account for such changes.

Support for additional languages - While some languages have many related

tools and datasets, that may not be true for others. This makes building information

2

extraction systems for them even more challenging (6).

Explainability - Deep learning and other complex ML models are effectively a

black box. While they can generate high-performance metrics, it is extremely difficult

to understand the logic and reasoning behind any given output. This leads to issues

with trust and accountability (7).

1.3 Hypothesis

The proposed model aims to use a hybrid approach that includes machine learning

models and rules in the form of context-free grammar to convert natural language

data into semantic RDF triples. Our hypothesis is that this combined approach would

address some of the challenges with respect to explainability, customization of data

for specific domains, and support for additional languages. Rules will help with nec-

essary customizations for specific domains or languages. The use of existing machine

learning models helps with the initial processing of the text and its tokenization. The

triples produced can be further processed and stored in the semantic web using on-

tologies. The main problems this approach aims to address are as follows:

Lack of training data - Since the model will be built for a particular language with

known rules of usage, there is no need for any prior data to be maintained for training

purposes.

Customization - Rules in the model can be modified to suit the needs of a specific

domain or to account for certain colloquial styles of language that may include incor-

rect use of grammar. With this model, customization can be achieved at a relatively

low cost, without the need for extensive training or overfitting to a particular dataset.

Support for additional languages - In theory, this approach can be extended to

3

parse text from other languages as well. One would require a deep understanding of

the grammar and usage of the language to create the set of rules for the parser. How-

ever, this approach is limited by the availability of a reliable part-of-speech (POS)

tagger for the language in question.

Explainability - A significant problem with machine learning models is that their

results are not explainable. This makes them inherently unreliable even though they

may have excellent performance results. Using a Logic Programming language such

as a Prolog program with Definite Clause Grammar (DCG) rules, it is possible to

generate the exact sequence of rules that passed in order to generate a given triple.

The remainder of this thesis is organized as follows. Chapter 2 covers the back-

ground information relevant to the study. It includes the basics of the Semantic Web,

Ontologies, and Natural Language Processing. It also includes related work in the

area of Open Information Extraction. Chapter 3 describes the proposed approach,

high-level design, and rules for conversion. Chapter 4 describes the datasets used in

the study and processing of data. Chapter 5 presents the experiments and evaluation

of the proposed approach. Chapter 6 presents Future work followed by conclusions

in Chapter 7. All the references are listed after this chapter.

4

Chapter 2

RELATED LITERATURE

2.1 Background

This section presents the necessary background on the Semantic Web (RDF data

model, Ontology, technology stack) and Natural Language Processing tools used in

this thesis.

2.1.1 The Semantic Web

The World Wide Web Consortium (W3C) is building a “web of linked data”

as an extension to the current World Wide Web, with the end goal of making all

web resources machine-readable (8). This involves machine-processible meta-data

for all web pages, web services, and data on the web. This includes the need for

open information extraction to produce structured data. It also includes the use of

ontologies to define domain-specific vocabulary and connect data to corresponding

classes and properties in the ontology. Here are some of the important background

concepts.

Figure 2.1: Graph Notation of a Triple

• Triple

A triple is an entity of semantic information in the form of a subject, predicate,

5

and an object. This format is specified by the Resource Description Frame-

work (RDF). A triple is also known as a semantic triple, or an RDF triple (3).

RDF provides a graph data model to describe web resources and provide links

between resources thereby forming a knowledge graph of information. This

knowledge graph consists of schema information in the form of ontologies and

instance information in the form of RDF triples all form one large knowledge

graph that can be queried. The open data on the web in this format comprises

the linked open data cloud (9) with billions of triples from various domains

along with their ontologies.

Figure 2.2: Linked Open Data Cloud, Taken from Lod-cloud.Net

6

• Ontology

The OWL Web Ontology Language is a markup language that is used for pub-

lishing and sharing ontologies. OWL is built upon RDF and an ontology cre-

ated in OWL is a RDF graph. Individuals with common characteristics can

be grouped to form a class. OWL provides different types of class descriptions

that can be used to describe an OWL class. OWL also provides two types of

properties: object properties and data properties. Object properties are used

to link individuals to other individuals while data properties are used to link

individuals to data values. OWL enables users to define concepts in a way

that allows them to be mixed and matched with other concepts for various uses

and applications. Protégé is an open-source ontology editor and framework for

building intelligent systems (10). It allows users to create ontologies in W3C’s

Web Ontology Language. OWL facilitates greater machine interpretability of

Web content than that supported by XML, RDF, and RDF Schema (RDF-S)

by providing additional constructs along with formal semantics (11).

2.1.2 Natural Language Processing

Natural Language Processing (NLP) is a subset of machine learning that is con-

cerned with enabling computers to interact directly with natural language rather

than machine-readable data. This thesis is focused on extracting entities and rela-

tions from unstructured natural language to generate semantic RDF triples. Several

existing NLP libraries handle the processing of human language through a pipeline of

processes that include analyzing and understanding the text. The steps in the pipeline

include the acquisition of data, cleaning of text, pre-processing, feature engineering,

evaluation, model building, and deployment.

The pre-processing steps typically include tokenization, lower casing, removal of

7

Figure 2.3: NLP Pipeline Example

stop words, stemming or lemmatization, removal of punctuation, and part-of-speech

tagging followed by named-entity recognition. Within the scope of this thesis, we will

primarily look at tokenization and part-of-speech (POS) tagging.

Tokenization is the process of splitting a raw sentence down to its individual words

or tokens. The tokens can be further lemmatized to get the base form of their word,

as in a dictionary, but we will not be doing that since we want the tokens from the

sentence as is, in line with the task of open information extraction.

Part-of-Speech (POS) tagging is the process of assigning tags to each token that

denotes its function with respect to the grammar of the English language. Here, we

will go over the list of POS tags (12).

• ADJ - Adjective

Adjectives are words that typically modify nouns and specify their properties

or attributes.

For example, The oldest French bridge

• ADP - Adposition

Adposition is a cover term for prepositions and postpositions. Adpositions

belong to a closed set of items that occur before (preposition) or after (post-

position) a complement composed of a noun phrase, noun, pronoun, or clause

that functions as a noun phrase, and that forms a single structure with the

complement to express its grammatical and semantic relation to another unit

8

within a clause.

For example, in, to

• ADV - Adverb

Adverbs are words that typically modify verbs for such categories as time, place,

direction, or manner. They may also modify adjectives and other adverbs.

For example, arguably wrong.

• AUX - Auxiliary

An auxiliary is a function word that accompanies the lexical verb of a verb

phrase and expresses grammatical distinctions not carried by the lexical verb,

such as person, number, tense, mood, aspect, voice, or evidentiality.

For example, He is a teacher.

• CCONJ - Coordinating Conjunction

A coordinating conjunction is a word that links words or larger constituents

without syntactically subordinating one to the other and expresses a semantic

relationship between them.

For example, and, or, but

• DET - Determiner

Determiners are words that modify nouns or noun phrases and express the

reference of the noun phrase in context.

For example, a, an, the, this

• INTJ - Interjection

An interjection is a word that is used most often as an exclamation or part of an

exclamation. It typically expresses an emotional reaction, is not syntactically

related to other accompanying expressions, and may include a combination of

9

sounds not otherwise found in the language.

For example, ouch, bravo, hello

• NOUN - Noun

Nouns are a part of speech typically denoting a person, place, thing, animal, or

idea.

For example, girl, tree, decision

• NUM - Numeral

A numeral is a word, functioning most typically as a determiner, adjective,

or pronoun, that expresses a number and a relation to the number, such as

quantity, sequence, frequency, or fraction.

For example, 100, two

• PART - Particle

Particles are function words that must be associated with another word or

phrase to impart meaning and that do not satisfy definitions of other universal

parts of speech.

For example, ’s, not

• PRON - Pronoun

Pronouns are words that substitute for nouns or noun phrases, whose meaning

is recoverable from the linguistic or extralinguistic context.

For example, she, we, they

• PROPN - Proper Noun

A proper noun is a noun (or nominal content word) that is the name (or part

of the name) of a specific individual, place, or object.

For example, Mary, London, UN

10

• PUNCT - Punctation

Punctuation marks are non-alphabetical characters and character groups used

in many languages to delimit linguistic units in the printed text.

For example,

Period: . Comma: ,

• SCONJ - Subordinating Conjunction

A subordinating conjunction is a conjunction that links constructions by making

one of them a constituent of the other. The subordinating conjunction typically

marks the incorporated constituent which has the status of a (subordinate)

clause.

For example, if, while

• SYM - Symbol

A symbol is a word-like entity that differs from ordinary words by form, function,

or both.

For example, $, %

• VERB - Verb

A verb is a member of the syntactic class of words that typically signal events

and actions, can constitute a minimal predicate in a clause, and govern the

number and types of other constituents that may occur in the clause. Verbs

are often associated with grammatical categories like tense, mood, aspect, and

voice, which can either be expressed inflectionally or using auxiliary verbs or

particles.

For example, eat, ate, eating

• X - Other

11

The tag X is used for words that for some reason cannot be assigned a real

part-of-speech category. It should be used very restrictively. These are usually

words that do not belong to the English language and also cannot be tagged as

proper nouns.

For example, And then he just xfgh

2.1.3 Key Technologies

In this section, we will go over some of the programming languages and external

packages that we have used to implement our context-free grammar (CFG) model.

• SWI Prolog (version 8.4.2)

Prolog is a high-level logic programming language associated with artificial intel-

ligence and computational linguistics. As a logic-based programming language,

Prolog provides in-built support for reasoning, and backtracking, allowing it to

handle complex tasks. Within the scope of this thesis, Prolog plays a significant

role in the development of our model with its robust support for context-free

grammar due to its Definite Clause Grammar (DCG) syntax (13).

• Python (version 3.9.9)

Python is a high-level programming language that is known for its expansive

ecosystem of built-in libraries and wide range of applications. We have chosen

this language because it supports object-oriented development of our applica-

tion, and also supports interactions with the external tools related to natural

language processing and Prolog that is required for this thesis(14).

• pyswip (version 0.2.10)

pyswip operates as a bridge between the main python controller and the Prolog

12

file containing the rules for context-free grammar. It allows us to directly make

prolog queries from a Python environment which is integral for this task (15).

• spacy (version 3.2.0)

spacy is an industry-strength library that can be used to perform a wide range

of tasks in the domain of natural language processing. Due to its high levels of

performance, ease of use, and ease of deployment within an end-to-end appli-

cation, we have decided to use it for performing the necessary NLP operations.

Within the scope of our project, we will leverage its capabilities for tokenization

and part-of-speech (POS) tagging, which will be part of the data pre-processing

phase, serving to create the inputs for our CFG model.

2.2 Related Work in Open Information Extraction

2.2.1 Domain Based OIE Systems

Using a domain-specific ontology, the authors in (16) have shown accurate ex-

traction of named entities and information relevant to the same. In the example,

they have used an ontology for Hotels, that deals with objects of a Hotel class and

its attributes such as rooms and other on-site amenities. Using a dependency parse

graph, they have used a breadth-first search graph traversal algorithm to extract the

three parts to form a triple. However, the required ontology can vary based on their

identification of the domain or main theme of the document. of the document. We

need an approach for triple extraction that is not dependent on a given ontology or

domain.

There are other works that do not use a domain-specific ontology, as shown by the

Mold framework (4). They provide a domain-free framework that could be applied to

natural text and in return generate linked data (RDF triples). It certainly helps to

13

have domain experts provide further insight into tailoring the base ontology to their

domain. Furthermore, this framework can be leveraged to provide summarizations of

the input document(s) or corpus of unstructured text.

Abedini et al. have shown that natural language processing can be used for named

entity recognition to find ambiguous entities in natural text. This method relies on the

use of an ontology for disambiguation, which improves the accuracy of the extracted

entities but also creates a limitation in cases where such entities do not already exist

in the knowledge base (17).

2.2.2 Rule Based OIE Systems

The authors in (18) have leveraged linguistic patterns and an onomasiological

approach to defining semantic relations. This helps discover the occurrences of the

relation in natural language and also if it is consistent with its initial definition (19).

It is interesting to note that the authors in (20) reject the use of lexical patterns

and instead rely on a syntactic parser to extract semantic relations, followed by

support vector machines to classify them. The results obtained are comparable to

the aforementioned approaches.

ClausIE creates a syntactic tree structure that represents a sentence using the

Stanford dependency parser. Potential types of clauses are identified that match

with their seven pre-defined clauses - SV, SVA, SVC, SVO, SVOO, SVOA, SVOC.

Here, S is subject, V is verb or predicate, O is direct object, C is complement, and

A is adverbial. These clause types are matched to natural language by using the

dependency relations between tokens. In the end, the set of triples derived from

that sentence is generated based on the different combinations of subject and object

constituents (21).

ReVerb uses POS tags, Noun Phrase (NP) chunks, and syntactic constraints to

14

identify relations in a sentence around verbs. Then, it extracts potential arguments

for the relation by looking for noun phrases closest to the identified verb, on the left

and right sides of the verb respectively. Furthermore, they use a logistic regression

classifier trained on a dataset of manually annotated sentences and triple extractions,

to filter out incorrect triples. Our approach follows a similar pattern, by using context-

free grammar (CFG) to parse the sentence into triples. We aim to achieve correct

triple extractions based on the CFG, removing the need for a classifier to filter out

incorrect results (22).

PROPS focuses on semantic representation over syntactic detail by outlining five

principles (23): Masking non-core syntactic detail: It simplifies the representation

by removing auxiliary words and grouping atomic units. Representing propositions

uniformly: It aims to cover a wide range of propositions, not just verb-centric ones.

Canonicalizing and differentiating syntactic constructions: The goal is to unify se-

mantically equivalent propositions and distinguish between syntactically similar but

semantically different constructions. Marking proposition boundaries: This highlights

the span of standalone propositions and their elements. Propagating Relations: All

inferable relations through parse tree traversal are explicitly marked.

2.2.3 Learning Based OIE Systems

Yotedje (24) has demonstrated a new system called Generic Information Extrac-

tion using Triple Store databases (GIET) where they extract information from natural

language in response to a given query in natural language. Using entity extraction,

and dependency parse tags, they store the entity type, parse, tag, and word position

in a triple-store database. This is then queried using SPARQL to extract meaningful

information based on the query posted to the GIET system.

Another learning based system called Open Language Learning for Information

15

Extraction (OLLIE) (25) builds upon the foundations of ReVerb, previously men-

tioned in the rule-based systems. Using ReVerb extractions as training data, OL-

LIE learns the mapping between ReVerb’s template patterns and their corresponding

triple extraction for the dependency parse tree of the sentence.

Starting with a set of template patterns, NestIE learns to recognize their varia-

tions. Using this knowledge, it can analyze the dependency tree structure of a sentence

and map it to valid propositions. Moreover, from each extracted proposition, it can

expand further to find nested propositions, if they exist. As defined by the authors, a

proposition is synonymous with a triple i.e., a relation of the form (Object1, relation,

Object2) (26).

The methodology proposed by the authors of DeepEx (27) uses two primary stages:

generation and ranking. In the generation phase, the pre-trained language models are

used to produce possible triples from the input. In the ranking stage, these triples are

processed to ensure relevance and relational integrity using a contrastive model that

leverages a BERT encoder. The T-REx dataset (28) is used to train the model, which

provides large-scale alignments between Wikipedia abstracts and Wikipedia triples.

The final output is a set of the most suitable triples extracted from the input text.

The CASREL framework focuses on relational triple extraction from sentences,

identifying (subject, relation, object) sets directly. CASREL maximizes the data

likelihood of the training set by checking all three components of the triple, instead

of treating entities and relations separately. This methodology establishes a novel

tagging scheme that facilitates direct optimization, handles overlapping triples, and

views each relation as a function mapping the subjects to objects. The process of

extraction uses a subject tagger to identify subjects and, for each subject, relation-

specific object taggers locate the compatible relations and objects. Both taggers are

built atop the BERT Transformer, a deep bidirectional text encoder. The framework

16

uses a two-step Cascade Decoder which first spots probable subjects and detects

related objects within the context of these subjects. The entire model is trained to

maximize a data log-likelihood objective using the Adam optimization method (29).

The authors present a method to extract triples by first converting natural lan-

guage into relational graphs using a bi-directional Pretrained Language Model (PLM).

Each word is encoded into a vector, and these are structured into a graph to capture

relations. From this graph, an autoregressive PLM is used to regenerate text, fol-

lowing which the relational triples are extracted using the aforementioned CASREL

approach (30).

EmRel is a system designed to derive valid triples from text by aligning entity

and relation structures. First, it uses tools such as BERT to parse entities and embed

relations. It merges these representations using a multi-head attention mechanism,

ensuring they are analogous. Lastly, the system scores the validity of each potential

triple through the Tucker decomposition and refines these scores using a cross-entropy

loss function (31).

We have extensively looked into defining patterns based on grammar including

simple and compound verbs. We can adopt powerful tools used for natural language

processing that include part-of-speech tagging and dependency resolution, to allow

us to extract triples and examine relations based on the generated knowledge graph.

Additionally, one or more ontologies can be used for disambiguation purposes to

validate the extracted relations. Some of the related works extensively use machine

learning, which we plan to minimize with our proposed context-free grammar (CFG)

model. In the next chapter, we will go over our approach and methods in detail.

17

Chapter 3

PROPOSED APPROACH AND HIGH-LEVEL DESIGN

The approaches taken so far for information extraction and triple generation

include learning-based approaches that need training models and data or domain-

specific approaches that only work for a specific domain or need an ontology that

describes the domain. Our proposed approach uses a combination of learning-based

and rule-based approaches. It leverages the existing highly developed and leading

machine learning approaches for Natural language processing to parse a given sen-

tence by tokenizing it and adding parts of speech tags to the tokens. Then we use a

rule-based approach to apply rules on the the tokens in order to identify the potential

subject, predicate, and objects for the RDF triple. This involves coming up with de-

tailed rules taking into consideration all aspects of constructing an English sentence

and its grammar. The following sections present the design of our study, the natural

language processing pipeline, definite clause grammar rules, and the high-level system

design.

3.1 Overall Approach

Context-free grammar (CFG), from formal language theory, provides formal gram-

mar with rules that can be applied to nonterminal symbols irrespective of their con-

text. CFG comprises of tokens or terminal symbols and non-terminal symbols. It also

has production rules with nonterminals on the left-hand side and a list of terminal

or nonterminal symbols on the right-hand side of the rule. Definite clause grammar

(DCG) is a way to express CFG rules in the logic programming language Prolog.

The overall approach uses DCG to provide rules for converting extracted tokens from

18

natural language into RDF triples. Firstly, we have the natural language processing

pipeline using an industrial-strength open-source library in Python called spacy (32).

Bidirectional Encoder Representations from Transformers (BERT) is a deep learning

model in which every output element is connected to every input element, and the

weightings between them are dynamically calculated based on their connection. It is

an open-source machine learning framework commonly used for NLP tasks to under-

stand the meaning of ambiguous language in text corpora. The NLP pipeline consists

of a tokenizer followed by a part-of-speech (POS) tagger. It is common to also include

a lemmatizer following the tokenization process, we have chosen to ignore that as we

are looking to extract tokens as they occur in natural language. Internally, spacy uses

RoBERTa (33), an optimized version of the BERT model that we will use to attach

POS tags to the tokens in a sentence. Next, the sequence of tokens with POS tags

will be passed to a Prolog program. This program includes a list of definite clause

grammar (DCG) rules that is an implementation of the context-free grammar (CFG)

model. This will generate one or more sets of triples after being parsed by the CFG

model. These are then matched against the valid triples to evaluate the performance

of the CFG model.

A natural language sentence can be defined as a list of tokens. Given a list of tokens

T, the extraction task is to form a meaningful triple <S,P,O> where <S,P,O> each

is a list of tokens such that each token in S,P,O belongs to T, and the order of these

tokens may deviate from that in T, The triple <S,P,O> captures some meaningful

information of the form of <object1, relation, object2>. S and O are generally

entities, but that is not necessary since this is an open information extraction task.

19

3.2 NLP Pipeline

As part of the spacy NLP library, we have used the built-in model denoted as

’en core web lg’. This model has been trained for a wide variety of tasks including

tokenization, POS tagging, lemmatization, dependency parsing, and named entity

recognition. This model has been trained on some of the more popular datasets such

as Ontonotes 5.0 (34), and GloVe Common Crawl (35). Ontonotes 5.0 is a large-scale,

multi-genre, multi-lingual corpus that has been manually annotated with syntactic

and semantic information. It has data on news, weblogs, telephone conversations, talk

shows, broadcasts, and Usenet group messages in English, Chinese, and Arabic. Glove

is global vectors for word representation that is created based on the co-occurrence of

words obtained from statistics of a huge corpus of Wikipedia data. The NLP pipeline

used consists of a tokenizer and a part-of-speech (POS) tagger. The tokenizer takes

the raw sentence as input and breaks it into a list of tokens. These tags denote the

function of the word in the sentence. This forms the initial input that can be parsed

by the context-free grammar (CFG) model.

Example sentence: A graduate of the University of Arizona, she is a lecturer in

writing at Princeton University and an author under the name of Kathryn Watterson

Burkhart.

Example output: [[’A’, ’DET’], [’graduate’, ’NOUN’], [’of’, ’ADP’], [’the’, ’DET’],

[’University’, ’PROPN’], [’of’, ’ADP’], [’Arizona’, ’PROPN’], [’,’, ’PUNCT’], [’she’,

’PRON’], [’is’, ’AUX’], [’a’, ’DET’], [’lecturer’, ’NOUN’], [’in’, ’ADP’], [’writing’,

’NOUN’], [’at’, ’ADP’], [’Princeton’, ’PROPN’], [’University’, ’PROPN’], [’and’, ’CCONJ’],

[’an’, ’DET’], [’author’, ’NOUN’], [’under’, ’ADP’], [’the’, ’DET’], [’name’, ’NOUN’],

[’of’, ’ADP’], [’Kathryn’, ’PROPN’], [’Watterson’, ’PROPN’], [’Burkhart’, ’PROPN’],

[’.’, ’PUNCT’]]

20

The above output shows how the example sentence is broken up into tokens and

each token has been tagged indicating what part-of-speech it is. An explanation of

the individual tags was presented in section 2.1.2.

3.3 Prolog DCG

Prolog, a Logic Programming language, provides an ideal environment for the

implementation of the CFG model. The Definite Clause Grammar (DCG) syntax

provides a clear and concise representation of the grammar rules and also supports

built-in mechanisms for parsing. DCG is a programming construct or expression

available in Prolog and similar logic programming languages.

DCG is defined as a rule in Prolog that comprises of a Head and Body as follows:

Head –> Body.

DCGs have the general form

non-terminal –> d1, ..., dN.

where d1 through dfN are either non-terminals or terminal symbols. Drawing parallel

with natural language, non-terminals would be similar to nouns and verb phrases,

while terminals resemble actual words. This makes Prolog an ideal solution for this

task.

3.4 CFG Rules

The coverage and applicability of the DCG rules determine the performance and

quality of the CFG model Initially derived from linguistic and syntactic patterns,

these rules serve as guidelines for the system to determine potential triples within a

21

sentence. It will become clear that these rules somewhat differ from the natural pro-

duction rules for the English language, this is because the objective of both grammars

is different. While the former only checks if a sentence is grammatically correct, we

are looking to extract certain parts of a sentence to create meaningful triples. These

rules have been further refined in an iterative process, based on multiple rounds of

testing followed by the adjustment of rules to improve performance and accuracy. For

the purpose of maintaining similarity between the grammar rules and their Prolog

implementation, terminal symbols will be in uppercase, and non-terminal production

rules will be in lowercase.

In the following section, we present rules for identifying various parts of a triple, that

is, subject, predicate, and object given tokens of a natural language sentence as input.

3.4.1 Subject Rules

In this subsection, we will go over the rules to parse a subject entity.

term0 and term1 denote the atomic blocks that are used to build a subject entity.

The terminal symbols of a subject rule are noun (NOUN), pronoun (PRON), proper

noun (PROPN), adjective (ADJ), symbol (SYM), and number (NUM).

term0 -> PROPN

term0 -> PROPN ’.’

term0 -> NOUN

term0 -> NUM

term0 -> ADJ

term0 -> term0 term0

Table 3.1: Term0 Rules

22

term1 also includes terminals, but this is mainly done to separate pronouns and cur-

rency from term0.

term1 -> PRON

term1 -> SYM NUM

term1 -> term0

Table 3.2: Term1 Rules

The rule sets from term2 to term6 gradually allow more combinations and build

complexity of the possible subject entities. This is similar to how mathematical ex-

pressions are parsed by compilers in most programming languages - numbers and

variables form the atomic blocks or terminal symbols, and the hierarchical structure

of rule sets progressively adds more types of mathematical operators.

term2 -> ADJ term2

term2 -> VERB term2

term2 -> term1

Table 3.3: Term2 Rules

term2 accounts for chaining multiple adjectives and also for adjectives that are

based on verbs.

23

term3 -> ADV term2

term3 -> term2

Table 3.4: Term3 Rules

term3 handles adverbs (ADV) that come before any adjectives.

term4 -> DET

term4 -> DET term3

term4 -> NUM term3

term4 -> term3

Table 3.5: Term4 Rules

term4 adds determiners (DET) like ”a”, ”an”, ”the” etc., and numbers that are

used to denote the quantity or amount of a subject entity.

term5 -> term4 CCONJ sub

term5 –> term4

Table 3.6: Term5 Rules

term5 is used for handling coordinating conjunctions (CCONJ) like ”and”, ”or”

etc. This leads to forming more complex subjects that are a combination of two or

more subject entities.

24

term6 -> term5 ADP sub

term6 –> term5

Table 3.7: Term6 Rules

term6 deals with adpositions to create prepositional structures in subject entities.

sub -> term6 PART sub

sub -> ” tokens ”

sub -> term6

Table 3.8: Sub Rules

The sub ruleset is at the top of the hierarchy of the subject rules encompassing all

the others. Additionally, it also works for possessive particles like ”’s”, and quotes.

3.4.2 Object Rules

In this section, we will go over the grammar rules for parsing objects.

obj -> ADJ

obj -> ADV VERB

Table 3.9: Simple Object Rules

These are the simple rules that define terminals for an object clause.

obj -> sub

obj -> ADP sub

Table 3.10: Subject Related Object Rules

25

Since object and subject clauses are functionally similar in terms of syntax, we

built the subject rules in a way that can also capture object clauses.

obj -> sub CCONJ tokens

obj -> sub SCONJ tokens

obj -> sub ADP tokens

obj -> sub DET tokens

obj -> sub VERB

obj -> sub VERB tokens

Table 3.11: Complex Object Rules

However, a subject clause may contain more information that does not necessarily

need to be part of the object. Using the rule ”tokens”, we can ignore any number of

tokens after the object clause, using certain types of tokens as delimiters - coordinat-

ing (CCONJ) and subordinating conjunctions (SCONJ), determiners (DET), verbs

(VERB), and adpositions (ADP).

3.4.3 Predicate Rules

Here, we will examine the rules for identifying predicate clauses. We have two

groups as follows

pred -> VERB

pred -> ADV VERB

pred -> VERB ADP

pred -> AUX

Table 3.12: Simple Predicate Clauses

26

These are the most basic predicate clauses. Using verbs, adverbs, and auxiliaries,

we can create simple predicates.

pred -> VERB pred

pred -> AUX pred

pred -> VERB PART pred

pred -> VERB NOUN PART pred

pred -> AUX PART pred

Table 3.13: Complex Predicate Clauses

These rules are used for more complex predicate clauses that are built by chaining

verbs, or modifying them with other types of tokens.

3.4.4 Sentence Rules

Here, we will look at the rulesets used to parse a complete sentence. The ’sent’

rule is at the top of the hierarchy and calls other rules previously defined in this

chapter.

vp -> pred obj

vp -> pred obj .

vp -> pred obj PUNCT tokens

vp -> tokens PUNCT vp

Table 3.14: Verb Phrases

First, we have the ’vp’ ruleset, which is an additional structure we have created to

27

parse verb phrases in the context of the ’sent’ rules. These rules identify a predicate

P and object O from the verb phrase, which are combined with a subject S from a

’sub’ rule to form a triple.

sent -> sub vp

sent -> sub PUNCT vp

Table 3.15: Basic Sentences

These are simple sentences with a subject followed by a verb phrase that consists

of a predicate and an object phrase.

sent -> sub PUNCT sent

sent -> obj PUNCT sent

sent -> tokens PUNCT sent

sent -> ” sent ”

Table 3.16: Nested Sentences

These are nested sentences, or more complicated sentences containing multiple

sub-sentences due to the use of punctuations like commas and semicolons. In these

cases, the parts of a triple may come from different sub-sentences. Also, the use of

tokens rule helps to remove unnecessary tokens at the start of sentences like ”However,

...”.

28

sent -> sub pred tokens PUNCT tokens

sent -> sub pred SCONJ tokens .

sent -> sub pred NOUN SCONJ tokens .

sent -> sub pred tokens .

Table 3.17: Sentences with Complex Object Clauses

This is the most generic ruleset for sentences that do not match any other pat-

terns. Based on some predefined delimiters like conjugations and punctuations, we

can identify a set of tokens that could potentially be the object phrase, and form a

triple using it.

3.5 High-Level System Design

For this study, we have used Python3 for running the main controller, and SWI

Prolog for running the context-free grammar (CFG) model. We have used the package

pyswip as a bridge between the controller and SWI Prolog in order to directly make

Prolog queries to the CFG model. Figure 3.1 shows the high-level system diagram

and flow of activities. Each raw sentence in natural language is first passed to the

spacy module of the NLP pipeline to tokenize and tag parts of speech of the sentence.

This formatted input to passed to the CFG Prolog module that applies the DCG

rules to identify subject, predicate, and object in order to generate possible triples.

The generated triples are the final output of the system.

29

Raw sentence A graduate of the University of Arizona, she is a lecturer

in writing at Princeton University and an author under

the name of Kathryn Watterson Burkhart.

Output of tokenizer +

POS tagger

[[’A’, ’DET’], [’graduate’, ’NOUN’], [’of’, ’ADP’],

... ,[’Kathryn’, ’PROPN’], [’Watterson’, ’PROPN’],

[’Burkhart’, ’PROPN’], [’.’, ’PUNCT’]]

SWI Prolog query sent(X, [[’A’, ’DET’], [’graduate’, ’NOUN’], [’of’,

’ADP’], ... ,[’Kathryn’, ’PROPN’], [’Watterson’,

’PROPN’], [’Burkhart’, ’PROPN’], [’.’, ’PUNCT’]], []).

Output of CFG model (’she’, ’is’, ’A graduate’)

(’she’, ’is’, ’a lecturer’)

Table 3.18: Data at Each Stage of the Application

The table 3.18 shows an example natural language sentence and how it is processed

through the pipeline in our proposed system. The raw sentence is first processed using

spacy library and tokens are produced. Output from the tokenized is shown. These

tokens are then given part-of-speech tags. Next, the tokens with tags are passed

to the SQI Prolog query that runs them through the DCG to identify the subject,

predicate, and object. The final output from the CFG model is the possible triples

generated as shown in the table.

30

Figure 3.1: Data Pipeline

Figure 3.1 shows the stages of processing involved in the transformation of un-

structured data into structured RDF triples.

31

Figure 3.2: Class Diagram of the Application

Figure 3.2 shows the high-level architecture of the application used to conduct

this study, including the task of open information extraction (OIE) as well as the

evaluation of our proposed context-free grammar (CFG) based approach.

32

Chapter 4

DATA COLLECTION AND PROCESSING

4.1 Data Sources

4.1.1 Datasets for Evaluation

This chapter describes the datasets used for evaluation in this research study. The

following sections further describe the datasets and pre-processing done on them.

For this thesis, we have considered the following datasets:

• the ReVerb dataset, which consists of 500 sentences randomly sampled from the

web, using the Yahoo random-link service, by the authors of ReVerb system.

This dataset was used in the study (22). These sentences are a bit noisy and

their corresponding triples were manually generated for evaluation.

33

Sentence

The nation ’s health maintenance organizations were required to tell the federal

government by midnight Monday whether they plan to continue providing

health insurance to Medicare recipients next year , raise premiums , or reduce

benefits .

A backdrop of steady economic growth , scant inflation , and stable bond yields

provided support for stocks .

E-mail : jsuydamstatesman.com In person Ms. Holloman looks less like a

tomboy than her film roles suggest , with her hazel eyes and faint drawl her

most beguiling features .

By the early 1980s , it was ZZZZ Best that showed how easy fraud could be .

E-mail her at mmccartycoxohio.com A Ply Gem Industries Inc. shareholder

is suing Furman Selz Inc. for $ 100 million , claiming it was negligent in

recommending Nortek Inc. ’s takeover offer as fair to shareholders .

Table 4.1: Example Sentences from ReVerb Dataset

• WIKI dataset (21): 200 sentences were randomly sampled from Wikipedia doc-

uments by the authors of ClausIE and ground truth was manually generated.

These sentences are shorter, simpler, and less noisy in comparison with the

other datasets. Also, some Wikipedia articles are written by non-native speak-

ers, however, the Wikipedia sentences do contain some incorrect grammatical

constructions thereby posing some challenges to the extractions.

34

Sentence

Henry was Governor Edwin Washington Edwards’s choice for

Speaker.

Mrs. Yogeswaran was shot five times with a pistol near her Jaffna

home on May 17, 1998.

Girard has a bachelor’s degree in political sciences at the Universite

de Montreal and did studies for the master’s degree in industrial

relations.

It was #109 on the Billboard 200 chart.

Robert Barnard (born 23 November 1936) is an English crime

writer, critic and lecturer.

Table 4.2: Example Sentences from WIKI Dataset

• NYT dataset (36): New York Times annotated corpus has numerous news arti-

cles published by the New York times. This dataset comprises of 200 sentences

randomly samples from this corpus by the authors of ClauseIE. These sentences

were generally clean, however, tend to be long and complex. They manually

generated the ground truth, that is the extracted triples for evaluation.

35

Sentence

CourtLink, which has 160 employees, developed a filing system that

enables judges, lawyers and court clerks to process pleadings, mo-

tions and other documents electronically over a secure connection.

A graduate of the University of Arizona, she is a lecturer in writing

at Princeton University and an author under the name of Kathryn

Watterson Burkhart.

The events occurred in July.

Terrorist attacks by E.T.A. have declined in recent years and the

number of its hardcore militants is thought to have fallen from the

hundreds of 15 years ago to several score.

Mr. Mahdi and Mr. Chalabi say they aim to form a ”national

unity” government with Iraq’s main political leaders, presumably

including Mr. Allawi.

Table 4.3: Example Sentences from NYT Dataset

With these datasets, we aim to create a comprehensive sample space that is repre-

sentative of the varied styles and complexity of the English language. The Wikipedia

(WIKI) and New York Times (NYT) datasets together create a spectrum of sentences

ranging from simple assertions to complex structures interspersed with punctuations

and nested clauses. However, the ReVerb dataset is generally noisy and the sentences

frequently contain both grammar and spelling errors. For this reason, we have chosen

to omit this dataset.

36

4.2 Pre-Processing

Since both the WIKI and NYT datasets are generally clean, we did not need to

remove any sentences or change them in any way. First, we removed any extractions

that are not valid strictly as a triple. Since ClausIE can make extractions with a

degree greater than or less than 3, we exclude those extractions. Within the scope of

this study, we are only concerned with triple extractions.

Next, we proceed with the natural language processing (NLP) operations.

Using the spacy library, we tokenized each sentence and assigned part-of-speech

(POS) tags to each token. The inputs for the CFG model are stored as a list of tuples,

where each tuple represents a single token from the sentence along with its POS tag.

Furthermore, each of the correct triple extractions in the dataset corresponding to the

particular sentence were compiled for the evaluation and result analysis as described

in the next chapter..

37

Chapter 5

EVALUATION AND RESULTS

5.1 Experimental Setup

We will evaluate the performance of our proposed CFG model on the NYT and

WIKI datasets. Each sentence is passed through the spacy NLP pipeline (tokenizer

+ POS tagger) as part of the pre-processing phase. Next, the formatted input is

passed to the Pyton controller which uses pyswip to pass a query using the rules

of the grammar written in SWI Prolog. Once the triples are generated, these are

validated against the correct extractions. The dataset includes the triples extracted

by ClausIE, ReVerb and OLLIE whose results will be compared with those of our

proposed model that combines learning and rules using the CFG model.

5.2 Discussion

Before we look at the performance metrics, it is important to note that the dataset

only provides correct/incorrect labels for triples generated by other models. In this

section, let us examine some triples generated by the proposed CFG model that have

not been classified by the existing prior systems.

First, we have the sentences that contain quotes and implications. The CFG

model can effectively extract the subject clause with a predicate like ’say’, ’claim’

etc. with the intended quote or statement. Furthermore, we can also treat the quote

or implied statement as a separate sentence on its own to extract more information.

Table 5.1 below shows examples of such sentences with quotations and implied state-

38

ments that our proposed model is able to handle.

Table 5.1: Quotations and Implied Statements

Reference Sentence Triple

nyt-4 Mr. Mahdi and Mr. Chalabi say

they aim to form a ”national unity”

government with Iraq’s main polit-

ical leaders, presumably including

Mr. Allawi.

(’Mr. Mahdi and Mr.

Chalabi’, ’say’, ’they

aim to form a ”national

unity” government with

Iraq’s main political

leaders’)

nyt-25 McGaughey said that Personal En-

sign might race again in New York

this year and definitely would race

next year and be pointed for the

Breeders’ Cup.

(’McGaughey’, ’said’,

’Personal Ensign might

race again in New York

this year and definitely

would race next year

and be pointed for the

Breeders’ Cup’)

nyt-46 He said the public school from which

he transferred three years ago had

metal detectors that still failed to

keep out the sense that danger

lurked nearby.

(’He’, ’said’, ’the pub-

lic school from which he

transferred three years

ago had metal detectors

that still failed to keep

out the sense that danger

lurked nearby’)

Continued on next page

39

Table 5.1

Reference Sentence Triple

nyt-55 A defense spokesman added that

British officials were ”aware of the

potential” for missile attacks along

the border between the province and

the Irish republic.

(’A defense spokesman’,

’added’, ’British officials

were ” aware of the po-

tential ” for missile at-

tacks along the border

between the province and

the Irish republic’)

nyt-108 Sharpe said the students were sent

to work in the manure, not stand in

it.

(’Sharpe’, ’said’, ’the stu-

dents were sent to work

in the manure , not stand

in it’)

nyt-120 The International Business Ma-

chines Corporation said it signed

an agreement to provide more than

$100 million worth of computer

hardware and software to what will

be the world’s largest computerized

travel reservation system.

(’The International Busi-

ness Machines Corpora-

tion’, ’said’, ’it signed

an agreement to pro-

vide more than $ 100

million worth of com-

puter hardware and soft-

ware to what will be the

world’s largest comput-

erized travel reservation

system’)

Continued on next page

40

Table 5.1

Reference Sentence Triple

nyt-86 Indeed, history shows that those

who ignore energy prices and their

impact on overall inflation do so at

their own risk.

(’history’, ’shows’, ’those

who ignore energy prices

and their impact on over-

all inflation do so at their

own risk’)

Next, we will look at sentences with complex syntactic structures in which the sub-

ject, predicate, and object clauses rarely occur in a linear fashion. In these cases, we

can see the strengths of the proposed CFG approach in being able to match the right

clauses together. This is achieved using rules with nested sentences, and matching a

subject or object clause of the high-level sentence with the other clauses belonging

to a lower-level or nested sentence. Table 5.2 shows examples of such sentences with

nested or embedded clauses that the proposed approach can handle.

Table 5.2: Sentences with Nested/Embedded Clauses

Reference Sentence Triple

nyt-1 A graduate of the University of Ari-

zona, she is a lecturer in writing at

Princeton University and an author

under the name of Kathryn Watter-

son Burkhart.

(’she’, ’is’, ’A graduate

of the University of Ari-

zona’)

Continued on next page

41

Table 5.2

Reference Sentence Triple

nyt-11 In its most recent survey, the

Congress for New Urbanism, a non-

profit organization based in Chicago,

reported 648 neighborhood-scale

New Urbanist communities in the

United States, an increase of 176

over a 12-month period.

(’the Congress for New

Urbanism’, ’based in’,

’Chicago’)

nyt-47 Nordstrom Inc., the retail chain

based on the West Coast, said today

that it had created an office of the

president to strengthen its executive

management team.

(’Nordstrom Inc.’, ’based

on’, ’the West Coast’)

nyt-51 In times past, getting a taxi at a New

York City airport was often a Dar-

winian affair, a frenzied, survival-of-

the-fittest scene of piled-up luggage,

darting taxis and shouting cabbies

looking for an edge.

(’darting taxis and

shouting cabbies’, ’look-

ing for’, ’an edge’)

Continued on next page

42

Table 5.2

Reference Sentence Triple

nyt-107 In a sobering speech meant to reg-

ister with opinion leaders in the

international community, the Irish

Foreign Minister, Dick Spring, has

warned about the peril to the peace

process if there is further delay.

(’Dick Spring’, ’has

warned about’, ’the peril

to the peace process if

there is further delay’)

nyt-175 Divertimento” from ”Le Baiser de

la Fee,” presented by the New York

City Ballet on Wednesday night at

the New York State Theater, is one

of George Balanchine’s odder bal-

lets.

(’Divertimento’, ’is’,

”one of George Balan-

chine’s odder ballets”)

wiki-36 The Islamic Jihad Union (IJU),

also known as Islamic Jihad Group

(IJG), is a terrorist organization

which splintered from the Islamic

Movement of Uzbekistan (IMU),

and has conducted attacks in Uzbek-

istan and attempted attacks in Ger-

many.

(’The Islamic Jihad

Union’, ’is’, ’a terrorist

organization’)

Continued on next page

43

Table 5.2

Reference Sentence Triple

nyt-94 Russia’s eavesdropping station at

Lourdes, Cuba, is a cold war jewel:

28 square miles of antennae and

computers that message Russian

embassies, submarines and spies,

and vacuum up U.S. satellite and ra-

dio communications.

(”Russia’s eavesdropping

station at Lourdes”, ’is’,

’a cold war jewel’)

nyt-106 Trust Company’s quest for cus-

tomers among the new rich, in-

cluded erroneous figures for million-

aire households supplied by PSI, a

financial services research firm in

Tampa, Fla.

(”Trust Company’s

quest for customers”,

’included’, ’erroneous

figures’)

5.3 Experimental Results

We evaluate our proposed approach by comparing our proposed CFG model with

other existing systems - ClausIE, ReVerb, and OLLIE. The evaluation metrics used

are as follows:

- Number of correct triples extracted

- Precision: is the fraction of the returned extractions that are correct.

- Recall: is the fraction of correct extractions in the corpus that are returned.

- F1 score: is a combined score of the precision and recall calculated using the follow-

ing formula

44

F1-score = 2 * (precision * recall) / (precision + recall)

ClausIE ReVerb OLLIE CFG

Wiki 598 165 234 128

NYT 696 149 211 158

Table 5.3: Correct Triples Extracted

ClausIE ReVerb OLLIE DeepEx CFG

Wiki 0.597 0.663 0.414 — 0.406

NYT 0.534 0.550 0.425 0.815 0.434

Table 5.4: Precision

ClausIE ReVerb OLLIE DeepEx CFG

Wiki 0.644 0.178 0.252 — 0.138

NYT 0.682 0.146 0.207 0.899 0.155

Table 5.5: Recall

ClausIE ReVerb OLLIE DeepEx CFG

Wiki 0.620 0.281 0.313 — 0.206

NYT 0.599 0.231 0.278 0.855 0.228

Table 5.6: F1 Score

45

Chapter 6

FUTURE WORK

6.1 Error Analysis

Let us start by analyzing the output of the CFG model, both for cases where it

generated no outputs and incorrect outputs. In this section, we will categorize and

present the main error types and their causes, and we will discuss potential solutions

to fix or mitigate these problems.

6.1.1 Semantics

Reference Sentence Triple Gener-

ated

Actual Triple

nyt-168 She was a continuing source

of love, kindness and gen-

erosity who never failed to

nurture her adoring family.

(’She’,

’was’,

’a continuing

source’)

(’She’,

’was’,

’a continuing

source of love’)

wiki-76 76 In 2009, Hobbs acquired

the role of top gymnast,

Emily Kmetko, in ABC

Family’s ”Make It or Break

It”.

(’Hobbs’,

’acquired’,

’the role’)

(’Hobbs’,

’acquired’,

’the role of top

gymnast’)

Table 6.1: Semantic Errors

46

Depending on the semantics of the predicate and the object entity, the object

clause may or may not be extended by prepositions or adpositions. In Table 6.1,

we can see some examples of this behaviour. However, this occurence of extended

object clauses using an adposition or a preposition does not always occur. Even

with the same POS tags, the triple formation can be different for different sentences

due to the semantics of the object or predicate phrase. This is a limitation of the

CFG model as it cannot account for different rules based on the semantics of the text.

6.1.2 Compound Predicates

Reference Sentence

wiki-7 It comprises and includes mountains reaching an altitude of above

sea level.

wiki-51 While the Arab world is a rich prize in itself, Europe has been and

remains the primary objective.

nyt-199 General Blevins agreed and said he would strike with a tank reg-

iment held in reserve as well as with helicopters and Air Force

support.

Table 6.2: Sentences with Complex Predicates

Compound predicates are usually formed by a combination of simple predicates

using coordinating conjunctions. In Table 6.2, we can look at a few examples of

this case. It appears that the best solution would be to break down the compound

predicate into its individual atoms, and then create a triple for each atomic predicate

with the same subject and object clause, but this may not always work.

47

Looking at the sentence wiki-7, ”comprises and includes” can be broken down

into ”comprises” and ”includes”, and two triples can be formed using these atomic

predicates separately which are as follows:

• (”It”, ”comprises”, ”mountains reaching an altitude of above sea level”)

• (”It”, ”includes”, ”mountains reaching an altitude of above sea level”)

However, this does not work for the sentence nyt-199. The compound predicate

”agreed and said” can be broken down into ”agreed” and ”said”. But the triple can

only be formed with ”said” and not with ”agreed”. This is because ”agreed” does

not have anything to do with the object clause and thus cannot be used to form a

triple. We need to create more specific rules to deal with different types of compound

predicates. Another key idea is to create specific rules for every individual predicate

that can be further specialized with the advantage of knowing its semantic usage and

context.

48

6.1.3 Special Characters

Reference Sentence

wiki-56 A Great-Great Grandson was Robert Norton Noyce (1927 - 1990),

nicknamed ”the Mayor of Silicon Valley”, co-founder of Fairchild

Semiconductor in 1957 and Intel in 1968.

nyt-14 But inexpensive point-and-shoot cameras can do the job if they

have a telephoto setting or a zoom lens.

nyt-109 Shown today at 2 and 6 p.m. and tomorrow at 4 and 7 p.m. at

the Walter Reade Theater at Lincoln Center, 165 West 65th Street,

Manhattan, as part of the 32nd New Directors/New Films series of

the Film Society of Lincoln Center and the department of film and

media of the Museum of Modern Art.

Table 6.3: Sentences with Special Characters

The usage of special characters can cause problems in the tokenization phase

leading to the CFG rules failing to parse the provided input. Let us look at a few

examples in Table 6.3. In each of these sentences, the tokenizer treats ’-’ or ’/’ as a

separate token. This causes problems since we expect ”Great-Great” or ”point-and-

shoot” to behave as a single adjective token. Moreover, in sentece nyt-109, the ’/’

symbol is actually joining ”New Directors” and ”New films”. These are some of the

different kinds of behavior caused by special characters that need to be accounted

for.

49

6.1.4 Lack of entities or Relations

Reference Sentence

nyt-102 Beat in the eggs one at a time.

nyt-30 To reach the museums by foot, leave from the station’s 30th Street

exit and walk along J.

wiki-163 Great if the president will help but totally unnecessary

wiki-14 Simultaneously won the ”Hope of the World Ballet” Prize.

Table 6.4: Sentences Lacking Entities or Relationships

Some sentences are generally not suitable for the task of open information ex-

traction. Either they do not have well defined entities, or they are imperative or

exclamatory sentences that do not contain any patterns of the subject-predicate-

object format that is necessary for forming triples. In Table 6.4, we can look at a few

examples of sentences that belong in this category. It is hard to form any meaning-

ful triples with such sentences and they should be excluded from the dataset in the

preprocessing phase since they do not fall under the scope of this task.

6.2 Improvements

In terms of future work, these are some of the features that fall under the natural

progression of the CFG model that would increase its effectiveness and versatility.

• Coreference resolution

Coreference resolution is defined as the task of matching any given pronoun

in the natural language data sample with the noun phrase or entity that it

references. It does not come under the scope of this thesis because the datasets

50

we used contain single sentences randomly sampled from larger documents,

which often means that a pronoun used in the given sentence may very well

be referring to an entity that belongs to its parent document but does not

exist in the given sentence. However, when we eventually extend the scope

to paragraphs or even entire documents, this would be an essential feature to

further increase the recall of the CFG model.

• Extracting information from subclauses

Many sentences contain information that can be extracted as triples from their

subclasses or nested clauses. Usually, these occur as quoted statements, or

clauses containing possessive particles, or implied punctuations. For example,

”My book is red.”

forms the basic triple

(”My book”, ”is”, ”red”)

However, if we further attempt to parse the subject clause, we can get another

triple

(”I”, ”HAS”, ”book”)

Let us consider another example - ”Steve, a gardener, likes apples”.

If we closely look at the first part of the sentence ”Steve, a gardener, ...”, we

can extract a triple of the form

(”Steve”, ”IS”, ”a gardener”)

Adding features to support this capability will significantly increase the amount

of information extracted from a single sentence thereby increasing the overall

performance of the CFG model.

• Defining rules for specific entities

As observed in the previous section, the CFG model is prone to errors arising

51

from the fact that many predicate clauses behave differently under different

semantic context. To address this issue, we propose to reduce the scope of

predicate rules by creating more specialized rules for different verb phrases

based on their usage and context. This way, we could increase the accuracy of

the extracted triples containing the given predicate. Moreover, the CFG model

may not always be used for open information extraction, and for specific use

cases, limiting the allowed predicates and adding support with highly specific

rulesets would greatly increase the precision of the CFG model.

6.3 Context-Focused Extraction

Based on our analysis of the model, we can see that due to semantic errors within

object clauses and compound predicates, the CFG model does not perform at par

with the conventional ML models. However, it shows great promise as it does ad-

dress many of the concerns we stated in our hypothesis and we propose a more focused

and context-specific approach.

Adding context to a context-free grammar rule-based model seems counterintu-

itive. However, based on the error analysis in Chapter 5, it is evident that phrases

from natural language form different triples even with the same POS tag syntax.

We propose that we inject semantics into our CFG rules by adding a third pa-

rameter - the actual word itself. By introducing a lemmatizer into the NLP pipeline,

we can change our basic input into the format

<token, POS-tag, lemma>

Next, we can write new rule(s) specifically aimed at parsing the given occurrence

52

of the word in the subject, predicate, or object phrase. This can allow our CFG

model to behave differently when these special cases occur.

We could do this from scratch, but we already have some rules for parsing predi-

cates so we could tweak those to suit our needs. By using the extra information from

the lemma form of the token, we can make the rules more specialized to the cases

dealing with the mentioned words only. Moreover, as part of Prolog functionality,

these rules which are more specific can be placed at a higher priority than the generic

rules so the extracted triples are based on the aforementioned specific rules we define.

53

Chapter 7

CONCLUSION

7.1 Our Contribution

In this thesis, we extended the domain of open information extraction with a novel

approach using context-free grammar. In contrast with conventional machine learning

models, our CFG model does not need any training data - as long as we have a firm

grasp on the grammar of a language, we are able to write a set of rules in Prolog that

can effectively parse it and generate meaningful triples. Moreover, this also increases

the adaptability of our CFG model since major changes can be made by simply editing

and changing the grammar rules, without the need for any new training datasets or

cumbersome computations to re-train a neural network. In theory, this approach can

also be extended to other languages. However, it is important to note that this is

highly dependent on the existence of part-of-speech taggers for the given language.

Lastly, we feel that one of the greatest strengths of our CFG model is transparency.

With deep and complex machine learning models becoming the norm in most domains

across the board, our CFG model guarantees transparency and accountability, since

we have the ability to analyze the exact sequence of Prolog rules used to generate

a particular output. This greatly increases both the accountability and reliability of

our CFG model.

7.2 Hypothesis

We have achieved our goals and addressed the problems we wanted to address as

part of our hypothesis.

54

Figure 7.1: Output of Trace Command in Prolog

• Training Data

Our CFG approach does not require any training data since there is no training

process for a rule-based system using Prolog DCG rules to parse natural lan-

guage.

• Customization

We have provided support for users to add their own rules into the Prolog DCG,

or modify existing rules already present. Users can also leverage the prioritiza-

tion of rules in Prolog, and place their custom rules at a higher priority than

the base rules.

55

• Additional Languages

Our CFG approach can be extended to other languages as well, given that the

language has the concept of POS tags, and there exists a reliable POS tagger

for the same. Additionally, one would need to be proficient in the language to

write a comprehensive set of rules in Prolog.

• Explainability

Using the trace command in Prolog as shown in figure 7.2, we can generate an

audit log of the sequence of rules evaluated to generate our output. This makes

our CFG approach completely transparent and explainable compared to other

conventional machine learning models.

7.3 Summary

Figure 7.2: Summary of Our Hypothesis

We aimed to create a context-free grammar for the task of open information

extraction. We created a set of rules in Prolog that work to parse natural language

into triples, and we tested our model on datasets sourced from Wikipedia and the

New York Times. Looking back at our hypothesis, we have managed to address

56

the problems including but not limited to adaptability, reliability, and transparency.

However, given the fact that our CFG model does not perform at par with the other

conventional machine learning approaches, we believe that our hypothesis is only

partially correct - it is hard to effectively account for the variations in semantics in

natural language. However, we aim to address this in the future by customizing rules

to be domain-specific and even predicate-specific in some cases. While we conclude

that our hypothesis is partially correct, we have created a novel approach that sets

the foundation for future attempts to build and improve upon.

7.4 Vision for Future Application

Our high-level vision for the CFG model is a vast open-source repository, that

contains rules aimed at various information extraction tasks, with different goals, and

catering to various domains. This would be a dynamic database, but also a space

for linguists, developers, and researchers to collaborate and share their knowledge

and expertise by creating and optimizing the grammar rules. A repository of this

kind provides a viable alternative to proprietary solutions or conventional machine

learning methods that operate in a black box. Whether it be an individual or an

organization, they can benefit equally from this repository regardless of size and access

to resources. With this repository, we hope to encourage collaboration that leads to

accelerated advancements and innovations in the field of information extraction and

natural language processing (25).

57

REFERENCES

[1] M Banko, MJ Cafarella, S Soderland, M Broadhead, and O Etzioni. Open
information extraction from the web in: Proceedings of the 20th international
joint conference on artificial intelligence. 2007.

[2] Christina Niklaus, Matthias Cetto, André Freitas, and Siegfried Handschuh. A
survey on open information extraction. arXiv preprint arXiv:1806.05599, 2018.

[3] World Wide Web Consortium (W3C). Rdf 1.1 xml syntax.
https://www.w3.org/standards/semanticweb/, 2014. [Online; accessed 06-
June-2023].

[4] Sarthak Tiwari, Bharat Goel, and Srividya Bansal. Mold-a framework for entity
extraction and summarization. In 2020 IEEE 14th International Conference on
Semantic Computing (ICSC), pages 445–450. IEEE, 2020.

[5] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of
large language models. arXiv preprint arXiv:2303.18223, 2023.

[6] Daniela Barreiro Claro, Marlo Souza, Clarissa Castellã Xavier, and Leandro
Oliveira. Multilingual open information extraction: Challenges and opportuni-
ties. Information, 10(7), 2019.

[7] Nadia Burkart and Marco F Huber. A survey on the explainability of supervised
machine learning. Journal of Artificial Intelligence Research, 70:245–317, 2021.

[8] World Wide Web Consortium (W3C). Semantic web at w3c.
https://www.w3.org/standards/semanticweb/, 2023. [Online; accessed 06-
June-2023].

[9] The linked open data cloud. https://lod-cloud.net/. [Online; accessed 17-June-
2023].

[10] Mark A Musen. The protégé project: a look back and a look forward. AI matters,
1(4):4–12, 2015.

[11] World Wide Web Consortium (W3C). Owl web ontology language overview, w3c
recommendation, 10 feb. 2004. https://www.w3.org/TR/owl-features/, 2014.
[Online; accessed 06-June-2023].

[12] Universal Dependencies contributors. Universal pos tags.
https://universaldependencies.org/u/pos/universal-pos-tags, 2014. [Online;
accessed 13-February-2023].

[13] William F Clocksin and Christopher S Mellish. Programming in PROLOG.
Springer Science & Business Media, 2003.

58

[14] Python Software Foundation. About python. https://www.python.org/about/,
2012. [Online; accessed 15-April-2023].

[15] Yüce Tekol and PySwip contributors. About python.
https://github.com/yuce/pyswip, 2007. [Online; accessed 15-April-2023].

[16] Raghu Anantharangachar, Srinivasan Ramani, and S Rajagopalan. Ontol-
ogy guided information extraction from unstructured text. arXiv preprint
arXiv:1302.1335, 2013.

[17] Farhad Abedini, Fariborz Mahmoudi, and Amir Hossein Jadidinejad. From text
to knowledge: Semantic entity extraction using yago ontology. International
Journal of Machine Learning and Computing, 1(2):113, 2011.

[18] Alain Auger and Caroline Barrière. Pattern-based approaches to semantic rela-
tion extraction: A state-of-the-art. Terminology, 14(1):1, 2008.

[19] Gerardo Sierra, Rodrigo Alarcón, César Aguilar, and Carme Bach. Defini-
tional verbal patterns for semantic relation extraction. Terminology. Interna-
tional Journal of Theoretical and Applied Issues in Specialized Communication,
14(1):74–98, 2008.

[20] Guido Boella, Luigi Di Caro, and Livio Robaldo. Semantic relation extraction
from legislative text using generalized syntactic dependencies and support vec-
tor machines. In Theory, Practice, and Applications of Rules on the Web: 7th
International Symposium, RuleML 2013, Seattle, WA, USA, July 11-13, 2013.
Proceedings 7, pages 218–225. Springer, 2013.

[21] Luciano Del Corro and Rainer Gemulla. Clausie: clause-based open information
extraction. In Proceedings of the 22nd international conference on World Wide
Web, pages 355–366, 2013.

[22] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for
open information extraction. In Proceedings of the 2011 conference on empirical
methods in natural language processing, pages 1535–1545, 2011.

[23] Gabriel Stanovsky, Jessica Ficler, Ido Dagan, and Yoav Goldberg. Getting more
out of syntax with props. arXiv preprint arXiv:1603.01648, 2016.

[24] Ronald Smith Djomkam Yotedje. Giet: Generic information extraction using
triple store databases. INFORMATIK 2015, 2015.

[25] Michael Schmitz, Stephen Soderland, Robert Bart, Oren Etzioni, et al. Open
language learning for information extraction. In Proceedings of the 2012 joint
conference on empirical methods in natural language processing and computa-
tional natural language learning, pages 523–534, 2012.

[26] Nikita Bhutani, HV Jagadish, and Dragomir Radev. Nested propositions in
open information extraction. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 55–64, 2016.

59

[27] Chenguang Wang, Xiao Liu, Zui Chen, Haoyun Hong, Jie Tang, and Dawn
Song. Zero-shot information extraction as a unified text-to-triple translation.
arXiv preprint arXiv:2109.11171, 2021.

[28] Hady Elsahar, Pavlos Vougiouklis, Arslen Remaci, Christophe Gravier, Jonathon
Hare, Frederique Laforest, and Elena Simperl. T-rex: A large scale alignment
of natural language with knowledge base triples. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018),
2018.

[29] Zhepei Wei, Jianlin Su, Yue Wang, Yuan Tian, and Yi Chang. A novel cas-
cade binary tagging framework for relational triple extraction. arXiv preprint
arXiv:1909.03227, 2019.

[30] Yubo Chen, Yunqi Zhang, and Yongfeng Huang. Learning reasoning patterns for
relational triple extraction with mutual generation of text and graph. In Findings
of the Association for Computational Linguistics: ACL 2022, pages 1638–1647,
2022.

[31] Benfeng Xu, Quan Wang, Yajuan Lyu, Yabing Shi, Yong Zhu, Jie Gao, and
Zhendong Mao. Emrel: Joint representation of entities and embedded relations
for multi-triple extraction. In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 659–665, 2022.

[32] Matthew Honnibal and Ines Montani. spaCy 2: Natural language understanding
with Bloom embeddings, convolutional neural networks and incremental parsing.
2017.

[33] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
robustly optimized bert pretraining approach, 2019.

[34] Weischedel, Ralph, Palmer, Martha, Marcus, Mitchell, Hovy, Eduard, Pradhan,
Sameer, Ramshaw, Lance, Xue, Nianwen, Taylor, Ann, Kaufman, Jeff, Fran-
chini, Michelle, El-Bachouti, Mohammed, Belvin, Robert, and Houston, Ann.
Ontonotes release 5.0, 2013.

[35] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on empir-
ical methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[36] Sandhaus, Evan. The new york times annotated corpus, 2008.

60

APPENDIX A

PROLOG PARSER CODE

61

% Here we have the set of DCG rules that is used to parse a sentence based on its
% POS tags, and ultimately generate outputs as a triple
table sent/3, vp/3, sub/3, pred/3, obj/3.

% helper functions to enable parsing
takeAllButLast(List, Result):-removeLast(List, [], Result).
removeLast([], R, R).
removeLast([H|T], Sol, Result):-append(Sol, [H], Sol2), removeLast(T, Sol2, Result).

% Basic rules for terminal symbols using nouns to form a subject
term0([X]) –> [[X, ’PROPN’]].
term0([X, ’.’]) –> [[X, ’PROPN’], [’.’,]].
term0([X]) –> [[X, ’NOUN’]].
term0([X]) –> [[X, ’NUM’]].
term0([X]) –> [[X, ’ADJ’]].
term0([X|S]) –> [[X, ’PROPN’]], term0(S).
term0([X, ’.’|S]) –> [[X, ’PROPN’], [’.’,]], term0(S).
term0([X|S]) –> [[X, ’NOUN’]], term0(S).
term0([X|S]) –> [[X, ’NUM’]], term0(S).
term0([X|S]) –> [[X, ’ADJ’]], term0(S).

% adding support for pronouns and currency
term1([X]) –> [[X, ’PRON’]]..
term1([X1, X2]) –> [[X1, ’SYM’], [X2, ’NUM’]].
term1(S) –> term0(S).

% adding support for adjectives
term2([X|S]) –> [[X, ’ADJ’]], term2(S).
term2([X|S]) –> [[X, ’VERB’]], term2(S).
term2(S) –> term1(S).

% adding support for adverbs
term3([X|S]) –> [[X, ’ADV’]], term2(S)..
term3(S) –> term2(S).

% adding support for determiners and quantity
term4([X]) –> [[X, ’DET’]].
term4([X|S]) –> [[X, ’DET’]], term3(S).
term4([X|S]) –> [[X, ’NUM’]], term3(S).
term4(S) –> term3(S)..

% adding support for complex subjects formed using coordinating conjunctions term5(S)
–> term4(S1), [[X, ’CCONJ’]], sub(S2), append(S1, [X|S2], S).
term5(S) –> term4(S).

% adding support for complex subjects formed using adpositions term6(S) –> term5(S1),
[[X, ’ADP’]], sub(S2), append(S1, [X|S2], S).

62

term6(S) –> term5(S).

% the high level subject rule that encompasses all rules
% from term0 through term6 and uses them to parse a subject clause
sub(S) –> term6(S1), [[X, ’PART’]], sub(S2),
last(S1, L), atom concat(L, X, Concat), takeAllButLast(S1, NewS1),
append(NewS1, [Concat], UpdatedS1),
append(UpdatedS1, S2, S).
sub(S) –> term6(S).
sub(S) –> [[’”’, ’PUNCT’]], tokens(Sub), [[’”’, ’PUNCT’]], append([’”’|Sub], [’”’], S).

% objects as simple terminals.
obj([X]) –> [[X, ’ADJ’]].
obj([X1, X2]) –> [[X1, ’ADV’], [X2, ’VERB’]].

% objects as extended subject clauses.
obj(X) –> sub(X).
obj(X) –> sub(S), [[V, ’VERB’]], append(S, [V], X).
obj([X1|S]) –> [[X1, ’ADP’]], sub(S).
obj(X) –> sub(X1), [[XADP, ’ADP’]], tokens(X2), append(X1, [XADP|X2], X).

% complex object rules.
obj(X) –> sub(X), [[, ’ADP’]], tokens().
obj(X) –> sub(X), [[, ’DET’]], tokens().
obj(X) –> sub(X), [[, ’CCONJ’]], tokens().
obj(X) –> sub(X), [[, ’SCONJ’]], tokens().
obj(X) –> sub(X), [[, ’VERB’]], tokens().

% simple predicate rules using auxiliaries and verbs
pred([X]) –> [[X, ’VERB’]].
pred([X1, X2]) –> [[X1, ’ADV’] ,[X2, ’VERB’]].
pred([X1, X2]) –> [[X1, ’VERB’], [X2, ’ADP’]]..
pred([X]) –> [[X, ’AUX’]].

% more complex predicate clauses with support for additional constructs
pred([X1|X2]) –> [[X1, ’VERB’]], pred(X2).
pred([X1|X2]) –> [[X1, ’AUX’]], pred(X2).
pred([X0, X1|X2]) –> [[X0, ’VERB’], [X1, ’PART’]], pred(X2).
pred([X0, X1|X2]) –> [[X0, ’VERB’], [, ’NOUN’] , [X1, ’PART’]], pred(X2).
pred([X0, X1|X2]) –> [[X0, ’AUX’], [X1, ’PART’]], pred(X2).

% n tokens.
tokens([X]) –> [[X,]].
tokens([X|T]) –> [[X,]], tokens(T).

% verb phrase sub-clause to reduce complexity of grammar
vp([P,O]) –> pred(P), obj(O).

63

vp([P,O]) –> pred(P), obj(O), [[’.’, ’PUNCT’]].
vp([P,O]) –> pred(P), obj(O), [[, ’PUNCT’]], tokens().
vp([P,O]) –> tokens(), [[, ’PUNCT’]], vp([P,O]).

% high-level sentence rules that use the other sub-clause
% rulesets to parse a given sentence
sent([S,P,O]) –> sub(S), pred(P), tokens(O), [[’,’, ’PUNCT’]], tokens().
sent([S,P,O]) –> sub(S), pred(P), [[, ’SCONJ’]], tokens(O), [[’.’, ’PUNCT’]].
sent([S,P,O]) –> sub(S), pred(P), [[, ’NOUN’], [, ’SCONJ’]], tokens(O), [[’.’, ’PUNCT’]].
sent([S,P,O]) –> sub(S), pred(P), tokens(O), [[’.’, ’PUNCT’]].

% sentence rules where S,P,O do not occur in a single sequence
% these rules deal with non-linear and nested clauses sent([S,P,O]) –> sub(S), vp([P,O]).
sent([S,P,O]) –> sub(S), [[’,’, ’PUNCT’]], sent([,P,O]).
sent([S,P,O]) –> obj(O), [[’,’, ’PUNCT’]], sent([S,P]).
sent([S,P,O]) –> sub(S), [[’,’, ’PUNCT’]], vp([P,O]).
sent([S,P,O]) –> tokens(), [[’,’, ’PUNCT’]], sent([S,P,O]).
sent(X) –> [[’”’, ’PUNCT’]], sent(X), [[’”’, ’PUNCT’]].

Available on GitHub at https://github.com/vsingh57/CFG triple extractor

64

