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ABSTRACT  

 

   

Frontend development often involves the repetitive and time-consuming task of 

transforming a Graphical User interface (GUI) design into Frontend Code. The GUI design 

could either be an image or a design created on tools like Figma, Sketch, etc. This process 

can be particularly challenging when the website designs are experimental and undergo 

multiple iterations before the final version gets deployed. In such cases, developers work 

with the designers to make continuous changes and improve the look and feel of the 

website. This can lead to a lot of reworks and a poorly managed codebase that requires 

significant developer resources. To tackle this problem, researchers are exploring ways to 

automate the process of transforming image designs into functional websites instantly. This 

thesis explores the use of machine learning, specifically Recurrent Neural networks (RNN) 

to generate an intermediate code from an image design and then compile it into a React 

web frontend code. By utilizing this approach, designers can essentially transform an image 

design into a functional website, granting them creative freedom and the ability to present 

working prototypes to stockholders in real-time. To overcome the limitations of existing 

publicly available datasets, the thesis places significant emphasis on generating synthetic 

datasets. As part of this effort, the research proposes a novel method to double the size of 

the pix2code [2] dataset by incorporating additional complex HTML elements such as 

login forms, carousels, and cards. This approach has the potential to enhance the quality 

and diversity of training data available for machine learning models. Overall, the proposed 

approach offers a promising solution to the repetitive and time-consuming task of 

transforming GUI designs into frontend code. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Context 

Frontend Web development follows an iterative process. The process starts with 

requirement gathering from the client. Once the requirements are finalized, a designer 

experiments with various ideas and creates low-fidelity wireframes. These wireframes 

could be drawn on paper or on design tools like Sketch and Figma. Before the 

development starts, the client usually goes through the wireframes and approves or 

recommends changes accordingly. Once the designs are approved, the developers get 

started with the implementation. Although the design was approved, constant 

feedback is taken from the client during the development to make sure the final 

product meets the expectations [16].  

There is a slightly optimized procedure followed in established tech companies. 

Most of the established tech companies develop features or products in-house. This 

means that a lot of small components are used multiple times across different web 

pages or products. In order to save engineering resources and reduce duplication of 

work, they came up with their own design systems. For e.g., Airbnb shared some 

details of their design system [15] built to make frontend development efficient. A 

design system with pre-built configurable components reduces the duplicated work 

by a huge margin. These pre-built components are packages that can be easily plugged 

and used into a new application. This gives the flexibility of reusing the same 

component with different configurations in various applications.  



  2 

 

 

1.2 Motivation 

Reusing prebuilt components reduces the development time significantly. 

Although this doesn’t eliminate the developers' involvement in prototyping the ideas 

proposed by the designers. The major drawback is that most of the ideas get scrapped 

by the client after the prototyping phase. Engineering time could be better used for 

making small tweaks if needed and implementing the necessary functionalities. Hence 

the proposed approach helps in reducing the developer's involvement in the 

prototyping phase. The ability to transform the image design into a web page instantly 

gives a lot of power to the designers. Along with that, it gives the designers a lot more 

flexibility to work with more ideas and get feedback from the client by sharing a real 

webpage.  

Some of the companies like Airbnb [1] have a prebuilt component libraries with 

their own design language system, allowing engineers to quickly convert mock-ups 

into functional websites. Hence, the objective of this thesis is to eliminate the manual 

transformation of mock-ups into code. This goal is easier to accomplish when the 

mock-ups use a predefined set of components from the component library. 

 

1.3 Problem Statement 

There are various approaches to solving this problem. Much research has followed 

a computer vision approach. The drawback of using a Computer Vision approach is 

it detects the UI element using contour detection. The contour detection algorithm 

works in a defined environment and could fail even if the design changes a slightly 
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small feature of a particular element. Extracting elements using contour detection 

gives a list of elements unordered. The contour detection algorithm doesn’t maintain 

the layout of the element. To be able to use the auto-generated code as a starter app, 

the layout needs to be well structured. Otherwise making any edits to the code would 

be difficult and unpredictable. Even if it detects the UI elements correctly, extracting 

all the details of the individual component requires another Optical character 

recognition (OCR) step. This would require a constant update of the algorithm if any 

new components are added and any changes are made to an existing component type. 

It is also a very tedious task to implement contour detection to all types of UI elements 

individually. Each UI element requires some unique feature to be distinguished from 

the others. Although this approach would give the output accurately for a certain type 

of GUI interface, it would fail to scale to new elements regularly and easily.  

Hence the proposed solution focuses on generating the layout instead of styling 

the individual components. The styling is handled by using prebuilt components 

which come with default styles. Once developers get a starter code with correctly 

defined layouts and prebuilt components, making any changes or customizing 

becomes very quick. 

 

1.4 Contribution 

This research focuses on the generation of intermediate domain-specific language 

(DSL) from an image design and compiling it into a react code. The Domain Specific 

Language (DSL) represents the nested structure of elements, where each token maps 

to a prebuilt React component with the default configuration. The compiler transforms 
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each token into its corresponding React component, maintaining the layout of the 

components. 

During this time of research, only one dataset, open-sourced by pix2code [2] was 

available. This dataset contained 1750 GUI image designs, each with a corresponding 

intermediate code. The intermediate code had a sequence of tokens describing the 

GUI image design. The vocabulary size of these tokens was limited to only 19. 

Therefore, a methodology was devised to reverse engineer this dataset and expand its 

size by including more HTML components. This research discusses both the dataset 

and the methodology used for this expansion. 

 



  5 

CHAPTER 2 

 

LITERATURE REVIEW 

Although there isn’t a lot of research done in the field of automating front-end 

development, there are a few popular papers that discuss different methodologies for 

making the front-end development process more efficient.  

 

2.1 Programming by Demonstration (PBD) 

Programming by demonstration (PBD) is a technique where the designers can 

create an end-to-end flow of mock-up designs. One of the earliest research was done by 

James A Landay and Brad A Myers [11] in which they proposed the tool SILK, which 

stands for Sketching Interfaces Like Krazy. This research focused on making the design 

process more efficient. SILK could detect gestures and recognize widgets (Figure 1). 

Also, it provided various gestures for common actions like copying and grouping. For 

recognizing the widget from gestures/drawings, the engine used Rubine’s gesture 

recognition algorithm [12].  

 

Figure 1: Gesture for cycling, deleting moving, copying and grouping. Data Source: 

Landay, J.A. (1995). Interactive sketching for user interface design. In CHI '95 

Conference Companion on Human Factors in Computing Systems (pp. 47). 
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SILK was one of the earliest examples of Programming-by-demonstration (PBD). 

This was introduced in SILK as a behaviour mode where the designers could play around 

with the layout and structure of the interface. The final design included flows where you 

could navigate between screens by clicking buttons/links. This is very similar to how a 

user would navigate through a website. Programming-by-demonstration gave non-

programmers a good tool to create mock-up designs that demonstrated the end-to-end 

behaviour of a real website. While the mock-up requires the installation of a separate 

application for the client to access, it may not provide the full experience of a fully 

functioning website preview. 

 

2.2 Heuristic Methodologies 

 Heuristic methodologies uses simplified strategies and approximations to extract 

HTML components using contour detection.   

 

Figure 2: High-level process overview, executed in a sequential order. [Live Web 

prototype from hand-drawn mock-ups] 

 

 

One of the research done was extracting components from a Graphical User 

Interface design and classifying them into respective elements using heuristic methods 
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[13]. This approach uses Image processing techniques to extract various component 

positions for a mobile-based application (Figure 2) and create a nested JSON structure. 

It first detects all the texts in the image using canny edge detection and masks the text. 

Once the texts are masked, it detects common components like Buttons, Inputs, Text 

Views, etc using Contour detection techniques. After detecting the common 

components, it is classified into specific UI component types using a Machine Learning 

classification model. The next step following the determination of the User Interface 

(UI) element type is extracting details like text, font type, font size, etc. This is achieved 

using the Optical Character Recognition (OCR) algorithm.  It is finally processed and 

compiled into a nested JSON structure (Figure 3) which holds all the necessary meta-

information relevant to each component along and the component structure.  

 

Figure 3. Nested component structure of website GUI 
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In the final step, the JSON is parsed and compiled into HTML and CSS. This 

procedure highly depends on contour detection and works well only for predefined types 

of UI elements. A slight change in the Sketch Image design might incorrectly detect 

different contours. For e.g. buttons have various border radii, and detecting contours 

with all the variations using Image processing would be a challenging task. Hence this 

process of Image processing and classification, followed by a compiler is not a very 

flexible approach. 

 Style-aware sketch-to-code [7] provides a methodology similar to the 

Extraction and segmentation of graphical user interfaces (Figure 4).  

 

Figure 4: Pipeline processing steps executed sequentially. [Extraction and Classification 

of User Interface Components from an Image. International Journal of Pure and Applied 

Mathematics] 

 

It solves the problem in a 3-step process. First, extract components from the image, 

Second, extract styles from each component. Finally, convert the component into an 

HTML and CSS code. To segment each component into categories, computer vision 

algorithms are used. It detects various types of Graphical User Interface elements like 

buttons, navbars, etc. Once the type of the component is determined, colour extraction 

and text extraction are done to get more details about the component. Finally, the 

extracted component features are given as input to a Multi-headed VGG Convolutional 
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Network. The positional details and the output of the network are used to generate the 

final code.  

 Heuristic methodology used for extracting HTML elements from design 

image primary relies on computer vision contour detection algorithms which can be 

unreliable in certain situations. For instance, with more complex HTML elements or 

gradients, contour detection can result in mismatch between different components. For 

example, a text button could be misidentified as a plain text because geometrically both 

have text without a bounding box. As a result, it is important to consider the limitations 

of this approach and potentially supplement it with other techniques to improve 

reliability. 

 

2.3 Machine Learning methodologies 

The state of the art changed completely when Airbnb introduced an internal tool 

for generating code from low-fidelity wireframes. So far the research done in this field 

was academic with little to no practical adaptation of it. Although Airbnb didn’t open 

source any implementation details or the dataset, they released an article with a 

prototype of the system which could create React code from hand-drawn wireframes.  

Most of the top tech companies have their own User Interface (UI) design systems 

(Figure 5). These design systems are followed to keep the consistency in the theme and 

the design across various apps on different platforms. Also, many times the designers 

are experimenting with different layouts for a new idea, and prototyping each layout 

from a developer is a costly and time-consuming process. Also, designing the same 

wireframe on a design tool like a sketch is a cumbersome and repetitive task. They 
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automated the process of hand-drawn wireframe to a prototype in react using an open-

source machine learning algorithm. The total number of common components Airbnb 

had in its design system at that time was 150. The project is still an ongoing exploration 

and has a good potential of creating a commercial tool that could assist all the front-end 

developers to prototype faster. 

 

Figure 5: Airbnb Design System. 

 

 

 One of the major problems in this field of study is the scarcity of open source 

datasets. Even Airbnb hasn't open-sourced the dataset. One of the major contributions 

done by Tony Betranelli in his research of pix2code [2] was creating and open-sourcing 

a synthetic dataset. The dataset has about 1750 images of Graphical user interface 

images and corresponding intermediate code which represents the component structure 

in the image. pix2code uses an Image captioning approach where GUI screenshots are 

the inputs and the intermediate code (Figure 6) is predicted similar to caption generation. 
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Figure 6: Overview of the pix2code model architecture. [arXiv:1705.07962 [cs.LG]] 

 

This methodology first extracts all the features from an Image using layers of 

Convolutional Neural networks and then a Long Short term model to predict tokens that 

represent the intermediate code. 3 different datasets were contributed by Tony Betranelli 

from his research, each targeting different platforms i.e. web, IOS, and android. All the 

datasets have a similar intermediate language format. The native code is generated by a 

compiler for the respective platforms. Instead of using the actual HTML tags, the dataset 

has 1750 images which coverts 19 types of HTML elements. This was done so that the 

model could be trained easily because HTML elements usually have an opening and a 

closing tag which is kind of redundant for an ML model and increases complexity. The 

CNN layers and the one hot encoded tokens of the language model are given as inputs 

to the encoder. The LSTM (Figure 6) model is the decoder that predicts the next token 

for the corresponding input image and the input sequence of tokens.  

One other research work built on top of pix2code [2] was Transforming hand-

drawn (Figure 7) wireframes into Front end code [7]. The motivation for this work was 

to simplify the design process for graphic designers, enabling them to create frontend 

code from hand-drawn sketches. Building on the success of generating HTML and CSS 
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code from screenshots, the authors sought to extend the capabilities of the model to 

include hand-drawn sketches. To accomplish this, a modified version of pix2code 

(Figure 8) dataset was utilized. 

 

Figure 7: Representation of a hand-drawn user interface design for a website 

[Transforming hand drawn wireframes into front-end code with deep learning," 

Computers, Materials & Continua, vol. 72, no.3,pp. 4306] 

 

As you can see the layout could be easily inferred from the image. Hence this 

becomes an input to the CNN which extracts all the features along with a language model. 

The rest of the process is pretty similar to the encoder-decoder model used by pix2code.  

Another research done by Noah Gundotra was code2pix [6] which was the reverse 

of what pix2code had achieved. Code2Pix [6] proposed a methodology to generate a 

graphical user interface from an intermediate language in text format. The Idea of 

code2pix was suggested by Tony (creator of pix2code) to complete the GAN architecture 

(Figure 7) where pix2code is the generator and code2pix is the discriminator. code2pix 
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essentially works like a web browser. Similar to a browser, code2pix parses the code to 

generate a visual representation. The difference to note is browser renders the elements 

based on predefined rules whereas code2pix achieves a similar result with a deep learning 

model. 

 

Figure 8: Pix2Code GAN architecture. [code2pix] 

 

The benefit of having a deep learning model for this is it could propagate error 

signals to improve the renderer without the addition of a new set of rules which is a 

cumbersome task in a normal renderer. This methodology trains an autoencoder which 

also serves as an image decoder. The standard autoencoders were not producing the 

desired result in this case. Hence code2pix created a new architecture called the multi-

headed model which world well with all the different types of datasets created by Tony 

in the pix2code project.  

Pix2code is a powerful tool that can convert an image design into an HTML page 

with a small dataset. However, it has some limitations, as it does not support popular 

frameworks like React or Angular, and its implementation is not easily extendable. To 

overcome these challenges and create a machine learning system that can generate 

functional website GUI code in React. Two methodologies are discussed in this thesis: 
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first, the technique to generate synthetic dataset (Chapter 3) and second, the methodology 

used to transform images into React application (Chapter 5). 
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CHAPTER 3 

DATASET 

This chapter provides an overview of the existing dataset and proposes an approach for 

its expansion. 

3.1   Pix2code dataset 

The Pix2code [2] dataset open-sourced by Tony Betranelli was used as a starting 

point for our research. Pix2code has a dataset for IOS, Android, and the web. For each 

platform, there are 1750 images of GUI interfaces and corresponding Domain Specific 

language (DSL). Since the scope of our research was limited to the web, the dataset size 

was 1750. The input is an GUI image design (Figure 9) with various HTML elements 

with an intermediate code in the form of domain specific language (DSL). 

 

Figure 9: GUI Image design 
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Figure 10: Representation of Domain Specific language 

 

  The important detail in the domain specific language is that the it has a 

nested structure (Figure 10) that holds the layout of the image design. For e.g., The header 

has 4 buttons with one active and others inactive. Similarly, the second row holds two 

containers with 3 leaf components. This output could be parsed and compiled into a final 

front-end code.  

 The vocab size of the dataset is 19. An RNN/LSTM model takes partial sequence 

as part of the input and predicts the next token. Hence if each image is sampled into 60 

sequences of tokens. The total size of the dataset is 1750*60 = 1,05,000. Apart from the 19 

tokens of the vocab, the training is prepended and appended with start and end tokens. The 

start and the end token are used to make first prediction and terminate the program 
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respectively. A prediction of an end token by the Long Short-term model (LSTM) signifies 

that all the necessary information has been retrieved from the Inputs.  

 

3.2 Motivation to expand pix2code dataset. 

 Pix2code dataset size was small, and it had only simple HTML elements. Hence, 

it managed to achieve an accuracy of 99%. At the time of this research, no other dataset 

was available. Rather than generating a completely new dataset from scratch, it was 

decided to expand the existing Pix2code dataset by incorporating more complex HTML 

elements. This approach was preferred due to the already established good structure of 

Pix2code, which ultimately saves time and effort.  

 

3.3 Reverse engineering pix2code dataset 

 To expand the dataset, the initial step was creating a mechanism to regenerate the 

Pix2code dataset. A methodology (Figure 11) was devised to capture all the necessary 

information for inputs and outputs of a single GUI design into a JSON format. Although 

contour detection is considered unreliable, it was utilized to reverse engineer the Pix2code 

dataset since it only contains low-complexity elements. The sole purpose of contour 

detection in this context was to extract all the elements from the image design, which is a 

limited case for the Pix2code dataset.  
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Figure 11: Input Image and Intermediate Code to Structured JSON 

 

The data conversion from image and intermediate code to JSON is a two-step process 

1. Extract all the GUI elements from the input image. 

2. Parse through the DSL and store the details in a nested JSON format. 

 

Step 1: Extracting GUI elements 

Computer Vision is used to clip all the components as a separate image (Figure 

12) along with the positional details. Contour detection [23] is the most preferred way to 

detect objects and localize them. To be able to find contours accurately, it is important 

that the image has only a single channel. Hence, the first step in contour detection is to 

convert the image from  BGR to grayscale. Further processing of the grayscale image is 

required to detect the borders of the object of interest. There are two popular mechanisms 

to highlight the borders of the grayscale image with white pixels.  

• Canny edge detection 

• Binary thresholding 
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Pix2code dataset has a white background which helps because thresholding step 

could be skipped the aforementioned thresholding steps and just invert the grayscale 

image and make the object of interest lighter. The find contours algorithm ignores the 

black pixel and detects contours by detecting similar-intensity pixels.  

 

 

Figure 12: Extracting GUI Elements from Input Image 

 

The feature extraction steps give a list of all the Components with their respective position 

(Figure 7). The extracted components has a list of all the HTML components with the 

positions.  
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Figure 13: Features Extracted from a GUI Image design. 

 

 

Step 2: Parse through the DSL and store the details in a nested JSON format. 

            This step generates the JSON (Figure 13) from Domain Specific Language (DSL) 

and extracted components from previous steps. The DSL structure that holds the layout 

structure and the GUI component type is parsed and mapped with the extracted components 

list from the previous step. The extracted features from the previous steps provides details 

of visual representation and the position of the respective GUI element. 

This process finally creates a nested JSON which holds all the information of the input 

image and the output DSL. The idea of reverse engineering the dataset was to be able to 

generate input and output again from the JSON. 

   With the help of the aforementioned methodology, we were able to generate 1750 JSON 

files. The next task was to create a pix2code dataset again from these JSON files and 
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compare if the generated dataset matches the original dataset. The original dataset was 

regenerated accurately which proved the feasibility of generating synthetic data from 

structured nested JSONs. Figure 14 shows a high level architecture of Data generator.  

. 

 

Figure 14: Data regeneration from JSON. 

 

 

3.4 Methodology to expand dataset. 

 From the previous step, the mechanism to create synthetic GUI image and 

intermediate Domain Specific Code (DSL) from JSON is in place. This gives the flexibility 

to add more elements by just programmatically editing or creating new components in the 
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JSON constructed in the step. As a proof of concept, several more different types of 

elements were added to the dataset. 

 

 

Figure 15: HTML Elements database 

 

 To create new datasets, an algorithm parses through all the JSON created from the 

pix2code reverse engineering step and edits/updates/adds new elements to create a new 

updated JSON. To add/edit new elements to the JSON, random HTML elements are picked 

from the database (Figure 15). The data generator creates all possible iterations to create a 
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versatile dataset. Adding more elements to the database could help in generating more data 

with complex elements. Using this methodology, the dataset size was doubled.  

 

Figure 16 New dataset input Image 

 

Figure 17: New dataset Domain Specific language. 

The structure of the Domain specific language is same as pix2code[2] dataset which is 

helpful because we could use the original pix2code dataset as well.  Figure 16 and 17 

show  example of an input image and corresponding Domain Specific Language (DSL) 
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generated with new HTML elements. The size of the synthetic dataset generated was 

3500 websites. 
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CHAPTER 4 

BACKGROUND 

 Before delving into the methodology of transforming design image to React code, 

this section provides an essential overview of relevant concepts.  

4.1 Natural Language Processing 

 Natural language processing [24] is a branch in Artificial Intelligence that focuses 

on understanding and interpreting human languages in the form of text and speech. 

Traditionally computers were designed to operate on predefined rules. Computers will 

throw errors if the program deviate from these rules. Hence, training a computer to 

understand human language is a difficult task because human language is very ambiguous. 

A Similar sentence can have different meanings depending on the context it is used. 

 Natural language processing is implemented using a combination of various 

techniques. Instead of using a collection of rules in traditional approach, Natural Language 

processing uses textual data as an input to the machine learning algorithm that creates rules 

by itself.  It combines traditional rule-based modeling with machine learning and deep 

learning models. The choice of technique or algorithm depends on the problem being 

solved.  

 

Figure 18: High level framework of an NLP application. 
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 Figure 18 illustrates that the input feature to a language mode is only a sequence of 

text which generates an output that may consist of either text or speech audio.  

 

4.2 Computer Vision 

 Computer Vision is a branch of Artificial Intelligence which works with visual 

inputs. The visual input could be an Image or a Video. The goal of computer vision is to 

train a system to be able to understand and interpret image information just like how 

humans do. Most of the human perception relies on visual input from the eyes. Therefore, 

to enable computers to perform tasks like humans, it is essential to have the capability to 

extract important information from images. This be achieved using various approaches like 

image processing and machine learning. 

 

Figure 19: Computer Vision framework which passively outputs language. Data Source 

Wiriyathammabhum, P., Summers-Stay, D., Fermüller, C., & Aloimonos, Y. (2016). 

Computer Vision and Natural Language Processing. ACM Computing Surveys (CSUR), 

49, 1 - 44. 

 

 

 Traditionally many applications used only the visual feature as an input to predict 

the attributes into classes (Figure 19). Image processing [25] involves a series of steps, with 

each step typically involving the use of different algorithms. The first step is pre-processing 
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the image. Pre-processing removes all the unnecessary information from the image, 

reduces noise and enhances the vital part of the image. Techniques such as Image 

smoothing, Image sharpening, Image normalization, Image resizing are used for pre-

processing. The next step is extracting information from the image, which may involve 

techniques such as object detection, object recognition, image segmentation, edge, or blob 

detection etc. Finally, the extracted information is used to interpret the meaning of the 

image. 

 Image processing is also used in enhancing the image apart from extracting 

features. Some of the application of image enhancements are improving image resolution, 

fixing contrast or brightness, image restoration, object detection etc.  

  

4.3 Natural Language Processing with Computer Vision 

 

Figure 20 Vision framework which uses language information as an addition input 

feature. Data Souce: Wiriyathammabhum, P., Summers-Stay, D., Fermüller, C., & 

Aloimonos, Y. (2016). Computer Vision and Natural Language Processing. ACM 

Computing Surveys (CSUR), 49, 1 
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 Natural Language processing are used in applications which involve processing text 

input, while Computer Vision is used in applications that deal with image input. However, 

there are certain applications like Image captioning that require both image and text as 

input. By combining features from both image and text data (Figure 20), more accurate 

predictions can be made. This enables to solve a wide range of problems. Some of the 

example of NLP with Computer Vision applications are Image and Video Captioning, 

Visual retrieval, visual question answering, human robot interaction, robotic actions and 

robot navigation [16].  

  

Figure 21: The 3Rs in computer vision [Computer Vision and Natural Language 

Processing. ACM Computing Surveys (CSUR)] 

 

 The 3Rs (Figure 21) proposed by Malik et al [17] which refers to Reconstruction, 

reorganization and recognition are considered as the central problem in computer vision. 
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Reconstruction involves generating the 3D model scene from one or more images. This can 

include task such as Scene reconstruction and  Structure from motion. Recognition refers 

to the process of identifying and labelling objects in an image. This can involve labelling 

both 2D and 3D objects. Examples of 2D object recognition are handwriting or face 

recognition. Reorganization means segmenting raw pixels into different classes which 

helps in extracting meaningful objects from the image. This is achieved using low level 

and high level image processing. Low level techniques are edge detection, contour 

detection and corner detection whereas High level techniques involve semantic 

segmentation into regions and assigning labels to each one. For e.g. Detecting cars, traffic 

signs, buildings, roads etc. 

 

Figure 22: Connecting the 3Rs Data Source: Wiriyathammabhum, P., Summers-Stay, D., 

Fermüller, C., & Aloimonos, Y. (2016). Computer Vision and Natural Language 

Processing. ACM Computing Surveys (CSUR), 49, 1 - 44. 
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 The scene in Fig 22 shows a man cutting an apple. In the reorganization phase, the 

raw pixels are labelled into head, sharp, cut, table, leg, on top etc. These reorganized objects 

are reconstructed into a scene with an apple, hand and a knife. The reconstructed scene is 

recognized into a sequence of text. A lot of use cases have varying length of inputs and 

outputs. These sort of use cases are solved using an encoder-decoder architecture. 

 

4.4 Encoder-Decoder architecture 

 The encoder-Decoder [29] model is a very popular mechanism to predict a 

varying length of text. For e.g. Language Translation, Image captioning, etc.  In this 

architecture, the encoder extracts features or necessary information from inputs and 

converts them into a fixed length vector. The output vector of an encoder is passed as an 

input to the decoder to predict the sequence of text describing the inputs. This is the most 

widely used architecture for most of the NLP tasks. 

 

Figure 23: Encoder-decoder architecture. Data Source: Nadeem(2021, March 10) 

Encoder-Decoder, Sequence to Sequence architecture. https://medium.com/analytics-

vidhya/encoders-decoders-sequence-to-sequence-architecture-5644efbb3392 
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 The encoder is constructed by stacking multiple RNN cells (Figure 23). Each RNN 

cell takes 2 inputs. First is the output of previous RNN cell and second is a new token from 

the sequence of inputs. For a input sequence of size n, the RNN cells are repeated n times. 

Finally, the output of the last RNN cell which holds all the information for a particular 

image and partial text. The decoder predicts the next token based on this information, one 

at a time. The input to an encoder could be image, audio, or text depending on the problem 

at hand.  

 

4.5 Recurrent Neural Network 

In a normal classification problem, there are independent input values that get 

categorized into output classes. For e.g. classifying hand-written digits.  These problems 

can be solved using a simple feed-forward neural network. In some use cases, the output 

data is a sequence of texts or time series information. For e.g. Stock value prediction, 

image captioning, etc. It is impossible and very unideal to solve these problems with a 

single feed-forward neural network.  

 The prediction for a time series data [26] is done one at a time. To predict the next 

token, it is important to have some information about the previous predictions. i.e. the 

neural network needs to have a memory of its own. A neural network with its own 

memory is a Recurrent Neural Network (Figure 24). RNN makes predictions from inputs 

and the output of the previous prediction.  
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Figure 24: Recurrent Neural Network [fdeloche, CC BY-SA 4.0 via Wikimedia 

Commons] 

 

The input to a layer is the previous state output combined with the current input 

state. Here is a mathematical representation of output at state t. 

 

                                                ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎℎℎ𝑡 − 1 + 𝑊𝑥ℎ𝑥𝑡)                                     (1) 

    𝑊ℎℎ - Weight of previous state 

𝑊𝑥ℎ - Weight of current state 

    ℎ𝑡−1 – Output from previous state 

    𝑥𝑡 – Current state input 

 

Although RNN can produce sequences of information, the major disadvantage is 

its memory. An RNN has a short memory, i.e. its output prediction depends only on the 

previous state. An RNN is also more prone to have a vanishing gradient problem. Both of 

these problems are overcome with an improvised version of an RNN called LSTM. 
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4.3 Long Short term memory (LSTM) 

 

 LSTM solves the short memory problem of an RNN model by adding a cell state. 

which is capable of learning long-term dependencies [27]. LSTM (Figure 25) models are 

called attention-based models because they pay selective attention to the output of the 

previous states and store the relevant information for future predictions. It is capable of 

finding the most relevant information from the input and deleting the irrelevant 

information. It has a lot of computation since it contains 4 units and each unit computes a 

different set of information. An LSTM model has 4 units - input gate, output gate, cell and 

forget gate.

 

Figure 25: Long Short term memory (LSTM) architecture 

 

 

Out of the four units in an LSTM layer, 3 are gates and one is a state. A State is 

where the model stores all the important information from the previous states. As shown 
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in the Figure 26, statet-1 and state are the state information at time t-1 and time t. The cell 

state information is updated after every step. 

ft is the forget gate. forget gate helps in removing the information from the 

previous state. Forget gate takes has 2 inputs 

𝑥𝑡 → input vector at time t 

𝑜𝑢𝑡𝑡−1 → output vector from the previous time (t-1) 

Dot products of these two inputs with their respective weights are added and passed 

through a sigmoid function to get the output f(t) which stores information that would help 

in removing information from the cell state. 

 
 

Figure 26: Forget gate in Long Short term memory(LSTM) 

 

 

Equation 2 represents the mathematical representation of forget gate [28]. 
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𝑓𝑡 = 𝜎 (𝑊𝑡. [𝑜𝑢𝑡𝑡 − 1, 𝑥𝑡] + 𝑏𝑓)                                    (2) 

 

Apart from the information that needs to be forgotten, we also need to add new 

information to the cell state. This information is computed in 2 parts. The first part is the 

input gate. The input gates (Figure 27) determine the input values to update. The input gate 

takes the same 2 inputs as the forget gate and is passed through a sigmoid activation 

function. 

 

Figure 27: Input gate and tanh function in LSTM 

 

 

𝑖𝑡 = 𝜎(𝑊𝑡. [𝑜𝑢𝑡𝑡 − 1, 𝑥𝑡] + 𝑏𝑖)                                               (3) 

 

 The second part uses a different activation function tanh (Figure 27). This part 

outputs the new possible candidates of information that could be added to the cell state. 
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𝑎𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑎. [𝑜𝑢𝑡𝑡−1, 𝑥𝑡] + 𝑏𝑎)                                        (4) 

 

 Both the parts combined determine the final information to add to the cell state. 

 

𝑠𝑡𝑎𝑡𝑒𝑡 = 𝑎𝑡 ∗ 𝑖𝑡 + 𝑓𝑡 ∗ 𝑠𝑡𝑎𝑡𝑒𝑡−1                                       (5) 

 

So far we have updated the cell state which holds the long-term memory 

information. The final step in the LSTM layer is to compute the output vector. The output 

vector is also a computer in two parts. The first part is the output gate which is also a 

sigmoid function of 𝑥𝑡 and 𝑜𝑢𝑡𝑡−1. The second part is to pass the cell state through the 

tanh function which distributes the values between -1 and 1. Finally, the product of the 

output gate and the tanh function gives the final output.  

 

𝑂𝑡 = 𝜎(𝑊𝑜 . [𝑜𝑢𝑡𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                                       (6) 

 

𝑜𝑢𝑡𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑠𝑡𝑎𝑡𝑒𝑡)                                                             (7) 

 

 Hence an LSTM model uses the same layer to predict the sequence of time series 

data. The only difference from  RNN is it maintains a cell state which gets updated at 

every step by a forget gate and input gates. Long Short term memory (LSTM) are 

designed to capture long term dependencies in sequential data. This long term information 

is stored in a memory cell which helps in capturing context and making more accurate 
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predictions. LSTMs are often used in an encoder-decoder architecture as both an encoder 

(capturing input sequence) and a decoder (generating output sequence). An LSTM model 

is a practical choice for the problem at hand since it requires generation of sequential data 

from an input image. 
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CHAPTER 5 

METHODOLOGY 

 

The methodology for generating react code from an image design is greatly 

influenced by the research done by Tony Betranelli in pix2code [2]. The problem of 

generating a code from an image design is similar to image captioning. In both the cases, a 

textual description of the image provided is generated by a machine learning model. Similar 

to image captioning models, an encoder-decoder model was trained on the synthetic dataset 

generated in chapter 3. 

 

5.1 High-level implementation 

 Graphical User Interface (GUI) is converted into a React App in 2 steps (Figure 

28). The first step is to generate an intermediate code that holds the structure of the GUI 

along with tokens that represent each component type. The second step is to parse through 

the generated intermediate code and create a fresh React application. 

 

Figure 28: High level implementation. 
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 The generating of intermediate code from Image design is implemented using an 

encoder-decoder architecture. This is explained in detail in later sections. 

 

Figure 29: LSTM model input and output 

 

 The dataset (Figure 29) being referred to is similar to Image captioning data, which 

is a type of dataset commonly used in computer vision tasks where an algorithm is trained 

to generate textural descriptions of an input image.  

 

5.2 Model Analysis 

 Generating textual code from an Image design is a problem similar to generating 

concise textual description from an Scene Image [20] . The standard approach to generating 

a textual information from a visual feature is using an encoder-decoder model [29]. 

Encoder-Decoder architecture have given very impressive results. Image captioning is one 

of the most popular use cases that showcase the capabilities of an Encoder-decoder model. 
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 A Convolutional Neural Network (CNN) is used to encode image features whereas 

a Recurrent Neural Network (RNN) is used to encode textual descriptions. The 2 standard 

mechanism of implementing an encoder-decoder model is Inject model and merge model 

[21]. 

 

Inject Model 

The traditional approach to generating textual information from an image uses a 

Convolution Neural Network to generate text that is relevant to the image. In Inject model 

(Figure 30), the recurrent neural network in the decoder uses both the image vector and 

text information as an input to generate the next token. Hence, compared to generating 

textual information entirely from an image, inject model uses partial textual information as 

a prefix.  

 

Figure 30: Inject Model. Data Source: Li, Y., Ouyang, W., Zhou, B., & Wang, K. (2017). 

Scene graph generation from objects, phrases and region captions. arXiv preprint 

arXiv:1708.02043. 

 

Merge Model 

 In inject model, recurrent neural network only viewed only as a generator. Merge 

model uses CNN as an image encoder and RNN as a text encoder. Merging both image and 

textual feature (Figure 31) into a multimodal layer. Encoding the image and textual features 
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separately makes sure that the RNN layer is not influenced by the CNN layer. Therefore, 

merge architecture maintains the features separately, merging them at the later stage.   

 

 

Figure 31: Merge model. Data Source: Data Source: Li, Y., Ouyang, W., Zhou, B., & 

Wang, K. (2017). Scene graph generation from objects, phrases and region captions. 

arXiv preprint arXiv:1708.02043. 

 

 In Conclusion, the merge architecture combines RNN encoded text with the visual 

features encoded separately to predict the next token, whereas Inject model encode image 

using a CNN and prefix words as an input to an RNN generator. Inject model handles more 

number of parameters since it is embedding text and image both with an RNN generator.  

 

5.3 Encoder-decoder architecture using inject model 

 The architecture used in the proposed implementation is an inject model (Figure 

32). The reason for choosing inject model over merge model is because the image and 

prefix in the problem at hand are tightly related. The image design holds the details of the 

objects present, their types and the structure. Hence the next token to be predicted highly 

depends on the caption and the image features both. 
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Figure 32: Overview of the encoder-decoder architecture used to generate Domain 

Specific language (DSL) from an image design. 

 

Vision Model 

The input image is passed through a sequence of Convolutional Neural networks. 

Based on empirical results, the number of filters used for each CNN is 64 or 128. Each 

convolution layer is followed by a pooling layer of (2,2) size. A dropout layer is added at 

the end of each convolutional neural network (CNN). Dropping few nodes in a neural 

network helps to reduce the overfitting problem. A dropout of 0.25-0.3 was used as the 
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final layer of each network. The convolutional features are finally flattened and passed 

through a couple of dense layers.  

 

Language Model 

 The Domain Specific language contains a sequence of tokens which corresponds to 

the layout of the web GUI along with the identification of the individual elements. These 

sequence of tokens are used as the input to the language model. These sequence of tokens 

are of fixed length. Based on some empirical results, both 48 and 60 gave similar results. 

The vocab size of the synthetic data created is 26. Therefore, the tokens are converted into 

one-hot encoded vectors of size 26 for each token. Language model is a stack of Long Short 

term model (LSTM) layers [2]. The image features from the Convolution neural network 

and the encoded sequence of tokens are concatenated together and passed as an input to the 

decoder. The decoder is also a stack of LSTM layers followed Dense layer using a SoftMax 

activation function. 

 

5.4 Data pre-processing 

 Dataset contains 3500 images of the GUI interface with the corresponding DSL 

intermediate code. We do an 80-20 split for training and testing. To reduce the training 

time, the input image is converted and saved into a NumPy array. While converting images 

into NumPy arrays, the image is compressed to reduce the input dimension. For an LSTM 

model, it is important to determine the length of the input sequence. While training the 

input sequence length is important so that the model trains on all different states of inputs. 

Based on the empirical experiment done by pix2code, the length of the sequence taken was 
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48. This means each data would generate 48 samples. Hence the total training sample size 

is 135k. For each data, the output is prepended with 48 dummy empty strings. The input to 

the model is the image and the partial caption. The output is the next expected token. The 

data sample for each data point is created with a sliding window algorithm where the output 

token is appended to the input partial caption to predict the next token. This process of 

predicting the next token continues until the model predicts the end token. 

To be able to terminate the LSTM model, we need a start and an end token. These 

two tokens are prepended and appended to the sequence of tokens in the output.  

 

5.5 Training 

The LSTM model has 2 inputs - a numpy image array and a one hot encoded 

sequence of partial code. The size of the partial code used was 48 based on empirical 

results and as suggested in pix2code [2] paper.  

The dataset size of 3500 Images contributes training samples of 178000. Each 

image/DSL data contributes samples size of length of tokens in DSL – 48. The input 

(image, caption) and the output (next token) is generated using a sliding window 

algorithm (Figure 31). The slice from i to i+48 from sequence list is taken as an input and 

the token at i + 48th is mapped as an output token. The same image numpy array is used 

as an input for all the samples of a particular data.  
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Figure 33: dataset for encoder-decoder model. 

  

The sequence of tokens is padded with 48 empty strings so that the initial tokens 

could also be used as an output token.   If a Domain Specific language of a particular 

design image is of length 120. That image contributes 120 samples using the sliding 

window technique.  

  The LSTM model takes two Sequential models (Figure 34) as input. Both 

sequential models are merged together to create a feature vector. 
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Figure 34: High level design of LSTM model. 

 

The visual features from the CNN model and the Sequence features from the 

LSTM Model are concatenated together to form a complete feature vector. These feature 

vectors are passed to another LSTM layer which functions as a decoder. The decoder has 

a 2 LSTM layers followed by another dense layer. SoftMax activation function is used in 

the last dense layer since the model is essentially a classification model and SoftMax is 

the most preferred activation function for classification models. 

 The model was trained over 15 epochs. Each CNN layer is followed with a pooling 

and a dropout layer [32]. This helps in reducing the number of parameters the model has 

to learn on and regularize the overfitting of the neural network. The training was done at 

a batch size of 32. The summary of the layers of the implemented model is represented in 

Figure 33. The 2 sequential models are the vision model and the language model (Figure 

35). The output of the last dense layer is 26 which corresponds to the vocab size. The 

image is downscaled to a size of 256x256. The image has 3 channels for RGB. Hence the 

size of input_1 is 256x256x3.  
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Figure 35: Model summary 

 

 

5.6 Compiler 

The compiler takes in an intermediate code (DSL) as input and transforms it into a React 

code (Figure 34).  Each token in the Domain specific language maps to a React component 

class. All the corresponding react component class [30] are prebuilt with default 

configurations. For e.g. Token nav-search maps to a React class NavSearch.js. The 

opening and closing curly braces are mapped to Container classes.   Compiler takes the 

intermediate Domain Specific Language (DSL) i.e. the sequence of tokens and transforms 

it into a JavaScript React code (Figure 36). 
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Figure 36:  Compiler 

 

 The Domain Specific Language (DSL) used is synthetically generated and is very 

lightweight. The DSL follows a row first layout. All the horizontally aligned components 

are stored inside a row tag (Figure 37). Components without a tag are assumed to be 

vertically aligned. 

 

Figure 37: Compiler Input and output for a row container 

 

 There are 2 types of tokens. The first type of tokens are the ones that stores layout 

information (Table 1) and the second type of tokens correspond to a React class (Table 

2). 
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Token Meaning 

row All the components inside are horizontally aligned 

header Navigation bar 

double 2 elements take equal width horizontally 

single 1 element take the entire width 

quadraple 4 components take equal width horizontally 

{ placeholder} Components inside an opening and closing braces are vertically 

aligned 

 

Table 1: tokens that store layout 

 

 The class labels/tokens in Table 1 are used to store the layout of elements in an 

image design. Each curly braces is prefixed by a token. This token represents whether the 

components inside are horizontally aligned or vertically aligned. There is a special token 

for header which by default is horizontally aligned.  

 

Token React class Component Image 

nav-home <NavButton> 

 

nav-dropdown <NavDropdown> 

 

nav-search <NavSearch> 
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Btn-red <Button class=”red”> 

 

Btn-green <Button class=”green”> 

 

card-charts <Card class=”charts”> 

 

   

Table 2: tokens that corresponding to components 

 

Some of the tokens that directly correspond to a React component a listed in Table 2. Most 

of these tokens are directly mapped to a React components. Some of the components like 

buttons and cards have an additional class associated since except the color or icons, the 

components have same structure. 

As represented in Figure 38, the intermediate code is essentially a sequence of 

tokens. Each token separated by space or a new line has its own meaning (Table 1 and 

Table 2). The token either signifies a layout or a particular HTML element. The compiler 

is a recursive function that takes in the sequence of tokens and recalls itself for each token 

that represents the layout until it reaches a leaf node. 
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Figure 38: Input to the compiler 

 

A leaf node is the token that represents the actual HTML element. One of the 

issues to generate a React code is it has a starting and an ending tag. The compiler was 

implemented to accommodate this. An example output of the compiler is shown in 

Listing 1.  

 

<RowContainer className="row-wrapper"> 

      <NavHeader> 

        <NavButton>Home</NavButton> 

        <NavButton>Link</NavButton> 

        <NavSearch></NavSearch> 

      </NavHeader> 

      <RowContainer className="row-wrapper"> 

        <RowContainer className="flex-row"> 

          <RowContainer className="flex-column"> 

            <LoginOnImage></LoginOnImage> 

          </RowContainer> 
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        </RowContainer> 

        <RowContainer className="row-wrapper"> 

          <RowContainer className="flex-row"> 

            <RowContainer className="flex-row"> 

              <RowContainer className="flex-column"> 

                <SmallTitle>Ddsfaybhd</SmallTitle> 

                <Text>fnae draogdsf fasdfe gffdgf xcvfdn fesdfkd</Text> 

                <Button class="orange">uiedncids</Button> 

              </RowContainer> 

            </RowContainer> 

            <RowContainer className="flex-row"> 

              <RowContainer className="flex-column"> 

                <SmallTitle>Ddsfaybhd</SmallTitle> 

                <Text>fnae draogdsf fasdfe gffdgf xcvfdn fesdfkd</Text> 

                <Button class="orange">uiedncids</Button> 

              </RowContainer> 

            </RowContainer> 

          </RowContainer> 

          <RowContainer className="row-wrapper"> 

            <RowContainer className="flex-row"> 

              <RowContainer className="flex-row"> 

                <RowContainer className="flex-column"> 

                  <Card class="forms"></Card> 

                </RowContainer> 

              </RowContainer> 

              <RowContainer className="flex-row"> 

                <RowContainer className="flex-column"> 

                  <Card class="grids"></Card> 

                </RowContainer> 

              </RowContainer> 

              <RowContainer className="flex-row"> 

                <RowContainer className="flex-column"> 

                  <Card class="charts"></Card> 

                </RowContainer> 

              </RowContainer> 

              <RowContainer className="flex-row"> 
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                <RowContainer className="flex-column"> 

                  <Card class="controls"></Card> 

                </RowContainer> 

              </RowContainer> 

            </RowContainer> 

          </RowContainer> 

        </RowContainer> 

      </RowContainer> 

    </RowContainer> 

 

Listing 1:  Compiler output react code 

 

 The domain specific code has curly braces as a token that holds the nested 

structure of the elements in the GUI Image design. These curly braces gets transformed 

into Row Container with start and end tags. The prefix token before the curly braces 

determines the styling applied to the row container. The token row gets transformed into 

Row Container with flex-row as the styling class. The text used in components like Small 

title and text is a dummy text. The focus of this thesis was to generate the layout with 

correct identification of the components which was achieved. The compiler creates same 

component for similar tokens like buttons and card. The different buttons and class are 

distinguished by the class style added to those components. The limitation of the 

implemented compiler is that it works only for a single page application and generates the 

structure as a single JavaScript file. For more complex designs, the compiler architecture 

could be improved to generate smaller react components to generate a more manageable 

and easily editable code. 
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CHAPTER 6 

RESULTS 

 

6.1 LSTM Model evaluation 

 A recurrent neural network is essentially a classification model that feeds the output 

back as an input.  Figure 39 shows the distribution of class labels in the Domain Specific 

Language (DSL) corresponding to a set 200 image designs used in the validation dataset.  

 

Figure 39: Frequency of class labels in validation data 

 

There were two contributions in this research. The first one is an enhanced dataset 

which had 3500 image designs with corresponding Intermediate Domain Specific Code 

(DSL). A pipeline was proposed to generate more synthetic dataset. The other part of the 
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research was using the generated dataset to train an LSTM model. This trained model had 

an accuracy of 96.7%. Feature extraction from the images was done without using any 

pretrained models.   The CNN model was trained with the new generated dataset. In this 

research, we have used greedy algorithm for token prediction. It could be optimized further 

with beam search [31] and argmax methods.  

 

 

Figure 40: Accuracy after every epoch 

 

Validation accuracy (Figure 40) is slightly higher in every epoch because the model 

has few dropout layers in the Convolutional Neural Network layers. This dropout layers 

drops few key features while training which is not the case during validation. After 15 

epochs the accuracy of the model was 96%.  
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Figure 41: Training loss after every epoch 

 

 From epoch 12 to 15, the loss reached its global minima (Figure 41). The first few 

epochs indicate that the model trained very quickly. This is because some of the class 

labels are easier to learn like headers, Containers, home button etc. Other classes like 

various types of buttons, cards are the ones that required more training epochs. 

The model has a Receiver Operating Character area under curve (ROC AUC) of 

0.96 (Figure 42). Accuracy signifies what percentage of the predictions were accurate but 

ignores the probabilities of the output layer. An ROC AUC curves signifies the 

confidence of a Neural Network model in distinguishing between classes. 

The mean Average Accuracy (mAP) of individual class varies from 87-100%. 

The dataset used for training is synthetic and lightweight. The model can distinguish all 
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the elements with good accuracy except the different buttons. This is probably because 

buttons have similar shape and size in the synthetic data. 

 

Figure 42:  micro average ROC AUC Curve 

 

The only difference is the background colour. Some of the elements like nav-home, 

container text, carousels have a very high accuracy because they occur more frequently in 

the synthetic dataset. There are also some limitations in the variations in some of the 

elements like Navigation home.  

 Determining the mean average precision (mAP) for individual class elements is an 

essential metric in determining the performance of the model. Table 3 shows the 
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performance of the model in terms of how accurate it is in classifying various types of 

elements.  

 

Element Ground-truth True Positive False Positive mAP (%) 

Btn-active 42 40 4 95 

Btn-inactive 144 141 7 97.6 

Nav-home 175 175 0 100 

Nav-link 238 213 10 90 

Nav-dropdown 189 179 21 95 

Nav-search 86 86 4 100 

Container 1605 1605 0 100 

Small-title 351 349 5 99 

text 349 349 0 100 

Btn-red 141 123 0 87 

Btn-orange 106 95 14 90 

Btn-green 123 118 27 93 

carousel 66 66 0 100 

Card-charts 152 151 0 99 

Card-grids 152 151 2 99 

Card-forms 152 145 0 95 

Card-controls 152 151 7 99 

 

Table 3:  mAP (%) for each output class 
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Precision, recall and f1 score (Table 4) are measured for a validation dataset size of 200 

image designs. Components like nav-home, small-title, text, carousel gave a very high 

accuracy. This is potentially because each of these elements had an evident distinctive 

property. For e.g., carousels take entire width with 4 dotted items. On the other hand, 

elements like buttons had a low accuracy since geometrically all the buttons had same 

features and the only distinguishing factor was the background color.  

 

Element Precision Recall F1 Score 

Btn-active 0.98 0.96 0.95 

Btn-inactive 0.97 0.95 0.96 

Nav-home 1 1 1 

Nav-link 0.95 0.89 0.92 

Nav-dropdown 0.89 0.94 0.92 

Nav-search 0.95 0.98 0.97 

Small-title 0.99 1 0.99 

text 0.99 1 0.99 

Btn-red 0.87 0.82 0.84 

Btn-orange 0.90 0.92 0.90 

Btn-green 0.94 0.97 0.95 

carousel 1 1 1 

Card-charts 0.99 0.98 0.98 
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Card-grids 0.97 0.98 0.98 

Card-forms 0.96 0.95 0.97 

Card-controls 0.95 0.99 0.97 

 

Table 4: Precision, Recall and f1score for each output class 

  

 The inspiration of this topic was pix2code [2]. The methodology proposed is greatly 

influenced by pix2code implementation with enhanced dataset. Pix2code dataset had 19 

labels with only few html elements. In this thesis, the enhanced dataset has 26 labels with 

more complication elements like cards, login forms, icons, carousel etc. General 

comparison between the results of implemented approach and pix2code results (Table 4) 

is listed.  

 Pix2code Pics2React 

Vocab size 19 26 

Accuracy 0.99 0.96 

loss 0.02 0.07 

Compiles to Pure Html CSS React Application 

 

 Table 5: Comparing pix2code results with current results. 
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6.2 Visual Comparison 

Comparing the input image and the generated website visually is a crucial factor in 

evaluation the task at hand. To facilitate this comparison, three example of GUI Image 

designs were selected. Each example includes two images: the first one marked as (A) 

depicts the ground truth of GUI image design that was used as an input, and the second one 

shows a snapshot of the actual results of a functional website generated using the proposed 

methodology. 

 

Example I 

In this example, the selected GUI Image design include login forms, cards with icons, 

dropdowns, and buttons. The header elements, including navigation home, dropdown and 

link were accurately predicted, except for the orange button, which was predicted as green. 

The other elements like login form and cards were correctly predicted. 

 

 

Figure 43(A) Ground truth of GUI Image design. 
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Figure 43(B) Actual Result for GUI Image design. 

 

Example II 

 

In this example, the input image design includes several elements such as a search bar, 

carousel, cards with icons, and buttons. The carousels and search bar were accurately 

predicted, demonstrating the proposed methodology's capability to locate and identify 

various HTML elements. 



  63 

 
 

Figure 44 (A) Ground truth of GUI Image design. 

 

Figure 44 (B) Actual Results of GUI Image design. 

 

 

 

Example III 

 

Another example taken to examine the model’s capability to distinguish between 

different types of buttons. The model gave positive results and detected all variations of 
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the button accurately. These findings indicate that the model can distinguish between 

different types of buttons even if the shape and size are same, except for a different 

background colour. 

 

Figure 45 (A) Ground Truth of GUI Image. 

 

Figure 45 (B) Actual Results of GUI Image design.  
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CHAPTER 7 

CONCLUSION 

 

 Generating a low-level frontend code from an Image design is a challenging 

problem that is further complicated by the fact that low-level frontend code can vary across 

different frameworks. To address this challenge, an intermediate code that represents the 

image design is used which makes the implementation framework agnostic. This 

intermediate code can then be compiled into any framework of choice. However, 

availability of a good dataset is a prominent obstacle to automate this task. Fortunately, 

synthetic datasets can be generated for this purpose. This thesis utilized a relatively small 

synthetically generated dataset, and a pipeline was proposed for generating more complex 

dataset. This pipeline requires minimal manual intervention is required for adding more 

complex elements with the proposed data generation pipeline. However, one drawbacks of 

the proposed solution are that it doesn’t extract pixel perfect details from the design image, 

resulting in some differences in height, width, and positions. Nonetheless, the project aims 

to give the developer a very good starting point of the website which requires minimal 

tweaks.  This approach would work well with libraries like bootstrap which has a good 

database of component libraries.  
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CHAPTER 8 

FUTURE WORK 

 

 The project focuses on both generating new synthetic dataset and using it to 

automate the generation of web GUI. The dataset generated using this pipeline has limited 

number of elements. A more complicated dataset could be generated and trained using the 

proposed methodology. The current dataset focuses on basic website layout. A new dataset 

with nested structures which has more html elements like checkboxes, radio buttons and 

different themes could be generated.  

 The LSTM model follows a greedy approach to make predictions. i.e., it selects the 

class with maximum probability at each time step. This could be improved using a beam 

search which keeps record of multiple possible classes and picks the most relevant one 

based on future predictions.  

 In this thesis, the algorithm focuses on implementing a single page application 

which generates a react app from scratch. This could be improved by adding GUI 

generation for multiple pages and linking them together. Linking multiple pages together 

is a challenging task. One possible solution is to use a dataset with folder structures and 

filenames which could be used in the compiler to link various pages into a single react 

application. Linking between pages could be done by following a folder naming convention 

where the folder is named with the token used in the intermediate code. For multiple 

occurrences of the same token, the folder name could be appended with a sequence number. 
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