
Robust and Controllable Generative Models

by Leveraging Physics-Based, Probabilistic, and Geometric Methods

by

Rajhans Singh

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved August 2023 by the
Graduate Supervisory Committee:

Pavan Turaga, Chair
Suren Jayasuriya

Visar Berisha
Pooyan Fazli

ARIZONA STATE UNIVERSITY

December 2023

ABSTRACT

Generative models are deep neural network-based models trained to learn the

underlying distribution of a dataset. Once trained, these models can be used to

sample novel data points from this distribution. Their impressive capabilities have

been manifested in various generative tasks, encompassing areas like image-to-image

translation, style transfer, image editing, and more.

One notable application of generative models is data augmentation, aimed at

expanding and diversifying the training dataset to augment the performance of deep

learning models for a downstream task. Generative models can be used to create

new samples similar to the original data but with different variations and properties

that are difficult to capture with traditional data augmentation techniques. However,

the quality, diversity, and controllability of the shape and structure of the generated

samples from these models are often directly proportional to the size and diversity

of the training dataset. A more extensive and diverse training dataset allows the

generative model to capture overall structures present in the data and generate more

diverse and realistic-looking samples.

In this dissertation, I present innovative methods designed to enhance the robust-

ness and controllability of generative models, drawing upon physics-based, probabilistic,

and geometric techniques. These methods help improve the generalization and control-

lability of the generative model without necessarily relying on large training datasets.

I enhance the robustness of generative models by integrating classical geometric

moments for shape awareness and minimizing trainable parameters. Additionally, I

employ non-parametric priors for the generative model’s latent space through basic

probability and optimization methods to improve the fidelity of interpolated images. I

adopt a hybrid approach to address domain-specific challenges with limited data and

controllability, combining physics-based rendering with generative models for more

i

realistic results.

These approaches are particularly relevant in industrial settings, where the training

datasets are small and class imbalance is common. Through extensive experiments

on various datasets, I demonstrate the effectiveness of the proposed methods over

conventional approaches.

ii

ACKNOWLEDGMENTS

This dissertation is heartily dedicated to the invaluable individuals who have been

integral to my journey. Without their unwavering guidance, encouragement, and

support, the realization of this dissertation would not have been conceivable.

I am grateful to my primary Ph.D. advisor, Dr. Pavan Turaga. Their mentorship

has been a beacon guiding my academic voyage, illuminating the path with their

profound wisdom and insightful guidance. Their astute understanding of research

intricacies and unwavering dedication to scholarly excellence has been nothing short

of instrumental in shaping my doctoral journey. Moreover, their invaluable support

extended beyond academics and into my professional development. For this, I am

eternally grateful.

I sincerely thank Dr. Suren Jayasuriya, Dr. Visar Berisha, and Dr. Pooyan Fazli

for serving as my committee members. Your helpful insights, feedback, and advice

have significantly enhanced my dissertation. I am fortunate to have learned from

your rich expertise, and I sincerely appreciate the time and effort you’ve invested in

reviewing and steering my work. Your support has been pivotal to my journey.

I want to thank the senior members of the Geometric Media Lab (GML): Dr.

Kuldeep Kulkarni, Dr. Suhas Lohit, Dr. Ankita Shukla, and Dr. Anirudh Som. Your

guidance and help have been significant to me. I also want to thank my labmates,

Dr. Kowshik Thopalli, Dr. Hongjun Choi, Eunsom Jeon, Sinjini Mitra, and Niccolò

Meniconi. Our discussions, team projects, and friendships made my time in the lab a

great experience. To all of you, I’m grateful. You’ve helped me learn and grow and

made the lab a good place to work.

I want to say a big thank you to all my mentors at Intel and PNNL. I had great

summer internships there. I learned a lot from Dr. Martin Braun, Dr. Ravi Garg,

Dr. Nital Patel, Dr. Yehia Ibrahim, and Dr. Joon Yong. Working with them was a

iii

great experience. They helped me get the necessary industry experience that I really

appreciate.

Lastly, but most importantly, I want to say thank you to my parents, Gayatri Devi

and Janmejay Singh. They have sacrificed so much and always believed in me. I’m

so grateful for their love and support. I also want to thank all my siblings and other

family members. Their encouragement has always pushed me forward. I couldn’t have

done this without all of you.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1.1 A Hybrid Physics and Deep-learning Based Approach 2

1.2 Non-parametric Prior for Latent Space . 2

1.3 Geometric Moments Based Discriminative Model 3

1.4 Geometric Moments Based Generator Model . 4

2 GENERATIVE ADVERSARIAL NETWORK . 6

2.1 Introduction . 6

2.2 Basic Concept and Theory . 7

2.3 Evaluation Metrics . 13

2.4 Challenges . 14

3 A HYBRID PHYSICS AND DEEP-LEARNING BASED APPROACH

FOR SYNTHETIC DEFECT GENERATION . 16

3.1 Introduction . 16

3.2 Problem Setup . 19

3.2.1 Dataset Details . 19

3.3 Proposed Method . 21

3.3.1 GAN Models for Synthetic Defects . 21

3.3.2 Hybrid Model for Synthetic Defect . 23

3.4 Experiments and Results . 28

3.4.1 Synthetic Defects from GAN . 28

v

CHAPTER Page

3.4.2 Synthetic Defects from Rendering . 33

3.4.3 Discussion . 39

3.5 Conclusion . 40

4 NON-PARAMETRIC PRIOR FOR IMPROVED INTERPOLATION . . . 41

4.1 Introduction . 41

4.2 Background and Related Work. 43

4.3 Design of Non-parametric Priors for GANs . 45

4.3.1 Searching for the Optimal Prior Distribution 47

4.3.2 Optimization Problem for Interpolation Priors 48

4.4 Experiments and Results . 54

4.5 Conclusions . 60

5 IMPROVING SHAPE AWARENESS AND INTERPRETABILITY IN

DEEP NETWORKS USING GEOMETRIC MOMENTS 61

5.1 Introduction . 61

5.2 Geometric Moment . 63

5.3 Deep Geometric Moments . 65

5.3.1 DGM Classification Model . 68

5.4 Experimental Results . 70

5.4.1 How Many Levels Do We Need?. 70

5.4.2 Comparison with Baseline ResNet Model 72

5.4.3 Comparison with Standard ResNet Model 74

5.4.4 Feature Visualization . 75

5.4.5 Finetuning . 77

5.4.6 Performance under Color Distortion . 77

vi

CHAPTER Page

5.4.7 Semantic Image Segmentation . 78

5.5 Conclusion . 80

6 POLYNOMIAL IMPLICIT NEURAL REPRESENTATIONS FOR LARGE

DIVERSE DATASETS. 81

6.1 Introduction . 81

6.2 Related Work . 83

6.3 Method . 86

6.4 Experiments . 89

6.4.1 Quantitative Results . 91

6.4.2 Qualitative Results . 92

6.4.3 Discussion . 104

6.5 Conclusion . 104

7 DISCUSSION AND FUTURE WORK . 106

7.1 Future Work . 108

REFERENCES . 111

vii

LIST OF TABLES

Table Page

3.1 Number of Images per Defect Type in Training and Test Datasets. 20

3.2 Performance Comparison of FM Classification Model Trained on a)

Only Real b) Synthetic with Random Spline FM, c) Synthetic with

Spline Shape Matching Real FM Images, and Tested on Real FM Images. 25

3.3 Performance Comparison of Defect Detection System Trained on Dif-

ferent Datasets. 31

3.4 Iteration Taken by Defect Detection Model Trained on Different Datasets

to Converge to Maximum Test Performance. 32

3.5 Performance Comparison of FM Classification Model with Varying

Number of Training Images. We Observe That with Fewer Real Training

FM Images, the Model Trained Using Real + Rendered Dataset Provides

a Gain of ∼ 8% (See 4th Row). 36

3.6 Performance Comparison of Epoxy Classification Model with Varying

Number of Training Images. The Model Trained Using Real + Rendered

Dataset Provides a Gain of ∼ 4% Compared to the Model Trained Only

on the Real Epoxy Defects (See 4th Row). 38

4.1 KL-divergence Between Prior and Mid-point Distribution. 53

4.2 Comparison of IS and FID Scores for Different Prior Distributions on

CelebA Dataset with d = 100. 57

4.3 Comparison of IS and FID Scores for Different Prior Distributions on

CelebA Dataset with d = 200. 58

4.4 Comparison of IS and FID Scores for Different Prior Distributions on

CIFAR10 Dataset with d = 100. 58

viii

Table Page

4.5 Comparison of IS and FID Scores with Different Prior Distributions on

LSUN Bedroom Dataset with d = 100. 59

4.6 Comparison of IS and FID Scores with Different Prior Distributions on

LSUN Kitchen Dataset with d = 100. 59

5.1 Performance Comparison of DGM Model with Increasing Levels on

CIFAR Datasets. 71

5.2 Performance Comparison of Proposed DGM Model and Baseline ResNet

Model (Without Pooling Layers) on CIFAR Datasets. 72

5.3 Performance Comparison of Proposed DGM Model with Baseline

ResNet Model (Without Pooling Layers) on ImageNet Dataset. 72

5.4 Performance Improvements of DGM Models over Standard ResNet

Model (with Pooling Layers) on CIFAR Datasets. 74

5.5 Performance Comparison of DGM Model with Standard ResNet Model

(with Pooling Layers) on ImageNet Dataset. 74

5.6 Classification Performance on Fine-tuning of Pre-trained ImageNet

DGM Model on CIFAR Datasets. 78

5.7 Mean Corruption Error (mCE) Comparison of DGM with Standard

ResNet Model on ImageNet-C Dataset. 78

5.8 Semantic Segmentation Perfomance on PASCAL VOC 2012 [29] and

Cityscapes [20] Val Set in Terms of Mean Intersection over Union (mIoU). 80

6.1 Quantitative Comparison of Poly-INR Method with CNN-based Gen-

erative Models on ImageNet Datasets. (d) Compares the Number of

Parameters Used in All Models at Various Resolutions. The Results

for Existing Methods Are Quoted from the StyleGAN-XL Paper. 89

ix

Table Page

6.2 Quantitative Comparison of Poly-INR Method with CNN and INR-

based Generative Models on FFHQ Dataset at 256 × 256. 90

6.3 FID Score (Lower the Better) Evaluated at 512×512 for Models Trained

at a Lower Resolution and Compared Against Classical Interpolation-

based Upsampling. 97

x

LIST OF FIGURES

Figure Page

2.1 Block Diagram of a Generative Adversarial Network (GAN). This Model

Is Composed of Two Core Components: a Generator Network, Tasked

with Synthesizing Data, and a Discriminator Network, Designed to

Distinguish Between Real and Synthesized Data. 7

3.1 Examples of Type of Defects Present in Our Dataset. 19

3.2 Network Architecture for (a) Style Transfer GAN and (b) Cycle GAN

Model for Defect Generation. 21

3.3 Example of Rendered FM Defects from Pov-Ray. 24

3.4 Overview of Our Spline Fitting Method for Synthetic FM Rendering. . . 25

3.5 Example of Spline Fitting on a Real FM Image (Leftmost) and Final

Rendered FM from POVRay. 26

3.6 Example of Alpha Blending. Left Image Is the Non-defect Sample,

Middle Image Is the Rendered FM Image, and Right Image Is the

Blended Image. 27

3.7 Overview of Our Epoxy Defect Rendering Model. 27

3.8 Example of Defect Images Generated from (a) Style Transfer GAN and

(b) Cycle GAN. 29

3.9 Example of Detected Defect from Our Detection Model Trained on

Different Datasets. 32

3.10 Rendered FM Defects Merged with Non-defect Input Images. 35

3.11 Classification Performance on FM Defects with Varying Number of

Training Images. 36

3.12 Examples of Rendered Epoxy Images from Our Model. 38

xi

Figure Page

4.1 Figure Shows a Sample Trace of the Cost Function (4.6) over Iterations,

Showing Fast Convergence. 49

4.2 The Distribution Obtained by Solving (4.6) (Shown in Blue), and Its

Mid-point Distribution (Red). While There Is Small Variability in

the Solutions Obtained, We Find That No Matter How We Initialize

the Solver, All Our Obtained Distributions Share the Three Following

Traits: A Large Main-lobe, Symmetry, and Small Side-lobes. Also,

Note the Strong Overlap Between the Distribution and the Mid-point

Distribution. This Is Further Quantified in Table 4.1 and Compared

with Other Distributions in Figure 4.4. 50

4.3 The Figures Show Various Choices of Priors (Blue) and Their Corre-

sponding Mid-point Distribution (Red). Note That One Can Observe

a Large Discrepancy Between the Prior and Mid-point Distributions,

for Typical Choices Such as the Uniform and Normal. The Prior We

Develop Shows Significantly Less Discrepancy. These Discrepancies Are

Also Quantified via the Kl-divergence in Table 4.1. 52

4.4 Euclidean Norm Distribution for Samples Drawn from Different Priors

and Their Corresponding Mid-point Euclidean Norm Distribution for

Different Dimensions d. Note the Mid-point Norm Distribution for the

Normal Prior Moves Further Away from the Prior Norm Distribution as

the Dimension Increases to d = 200, Whereas with Our Non-parametric

Prior, the Mid-point Norm Distribution Overlaps with the Prior Norm

Distribution Even at d = 200. 52

xii

Figure Page

4.5 Interpolation (Left to Right) Through the Origin on Celeba Dataset

Using Different Priors with d = 100. Note the Degradation in Image

Quality Around the Center of the Panel (Origin Space) for Many

Standard Priors. 54

4.6 Interpolation (Left to Right) Between Two Random Points on Lsun

Bedroom Dataset Using Different Priors with d = 100. 54

5.1 An Overview of Proposed Deep Geometric Moment (DGM) Framework

for Image Classification Task. The Model Consists of Two Blocks: Level-

1 and Level-2 That Consists of Two Pipelines : 1) CNN Based Image

Feature Extraction and 2) Coordinate Bases Computation. the Level-2

Block Can Be Repeated Number of times for Computing Moments,

Similar to Depth Concept in Deep Networks. 65

5.2 Feature Visualization of Different Models on ImageNet. For the Stan-

dard ResNet Model, We Use Gradcam for Visualization. We Also

Compare Our Visualization with the Vision Transformer [27] (Vit-B-16)

Attention Map. Note That Our DGM Model Produces a Very Sharp

Object Shape. 76

5.3 Visualization at Different Levels for DGM ResNet-34 Model on the

ImageNet Dataset. We Note That at Higher Levels Our Model Is

Able to Separate the Background Information from the Object’s Shape

Compared to Initial Levels. 77

xiii

Figure Page

5.4 Visualization from DGM and Standard ResNet Model under Two

Different Color Distortion (Blur (1st Row) and Fog (4th Row) from

ImageNet-C). Our Model (3rd and 6th Row), Is Able to Produce Consis-

tent Shape Across Different Distortions Compared to Standard ResNet

(2nd and 5th Row). 79

6.1 Overview of Our Proposed Polynomial Implicit Neural Representation

(Poly-INR) Based Generator Architecture. Our Model Consists of

Two Networks: 1) Mapping Network, Which Generates the Affine

Parameters from the Latent Code z, and 2) Synthesis Network, Which

Synthesizes the RGB Value for the given Pixel Location. Our Poly-INR

Model Is Defined Using Only Linear and ReLU Layers End-to-end. 86

6.2 Samples Generated by Our Poly-INR Model on the ImageNet Dataset

at Various Resolutions. Our Model Generates Images with High Fidelity

Without Using Convolution, Upsample, or Self-Attention Layers, i.e.,

No Interaction Between the Pixels. 93

6.3 Qualitative Comparison Between StyleGAN-XL (Left Column) and

Poly-INR (Right Column). Classes from Top to Bottom: Agaric, Daisy,

Volcano, Seashore, Cup, and Beer Glass. 94

6.4 Qualitative Comparison Between INR-GAN (Left Column), CIPS (Mid-

dle Column), and Poly-INR (Right Column) on FFHQ Dataset at

256 × 256. 95

6.5 Heat-Map Visualization at Different Levels of the Synthesis Network.

At Initial Levels, the Model Captures the Basic Shape of the Object,

and at Higher Levels, the Image’s Finer Details Are Captured. 96

xiv

Figure Page

6.6 Few Example Images Showing Extrapolation Outside the Image Bound-

ary (Yellow Square). The Poly-INR Model Is Trained to Generate

Images on the Coordinate Grid [0, 1]2. For Extrapolation, We Use

the Grid Size [−0.25, 1.25]2. Our Model Generates Continuous Image

Outside the Conventional Boundary. 96

6.7 Linear Interpolation Between Two Random Points. Poly-INR Provides

Smooth Interpolation Even in a High Dimension of Affine Parameters.

Our Model Generates High-Fidelity Images Similar to State-Of-The-Art

Models Like StyleGAN-XL but Without the Need for Convolution or

Self-Attention Mechanism. 99

6.8 Source A and B Images Are Generated Corresponding to Random

Latent Codes, and the Rest of the Images are Generated by Copying

the Affine Parameters of Source A to Source B at Different Levels.

Copying the Higher Levels’ (8 And 9) Affine Parameters Leads to Finer

Style Changes, Whereas Copying the Middle Levels’ (7, 6, and 5) Leads

to Coarse Style Changes. 101

6.9 Source A and B Images Are Generated From Random Latent Codes,

and Remaining Images are Generated by Copying the Affine Parameters

of Source A to Source B at Different Levels. Copying the Initial Levels’

(0, 1, and 2) Affine Parameters Leads to Finer Shape Changes, Whereas

Copying Slightly Higher Levels’ (3, 4, and 5) Leads to Coarse Shape

Changes. 102

xv

Figure Page

6.10 The Poly-INR Model Generates Smooth Interpolation with Embedded

Images in Affine Parameters Space. The Leftmost Image (First Row)

is from the ImageNet Validation Set, and the Last Two (Rightmost)

Are the OOD Images. 103

6.11 Style-Mixing with Embedded Images in Affine Parameters Space. Source

B Is the Embedded Image from the Imagenet Validation Set, Mixed

with the Style of Randomly Sampled Source A Image. 103

xvi

Chapter 1

INTRODUCTION

With the rise of deep neural networks, generative models have become a trending

topic in recent years [73, 42, 25]. They’re used for generating different data modalities

like text [90], graphs[170], speech [151], images [25], and videos [5]. In simple terms,

these models take a low dimensional ’noise’ vector from a known distribution and

transform it into a complex high dimensional data point, matching the distribution

of the training dataset. Generative models are very effective in various computer

vision tasks such as text into images [121], image-to-image translation [120], domain

adaptation [54], image editing [173], and inverse problems [129].

However, it is worth noting that the performance of these models in terms of

quality, diversity, and control over the generated shapes and structures often hinges

on the size and diversity of the training data. The more comprehensive and varied the

training data, the better these models can understand the structures within the data

and thus create more varied and realistic samples. In this context, my dissertation,

titled ‘Robust and Controllable Generative Models by Leveraging Physics-Based,

Probabilistic, and Geometric Methods,’ presents methods to enhance the robustness

and control of generative models, mainly when working with smaller datasets. The

proposed techniques include a hybrid approach that combines physics-based simulators

with deep generative models, and the improved design of the latent space to increase

image fidelity for interpolation. I also explore shape-aware and interpretable generator

and discriminator architectures, drawing inspiration from geometric moments. These

approaches make generative models more robust and easier to control. In the following

sub-sections, I will delve into each contribution of this dissertation, explaining them

1

in more detail:

1.1 A Hybrid Physics and Deep-learning Based Approach

Deep learning models have achieved state-of-the-art performance in classification

[49] and detection tasks [115, 48]. However, they require large, high-quality train-

ing datasets that capture all the variations and nuances that could emerge during

deployment. Collecting such extensive datasets, especially in industrial fields like

biomedicine or manufacturing, can be exceedingly challenging. Industrial applications

often grapple with small size and class imbalance datasets.

Deep generative models are often used to generate synthetic images for training

sets in these challenging situations. However, for these models to generalize well, they

too, require large datasets. Additionally, the controllability of the generated images

from these models and knowledge transfer from other domains is often challenging

[131]. This dissertation proposes a hybrid approach to tackle the challenge of small

datasets and controllability. The proposed method uses a physics-based 3D rendering

tool to model specific aspects of an image, combined with a small generative model to

refine the rendered image into a realistic one. This method, which has a small set of

easily controllable parameters, requires fewer training samples and offers enhanced

control. The proposed approach has been tested in a real-world context—creating

synthetic images of defects in Intel-manufactured chips. This dissertation provides

qualitative and quantitative results that show the effectiveness of this model in limited

training data scenarios.

1.2 Non-parametric Prior for Latent Space

Interpolation plays a vital role in generative models [110]. When we perform inter-

polation in the latent space of generative models, it results in meaningful interpolation

2

in the image space. Interpolation confirms that the generative models are not merely

memorizing the training data but generating novel samples from the distribution.

Despite this, a common assumption in most generative model designs is using a

simple parametric distribution, like Gaussian or Uniform, in the latent space. While

this simplifies the implementation of the generative model, it can present challenges

during interpolation due to distribution mismatches [155], i.e., the interpolated points

distribution is different from the prior distribution of the latent space. The generative

model is trained to generate realistic samples from the prior points; however, during

interpolation, the path often traverses less dense regions of the latent space, decreasing

the fidelity of the generated image [155, 71, 2, 82].

This dissertation uses a simple approach to understanding and solving this dis-

tribution mismatch issue. By using basic probability theory and readily available

optimization tools, I develop ways to arrive at appropriate non-parametric priors. The

obtained prior exhibits unusual qualitative properties in terms of its shape, and quan-

titative benefits in terms of lower divergence between the prior and interpolation point

distribution. This part of the dissertation demonstrates that our designed prior helps

improve image generation along any Euclidean straight line during interpolation, both

qualitatively and quantitatively, without any additional training data or architectural

modifications. The proposed formulation is quite flexible, paving the way to impose

newer constraints on the latent-space statistics.

1.3 Geometric Moments Based Discriminative Model

The discriminator network plays a crucial role in the training of generative models.

Its various functions make it indispensable - for instance, in Generative Adversarial

Networks (GANs) [41], it distinguishes between real and fake images. The discriminator

network is also utilized for conditioning purposes [99, 25], enabling the generation of

3

images across a wide variety of classes. Importantly, it is from this discriminator that

the generator learns, further emphasizing the critical role the discriminator network

plays within the framework of generative models. Most discriminator networks are

based on convolutional neural networks. It is well known that the CNN-based network

tends to rely heavily on texture information rather than object shape for discriminative

tasks [39]. Efforts have been made to develop deep models that are more aware of

shape. However, it often proves challenging to create these models in a way that is

straightforward, interpretable, and grounded in established mathematical definitions

of shape.

This dissertation introduces a deep-learning model inspired by geometric moments,

a classic, well-understood approach to measure shape-related properties [57, 70, 3, 32].

The proposed method consists of a trainable network for generating coordinate bases

and affine parameters for making the features geometrically invariant yet in a task-

specific manner. The proposed model improves the final feature’s interpretation. This

work demonstrates the effectiveness of the geometric moments on standard image

classification datasets. The proposed model achieves higher classification perfor-

mance compared to the baseline and standard ResNet [49] models while substantially

improving interpretability.

1.4 Geometric Moments Based Generator Model

Building on using geometric moments for discriminative tasks, I further expanded

this idea to encompass image generation tasks. In geometric moments literature

[57, 143, 55, 33], reconstructing an image from its moments consider the image a

polynomial function of its coordinate location, with the coefficients of this polynomial

computed from the image’s moments. This formulation can represent an image as a

continuous function of its pixel location. Interestingly, neural networks are often used

4

to approximate this continuous function. This type of representation is referred to as

Implicit Neural Representation [98, 133].

Implicit neural representations (INR) have gained significant popularity for signal

and image representation for many end-tasks, such as inverse problems [133, 112], 3D

modeling [98], and more. Most previous INR architectures rely on sinusoidal positional

encoding, which accounts for high-frequency information in data. However, the finite

encoding size restricts the model’s representational power. Higher representational

power is needed to go from representing a single given image to representing large and

diverse datasets. This dissertation addresses this gap by representing an image with a

polynomial function and eliminates the need for positional encodings. Therefore, to

achieve a progressively higher degree of polynomial representation, I use element-wise

multiplications between features and affine-transformed coordinate locations after

every ReLU layer. One significant benefit of representing an image in polynomial

form is its inherent separation between shape and style. In this representation, the

coefficients of lower-order polynomials typically capture shape-related information.

Conversely, coefficients of higher-order polynomials convey style-related aspects. The

proposed method is evaluated qualitatively and quantitatively on large datasets like

ImageNet [22]. The proposed Poly-INR model performs comparably to state-of-the-art

generative models without any convolution, normalization, or self-attention layers,

and with far fewer trainable parameters. With much fewer training parameters and

higher representative power, this approach paves the way for the broader adoption of

INR models for generative modeling tasks in complex domains.

5

Chapter 2

GENERATIVE ADVERSARIAL NETWORK

2.1 Introduction

Generative models are useful tools that help us model complex data distribution and

create new samples from this distribution. There are various types of generative models,

such as Variational Autoencoder (VAE) [73], Flow-based model [26], Generative

Adversarial Network (GAN) [41], and Diffusion model [158]. VAE is based on an

auto-encoder constraining the latent space to a Gaussian distribution. Flow-based

model is an invertible network in which the same parameters are used to define both

the encoder and the decoder. GAN and Diffusion models are different because they do

not have an encoding network. GAN works by having two neural networks compete

against each other. In contrast, the Diffusion model generates data points by taking a

random path between the latent space and data point in an iterative manner.

Generative Adversarial Network (GAN) is particularly exciting and forms a central

theme of this dissertation. First introduced by Ian Goodfellow et al. 2014, GAN gained

much attention primarily for its effectiveness in generating more realistic samples

than auto-encoder-based models. A GAN architecture consists of a generator G and

a discriminator D. The generator G maps low-dimensional latent points z ∼ Pz to

high-dimensional data distribution Px. The goal of the generator G is to produce

data such that they are perceptually indistinguishable from real data. However, the

discriminator D is trained to distinguish between ‘fake’ and ‘real’ data. Both the

generator and discriminator are trained in an adversarial fashion, and at the end of

the training, the generator learns to generate data with a distribution similar to the

6

real one.

GANs are used in many areas, including text [171], images [68], videos [138],

time-series data [84], 3D data [86], and graphs [152]. Particularly in computer vision,

GANs have excelled in numerous tasks such as image-to-image translation [175],

text-to-image conversion [126], image editing [4], and various inverse problems such

as image inpainting [89]. There are different variations of GAN models for different

tasks, demonstrating their adaptability and wide-ranging utility. To enhance our

understanding of this powerful generative model, this chapter provides a comprehensive

background on the inner workings of GAN. In the following sections of this chapter,

we’ll look more closely at how GAN works, training methods, metrics, and challenges.

2.2 Basic Concept and Theory

Figure 2.1: Block Diagram of a Generative Adversarial Network (GAN). This
Model Is Composed of Two Core Components: a Generator Network, Tasked with
Synthesizing Data, and a Discriminator Network, Designed to Distinguish Between
Real and Synthesized Data.

The GAN model, as shown in Fig. 2.1, consists of two networks described as

follows:

• Generator: The generator G produces synthetic samples when provided with

7

latent vector z as input. This latent vector, drawn from a specific distribution

(z ∼ Pz), introduces the necessary variability into the generated output. The

latent-space distribution Pz is typically chosen to be a normal or uniform

distribution. The goal of this generator is to learn and mimic the real data

distribution. In essence, it is trained to fool the discriminator into assigning a

high probability to its generated samples, indicating their resemblance to the

real data.

• Discriminator: The discriminator D functions as a classifier that estimates

the likelihood of a given sample coming from the real dataset Pdata versus the

synthetic dataset PG(z). The discriminator operates much like a critic and is

optimized to discern the difference between real and synthetic samples.

At its core, the discriminator network is essentially a binary classifier. For real data

samples x ∼ Px, the discriminator attempts to maximize the Ex∼Px [log(D(x))]. On

the other hand, for generated samples G(z), the discriminator’s objective is to bring

the value of log(D(G(z))) close to zero. This is achieved by maximizing the expected

value of Ez∼Pz [log(1 − D(G(z)))]. Conversely, the generator is trained to generate

samples that fool the discriminator, i.e., to maximize the value of Ez∼Pz [log(D(G(z)))].

Formally, this loss function can be expressed as a min-max game in (2.1), which the

generator tries to minimize and the discriminator tries to maximize:

min
G

max
D

V (D,G) = Ex∼Px [log(D(x))] + Ez∼Pz [log(1 −D(G(z)))], (2.1)

The training of GAN involves simultaneous optimization of the generator and

discriminator networks. This encourages both models to progressively improve and

adapt to each other’s performance. Every iteration performs a gradient step via

backpropagation to minimize each network’s cost function, thus optimizing their

trainable parameters. It is shown by Goodfellow et al. [41] that the generator

8

effectively minimizes the Jensen-Shannon divergence between the real and synthetic

distribution for optimal discriminator:

min
G

V (D∗, G) = 2DJS(Px||PG(z)) − 2 log(2) (2.2)

where DJS(Px||PG(z)) is given by:

DJS(Px||PG(z)) =
1

2
DKL(Px||

Px + PG(z)

2
+

1

2
DKL(PG(z)||

Px + PG(z)

2
(2.3)

where DKL is the KL-divergence. Huszar et al. [59] emphasized that a key factor

in GAN’s success is the use of the symmetric Jensen-Shannon (JS) loss function in

contrast to the asymmetric Kullback-Leibler (KL) divergence loss function commonly

used in VAE models. In this training setting of GAN, when both the generator and

the discriminator are optimally trained, we have PG(z) = Px.

Conditional GAN: Among the various variants of GANs, one particularly notable

version is the conditional GAN (cGAN) [99]. In this model, the generator and

discriminator are ‘conditioned’ on additional information, such as a class label ‘y’. The

class label y is fed to both generator and discriminator using additional input layers.

This additional conditioning allows the cGAN to generate data corresponding to a

specific class, providing enhanced control over the nature of the generated samples.

GAN loss for the conditional version becomes like this:

min
G

max
D

V (D,G) = Ex∼Px [log(D(x|y))] + Ez∼Pz [log(1 −D(G(z, y)|y))], (2.4)

Loss functions: The original loss function of cross entropy proposed in the [41], often

led to vanishing gradient and instability during training. Recognizing these challenges,

researchers over the years have proposed a variety of loss functions designed to improve

both the stability of training and the quality of the generated data.

• Least Squares GAN (LSGAN) [95] uses the least squares loss function, addressing

the problem of vanishing gradients. This function also helps LSGANs generate

9

higher-quality images and stable training. The least-square loss function is given

by:

min
D

V (D) =
1

2
Ex∼Px [(D(x) − a)2] +

1

2
Ez∼Pz [(D(G(z)) − b)2],

min
G

V (G) =
1

2
Ez∼Pz [(D(G(z)) − c)2]

(2.5)

where a, b, and c are hyper-parameters.

• Maximum Mean Discrepancy (MMD), used in moment matching GANs [83], uses

kernel maximum mean discrepancy to determine the distribution distances be-

tween real and fake samples. Generative Moment Matching Networks (GMMNs)

deviate from conventional GANs. Instead of employing a discriminator network,

they utilize a kernel maximum mean discrepancy-based two-sample test, with

the kernel being learned in an adversarial manner.

• The Wasserstein loss function, as proposed in Wasserstein GAN (WGAN)

[8], provides a robust and smooth estimate of the distance between the real

and generated data distributions using optimal transport. In WGAN, the

author highlights an issue with Vanilla GAN: when the discriminator becomes

exceptionally strong (i.e., D(x) = 1 for real data and D(G(z)) = 0 for generated

data), the model can face a vanishing gradient problem at these extreme points.

To counteract this, WGAN introduces a critic network that assigns realness

scores to the generated samples, effectively replacing the discriminator. The key

to WGAN’s innovation is the Wasserstein loss function, which helps linearize

the loss function landscape, enabling the critic network to achieve optimal

performance with fewer iterations. The Wasserstein distance, also known as the

Earth Mover’s distance (EM distance), originates from calculating the minimum

cost required to transform one probability distribution into another - akin to

reshaping a mound of earth. The Wasserstein distance between two distributions

10

Pr and Pg is given by:

W (Pr,Pg) = inf
γ∈

∏
(Pr,Pg)

Ex,y∈γ[||x− y||], (2.6)

where
∏

(Pr,Pg) is set of all joint distributions whose marginal distributions are

Pr and Pg. The above loss function is intractable due to infimum over
∏

(Pr,Pg).

In the WGAN paper, the author makes it tractable by using Kantorovich-

Rubinstein duality:

W (Pr,Pg) = sup
||f ||L≤1

Ex∈Pr [f(x)] − Ey∈Pg [f(y)], (2.7)

where f is a critic network defined by a neural network with the constraints that

f is a 1-Lipschitz continuous function. In [8], Lipschitz continuity constraints are

imposed on the critic by clamping the parameters’ weights to a small window

such as [−0.01, 0.01]. Gulrajani et al. 2017 [44] pointed out that weight clipping

is a bad way to enforce a Lipschitz constraint. Choosing a large clamping window

leads to exploding gradient, and choosing a very small window leads to slow

convergence. For these reasons, [44] proposes a gradient penalty term for the

Lipschitz constraint. However, this gradient penalty term is computationally

expensive. This is further improved using spectral normalization by [100]. The

Spectral Normalization technique stabilizes training by normalizing the weights

of each layer (weight matrix) with its corresponding spectral norm, also known

as the matrix norm or the maximum singular value of a matrix. This enables the

normalization of weights every time they are updated, creating a network that

mitigates issues of gradient explosion and thus reduces instability during training.

This method has shown comparable results to those achieved by gradient penalty

but with improved computational efficiency.

• The Hinge Loss function, introduced in the Geometric GAN [88], is inspired by

the Support Vector Machines (SVMs) theory and the concept of maximizing the

11

margin of a separating hyperplane. This loss function contributes significantly

to the stability of the GAN’s training process and promotes better convergence.

Hinge loss function is given by:

V (D,G) = Ex∼Px [max(0, 1 −D(x))] + Ez∼Pz [max(0, 1 + D(G(z)))], (2.8)

Thus, over time, the development of these alternative loss functions has significantly

improved the capabilities of GAN. The choice of loss function directly impacts the

quality of the generated samples and the stability of training, making it a critical

consideration when working with GAN. Currently, Wasserstein-based GAN with hinge

loss function and spectral normalization is the most popular choice.

Architecture: Over the years, GAN has been marked by significant architectural

modifications that enhanced their performance and application. Initially, GAN, as

introduced by Ian Goodfellow et al. [41], primarily consisted of fully connected layers.

As CNNs became increasingly prominent in computer vision, Radford et al. [110]

proposed a novel architecture for the generator and discriminator networks. This

architecture, based on transposed convolution layers, is known as DCGAN. The

advent of DCGAN marked a significant improvement in the performance of GAN.

The DCGAN architecture is further improved over the year. Currently, the most

famous architecture is Style-GAN [68]. Style-GAN’s generator consists of a mapping

network and a synthesis network. The mapping network consists of a multilayer

perceptron (MLP) network that transforms the latent vector into style codes. The

synthesis network consists of novel Adaptive Instance Normalization layers that take

style codes as input and modulate the weights of the Conv layers. This architecture

not only improved the performance of GAN significantly but also provided control over

manipulating generated samples in terms of style. Most recently, Transformer-based

models [150] have been adapted for GAN [165, 63]. These models leverage attention

12

mechanisms to capture long-range dependencies within the sample. Transformer

provides the benefits of huge learning capacity of the network and trains on one scale

and samples at any scale feature.

2.3 Evaluation Metrics

There are many metrics to quantify the performance of a GAN model, and each

metric has its own strengths and weaknesses.

Inception score: The inception score correlates with the visual quality of the

generated image – higher the better. The Inception Score, proposed by Salimans et al.

2016 [122], evaluates the quality and variety of generated images. It is computed by

passing these images through a pre-trained Inception model and evaluating P (y|x).

The resulting conditional label distribution P (y|x) for a well-performing model should

be highly specific, indicating that the image contains distinct, identifiable objects.

The overall label distribution P(y) across all generated samples should show significant

diversity. The Inception Score is the Kullback-Leibler divergence between P (y|x) and

P (y).

Frechet Inception Distance: Recent studies suggest that the inception score does

not compare the statistics of the generated dataset with the real-world data [51, 166],

and thus is not always a reliable indicator of visual quality. This drawback of the

IS is overcome by the FID score [51], which compares the statistics of the generated

data with the real data with respect to features. FID employs a pre-trained Inception

model to extract features from real (x) and synthetic (g) images. It specifically uses

the last pooling layer, just before output classification, to capture the features of an

input image. This feature space is considered a continuous multivariate Gaussian

distribution. From the extracted features, the Fréchet distance, also known as the

Wasserstein-2 distance, is computed between the real and generated distributions. The

13

lower the FID score, the more similar the two sets of images are, with zero indicating

an exact match. FID score is given by:

FID = ||µx − µg||2 + Tr(Σx + Σg − 2(ΣxΣg)
1
2) (2.9)

where µ is the mean and Σ is the covariance of the features. Tr is the trace operation,

i.e., the sum of the elements along the main diagonal of the square matrix.

Spatial Frechet Inception Distance: sFID [102] enhances the concept of FID

by incorporating higher spatial features from the Inception network. This inclusion

aims to account for the spatial structure of the generated image, providing a more

comprehensive evaluation of the visual quality.

Precision and Recall: From the classic viewpoint, precision denotes the fraction of

generated images that are realistic, and recall measures the fraction of the training

data manifold covered by the generator [78]. In the context of GANs, Precision and

Recall are computed using a pretrained classifier. The classifier’s (inception network)

features are used to construct a Gaussian distribution for both the real and generated

data. Precision and Recall are then computed based on the overlap between these

two distributions, using their means and covariance matrices.

2.4 Challenges

Despite the impressive capability of GAN to produce highly realistic images,

significant challenges persist with these models:

• Training instability: Training GAN is notably challenging due to its inherent

dynamic adversarial nature, which often leads to instability. Such instability

can result from issues such as vanishing or exploding gradients. Thus, to ensure

stable training, the selection of generator and discriminator architectures, loss

functions, and normalization methods must be done carefully.

14

• Mode collapse: A prevalent issue known as Mode Collapse, where the generator

repeatedly produces identical outputs, may arise during the training. Despite

the ability to trick the corresponding discriminator, this indicates a failure of

the generator to adequately represent the entire real data distribution, causing

it to become entrapped in a limited space with minimal variety.

• Lack of control: Traditional GAN generates random samples without any

control over the type or characteristics of the generated data, i.e., the generated

samples are represented in an entangled and non-meaningful manner in the

latent space. Although Conditional GAN and other variants offer more control,

these models have challenges, such as having labeled information in the data.

• Large training dataset and domain knowledge: GAN models generalize

better only if we have a large training dataset containing all variations. The

GAN model trained on a significantly smaller training set generates images with

less variation and often suffers from mode collapse. Furthermore, integrating real-

world knowledge regarding objects such as shape, size, and structural variations

in the GAN model is only possible with a substantial training set representing

such variations.

This dissertation addresses these challenges by introducing novel methodologies aimed

at boosting the robustness and controllability of the GAN models. These methods

leverage techniques grounded in physics, probability, and geometry to improve GAN’s

performance.

15

Chapter 3

A HYBRID PHYSICS AND DEEP-LEARNING BASED APPROACH FOR

SYNTHETIC DEFECT GENERATION

3.1 Introduction

With the complexity of semiconductor design and manufacturing processes in-

creasing rapidly, quickly identifying defects induced by these complex processes has

become a significant challenge. While human operators can be trained to detect

defects through visual inspection, it becomes a rate-limiting factor in high-volume

manufacturing processes. Thus, an automated inspection pipeline using computer

vision and machine learning algorithms, is important for cost-effective deployments.

Due to recent advances in deep learning in computer vision, [79], deep learning

methods have started to replace classical image processing and machine learning-

based methods [45] in automated visual inspection systems. Deep learning models

have achieved SOTA performance on classification [49], object detection [115] and

semantic segmentation [14], making them a robust tool for integration in visual

inspection systems. Recently, these methods have been used for defect detection in

various industries [11]; for example, a light-weight deep learning model for electronic

component detection [58], a convolution neural network based segmentation model to

detect surface anomalies [140], and defect detection in printed circuit boards [1].

The design and development of automated visual inspection systems necessarily

requires creating large training-sets, which need specific domain knowledge from

an engineer or technician to label the variety of defects that can occur during the

manufacturing process [131]. With the advent of deep learning, attaining the target

16

performance requires larger training sets than the traditional vision algorithms that

use hand-crafted features. The training datasets need to be curated and designed to

encompass all variations and nuisance factors that may occur in the manufacturing

process beforehand. Aside from the images acquired from production or development

product runs, the training datasets for defects are often created in a destructive method,

i.e., artificially creating defective samples in a lab beforehand. These destructive

methods often involve time, cost and manual labor. Creating all kinds of defects

that can happen under complex manufacturing processes and look realistic is also

challenging. However, recent interest has shifted to developing synthetic defect

generation approaches, to augment and speed-up the process of creating such training-

sets as well.

Generative adversarial networks (GAN) [41] have been widely adopted as a data

augmentation method to help augment small datasets or resolve class imbalance

problems. A GAN generally consists of a generator and a discriminator. The generator

takes a noise vector sampled from a distribution [132, 41] as input and generates a

realistic-looking image. The discriminator takes real and synthetic images as input and

classifies whether the input image is real or fake. The generator is trained to generate

realistic-looking images such that it can fool the discriminator. GANs have been

widely adapted in computer vision for various tasks like image-to-image translation

[61], image super-resolution [80], image editing [174], and domain adaptation [130]. It

is also been used to address class-imbalance problems [123] and as a data augmentation

tool in defect generation [154, 101, 30, 10].

While synthetic images sampled from a GAN can help improve defect detection

and classification performance, training a GAN model is a data-intensive task. It is

a chicken and egg situation, in the sense, in order to make a GAN model synthesize

all variations of defects, the training dataset must include all defect variation types,

17

which defeats the purpose of using GAN in scarce data scenarios. It is also difficult to

control parameters like the shape and size of a defect generated by a GAN, since it is

not easy to isolate dimensions in the latent space that control physically meaningful

attributes i.e., the defects are not represented in a disentanglement manner in the

input latent space. The GAN model also finds it challenging to transfer knowledge

from other domains, such as the visual appearance of foreign material or cracks, from

other industrial products to semiconductors. This kind of knowledge can only be

induced in a GAN through training datasets which are challenging to collect to begin

with.

In this work, we propose a hybrid approach for synthetic defect generation. We

model the defects in a 3D physics-based renderer such as POV-Ray [108], using a few

controllable parameters which control the shape and size of defects. For example, as a

first step we model the shape of Foreign Material as a spline curve and the shape of

Epoxy defects as a polygon. We then choose convenient material reflectance properties

to make the rendered defect look sufficiently close to being realistic from the available

material choices. As a final step, we use a GAN to make these rendered defects look

realistic, based on a small training set of realistic defects. In contrast to approaches

that use only a GAN to generate defects from scratch, our model provides the shape

and structure of defects by using a renderer, and only learns to apply realistic-looking

texture through a small GAN model. Texture generation on the rendered images is a

much easier task and requires very few training images to train the generator.

The key highlights of our work are summarized below:

• We propose a hybrid model that combines a 3D rendering tool with a GAN

model. The proposed approach eliminates the need for large training datasets

and provides ease of controlled defect generation, that saves cost and speeds up

getting ROI in the product/process launch.

18

• We assess the quality of synthetic defects from our hybrid model by training a

binary classification model on the augmented dataset. The classification model

trained with our synthetically augmented dataset shows improved performance

over the vanilla training dataset.

• We qualitatively and quantitatively evaluate the synthetic defects generated by

two GAN models: style-transfer GAN and cycle-consistency GAN.

• Lastly, we do an ablation study of the classification model by varying the number

of real images used along with the synthetic defects images for model training.

Our synthetically generated defects achieves significant boost in the classification

performance when the number of real defects in the training set is low.

3.2 Problem Setup

3.2.1 Dataset Details

Figure 3.1: Examples of Type of Defects Present in Our Dataset.

19

Table 3.1: Number of Images per Defect Type in Training and Test Datasets.

Defect type Training set Test set

Foreign material 115 47

Component 16 6

Crack 18 8

Excess epoxy 11 4

Missing epoxy 20 5

Epoxy on die 13 4

Scratch 56 21

Missing Die 7 3

Other 139 31

We use a dataset that consists of 9 types of defects, namely foreign material,

component, crack, excess epoxy, missing epoxy, epoxy on a die, scratch, missing die,

and others. Figure 3.1 shows examples of some defects across these categories. The

‘other’ defect type consists of defects that cannot be classified into one of the 8 classes

and includes rarely occurring defects. Table 3.1 shows the number of samples per

defect type present in the training and test datasets. We divide the data into training

and test sets in a ratio of ∼ 70% and ∼ 30%, respectively. In this problem setup, we

face three challenges:

• The number of samples per defect type in the training set is much smaller than

any conventional natural image dataset used in deep learning literature. Deep

learning model (classification or detection) trained on a small dataset often

overfits and fails to generalize.

• The dataset has a significant class-imbalance between different types of defects.

For example, foreign material defect has significantly more images (115), whereas

20

defect like missing die only has 7. Deep learning model trained on a class-

imbalanced dataset becomes more biased towards the defect type present in

large quantities, sometimes ignoring minority classes entirely.

• Lastly, higher resolution images are required to detect finer defects like scratches

or foreign material. This dataset consists of images of approximately 2K × 2K

resolution, which is computationally expensive to use with any deep learning

model. The most common deep learning models (classification, detection or

generative) operate on either 256 × 256 or 512 × 512 size images.

We use a deep-learning based generative model to solve the data scarcity and

class-imbalance issues. The generative model solves both problems by synthetically

generating more samples for both minority and majority defect classes. We use a

patch-based method to overcome the challenge of high resolution by extracting smaller

patches (256 × 256 or 512 × 512) around the defects for classification, detection, or

image generation.

3.3 Proposed Method

3.3.1 GAN Models for Synthetic Defects

Non-Defect
Sample

Reconstruction
Loss

+
Style Loss

Adversarial
Loss

Synthetic
Defect

Discriminator

VGG Net

Paired Generator

Defect
Sample

(a) Style Transfer GAN Model

Real
Defect

Non-Defect Synthetic
Defect Generator 1 Generator 2 Non-Defect

Adversarial
Loss

Discriminator

Reconstruction
Loss

(b) Cycle GAN Model

Figure 3.2: Network Architecture for (a) Style Transfer GAN and (b) Cycle GAN
Model for Defect Generation.

21

Datasets obtained from high volume manufacturing processes tend to be imbalanced

with far more non-defect samples than defective ones. Therefore, to address the need

to create effective training-sets, we use an image-to-image translation method to

transform non-defect images to defect images using GAN models. We adopt two GAN

models used in [131] to generate synthetic defects: 1) Style Transfer GAN and 2)

Cycle Consistency GAN.

Style Transfer GAN: Figure 3.2a shows the block diagram of style transfer GAN.

This model consists of a generator module with UNet [117] architecture, consisting

of convolutional layers with batch normalization and ReLU layers. The generator

takes a non-defect input patch and generates the defect on top while keeping the

background unchanged. The model is trained with three loss functions: 1) Style

transfer loss [38], 2) Perceptual loss [64]and 3) Adversarial loss [41]. Style transfer

loss helps to generate defects with a similar texture as the real one. Perceptual

loss is a reconstruction loss (l2 distance) with respect to the target defect image in

pre-trained VGG feature space. Adversarial loss is based on a discriminator network

which distinguishes whether the input sample is real or fake, helping in generating

realistic-looking defects. The reconstruction loss in this model requires paired defect

and non-defect training samples, i.e., the input non-defect sample must have the

same background as the target defect sample. Images of the same semiconductor

module often get misaligned due to vibration or other mechanical or optical noises

during manufacturing. If the input images are not perfectly paired with the training

targets, the generator outputs can be distorted during test time. We employ another

image-to-image translation model called cycle consistency GAN to avoid the need for

pairing datasets during training.

Cycle Consistency GAN: Figure 3.2b shows a block diagram of the cycle GAN

model [175]. The cycle GAN consists of two generators with the same architecture as

22

the style transfer GAN generator. Generator-1 takes a non-defect input patch and

converts it into a defect image. Generator-2 then takes the defect image generated by

generator-1 and converts it back to the original non-defect image. Both generators

are trained with reconstruction loss (l2 norm) between the input non-defect image

and output image of generator-2 and an adversarial loss on the generator-1 by using

a discriminator network which forces the generator-1 to generate realistic-looking

defects. This model does not require paired non-defect and target defect images for

training. It automatically finds a one-to-one mapping between non-defect and defect

samples, provided the dataset is large enough; otherwise this condition may lead to a

mode collapse. The cycle GAN method can also generate different types of defects on

the same input patch by feeding different defect label information to generator-1 [99].

3.3.2 Hybrid Model for Synthetic Defect

GAN models described in the above section need a significantly large training

dataset to generate all variations of defects. In addition, we can only interpolate

between defects present in the training set, and it is difficult to control the variation of

generated defects or add prior knowledge about defects without having a large training

dataset. These defects can be modeled effectively with physics-based rendering tools

like POV-Ray with few controllable parameters. We model two common defects:

Foreign Material and Epoxy defects, with a rendering tool and use the rendered

defects with a small GAN model to refine them to realistic-looking defects. This

hybrid model allows users to generate any variety of defects with a minimal training

dataset.

Foreign Material Rendering:

Foreign Materials (FMs) in semiconductor manufacturing are usually fibers that

originate from clean room smocks, metal shavings, human hair, etc. These fibers

23

Figure 3.3: Example of Rendered FM Defects from Pov-Ray.

generally have a high aspect ratio and curvature that lends itself to being well-modeled

by spline curves. Hence we model FM as a 3D spline curve defined by critical points

and a polynomial fit. We use a 3rd order polynomial in our experiments, and the

number of critical points varies from 4 to 20, depending on the complexity of the spline

curve. We use POV-Ray’s python scripting language to define our 3D defect models.

Modeling FM as a spline curve is advantageous as we can easily control the shape and

size, and also interpolate between different curves to further increase control. Figure

3.3 shows examples of a few rendered FM defects from POV-Ray. Notice that we can

render Foreign Material with various spline shapes and different reflectance properties.

However, synthetic FM defects created in this way do not help much in improving

the performance of a classification model when used as part of an augmented training

dataset. We validate this observation by performing a FM classification task using a

ResNet-18 model trained on three datasets: only real FM images, only synthetic FM

images with random spline curves, and only synthetic FM images with spline curves

matching the real FMs (see Table 3.2, first column). In Table 3.2, we use real FM

24

Table 3.2: Performance Comparison of FM Classification Model Trained on a) Only
Real b) Synthetic with Random Spline FM, c) Synthetic with Spline Shape Matching
Real FM Images, and Tested on Real FM Images.

Training Images Accuracy (%)

Real FM 95.74

Synthetic FM: Random Spline 61.82

Synthetic FM: Matching Spline 82.87

Figure 3.4: Overview of Our Spline Fitting Method for Synthetic FM Rendering.

defect images as test set. Table 3.2 shows that the classification model trained on the

synthetic FM images defined by random spline curves performs worse than the other

two models. We also observe that the performance is much better when the model is

trained on more realistic-looking FM defects obtained by matching the spline shape

to real FM, compared to the random spline images. Hence for generating synthetic

FM images, it is essential to define the spline curves shape like the real FMs shape.

We use a spline fitting method to extract the distribution of real FM curves. Figure

3.4 shows the block diagram of our method. We first segment the defect region from

the real FM defects in our method. We use a manually annotated segmentation

mask around the FM, which is further refined by the Canny edge-based segmentation

method. We then find the contour points along the segmented FM defect using the

OpenCV’s findContours function. We use the SciPy implementation of least-squares

25

Real FM Segmented
FM Contour

Spline Fit Rendered FM

Figure 3.5: Example of Spline Fitting on a Real FM Image (Leftmost) and Final
Rendered FM from POVRay.

based spline-fitting method to fit the spline along the contour points. FM defects in

manufacturing can be found in various shapes and thicknesses. It is also essential to

sample the thickness of these spline curves from the real FM thickness distribution. To

find the correct thickness, we use the grid search method. We use geometric moments

[57] as a feature to measure the similarity between the rendered FM and the real FM

for the thickness grid search. Geometric moments are well-known shape descriptors

in computer vision literature, and it is better than vanilla L2 distance as we want to

avoid the variation in texture or intensity in the real FM image. Figure 3.5 shows

an example of the spline fitting method on a real FM defect image (first) and final

rendered FM (fourth). The rendered FM image from POV-Ray is first merged with a

non-defect background image using the alpha blending method given by Eq-3.1:

Iblend = αIrendered + (1 − α)Ibackground (3.1)

where, Irendered is the rendered image, Ibackground is the non-defect image and α is real

value taken between 0 and 1. Figure 3.6 shows an example of alpha blending. After

alpha blending, we use a small generator model consisting of a few convolutional

neural network layers to further refine the blending with the background image. This

small generator model takes the blended synthetic defect image and is trained with

the reconstruction and adversarial loss to output realistic-looking defect images.

26

Figure 3.6: Example of Alpha Blending. Left Image Is the Non-defect Sample,
Middle Image Is the Rendered FM Image, and Right Image Is the Blended Image.

Epoxy defect rendering:

Generator

Adversarial
Loss

Discriminator

Reconstruction
Loss

Polygon Mask
+

Background

Synthetic
Epoxy

Real Epoxy

Figure 3.7: Overview of Our Epoxy Defect Rendering Model.

We model the Epoxy defect as a binary polygonal mask image. Unlike FM, the

Epoxy defect is difficult to model in 3D with few easily controllable parameters because

of the significant variation in shape and structure. As a result, in this case, we feed

the polygonal mask and a background non-defect image to a generator directly. Figure

3.7 shows the block diagram of our Epoxy rendering method. The generator in this

27

model is composed of several CNN layers and is trained with reconstruction loss (l2

norm) and adversarial loss with the help of a discriminator to generate realistic-looking

Epoxy defects. In this method, we provide the shape of the Epoxy defect in the

form of a polygonal mask, and the generator only generates a realistic-looking Epoxy

texture on the mask region. This texture generation is much simpler than generating

an entire defect from scratch, so only a few samples are required to train the generator.

We sample our polygonal mask from the real Epoxy defect shape distribution by

matching the mask to the real Epoxy defect images. We use a perturbed polygonal

mask and a random non-defect image background during defect generation for dataset

augmentation.

3.4 Experiments and Results

3.4.1 Synthetic Defects from GAN

Our experiments use the unconditional version of style transfer and the class-

conditional version of cycle GAN models. Both models are trained to generate all

defects types from Table 3.1. We train both style-transfer and cycle GAN on 512×512

patch images extracted randomly around the defect region of the training images.

Both models are trained with a batch size of 16 and up to 500K iteration, which is

long enough for the GAN to converge and generate realistic-looking defects. We use

the Adam optimizer with learning rates of 1e−4 for the discriminator and 2e−4 for the

generator. We use Wasserstein distance [8] as loss function and spectral normalization

[100] for stability. In both GAN models, we use a discriminator of 6 ResNet layers

[49].

The style GAN’s generator with U-Net architecture consists of 12 ResNet layers

with kernel size 3 × 3 and feature channels of 256. For style GAN we need perfectly

28

aligned paired defect and non-defect training datasets having the same backgrounds.

We use image registration to align the defect and non-defect samples before training.

Cycle GAN generator is made up of 12 ResNet layers and is trained with adversarial

and cycle consistency loss functions. In cycle GAN, we do not need the paired

defect and non-defect images; hence we supply randomly extracted patches from the

non-defect image as input.

(a) Style Transfer GAN (b) Cycle GAN

Figure 3.8: Example of Defect Images Generated from (a) Style Transfer GAN and
(b) Cycle GAN.

Qualitative Results

Figure 3.8a and 3.8b shows example of defects generated by style-transfer and cycle

GAN respectively. We observe that both models can generate very realistic and diverse

defects. Similar to [131], we also observe that the background texture of the generated

defects in the style-transfer GAN is slightly distorted. This distortion is mainly due

to the non-perfect alignment between the defect and non-defect images in the training

dataset. Furthermore, the defects generated by the style-transfer GAN are slightly

inferior (notice the more spread out in epoxy-related defects) compared to the cycle

GAN. The figure shows that the cycle GAN can generate sharp defect images while

preserving the background. However, cycle GAN generates better results qualitatively

but converges slowly and requires more computation in training due to the training of

two generator models compared to the single generator in style-transfer GAN.

29

Quantitative Results

We use a deep learning-based object detection model as a defect detection system to

quantify the generated defects. We use the Faster RCNN model [115] to detect all

defect types from the Table 3.1. This defect detection model generates the bounding

box around the defects and classifies the defect types in the given input images. We

train the defect detection model on three datasets: only real images, Style-transfer

GAN augmented images (Real + Synthetic), and cycle GAN augmented images (Real

+ Synthetic). We evaluate the performance of these three models on the same real

test dataset to quantify the quality of synthetically generated images from GAN.

We use the open-source TensorFlow implementation of the faster RCNN. We

manually annotate the defect label and bounding box for the training and test dataset.

For the generated images from the GAN model, we manually screen the synthetic

defect images by removing the highly distorted defect images and manually annotate

the bounding box around the defect. We use around 100 or more generated images

for each defect type from the GAN models to equal the number of defect images per

defect type. We use ResNet-50 model pre-trained on the ImageNet dataset [22] as

backbone for the detection module. We train the model on a patch size of 512 × 512

cropped randomly around the defects, and the image size is scaled randomly by factors

between 0.5 and 2.0 chosen uniformly. We train the model with a batch size of 16 and

up to 20K iterations (long enough for all models to converge).

The mean Average Precision (mAP) metric is used to quantify the detected defects

from the three models. The mAP metric is popular for measuring object detection

in natural images. The detection model produces two results: a bounding box that

contains the defect region and a probability score. The bounding box performance

is measured using Intersection over Union (IoU = AreaofOverlap
AreaofUnion

) with respect to the

30

ground truth bounding box. Based on the IoU threshold, we can evaluate True

Positive or False Positive predictions. Then average precision for a particular class

is the area under Precision = TruePositive
TotalPredictedPositve

and Recall = TruePositive
TotalGroundTruthPositive

curve under different class probability score and mAP is given by mAP = 1
N

∑N
i=0 APi,

where APi is the average precision for defect type i.

Table 3.3: Performance Comparison of Defect Detection System Trained on Different
Datasets.

mean Average Only real Style transfer GAN Cycle GAN

Precision images aug. dataset aug. dataset

IoU = 0.5:0.95 26.34 28.79 27.49

IoU = 0.5 45.13 53.82 47.15

IoU = 0.75 24.66 27.89 28.23

Table 3.3 shows the mAP of the three models on the test dataset. In the first row,

the IoU threshold is set from 0.5 to 0.95 with an increment of 0.05 to compute the

mAP. In the second and third rows, 0.5 and 0.75 are taken as thresholds for IoU. In the

table, we observe that the models trained on the augmented images (real + synthetic)

perform better than the model trained only on the real images. We see an improvement

of at least 1.15% with augmented images. We also observe that the model trained with

style transfer GAN augmented images performs better than the cycle GAN augmented

images when the IoU threshold is chosen smaller (IoU = 0.5), but at a higher IoU

threshold value (IoU = 0.75) cycle GAN augmented model performs better than

the style transfer GAN augmented model. Table 3.4 shows the minimum training

iterations required by the three models to converge to maximum test performance.

We observe that the model trained on the augmented images converges faster than

the model trained on only real images. Figure 3.9 shows examples of detected defects

from the three models where the model trained on only real images failed to detect

31

Figure 3.9: Example of Detected Defect from Our Detection Model Trained on
Different Datasets.

(first row) and false detect (second row), whereas the GAN augmented models able to

detect it correctly.

Table 3.4: Iteration Taken by Defect Detection Model Trained on Different Datasets
to Converge to Maximum Test Performance.

Training Dataset Training Iteration

Only real images 7.5K

Style transfer GAN Aug. 4.8K

Cycle GAN Aug. 5.2K

32

Limitation of GAN Models

As the previous section shows, GAN augmented images can boost the defect detection

system’s performance. On the other hand, GAN models generalize better only if we

have a large training dataset containing all variations of the defects, but collecting such

large datasets is expensive and time-consuming. The GAN model trained on defect

types with a significantly smaller training set generates images with less variation.

Also, if a completely different non-defect patch is provided as input, which is different

from the training set, the GAN models distort the background texture of the generated

defects. Using these distorted defect images to train a defect detection system degrades

the performance, as compared to detection model trained only on the real images. As

a result, manual screening is needed to remove these distorted synthetic defect images

before using them to train the detection model.

Furthermore, GAN models are widely known for their unstable training and require

hyper-parameters fine-tuning for stable training. The GAN model can only generate

defects sampled from the distribution of real defects in the training set. Integrating

real-world knowledge regarding defects such as shape, size, and structural variations

in the GAN model is challenging without a substantial training set representing such

variations. For example, a human can comprehend the variations occurring in foreign

materials based on their world knowledge but controlling those variations in a GAN

model without an extensive training set is a challenging problem.

3.4.2 Synthetic Defects from Rendering

This section discusses the experiment setup and results regarding our hybrid model

for two defects: Foreign Material and Epoxy-related defects (excess Epoxy and Epoxy

on die).

33

FM Rendering

As explained in the method section, we use spline fitting and geometric moment-based

optimization for thickness grid search to get the distribution of Foreign Material’s

shape and thickness from the training set. One can also find this distribution from

other products or domains. We render 1K synthetic Foreign Material images from

this distribution by perturbing the critical point of the spline and thickness with

a Gaussian distribution. We use the alpha blending method with an alpha value

of 0.3 to combine the rendered spline with the non-defect images. The generator

model in this hybrid approach consists of a 4 CNN layer with batch normalization

and ReLu layer. The number of feature channels is 256 in each layer. It takes input

image of 256 × 256 and generates image of size 256 × 256. To train this model, we

created a dataset consisting of paired, rendered FM images from PovRay and Real

FM images with the same background. We train this model with a batch size of 16

up to 30K iteration and a learning rate of 2e−4 and Adam optimizer. Once trained,

we can use this generator to combine any rendered FM defects with any non-defect

background image. Figure 3.10 shows a few example of final rendered FM images.

Unlike the previous standard GAN models, the hybrid model generates defects with

realistic-looking shapes and no artifacts around them. Hence, no manual screening is

needed when the synthetic defects are used as data augmentation for the detection or

classification model training.

We use a binary classification model to quantify the quality of generated images from

this hybrid model. The classification model is trained with the synthetic augmented

dataset and tested on real FM images. We created a dataset by randomly cropping

images of size 256 × 256 around the FM defects from the training set. We use the

ResNet-18 model for classification. We use the batch size of 32 with half images

34

Figure 3.10: Rendered FM Defects Merged with Non-defect Input Images.

containing FM defects and the other half non-defect images randomly cropped from

the clean images. We train the classification model with an SGD optimizer and

cosine learning rate decay, starting from 1e−1 to 1e−6. For the test dataset, we center

crop FM defect of size 256 × 256 from the 47 test images and other 47 non-defect

patches cropped randomly from clean images not used in training. We perform two

experiments: 1) the model is only trained on the real FM images, and 2) the model is

trained on real + rendered images. In addition, we also vary the number of real FM

images by randomly selecting fewer real FM images from the training set and plotting

their accuracy performance. We perform each experiment three times and report the

mean and standard deviation.

Figure 3.11 and Table 3.5 shows the classification accuracy of model trained with

different training sets. The first column in the table denotes the number of real FM

images used in the training set. The second column shows the accuracy of a model

trained only on the real FM defect images. The third column shows the classification

performance of the model trained with real + rendered images. When a full real FM

35

Figure 3.11: Classification Performance on FM Defects with Varying Number of
Training Images.

Table 3.5: Performance Comparison of FM Classification Model with Varying Number
of Training Images. We Observe That with Fewer Real Training FM Images, the
Model Trained Using Real + Rendered Dataset Provides a Gain of ∼ 8% (See 4th

Row).

Real FM images Accuracy (%) Accuracy (%)

in training set Real images Real + Rendered images

115 94.80±0.70 96.31±0.4

90 93.49±1.06 96.60±1.38

65 91.76±1.98 95.74±0.67

40 88.39±2.86 96.29±0.39

20 81.92±1.07 89.82±1.36

training set (115 images) is used, we find that the performance improvement for the

model trained using real + rendered dataset is roughly ∼ 1.5% over the model trained

on only real FM images. As we decrease the number of real FM examples in the

training set, we observe a decline in the test performance; however, the model trained

36

on the real + rendered dataset decreases slowly. With fewer real FM images in the

training set, the model trained with real + rendered provides a gain of ∼ 8% (see

4th row in Table 3.5). This result demonstrates that the rendered images are very

effective when we have fewer real defect images to train the deep learning models.

Epoxy Rendering

We use a CNN-based generator model that takes a binary masked non-defect image

as input and generates realistic-looking Epoxy defects on the masked region. Our

generator consists of 4 CNN layers, batch normalization, and ReLU layers. To train

this generator, we first segment out the real Epoxy defect regions, then construct a

polygonal mask around the defect region, and use it as input to the generator as shown

in Figure 3.7. The generator is trained to generate the original Epoxy defect back to

the masked region. We use the Adam optimizer with a learning rate of 1e−4 and train

it for 30K iteration with a batch size of 16 and image size of 256 × 256. Once trained,

we can feed any random polygonal mask and random masked non-defect image to

generate realistic-looking Epoxy defects. Figure 3.12 shows an example of generated

Epoxy defects from our generator model. Note that we can generate Epoxy defects

of any size and location. However, real epoxy defects have inherent location bias,

usually found around the die region. Hence while using our model as augmentation,

we sample the polygon mask around the die.

We employ the same approach used for FM defects to quantify the quality of

generated Epoxy defects. We use ResNet-18 as a binary classification model. We

create the training set by randomly extracting the 256 × 256 patches around the

Epoxy defect region from the training set. For synthetic images, we rendered around

500 Epoxy defect images of size 256 × 256. Test images are created by extracting 50

patches from the 8 Epoxy defect images in the test set and 50 patches from non-defect

37

Figure 3.12: Examples of Rendered Epoxy Images from Our Model.

images not used in the training set. We train the generator up to 30K iteration with

batch size of 32 and cosine learning rate decay from 1e−1 to 1e−6.

Table 3.6: Performance Comparison of Epoxy Classification Model with Varying
Number of Training Images. The Model Trained Using Real + Rendered Dataset
Provides a Gain of ∼ 4% Compared to the Model Trained Only on the Real Epoxy
Defects (See 4th Row).

Real Epoxy images Accuracy (%) Accuracy (%)

in training set Real images Real + Rendered images

24 95.85±0.32 96.69±1.25

18 94.05±1.40 94.71±0.49

12 93.39±3.21 93.37±2.80

7 89.24±8.24 93.15±3.65

3 78.55±9.82 78.54±6.40

Table 3.6 show accuracy of ResNet-18 model trained under different datasets. From

the table, we observe that when a higher number of real Epoxy defect images are

available in training, the model trained using the real+rendered dataset provides a

38

minor improvement of roughly ∼ 1%. However this improvement is much higher when

a smaller number of real Epoxy images is available, even showing a nearly 4% points

improvement when only 7 real images are available (see 4th row in Table 3.6). Below

that level, there seems to be no significant value for adding synthetic defects. This

indicates there may be some minimum threshold for the number of real images to

see the benefits of dataset augmentation with synthetic data. Compared to the FM

classification model, the variance in the performance of the Epoxy classification model

is very high when trained with few real Epoxy training images. The high variance in

performance is mainly due to the random selection and significantly small number of

Epoxy defect images compared to the FM defect images.

3.4.3 Discussion

The proposed hybrid model generates realistic-looking defects of various shapes

and sizes while using a small training dataset. Additionally, as a data augmentation

technique for the defect classification model, our hybrid model provides a significant

performance boost when the number of real defect images are few. These findings

are contrary to standard GAN models that require large training datasets in order to

generate diverse defects, and need additional human screening to use the synthetic

defect images as data augmentation. As we know that modeling all defect types using

a rendering tool is not straightforward. However, we believe that our polygon mask-

based approach could be extended to ‘subtractive’ defects like cracks and scratches.

In our model we sample shape and size of the rendered defects from real distribution;

as random shape and size might not be effective for data augmentation. This requires

domain knowledge about the defect’s shape and size.

39

3.5 Conclusion

In this work, we investigate a hybrid approach to enable GAN models to be

more effective for data augmentation by incorporating a physics-based renderer. The

standard GAN models like style transfer GAN or cycle GAN generate realistic-looking

defects and boost the performance of a defect detection model. However, these GAN

models require an extensive training dataset to generate all variations of defects, and

collecting such large datasets is costly and time-consuming, potentially precluding the

use of AI early on in the product/process life-cycle. Furthermore, controlling the shape,

size, or other properties of the generated defects from these GAN models is challenging

as these variations are often represented in a non-disentangled and non-interpretable

manner in the latent space. We propose a hybrid approach combining a 3D rendering

tool with a small GAN model to overcome this challenge. We model defects like

FM as spline curves or Epoxy defects as polygonal masks with easily controllable

parameters. The GAN model in our hybrid approach is only used to refine or apply

realistic-looking texture on the rendered defects, in contrast to generating defects

from scratch in conventional GAN models. The proposed hybrid model requires a

very small training dataset to generate a realistic-looking and diverse defect structure.

Thus this approach is more suitable for enabling defect detection and classification

in semiconductor manufacturing when few images of the defects are available for

training. We evaluate the quality of the synthetic defects by using them as a training

augmentation for a defect classification model. We further show that the proposed

method significantly improves defect classification performance in small training data

scenarios. In future work, we expect to extend our hybrid modeling technique to all

possible defect types found throughout the manufacturing line.

40

Chapter 4

NON-PARAMETRIC PRIOR FOR IMPROVED INTERPOLATION

4.1 Introduction

Advances in deep learning have resulted in state-of-the-art generative models for a

wide variety of data generation tasks. Generative methods map sampled points in a low-

dimensional latent space with known distribution to points in high-dimensional space

with distributions matching real-data. In particular, generative adversarial networks

(GANs) [41] have shown successful applications in super-resolution [80], image-to-image

translation [61, 175], text-to-image translation [113], image inpainting [106], image

manipulation [174], synthetic data generation [130] and domain adaptation [148].

A GAN architecture consists of a generator G and a discriminator D. The generator

G maps low-dimensional latent points z ∼ Pz to high-dimensional data distribution

Pdata. The latent-space distribution Pz is typically chosen to be a normal or uniform

distribution. The goal of the generator G is to produce data such that they are

perceptually indistinguishable from real data. However, the discriminator D is trained

to distinguish between ‘fake’ and ‘real’ data. Both the generator and discriminator

are trained in an adversarial fashion, and at the end of training the generator learns

to generate data with a distribution similar to the real one.

One natural question for generative models is how to model the latent space

effectively to generate diverse and varied output. Interpolating between samples in

the latent space can lead to semantic interpolation in image space [110]. Interpolation

can help transfer certain semantic features of one image to another. Successful

interpolation also shows that GANs do not simply over-fit or reproduce the training

41

set, but generate novel output. Interpolation has been shown to disentangle factors of

variation in the latent space with many applications [91, 77, 92, 161].

Imposing a parametric structure on the latent space can cause distributional

mismatches where the prior distribution does not match the interpolated point’s

distribution. This mismatch causes the interpolated points to lose fidelity in quality

[155]. Previous research has resulted in various parametric models to fix this prob-

lem [155, 71, 2]. One of the findings in prior work [82] is that the use of a Cauchy

distributed prior solves the distributional mismatch problem. But, Cauchy is a very

peculiar distribution, with undefined moments and a heavy-tail. This means that

during inference there will always be a number of undesirable outputs (as acknowledged

also in [82]) due to latent vectors being sampled from these tails.

In this work, we propose the use of non-parametric priors to address the

aforementioned issues. The advantage of a non-parametric prior is that we do not use

any modeling assumptions and propose a general optimization approach to determine

the prior for the task at hand. In particular, our contributions are as follows:

• We analyze the distribution mismatch problem in latent-space interpolation

using basic probability tools, and derive a non-parametric approach to search

for a prior which can address the distribution mismatch problem.

• We present algorithms to solve for the prior using off-the-shelf optimizers,

and show that obtained priors have interesting multi-lobe structures with fast

decaying tails, resulting in mid-point distribution to be close to the prior.

• We show that the resulting non-parametric prior yields better quality and

diversity in generated output, with no additional training data nor any added

architectural complexity.

More broadly, our approach is a general and flexible method to impose other

constraints on latent-space statistics. Our goal is not to outperform all the latest devel-

42

opments in generative models, but to show that our proposed stand-alone formulation

can boost performance with no added training or architectural modifications.

4.2 Background and Related Work

Generative Adversarial Network: As described in Section 4.1, a GAN consists

of two components: a generator G and a discriminator D, which are adversarially

trained against one another until the generator can map latent-space points to a

high dimensional distribution which the discriminator cannot distinguish from true

data samples. Formally, this can be expressed as a min-max game in (4.1) which the

generator tries to minimize and the discriminator tries to maximize [41]:

min
G

max
D

V (D,G) = Ex∼Px [log(D(x))] + Ez∼Pz [log(1 −D(G(z)))], (4.1)

where, V is the objective function, x ∼ Px are real data points sampled from a

true distribution, and z ∼ Pz are sampled points from the latent-space distribution.

If the training of the GAN is stable and the Nash equilibrium is achieved, then the

generator learns to generate samples similar to the true distribution. In general,

GAN training is not always stable, thus several methods have been introduced to

improve the training [122, 7]. This includes different kinds of divergences and loss

functions [103, 8, 44]. Several other works improve generated image quality [21, 169]

or resolution [24, 66].

Interpolation: For any two given latent-space points z1, z2 ∼ Pz, a linearly-

interpolated point zλ is given by zλ = (1 − λ)z1 + λz2 for some λ ∈ [0, 1]. It has been

shown that GANs can generate novel outputs via linear interpolation, and as the line

is traversed (λ : 0 → 1), the output images smoothly transition from one to another

without visual artifacts [110]. They further showed that vector arithmetic in the latent

space has corresponding semantic meaning in the output space, e.g. latent-space

43

points for “man with glasses” - “man without glasses” + “woman without glasses”

generates an image of a woman wearing glasses (c.f. Fig. 7 of [110]).

Distribution Mismatch of Interpolated Points: Interpolation, while semanti-

cally meaningful, presents challenges in ensuring all interpolated points preserve the

same data quality (or in the case of images visual quality). Most GANs utilize simple

parametric distributions such as normal or uniform as the prior distribution to sample

the latent space. However, these two choices of priors cause the interpolated point’s

distribution to not match with either the normal or uniform distribution as observed

by [71]. We replicate this argument below for the sake of exposition, since this is the

core problem we tackle in this work.

Let z1, z2 ∼ N (0, σ2I) be two points in the latent space of the GAN’s generator,

and let zλ = (1 − λ)z1 + λz2 be a linearly interpolated point. Note that σ2
zλ

=

(1 − λ)2σ2
z + λ2σ2

z . We are interested when σ2
zλ

= σ2
z , which only holds for delta

functions for finite moment distributions (we later prove this statement more formally

in Section 4.3). However, we see that the worst case for when σ2
zλ

is different from σ2
z

occurs at λ = 1/2 or the midpoint denoted z, = z1+z2
2

. Analyzing the Euclidean norm

of z1, z2 and z, gives the following equations [71]:

z1, z2 ∼ N (0, σ2I) ⇒ ∥z1∥2, ∥z2∥2 ∼ σ2X 2(d),

z, =
z1 + z2

2
⇒ ∥z,∥2 ∼ σ2

2
X 2(d),

(4.2)

where, d is the dimension of the latent-space and X 2 is the chi-squared distribution.

The GAN is trained with latent-space whose norm squared distance follows a σ2X 2(d)

distribution according to (4.2). However, the mid-point will have a distribution

σ2

2
X 2(d). Clearly, there is distribution mismatch between the points at which the

GAN is trained to generate realistic samples and the mid-point where we want to do

interpolation. Further, this distribution mismatch becomes worse if we increase the

44

dimension of the latent space. Finally, it has been shown that the Normal distribution

in higher dimensions forms a ‘soap bubble’ structure, i.e. most of its probability mass

concentrates in an annulus around the mean, rather than near the mean itself [46].

This implies that interpolations that traverse near the origin of the latent space will

suffer degradation in output fidelity/quality, which has been confirmed for GANs

in [155]. A similar proof for a distribution mismatch can be shown for the uniform

distribution.

4.3 Design of Non-parametric Priors for GANs

The primary motivation to design non-parametric priors is that in order to have

a prior whose distribution of mid-points is close to the original prior, we need to

optimize for an appropriate cost over the space of density functions. This optimization

is easily done for the non-parametric case, and requires rather few assumptions. Our

terminology of non-parametric stems from classical density estimation approaches,

rather than the more modern usage in Bayesian non-parametric.

Let fX(x) be the chosen prior distribution. Let x1 and x2 be two samples drawn

from fX(x). Let an interpolated point be given by: (1 − λ)x1 + λx2, for 0 < λ < 1.

The precise relation between the distribution of this interpolated point and fX(x) is

given analytically as follows.

Property 1: If x1 and x2 are two independent samples drawn from fX(x), then the

density function of (1 − λ)x1 + λx2, for 0 < λ < 1 is given by 1
|λ(1−λ)|fX(x

λ
) ∗ fX(x

1−λ
).

Proof: The proof is a direct application of the following two results from probability

theory.

• R1: If X1 and X2 are two independent random variables, with density functions

45

fX1(x) and fX2(x), then the density of their sum X1 + X2 is given by the linear

convolution fX1(x) ∗ fX2(x).

• R2: If random variable X has density function fX(x), then for α ∈ R, the density

of αX is given by 1
|α|fX(x

α
).

Apply R2 to (1 − λ)x1 and λx2 separately, then convolve the results using R1.

QED.

Following from here, the distribution mismatch problem can be expressed as the

search for a prior distribution fX(x) such that the distribution of any other interpolated

point is close to fX(x). That is, we would like fX(x) to satisfy:

fX(x) =
1

|λ(1 − λ)|
fX(

x

λ
) ∗ fX(

x

1 − λ
), (4.3)

where, λ ∈ (0, 1). The only distributions we are aware of that satisfy this condition

are the Cauchy (undefined moments, heavy-tailed), and delta functions (zero variance).

Property 2: The only density functions with finite moments that satisfy condition

(4.3) are delta functions.

Proof: A density function that satisfies condition (4.3), will also satisfy the equality

of all moments of the left and right side densities. By specifically applying this to the

equality of variances, we will show that the only solution is a delta function (among

the class of finite moment densities). The following two results come handy.

• R3: If X1 and X2 are two independent random variables, with respective variance

σ2
1 and σ2

2, then the variance of their sum X1 + X2 is given by σ2
1 + σ2

2.

• R4: If random variable X has variance σ2, then for α ∈ R, the variance of αX

is given by α2σ2.

If (4.3) holds, it must imply the equality of the variance of the prior, and the

variance of any intermediate-point. i.e. σ2
X = (1 − λ)2σ2

X + λ2σ2
X . If σX is finite,

46

equality happens if and only if σX = 0. This implies that fX(x) is a delta function.

QED.

The search for a density function that satisfies (4.3) is thus not meaningful in the

context of generative models, because a delta function as prior implies constant output.

Cauchy, on the other hand, is too specific a choice, and suffers from pathologies such as

undefined moments, which renders imposing any additional constraints on latent-space

statistics impossible. It also is heavy-tailed, which may cause generation of undesirable

outputs for samples from the tails.

What if we relax condition (4.3), such that we do not seek exact equality, but

closeness of the left and right sides? The next section shows that this relaxed

search results in a problem which can be solved using standard off-the-shelf function

minimizers. Using this approach we obtain distributions with many useful properties.

If we let P (x) = fX(x), and Q(x;λ) = 1
λ(1−λ)

fX(x
λ
) ∗ fX(x

1−λ
), we seek to minimize

some form of distance or divergence between P (x) and Q(x) among densities with

finite-variance. This optimization problem is defined in the next section.

4.3.1 Searching for the Optimal Prior Distribution

As mentioned earlier, instead of enforcing exact equality as in condition (4.3),

we would like to minimize the discrepancy between the left and right sides. A

natural choice would be to minimize the KL divergence between P (x) = fX(x), and

Q(x;λ) = 1
λ(1−λ)

fX(x
λ
) ∗ fX(x

1−λ
). Ideally, it might make sense to minimize this over

the entire range of λ’s, i.e.

minimize
P

∫
f(P (x)∥Q(x;λ))dλ, (4.4)

where f is the chosen divergence/distance between the densities. However, this

47

is likely an intractable problem due to integration over λ. In order to make this

tractable, we observe that for a given λ, the mean of Q(x;λ) is the same as the mean

of P (x). However, the variance of Q(x;λ) goes as (1 − λ)2σ2
X + λ2σ2

X . Thus, for

interpolation problems, where λ ∈ (0, 1), the largest discrepancy in variance between

P and Q occurs at a value of λ = 0.5. Thus, for interpolation problems, we suggest

that minimizing for the worst-case error is sufficient.

4.3.2 Optimization Problem for Interpolation Priors

For interpolation priors, we minimize the KL divergence between P (x) and Q(x;λ =

0.5). To create a tractable problem, we restrict P (x) to be defined over a compact

domain, without loss of generality, we choose it to be [0, 1]. We discretize the domain

with sufficient fineness, typically we choose 210 bins in [0, 1]. The distribution is now

discretely represented by the bin-centers P = {pi}ni=1. The optimization problem now

becomes:

min
P

f(P∥Q) s. t.
n∑

i=1

pi = 1, and pi ≥ 0. (4.5)

In (4.5), f(P∥Q) is a divergence/distance function between P and Q. We use KL

divergence because not only is it a natural choice, but we also find that it produces

smooth distributions than when using the ℓ2 distance. Without a variance constraint,

the solution of (4.5) is simply a discrete delta function, which we would like to avoid.

The variance constraint is equivalently expressed as a quadratic-term involving pi’s,

based on which we have:

min
P

f(P∥Q)

s.t.
n∑

i=1

pi = 1,
1

n

 n∑
i=1

i2pi −

(
n∑

i=1

ipi

)2
 ≥ ξ, pi ≥ 0, (4.6)

48

where, ξ > 0. In general the KL divergence is convex on the space of density

functions, but in our case P and Q are related to each other; our objective function

is not convex. We solve (4.6) using fmincon in Matlab, which uses an interior-point

algorithm with barrier functions. We note that the solution from fmincon may only

be a locally optimal solution, yet we find the obtained solution is quite robust to

large variation in initialization. We also note that using any of KL(P∥Q), KL(Q∥P)

and KL(P∥ (P+Q)
2

) + KL(Q∥ (P+Q)
2

) as objective in (4.6) gives us the same result. We

use the following settings for fmincon: interior-point as algorithm, Max Function

Evaluations = 4 × 105, Max Iterations = 105 and n = 1024. We use ξ = 0.75 in our

experiments because it provides the best FID score [51]. Figure 4.1 shows the trace

of the optimizer cost value for the above settings; we observe convergence to a local

minimum in less than 500 iterations.

0 100 200 300 400

Iteration

0

0.1

0.2

0.3

C
o
s
t
v
a
lu

e

Figure 4.1: Figure Shows a Sample Trace of the Cost Function (4.6) over Iterations,
Showing Fast Convergence.

Remarks on the shape of the obtained distribution: Here we make brief

remarks on the shape of the obtained distribution. Firstly, we note that the exact

shape of the obtained distribution varies slightly each time we run the solver. This

is of course expected. However, we find that all obtained solutions seem to share

the same general shape: they have a large main-lobe, appear to be symmetric, and

have small but significant side-lobes. This is more clearly shown in Figure 4.2. We

49

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Non-Parametric Distribution

Mid Point Distribution

Figure 4.2: The Distribution Obtained by Solving (4.6) (Shown in Blue), and Its
Mid-point Distribution (Red). While There Is Small Variability in the Solutions
Obtained, We Find That No Matter How We Initialize the Solver, All Our Obtained
Distributions Share the Three Following Traits: A Large Main-lobe, Symmetry, and
Small Side-lobes. Also, Note the Strong Overlap Between the Distribution and the
Mid-point Distribution. This Is Further Quantified in Table 4.1 and Compared with
Other Distributions in Figure 4.4.

note that we did not impose any symmetry condition during optimization, yet these

solutions emerged despite different initialization.

Dependence on initialization: We initialized our solver with a uniform density,

delta functions centered at different locations, and truncated Gaussians with varying

means and standard-deviations. For all these, the final solution still converges to a

shape very similar to that shown in Figure 4.2. Further, all obtained solutions seem

to perform equally well in the final evaluation of GAN output quality.

Role of side-lobes: We are not aware of any simple parametric distribution that

can describe the shape seen in Figure 4.2, except perhaps a Gaussian mixture model.

However, the shape of the side-lobes is intricate, and not simple Gaussian-like. The

existence of these side-lobes seems to allow us to strike a balance between the fast tail-

decay of distributions like the Gamma, and the heavy tail of the Cauchy. It is almost

as if the obtained shape fuses the best properties of the two classes of distributions,

50

enabling us to generate good quality GAN output, all the while minimizing the

divergence to the interpolated samples.

Continuous samples from discretized density: At first glance it may appear

that since we discretize the domain [0, 1] while solving (4.6), that our prior is capable of

generating only discrete samples. This is easily dealt with as follows. Once we generate

a sample from the discretized density, what we get is really an index corresponding to

the bin-center, but the bin itself has non-zero width given by how finely we partition

[0, 1]. From the corresponding bin, we simply generate a uniform random variable

restricted to the width of the bin. This approach implicitly corresponds to sampling

from a continuous density constructed by a zeroth-order interpolation over the obtained

discrete one. One can be more sophisticated than this, but the sampling algorithm will

no longer be as simple. We find that the approach described above is quite sufficient

in practice.

Quantification of mid-point mismatch: Table 4.1 shows the actual KL divergence

between the prior and mid-point distribution. It is clear that for the normal and

uniform distributions, the mid-point distribution is very divergent from the actual

prior distribution; whereas the distribution obtained from solving (4.6) has a much

lower divergence from the mid-point. In (4.6) we are only minimizing the distribution

mismatch for the one-dimensional case. The idea is that if the 1-D distribution is

similar to its mid-point distribution, then the divergence between the corresponding

Euclidean norm distribution will be low even for higher dimensions.

Figure 4.3 shows the mid-point distribution mismatch for different priors for the

one dimensional case. Figure 4.4 shows the Euclidean norm distribution for prior

and mid-points for different dimensions, computed from a set of 5 × 104 samples. For

51

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
10

-3

Uniform Distribution

Mid Point Distribution

(a) Uniform Distribution

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

4

5

6
10

-4

Normal Distribution

Mid Point Distribution

(b) Normal Distribution

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2
10

-3

Non-Parametric Distribution

Mid Point Distribution

(c) Non-parametric

Figure 4.3: The Figures Show Various Choices of Priors (Blue) and Their Correspond-
ing Mid-point Distribution (Red). Note That One Can Observe a Large Discrepancy
Between the Prior and Mid-point Distributions, for Typical Choices Such as the
Uniform and Normal. The Prior We Develop Shows Significantly Less Discrepancy.
These Discrepancies Are Also Quantified via the Kl-divergence in Table 4.1.

(a) Normal Distribution

(b) Obtained Non-parametric Distribution

Figure 4.4: Euclidean Norm Distribution for Samples Drawn from Different Priors and
Their Corresponding Mid-point Euclidean Norm Distribution for Different Dimensions
d. Note the Mid-point Norm Distribution for the Normal Prior Moves Further Away
from the Prior Norm Distribution as the Dimension Increases to d = 200, Whereas
with Our Non-parametric Prior, the Mid-point Norm Distribution Overlaps with the
Prior Norm Distribution Even at d = 200.

the mid-points, we sample two sets of 5 × 104 points, and calculate the Euclidean

norm of the corresponding mid-points. We see that for the normal distributions, at

low dimensions (d = 5 and d = 10) the mid-point distribution overlaps well with the

prior distribution. As the dimension increases (d = 50, 100, 200), the two distributions

start to diverge. For d = 100, 200 there is almost no overlap between the prior and

mid-point distribution. We observe similar trend for the uniform distribution. On

the contrary, in our case the mid-point distribution and the prior distribution (of

Euclidean norm) overlap well with each other even in higher dimensions. In Figure

52

Table 4.1: KL-divergence Between Prior and Mid-point Distribution.

Distribution KL divergence

Uniform Distribution 0.3065

Normal Distribution 0.1544

Proposed Non-Parametric Distribution 0.0075

4.4 we can notice that our non-parametric distribution does bring the Euclidean norm

distribution very close to the origin compared to the normal and uniform.

We note that we are not the first to propose a solution to this problem. Several

prior approaches have proposed solutions, either through new interpolation schemes or

new prior distributions different from normal or uniform that suffer less distribution

mismatch. White et al. proposes spherical linear interpolation by following the

geodesic curve on a hypersphere to avoid interpolating near the origin (and thereby

minimize distribution mismatch) if the latent points are sampled uniformly on a sphere

with finite radius [155]. However, this interpolation is not semantically meaningful

if the path becomes too long and it passes through unnecessary images as noted in

[71]. Similar to spherical interpolation, [2] propose a normalized interpolation. Yet, it

inherits similar issues as in spherical interpolation in not being the shortest path.

Other approaches have attempted to define new prior distributions to ensure the

interpolated points have low distribution mismatch. This is similar to the method we

employ in our work, except ours is non-parametric. Kilcher et al. propose a new prior

distribution defined as follows:

v ∼ Uniform(Sd−1), r ∼ Γ(
1

2
, θ), z =

√
rv (4.7)

where d is the dimension of the latent space, Γ(1
2
, θ) is the Gamma distribution and z

is a latent vector [71]. Latent spaces defined using this prior distribution do not suffer

53

as much from mid-point distribution mismatch. Further work by Lesniak et al. showed

that the Cauchy distribution P (z) = 1
π(1+z2)

induces a midpoint distribution which

is the same as itself [82]. However, the Cauchy distribution has undefined moments,

which makes analysis difficult, and also is heavy-tailed, which can lead to undesirable

outputs.

4.4 Experiments and Results

U
n
if
o
rm

N
o
rm

a
l

G
a
m

m
a

C
a
u
c
h
y

N
o
n
-

p
a
ra

m
e
tr

ic

Figure 4.5: Interpolation (Left to Right) Through the Origin on Celeba Dataset
Using Different Priors with d = 100. Note the Degradation in Image Quality Around
the Center of the Panel (Origin Space) for Many Standard Priors.

U
n
if
o
rm

N
o
rm

a
l

G
a
m

m
a

C
a
u
c
h
y

N
o
n
-

p
a
ra

m
e
tr

ic

Figure 4.6: Interpolation (Left to Right) Between Two Random Points on Lsun
Bedroom Dataset Using Different Priors with d = 100.

54

Datasets, models, and baselines: To validate the effectiveness of the proposed

approach, we train the standard DCGAN model [110] on four different datasets: a)

CelebA dataset [93], b) CIFAR10 [75], c) LSUN Bedroom, and d) LSUN Kitchen [164]).

We train our model to the same number of epochs and all the hyper-parameters of the

training are kept same for all the cases. We train each model three times and report

the average scores. Details about the network architecture and the training method are

provided in the supplemental material. We compare our proposed non-parametric prior

distribution against standard ones like the normal, uniform and the priors designed to

minimize the mid-point distribution mismatch like Gamma [71], and Cauchy [82]. For

Gamma and Cauchy, we use the same parameters as suggested in the corresponding

references.

Qualitative tests: In Figure 4.5, we show the effect of interpolation through origin

in high latent-space dimension (d = 100) for different priors on CelebA datatset. Here,

we interpolate between two random points such that the interpolation line passes

through the origin. Similar to [71], we also observe that with standard priors like the

normal, in high latent dimension, the GAN generates non-realistic images around the

origin. Note the difference in quality near the images in the center of the panels (space

around origin). With our non-parametric distribution obtained from the solution

of (4.6), the GAN generates more realistic images around the origin even at higher

dimensions. It was pointed out by Lesniak et. al. [82] that if a GAN is trained for more

epochs, then it learns to fill the space around the origin even with the standard priors.

We observe similar trend with the normal and uniform priors. However, with our

non-parametric prior the GAN learns to fill the space around the origin very early in

training compared with the standard priors. We also present qualitative comparisons

on LSUN bedroom dataset in Figure 4.6: comparing the results with the standard

55

priors and the priors proposed in [71] and [82], highlighting the favorable performance

of the proposed approach. While we note that it is difficult to perceptually appreciate

whether we outperform the other priors, we show that we do obtain competitive visual

quality with a conceptually general approach. In the supplemental material, we show

additional qualitative results for LSUN Bedroom/Kitchen and CIFAR10 datasets.

We note that the Cauchy distribution had difficulty converging on these datasets,

exhibiting possible mode collapse and instability during GAN training.

Quantitative evaluation: For quantitative analysis, we use the Inception Score

(IS) [122] and the Frechet Inception Distance (FID) [51] which are the standard metrics

used to evaluate GAN performance. The inception score correlates with the visual

quality of the generated image – higher the better. However, recent studies suggest

that the inception score does not compare the statistics of the generated dataset with

the real-world data [51, 166], and thus is not always a reliable indicator of visual

quality. This drawback of the IS is overcome by the FID score, which compares the

statistics of the generated data with the real data with respect to features. The lower

the FID score, the better. We will see in Tables 4.2 to 4.6, that our non-parametric

prior performs better in terms of FID score on both the prior and mid-point by at

least 2 points. In terms of IS we are the best in most of the cases, when we do not

perform better, we come quite close to the best performing one.

To get the IS and FID score we sample 5× 104 points from the prior, and estimate

the scores on the corresponding image samples. For mid-point, we sample two sets

of 5 × 104 points from the prior, and an image is generated by the GAN, with the

corresponding average points as inputs. Results are summarized in Tables 4.2 to 4.6 for

different datasets. Table 4.2 compares our non-parametric prior with other standard

priors on the CelebA dataset, at latent space dimension d = 100. The non-parametric

56

Table 4.2: Comparison of IS and FID Scores for Different Prior Distributions on
CelebA Dataset with d = 100.

Distribution Inception Score FID Score

Prior Mid-Point Prior Mid-Point

Uniform 1.843 1.369 24.055 40.371

Normal 1.805 1.371 26.173 42.136

Gamma 1.776 1.618 29.912 28.608

Cauchy 1.625 1.628 59.601 60.128

Non-parametric 1.933 1.681 17.735 19.115

prior outperforms all other priors on both the metrics. Our prior has better FID score

by more than 6 points on both the prior and the mid-point. As expected the IS and

FID scores for the Cauchy is almost the same for the prior and the mid-point. With

Gamma, we observe that the score on mid-points is slightly better than the prior since

the gamma distribution is highly dense around the origin. In Table 4.3, we show the

IS and FID for the prior and the mid-point at latent space dimension d = 200. We

note that our non-parametric distribution performs better in all the cases compared

with all other priors. Scores for our non-parametric prior is almost similar to the

scores in Table 4.2, which indicates its robustness toward the increase in latent space

dimension. Cauchy prior sometimes leads to mode collapse during the training which

is indicated by its poor FID scores. From Table 4.2 and 4.3, we also note that the

IS and FID score become worse for the mid-point compared to the prior point as we

increase the latent space dimension. Table 4.4 shows the IS and FID scores for

CIFAR10. With our non-parametric prior, the GAN performs better than other priors

on both the prior and mid-point by at least 2 points on FID score. Similar to CelebA

dataset, we observe the training with Cauchy prior is highly unstable. In Table 4.5

and 4.6 we compare our non-parametric prior with other priors on the LSUN bedroom

57

Table 4.3: Comparison of IS and FID Scores for Different Prior Distributions on
CelebA Dataset with d = 200.

Distribution Inception Score FID Score

Prior Mid-Point Prior Mid-Point

Uniform 1.908 1.407 25.586 44.837

Normal 1.857 1.434 25.035 43.596

Gamma 1.738 1.608 33.816 32.241

Cauchy 1.734 1.743 86.286 86.278

Non-parametric 1.973 1.636 14.953 19.322

Table 4.4: Comparison of IS and FID Scores for Different Prior Distributions on
CIFAR10 Dataset with d = 100.

Distribution Inception Score FID Score

Prior Mid-Point Prior Mid-Point

Uniform 6.411 5.204 43.501 76.913

Normal 6.836 5.656 39.235 65.525

Gamma 6.449 6.798 48.334 39.262

Cauchy 2.972 2.964 180.37 180.40

Non-parametric 6.871 6.809 34.803 37.112

and LSUN kitchen datasets. We observe that our non-parametric prior outperform

other priors on the FID score by at least 6 points. We observe that the Gamma and

Cauchy priors perform worse on both the prior and mid-point in terms of FID score.

These priors often lead to mode collapse during the training. Note that the LSUN

dataset has a larger variation in images, and also a larger training-set than the CelebA

dataset. The non-parametric prior performs best in both cases as measured by the

FID on both prior and mid-point, showing its benefits on large datasets with large

variation. A few salient observations from the results are:

• The quantitative results on different datasets show that standard priors like

58

Table 4.5: Comparison of IS and FID Scores with Different Prior Distributions on
LSUN Bedroom Dataset with d = 100.

Distribution Inception Score FID Score

Prior Mid-Point Prior Mid-Point

Uniform 2.969 2.649 42.998 76.412

Normal 2.812 2.591 64.682 108.49

Gamma 2.930 2.808 162.44 161.37

Cauchy 3.148 3.149 97.057 97.109

Non-parametric 3.028 2.769 27.857 31.472

Table 4.6: Comparison of IS and FID Scores with Different Prior Distributions on
LSUN Kitchen Dataset with d = 100.

Distribution Inception Score FID Score

Prior Mid-Point Prior Mid-Point

Uniform 2.656 2.549 40.041 51.119

Normal 2.844 2.867 39.909 53.448

Gamma 2.183 2.147 181.81 187.00

Cauchy 1.182 1.179 242.27 242.87

Non-parametric 3.109 3.031 33.194 35.074

the normal and uniform perform better on the prior point but worse on the

mid-point.

• The priors proposed to minimize the mid-point distribution mismatch in [71]

and [82] achieve better results on the mid-point but perform worse on the prior

point.

• Gamma and Cauchy do not perform consistently across datasets. In some cases

they are the best, but when they are not, their performance can be far from the

best.

• The non-parametric distribution is far more consistent, and is either the best, or

59

pretty close to the best performing one, on all four datasets.

4.5 Conclusions

In this work, we propose a generalized approach to solve distribution mismatch for

interpolation in GANs. We show the qualitative and quantitative effectiveness of our

approach over the standard priors. We note that often times, our proposed method

is in fact the best one, and in cases when it is not, it comes quite close to the best

performing technique. Our goal is not necessarily outperform all other GANs, but

to suggest the use of non-trivial priors, which might improve image quality without

any additional training-data or architectural complexity. Additionally, it would be an

interesting avenue of future work to extend this approach to extrapolation problems,

or impose other interesting statistical or physically-motivated constraints over latent

spaces.

60

Chapter 5

IMPROVING SHAPE AWARENESS AND INTERPRETABILITY IN DEEP

NETWORKS USING GEOMETRIC MOMENTS

5.1 Introduction

Advances in deep learning have resulted in state-of-the-art performance for a

wide variety of computer vision tasks. The large quantity of training data and high

computation resources have made convolutional neural networks (CNN) into a common

backbone model for many tasks; including image classification [76, 139, 49], object

detection [40, 115, 48], segmentation [117, 14, 13], unsupervised learning [149, 16],

and generative modeling [74, 41, 132].

A CNN consists of multiple spatially compact filters which convolve over an input

image, followed typically by normalizations [60] and nonlinearities. The convolutional

kernel’s small spatial extent and weight sharing properties make them efficient and

translation equivariant. However, this also implies that the kernel’s receptive field is

limited due to its small spatial extent. The local nature of the convolution kernels

prevents them from capturing the global context of the image. The long-range

dependency, i.e., a larger receptive field, is achieved through stacking multiple CNN

layers and reducing the spatial dimension by pooling operations.

However, it has been observed that the features from this kind of architecture tend

to be more receptive toward texture than the shape of the object. For example, [39]

tackles this problem using a better shape-biased dataset like Stylized-ImageNet. As

opposed to this, incorporating the shape bias more directly without changing training

sets is a natural choice. As we know, convolutional operations intrinsically represent

61

frequency selective operations, while the shape is related to geometric concepts rather

than specific frequency bands. Therefore, different types of operations that are more

directly shape-sensitive are needed to promote shape awareness.

In this work, we frame vision tasks like classification through the geometrical

properties of the object’s shape. Rigid and non-rigid aspects of shape can be described

in terms of geometric moments. Geometric moments are a very specific type of

weighted averages of image pixel intensities, where the weights are drawn from specific

polynomial-type basis functions. This operation can be expressed as a projection

of the image on the bases. While classic theoretical development around moments

used specific choices of the bases functions, their application to difficult tasks like

image classification has remained very limited. In this work, we revisit moments as a

learnable spatial operation, introducing modules motivated by the image-projection

analogy. However, we leave the bases to be learned end-to-end in a task-specific

manner.

Geometric moments have a long history in the vision community for a wide variety

of applications ranging from invariant pattern recognition [57, 70, 3, 32], segmentation

[114, 35] and 3D shape recognition [147, 119, 28]. We propose a deep-learning

based architecture to extract invariant image moments for classification tasks. Our

architecture consists of two streams of convolutional networks; one extracts features

corresponding to the object, i.e., removes the background from the image, and the

second network learns the bases from a 2D coordinate grid. Geometric moments

are computed by projecting features of the image to the learned bases. In order to

learn task-specific invariant moments to deformations, size, and location, we learn a

simple transformation of the coordinate grid and compute the geometric moments

at multiple levels. The geometric moment captures long-range dependency without

using any pooling layer or reducing the spatial dimension. The computation cost of

62

the geometric moment is linear in the spatial dimension.

In particular, the proposed Deep Geometric Moment (DGM) architecture provides

four key benefits compared to existing models.

• First, the model generates discriminative features for the classification task by

accounting for shape information through the proposed deep geometric moments.

• Second, our model outperforms existing ResNet models on standard datasets

without using any pooling layer or reducing the spatial dimension.

• Third, it provides easy access to interpretable features at any level by simple

re-projection of moments.

• Finally, compared to existing models, the DGM model only requires finetuning

the coordinate basis pipeline without retraining all the model parameters.

Our goal is not to outperform all the latest developments in vision, but to show

that our proposed model can perform comparably to standard models when trained

from scratch, produces interpretable results, and is easier to finetune.

5.2 Geometric Moment

A moment for a given two-dimensional piece-wise continuous function f(x, y) is

defined as:

mpq =

∫ ∞

−∞

∫ ∞

−∞
xpyqf(x, y)dxdy, (5.1)

where, (x, y) is the 2D coordinate and (p+q) is the order of the moment. By uniqueness

theorem [57], if f(x, y) is a piece-wise bounded continuous function (i.e. it is non-zero

only on a compact part of the xy plane), then the moment sequence mpq is uniquely

defined for all orders (p + q) by f(x, y). Conversely, f(x, y) is uniquely determined by

the sequence mpq.

Equivalently, moments can also be seen as a ‘projection’ of the 2D function on

certain bases of the form xpyq. Instead of using the bases function of type xpyq, one

63

can instead also use orthogonal functions like Legendre or Zernike polynomials [143]

for better reconstruction.

Image moments are well-known invariant shape descriptors with a long history

of use in the computer vision literature to capture the geometrical properties of an

image. For example, m00 (0th order) represents average pixel intensity, m10 (1st order)

and m01 (1st order) represent xy centroid coordinate and the combination of 1st and

2nd order can be used to compute orientation.

We need discriminative moments, which are also invariant to certain image trans-

formations like rotation, translation, and scale for the image classification task. An

early work by Hu [57] introduced a way to find invariant moments for images. The

Hu moments consist of seven moments, mostly a combination of lower-order moments

invariant under scaling, translation, and rotation. While these basic sets of seven

Hu moments are provably invariant to rotation, translation, and scale, their use has

been limited since their discriminative power is not very high. Developing invariant

moments for the Legendre and Zernike polynomials for any arbitrary order is also

possible [19, 167, 168, 70, 72, 153, 159, 31]. However, they also have not significantly

impacted contemporary image classification tasks.

In this work, we seek to advance a new approach for defining spatial operations

for image classification networks, whose structure is motivated by classic moment

computation but whose basis functions are left to be learned end-to-end by a deep

learning network in a task-specific way. This implies that we are not seeking to

replicate any of the classical moments in an exact sense but to find ways to fuse

moment-like computations and let networks learn the suitable basis functions for a

given task. This approach is described in the next section.

Geometric moments and deep networks: There has been prior work in integrating

geometric moments with deep networks, as specifically applied to 3D shape classifica-

64

tion, from point-cloud data. For example, geodesic moment-based features from an

auto-encoder were used to classify 3D shapes [94]. On the other hand, CNNs were

used as a polynomial function to learn bases, and the needed affine transformation

parameters for 3D point cloud data based shape classification [65]. This line of work

was extended in [85] which uses graph CNN to capture local features of the 3D object.

More recently, [144] and [156] replaced the conventional global average pooling in CNN

models with invariant Zernike moment-based pooling for image classification task.

Contrary to these methods, our approach learns bases as well as the affine parameters.

Note that our work is different from these approaches because a) we are interested in

natural image classification where moment computation is challenging compared to 3D

shape classification, due to intensity variation, background variation, occlusions, etc,

b) architecturally our approach is more involved compared to processing 3D object

that are specified directly in terms of coordinate locations.

5.3 Deep Geometric Moments

Geometric Moment Level-1

ResNet
Block

ResNet
Block

Conv
Block

Conv
Block

Conv
Block

 2 x N x N

Coordinate
grid

G
lo

ba
l P

oo
lin

g

 M
om

en
ts

FC
 L

ay
er

 F
C

 L
ay

er
Input image
3 x N x N

Conv
Block

Conv
Block

 M

om
en

ts

a11 a12

a21 a22

Transformed

2d Grid

 2 x N x N

Coordinate
grid from previous level

 G
lo

ba
l P

oo
lin

g

1 x 1 conv + BN +ReLU

C x N x N

Image
Feature

C x N x N
Coordinate
Bases

C x N x N

Image
Feature

C x N x N
Coordinate
Bases

Element-wise MultiplicationElement-wise Addition

ClassesAffine transformation
parameters

Geometric Moment Level-2

Final Feature
Visualization

Figure 5.1: An Overview of Proposed Deep Geometric Moment (DGM) Framework
for Image Classification Task. The Model Consists of Two Blocks: Level-1 and Level-2
That Consists of Two Pipelines : 1) CNN Based Image Feature Extraction and 2)
Coordinate Bases Computation. the Level-2 Block Can Be Repeated Number of times
for Computing Moments, Similar to Depth Concept in Deep Networks.

65

CNNs are extremely good at capturing local context and texture information

to discriminate images, even in a complex classification task, without an explicit

‘shape’ related operation. On the contrary, geometric moments can capture the shape

information exceptionally well and provide discriminative cues in classifying images;

however, their discrimination power is quite limited and generally requires a salient

object over a homogeneous background. We advance a new type of architecture that

blends the strengths of both approaches. We propose a deep geometric moment (DGM)

model that uses geometric moments along with CNNs for classification by providing

both shape and texture access. The geometric moment for a discrete 2D function is

given by the discrete version of Eq. 5.1 :

mpq =
∑
x

∑
y

xpyqI(x, y) (5.2)

In the traditional usage of moments in vision, the number and order of moments

is an experimental design choice. Choosing the right number and order of moments

depends on the underlying tasks; large moments are useful for image reconstruction,

whereas, for image classification, higher-order moments are affected by noise and hence

not very useful. Thus, selecting the correct moment orders is essential. In our method,

we specify the required number of moments (in terms of feature dimension), but the

exact basis functions and orders are learned by the networks end-to-end for specific

tasks. Hence we will drop the subscript notation pq and use the superscript notation

c indicating the feature channel number for moment m.

In our model defined by Eq. 5.3, we use CNNs to extract relevant object features

from the given images and project them onto the learned coordinate bases per channel:

mc =
1

N ×N

∑
x

∑
y

gc(x, y)f c(x, y), (5.3)

where, N ×N is the dimension of the image, gc(x, y) is a learnable 2D polynomial

66

function, and f c(x, y) is image feature at coordinate location (x, y), and c refers to the

channel dimension of the feature, given by the CNN from the image-feature stream

(see top-stream in Fig. 5.1). Next, to account for varying locations, sizes, poses, and

deformation, we allow our network to learn affine parameters to appropriately deform

the 2D coordinate grid during moment computation.

In summary, the proposed model consists of three components: 1) Coordinate

base computation: uses a 2D coordinate grid as input and generates the bases, 2)

Image feature computation: obtains image features through ResNet blocks, and 3)

Affine transform estimation: to transform the 2D coordinate grid to enable invariance

learning. An overview of the DGM model is shown in Fig. 5.1. The architecture

consists of Level-1 and Level-2 blocks, where Level-1 is fixed, whereas Level-2 can be

replicated multiple times to create deeper networks.

Coordinate base computation: For computing bases, expressed as g(x, y) in Eq.

5.3, a 2D coordinate grid is used as an input. The 2D coordinate grid is represented

by 2 × N × N , where N × N is the dimension of the input image. Each entry in

the coordinate grid indicates the normalized 2D pixel locations. g(x, y) in Eq. 5.3

is defined by a neural network that consists of two layers of 1 × 1 convolution layer

followed by a batch-normalization and ReLU layer. This definition of g(x, y) processes

each location of the coordinate grid independently. We use only two convolution layers

in our experiments, but one can use more layers to learn more complex or higher-order

moments. The output bases are of dimension C ×N ×N where C is the number of

moments/channels.

Image feature computation: Referring back to the term f(x, y) in Eq. 5.3, also

shown as a ResNet block in Fig. 5.1, takes the image of dimension 3 × N × N as

input, and outputs a feature of dimension C × N × N . f(x, y) is implemented as

a conventional ResNet block [49] with 3 × 3 filter kernel. Note that the geometric

67

moments are insufficient for capturing local features in the image. In contrast, the

CNNs with a kernel size of 3×3 or greater are very efficient in capturing local properties.

Therefore, we use a kernel of size 3 × 3 in ResNet blocks, which is a common choice in

state-of-the-art ResNet-based models. These image features from the ResNet block are

then projected on the bases by performing element-wise multiplication, and moments

are obtained by using global pooling on the projected features. Note that unlike the

conventional definition of geometric moment Eq. 5.1 where the same 2D image is

projected to each basis, in our method, different feature maps are projected to each

basis. The projected feature map on the bases highlights the important region in the

feature map.

Affine transformation estimation: We first use the canonical coordinate grid to

compute the moments and predict the affine parameters using these moments. The

prediction network consists of two fully-connected layers with a non-linear activation.

The prediction network takes the canonical moments (1 × C) as input and outputs

each feature channel’s affine parameters (C × 6). Then, the 2D coordinate grid CG is

transformed according to: C
′
G =

a11 a12

a21 a22

× CG +

tx
ty

 , where, the 2 × 2 matrix is

the predicted affine parameters, tx and ty are the predicted translation parameters and

C
′
G is the transformed 2D coordinate grid. We then use these transformed coordinate

grids to generate new bases and compute new moments for each channel. Arguably,

affine parameters are also limited in providing needed invariance and robustness, but

this choice is efficient and leads to good performance.

5.3.1 DGM Classification Model

The proposed DGM network for the image classification task is shown in Fig.

5.1. It uses the computed coordinate bases, convolution network-based features, and

68

affine transformation estimation and is trained end-to-end. The functionality of the

model comprises of: 1) an image feature pipeline that transforms an image to features

through ResNet blocks, and 2) a geometric moment pipeline that generates the bases

and computes the affine parameters and moments. The proposed model does not use

any pooling layer or reduce the spatial dimensions across the networks. This preserves

the shape of the object, as opposed to pooling or reducing the spatial dimension that

distorts the final reconstructed shape, limiting its interpretability. For simplicity, we

also use the same number of feature channels in each ResNet layer.

As shown in Fig. 5.1, Level-1 uses the canonical coordinate grid to generate bases

and the ResNet block to generate features from the image. We then project this

feature on the bases to compute the moments. The projected feature acts as an

attention map and is added to the original feature. This feature map and geometric

moments are then passed to Level-2.

The Level-2 contains a ResNet block to process the features further. This level

also predicts the affine parameters based on the moments from the previous level and

transforms the coordinate grid to regenerate the bases. Fig. 5.1 shows only two levels,

but one can repeat the Level-2 block multiple times for added depth. The moments

from the final level are used as input to the fully-connected layer to generate class

probabilities for the classification task.

Feature Visualization: To visualize the shape awareness brought by the DGM

approach, we describe a particular to visualize the learned features that highlight the

object’s shape. By the uniqueness theorem [57], moments can be used to reconstruct

the original input, provided the bases are complete. In our case, our learned bases are

under-complete. Using the moments as combination weights on the projected features

69

given by:

V =
∑
c

mc(Gc ⊗ F c), (5.4)

where, mc is the moment, Gc is the basis, F c is the image feature for channel c, and

⊗ is element-wise multiplication, we get a visualization of shape-related information

in the features.

5.4 Experimental Results

We evaluate the proposed method for image classification on standard datasets:

CIFAR-10, CIFAR-100 [75], and ILSVRC-2012 ImageNet [118] to validate the ef-

fectiveness of our model. The performance of our model is compared to a baseline

model (ResNet model without pooling layers) and standard ResNet models [49] across

classification accuracy (in %) and the number of parameters (in Million M). Along

with the classification performance, we also compare the feature reconstruction qual-

itatively and semantic segmentation. We train all models under the same training

hyperparameters. For CIFAR datasets, we train models up to 150 epochs with a batch

size of 128; for ImageNet, we train for 100 epochs with a batch size of 256. We use

SGD optimizer with momentum = 0.9, weight decay = 5e−4, and cosine learning rate

decay with an initial learning rate of 0.1.

5.4.1 How Many Levels Do We Need?

In this experiment, the ResNet block in the image feature pipeline consists of

only 1 × 1 filter kernels, except the first Conv layer. There is no interaction between

neighboring pixels in this setting; the only interaction is through geometric moments

and affine transformation of the coordinate grid. Each level in our DGM model consists

of a ResNet block with two ResNet layers, a coordinate bases generator defined with

two convolutional layers, and two fully connected layers for affine parameters prediction.

70

Table 5.1: Performance Comparison of DGM Model with Increasing Levels on CIFAR
Datasets.

Model Params CIFAR CIFAR

(M) 10 (%) 100 (%)

DGM Level-1 0.44 84.79 59.07

DGM Level-2 1.37 88.77 68.07

DGM Level-3 2.30 90.09 69.72

DGM Level-4 3.23 90.28 70.56

DGM Level-4 (w/o affine) 2.03 88.47 66.6

This setting helps us understand the overall contributions of the coordinate bases and

the affine transformation.

Table 5.1 reports the DGM model’s classification performance and the number of

parameters as we increase the number of levels in the model. In Level-1, we use the

canonical coordinate grid to generate the bases. The results show that DGM Level-2

performs significantly better than DGM Level-1 on both the CIFAR-10 and CIFAR-100

datasets. This performance improvement reflects the effectiveness of transforming

the coordinate grid to regenerate better bases. We also see that the performance

difference between the Level-3 and Level-4 model is minimal. In DGM Level-4 w/o

affine transform (last row), we do not transform the coordinate grid; hence the bases

in this case, remain the same for every image. Without affine transformation, the

model’s performance drops, indicating the effectiveness of using affine transformation.

Also, increasing the levels beyond 4 does not significantly improve the classification

performance but is accompanied by a large increase in the number of parameters and

computation; hence, we use only Level-4 in all the experiments.

71

5.4.2 Comparison with Baseline ResNet Model

Table 5.2: Performance Comparison of Proposed DGM Model and Baseline ResNet
Model (Without Pooling Layers) on CIFAR Datasets.

Model Params CIFAR CIFAR

(M) 10 (%) 100 (%)

ResNet-18 (w/o pooling) 9.62 94.78 76.93

DGM ResNet-18 11.61 95.51 80.60

ResNet-34 (w/o pooling) 18.94 95.46 78.42

DGM ResNet-34 21.06 96.27 82.13

Table 5.3: Performance Comparison of Proposed DGM Model with Baseline ResNet
Model (Without Pooling Layers) on ImageNet Dataset.

Model Params Accuracy

(M) (%)

ResNet-18 (w/o pooling) 9.89 68.42

DGM ResNet-18 11.88 72.36

ResNet-34 (w/o pooling) 19.20 73.34

DGM ResNet-34 21.32 75.63

The baseline model in this experiment is constructed in the same manner as our

DGM model but without projection onto the coordinate bases. The baseline models

are similar to standard ResNet models without pooling layers or reducing the spatial

dimension. Without the reduction in the feature’s spatial dimension, the receptive field

of the filter kernels reduces and hence weakens the long-range dependency captured by

the model. This experiment helps us establish that the moments effectively capture

long-range dependency without reducing the spatial dimension of the features. We

72

use global pooling on the features from the last ResNet layer of the baseline model to

get the final feature vector for classification.

In Table 5.2, the baseline ResNet-18 and ResNet-34 models are based on the

standard ResNet models with a constant number of feature channels (256) in every

layer and without any pooling layers or reducing the spatial dimensions. DGM ResNet-

18 and DGM ResNet-34 are also of 4 levels, with coordinate grid size of 32× 32. Table

5.2 shows that the proposed DGM models perform much better than the baselines on

both CIFAR datasets. The performance improvement validates the effectiveness of

using coordinate bases pipeline.

For comparison on the ImageNet dataset, we use ResNet-18 and ResNet-34 type

architectures on a grid size of 32 × 32. We divide the 256 × 256 image into 8 × 8

patches and use a linear embedding layer similar to Vision Transformer (ViT) [27]

to reduce the spatial dimension to 32 × 32, followed by the DGM model. For the

embedding layer, we use a convolution layer with 8 × 8 kernel and stride of 8. Both

baseline and DGM models consist of 3 × 3 filter kernels and 256 feature channels and

are trained under the same hyper-parameters. Table 5.3 shows that the proposed

DGM model provides an improvement of ∼ 4% (in the case of ResNet-18) over the

baseline model with the same feature extraction pipeline. The performance of baseline

models is less than the standard ResNet models. This performance reduction in the

baseline models is mainly due to no pooling layers or reduction in features’ spatial

dimension, which results in a low receptive field. Our DGM model’s performance is

comparable to the standard ResNet model but without a spatial dimension reduction,

showing that moments effectively capture the required long-range dependencies.

73

Table 5.4: Performance Improvements of DGM Models over Standard ResNet Model
(with Pooling Layers) on CIFAR Datasets.

Model Params CIFAR- CIFAR-

(M) 10(%) 100(%)

ResNet-18 11.17 95.37 77.35

DGM ResNet-18 11.61 95.51 80.60

ResNet-34 21.33 95.58 78.83

DGM ResNet-34 21.06 96.27 82.13

MobileNet[56] 3.93 93.62 73.53

DGM MobileNet 4.50 96.33 82.19

Table 5.5: Performance Comparison of DGM Model with Standard ResNet Model
(with Pooling Layers) on ImageNet Dataset.

Model Params Accuracy

(M) (%)

ResNet-18 11.69 71.23

DGM ResNet-18 11.88 72.36

ResNet-34 21.80 74.58

DGM ResNet-34 21.32 75.63

ResNet-50 25.56 76.92

DGM ResNet-50 23.51 77.06

MobileNet[56] 4.20 70.66

DGM MobileNet 4.76 72.69

5.4.3 Comparison with Standard ResNet Model

Table 5.4 and 5.5 compare the proposed DGM model with conventional ResNet

models [49]. The number of feature channels in the standard ResNet model is

(64, 128, 256, 512); whereas, in our DGM model, the number of feature channels is 256

74

in ResNet-18 and Resnet-34 and 512 in ResNet-50 across all levels. The naming of

our DGM model is based on the number of layers used in the image feature pipeline

(similar to the standard ResNet model naming convention). The standard ResNet

models use pooling layers to reduce the spatial dimensions up to 8 × 8 in the final

layer, whereas, in our DGM model, the final feature’s spatial dimension is 32 × 32.

Table 5.4 shows that the proposed DGM models perform better than the standard

ResNet models on both CIFAR-10 and CIFAR-100 datasets. The DGM model improves

the accuracy of ∼ 1% on CIFAR-10 and ∼ 3% on CIFAR-100. Table 5.5 compares the

DGM model with the standard ResNet model on the ImageNet dataset. We observe

that our DGM model is better than the standard ResNet model while using a similar

number of parameters but without using any pooling layers.

The computation cost in our DGM model is much higher than conventional ResNet,

which is attributable to the fact that we do not reduce the spatial dimension of the

image features. However, one can reduce the computation cost in the image pipeline

using the channel-wise convolution [56, 124]. In Table 5.4 and 5.5, DGM MobileNet

has very less number of parameters, but performs comparable to DGM model with

conventional ResNet layers.

5.4.4 Feature Visualization

A major advantage of keeping a higher spatial dimension of features is interpretabil-

ity at different levels. The feature vectors can be easily visualized by a reconstruction

step as given by Eq. 5.4. Fig. 5.2 compares Level-4 visualization as a heatmap for a

few randomly selected images from the ImageNet dataset for our DGM model against

baseline ResNet and standard ResNet models. The visualization for the baseline

model is just a weighted sum of the final Conv layer activation based on the global

feature. For the standard ResNet model, we use GradCAM [128]. We also compare

75

Figure 5.2: Feature Visualization of Different Models on ImageNet. For the Standard
ResNet Model, We Use Gradcam for Visualization. We Also Compare Our Visual-
ization with the Vision Transformer [27] (Vit-B-16) Attention Map. Note That Our
DGM Model Produces a Very Sharp Object Shape.

our visualization with the current attention-based Vision Transformer [27] (ViT-B-16)

model, which is pre-trained on the ImageNet-21K and finetuned on ImageNet-1K

datasets. As shown in Fig. 5.2, the GradCAM visualizations of the standard ResNet-18

model generate a blob-like shape around the critical region in the image, with no

discernible object shape. While it gets better for the baseline ResNet-18 model, the

heatmaps are still diffuse, and the shapes are not very distinct. However, with DGM

model, object shapes are crisp, with improved classification accuracies. Also, our heat

map is much sharper than the vision transformer attention map (Vit-B-16).

Additionally, in the DGM model, we can visualize features at different levels

providing much better-debugging capability, as shown in Fig. 5.3. At initial levels,

the heatmap is noisy, and the model is not able to able to separate the object from

the background clearly as compared to higher levels.

76

Figure 5.3: Visualization at Different Levels for DGM ResNet-34 Model on the
ImageNet Dataset. We Note That at Higher Levels Our Model Is Able to Separate
the Background Information from the Object’s Shape Compared to Initial Levels.

5.4.5 Finetuning

For DGM finetuning, we only need to retrain the coordinate bases pipeline, and the

final classifier layer, while freezing the image feature exaction pipeline. The coordinate

bases pipeline contains significantly fewer parameters and requires less computation.

We finetune our ImageNet pre-trained DGM model for only 30 epochs on CIFAR-10

and CIFAR-100 datasets. The network is finetuned using a SGD optimizer with a

cosine decay learning rate and an initial learning rate of 0.01. Table 5.6 shows the

accuracy of the finetuned model on the CIFAR-10 and CIFAR-100 datasets. The

performance of the finetuned model drops as compared to DGM trained from scratch,

but it performs equally well to the standard ResNet model trained from scratch.

5.4.6 Performance under Color Distortion

We evaluate the effect of color distortions on DGM performance by testing it on

ImageNet-C [50]. The ImageNet pretrained DGM model used for this experiment does

not use any color augmentation during training, making it a sufficiently challenging

77

Table 5.6: Classification Performance on Fine-tuning of Pre-trained ImageNet DGM
Model on CIFAR Datasets.

Model Params CIFAR CIFAR

(M) 10(%) 100(%)

DGM ResNet-18 11.69 93.79 75.83

DGM ResNet-34 21.32 94.01 77.51

DGM MobileNet 4.76 93.87 75.92

Table 5.7: Mean Corruption Error (mCE) Comparison of DGM with Standard
ResNet Model on ImageNet-C Dataset.

Model Params Clean ↑ mCE ↓

(M) Acc. (%) (%)

ResNet-50 25.56 76.92 74.97

DGM ResNet-50 23.51 77.06 71.74

task. The DGM ResNet-50 and GradCAM ResNet-50 visualization for two distortions

is shown in Fig. 5.4. The figure shows that our model captures the object shape very

well under different challenging distortions like fog and blur. The GradCAM heatmap

for the ResNet-50 is not very consistent across distortions as compared to our DGM

model. For quantitative performance, we use the mean Corruption Error (mCE) metric

(lower is better) [50]. We choose our DGM model such that it performs comparably to

the standard ResNet-50 model on clean images but with fewer parameters. Table 5.7

shows DGM model provides an improvement of 3.2 points on the corrupted images.

5.4.7 Semantic Image Segmentation

The DGM model is evaluated on the PASCAL VOC 2012 [29] and Cityscapes

[20] semantic segmentation benchmark datasets. We use a Level-5 DGM model with

78

Blur

GradCAM
ResNet-50

DGM
ResNet-50

Fog

GradCAM
ResNet-50

DGM
ResNet-50

Figure 5.4: Visualization from DGM and Standard ResNet Model under Two
Different Color Distortion (Blur (1st Row) and Fog (4th Row) from ImageNet-C).
Our Model (3rd and 6th Row), Is Able to Produce Consistent Shape Across Different
Distortions Compared to Standard ResNet (2nd and 5th Row).

ResNet-50 as the image-feature pipeline pretrained on the ImageNet dataset. The

number of parameters in the Level-5 DGM ResNet-50 is almost identical to the

standard ResNet-50 model (∼ 25M). We use the same training hyperparameters as

in the DeepLabv3+ model [15]. We test the effectiveness of our model with two

different segmentation heads; first, with just two 1 × 1 Conv layers as segmentation

head that takes the final 2D features rescaled by factor of 4, and second, DeepLabv3+

segmentation head, which consists of atrous convolution with different rates to capture

long range dependencies. In Table 5.8, we observe that our model performs comparable

to the standard DeepLabv3+ model, even with a very simple segmentation head on

both datasets. This shows that geometric moments are effective in capturing long

range dependencies. Our model shows improvements of 1.5% points on Pascal VOC

and 0.7% points on Cityscapes Val sets compared to the standard ResNet model.

79

Table 5.8: Semantic Segmentation Perfomance on PASCAL VOC 2012 [29] and
Cityscapes [20] Val Set in Terms of Mean Intersection over Union (mIoU).

Backbone Segmentation PASCAL Cityscapes

head VOC (mIoU) (mIoU)

ResNet-50 1× 1 Conv 68.59 71.92

DGM-ResNet-50 1× 1 Conv 78.43 74.77

ResNet-50 DeepLabv3+ 78.36 75.34

DGM-ResNet-50 DeepLabv3+ 79.89 76.03

5.5 Conclusion

In this work, we propose a geometric moment-based deep learning model that ex-

plicitly captures the shape-related information in an end-to-end learnable fashion. The

DGM model improves the interpretability of features while also learning discriminative

features. The quantitative and qualitative results on standard image classification and

segmentation datasets show that our method performs better than the corresponding

baseline and standard ResNet models. In addition, the DGM model provides easy

interpretability at different levels while also providing ease of finetuning on a given

dataset. Further, our model captures the object’s shape even under extreme affine

and color aberrations while performing better than existing approaches. We believe

that DGM can improve the performance of other vision tasks, such as object detection

and generation, and can be generalized to other modalities like video, RGBD, and

volumetric data.

80

Chapter 6

POLYNOMIAL IMPLICIT NEURAL REPRESENTATIONS FOR LARGE

DIVERSE DATASETS

6.1 Introduction

Deep learning-based generative models are a very active area of research with

numerous advancements in recent years [73, 42, 25]. Most widely, generative models are

based on convolutional architectures. However, recent developments such as implicit

neural representations (INR) [98, 133] represent an image as a continuous function

of its coordinate locations, where each pixel is synthesized independently. Such a

function is approximated by using a deep neural network. INR provides flexibility

for easy image transformations and high-resolution up-sampling through the use of a

coordinate grid. Thus, INRs have become very effective for 3D scene reconstruction

and rendering from very few training images [98, 97, 9, 96, 163]. However, they are

usually trained to represent a single given scene, signal, or image. Recently, INRs have

been implemented as a generative model to generate entire image datasets [6, 136].

They perform comparably to CNN-based generative models on perfectly curated

datasets like human faces [68]; however, they have yet to be scaled to large, diverse

datasets like ImageNet [22].

INR generally consists of a positional encoding module and a multi-layer perceptron

model (MLP). The positional encoding in INR is based on sinusoidal functions, often

referred to as Fourier features. Several methods [98, 133, 142] have shown that

using MLP without sinusoidal positional encoding generates blurry outputs, i.e., only

preserves low-frequency information. Although, one can remove the positional encoding

81

by replacing the ReLU activation with a periodic or non-periodic activation function in

the MLP [133, 111, 18]. However, in INR-based GAN [6], using a periodic activation

function in MLP leads to subpar performance compared to positional encoding with

ReLU-based MLP.

Sitzmann et al. [133] demonstrate that ReLU-based MLP fails to capture the in-

formation contained in higher derivatives. This failure to incorporate higher derivative

information is due to ReLU’s piece-wise linear nature, and second or higher derivatives

of ReLU are typically zero. This can be further interpreted in terms of the Taylor

series expansion of a given function. The higher derivative information of a function is

included in the coefficients of a higher-order polynomial derived from the Taylor series.

Hence, the inability to generate high-frequency information is due to the ineffectiveness

of the ReLU-based MLP model in approximating higher-order polynomials.

Sinusoidal positional encoding with MLP has been widely used, but the capacity

of such INR can be limiting for two reasons. First, the size of the embedding space is

limited; hence only a finite and fixed combination of periodic functions can be used,

limiting its application to smaller datasets. Second, such an INR design needs to

be mathematically coherent. These INR models can be interpreted as a non-linear

combination of periodic functions where periodic functions define the initial part of the

network, and the later part is often a ReLU-based non-linear function. Contrary to this,

classical transforms (Fourier, sine, or cosine) represent an image by a linear summation

of periodic functions. However, using just a linear combination of the positional

embedding in a neural network is also limiting, making it difficult to represent large

and diverse datasets. Therefore, instead of using periodic functions, this work models

an image as a polynomial function of its coordinate location.

The main advantage of polynomial representation is the easy parameterization of

polynomial coefficients with MLP to represent large datasets like ImageNet. However,

82

conventionally MLP can only approximate lower-order polynomials. One can use a

polynomial positional embedding of the form xpyq in the first layer to enable the MLP

to approximate higher order. However, such a design is limiting, as a fixed embedding

size incorporates only fixed polynomial degrees. In addition, we do not know the

importance of each polynomial degree beforehand for a given image.

Hence, we do not use any positional encoding, but we progressively increase

the degree of the polynomial with the depth of MLP. We achieve this by element-

wise multiplication between the feature and affine transformed coordinate location,

obtained after every ReLU layer. The affine parameters are parameterized by the

latent code sampled from a known distribution. This way, our network learns the

required polynomial order and represents complex datasets with considerably fewer

trainable parameters. In particular, the key highlights are summarized as follows:

• We propose a Poly-INR model based on polynomial functions and design a MLP

model to approximate higher-order polynomials.

• Poly-INR as a generative model performs comparably to the state-of-the-art

CNN-based GAN model (StyleGAN-XL [127]) on the ImageNet dataset with

3 − 4× fewer trainable parameters (depending on output resolution).

• Poly-INR outperforms the previously proposed INR models on the FFHQ dataset

[68], using a significantly smaller model.

• We present various qualitative results demonstrating the benefit of our model

for interpolation, inversion, style-mixing, high-resolution sampling, and extrapo-

lation.

6.2 Related Work

Implicit neural representations: INRs have been widely adopted for 3D scene

representation and synthesis [135, 97, 98]. Following the success of NeRF [98], there

83

has been a large volume of work on 3D scene representation from 2D images [160, 163,

134, 96, 109, 62, 9]. They have also been used for semantic segmentation [36], video

[105, 157, 37], audio [37], and time-series modeling [34]. INRs have also been used as

a prior for inverse problems [133, 112]. However, most INR approaches either use a

sinusoidal positional encoding [98, 142] or a sinusoidal activation function [133], which

limits the model capacity for large dataset representation. In our work, we represent

our Poly-INR model as a polynomial function without using any positional encoding.

GANs: have been widely used for image generation and synthesis tasks [42]. In

recent work, several improvements have been proposed[110, 68, 100, 8, 44] over the

original architecture. For example, the popularly used StyleGAN [68] model uses

a mapping network to generate style codes which are then used to modulate the

weights of the Conv layers. StyleGAN improves image fidelity, as well as enhances

inversion [146] and image editing capabilities [47]. StyleGAN has been scaled to large

datasets like ImageNet [127], using a discriminator which uses projected features from

a pre-trained classifier [125]. More recently, transformer-based models have also been

used as generators [172, 81]; however, the self-attention mechanism is computationally

costly for achieving higher resolution. Unlike these methods, our generator is free of

convolution, normalization, and self-attention mechanisms and only uses ReLU and

Linear layers to achieve competitive results, but with far fewer parameters.

GANs + coordinates: INRs have also been implemented within generative models.

For example, CIPS [6] uses Fourier features and learnable vectors for each spatial

location as positional encoding and uses StyleGAN-like weight modulation for the

linear layers in the MLP. Similarly, INR-GAN [136] proposes a multi-scale generator

model where a hyper-network determines the parameters of the MLP. INR-GAN has

been further extended to generate an ‘infinite’-size continuous image using anchors

[137]. However, these INR-based generative models have only shown promising results

84

on smaller datasets. Our work scales easily to large datasets like ImageNet owing to

the significantly fewer parameters in Poly-INR.

Other approaches have combined convolution-based generation with coordinate-

based features. For example, the Local Implicit Image Function (LIIF) [17] and

Spherical Local Implicit Image Function (SLIIF) [162] use a CNN-based backbone

to generate feature vectors corresponding to each coordinate location. Arbitrary-

scale image synthesis [104] uses a multi-scale convolution-based generator model

with scale-aware position embedding to generate scale-consistent images. StyleGAN

model, further extended by [67] (StyleGAN-3) to use coordinate location-based Fourier

features. In addition, StyleGAN-3 uses filter kernels equivariant to the coordinate

grid’s translation and rotation. However, the rotation equivariant version of the

StyleGAN-3 model fails to scale to ImageNet dataset, as reported in [127]. Instead of

using convolution layers, the Poly-INR only uses linear and ReLU layers.

Relation to classical geometric moment: Polynomial functions have been explored

earlier in the form of geometric moments for image reconstruction [57, 143, 55, 33].

Unlike the Fourier transform, which uses the sinusoidal functions as the basis, the

geometric moment method projects the 2D image on a polynomial basis of the form

xpyq to compute the moment of order p + q. The moment matching method [143]

is generally used for image reconstruction from given finite moments. In moment

matching, the image is assumed to be a polynomial function, and the coefficients of

the polynomial are defined to match the given finite moments. Similar to geometric

moments, we also represent images on a polynomial basis; however, our polynomial

coefficients are learned end-to-end and defined by a deep neural network.

85

Figure 6.1: Overview of Our Proposed Polynomial Implicit Neural Representation
(Poly-INR) Based Generator Architecture. Our Model Consists of Two Networks: 1)
Mapping Network, Which Generates the Affine Parameters from the Latent Code
z, and 2) Synthesis Network, Which Synthesizes the RGB Value for the given Pixel
Location. Our Poly-INR Model Is Defined Using Only Linear and ReLU Layers
End-to-end.

6.3 Method

We are interested in a class of functions which represent an image in the form:

G(x, y) = g00 + g10x + g01y + ... + gpqx
pyq, (6.1)

where, (x, y) is the normalized pixel location sampled from a coordinate grid of size

(H ×W), while the coefficients of the polynomial (gpq) are parameterized by a latent

vector z sampled from a known distribution and are independent of the pixel location.

Therefore, to form an image, we evaluate the generator G for all pixel locations (x, y)

for a given fixed z:

I = {G(x, y; z) | (x, y) ∈ CoordinateGrid(H,W)}, (6.2)

where, CoordinateGrid(H,W) = {(x
W−1

, y
H−1

) | 0 ≤ x < W, 0 ≤ y < H}. By sampling

different latent vectors z, we generate different polynomials and represent images over

a distribution of real images.

86

Our goal is to learn the polynomial defined by Eq. 6.1 using only Linear and

ReLU layers. However, the conventional definition of MLP usually takes as input the

coordinate location, processed by a few Linear and ReLU layers. This definition of INR

can only approximate low-order polynomials and hence only generates low-frequency

information. Although, one can use a positional embedding consisting of polynomials

of the form xpyq to approximate a higher-order polynomial. However, this definition of

INR is limiting since a fixed-size embedding space can contain only a small combination

of polynomial orders. Furthermore, we do not know which polynomial order is essential

to generate the image beforehand. Hence, we progressively increase the polynomial

order in the network and let it learn the required orders. We implement this by using

element-wise multiplication with the affine-transformed coordinate location at different

levels, shown in Fig 6.1. Our model consists of two parts: 1) Mapping network,

which takes the latent code z and maps it to affine parameters space W, and 2)

Synthesis network, which takes the pixel location and generates the corresponding

RGB value.

Mapping Network: The mapping network takes the latent code z ∈ R64 and maps

it to the space W ∈ R512. Our model adopts the mapping network used in [127]. It

consists of a pre-trained class embedding, which embeds the one hot class label into a

512 dimension vector and concatenates it with the latent code z. Then the mapping

network consists of an MLP with two layers, which maps it to the space W. We use

this W to generate affine parameters by using additional linear layers; hence we call

our W as affine parameters space.

Synthesis network: The synthesis network generates the RGB (R3) value for the

given pixel location (x, y). As shown in Fig. 6.1, the synthesis network consists of

multiple levels; at each level, it receives the affine transformation parameters from the

mapping network and the pixel coordinate location. At level-0, we affine transform

87

the coordinate grid and feed it to a Linear layer followed by a Leaky-ReLU layer with

negative slope = 0.2. At later levels, we do element-wise multiplication between the

feature from the previous level and the affine-transformed coordinate grid, and then

feed it to Linear and Leaky-ReLU layers. With the element-wise multiplication at

each level, the network has the flexibility to increase the order for x or y coordinate

position, or not to increase the order by keeping the affine transformation coefficient

aj = bj = 0. In our model, we use 10 levels, which is sufficient to generate large

datasets like ImageNet. Mathematically, the synthesis network can be expressed as

follows:

Gsyn = . . . σ(W2((A2X) ⊙ σ(W1((A1X) ⊙ σ(W0(A0X)))))), (6.3)

where X ∈ R3×HW is the coordinate grid of size H ×W with an additional dimension

for the bias, Ai ∈ Rn×3 is the affine transformation matrix from the mapping network

for level-i, Wi ∈ Rn×n is the weight of the linear layer at level-i, σ is the Leaky-ReLU

layer and ⊙ is element-wise multiplication. Here n is the dimension of the feature

channel in the synthesis network, which is the same for all levels. For large datasets

like ImageNet, we choose the channel dimension n = 1024, and for smaller datasets

like FFHQ, we choose n = 512. Note that with this definition, our model only uses

Linear and ReLU layers end-to-end and synthesizes each pixel independently.

Relation to StyleGAN: StyleGANs [68, 69, 67] can be seen as a special case of our

formulation. By keeping the coefficients (aj,bj) in the affine transformation matrix of

x and y coordinate location equal to zero, the bias term cj would act as a style code.

However, our affine transformation adds location bias to the style code, rather than

just using the same style code for all locations in StyleGAN models. This location

bias makes the model very flexible in applying a style code only to a specific image

region, making it more expressive. In addition, our model differs from the StyleGANs

88

in many aspects. First, our method does not use weight modulation/demodulation

or normalizing [69] tricks. Second, our model does not employ low-pass filters or

convolutional layers. Finally, we do not inject any spatial noise into our synthesis

network. We can also use these tricks to improve the model’s performance further.

However, our model’s definition is straightforward compared to other GAN models.

Table 6.1: Quantitative Comparison of Poly-INR Method with CNN-based Generative
Models on ImageNet Datasets. (d) Compares the Number of Parameters Used in All
Models at Various Resolutions. The Results for Existing Methods Are Quoted from
the StyleGAN-XL Paper.

(a) ImageNet 128× 128

Model FID ↓ sFID ↓ rFID ↓ IS ↑ Pr ↑ Rec ↑

BigGAN 6.02 7.18 6.09 145.83 0.86 0.35

CDM 3.52 - - 128.80 - -

ADM 5.91 5.09 13.29 93.31 0.70 0.65

ADM-G 2.97 5.09 3.80 141.37 0.78 0.59

StyleGAN-XL 1.81 3.82 1.82 200.55 0.77 0.55

Poly-INR 2.08 3.93 2.76 179.64 0.70 0.45

(b) ImageNet 256× 256

Model FID ↓ sFID ↓ rFID ↓ IS ↑ Pr ↑ Rec ↑

BigGAN 6.95 7.36 75.24 202.65 0.87 0.28

ADM 10.94 6.02 125.78 100.98 0.69 0.63

ADM-G 3.94 6.14 11.86 215.84 0.83 0.53

DiT-XL/2-G 2.27 4.60 - 278.54 0.83 0.57

StyleGAN-XL 2.30 4.02 7.06 265.12 0.78 0.53

Poly-INR 2.86 4.37 7.79 241.43 0.71 0.39

(c) ImageNet 512× 512

Model FID ↓ sFID ↓ rFID ↓ IS ↑ Pr ↑ Rec ↑

BigGAN 8.43 8.13 312.00 177.90 0.88 0.29

ADM 23.24 10.19 561.32 58.06 0.73 0.60

ADM-G 3.85 5.86 210.83 221.72 0.84 0.53

DiT-XL/2-G 3.04 5.04 - 240.82 0.84 0.54

StyleGAN-XL 2.41 4.06 51.54 267.75 0.77 0.52

Poly-INR 3.81 5.06 54.31 267.44 0.70 0.34

(d) Number of parameters in millions (M)

Model 642 1282 2562 5122

BigGAN - 141.0 164.3 164.7

ADM 296.0 422.0 554.0 559.0

DiT-XL - - 675.0 675.0

StyleGAN-XL 134.4 158.7 166.3 168.4

Poly-INR 46.0 46.0 46.0 46.0

6.4 Experiments

The effectiveness of our model is evaluated on two datasets: 1) ImageNet [22]

and 2) FFHQ [68]. The ImageNet dataset consists of 1.2M images over 1K classes,

whereas the FFHQ dataset contains ∼ 70K images of curated human faces. All our

models have 64 dimensional latent space sampled from a normal distribution with

89

Table 6.2: Quantitative Comparison of Poly-INR Method with CNN and INR-based
Generative Models on FFHQ Dataset at 256 × 256.

Model params (M) FID ↓ Inference Time

(sec/img)

StyleGAN2 30.0 3.83 0.016

StyleGAN-XL 67.9 2.19 0.047

CIPS 45.9 4.38 0.067

INR-GAN 72.4 4.95 0.024

Poly-INR 13.6 2.72 0.054

mean 0 and standard deviation 1. The affine parameters space W of the mapping

network is 512 dimensions, and the synthesis network consists of 10 levels with feature

dimension n = 1024 for the ImageNet and n = 512 for FFHQ. We follow the training

scheme of the StyleGAN-XL method [127] and use a projected discriminator based

on the pre-trained classifiers (DeiT [145] and EfficientNet [141]) with an additional

classifier guidance loss [25].

We train our model progressively with increasing resolution, i.e., we start by

training at low resolution and continue training with higher resolutions as training

progresses. Since the computational cost is less at low resolution, the model is trained

for large number of iterations, followed by training for high resolution. Since the model

is already trained at low resolution, fewer iterations are needed for convergence at

high resolution. However, unlike StyleGAN-XL, which freezes the previously trained

layers and introduces new layers for higher resolution, Poly-INR uses a fixed number

of layers and trains all the parameters at every resolution.

90

6.4.1 Quantitative Results

We compare our model against CNN-based GANs (BigGAN [12] and StyleGAN-XL

[127]) and diffusion models (CDM [53], ADM, ADM-G [25], and DiT-XL [107]) on

the ImageNet dataset. We also report results on the FFHQ dataset for INR-based

GANs (CIPS [6] and INR-GAN [136]) as they do not train models on ImageNet.

Quantitative metrics: We use Inception Score (IS) [122], Frechet Inception Distance

(FID) [51], Spatial Frechet Inception Distance (sFID) [102], random-FID (rFID) [127],

precision (Pr), and recall (Rec) [78]. IS (higher the better) quantifies the quality and

diversity of the generated samples based on the predicted label distribution by the

Inception network but does not compare the distribution of the generated samples

with the real distribution. The FID score (lower the better) overcomes this drawback

by measuring the Frechet distance between the generated and real distribution in

the Inception feature space. Further, sFID uses higher spatial features from the

Inception network to account for the spatial structure of the generated image. Like

StyleGAN-XL, we also use the rFID score to ensure that the network is not just

optimizing for IS and FID scores. We use the same randomly initialized Inception

network provided by [127]. In addition, we also compare our model on the precision

and recall metric (higher the better) that measures how likely the generated sample is

from the real distribution.

Table 6.1 summarizes the results on the ImageNet dataset at different resolutions.

The results for existing methods are quoted from the StyleGAN-XL paper. We

observe that the performance of the proposed model is third best after DiT-XL and

StyleGAN-XL on the FID and IS metrics. The proposed model outperforms the ADM

and BigGAN models at all resolutions and performs comparably to the StyleGAN-XL

at 128 × 128 and 256 × 256. We also observe that with the increase in image size, the

91

FID score for Poly-INR drops much more than StyleGAN-XL. The FID score drops

more because our model does not add any additional layers with the increase in image

size. For example, the StyleGAN-XL uses 134.4M parameters at 64 × 64 and 168.4M

at 512 × 512, whereas Poly-INR uses only 46.0M parameters at every resolution,

as reported in Table 6.1(d). The table shows that our model performs comparably

to the state-of-the-art CNN-based generative models, even with significantly fewer

parameters. On precision metric, the Poly-INR method performs comparably to other

methods; however, the recall value is slightly lower compared to StyleGAN-XL and

diffusion models at higher resolution. Again, this is due to the small model size,

limiting the model’s capacity to represent much finer details at a higher resolution.

We also compare the proposed method with other INR-based GANs: CIPS and

INR-GAN on the FFHQ dataset. Table 6.2 shows that the proposed model significantly

outperforms these models, even with a small generator model. Interestingly the Poly-

INR method outperforms the StyleGAN-2 and performs comparable to StyleGAN-XL,

using significantly fewer parameters. Table 6.2 also reports the inference speed of

these models on a Nvidia-RTX-6000 GPU. StyleGANs and INR-GAN use a multi-scale

architecture, resulting in faster inference. In contrast, CIPS and Poly-INR models

perform all computations at the same resolution as the output image, increasing the

inference time.

6.4.2 Qualitative Results

Fig. 6.2 shows images sampled at different resolutions by the Poly-INR model

trained on 512 × 512. We observe that our model generates diverse images with very

high fidelity. Even though the model does not use convolution or self-attention layers,

it generates realistic images over datasets like ImageNet. In addition, the model

provides flexibility to generate images at different scales by changing the size of the

92

Figure 6.2: Samples Generated by Our Poly-INR Model on the ImageNet Dataset
at Various Resolutions. Our Model Generates Images with High Fidelity Without
Using Convolution, Upsample, or Self-Attention Layers, i.e., No Interaction Between
the Pixels.

coordinate grid, making the model efficient if low-resolution images are needed for a

downstream task. In contrast, CNN-based models generate images only at the training

resolution due to the non-equivariant nature of the convolution kernels to image scale.

We also compare the quality of images generated by Poly-INR model against

state-of-the-art CNN-based StyleGAN-XL model for different classes. Fig. 6.3 shows

examples of images generated from different classes for the models trained on ImageNet

at 256 × 256. The Poly-INR generates samples qualitatively similar to the StyleGAN-

XL model but without using any convolution or self-attention layers. We also provide

qualitative comparison of Poly-INR model against previously proposed INR-based

generative models like CIPS and INR-GAN. Fig. 6.4 shows samples generated by

the three models trained on the FFHQ dataset at 256 × 256. Our Poly-INR model

generates qualitatively better samples than the CIPS and INR-GAN using significantly

fewer parameters.

Heat-map visualization: Fig. 6.5 visualizes the heat-map at different levels of our

93

Figure 6.3: Qualitative Comparison Between StyleGAN-XL (Left Column) and
Poly-INR (Right Column). Classes from Top to Bottom: Agaric, Daisy, Volcano,
Seashore, Cup, and Beer Glass.

94

Figure 6.4: Qualitative Comparison Between INR-GAN (Left Column), CIPS (Middle
Column), and Poly-INR (Right Column) on FFHQ Dataset at 256 × 256.

95

Level-3 Level-5 Level-7 Level-9 Image

Figure 6.5: Heat-Map Visualization at Different Levels of the Synthesis Network.
At Initial Levels, the Model Captures the Basic Shape of the Object, and at Higher
Levels, the Image’s Finer Details Are Captured.

Figure 6.6: Few Example Images Showing Extrapolation Outside the Image Boundary
(Yellow Square). The Poly-INR Model Is Trained to Generate Images on the Coordinate
Grid [0, 1]2. For Extrapolation, We Use the Grid Size [−0.25, 1.25]2. Our Model
Generates Continuous Image Outside the Conventional Boundary.

96

synthesis network. To visualize a feature as a heat-map, we first compute the mean

along the spatial dimension of the feature and use it as a weight to sum the feature

along the channel dimension. In the figure, we observe that in the initial levels (0-3),

the model forms the basic structure of the object. Meanwhile, in the middle levels

(4-6), it captures the object’s overall shape, and in the higher levels (7-9), it adds finer

details about the object. Furthermore, we can interpret this observation in terms of

polynomial order. Initially, it only approximates low-order polynomials and represents

only basic shapes. However, at higher levels, it approximates higher-order polynomials

representing finer details of the image.

Extrapolation: The INR model is a continuous function of the coordinate location;

hence we extrapolate the image by feeding the pixel location outside the conventional

image boundary. Our Poly-INR model is trained to generate images on the coordinate

grid defined by [0, 1]2. We feed the grid size [−0.25, 1.25]2 to the synthesis network

to generate the extrapolated images. Fig. 6.6 shows a few examples of extrapolated

images. In the figure, the region within the yellow square represents the conventional

coordinate grid [0, 1]2. The figure shows that our INR model not only generates a

continuous image outside the boundary but also preserves the geometry of the object

present within the yellow square. However, in some cases, the model generates a black

or white image border, resulting from the image border present in some real images of

the training set.

Table 6.3: FID Score (Lower the Better) Evaluated at 512×512 for Models Trained at
a Lower Resolution and Compared Against Classical Interpolation-based Upsampling.

Training Nearest Bilinear Bicubic Poly-INR

Resolution Neighbour

32×32 184.39 112.28 73.86 65.15

64×64 89.24 72.41 42.97 36.30

97

Sampling at higher-resolution: Another advantage of using our model is the

flexibility to generate images at any resolution, even if the model is trained on a lower

resolution. We generate a higher-resolution image by sampling a dense coordinate

grid within the [0, 1]2 range. Table 6.3 shows the FID score evaluated at 512 × 512 for

models trained on the lower-resolution ImageNet dataset. We compare the quality of

upsampled images generated by our model against the classical interpolation-based

upsampling methods. The table shows that our model generates crisper upsampled

images, achieving a significantly better FID score than the classical interpolation-based

upsampling method. However, we do not observe significant FID score improvement

for our Poly-INR model trained on 128 × 128 or higher resolution against the classical

interpolation techniques. This could be due to the limitations of the ImageNet dataset,

which primarily consists of lower-resolution images than the 512×512. We used bilinear

interpolation to prepare the training dataset at 512×512. As per our knowledge, there

are currently no large and diverse datasets like ImageNet with high-resolution images.

We believe this performance can be improved when the model has access to higher-

resolution images for training. We also compare the upsampling performance with

other INR-based GANs by reporting the FID scores at 1024× 1024 for models trained

on FFHQ-256 × 256 as follows: Poly-INR:13.69, INR-GAN: 18.51, CIPS:29.59.

Our Poly-INR model provides better high-resolution sampling than the other two

INR-based generators.

Interpolation: Fig. 6.7 shows that our model generates smooth interpolation between

two randomly sampled images. In the first two rows of the figure, we interpolate

in the latent space, and in the last two rows, we directly interpolate between the

affine parameters. In our synthesis network, only the affine parameters depend on

the image, and other parameters are fixed for every image. Hence interpolating

in affine parameters space means interpolation in INR space. Our model provides

98

Figure 6.7: Linear Interpolation Between Two Random Points. Poly-INR Provides
Smooth Interpolation Even in a High Dimension of Affine Parameters. Our Model
Generates High-Fidelity Images Similar to State-Of-The-Art Models Like StyleGAN-
XL but Without the Need for Convolution or Self-Attention Mechanism.

99

smoother interpolation even in the affine parameters space and interpolates with the

geometrically coherent movement of different object parts. For example, in the first

row, the eyes, nose, and mouth move systematically with the whole face.

Style-mixing: Similar to StyleGANs, our Poly-INR model transfers the style of one

image to another. Our model generates smooth style mixing even though we do not

use any style-mixing regularization during the training. Fig. 6.8 shows examples of

style-mixing from source A to source B images. For style mixing, we first obtain the

affine parameters corresponding to the source A and B images and then copy the

affine parameters of A to B at various levels of the synthesis network. Copying affine

parameters to higher levels (8 and 9) leads to finer changes in the style, while copying

to middle levels (7, 6, and 5) leads to the coarse style change. Mixing the affine

parameters at initial levels changes the shape of the generated object. In the figure,

we observe that our model provides smooth style mixing while preserving the original

shape of the source B object. Fig. 6.9 shows affine parameters mixing at initial levels

(0-5). In the figure, we observe that copying the affine parameters at these levels

changes the shape of the source B image to the source A image.

Inversion: Embedding a given image into the latent space of the GAN is an essential

step for image manipulation. In our Poly-INR model, for inversion, we optimize

the affine parameters to minimize the reconstruction loss, keeping the synthesis

network’s parameters fixed. We use VGG feature-based perceptual loss for optimiza-

tion. We embed the ImageNet validation set in the affine parameters space for the

quantitative evaluation. Our Poly-INR method effectively embeds images with high

PSNR scores (PSNR:26.52 and SSIM:0.76), better than StyleGAN-XL (PSNR:13.5

and SSIM:0.33). However, our affine parameters dimension is much larger than the

StyleGAN-XL’s latent space. Even though the dimension of the affine parameters is

much higher, the Poly-INR model provides smooth interpolation for the embedded

100

Source A Source B Fine-to-coarse

Figure 6.8: Source A and B Images Are Generated Corresponding to Random Latent
Codes, and the Rest of the Images are Generated by Copying the Affine Parameters
of Source A to Source B at Different Levels. Copying the Higher Levels’ (8 And 9)
Affine Parameters Leads to Finer Style Changes, Whereas Copying the Middle Levels’
(7, 6, and 5) Leads to Coarse Style Changes.

101

Source A Source B Fine-to-coarse

Figure 6.9: Source A and B Images Are Generated From Random Latent Codes,
and Remaining Images are Generated by Copying the Affine Parameters of Source
A to Source B at Different Levels. Copying the Initial Levels’ (0, 1, and 2) Affine
Parameters Leads to Finer Shape Changes, Whereas Copying Slightly Higher Levels’
(3, 4, and 5) Leads to Coarse Shape Changes.

102

Figure 6.10: The Poly-INR Model Generates Smooth Interpolation with Embedded
Images in Affine Parameters Space. The Leftmost Image (First Row) is from the
ImageNet Validation Set, and the Last Two (Rightmost) Are the OOD Images.

Source A Source B Style-mixing

Figure 6.11: Style-Mixing with Embedded Images in Affine Parameters Space. Source
B Is the Embedded Image from the Imagenet Validation Set, Mixed with the Style of
Randomly Sampled Source A Image.

image. Fig. 6.10 shows examples of interpolation with embedded images. In the

figure, the first row (leftmost) is the embedded image from Val set, and the last

two rows (rightmost) are the out-of-distribution images. Surprisingly, our model

provides smooth interpolation for OOD images. In addition, Fig. 6.11 shows smooth

style-mixing with the embedded images. In some cases, we observe that the fidelity

of the interpolated or style-mixed image with the embedded image is slightly less

compared to samples from the training distribution. This is due to the large dimension

of the embedding space, which sometimes makes the embedded point farther from

103

the training distribution. It is possible to improve interpolation quality further by

using the recently proposed pivotal tuning inversion method [116], which finetunes

the generator’s parameters around the embedded point.

6.4.3 Discussion

The proposed Poly-INR model performs comparably to state-of-the-art generative

models on large ImageNet datasets without using convolution or self-attention layers.

In addition to smooth interpolation and style-mixing, the Poly-INR model provides

attractive flexibilities like image extrapolation and high-resolution sampling. In this

work, while we use our INR model for 2D image datasets, it can be extended to other

modalities like 3D datasets.

Challenges: One of the challenges in our INR method is the higher computation

cost compared to the CNN-based generator model for high-resolution image synthesis.

The INR method generates each pixel independently; hence all the computation takes

place at the same resolution. In contrast, a CNN-based generator uses a multi-scale

generation pipeline, making the model computationally efficient. In addition, we

observe common GAN artifacts in some generated images. For example, in some

cases, it generates multiple heads and limbs, missing limbs, or the object’s geometry

is not correctly synthesized. We suspect that the CNN-based discriminator only

discriminates based on the object’s parts and fails to incorporate the entire shape.

6.5 Conclusion

In this work, we propose polynomial function based implicit neural representations

for large image datasets while only using Linear and ReLU layers. Our Poly-INR model

captures high-frequency information and performs comparably to the state-of-the-art

CNN-based generative models without using convolution, normalization, upsampling,

104

or self-attention layers. The Poly-INR model outperforms previously proposed po-

sitional embedding-based INR GAN models. We demonstrate the effectiveness of

the proposed model for various tasks like interpolation, style-mixing, extrapolation,

high-resolution sampling, and image inversion. Additionally, it would be an exciting

avenue for future work to extend our Poly-INR method for 3D-aware image synthesis

on large datasets like ImageNet.

105

Chapter 7

DISCUSSION AND FUTURE WORK

In this dissertation, I presented several novel methods to build robust and controllable

generative models using tools from physics, probability, and geometry. The proposed

approaches improve the quality and variety of the generated samples and their con-

trollability, all without necessarily depending on extensive training datasets. I tackled

challenges related to limited data and controllability by combining physics-based

rendering with generative models. I used geometric moments and non-parametric

priors to make the models more robust, shape aware, reducing the need for large

trainable parameters and improving the quality of interpolated images.

In Chapter 3, I explore a hybrid approach to enhance the controllability of GAN

models for data augmentation by incorporating a physics-based rendering tool. Tradi-

tional GAN models like style transfer GAN or cycle GAN, while capable of generating

realistic data, require extensive training datasets for diverse data generation. Col-

lecting such datasets is often expensive and time-consuming in an industrial setting.

Furthermore, controlling specific data properties with these models is challenging

due to the non-disentangled and non-interpretable nature of the latent space. To

address these issues, I propose a hybrid approach that combines a 3D rendering tool

with a smaller GAN model, enabling more control over data properties. Certain

data properties, such as shape and structure, are modeled using a few controllable

parameters in the rendering tool. This enables us to generate a diverse set of images

while simultaneously integrating domain knowledge directly into the modeling pro-

cess, bypassing the need to learn these aspects from the training data. In contrast

to conventional GAN models that generate data from scratch, our GAN model is

106

only used to refine or apply textures to the rendered data. This method requires a

significantly smaller training dataset to generate realistic and diverse data, making

it more practical when few training images are available. I assessed the quality of

the generated data by utilizing it for training a classification model. Our approach

significantly enhances the classification model’s performance in scenarios with limited

training data.

In Chapter 4, I enhance the fidelity of generated images for interpolation by

introducing a non-parametric prior for the latent space. Standard GAN models

typically use Gaussian or uniform priors for the latent space. While these priors

are easy to use, they often suffer from distribution mismatch issue, where the prior

distribution diverges from the interpolated point distribution. The GAN is trained to

generate realistic images based on prior points, but it traverses through low-density

regions during interpolation, leading to a dip in image fidelity. To rectify this, I

propose a generalized solution based on basic probability theory and optimization

for addressing distribution mismatch during interpolation in GANs. Both qualitative

and quantitative results showcase the effectiveness of the approach compared to

standard priors. Often, the proposed method emerges as the best, and even when

it doesn’t, it closely matches the performance of the best alternative. The proposed

non-parametric prior enhances image quality without necessitating additional training

data or increased architectural complexity.

In Chapters 5 and 6, I propose a geometric moments-based architecture for

the discriminator and the generator to enhance shape awareness and robustness in

generative models. The discriminator is pivotal in training generative models, as it

guides the generator to produce realistic images. Nevertheless, most discriminator

architectures are based on CNN layers, which have a known bias towards texture

rather than shape. In Chapter 5, I propose a Deep Geometric Moment (DGM) model

107

that captures shape-related information in an end-to-end learnable manner. This

model boosts the interpretability of features and effectively learns discriminative

features. Both qualitative and quantitative results from standard image classification

and segmentation datasets demonstrate the superior performance of our method over

the corresponding baseline and standard ResNet models. Furthermore, the DGM

model offers improved interpretability at various levels and facilitates easy fine-tuning

on any given dataset. It also efficiently captures an object’s shape under extreme

affine and color aberrations, outperforming existing methodologies.

I further extended the idea of the geometric moment for the generator architecture

in Chapter 6. Reconstructing images from moments assumes each pixel as a polynomial

function of their coordinate location. This polynomial function is modeled using a

neural network, termed as Polynomial Implicit Neural Representation (Poly-INR).

In this work, I introduce a polynomial function-based implicit neural representation

for large image datasets, employing only Linear and ReLU layers. The Poly-INR

model successfully captures high-frequency information and rivals the performance of

state-of-the-art CNN-based generative models. This is achieved without the need for

convolution, normalization, upsampling, or self-attention layers. The proposed Poly-

INR model surpasses the performance of previously proposed positional embedding-

based INR GAN models. This chapter illustrates the proposed model’s efficacy

across various tasks, such as interpolation, style-mixing, extrapolation, high-resolution

sampling, and image inversion.

7.1 Future Work

This dissertation prompts many intriguing opportunities for future exploration

and research, as I will outline in the following discussion.

Polynomial implicit neural representation for 3D neural rendering: Inspired

108

by the accomplishments of Neural Radiance Fields (NeRF) [98], there has been a large

volume of work on 3D scene representation from 2D images [160, 163, 134, 96, 109, 62, 9].

Recently, several works have adopted NeRF as a 3D backbone for their generative

models [43, 23, 87], which enables the rendering of 3D scenes as parameterized 3D

volumes. Such methods typically optimize 3D representations by randomly sampling

viewpoints and rendering photorealistic 2D images. This process assists in creating

novel viewpoints of the same image. Our Poly-INR work (Chapter 6) has shown

promising results in synthesizing 2D images, owing to its high representation capacity

and competitive performance with state-of-the-art convolutional generative models.

By taking the Poly-INR approach to 3D neural rendering, we can expect the model to

replicate these advantages, delivering better 3D representations. The possibilities for

tasks such as volumetric rendering, shape extrapolation, and scene inversion in a 3D

space are noteworthy and have significant potential to advance the field of 3D neural

rendering.

Polynomial implicit neural representation with diffusion model: In recent

years, diffusion models [25, 52, 158] have gained significant attention, surpassing

GANs in some aspects of image generation. The core strengths of diffusion models

lie in their ability to generate high-quality images, along with the advantages of

a tractable training procedure, a trait that has historically been a challenge with

GANs. Furthermore, diffusion models exhibit remarkable flexibility when it comes to

conditioning. Moving forward, I aim to synergize the strengths of both implicit neural

representation and diffusion models to form a new generative model. The goal is to

harness the potential of both methodologies: Poly-INR for its adaptability, the ability

to train at low-resolution - samples at a high resolution, extrapolation, and control

over shape and style; diffusion models for their proficient generative mechanism and

capacity to yield diverse, high-quality samples. The symbiosis of these techniques

109

could give rise to a new class of generative models excelling in sample quality, diversity,

and controllability.

Hierarchical representation learning through improved geometric moments:

Building upon the insights from our Poly-INR work, wherein the image is expressed

in polynomial form, thereby inherently disentangling the image into shape and style

components, I aim to further explore this line of thought in future research. Our

Poly-INR work found that lower-order polynomial coefficients represent shape-related

information, while higher-order coefficients encapsulate finer details such as style.

With this in mind, my goal is to design a comprehensive feature extractor network

that hierarchically segregates features - some embodying the shape of the objects,

others reflecting style-related information. This hierarchical representation learning

would provide a richer, more meaningful set of features. Consequently, based on the

task, we can configure our classifier to prioritize shape or style, establishing a more

targeted and effective learning system.

110

REFERENCES

[1] Adibhatla, V. A., H.-C. Chih, C.-C. Hsu, J. Cheng, M. F. Abbod and J.-S. Shieh,
“Defect detection in printed circuit boards using you-only-look-once convolutional
neural networks”, Electronics 9, 9, 1547 (2020).

[2] Agustsson, E., A. Sage, R. Timofte and L. Van Gool, “Optimal transport maps
for distribution preserving operations on latent spaces of generative models”, in
“International Conference on Learning Representations (ICLR)”, (2019).

[3] Alajlan, N., M. S. Kamel and G. H. Freeman, “Geometry-based image retrieval
in binary image databases”, IEEE transactions on pattern analysis and machine
intelligence 30, 6, 1003–1013 (2008).

[4] Alaluf, Y., O. Tov, R. Mokady, R. Gal and A. Bermano, “Hyperstyle: Stylegan
inversion with hypernetworks for real image editing”, in “Proceedings of the
IEEE/CVF conference on computer Vision and pattern recognition”, pp. 18511–
18521 (2022).

[5] Aldausari, N., A. Sowmya, N. Marcus and G. Mohammadi, “Video generative
adversarial networks: a review”, ACM Computing Surveys (CSUR) 55, 2, 1–25
(2022).

[6] Anokhin, I., K. Demochkin, T. Khakhulin, G. Sterkin, V. Lempitsky and D. Ko-
rzhenkov, “Image generators with conditionally-independent pixel synthesis”,
in “Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition”, pp. 14278–14287 (2021).

[7] Arjovsky, M. and L. Bottou, “Towards principled methods for training generative
adversarial networks”, in “International Conference on Learning Representations
(ICLR)”, (2017).

[8] Arjovsky, M., S. Chintala and L. Bottou, “Wasserstein generative adversarial
networks”, in “International Conference on Machine Learning (ICML)”, pp.
214–223 (PMLR, 2017).

[9] Barron, J. T., B. Mildenhall, D. Verbin, P. P. Srinivasan and P. Hedman, “Mip-
nerf 360: Unbounded anti-aliased neural radiance fields”, in “Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition”, pp.
5470–5479 (2022).

[10] Bazarbaev, M., T. Chuluunsaikhan, H. Oh, G.-A. Ryu, A. Nasridinov and K.-H.
Yoo, “Generation of time-series working patterns for manufacturing high-quality
products through auxiliary classifier generative adversarial network”, Sensors
22, 1, 29 (2021).

[11] Bhatt, P. M., R. K. Malhan, P. Rajendran, B. C. Shah, S. Thakar, Y. J. Yoon
and S. K. Gupta, “Image-based surface defect detection using deep learning: A
review”, Journal of Computing and Information Science in Engineering 21, 4
(2021).

111

[12] Brock, A., J. Donahue and K. Simonyan, “Large scale gan training for high
fidelity natural image synthesis”, in “International Conference on Learning
Representations”, (2018).

[13] Chen, L.-C., M. D. Collins, Y. Zhu, G. Papandreou, B. Zoph, F. Schroff, H. Adam
and J. Shlens, “Searching for efficient multi-scale architectures for dense image
prediction”, in “NeurIPS”, (2018).

[14] Chen, L.-C., G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, “DeepLab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected CRFs”, IEEE Transactions on Pattern Analysis and Machine
Intelligence 40, 4, 834–848 (2017).

[15] Chen, L.-C., Y. Zhu, G. Papandreou, F. Schroff and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmentation”,
in “Proceedings of the European conference on computer vision (ECCV)”, pp.
801–818 (2018).

[16] Chen, X., Y. Duan, R. Houthooft, J. Schulman, I. Sutskever and P. Abbeel,
“Infogan: Interpretable representation learning by information maximizing gener-
ative adversarial nets”, in “Proceedings of the 30th International Conference on
Neural Information Processing Systems”, pp. 2180–2188 (2016).

[17] Chen, Y., S. Liu and X. Wang, “Learning continuous image representation with
local implicit image function”, in “Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition”, pp. 8628–8638 (2021).

[18] Chng, S.-F., S. Ramasinghe, J. Sherrah and S. Lucey, “Gaussian activated
neural radiance fields for high fidelity reconstruction and pose estimation”, in
“Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXXIII”, pp. 264–280 (Springer, 2022).

[19] Chong, C.-W., P. Raveendran and R. Mukundan, “Translation and scale invari-
ants of legendre moments”, Pattern recognition 37, 1, 119–129 (2004).

[20] Cordts, M., M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth and B. Schiele, “The cityscapes dataset for semantic urban
scene understanding”, in “Proceedings of the IEEE conference on computer
vision and pattern recognition”, pp. 3213–3223 (2016).

[21] Dai, B., S. Fidler, R. Urtasun and D. Lin, “Towards diverse and natural image
descriptions via a conditional gan”, in “IEEE International Conference on
Computer Vision (ICCV)”, pp. 2989–2998 (2017).

[22] Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database”, in “IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)”, pp. 248–255 (2009).

[23] Deng, K., G. Yang, D. Ramanan and J.-Y. Zhu, “3d-aware conditional image
synthesis”, in “Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition”, pp. 4434–4445 (2023).

112

[24] Denton, E. L., S. Chintala, R. Fergus et al., “Deep generative image models
using a laplacian pyramid of adversarial networks”, in “Advances in neural
information processing systems”, pp. 1486–1494 (2015).

[25] Dhariwal, P. and A. Nichol, “Diffusion models beat gans on image synthesis”,
Advances in Neural Information Processing Systems 34, 8780–8794 (2021).

[26] Dinh, L., D. Krueger and Y. Bengio, “Nice: Non-linear independent components
estimation”, arXiv preprint arXiv:1410.8516 (2014).

[27] Dosovitskiy, A., L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is
worth 16x16 words: Transformers for image recognition at scale”, in “Interna-
tional Conference on Learning Representations”, (2020).

[28] Elad, A. and R. Kimmel, “On bending invariant signatures for surfaces”, IEEE
Transactions on pattern analysis and machine intelligence 25, 10, 1285–1295
(2003).

[29] Everingham, M., S. Eslami, L. Van Gool, C. K. Williams, J. Winn and A. Zisser-
man, “The pascal visual object classes challenge: A retrospective”, International
journal of computer vision 111, 1, 98–136 (2015).

[30] Farnsworth, M., D. Tiwari, Z. Zhang, G. W. Jewell and A. Tiwari, “Augmented
classification for electrical coil winding defects”, The International Journal of
Advanced Manufacturing Technology 119, 11, 6949–6965 (2022).

[31] Flusser, J., J. Boldys and B. Zitová, “Moment forms invariant to rotation and
blur in arbitrary number of dimensions”, IEEE Transactions on Pattern Analysis
and Machine Intelligence 25, 2, 234–246 (2003).

[32] Flusser, J. and T. Suk, “Pattern recognition by affine moment invariants”,
Pattern recognition 26, 1, 167–174 (1993).

[33] Flusser, J., B. Zitova and T. Suk, Moments and moment invariants in pattern
recognition (John Wiley & Sons, 2009).

[34] Fons, E., A. Sztrajman, Y. El-Laham, A. Iosifidis and S. Vyetrenko, “Hypertime:
Implicit neural representations for time series”, in “NeurIPS 2022 Workshop on
Synthetic Data for Empowering ML Research”, (2022).

[35] Foulonneau, A., P. Charbonnier and F. Heitz, “Affine-invariant geometric shape
priors for region-based active contours”, IEEE transactions on pattern analysis
and machine intelligence 28, 8, 1352–1357 (2006).

[36] Fu, X., S. Zhang, T. Chen, Y. Lu, L. Zhu, X. Zhou, A. Geiger and Y. Liao,
“Panoptic nerf: 3d-to-2d label transfer for panoptic urban scene segmentation”,
in “International Conference on 3D Vision (3DV)”, (2022).

113

[37] Gao, C., A. Saraf, J. Kopf and J.-B. Huang, “Dynamic view synthesis from
dynamic monocular video”, in “Proceedings of the IEEE/CVF International
Conference on Computer Vision”, pp. 5712–5721 (2021).

[38] Gatys, L. A., A. S. Ecker and M. Bethge, “Image style transfer using convolu-
tional neural networks”, in “Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)”, pp. 2414–2423 (2016).

[39] Geirhos, R., P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann and W. Bren-
del, “Imagenet-trained cnns are biased towards texture; increasing shape bias
improves accuracy and robustness”, in “International Conference on Learning
Representations”, (2018).

[40] Girshick, R., J. Donahue, T. Darrell and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation”, in “Proceedings of
the IEEE conference on computer vision and pattern recognition”, pp. 580–587
(2014).

[41] Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville and Y. Bengio, “Generative adversarial nets”, Advances in Neural
Information Processing Systems (NeuRIPS) 27 (2014).

[42] Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville and Y. Bengio, “Generative adversarial networks”, Communications
of the ACM 63, 11, 139–144 (2020).

[43] Gu, J., L. Liu, P. Wang and C. Theobalt, “Stylenerf: A style-based 3d-aware
generator for high-resolution image synthesis”, arXiv preprint arXiv:2110.08985
(2021).

[44] Gulrajani, I., F. Ahmed, M. Arjovsky, V. Dumoulin and A. C. Courville,
“Improved training of wasserstein gans”, in “Advances in Neural Information
Processing Systems”, pp. 5767–5777 (2017).

[45] Haddad, B., L. Karam, J. Ye, N. Patel and M. Braun, “Multi-feature sparse-
based defect detection and classification in semiconductor units”, in “IEEE
International Conference on Image Processing (ICIP)”, pp. 754–758 (IEEE,
2016).

[46] Hall, P., J. S. Marron and A. Neeman, “Geometric representation of high
dimension, low sample size data”, Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 67, 3, 427–444 (2005).

[47] Härkönen, E., A. Hertzmann, J. Lehtinen and S. Paris, “Ganspace: Discovering
interpretable gan controls”, Advances in Neural Information Processing Systems
33, 9841–9850 (2020).

[48] He, K., G. Gkioxari, P. Dollár and R. Girshick, “Mask r-cnn”, in “Proceedings
of the IEEE international conference on computer vision”, pp. 2961–2969 (2017).

114

[49] He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recogni-
tion”, in “Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR)”, pp. 770–778 (2016).

[50] Hendrycks, D. and T. Dietterich, “Benchmarking neural network robustness
to common corruptions and perturbations”, in “International Conference on
Learning Representations”, (2018).

[51] Heusel, M., H. Ramsauer, T. Unterthiner, B. Nessler and S. Hochreiter, “Gans
trained by a two time-scale update rule converge to a local nash equilibrium”,
in “Advances in Neural Information Processing Systems”, pp. 6626–6637 (2017).

[52] Ho, J., A. Jain and P. Abbeel, “Denoising diffusion probabilistic models”,
Advances in neural information processing systems 33, 6840–6851 (2020).

[53] Ho, J., C. Saharia, W. Chan, D. J. Fleet, M. Norouzi and T. Salimans, “Cascaded
diffusion models for high fidelity image generation.”, J. Mach. Learn. Res. 23,
47–1 (2022).

[54] Hoffman, J., E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros
and T. Darrell, “Cycada: Cycle-consistent adversarial domain adaptation”, in
“International conference on machine learning”, pp. 1989–1998 (Pmlr, 2018).

[55] Honarvar, B., R. Paramesran and C.-L. Lim, “Image reconstruction from a
complete set of geometric and complex moments”, Signal Processing 98, 224–
232 (2014).

[56] Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto and H. Adam, “Mobilenets: Efficient convolutional neural networks
for mobile vision applications”, arXiv preprint arXiv:1704.04861 (2017).

[57] Hu, M.-K., “Visual pattern recognition by moment invariants”, IRE transactions
on information theory 8, 2, 179–187 (1962).

[58] Huang, R., J. Gu, X. Sun, Y. Hou and S. Uddin, “A rapid recognition method for
electronic components based on the improved YOLO-V3 network”, Electronics
8, 8, 825 (2019).

[59] Huszár, F., “How (not) to train your generative model: Scheduled sampling,
likelihood, adversary?”, arXiv preprint arXiv:1511.05101 (2015).

[60] Ioffe, S. and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”, in “International conference on
machine learning”, pp. 448–456 (PMLR, 2015).

[61] Isola, P., J.-Y. Zhu, T. Zhou and A. A. Efros, “Image-to-image translation with
conditional adversarial networks”, in “Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)”, pp. 1125–1134 (2017).

115

[62] Jain, A., M. Tancik and P. Abbeel, “Putting nerf on a diet: Semantically consis-
tent few-shot view synthesis”, in “Proceedings of the IEEE/CVF International
Conference on Computer Vision”, pp. 5885–5894 (2021).

[63] Jiang, Y., S. Chang and Z. Wang, “Transgan: Two pure transformers can
make one strong gan, and that can scale up”, Advances in Neural Information
Processing Systems 34, 14745–14758 (2021).

[64] Johnson, J., A. Alahi and L. Fei-Fei, “Perceptual losses for real-time style
transfer and super-resolution”, in “European Conference on Computer Vision
(ECCV)”, pp. 694–711 (Springer, 2016).

[65] Joseph-Rivlin, M., A. Zvirin and R. Kimmel, “Momen (e) t: Flavor the moments
in learning to classify shapes”, in “Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops”, pp. 0–0 (2019).

[66] Karras, T., T. Aila, S. Laine and J. Lehtinen, “Progressive growing of gans
for improved quality, stability, and variation”, in “International Conference on
Learning Representations (ICLR)”, (2018).

[67] Karras, T., M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen and
T. Aila, “Alias-free generative adversarial networks”, Advances in Neural Infor-
mation Processing Systems 34, 852–863 (2021).

[68] Karras, T., S. Laine and T. Aila, “A style-based generator architecture for
generative adversarial networks”, in “Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition”, pp. 4401–4410 (2019).

[69] Karras, T., S. Laine, M. Aittala, J. Hellsten, J. Lehtinen and T. Aila, “Analyzing
and improving the image quality of stylegan”, in “Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition”, pp. 8110–8119 (2020).

[70] Khotanzad, A. and Y. H. Hong, “Invariant image recognition by zernike mo-
ments”, IEEE Transactions on pattern analysis and machine intelligence 12, 5,
489–497 (1990).

[71] Kilcher, Y., A. Lucchi and T. Hofmann, “Semantic interpolation in implicit
models”, in “International Conference on Learning Representations (ICLR)”,
(2018).

[72] Kim, H. S. and H.-K. Lee, “Invariant image watermark using zernike moments”,
IEEE transactions on Circuits and Systems for Video Technology 13, 8, 766–775
(2003).

[73] Kingma, D. P. and M. Welling, “Auto-encoding variational bayes”, in “Interna-
tional Conference on Learning Representations (ICLR)”, (2014).

[74] Kingma, D. P. and M. Welling, “Stochastic gradient vb and the variational auto-
encoder”, in “Second International Conference on Learning Representations,
ICLR”, vol. 19, p. 121 (2014).

116

[75] Krizhevsky, A. and G. Hinton, “Learning multiple layers of features from tiny
images”, Tech. rep., University of Toronto (2009).

[76] Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks”, Advances in neural information processing
systems 25, 1097–1105 (2012).

[77] Kumar, A. and R. Chellappa, “Disentangling 3D Pose in A Dendritic CNN for
Unconstrained 2D Face Alignment”, in “IEEE Conference on Computer Vision
and Pattern Recognition (CVPR)”, pp. 430–439 (2018).

[78] Kynkäänniemi, T., T. Karras, S. Laine, J. Lehtinen and T. Aila, “Improved
precision and recall metric for assessing generative models”, Advances in Neural
Information Processing Systems 32 (2019).

[79] LeCun, Y., Y. Bengio and G. Hinton, “Deep learning”, Nature 521, 7553,
436–444 (2015).

[80] Ledig, C., L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single image
super-resolution using a generative adversarial network”, in “Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)”, pp.
4681–4690 (2017).

[81] Lee, K., H. Chang, L. Jiang, H. Zhang, Z. Tu and C. Liu, “Vitgan: Train-
ing gans with vision transformers”, in “International Conference on Learning
Representations”, (2021).

[82] Leśniak, D., I. Sieradzki and I. Podolak, “Distribution-interpolation trade off in
generative models”, in “International Conference on Learning Representations
(ICLR)”, (2019).

[83] Li, C.-L., W.-C. Chang, Y. Cheng, Y. Yang and B. Póczos, “Mmd gan: To-
wards deeper understanding of moment matching network”, Advances in neural
information processing systems 30 (2017).

[84] Li, D., D. Chen, B. Jin, L. Shi, J. Goh and S.-K. Ng, “Mad-gan: Multivariate
anomaly detection for time series data with generative adversarial networks”, in
“International conference on artificial neural networks”, pp. 703–716 (Springer,
2019).

[85] Li, D., X. Shen, Y. Yu, H. Guan, H. Wang and D. Li, “Ggm-net: Graph geometric
moments convolution neural network for point cloud shape classification”, IEEE
Access 8, 124989–124998 (2020).

[86] Li, R., X. Li, C.-W. Fu, D. Cohen-Or and P.-A. Heng, “Pu-gan: a point
cloud upsampling adversarial network”, in “Proceedings of the IEEE/CVF
international conference on computer vision”, pp. 7203–7212 (2019).

117

[87] Li, S., J. van de Weijer, Y. Wang, F. S. Khan, M. Liu and J. Yang, “3d-
aware multi-class image-to-image translation with nerfs”, in “Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition”, pp.
12652–12662 (2023).

[88] Lim, J. H. and J. C. Ye, “Geometric gan”, arXiv preprint arXiv:1705.02894
(2017).

[89] Liu, H., Z. Wan, W. Huang, Y. Song, X. Han and J. Liao, “Pd-gan: Probabilistic
diverse gan for image inpainting”, in “Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition”, pp. 9371–9381 (2021).

[90] Liu, Y., T. Han, S. Ma, J. Zhang, Y. Yang, J. Tian, H. He, A. Li, M. He, Z. Liu
et al., “Summary of chatgpt/gpt-4 research and perspective towards the future
of large language models”, arXiv preprint arXiv:2304.01852 (2023).

[91] Liu, Y., F. Wei, J. Shao, L. Sheng, J. Yan and X. Wang, “Exploring disentangled
feature representation beyond face identification”, in “IEEE Conference on
Computer Vision and Pattern Recognition (CVPR)”, pp. 2080–2089 (2018).

[92] Liu, Y., Y. Yeh, T. Fu, S. Wang, W. Chiu and Y. F. Wang, “Detach and
Adapt: Learning Cross-Domain Disentangled Deep Representation”, in “IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)”, pp. 8867–
8876 (2018).

[93] Liu, Z., P. Luo, X. Wang and X. Tang, “Deep learning face attributes in the
wild”, in “Proceedings of the IEEE International Conference on Computer
Vision”, pp. 3730–3738 (2015).

[94] Luciano, L. and A. B. Hamza, “Deep learning with geodesic moments for 3d
shape classification”, Pattern Recognition Letters 105, 182–190 (2018).

[95] Mao, X., Q. Li, H. Xie, R. Y. Lau, Z. Wang and S. Paul Smolley, “Least squares
generative adversarial networks”, in “Proceedings of the IEEE international
conference on computer vision”, pp. 2794–2802 (2017).

[96] Martin-Brualla, R., N. Radwan, M. S. Sajjadi, J. T. Barron, A. Dosovitskiy and
D. Duckworth, “Nerf in the wild: Neural radiance fields for unconstrained photo
collections”, in “Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition”, pp. 7210–7219 (2021).

[97] Mescheder, L., M. Oechsle, M. Niemeyer, S. Nowozin and A. Geiger, “Occupancy
networks: Learning 3d reconstruction in function space”, in “Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition”, pp.
4460–4470 (2019).

[98] Mildenhall, B., P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi and
R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis”,
Communications of the ACM 65, 1, 99–106 (2021).

118

[99] Mirza, M. and S. Osindero, “Conditional generative adversarial nets”, arXiv
preprint arXiv:1411.1784 (2014).

[100] Miyato, T., T. Kataoka, M. Koyama and Y. Yoshida, “Spectral normalization
for generative adversarial networks”, arXiv preprint arXiv:1802.05957 (2018).

[101] Mou, S., M. Cao, Z. Hong, P. Huang, J. Shan and J. Shi, “Synthetic defect
generation for display front-of-screen quality inspection: A survey”, arXiv
preprint arXiv:2203.03429 (2022).

[102] Nash, C., J. Menick, S. Dieleman and P. Battaglia, “Generating images with
sparse representations”, in “International Conference on Machine Learning”, pp.
7958–7968 (PMLR, 2021).

[103] Nowozin, S., B. Cseke and R. Tomioka, “f-gan: Training generative neural
samplers using variational divergence minimization”, in “Advances in Neural
Information Processing Systems”, pp. 271–279 (2016).

[104] Ntavelis, E., M. Shahbazi, I. Kastanis, R. Timofte, M. Danelljan and L. Van Gool,
“Arbitrary-scale image synthesis”, in “Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition”, pp. 11533–11542 (2022).

[105] Park, K., U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz and
R. Martin-Brualla, “Nerfies: Deformable neural radiance fields”, in “Proceedings
of the IEEE/CVF International Conference on Computer Vision”, pp. 5865–5874
(2021).

[106] Pathak, D., P. Krahenbuhl, J. Donahue, T. Darrell and A. A. Efros, “Context
encoders: Feature learning by inpainting”, in “IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)”, pp. 2536–2544 (2016).

[107] Peebles, W. and S. Xie, “Scalable diffusion models with transformers”, arXiv
preprint arXiv:2212.09748 (2022).

[108] Plachetka, T., “Pov ray: persistence of vision parallel raytracer”, in “Proc. of
Spring Conf. on Computer Graphics, Budmerice, Slovakia”, vol. 123, p. 129
(1998).

[109] Pumarola, A., E. Corona, G. Pons-Moll and F. Moreno-Noguer, “D-nerf: Neu-
ral radiance fields for dynamic scenes”, in “Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition”, pp. 10318–10327
(2021).

[110] Radford, A., L. Metz and S. Chintala, “Unsupervised representation learning
with deep convolutional generative adversarial networks”, in “International
Conference on Learning Representations (ICLR)”, (2016).

[111] Ramasinghe, S. and S. Lucey, “Beyond periodicity: towards a unifying framework
for activations in coordinate-mlps”, in “Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXXIII”, pp. 142–158 (Springer, 2022).

119

[112] Reed, A. W., H. Kim, R. Anirudh, K. A. Mohan, K. Champley, J. Kang and
S. Jayasuriya, “Dynamic ct reconstruction from limited views with implicit
neural representations and parametric motion fields”, in “Proceedings of the
IEEE/CVF International Conference on Computer Vision”, pp. 2258–2268
(2021).

[113] Reed, S., Z. Akata, X. Yan, L. Logeswaran, B. Schiele and H. Lee, “Generative
adversarial text to image synthesis”, in “33rd International Conference on
Machine Learning”, pp. 1060–1069 (2016).

[114] Reeves, A. P., R. J. Prokop, S. E. Andrews and F. P. Kuhl, “Three-dimensional
shape analysis using moments and fourier descriptors”, IEEE Transactions on
Pattern Analysis and Machine Intelligence 10, 6, 937–943 (1988).

[115] Ren, S., K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks”, Advances in Neural Information
Processing Systems (NeuRIPS) 28 (2015).

[116] Roich, D., R. Mokady, A. H. Bermano and D. Cohen-Or, “Pivotal tuning for
latent-based editing of real images”, ACM Transactions on Graphics (TOG) 42,
1, 1–13 (2022).

[117] Ronneberger, O., P. Fischer and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation”, in “International Conference on Medical image
computing and computer-assisted intervention”, pp. 234–241 (Springer, 2015).

[118] Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual
recognition challenge”, International journal of computer vision 115, 3, 211–252
(2015).

[119] Sadjadi, F. A. and E. L. Hall, “Three-dimensional moment invariants”, IEEE
Transactions on Pattern Analysis and Machine Intelligence , 2, 127–136 (1980).

[120] Saharia, C., W. Chan, H. Chang, C. Lee, J. Ho, T. Salimans, D. Fleet and
M. Norouzi, “Palette: Image-to-image diffusion models”, in “ACM SIGGRAPH
2022 Conference Proceedings”, pp. 1–10 (2022).

[121] Saharia, C., W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour,
R. Gontijo Lopes, B. Karagol Ayan, T. Salimans et al., “Photorealistic text-to-
image diffusion models with deep language understanding”, Advances in Neural
Information Processing Systems 35, 36479–36494 (2022).

[122] Salimans, T., I. Goodfellow, W. Zaremba, V. Cheung, A. Radford and X. Chen,
“Improved techniques for training gans”, in “Advances in Neural Information
Processing Systems”, pp. 2234–2242 (2016).

[123] Sampath, V., I. Maurtua, J. J. Aguilar Mart́ın and A. Gutierrez, “A survey
on generative adversarial networks for imbalance problems in computer vision
tasks”, Journal of big Data 8, 1, 1–59 (2021).

120

[124] Sandler, M., A. Howard, M. Zhu, A. Zhmoginov and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks”, in “Proceedings of the IEEE confer-
ence on computer vision and pattern recognition”, pp. 4510–4520 (2018).

[125] Sauer, A., K. Chitta, J. Müller and A. Geiger, “Projected gans converge faster”,
Advances in Neural Information Processing Systems 34, 17480–17492 (2021).

[126] Sauer, A., T. Karras, S. Laine, A. Geiger and T. Aila, “Stylegan-t: Unlocking
the power of gans for fast large-scale text-to-image synthesis”, arXiv preprint
arXiv:2301.09515 (2023).

[127] Sauer, A., K. Schwarz and A. Geiger, “Stylegan-xl: Scaling stylegan to large
diverse datasets”, in “ACM SIGGRAPH 2022 Conference Proceedings”, pp.
1–10 (2022).

[128] Selvaraju, R. R., M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra,
“Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion”, in “Proceedings of the IEEE international conference on computer vision”,
pp. 618–626 (2017).

[129] Shah, V. and C. Hegde, “Solving linear inverse problems using gan priors: An
algorithm with provable guarantees”, in “2018 IEEE international conference
on acoustics, speech and signal processing (ICASSP)”, pp. 4609–4613 (IEEE,
2018).

[130] Shrivastava, A., T. Pfister, O. Tuzel, J. Susskind, W. Wang and R. Webb,
“Learning from simulated and unsupervised images through adversarial training”,
in “Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR)”, pp. 2107–2116 (2017).

[131] Singh, R., R. Garg, N. S. Patel and M. W. Braun, “Generative adversarial
networks for synthetic defect generation in assembly and test manufacturing”,
in “31st Annual SEMI Advanced Semiconductor Manufacturing Conference
(ASMC)”, pp. 1–5 (IEEE, 2020).

[132] Singh, R., P. Turaga, S. Jayasuriya, R. Garg and M. Braun, “Non-parametric
priors for generative adversarial networks”, in “International Conference on
Machine Learning (ICML)”, pp. 5838–5847 (PMLR, 2019).

[133] Sitzmann, V., J. Martel, A. Bergman, D. Lindell and G. Wetzstein, “Implicit
neural representations with periodic activation functions”, Advances in Neural
Information Processing Systems 33, 7462–7473 (2020).

[134] Sitzmann, V., S. Rezchikov, B. Freeman, J. Tenenbaum and F. Durand, “Light
field networks: Neural scene representations with single-evaluation rendering”,
Advances in Neural Information Processing Systems 34, 19313–19325 (2021).

[135] Sitzmann, V., M. Zollhöfer and G. Wetzstein, “Scene representation networks:
Continuous 3d-structure-aware neural scene representations”, Advances in Neural
Information Processing Systems 32 (2019).

121

[136] Skorokhodov, I., S. Ignatyev and M. Elhoseiny, “Adversarial generation of
continuous images”, in “Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition”, pp. 10753–10764 (2021).

[137] Skorokhodov, I., G. Sotnikov and M. Elhoseiny, “Aligning latent and image spaces
to connect the unconnectable”, in “Proceedings of the IEEE/CVF International
Conference on Computer Vision”, pp. 14144–14153 (2021).

[138] Skorokhodov, I., S. Tulyakov and M. Elhoseiny, “Stylegan-v: A continuous video
generator with the price, image quality and perks of stylegan2”, in “Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition”,
pp. 3626–3636 (2022).

[139] Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, “Going deeper with convolutions”, in “Pro-
ceedings of the IEEE conference on computer vision and pattern recognition”,
pp. 1–9 (2015).

[140] Tabernik, D., S. Šela, J. Skvarč and D. Skočaj, “Segmentation-based deep-
learning approach for surface-defect detection”, Journal of Intelligent Manufac-
turing 31, 3, 759–776 (2020).

[141] Tan, M. and Q. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks”, in “International conference on machine learning”, pp. 6105–
6114 (PMLR, 2019).

[142] Tancik, M., P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Sing-
hal, R. Ramamoorthi, J. Barron and R. Ng, “Fourier features let networks learn
high frequency functions in low dimensional domains”, Advances in Neural
Information Processing Systems 33, 7537–7547 (2020).

[143] Teague, M. R., “Image analysis via the general theory of moments”, Josa 70, 8,
920–930 (1980).

[144] Theodoridis, T., K. Loumponias, N. Vretos and P. Daras, “Zernike pooling:
Generalizing average pooling using zernike moments”, IEEE Access 9, 121128–
121136 (2021).

[145] Touvron, H., M. Cord, M. Douze, F. Massa, A. Sablayrolles and H. Jégou,
“Training data-efficient image transformers & distillation through attention”,
in “International Conference on Machine Learning”, pp. 10347–10357 (PMLR,
2021).

[146] Tov, O., Y. Alaluf, Y. Nitzan, O. Patashnik and D. Cohen-Or, “Designing
an encoder for stylegan image manipulation”, ACM Transactions on Graphics
(TOG) 40, 4, 1–14 (2021).

[147] Tuceryan, M., “Moment-based texture segmentation”, Pattern recognition letters
15, 7, 659–668 (1994).

122

[148] Tzeng, E., J. Hoffman, K. Saenko and T. Darrell, “Adversarial discriminative
domain adaptation”, in “IEEE Conference on Computer Vision and Pattern
Recognition (CVPR)”, vol. 1, p. 4 (2017).

[149] Van Gansbeke, W., S. Vandenhende, S. Georgoulis, M. Proesmans and
L. Van Gool, “Scan: Learning to classify images without labels”, in “Euro-
pean Conference on Computer Vision”, pp. 268–285 (Springer, 2020).

[150] Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser and I. Polosukhin, “Attention is all you need”, in “Advances in neural
information processing systems”, pp. 5998–6008 (2017).

[151] Wali, A., Z. Alamgir, S. Karim, A. Fawaz, M. B. Ali, M. Adan and M. Mujtaba,
“Generative adversarial networks for speech processing: A review”, Computer
Speech & Language 72, 101308 (2022).

[152] Wang, H., J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie and M. Guo,
“Graphgan: Graph representation learning with generative adversarial nets”, in
“Proceedings of the AAAI conference on artificial intelligence”, vol. 32 (2018).

[153] Wang, L. and G. Healey, “Using zernike moments for the illumination and
geometry invariant classification of multispectral texture”, IEEE Transactions
on Image Processing 7, 2, 196–203 (1998).

[154] Wang, Z., L. Yu and L. Pu, “Defect simulation in sem images using genera-
tive adversarial networks”, in “Metrology, Inspection, and Process Control for
Semiconductor Manufacturing XXXV”, vol. 11611, pp. 113–119 (SPIE, 2021).

[155] White, T., “Sampling generative networks”, arXiv preprint arXiv:1609.04468
(2016).

[156] Wu, J., S. Qiu, Y. Kong, Y. Chen, L. Senhadji and H. Shu, “Momentsnet:
a simple learning-free method for binary image recognition”, in “2017 IEEE
International Conference on Image Processing (ICIP)”, pp. 2667–2671 (IEEE,
2017).

[157] Xian, W., J.-B. Huang, J. Kopf and C. Kim, “Space-time neural irradiance
fields for free-viewpoint video”, in “Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition”, pp. 9421–9431 (2021).

[158] Yang, L., Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, Y. Shao, W. Zhang,
B. Cui and M.-H. Yang, “Diffusion models: A comprehensive survey of methods
and applications”, arXiv preprint arXiv:2209.00796 (2022).

[159] Yap, P.-T. and R. Paramesran, “An efficient method for the computation
of legendre moments”, IEEE Transactions on Pattern Analysis and Machine
Intelligence 27, 12, 1996–2002 (2005).

123

[160] Yariv, L., Y. Kasten, D. Moran, M. Galun, M. Atzmon, B. Ronen and Y. Lip-
man, “Multiview neural surface reconstruction by disentangling geometry and
appearance”, Advances in Neural Information Processing Systems 33, 2492–2502
(2020).

[161] Yin, W., Y. Fu, L. Sigal and X. Xue, “Semi-latent GAN: Learning to generate
and modify facial images from attributes”, arXiv preprint arXiv:1704.02166
(2017).

[162] Yoon, Y., I. Chung, L. Wang and K.-J. Yoon, “Spheresr: 360deg image super-
resolution with arbitrary projection via continuous spherical image representa-
tion”, in “Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition”, pp. 5677–5686 (2022).

[163] Yu, A., V. Ye, M. Tancik and A. Kanazawa, “pixelnerf: Neural radiance fields
from one or few images”, in “Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition”, pp. 4578–4587 (2021).

[164] Yu, F., A. Seff, Y. Zhang, S. Song, T. Funkhouser and J. Xiao, “LSUN: Con-
struction of a large-scale image dataset using deep learning with humans in the
loop”, arXiv preprint arXiv:1506.03365 (2015).

[165] Zhang, B., S. Gu, B. Zhang, J. Bao, D. Chen, F. Wen, Y. Wang and B. Guo,
“Styleswin: Transformer-based gan for high-resolution image generation”, in
“Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition”, pp. 11304–11314 (2022).

[166] Zhang, H., I. Goodfellow, D. Metaxas and A. Odena, “Self-attention generative
adversarial networks”, arXiv preprint arXiv:1805.08318 (2018).

[167] Zhang, H., H. Shu, G. Coatrieux, J. Zhu, Q. J. Wu, Y. Zhang, H. Zhu and L. Luo,
“Affine legendre moment invariants for image watermarking robust to geometric
distortions”, IEEE Transactions on Image Processing 20, 8, 2189–2199 (2011).

[168] Zhang, H., H. Shu, G. N. Han, G. Coatrieux, L. Luo and J. L. Coatrieux,
“Blurred image recognition by legendre moment invariants”, IEEE Transactions
on Image Processing 19, 3, 596–611 (2009).

[169] Zhang, H., T. Xu, H. Li, S. Zhang, X. Wang, X. Huang and D. N. Metaxas,
“StackGAN: Text to photo-realistic image synthesis with stacked generative
adversarial networks”, in “IEEE International Conference on Computer Vision
(ICCV)”, pp. 5907–5915 (2017).

[170] Zhang, M., M. Qamar, T. Kang, Y. Jung, C. Zhang, S.-H. Bae and C. Zhang, “A
survey on graph diffusion models: Generative ai in science for molecule, protein
and material”, arXiv preprint arXiv:2304.01565 (2023).

[171] Zhang, Y., Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen and L. Carin, “Ad-
versarial feature matching for text generation”, in “International conference on
machine learning”, pp. 4006–4015 (PMLR, 2017).

124

[172] Zhao, L., Z. Zhang, T. Chen, D. Metaxas and H. Zhang, “Improved transformer
for high-resolution gans”, Advances in Neural Information Processing Systems
34, 18367–18380 (2021).

[173] Zhu, J., Y. Shen, D. Zhao and B. Zhou, “In-domain gan inversion for real image
editing”, in “European conference on computer vision”, pp. 592–608 (Springer,
2020).

[174] Zhu, J.-Y., P. Krähenbühl, E. Shechtman and A. A. Efros, “Generative visual
manipulation on the natural image manifold”, in “European Conference on
Computer Vision (ECCV)”, pp. 597–613 (Springer, 2016).

[175] Zhu, J.-Y., T. Park, P. Isola and A. A. Efros, “Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks”, in “Proceedings of the IEEE
International Conference on Computer Vision (ICCV)”, pp. 2223–2232 (2017).

125

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	A Hybrid Physics and Deep-learning Based Approach
	Non-parametric Prior for Latent Space
	Geometric Moments Based Discriminative Model
	Geometric Moments Based Generator Model

	GENERATIVE ADVERSARIAL NETWORK
	Introduction
	Basic Concept and Theory
	Evaluation Metrics
	 Challenges

	A HYBRID PHYSICS AND DEEP-LEARNING BASED APPROACH FOR SYNTHETIC DEFECT GENERATION
	Introduction
	Problem Setup
	Dataset Details

	Proposed Method
	GAN Models for Synthetic Defects
	Hybrid Model for Synthetic Defect

	Experiments and Results
	Synthetic Defects from GAN
	Synthetic Defects from Rendering
	Discussion

	Conclusion

	NON-PARAMETRIC PRIOR FOR IMPROVED INTERPOLATION
	Introduction
	Background and Related Work
	Design of Non-parametric Priors for GANs
	Searching for the Optimal Prior Distribution
	Optimization Problem for Interpolation Priors

	Experiments and Results
	Conclusions

	IMPROVING SHAPE AWARENESS AND INTERPRETABILITY IN DEEP NETWORKS USING GEOMETRIC MOMENTS
	Introduction
	Geometric Moment
	Deep Geometric Moments
	DGM Classification Model

	Experimental Results
	How Many Levels Do We Need?
	Comparison with Baseline ResNet Model
	Comparison with Standard ResNet Model
	Feature Visualization
	Finetuning
	Performance under Color Distortion
	Semantic Image Segmentation

	Conclusion

	POLYNOMIAL IMPLICIT NEURAL REPRESENTATIONS FOR LARGE DIVERSE DATASETS
	Introduction
	Related Work
	Method
	Experiments
	Quantitative Results
	Qualitative Results
	Discussion

	Conclusion

	DISCUSSION AND FUTURE WORK
	Future Work

	REFERENCES

