
Exploration of Edge Machine Learning-based Stress Detection Using Wearable
Devices

by

Sang-Hun Sim

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved April 2022 by the
Graduate Supervisory Committee:

Ming Zhao, Chair
Nicole A. Roberts

Jia Zou

ARIZONA STATE UNIVERSITY

May 2022

ABSTRACT

Stress is one of the critical factors in daily lives, as it has a profound impact on

performance at work and decision-making processes. With the development of IoT

technology, smart wearables can handle diverse operations, including networking and

recording biometric signals. Also, it has become easier for individual users to self-

detect stress with recorded data since these wearables as well as their accompanying

smartphones now have data processing capability. Edge computing on such devices

enables real-time feedback and in turn preemptive identification of reactions to stress.

This can provide an opportunity to prevent more severe consequences that might

result if stress is unaddressed. From a system perspective, leveraging edge computing

allows saving energy such as network bandwidth and latency since it processes data in

proximity to the data source. It can also strengthen privacy by implementing stress

prediction at local devices without transferring personal information to the public

cloud.

This thesis presents a framework for real-time stress prediction using Fitbit and

machine learning with the support from cloud computing. Fitbit is a wearable tracker

that records biometric measurements using optical sensors on the wrist. It also pro-

vides developers with platforms to design custom applications. I developed an appli-

cation for the Fitbit and the user’s accompanying mobile device to collect heart rate

fluctuations and corresponding stress levels entered by users. I also established the

dataset collected from police cadets during their academy training program. Machine

learning classifiers for stress prediction are built using classic models and TensorFlow

in the cloud. Lastly, the classifiers are optimized using model compression techniques

for deploying them on the smartphones and analyzed how efficiently stress prediction

can be performed on the edge.

i

ACKNOWLEDGEMENTS

First of all, I appreciate Dr. Ming Zhao for offering me the opportunity to partici-

pate in the project and giving clear guidance for my thesis direction. I also appreciate

Dr. Nicole Roberts for your attention to my thesis work, including helpful advice link-

ing psychology and computer science areas and cooperation with the police academy

for the project. I also thank Dr. Jia Zou for the direction of my thesis work. I’d also

like to thank Tara Paranjpe and Allen Lin, the undergraduate students collaborat-

ing with me with creative and sharp ideas and contributions to this project. I also

express my gratitude to the VISA lab and the National Science Foundation - Award

CNS-1955593 for funding my research. And I also thank the Republic of Korea and

the Army for the opportunity and funding to pursue a master’s degree in the United

States as a military officer. Last and foremost, I appreciate my family, Min Young

and Jiah, for always supporting me and being my driving force.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Methods . 2

1.4 Outline . 4

2 BACKGROUND . 5

2.1 Wearable Devices as a Health Management Tool 5

2.1.1 Correlation Between Heart Rates and Stress 6

2.2 Fundamentals of Machine Learning . 7

2.2.1 Machine Learning Processes . 7

2.2.2 Classification Algorithms . 9

2.2.3 Evaluation Metrics . 14

2.3 Concept of Edge Machine Learning . 16

2.3.1 Advantages of Edge Computing over Cloud-only Computing 16

2.3.2 Model Optimization Techniques . 17

3 LITERATURE REVIEW . 20

3.1 Machine Learning Based Stress Detection. 20

3.2 Deploying Machine Learning on Edge Devices . 25

4 DATA COLLECTION SYSTEMS . 28

4.1 Fitbit Application . 29

4.2 Web Application . 32

iii

CHAPTER Page

4.3 API Server for on-Cloud Stress Prediction . 36

5 MACHINE LEARNING BASED STRESS MANAGEMENT 37

5.1 Problem Definition. 37

5.2 Data Acquisition . 38

5.3 Data Processing . 40

5.4 Training Models . 44

5.5 Evaluation . 45

6 EDGE COMPUTING FOR STRESS PREDICTION 49

6.1 Cloud- vs. Edge-based Stress Prediction . 50

6.2 TensorFlow on Edge . 52

7 CONCLUSION . 55

7.1 Conclusion . 55

7.2 Future Research . 56

REFERENCES . 58

iv

LIST OF TABLES

Table Page

3.1 List of Literature About Machine Learning Based Stress Detection 21

3.2 List of Literature About Edge-based Machine Learning 25

4.1 Role of Aws Services Used for Web Application . 35

5.1 Distribution of Stress Responses . 38

5.2 General Information of Police Cadets . 39

5.3 Four Approaches for Training Models . 44

5.4 Hyperparameters of TensorFlow’s Feed-Forward Network 45

5.5 Evaluations by Accuracy and F1-score . 46

6.1 Hardware Specification of the Server and Companion 50

6.2 Accuracy and the Size of Models . 53

v

LIST OF FIGURES

Figure Page

2.1 Global Wearable Market Forecast [1] . 6

2.2 The Processes of the Supervised Learning [2] . 8

2.3 A Decision Tree and Partitioning . 10

2.4 Scheme of Random Forest . 11

2.5 Training Process in Adaboost [3] . 12

2.6 Example of the K-nearest Neighbor Algorithm . 13

2.7 Confusion Matrix . 14

3.1 Example of the Usage of the Recurrent Plot with CNN [4] 25

4.1 The Architecture of the Stress Management . 28

4.2 Clock Face of the Fitbit Application . 29

4.3 Fitbit’s Network Architecture . 31

4.4 Fitbit’s Authorization Code Grant Flow . 32

4.5 The Dashboard on the Web Application . 33

4.6 The Architecture of the Web Application . 35

5.1 Machine Learning Processes for Stress Management 37

5.2 An Example of the Heart Rates Segmentation . 40

5.3 Preprocessed Dataset. 41

5.4 The Feature Matrix . 42

5.5 Resampling Methods . 43

5.6 Confusion Matrices of Approach 1 and 2 . 47

5.7 Confusion Matrices of Approach 3 and 4 . 48

6.1 On-cloud Stress Prediction . 51

6.2 On-companion Stress Prediction . 51

6.3 Latency Analysis . 54

vi

Chapter 1

INTRODUCTION

1.1 Motivation

Stress often occurs when we get pressured by events that overwhelm our capacity

to deal with it. It is also known to be inversely related to job performance at the

workplace [5] as it also negatively affects on decision-making process [6]. This thesis

focuses on the stress of police officers in the law enforcement occupation who behave

and make decisions for the public society. However, policing is a stressful job that

encounters many unexpected threats and undergoes challenging demands from the

organization [7]. Seizing and handling stress symptoms in advance is critical as the

acute stress becomes chronic and induces the loss of society by giving us more severe

results, such as loss in performance or recruiting costs [8]. Thus, anticipating stress in

advance and taking preemptive reactions to stress is helpful to not only police officers

but also the public society.

With the development of IoT technology, it became much easier for individual

users to measure stress by themselves using smart wearable devices since they can

now network to the Internet and record biometric signals. Self-stress detection enables

one to get alert to stress right in time. From the system perspective, one way to

implement self-stress detection is to use the server running in the cloud to operate all

the tasks and provide the results to the user device. However, implementing stress

prediction on the device makes it even faster. The main challenge is that the device

has limited computing resources. Thus, we need to transform the models to be suited

for resource-constrained devices using model optimization techniques.

1

1.2 Objectives

This thesis aims to build a framework for real-time stress prediction based on edge

machine learning. To accomplish this goal, we set four research questions as follows:

• Can commercial wearable smartwatches provide validated datasets for stress pre-

diction? If yes, how are we going to implement the data collection protocol?

• How effectively do the machine learning models recognize stress, including neural

networks? What kind of and how to build stress prediction models?

• Is it feasible to implement stress prediction models on Fitbit’s companion? What

processes are needed for the Fitbit development platform?

• How efficiently does the model optimization reduce the latency for real-time stress

detection? What kind of model compression technique is the most ideal?

1.3 Methods

This thesis suggests the framework for real-time stress management using Fitbit,

machine learning, and edge computing. First, we cooperated with Phoenix Regional

Police Academy to collect heart rate and stress data needed to build stress prediction

models. The participants were the police cadets who participated police academy

training program, in which they must conform to a more strict lifestyle without indi-

vidual actions. The duration of the data collection was four months, and 15 cadets

ended up providing the data until the end of the training. Most of the cadets were

male and were in their early 20s. We periodically visited the academy during the data

collection stage to inform them to update the application and get feedback from them.

2

There are two types of data needed for stress prediction methods, heart rates and

stress levels. We assigned Fitbit Versa 3 to each cadet individually for heart rate

recording and asked them to wear them during the training sessions. Fitbit reads

and stores heart rates data in its repository by itself, so we did not need to consider

a private database. However, for the stress levels data, we programmed Fitbit to

generate prompts with five-stress-level buttons when their heart rates go above their

resting heart rates by 35% percent for 2 minutes. Since the stress level is the custom

type data we created, we considered utilizing a separate database. We provided the

cadet’s mobile phone with the endpoint to reach our database using Amazon Web

Services. To monitor the overall data collection process, we created a web application

that has a dashboard showing battery, syncing status, how cadets entered stress levels,

etc. The application also has the interface for downloading heart rates and stress data

in CSV format.

Next, we built classification models using machine learning based on our estab-

lished dataset. Since the dataset is already labeled by the stress levels entered by the

cadet, we considered supervised learning. We employed binary classification methods

(not stressed vs. stressed) using both classic models and a neural network. Then,

we deployed the stress classification models on mobile devices so that they process

stress prediction in proximity to the user without sending the data to the cloud. We

also considered applying quantization to the neural network to reduce the weight size

and compared performance with the on-Cloud system. To compare the cloud and the

mobile, we not only implemented stress prediction methods on the mobile application

but also created a server running in the AWS data center. This thesis exemplifies the

effectiveness of model compression techniques regarding model size and latency for

stress prediction.

3

1.4 Outline

The subsequent chapters of this thesis are as follows. Chapter 2 elaborates on

the background of three main concepts: wearable devices as a health management

tool, fundamentals of machine learning, and the concept of edge machine learning.

Chapter 3 goes through literature reviews that are divided into two main parts:

machine learning-based stress prediction and deploying machine learning on edge

devices. Chapter 4 describes the data collection protocol we established, including

the Fitbit application, web application, and cloud server. Chapter 5 explains how we

build stress prediction models using machine learning. Chapter 6 introduces stress

prediction on the edge devices and compares results between on-cloud and on-device.

Lastly, chapter 7 summarizes what we learned and suggests future works that can

extend the research scope.

4

Chapter 2

BACKGROUND

2.1 Wearable Devices as a Health Management Tool

Wearable devices have already permeated every aspect of our lives. With the

evolution of the Internet of Things (IoT) industry, the computing power of wearable

devices themselves has also improved. The study conducted by IDTechEX specifies

that both market value and the number of units sold have increased since 2015 [1].

Wearables are now being used in various fields of society, such as the healthcare

industry or automated systems. One of the most widespread applications of the

wearable is the health care and fitness [9]. As people are willing to self-check their

health status on their own, wearable usage has more than tripled over the past few

years [10]. Wearables are equipped with ordinary functions like measuring time but

also with sensors to read human biosignals with a networking capability [11].

One primary function of the wearable fitness tracker is a sensor to record biometric

signals. For instance, Fitbit has optical sensors at the bottom of the clock face. The

main advantage of using smart wearable devices is that they measure biometric signals

without interfering with the user’s daily life. They minimize disturbing ordinary

living patterns because they are merely put on the wrist. The additional function

is networking capability with either Bluetooth or WiFi, meaning that they can now

exchange data with the outside of the watch. Fitbit, for example, is compatible with

smartphones via Bluetooth connection and transmits data by using a bridge of the

smartphone.

5

Figure 2.1: Global Wearable Market Forecast [1]

2.1.1 Correlation Between Heart Rates and Stress

The human body system responds to stress in a way that we can measure quan-

titatively. The Autonomic Nervous System (ANS) is triggered when someone gets

stressed. ANS has two parts, the sympathetic nervous system, and the parasympa-

thetic nervous system. The former is related to intense activities, for example, and

increases heart rates, while the latter decreases heart rates, especially in resting [12].

There are various devices that can measure heart rate variability. By measuring

heart rate variability, it has been proved that stressed and unstressed status indicate

different quantitative heart rate value [13]. They demonstrated that the mean and

standard deviation (SD) of the heart rates and heart rate variability are differed by

the condition: The mean R-R interval and mean SD was higher when resting.

6

2.2 Fundamentals of Machine Learning

Machine learning creates computer programs that learn and improve from a gath-

ered dataset. [14] elaborates on machine learning techniques that it is a statistical

and automated framework extracting valuable pieces of information from the dataset

by statistically analyzing the data patterns. The ultimate goal of machine learning

is to build a model which interprets ”regularities” and ”patterns” of the data and

”generalizes” to the unseen data [15]. The machine learning model generates differ-

ent outputs depending on the scenarios. Supervised learning, for example, constructs

predictive or decisive models with a dataset labeled, while unsupervised learning de-

velops clustering forms with a unlabeled dataset.

2.2.1 Machine Learning Processes

Machine learning processes can be divided into four stages roughly: 1) data ac-

quisition, 2) data preprocessing, 3) training, and 4) evaluation. The data acquisition

stage needs to determine a problem and requirements to specify which type of data

would be the most effective. We need to clarify which kind of algorithm is adequate

for our goal, considering the dataset’s characteristics. Regarding data collection, one

way to acquire data is to exploit already collected data open to the public source.

This way alleviates the burdens of collecting data and guarantees validated datasets.

Another way is to collect data directly. It can reflect our problems more effectively.

Next, there are three typical methods for data pre-processing. 1) It detects and

deletes the outliers outside the trust bound. Detecting outliers can purify the dataset

and train the models with more invariant input data [16]. 2) It also transforms raw

data into a form that the machine learning model can employ more efficiently. For

7

Figure 2.2: The Processes of the Supervised Learning [2]

instance, the standard scaling makes every column of the dataset maintain the same

distribution with mean zero and unit standard deviation. It diminishes the operations

time. Lastly, 3) It removes nonessential and duplicative parts of the dataset by

extracting a subset of features [2]. It reduces the complexity of the models and drives

them to proceed quicker.

In the training phase, deciding on appropriate machine learning algorithms is cru-

cial as their performance varies depending on the type of algorithms. Considering the

dataset’s characteristics we collected, this work is more suitable for the classification

algorithm in supervised learning. Our dataset consists of {(X1, y1), (X2, y2), .., (Xm, ym)},

where Xis are the input vectors Xi = {xi1, xi2, ..., xin} that has i number of columns

in the dataset. The input vector is in the n-dimensional space, where n is the num-

8

ber of features extracted from heart rates. The output y have the discrete values,

where y = {1, 2, 3, 4, 5} and indicates the stress levels. The foremost goal of this work

is to create classifiers that have the parameters of f(X) = y, which minimize the

error rates. The representative classifiers for our dataset are K-Nearest Neighbors,

Adaptive boost(Adaboost), XGBoost [17], Random Forest, Decision Tree, and Feed

Forward Neural Network from TensorFlow [18].

Upon the model selection, the dataset must be split to evaluate it. Typical ratios

are training data (60%), validation data (20%), and test data (20%). Suppose the size

of the data is incomplete. In that case, cross-validation is performed. Cross-validation

divides the dataset into k number of equal-sized segments, uses one segment of the

dataset as verification set and the rest as the training set, and repeats it k times while

changing the verification set. After training and validation, the model examinations

with test data as it encounters unseen data to prove its prediction capability for the

new instances.

2.2.2 Classification Algorithms

Our problem needs classification algorithms since it is to build classification mod-

els that classify the stress with given dataset. Also, considering that our dataset

provides both inputs and outputs, it follows supervised learning algorithms. Stan-

dard classification algorithms are tree-based, ensemble, and deep learning algorithms.

Tree-based algorithms classify the input data with given rules established by the train-

ing dataset. Ensemble algorithm merges insignificant models into one robust model.

Ensemble type is divided into two sub-kinds: Bootstrp Aggregating (Bagging) and

Boosting. Lastly, deep learning is the state-of-the-art method that uses neural net-

works to discover the best parameters that minimize the loss.

9

Decision Tree

Decision Tree is an algorithm that classifies the input vector to the discrete target

value by using the tree-like decision rule. The decision rule is a combination of rules

for predicting the input data patterns, and the rules are based on the dataset’s at-

tributes. Figure 6.3b shows an example of the decision tree. It comprises the root

node, intermediate nodes, and leaf nodes. The root node is the node that every input

instance encounters at first, and it should be the best splitter of the training set [2].

Every time the input instances pass the node, they are redirected to the following

nodes until they get the final class. As shown in Figure 6.3f, the output space is

partitioned corresponding to the classification by the decision rule. A good Decision

Tree classifier has good discrimination, and it is judged by impurity, representing

homogeneity of the classes in each node. The algorithms for impurity calculation are

Gini impurity and Entropy.

(a) Example of the Decision Tree (b) Partition Generated by the Decision Tree

Figure 2.3: A Decision Tree and Partitioning

10

Random Forest

Random Forest is a familiar example of the ensemble bagging algorithm. The en-

semble bagging algorithm utilizes Bootstrap to create n number of the subsets of the

datasets by sampling randomly. It trains n models with the datasets produced by

Bootstrap. We call these models weak models. The output is determined by voting

among the models. Figure 2.4 shows the overall schemes of Random Forest. Random

Forest uses as many decision tree models as the number of the subsets of the dataset

it resampled. One substantial advantage of Random Forest over the decision tree

algorithm is that it can overcome overfitting because it resamples the dataset with

randomly selected features. Also, when it comes to resampling, it allows duplication

of the feature selection.

Figure 2.4: Scheme of Random Forest

11

Adaptive Boost

Adaptive Boost (Adaboost) belongs to the ensemble boosting algorithm. Boosting

is similar to Bagging in that it also resamples the dataset and creates multiple weak

classifiers. However, unlike Bagging, Boosting utilizes the weighted samples for the

following classifiers. Also, while Bagging’s models are independent, Boosting’s classi-

fiers are interactive among each other—boosting grants the misclassified targets the

weights for the next model to recognize and update appropriately. Figure 2.6 shows

the training process in Adaboost. Targets misclassified in the leftmost model are

weighted, so the next model updates the boundary line mainly on targets with larger

weights. It also weights the more precise classifiers. Thus, the final classifiers are

determined by voting, but each vote has different weights.

Figure 2.5: Training Process in Adaboost [3]

12

K-Nearest Neighbor

K-Nearest Neighbor (KNN) algorithm classifies data based on the similarity between

a novice sample and the neighbors. The two general similarity measurements are

the normalized value of Euclidean distance and the cosine similarity. K implies the

number of the closest neighbors, meaning that the model decides the output of the

novice sample by voting among the nearest k neighbors and chooses the majority’s

class. It uses relatively simple algorithms and is easy to implement. However, it is

also called a lazy model because it delays the learning process until it embarks on

classifying new data. Also, it is expensive in terms of algorithm complexity in that

it calculates all the distances from the novice sample to the training samples in the

brute force manner. Moreover, distance measurement will be ineffective when fea-

tures are above a certain number. The KD tree is used for a more efficient approach

to avoid calculating all the distances.

Figure 2.6: Example of the K-nearest Neighbor Algorithm

13

2.2.3 Evaluation Metrics

The model evaluation is performed on a testing dataset, which the model has not

seen during the training stage. The classification problem has to consider not only

the mean squared error between the ground truth and prediction but also the other

metrics, such as accuracy, confusion matrix, or F1-score. Accuracy is the metrics

indicating how many of the predictions match the ground truths.

Accuracy = (TruePositive + TrueNegative) / Total Predictions (2.1)

However, the accuracy-only method cannot address the imbalanced dataset cor-

rectly. For example, let us assume the dataset contains 90% of label 0 and 10% of

label 1. Even though the model can return the data as of only 0, the accuracy of the

model is still 90%. Therefore, it is needed to be evaluated with additional types of

evaluation metrics, like confusion matrix. The confusion matrix shows how the model

classifies the test instances well by showing true-positive (TP), true-negative (TN),

false-positive (FP), and false-negative (FN).

Figure 2.7: Confusion Matrix

14

Based on these four components of the confusion matrix, we can measure preci-

sion and recall. Precision is the ratio of the positive predictions that are actually

positive, while recall is the ratio of the positive ground truths that are predicted as

positive. However, since precision and recall are in complementary relationships, as

one increases, the other decreases. We call this as precision-recall trade-off.

Precision =
TP

(TP + FP)
(2.2)

Recall =
TP

(TP + FN)
(2.3)

The calculation of the F1-score is from the harmonic mean of precision and recall.

The purpose of the F1-score is to merge precision and recall into one evaluation

metric. F1-score provides us with insights to analyze the performance of the model.

The higher score indicates precision and recall are high together, while the lower score

means both are low. Also, if the score is around 50%, then it means the opposite

trend that one is high while the other is low.

F1score = 2 ∗ Precision ∗Recall

(Precision + Recall)
(2.4)

15

2.3 Concept of Edge Machine Learning

With the advancement of wireless communication technology and wearable de-

vices, the interest in edge computing on wearable has emerged considerably. In the

meantime, wearable devices generate enormous amounts of data in such a short period

of time. However, this wearable’s data generating induces network bottlenecks due

to the limited network bandwidth. Edge computing is to proceed computation at the

edge devices, where data is originated [19]. Instead of employing cloud-central sys-

tems that burden all the responsibilities [20; 21], edge computing relieves the cloud’s

role and process data locally. For example, many IoT applications, such as language

translation or image recognition, require real-time responses by deploying machine

learning on edge devices. Yet, it is still challenging for such devices to handle a large

amount of data with limited resources.

2.3.1 Advantages of Edge Computing over Cloud-only Computing

There are several challenges when considering the cloud-only system. First, the

application must establish a stable network connection to the cloud server [22]. Nu-

merous unpredictable variables interfere with network connections, hindering data

exchange on time. Second, the cloud may not be able to handle the amount of data

that edge devices generate [22; 23]. As the number of IoT equipment such as wear-

able devices grows, the amount of data generated increases as well. It will induce the

overload of the cloud, which becomes unserviceable afterward. Third, the cloud may

not interpret the personal data accurately [22]. A global model trained in the cloud

may not interprets individual local data properly because it has learned with a mixed

set of data. Lastly, it has to take risks of compromising privacy if data is transferred

to public cloud [20; 22; 23].

16

On the other hand, edge computing can alleviate the aforementioned drawbacks

of the cloud-only system. First, edge computing can save computing resources, like

network bandwidth, latency, and power consumption [24]. Since the data is processed

in proximity to the device, the system does not need to transfer the data over the

Internet as often as the cloud-only system. Next, it enables faster inference from the

machine learning models than the cloud-only [22]. Applications like natural language

processing or image recognition require frameworks with the real-time response from

the server. With edge computing, the processing model is deployed on the device and

gives faster answers to the user. Lastly, it can preserve the confidentiality of local

data by keeping them in private storage still. The device only has to send already-

processed data without exposing sensitive raw data to the public cloud. However,

implementing edge-based machine learning systems is still challenging due to limited

resources. It must go through model optimization processes to transform the models

suitable for the edge device.

2.3.2 Model Optimization Techniques

Model Redesign

For classic models, like K-NN or tree-based algorithms, we can diminish the model’s

size by reducing dataset dimensions with techniques such as PCA. They filter out

redundant features from the correlation matrix. The model re-design can be applied

to deep neural networks as well. We can consider lowering the number of parameters

for the neural networks while preserving their accuracy [25]. SqueezeNet [26], for

example, is the convolutional neural network (CNN) with one-fifty times of weights

to the standard CNN models but preserves its accuracy. Its strategy is to reduce the

kernel size by 1x1 and the input channel to 3x3 filters.

17

Model Compression

The following contribution is model compression. With the combination of the model

compression techniques, including pruning, quantization, and Huffman Coding, the

model size can be decreased by 35x to 49x without losing accuracy [27]. This thesis

uses only quantization for optimizing TensorFlow models. First of all, pruning re-

duces the complexity of the model by deleting insignificant weights. There are two

types of pruning, unstructured pruning, and structured pruning. Unstructured prun-

ing converts unnecessary weights to zero individually. However, it doesn’t speed up

the inference time as it still maintains the sparse matrix. Structured pruning prunes

the entire area, like a channel, and removes matrix operations for the pruned target.

While unstructured pruning retains good accuracy but utilizes hardware inefficiently,

structured pruning accelerates hardware efficiently but loses accuracy [28]. Next,

weight clustering lowers the number of individual weights by grouping weights of

each layer into N clusters and sharing the representative value. [27] used k-means

clustering algorithms to make groups of weights that have similar values and set the

same weight to share for a cluster.

The purpose of quantization is to diminish the inference time of the neural

network. The majority parts of the neural network are matrix multiplications of

weights neurons and the activation functions. To raise the accuracy, the ordinary

network is represented by 32-bit floating points. Of course, it is challenging for edge

devices to operate with 32-bit floating points due to the lack of resources. Thus,

we use quantization to reduce the bits to smaller units, like 8-bits or 4-bits. The

main advantage of quantization is that the quantized model utilizes lower memory

bandwidth. And it is followed by lower power consumption and storage. It also

reduces the size of models by 4x when bits are shrunk to 8-bits from 32-bits [25].

18

However, it is inevitable that the accuracy of the model will get lost because it

converts float 32-bits to int8 format, which can represent 256 indexes at maximum.

Post-training quantization is to quantize the model after training with floating 32-

bits. This approach is suitable for when the size of parameters is large because the

decrease in accuracy is relatively low. Quantization-aware training is to quantize

during the training by simulating quantization application so that it can minimize

the decrease of the model’s accuracy.

Hardware

Hardware is also a crucial part of running machine learning models on edge devices.

For example, users can leverage GPUs acceleration. GPUs hasten the operation

speed by parallel programming with more cores and memory bandwidth than CPUs.

TensorFlow [18] is the representative framework that can control GPU usage by pro-

gramming. [22] utilized GPUs to accelerate hardware in the mobile device for train-

ing DNN by porting to Tensor. There are also application-specific integrated circuits

(ASIC) such as Google’s TensorFlow Processing Unit for faster inference [29]. TPU

is a customized chipset developed by Google for energy-efficient operations, consid-

ering that training operations and inference operations have different scales. While

training operations require 32-bits floating bits, it is sufficient for inference to be in

8-bits floating bits. TPU has components that quicken the matrix multiplication,

including 655,36 multipliers, 256 accumulators, and the unified buffer that can hold

intermediate operations and can implement activation functions in parallel [30].

19

Chapter 3

LITERATURE REVIEW

This chapter gives survey studies on the literature related to our work. It is di-

vided into two parts: studies that used machine learning for stress prediction and

studies that applied machine learning on Edge. The former part elaborates on the

author’s approaches made for machine learning-based stress prediction, such as the

data source, features extracted, stressors, the type of machine learning model, and

the accuracy. Subsequently, the second part investigates how the author made con-

tributions to deploying machine learning on Edge.

3.1 Machine Learning Based Stress Detection

Today’s wearable devices can construct datasets for the machine learning pro-

cess by recording biometric signals. In this work, we collected data from Fitbit that

can record heartbeats in about 5 to 10-second-granularity. It can also read other

measurements, such as calories burned or steps. Although Fitbit cannot read more

precise heart rates variability, like Electrocardiogram (ECG), several studies have

already proved the usage of Fitbit for stress prediction with machine learning classi-

fication [31; 32; 33]. The common thing among these studies is that they extracted

statistical features from raw data and reduced the feature matrix’s dimension. Shrink-

ing feature sets can also eliminate redundant features to increase the efficiency of the

prediction processes. They also considered defining stressors by themselves using

surveys or customized methods.

20

Paper Data Source Features ML Model Stressor Accuracy

[31] Fitbit BMI, Heart Rates,

Sleep Patterns,

Physical Activities,

Demographic Data

Probit,

Logistic Regression,

Log-Log

Survey N/E

[32] Fitbit Calories, Steps,

Heart Rates, Sleeps

Resting Heart Rate

KNN, SVM,

Decision Tree

Surveys 81.70%

[33] Custom App,

Fitbit

Workplace Acitvities,

Heart Rates,

Sleep Pattern

KNN, Naive Bayes,

J48, Adaboost,

Random Forest

Prompts 78%

[34] Wearable Sensor HRV features,

GSR features,

Accelerometers

J48 Decision Tree,

Bayes Network,

SVM

Stroop Test 95.21%

[35] SRAD [36] Foot GSR,

Hand GSR,

Heart Rates

Conv. Neural Net Driving Status 95.67%

[37] WESAD Statistical features of 10-

second window

KNN, RF, SVM,

LDA, Adaboost

Questionnaires

(pre-labeled)

84.17%

[38] WESAD Statistical features, peak

frequency, slope of signal

KNN, RF, SVM,

LDA, Adaboost, DT,

Feed-forward Net

Questionnaires

(pre-labeled)

95.67%

Table 3.1: List of Literature About Machine Learning Based Stress Detection

[31] utilized in-body information, physical and sleep-related data, heart rates. All

data is retrieved from Fitbit’s data archive. They also considered using demographic

attributes such as age or gender. They extracted over 30 features by calculating

statistical features, such as mean or standard deviation, and applied PCA to reduce

the dimension of the dataset. For the stressor, it used the PSS survey. They use only

regression models, including logistic regression, probit model, and complementary

log-log model. It has not involved the accuracy for each model. Instead, it concludes

with AIC metrics, which compare the performance of the used model; the Probit

model is most suitable for their dataset. This work proved that Fitbit could provide

21

data to predict stress and tried to contextualize the origin of stresses. In addition,

they sought to reduce the model size by eliminating redundant features using PCA.

However, it only used the daily surveys to measure stress and did not measure the

accuracy and F1-scores of the models.

The study conducted by [32] collected five data types, including heart rates, rest-

ing heart rate, sleep patterns, calories, and steps data, and extracted 17 statistical

features such as mean, standard deviation, and summation of heart rates. For stress

measurement, it used multiple surveys, Perceived Stress Scale (PSS), General Self-

Efficacy Scale (GSE), and General Survey. The models it employed are K-Nearest

Neighbor, Support Vector Machine (SVM), and Decision Tree, and it ran the models

separately for each survey. The best accuracy it reached is 81.70% from SVM. This

work inspired me to use Fitbit for stress prediction as its dataset contains only data

recorded by Fitbit. Also, they proved that different survey responses indicate different

stress levels. However, they have tried with only three classic models and not used

deep neural networks, which is more accurate. Moreover, they have not considered

the real-time aspect.

[33] aimed to measure stress among the office workers using heart rates and sleep

patterns recorded by Fitbit. They also created a custom application to collect office

activities, such as the number of keyboard strokes. The application generated the

survey every 210 minutes for stress measurement, and the participants entered the

stress levels they considered. It implemented PCA, correlation analysis, and feature

importance for data processing to filter out redundant features and finalize the fea-

ture set. Classic models, including KNN, Naive Bayes, Random Forest, J48, and

Adaboost, were run for classification, and the best accuracy was 78% from Random

Forest. Instead of using surveys, this work implemented a novel method for stress

measurement using the custom application. The user enters the stress level directly.

22

It also imported SMOTE [39] to overcome the imbalance of the dataset. However, it

should also deploy a deep neural network tuned in custom for its dataset instead of

classic models, which are not suitable for the user-specific dataset in the long term.

There are other data sources for stress prediction. Instead of using wearable smart

devices, like Fitbit, we can consider using different wearables that require subjects

a bit static but read biometric signals in more depth, such as ECG, accelerometers,

or GSR [34; 35]. WESAD [40] is also a popular method for stress prediction since

it contains multimodal data collection, such as 3-axis accelerometers, ECG, EDA,

EMG, RESP and temperature, recorded by a wrist and chest-worn device. [38; 37]

have implemented three-class and binary classification models with this dataset for

stress prediction.

[34] researched for methods to detect stress based on activity recognition. Using

sensor-reading wearable equipment, they collected three types of sensor data, ECG,

GSR, and accelerometers (ACC), from 20 participants composed of students, faculty,

and staff from their university. They extracted features representing heart rate vari-

ability (HRV) from ECG data and skin conductance variables from GSR data. They

also calculated the mean and standard deviation of the ACC. They built an applica-

tion to test participants with a test interface to define stress levels. They segmented

each data corresponding to their current status to distinguish activities occurring

stress like seating or walking. In addition, to analyze which features affect more on

which activity, they excluded one of all types of features. They concluded that ACC

data has more influence on active motion, while physiological data is effective in both

inactive and active status. Lastly, they implemented classification algorithms, such

as Decision Tree and Bayes Network, and reached the best accuracy of 92.4% from

Decision Tress with all types of data included.

23

[37] conducted study using WESAD [40] dataset. The segmented dataset in the

10-second window and calculated statistical features. The best accuracy they got

from Random Forest is 84.17% for binary classification and 67.56% for three-class

classification. [38] used the same dataset and extracted in a similar way by extracting

statistical features. However, it reached 93.20% from a feed-forward neural network.

Lastly, some studies consider neural networks for stress prediction [38; 35]. The

first study built a feed-forward neural network for both binary and three-class classi-

fication. The network consists of two hidden layers. They applied different activation

functions for the output layer on each case. They put a sigmoid function for binary

classification that returns a value between 0 to 1. At the same time, they applied a

softmax function for three-class classification, which produces three probability values

of the three classes so that the largest is the likely target of the input data.

[35] considered using deep neural network, convolutional neural network. It em-

ployed a public dataset called Stress Recognition in Automobile Drivers(SRAD) [36],

which contains three time-series measurements, including Foot GSR (FGSR), Hand

GSR (GSR), and Heart Rate. They extracted 10-second and 30-second windows seg-

ments, respectively, when data processing. One thing to notice is that they created a

recurrence plot (RP) from the time-series sampling to convert the sequence data to

the image. They defined stress levels per where subjects drive. Using the VGG16 [41]

model, they extracted features of RPs and generated feature vectors by flattening the

feature maps. As a result, they achieved the best accuracy of 95.67% with 30-second

windows. In summary, this study shed light on using CNN models for time-series

data classification by converting them into images. Also, it proves such a short pe-

riod of data is sufficient for stress measurement, which is suitable for the real-time

framework. However, it does not use any user’s response, such as surveys or prompts.

24

Figure 3.1: Example of the Usage of the Recurrent Plot with CNN [4]

3.2 Deploying Machine Learning on Edge Devices

Many studies have explored the feasibility of leveraging machine learning capa-

bility on edge devices. These shed light on applying edge machine learning to our

edge device, Fitbit. Some also tell about the efficiency of mobile machine learning by

comparison with on-cloud operations.

Paper Contributions ML Model

[22] Extension of TensorFlow, Hardware acceleration,

Redesigning the model

CNNs for image classification

[42] Loading pre-trained model on mobile device Deep Neural Network, Classic models

[43] Model compression - Quantization CNNs for image classification

[44] Comparison between cloud and mobile inference CNNs for image classification

Table 3.2: List of Literature About Edge-based Machine Learning

[22] conducted a study that investigates the capabilities of mobile devices for

training and inferencing with deep learning models. It first introduces how they

ported TensorFlow mobile to enable mobile devices to train the model and utilize

GPU for hardware acceleration. They adjusted the interface of TensorFlow mobile

by including methods and libraries that are needed for training. Also, they switched

the frameworks to accelerate the operations, like convolutional and matrix-matrix

25

multiplications. It considered testing three CNN models for image classifications with

the CIFAR-10 dataset and used four different mobile phones and a server. They also

compared the performance among different types of networks, fully connected layer

and convolutional layer with the result of that fully-connected layer is more subtle

with its width and depth. They found that training operations consume most of

the time, especially for the gradient calculation of the backward path. Consequently,

they conclude that it is plausible to run both training and inference on mobile devices

provided that models’ complexity is relieved. They also suggest new approaches for

machine learning on mobile, such as federated learning or knowledge transfer.

There is a study that builds a real-time inference framework for fall detection of the

elderly [42]. This project has three components: 1) a smartwatch, 2) a smartphone,

and 3) the cloud server. The smartwatch monitors and records the accelerometer

data and transfers them to the smartphone. The Smartphone has the application

calculating for the Fall detection instead of redirecting data to the cloud server. The

server is in charge of generating the models with the dataset provided by smart-

watches and an external source. They trained SVM, Naive Bayes, and Deep Neural

Network (DNN). They infer that DNN outperforms the others because it can catch

the feature information more in detail. Even though they do not compare the fall

detection performance between on-device and on-cloud, it proves that mobile devices

are capable enough to proceed with the machine learning inference.

Also, [43] implemented the frameworks for deep learning inference on the mobile.

This framework dynamically decides the inference location and the types of models

under the conditions such as desired accuracy or current system status. They mainly

focused on which model compression techniques to use, which model to choose for

mobile inference, and when to depend on the servers. First, they investigated the

results from the model compression by its accuracy and inference time. They proved

26

that the quantized models have significantly less size of models. Also, they found that

loading model time takes most of the inference time except for the 8-bit quantized

model. Next, they measured the inference time between different mobile devices.

Also, assuming the mobile is not always available, they analyzed the inference time

at the edge server according to the type of Internet connection.

Another study conducted by [44] implemented a comparison of the inference per-

formances of three CNN models between cloud-based and on-device with the image-

recognition application. For cloud-based inference, they established the server on

Apache Server hosted by Amazon Virginia data center for cloud-based inference with

both CPU and GPU enabled. The input image has to go through bandwidth from

the mobile. On the other hand, mobile-based inference used an Android phone, and

they used already-loaded the trained models and images on the device. The evalua-

tion metrics are latency, power consumption, and resource usage. They measure the

performance in an end-to-end manner but also break it down into separate steps to

analyze more in detail to figure out which consumes more time. They found that

the cloud-based approach outperforms the mobile-based. Also, the evaluations are

differed by model type in that the Caffe-based model took less time to load model

than CCNDroid. Also, they realized that the Android application consumes memory

with tasks unrelated to inference tasks, such as garbage collection. The mobile device

is also sensitive to the size of the image.

27

Chapter 4

DATA COLLECTION SYSTEMS

This chapter describes how we established the architecture of data collection.

Figure 4.5 shows the architecture and data flows. There are three main functions: (a)

Fitbit application, (b) Web application, and (c) Node.js API server. Fitbit application

is in charge of data collection right in proximity to users by recording heart rate

fluctuation and generating stress level prompts. We built a static web application

to provide data visualization and data collection monitoring interfaces. It also holds

trained models for the companion to self-predict stress. Lastly, an EC2 instance hosts

an API server for on-cloud stress prediction.

Figure 4.1: The Architecture of the Stress Management

28

4.1 Fitbit Application

Fitbit supplies a Software Development Kit(SDK) and various Application Pro-

gramming Interface(API)s to users for developing a customized application. In terms

of data recording, Fitbit offers significantly simple processes. Fitbit records and up-

loads biometric data by default, so it was unnecessary to implement functions for

them. Also, we can retrieve data recorded via APIs so that we only need to set

individual credentials as parameters to API functions. As this study intended to

catch stress occurrence mainly by the heart rate fluctuation, I built an application to

detect the patterns indicating stresses by prompting stress level buttons as shown in

Figure 4.2. The prompting generation mechanism is when the heart rate goes above

the resting heart rate by 35 percent for two minutes, the clock’s face changes to

the prompted face with four buttons ranging with four levels, ’No Stress,’ ’A Little,’

’Moderate,’ and ’A Lot.’ Users enter their stress levels subjectively. Also, the sub-

sequent prompts are not shown for 30 minutes before the previous prompt to avoid

continuous prompts.

Figure 4.2: Clock Face of the Fitbit Application

29

Basically, Fitbit’s network architecture includes the Fitbit watch and the com-

panion. Figure 4.3 shows Fitbit’s network architecture. Fitbit needs to be paired

with the companion by Bluetooth to push forward the recordings outside the Fitbit

Network. Because Fitbit does not have an Internet connection by itself, it depends

on the companion for any other operations, like fetching information or storing JSON

data, except for recording bio-signals. Upon syncing to the companion, it sends all

the biometric signals recorded to the remote server. Fitbit also provides a mobile

application on the companion to display statistical data of the recordings by fetch-

ing data back from the remote server. While the Fitbit focuses mainly on recording

biometric measurements, the companion can do more complex operations, such as

fetching data or importing external packages. Fitbit and companion together can

build a more elaborate application than Fitbit would do alone as long as the ap-

plication is designed for mobile devices. On the stress management application we

built for this work, once the user enters the stress level, Fitbit keeps the stress input

data in the file storage in the CBOR format and sends it to the companion as soon

as the Bluetooth connection is established. Companion receives the stress file and

concatenates it to the existing data in a key-value format, so the data is preserved in

the companion for a while.

Companion is responsible for sending the key-value dataset to the database on

the Internet. When the companion receives the file from Fitbit, it converts them into

a JSON object using the File API that Fitbit provides. Then it sends the dataset to

the database using the fetching function. Since it has way more resources than Fitbit,

it can handle a larger dataset size. Another responsibility is to query the device’s

unique identification (ID). Over 20 cadets are providing their data, so it needs to be

distinguishable from each other. The device ID is unique in that it maps the Fitbit

account to the device. Companion figure out the device id right after turning it on

30

Figure 4.3: Fitbit’s Network Architecture

and store them in the storage. Also, the companion can import external libraries

such as Node Package Manager (NPM), meaning that the companion is capable of

doing more tasks.

In addition to understanding how Fitbit works for recording data, it is also essen-

tial to define how to retrieve the data to our end. As mentioned above, Fitbit au-

tomatically stores monitored data in its remote server. Fitbit provides several WEB

APIs to retrieve the stored data to incorporate them into their application. How-

ever, it requires specific authorization credentials, including access tokens and user

identification. To validate the access tokens, users must go through the authorization

code grant processes, which depends on OAuth 2.0 application, the protocol to allow

a third-party user to access the resources. OAuth application creates the client ID

and Secret to use them to invoke the access token. And since the access tokens last

for only 8 hours, the method of refreshing the tokens also has to be prepared.

31

Figure 4.4: Fitbit’s Authorization Code Grant Flow

4.2 Web Application

As the number of users grows, we considered building a web application to deal

with the inflow of data from multiple devices. The web application enables monitoring

of the data collection of each user and shows the device information on the dashboard,

such as battery status and the last synced time to their mobile phone, to figure out

how well they are wearing the Fitbits. It also provides the tools that handle collected

data, including downloading interfaces that convert JSON data to CSV format and

visualization page to analyze the heart rates data with stress inputs.

We considered building a serverless static web application using AWS components

described in Table 4.1. The potential of static web hosting is that it minimizes the

initial cost and eliminates the need for a hosting server like elastic compute cloud

(EC2). Instead, the web application runs in the Simple Storage Service (S3)

bucket, where HTML, CSS, and JS files are stored. The bucket has a feature to

32

Figure 4.5: The Dashboard on the Web Application

host an application with a designated AWS domain. However, since Fitbit only

allows the HTTPS protocol to communicate outside, we purchased the private domain

and connected it to the S3 bucket using Route53, CloudFront, and Certificate

Manager. Further details are described in Table 4.1

We employed DynamoDB, a non-relational key-value NoSQL database. First,

the key-value data is beneficial in terms of data partitioning. In other words, it is

easy to query by the partition key or sort key. For example, it is easy implementation

to query user A’s heart rates between specific dates and times. Next, it is a non-

relational database that allows scaling both vertically and horizontally. It does not

require strict schema that all the rows in a table have to have same attributes. It

can be varies. Assuming the data is generated continuously from multiple wearable

devices, a key feature for the database is scalability.

Most importantly, Lambda functions is AWS’s core service that allows a static

web application to act as a standard server. AWS Lambda is a serverless computing

33

service that executes code without establishing a server. It is event-driven that is

executed only when the service is requested. It charges as per as invoked. Lambda

helps the application build data processing functions by accessing resources at AWS’

other services, like DynamoDB or S3. It can handle up to 250MB of code, and the

execution time cannot be more than 15 minutes, which is sufficient for our needs. In

the case of our application, we build lambda functions for creating/logging in user

accounts and uploading/retrieving recorded data to the interface.

API Gateway builds APIs. Our application runs in RESTful API, which re-

quests and responds in JSON format with four methods, including CREATE(post),

READ(get), UPDATE(put), and DELETE(delete). AWS’s API Gateway provides

users in the back-end with the endpoint to access data in other services, such as

DynamoDB. It also controls authentication to filter out unidentified requests. In our

application, we built endpoints and mapped them to lambda functions so that end-

users could access and upload data. An example is that the companion upload the

stress level data via an API gateway endpoints to DynamoDB.

34

Figure 4.6: The Architecture of the Web Application

Services Description

S3 Bucket Stores the Web components (HTML, CSS, JS) and hosts the static

web application.

Route 53 Routes the third party domain name service to the S3 buckets.

Certificate Manager Provides SSL certificates for the static web to communicate in

HTTPS protocol.

CloudFront A contenct delivery network (CDN) that distributes static web

contents by caching them on AWS’s edge proxy servers.

DynamoDB Stores data in key-value formats, including account credentials,

stress levels input by user, survey data.

Lambda Implements functions for acting like a server to handle requests

and responds from the users.

API Gateway Provides users with end points to access the resources.

Code Pipeline Automatically updates the code as soon as the main branch of

Github code is renewed.

Table 4.1: Role of Aws Services Used for Web Application

35

4.3 API Server for on-Cloud Stress Prediction

In the on-cloud-based stress prediction framework, Fitbit generates an array of

the features of heart rates and sends it to the companion. Then the companion redi-

rects the array of features to the server on the cloud for stress prediction. JavaScript

applications can transfer data via API calls with the fetch function. We set a Node.js

server running in an EC2 instance. The instance maintains trained models and pre-

diction logic. When it receives the requests for stress prediction, it loads and predicts

stress and responses with the result value.

36

Chapter 5

MACHINE LEARNING BASED STRESS MANAGEMENT

5.1 Problem Definition

This thesis aims to build real-time stress prediction frameworks using machine

learning. Before defining the overall framework, verification of the dataset we col-

lected has to be preceded to see if it is applicable to machine learning algorithms. This

chapter shows the machine learning progress for stress prediction step by step accord-

ing to the fundamentals of machine learning described in Chapter 2. Our problem is

to detect the patterns of heart rates indicating stress. The heart rates are collected

through Fitbit Versa 3, and the user provides the output data, the stress level. It is

suitable for supervised learning algorithms, as the dataset contains the labels for all

instances. Also, the labels are categorical variables, so I decided to employ classifica-

tion algorithms to determine the input instances as ’stressed’ or ’not stressed.’

Figure 5.1: Machine Learning Processes for Stress Management

37

5.2 Data Acquisition

This project implements machine learning algorithms with the dataset collected

from the police cadets—data collection has been processed from August to November

2021. Initially, there were 20 cadets, but five cadets quit the program in the middle

and eventually established a dataset from 15 cadets at the end. Due to the anonymity

of candidates, we excluded personal information from the dataset. Table 5.2 shows

the general information of the cadets who provided biometric measurements during

the police academic program. The majority were males and in their early 20s, while

three females and two people were older than their 20s. Their program often required

them to get involved in physically intense activities and paper exams. Since Fitbit

has to send the data to the companion, we asked them to periodically sync their

Fitbit to the companion for smooth data collection. The stress levels range from one

to five, where one means as unstressed and five as extremely stressed. We also set

stress level zero when the cadet does not respond to the prompt. Table 5.1 shows the

distribution of stress levels. The most stress level entered is zero, which is excluded

for data processing. Still, level one is overwhelmingly the majority than the stressed

levels ranging from two to five. So I decided to run binary classification.

Stress level Numerical value Number of Responses

No Response 0 9578

Not Stressed 1 2935

A bit Stressed 2 355

Moderate 3 89

A lot 4 19

Extremely 5 5

Table 5.1: Distribution of Stress Responses

38

User Age Gender Height(ft.) Weight(lb.)

User A 20 M 5.6 170

User B 21 M 5.7 156

User C 22 M 5.8 183

User D 27 F 5.0 110

User F 26 M 5.9 180

User I 21 M 5.1 180

User J 24 M 6.3 240

User K 20 M 5.1 155

User L 42 F 5.4 145

User M 30 M 5.1 150

User N 29 M 6.4 220

User O 24 F 5.3 140

User R 24 M 6.0 220

User S 23 M 5.1 185

User T 22 M 5.8 180

Table 5.2: General Information of Police Cadets

There are two types of data collection pipelines for heart rates and stress responses.

Regarding heart rates, we did not have to consider the repository to store heart rate

data. Heart rates data is transmitted to the Fitbit’s remote server by itself (once

a Fitbit gets synced to the mobile phone). And we can retrieve the heart rates via

Fitbit Web API with the credential information of the user account. On the other

hand, stress levels need the private database since it is the custom type data that we

programmed for this thesis. They are stored in key-value format. Lastly, both data

can be downloaded from the download interface in the application we built using

AWS S3. We then created a data archive that contains all cadets’ heart rate and

stress responses.

39

5.3 Data Processing

The main point of the data processing is the transformation of the dataset for

them to be applied to the machine learning models that we want to run. As men-

tioned above, our work is ideal for classification models of supervised learning. The

first thing was to extract the segment of heart rates as the black box shown in Fig-

ure 5.2. Since the prompts occur when heart rates go above the resting heart rate

by 35 percent for 2 minutes, we considered cutting heart rates data of 2-3 minutes

based on the time stress generated. Then each heart rates segment got mapped into

corresponding stress levels to label each of them as stressed or unstressed.

Figure 5.2: An Example of the Heart Rates Segmentation

40

We converted the stress level to ’0’ for unstressed and ’1’ for stress as it considers

binary classification. As a result of segmentation of the heart rates data, mapping

corresponding stress levels, and converting the labels for binary classes, Figure 5.3

shows the preprocessed raw dataset. The preprocessed raw dataset includes the tar-

get value, resting heart rates, and 40 samples of heart rates. The granularity of heart

rates recorded by Fitbit is between 5 to 10 seconds, so the 40 samples of heart rates

indicate about 2 to 3 minutes. Since the resting heart rates are calculated by Fitbit

automatically, we do not have to go through the feature extraction step to get the

values. It was attached before the feature extracting stage. One thing to notice is

that there are two approaches to selecting ’stressed’ data: 1) To include stress levels

from 2 to 5, and 2) To include stress levels from 3 to 5. The reason for choosing the

stress levels in two ways is that stress level 2 seems ambiguous—the classifiers do not

learn when included. Therefore, we processed the datasets in two ways separately

according to how to choose stress levels.

Figure 5.3: Preprocessed Dataset

41

The next step is feature extraction. The preprocessed dataset shown in Figure 5.3

is merely representing heart rates. Each instance is not distinguishable for stress sta-

tus for now. Since I set the prompting algorithm concerning how heart rate fluctuates

compared to the resting heart rate, I considered extracting the features representing

distribution and fluctuation-wise aspects of heart rates. There are seven features ex-

tracted from the heart rates. The primary five are 1) mean, 2) standard deviation,

3) minimum and 4) maximum value of the heart rates, and 5) resting heart rate.

The additional two features are 6) the difference between mean heart rates from the

resting heart rate by percentage (DiffRest) [32], and 7) the root mean squared of

successive difference between normal heartbeats (RMSSD), which Fitbit uses for cal-

culating heart rate variability from heartbeats. Figure 5.4 shows the feature matrix

containing all the features and the corresponding target value.

Figure 5.4: The Feature Matrix

42

One issue with our dataset is imbalanced. The dataset contains unstressed in-

stances over 85% of the entire set. If we do not resolve the imbalanced issue before

getting into the training stage, the model will learn about only unstressed data. It

might be giving us good accuracy, but it will not learn about the stressed instance, so

the F1 score will be insignificant. There are two approaches for balancing the dataset:

1) To undersample the majority class by randomly choosing as many instances as the

number of the minority, and 2) To oversample the minority instances using Synthetic

Minority Over-Sampling Technique (SMOTE) [39]. The former method actually re-

duced the size of the dataset, so it might be ineffective for training sessions; however,

it can learn both stressed and unstressed equivalently. The latter increases the dataset

size and will increase the effectiveness of the learning stage, but the sampled instances

are similar but not real.

Figure 5.5: Resampling Methods

Lastly, all the attributes in the dataset should have the same impact on the ma-

chine learning models, meaning that features in different scales will generate bias on

a particular type of variable so that some features will not contribute to the model as

we would expect. We implemented the standard scaling on all the dataset columns to

make them have the same distribution with 0 means and the unit standard deviation.

43

5.4 Training Models

There are four methods for training models as specified in Table 5.3. We trained

models separately by how we defined the stress levels (level 2 to 5 or 3 to 5) and

how we balanced the dataset (undersampling or oversampling). Regarding classifi-

cation algorithms, we considered four classic models and TensorFlow’s feed-forward

network. The set of classic models includes Decision Tree, Random Forest, Adaboost,

XGBoost. The first three models are imported from Scikit-learn(Sklearn) [45], which

provides not only reliable classification models but also useful built-in functions for

the machine learning process, such as train test split or standard scalaer. We im-

ported the XGBoost algorithm from [17]. The reason for choosing TensorFlow for

the neural network is that it provides a framework for converting to TensorFlow.js,

used in Fitbit architecture. Before running the dataset for training, I split the dataset

into a training set (80%) and a testing set (20%) to evaluate models’ capability to

handle unseen data.

Notation Stress levels Resampling method

Approach 1 2 to 5 Under-sampling

Approach 2 2 to 5 SMOTE

Approach 3 3 to 5 Under-sampling

Approach 4 3 to 5 SMOTE

Table 5.3: Four Approaches for Training Models

Regrading hyperparameters of the TensorFlow feed-forward network, it has six

hidden layers activated by the ReLu function. The output layer is set with a Sigmoid

function returning a value ranging from 0 to 1. If the final return value from an input

instance is lower or equal to 0.5, it is unstressed, which is labeled as 0. Otherwise, it

44

is stressed when it is higher than 0.5. Since it is the binary classification, we consid-

ered the binary cross-entropy for the loss function. Other pieces of information are

described in Table 5.4.

Types Value

Number of Hidden Layers 6

Learning Rate 0.0005

Loss Function Binary Cross-Entropy

Epochs 200

Table 5.4: Hyperparameters of TensorFlow’s Feed-Forward Network

5.5 Evaluation

Table 5.5 shows the accuracy and F1 scores for each approach. Approach 1 gave

us the worst result. It could not distinguish between unstressed and stressed by heart

rates features. It might be because of either insufficient number of instances or am-

biguity of features from stress level 2. We could gain better results from approach 2,

which oversampled the minority class. Approach 3 showed more reliable results than

Approach 1 by not using oversampling with synthetic sampling. The dataset size was

reduced even more than approach 1 as it excluded stress level 2 and resampled the

unstressed data as many as the number of stress levels ranging from 3 to 5. Although

it does not have a sufficient dataset, it showed pretty good accuracy and F1 scores

by properly inferencing the testing set. Lastly, approach 4 gave us the best results.

It excluded stress level 2 and oversampled the minority class. The best accuracy it

reached is 96% from XGBoost and 95% from TensorFlow.

45

Approach Model Accuracy F1 Score

Approach 1

Decision Tree 61.23% 60.51%

KNN 60.14% 58.33%

Random Forest 64.85% 65.72%

AdaBoost 60.86% 58.33%

XGBoost 70.28% 70.50%

TensorFlow 56.52% 56.52%

Approach 2

Decision Tree 85.29% 85.63%

KNN 81.08% 83.18%

Random Forest 87.63% 88.14%

AdaBoost 71.22% 73.37%

XGBoost 88.60% 88.75%

TensorFlow 87.77% 88.38%

Approach 3

Decision Tree 77.27% 76.92%

KNN 77.27% 72.72%

Random Forest 81.72% 81.83%

AdaBoost 72.12% 71.64%

XGBoost 78.78% 78.12%

TensorFlow 86.36% 88.46%

Approach 4

Decision Tree 91.79% 91.73%

KNN 88.34% 88.73%

Random Forest 94.41% 94.34%

AdaBoost 79.25% 80.15%

XGBoost 96.98% 96.95%

TensorFlow 95.98% 96.02%

Table 5.5: Evaluations by Accuracy and F1-score

46

(a) Approach 1

(b) Approach 2

Figure 5.6: Confusion Matrices of Approach 1 and 2

47

(a) Approach 3

(b) Approach 4

Figure 5.7: Confusion Matrices of Approach 3 and 4

48

Chapter 6

EDGE COMPUTING FOR STRESS PREDICTION

This chapter deploys stress prediction models on edge devices and explores the

effectiveness of model optimization techniques. The performance of edge-based ma-

chine learning is evaluated by its latency of model loading, stress prediction, and

data transfer between each node. To analyze the edge’s capability by comparison

with the other method, We established a stress prediction framework on the Cloud.

I set API services in the Node.js server running on the AWS EC2 instance in the

northern California datacenter.

Fitbit always maintains the latest 2 to 3 minutes of heart rates using the queue

data structure. When it needs to request stress prediction, it generates an input

instance by calculating the seven features specified in Chapter 5. It sends a request

with a feature vector to either the companion or Cloud after extracting features.

Companion has to load the pre-trained models from AWS S3 buckets using HTTP

protocols, while the API server has the models in its storage.

Since Fitbit and the companion run in JavaScript, we had to convert the models

to JavaScript versions from Python. TensorFlow library provided with conversion

framework so that it was straightforward to transform the model for Fitbit compan-

ion. Among the four approaches experimented in Chapter 5, we chose Approach 4’s

model, which achieved the highest accuracy and F1 scores. The accuracy is estimated

by the model types, such as original and compressed, and the latency measuring in-

cludes the end-to-end and milliseconds in predictions.

49

6.1 Cloud- vs. Edge-based Stress Prediction

To implement on-cloud stress prediction, I built an API server that handles re-

quests from Fitbit, measures stress or not stress, and replies with an answer. Fig-

ure 6.1 shows the overall flows of on-cloud stress prediction. Fitbit communicates with

the server by Fetch API, which allows us to send requests to the server and receive

the responses. The fetch method takes two parameters, the URL and the options

object, like GET or POST. Regarding URL, Fitbit only accepts HTTPS protocols

for communication outside its network, so I had to set domain name service and SSL

certificates for the API server. In the case of on-cloud prediction, the companion is

merely a bridge redirecting requests and responses. When requesting stress predic-

tion, Fitbit uses POST method and attaches the input instance, which contains heart

rates features. Upon receiving requests, the server proceeds with the stress prediction

method with pre-trained models stored in advance. Since the cloud has to focus only

on stress prediction for its resources and has superior processing units to companion,

the server-side models have not gone through model optimization processes.

Type Specification Value

Ubuntu Server 20.04 LTS (Server)

CPU 1 vCPU 2.40GHz

RAM 1 Gib

Storage 20 GiB

Samsung Galaxy S9 (Companion)

CPU Octa-core, 2800 MHz

RAM 4 Gib

Storage 64 GiB

Table 6.1: Hardware Specification of the Server and Companion

50

Figure 6.1: On-cloud Stress Prediction

On-companion stress prediction is equivalent to implementing prediction methods

on the mobile phone. Unlike the typical Android application, Fitbit’s companion

cannot load files from the device’s storage. In order to access the trained models,

the companion needs to run the Fetch method to retrieve them via HTTPS protocol.

Once the models are declared with variables at the beginning, they are allocated to the

memory location so that the subsequent model loadings take almost 0 milliseconds.

For the companion-based stress prediction, I run the original size of the model and

reduced-size of models processed by model optimization techniques. And I will verify

the possibility for model optimizations to reduce the latency with maintaining good

accuracy.

Figure 6.2: On-companion Stress Prediction

51

6.2 TensorFlow on Edge

TensorFlow (TF) is an open-source library developed by Google Brain teams that

programs diverse data flows for machine learning. It offers various platforms depend-

ing on the nature of the project, including TensorFlow.js (TFJS) and TensorFlow

lite. And it also provides easy ways to transform the model to the version of the

other platforms. To run the model on Fitbit’s companion, we converted the stress

prediction model into TFJS. The main difference between TF and TFJS is that TFJS

is for running operations in the browser, so how to load the models is different. It can

be loaded from local storage, indexedDB, or HTTP endpoints. However, the first two

do not apply to the companion since it is not based on the browser, meaning that the

only way to load TFJS models is via HTTP endpoints. We used AWS S3 buckets to

store the model topology and the binary files of the weight information. One thing

to notice is that the topology and the weight file must be in the same directory since

the topology refers to the path of the weights.

We chose model compression techniques to optimize the neural network model

because TFJS supports several model compression tools, including pruning, quanti-

zation, and weight clustering. In this work, We applied quantization to reduce the

size of models to 8-bits from the original model. For the TFJS model, there are two

approaches to quantize, post quantization and quantization-aware training. In this

work, we used the quantization-aware training before converting to the TFJS model.

We could reduce the model size by 4x when we quantized it into 8-bit from 32-float,

preserving accuracy. Table 6.2 shows the accuracy and the size of models. It shows

that the model’s size decreases more as quantized to the lower bits.

52

Model Type Value

Original Model

Accuracy 85.98%

Topology Size 5.0 KB

Weight Size 3.0 MB

Quantized 8-bit

Accuracy 84.10%

Topology Size 6.7 KB

Weight Size 774.0 KB

Table 6.2: Accuracy and the Size of Models

For the latency, we considered measuring: (a) Model loading, (b) Prediction,

(c) Data transfer to Fitbit to the companion, (d) Data transfer from companion to

Fitbit, (e) End-to-end latency and (f) Data transfer on the Internet. We measured

(a) independently from the rest of latency measurements. First, the latency for

loading models is insignificant because it is allocated to the memory after the first

call. The times for the following loads are like 0 milliseconds. However, whenever the

application turns off and on, it has to load the model again. Also, Fitbit restarts its

application randomly, so it is worth measuring loading latency. The most effective

part of reducing latency through quantization is model loading. If quantization is

done for 8 bits, the latency can be decreased by over 2x. For 2) to 4), they were

measured together to analyze which are most affecting the latency. The figure 6.3

represents the latencies of each part by the type of the models. The prediction time

is not significantly decreased by quantization since the impact of an input instance

is subtle. Also, the Bluetooth connection took over twice as much as the Internet

connection (Companion to Server), meaning the time for reaching server from the

companion was not considerable. The end-to-end latencies were similar to each other.

53

(a) Loading Model (independent) (b) Prediction

(c) Data Transfer (Fitbit to Companion) (d) Data Transfer (Companion to Fitbit)

(e) Data Transfer (Companion to Server) (f) Stacked Measurements

Figure 6.3: Latency Analysis

54

Chapter 7

CONCLUSION

7.1 Conclusion

In this thesis, we researched the feasibility of edge machine learning-based stress

prediction using wearable devices. The summarization of what we learned is as fol-

lows:

• First, we verified that the heart rates recorded by commercial wearable devices

could be used for stress prediction. Unlike other equipment which records ECG or

GSR data in milliseconds, Fitbit reads heartbeats in 5 to 10-minute granularity.

However, with features extracted from the heartbeats and stress levels provided by

participants in advance, we confirmed that the heartbeat data is also a validated

data type indicating stressful or non-stressful conditions.

• Next, we employed five classic classification models and one neural network for

binary classification. After segmenting heart rates data into 2 to 3-minute windows

and extracting five statistical features and two features representing heart rate

variability, we could apply the dataset to machine learning algorithms. We also

resolved the imbalance of the dataset by either under-sampling or over-sampling.

The best accuracies were 95.34% and 94.94% by XGBoost and TensorFlow from

approach 4, which over-sampled and used stress levels 3 to 5.

• Third, since Fitbit and the companion are run on JavaScript, we needed to convert

models in Python to JavaScript. TensorFlow offered a conversion framework so

that we could transform the neural network model without losing the accuracy

55

significantly. Also, the Fitbit SDK allowed importing the TensorFlow module on

the companion side, so it was doable to implement stress prediction on the mobile

device.

• Lastly, our neural network is a feed-forward network for binary classification, and we

could only consider quantization techniques. The quantization reduced the model

size by 2x and maintained the accuracy as before the quantization. However, it

could not reduce the inference time dramatically. The latency for data transfer

between a node to node was the same regardless of the model size.

7.2 Future Research

We have discussed about real-time inference through model optimization on edge

devices. However, the stages that require the most effort in machine learning processes

are data processing and training. To train models in a cloud-intensive structure is

still vulnerable in energy efficiency and privacy. We can consider both training and

inference on edge devices, but they have limited resources to burden such operations.

While preserving the advantage of edge computing, such as reducing bandwidth, faster

inference, and protecting privacy, the problem above can be overcome by federated

learning. Federated learning is the framework for building a global model in the

central cloud by training across multiple small nodes [22; 46]. The edge device still

does not have to transfer data generated locally and train with its own data by

updating the weights of the model independently. It can also make use of locally

trained models directly for quick inference [47]. The central cloud aggregates the

weights updates from the edge nodes and establishes a mo4re intelligent model.

56

For our thesis, we can consider extracting features from recorded heart rates and

maintaining a small and personal dataset for model training on the companion. In

the initial stage, the companion can utilize the model generated by the central cloud,

improving the model with accumulated local data. This case will reflect the personal

trend of accepting stress levels more subjectively. In addition, it can contribute to

creating a smarter model by reporting the weight of the model learned at regular

intervals.

57

REFERENCES

[1] IDTechEx, “Wearable technology 2016-2026 markets, players and 10-
year forecasts.” https://www.idtechex.com/en/research-report/
wearable-technology-2016-2026/483, July 2016. Accessed: 2022-04-13.

[2] S. B. Kotsiantis, I. Zaharakis, P. Pintelas, et al., “Supervised machine learning: A
review of classification techniques,” Emerging artificial intelligence applications
in computer engineering, vol. 160, no. 1, pp. 3–24, 2007.

[3] B. Marsh, “Multivariate analysis of the vector boson fusion higgs boson,” Uni-
versity of Missouri, vol. 8, 2016.

[4] N. Hatami, Y. Gavet, and J. Debayle, “Classification of time-series images us-
ing deep convolutional neural networks,” in Tenth international conference on
machine vision (ICMV 2017), vol. 10696, p. 106960Y, International Society for
Optics and Photonics, 2018.

[5] R. F. AbuAlRub, “Job stress, job performance, and social support among hos-
pital nurses,” Journal of nursing scholarship, vol. 36, no. 1, pp. 73–78, 2004.

[6] K. Gok, N. Atsan, et al., “Decision-making under stress and its implications
for managerial decision-making: a review of literature,” International Journal of
Business and Social Research, vol. 6, no. 3, pp. 38–47, 2016.

[7] L. Giessing, R. R. Oudejans, V. Hutter, H. Plessner, J. Strahler, and M. O.
Frenkel, “Acute and chronic stress in daily police service: A three-week n-of-1
study,” Psychoneuroendocrinology, vol. 122, p. 104865, 2020.

[8] J. M. Reingle Gonzalez, K. K. Jetelina, S. A. Bishopp, M. D. Livingston, R. A.
Perez, and K. P. Gabriel, “The feasibility of using real-time, objective measure-
ments of physiological stress among law enforcement officers in dallas, texas,”
Policing: Int’l J. Police Strat. & Mgmt., vol. 42, p. 701, 2019.

[9] A. Ometov, V. Shubina, L. Klus, J. Skibińska, S. Saafi, P. Pascacio, L. Fluera-
toru, D. Q. Gaibor, N. Chukhno, O. Chukhno, A. Ali, A. Channa, E. Svertoka,
W. B. Qaim, R. Casanova-Marqués, S. Holcer, J. Torres-Sospedra, S. Caste-
leyn, G. Ruggeri, G. Araniti, R. Burget, J. Hosek, and E. S. Lohan, “A survey
on wearable technology: History, state-of-the-art and current challenges,” Com-
puter Networks, vol. 193, p. 108074, 2021.

[10] A. Phaneuf, “Latest trends in medical monitoring devices
and wearable health technology.” www.businessinsider.com/
wearable-technology-healthcare-medical-devices, Jan 2021. Accessed:
2022-04-13.

[11] R. Rawassizadeh, B. A. Price, and M. Petre, “Wearables: Has the age of smart-
watches finally arrived?,” Communications of the ACM, vol. 58, no. 1, pp. 45–47,
2014.

58

https://www.idtechex.com/en/research-report/wearable-technology-2016-2026/483
https://www.idtechex.com/en/research-report/wearable-technology-2016-2026/483
www.businessinsider.com/wearable-technology-healthcare-medical-devices
www.businessinsider.com/wearable-technology-healthcare-medical-devices

[12] B. Hewgill, Open Source Quantitative Stress Prediction Leveraging Wearable
Sensing and Machine Learning Methods. The University of Vermont and State
Agricultural College, 2020.

[13] J. Taelman, S. Vandeput, A. Spaepen, and S. Huffel, Influence of Mental Stress
on Heart Rate and Heart Rate Variability, vol. 22, pp. 1366–1369. 01 2009.

[14] M. Ivanović and M. Radovanović, “Modern machine learning techniques and
their applications,” in International Conference on Electronic, Communication,
and Network, 2014.

[15] I. H. Witten and E. Frank, “Data mining: practical machine learning tools
and techniques with java implementations,” Acm Sigmod Record, vol. 31, no. 1,
pp. 76–77, 2002.

[16] V. Hodge and J. Austin, “A survey of outlier detection methodologies,” Artificial
intelligence review, vol. 22, no. 2, pp. 85–126, 2004.

[17] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’16, (New York, NY, USA), pp. 785–794, ACM,
2016.

[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine
learning,” in 12th {USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 16), pp. 265–283, 2016.

[19] A. Jain and D. S. Jat, “An edge computing paradigm for time-sensitive applica-
tions,” in 2020 Fourth World Conference on Smart Trends in Systems, Security
and Sustainability (WorldS4), pp. 798–803, 2020.

[20] M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,
and F. Hussain, “Machine learning at the network edge: A survey,” CoRR,
vol. abs/1908.00080, 2019.

[21] S. Patel, R. S. McGinnis, I. Silva, S. DiCristofaro, N. Mahadevan, E. Jortberg,
J. Franco, A. Martin, J. Lust, M. Raj, B. McGrane, P. DePetrillo, A. J. Aranyosi,
M. Ceruolo, J. Pindado, and R. Ghaffari, “A wearable computing platform for
developing cloud-based machine learning models for health monitoring applica-
tions,” in 2016 38th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), pp. 5997–6001, 2016.

[22] Y. Chen, S. Biookaghazadeh, and M. Zhao, “Exploring the capabilities of mobile
devices supporting deep learning,” in Proceedings of the 27th International Sym-
posium on High-Performance Parallel and Distributed Computing, HPDC ’18,
(New York, NY, USA), p. 17–18, Association for Computing Machinery, 2018.

[23] J. Chen and X. Ran, “Deep learning with edge computing: A review,” Proceed-
ings of the IEEE, vol. PP, pp. 1–20, 07 2019.

59

[24] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence:
Paving the last mile of artificial intelligence with edge computing,” Proceedings
of the IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.

[25] M. Merenda, C. Porcaro, and D. Iero, “Edge machine learning for ai-enabled iot
devices: A review,” Sensors, vol. 20, no. 9, p. 2533, 2020.

[26] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and ¡0.5mb
model size,” 2016.

[27] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[28] K. Zhao, A. Jain, and M. Zhao, “Iterative activation-based structured pruning,”
arXiv preprint arXiv:2201.09881, 2022.

[29] Google, “Edge tpu.” https://cloud.google.com/edge-tpu/. Accessed: 2022-
04-13.

[30] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter performance analysis
of a tensor processing unit,” in Proceedings of the 44th annual international
symposium on computer architecture, pp. 1–12, 2017.

[31] P. Buddi, V. Prasad, and K. Sunitha, “Machine learning approach for stress
detection using wireless physical activity tracker,” International Journal of Ma-
chine Learning and Computing, vol. 8, pp. 33–38, 02 2018.

[32] W. Lawanont, P. Mongkolnam, C. Nukoolkit, and M. Inoue, Daily Stress Recog-
nition System Using Activity Tracker and Smartphone Based on Physical Activity
and Heart Rate Data, pp. 11–21. 01 2019.

[33] W. Sanchez, A. Mart́ınez-Rebollar, Y. Hernandez, H. Estrada Esquivel, and
M. Gonzalez-Mendoza, “A predictive model for stress recognition in desk jobs,”
Journal of Ambient Intelligence and Humanized Computing, 12 2018.

[34] F.-T. Sun, C. Kuo, H.-T. Cheng, S. Buthpitiya, P. Collins, and M. Griss,
“Activity-aware mental stress detection using physiological sensors,” in Mobile
Computing, Applications, and Services (M. Gris and G. Yang, eds.), (Berlin,
Heidelberg), pp. 282–301, Springer Berlin Heidelberg, 2012.

[35] J. Lee, H. Lee, and M. Shin, “Driving stress detection using multimodal convolu-
tional neural networks with nonlinear representation of short-term physiological
signals,” Sensors, vol. 21, no. 7, 2021.

[36] J. A. Healey and R. W. Picard, “Detecting stress during real-world driving tasks
using physiological sensors,” IEEE Transactions on intelligent transportation
systems, vol. 6, no. 2, pp. 156–166, 2005.

60

https://cloud.google.com/edge-tpu/

[37] P. Garg, J. Santhosh, A. Dengel, and S. Ishimaru, “Stress detection by machine
learning and wearable sensors,” in 26th International Conference on Intelligent
User Interfaces-Companion, pp. 43–45, 2021.

[38] P. Bobade and M. Vani, “Stress detection with machine learning and deep learn-
ing using multimodal physiological data,” in 2020 Second International Confer-
ence on Inventive Research in Computing Applications (ICIRCA), pp. 51–57,
IEEE, 2020.

[39] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: syn-
thetic minority over-sampling technique,” Journal of artificial intelligence re-
search, vol. 16, pp. 321–357, 2002.

[40] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and K. Van Laerhoven, “In-
troducing wesad, a multimodal dataset for wearable stress and affect detection,”
in Proceedings of the 20th ACM international conference on multimodal interac-
tion, pp. 400–408, 2018.

[41] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” 2015.

[42] T. R. Mauldin, M. E. Canby, V. Metsis, A. H. H. Ngu, and C. C. Rivera, “Smart-
fall: A smartwatch-based fall detection system using deep learning,” Sensors,
vol. 18, no. 10, 2018.

[43] S. S. Ogden and T. Guo, “MODI: Mobile deep inference made efficient by edge
computing,” in USENIX Workshop on Hot Topics in Edge Computing (HotEdge
18), (Boston, MA), USENIX Association, July 2018.

[44] T. Guo, “Cloud-based or on-device: An empirical study of mobile deep infer-
ence,” 2018.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine
learning in python,” Journal of machine learning research, vol. 12, no. Oct,
pp. 2825–2830, 2011.

[46] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency,” arXiv
preprint arXiv:1610.05492, 2016.

[47] Q. Xia, W. Ye, Z. Tao, J. Wu, and Q. Li, “A survey of federated learning for
edge computing: Research problems and solutions,” High-Confidence Computing,
vol. 1, no. 1, p. 100008, 2021.

61

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Motivation
	Objectives
	Methods
	Outline

	BACKGROUND
	Wearable Devices as a Health Management Tool
	Correlation Between Heart Rates and Stress

	Fundamentals of Machine Learning
	Machine Learning Processes
	Classification Algorithms
	Evaluation Metrics

	Concept of Edge Machine Learning
	Advantages of Edge Computing over Cloud-only Computing
	Model Optimization Techniques

	LITERATURE REVIEW
	Machine Learning Based Stress Detection
	Deploying Machine Learning on Edge Devices

	DATA COLLECTION SYSTEMS
	Fitbit Application
	Web Application
	API Server for on-Cloud Stress Prediction

	MACHINE LEARNING BASED STRESS MANAGEMENT
	Problem Definition
	Data Acquisition
	Data Processing
	Training Models
	Evaluation

	EDGE COMPUTING FOR STRESS PREDICTION
	Cloud- vs. Edge-based Stress Prediction
	TensorFlow on Edge

	CONCLUSION
	Conclusion
	Future Research

	REFERENCES

