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ABSTRACT  
     

 This paper introduces Zenith, a statically typed, functional programming language 

that compiles to Lua modules. The goal of Zenith is to be used in tandem with Lua, as a 

secondary language, in which Lua developers can transition potentially unsound 

programs into Zenith instead. Here developers will be ensured a set of guarantees during 

compile time, which are provided through Zenith’s language design and type system. 

This paper formulates the reasoning behind the design choices in Zenith, based on prior 

work. This paper also provides a basic understanding and intuitions on the Hindley-

Milner type system used in Zenith, and the functional programming data types used to 

encode unsound functions. With these ideas combined, the paper concludes on how 

Zenith can provide soundness and runtime safety as a language, and how Zenith may be 

used with Lua to create safe systems. 
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CHAPTER 1 

 

INTRODUCTION 

Between statically and dynamically typed programming languages, dynamically 

typed languages are a popular choice among developers for short scripts and programs, 

thanks to the simplicity and low overhead in their language semantics. However, when 

these scripts develop into being larger programs and systems, bugs can quickly arise that 

may have not been apparent at smaller scales. These bugs oftentimes may have been 

easily caught by a simple static type checking system, and even more can be eliminated 

with more sophisticated design choices. Indeed, the static analysis that these type 

checking systems can provide are invaluable for reducing runtime errors before a 

program even begins. Consequently, a recent trend in programming language 

development has focused on providing type safe alternative languages, or typed supersets 

of dynamic languages, so that these dynamically typed programs can be extended safely.  

As such, this paper introduces Zenith, a type safe, functional programming 

language that compiles to and interoperates with the Lua programming language, in the 

form of modules. The Lua language is a popular, dynamically typed language, that is 

often used in embedded contexts. With no static typing system however, it lacks safety 

guarantees that can be found in statically typed language. Zenith is designed to provide 

these type safety and runtime guarantees to Lua developers, while introducing minimal 

overhead to a Lua environment. Furthermore, since Zenith focuses on the functional 

programming paradigm, it utilizes Hindley-Milner (HM) type inference, which allows for 

easier developer usage and simpler semantics based on type inference, resulting in less-
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error prone programs. Ultimately, the goal of Zenith that is investigated in this paper, is 

to approach a total guarantee on runtime safety with modules compiled by Zenith.  

To achieve this goal, this paper will lay out the fundamental groundwork behind 

Zenith’s design choices in Chapter 2, where we will form an understanding of the prior 

work involved in runtime safety, static type systems, and functional programming. We 

will also review other notable attempts different programing languages make in providing 

safety guarantees. Furthermore, while this paper assumes some knowledge of functional 

programming, this paper is intended to be understandable for those not familiar in type 

theory and will therefore attempt to summarize and provide intuitions behind notable 

types, algorithms, and systems behind the HM type system and Zenith’s. Once we have 

established an understanding of these programming language and type system aspects, we 

will begin to construct the language of Zenith in Chapter 3. Here, the paper will cover the 

design choices by Zenith, based on the knowledge gathered in Chapter 2. Finally, Section 

4 will briefly cover the additional implementation details that were not included in 

Section 3, for the sake of reproducibility. With this all combined, we will see how Zenith 

is able to be a flexible, functional, and most notably safe programming language for Lua.  
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CHAPTER 2 

 

BACKGROUND AND PRIOR WORK 

 The design and implementation of Zenith builds upon the prior work and 

commonly known aspects about type systems and safety, as well as functional 

programming. The goal of the language is to guarantee a safe runtime, while both 

compiling to a dynamic language, and being in used in tandem with the target language. 

As such, most aspects regarding implementation are not necessarily novel, but are still 

interesting and compelling in the combination of design choices that are used in the 

makeup of Zenith. This chapter primarily focuses upon the motivations and tradeoffs 

behind those choices. Furthermore, based on the existing state of the art, this chapter will 

also attempt to provide a brief understanding of the components considered for and 

implemented in the Zenith language. This includes the static typing and type safety 

features, as well as functional programming, functional data types and type systems, 

effects, and language interoperation. As part of a complete review, we will also briefly 

investigate the considered but ultimately rejected features for the Zenith language, being 

Turing incompleteness and totality, to understand the reasoning more fully behind these 

decisions. 

 

2.1 Static Typing and Type Safety 

Static typing is commonly known as the usage of a well-defined type system, such 

that the types of different expressions in a program are known to the compiler or type 

checker during compile time. This may be implemented in a language’s semantics 
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through the usage of static type annotations and type inference. With this, statically typed 

languages can eliminate incorrect programs before runtime even begins, as well as being 

able to include type level abstractions in the language semantics. Indeed, not only does a 

static type system check for compile time errors, but it also forces the programmer to 

consider potentially erroring components while writing the program. Other benefits of 

static typing that are not included in Zenith include deeper code optimizations, 

autocompletion, IDE tools, etc. While later chapters will explain more on static typing as 

it related to functional programming, we can see already how static typing systems are 

the basis of any programming language attempting to reduce runtime errors. 

 

2.2 Functional Programming 

Zenith’s strict adherence to the functional programming paradigm is also an 

equally important aspect of the language to consider. In a functional programming 

language, functions are regarded as first-class, meaning that functions themselves can be 

passed and referenced in the same way as other bindings. Furthermore, functions may 

accept other functions as a parameter, in what is called a higher-order function.  

 
fn ∶ ∀𝛼∀𝛽(𝛼 → 𝛽) 

map ∶  ∀𝛼∀𝛽 (𝛼 → 𝛽) → (𝛼𝑙𝑖𝑠𝑡) → βlist  

( 1 ) 

 

As we can see in (1), 𝑚𝑎𝑝 is a higher-order function, that may take a function like 𝑓𝑛 as 

an argument, so long as 𝑓𝑛 matches the types necessitated by 𝑚𝑎𝑝. This builds up many 

different design patterns, and as such, functional programs are often the composition of 

many functions being brought together in this manner.  
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However, this trait is not entirely unique to functional languages, and many multi-

paradigm or even object-oriented languages include some implementation of higher-order 

functions, such as lambdas in Python or Java. What sets functional programming further 

apart, is that functional languages follow certain self-imposed constraints, that in 

exchange provide for corresponding guarantees. These constraints are that functions must 

be pure, and that all values are immutable. Functions being pure in this context denotes 

that functions should always maintain the same output give the same set of inputs. As an 

example, consider a function like 𝑠𝑖𝑛𝑒, where it will always return the same number 

value if given the same input. Conversely, a random number generation function (without 

any seed value), may be considered as impure, as the return value cannot be predicted 

based on input. With the second constraint, values being immutable is to say that all 

values in the program cannot change implicitly throughout the runtime. After being 

declared, the value of an identifier is set for its declared scope, and the programmer can 

rely on that certainty. For simple primitive type values, this means assigning a new 

binding for when a number or Boolean for example is calculated, rather than mutating the 

original binding. More complex data types may be copied with new changes when an 

update is required, without modifying the original reference, nor the underlying value or 

values. Immutability provides a level of clarity and transparency that mutability may not. 

In a mutable program, a variable may make a surprising change after being passed 

through a function, which can lead to unexpected behavior and errors.  

The combination of these constraints allows for programs to be deterministic, 

where both the programmer and compiler itself can expect guaranteed outcomes based on 

inputs. Nonfunctional, statically typed programming languages may include strong type 
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systems like Zenith, but the lack of these guarantees is often a shortcoming in protecting 

runtime type safety. For instance, in these languages, even after typing checking an object 

type at compile time, behavior during runtime may mutate the object structure, which can 

cause expected properties of the object to change, causing errors when interacting with 

the object.  

 

2.2.1 Hindley-Milner Type Systems 

 As seen in certain functional languages, like Clojure, Elixir, or Erlang, functional 

programming languages do not need to be statically typed, and indeed the properties of 

functional programming do not necessitate any such type system. Similarly, an inverse is 

also true; many statically typed languages are imperative or object oriented. However, 

when using the two language properties in conjunction, as in Zenith, or other languages 

like Haskell (Jones, 2002) and Elm (Czaplicki, 2012), a language can gain interesting and 

useful additional capabilities in this intersection.  

 To begin, many of these statically typed functional programming languages 

follow the type system known as the Hindley-Milner (HM) type system. HM is the 

groundwork for many of these successful statically typed functional languages, thanks to 

the variety of features in its framework that we can see be elaborated in Mark P. Jones’ 

paper Functional Programming with Overloading and Higher-Order Polymorphism, 

being type security, type inference, flexibility, and ease of implementation (Jones, 1995). 

 Type security, or soundness, in HM according to Jones, ensures that the behavior 

of a type system is consistent and guaranteed based on the types of a well-typed program. 

We can expect a language that has properly implemented HM to have correct values for 
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bindings based on the type of binding. Furthermore, the type inference that HM provides 

is a convenient tool for writing concise programs, without littering the entire syntax with 

type annotations and operators. Programmers who do still choose to use additional type 

annotations also benefit from type inference applying a consistency check to their code 

against the declared type annotation. Regarding type security however, HM is expected to 

make conservative assumptions for inference based on annotated bindings. What is 

notable here is that we must be sure that the language using the HM system does not 

incorrectly infer a type and will prioritize caution over an unsafe inference.  

 Flexibility in this context refers to the property of polymorphism in HM, which 

enables much of the type level abstractions and safety that Zenith and established HM-

based languages rely on. Polymorphism allows function types and kinds to generalize and 

abstract over multiple data types, represented often by a type variable. This contrasts with 

monomorphically typed languages, where a function may need to be rewritten in several 

implementations to operate on arguments and return values of different types (Jones, 

1995). We will see the usage of these polymorphic functions in the next section covering 

functional data types, where polymorphism will assist these abstract data types in 

covering a wider range of types more concisely. 

 

2.2.2 Functional Data Types and Type Classes 

 Functional programming languages are generally split into two different 

methodologies, beyond static and dynamic typing. These are languages that (attempt to) 

adhere to the purity constraint of functional programming, like Haskell and Elm, and 

languages that do not, such as Scheme and Erlang. Languages that do not are allowed to 
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perform an arbitrary degree of different side effects, such as IO. This may make code 

easier to write at first but can introduce unexpected behavior when calling and composing 

functions. On the other hand, of course, most “pure” functional languages often still need 

to perform some degree of side effects and IO to be observable and do anything of 

practical use. However, designers of these languages are still able to eliminate much of 

the actual impact of performing effects on the language semantics, through the usage of 

different functional data types and type classes (Jones, 2007). 

Pure functional languages based on HM and other similar type systems often 

make use of a similar set of data types, implemented on polymorphic type classes. Type 

classes in functional programming define a set of functions that can be performed for a 

particular type (Wadler & Blott, 1989). The fundamental type classes discussed in this 

paper are often rooted in category theory, dealing with the composition of different 

structures, a practice very familiar to functional programmers. However, for brevity, this 

paper will forego the detailed category theory concepts behind each type class and data 

type and will focus on the practical applications of pertinent structures regarding 

functional programming. It should also be noted that the following types may not 

necessitate type classes for their implementation, but assuming the semantics of type 

classes can make the discussion of their general use more straightforward. 

To gain a baseline understanding of the data types relevant to runtime safety, we 

begin with a breakdown of the essential functional type classes. To build an 

understanding of functional data types, we begin with functors. Functors are an essential 

component of many statically typed functional languages. Functional programmers will 

be familiar with the 𝑚𝑎𝑝 function, which can be derived from the 𝑓𝑚𝑎𝑝 function used 
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with the functor type class. Here, the functor type class represents data structures that 

possess some value that can be mapped to a different value of the same structure. For 

instance, functional languages often consider the common data type 𝐿𝑖𝑠𝑡, as a functor. 

Here, 𝐿𝑖𝑠𝑡 α would the type for a list of type α, and 𝑓𝑚𝑎𝑝: (α → β) → f α → β, the 

mapping function, would be how that functor 𝐿𝑖𝑠𝑡 α may be mapped to a 𝐿𝑖𝑠𝑡 β, after the 

function is applied with an expression like 𝑓𝑚𝑎𝑝 λ𝑥. 𝑥: α (x → β)  (𝐿𝑖𝑠𝑡 α). In the 

context of this paper, the primary aspect of functors that we take away is how we might 

“transform” and encode an underlying type, based on the structure of a type 

Monads are a similar data type used in functional languages. To explain, it may be 

simpler to begin with types of the necessary functions in a monad (Wadler, 1995). 

 
Unit: ∀α(α → 𝑀 α) 

Bind ∶  ∀𝛼∀𝛽(Mα → (α → Mβ) → Mβ) 

( 2 ) 

 

It is also worth noting that the names of these functions may differ in implementations, 

such as unit being often referred to as 𝑟𝑒𝑡𝑢𝑟𝑛 in Haskell, and bind being the operator >>

= as syntax sugar. However, the function types should remain the same between different 

implementations. Regardless, here the 𝑢𝑛𝑖𝑡 function can be understood as a function that 

lifts a value into monadic form. For example, for a 𝐿𝑖𝑠𝑡 monad, the value of 𝑢𝑛𝑖𝑡 α 

would return 𝐿𝑖𝑠𝑡 α. This is useful to combine with other monadic functions later. 

The 𝑏𝑖𝑛𝑑 function, as we can see from the type signature, is a higher order 

function that takes a monad of value α, and a function which takes underlying value α to 

return value β, and returns a monad β. In this case, it may help to think of the bind 

function almost as a combination of 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 and 𝑚𝑎𝑝. Returning to our 𝐿𝑖𝑠𝑡 
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example, if we choose to bind a 𝐿𝑖𝑠𝑡 𝐼𝑛𝑡 of [1,2,3] with a function converting 𝐼𝑛𝑡 to 

[𝐶ℎ𝑎𝑟], we may receive the value "123", equivalent for [′1′, ′2′, ′3′], being each value 

mapped to a 𝐶ℎ𝑎𝑟 type, and concatenated together into a 𝐿𝑖𝑠𝑡 𝐶ℎ𝑎𝑟. Contrast this with 

the 𝑓𝑚𝑎𝑝 function of functors. If we were to use 𝑚𝑎𝑝 in place of bind here, we would 

end up with the value [[′1′], [′2′], [′3′]], the type 𝐿𝑖𝑠𝑡 𝐿𝑖𝑠𝑡 𝐶ℎ𝑎𝑟. Essentially, monads 

have enabled us to write a composition between a structure, and a function that 

“contributes” to the structure. While the benefits to monads here may seem abstract and 

unapparent, we will cover them more in depth in Section 2.2.3. 

We cover these data types because of their usage in statically typed functional 

languages to model different structures and behaviors. Particularly, we are interested in 

how these types abstract over the effects and exception behaviors, to see how they may 

be used in providing soundness. Fundamentally, as we have seen here, by abstracting 

certain behaviors into the type of a data structure, we can enforce the proper usage and 

handling of said behaviors. 

 

2.2.3 Effects 

 With the described properties and constraints of functional programming as 

mentioned, an issue that arises is how a functional language may model the usage of 

effects, such as IO, and in the case of Zenith, exceptions. We briefly established the 

foundations for the functional data types that may be used to model such structures, so we 

will begin to deconstruct in what manner effects may modeled, such that the semantics of 

the language remain “pure”, and so that we can provide additional safety to Zenith. 
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 In a paper by developers of the Haskell language, A History of Haskell: Being 

Lazy with Class, S.P. Jones. describes the progression of Haskell’s effect handling 

methods (2007). We see that Haskell eventually decides on the usage of monads to model 

effects in a publication by Philip Wadler, Monads for functional programming (1992). 

Using our understanding of monads and functional data types, we see here that the 

Haskell Committee decide to model a “computation” of type α, under monadic form, as 

the 𝑀 α type we are familiar with. Furthermore, as shown in the paper, we can compose 

additional functions onto the result of the computation, using the 𝑏𝑖𝑛𝑑 function. For 

example, with our computation monad 𝑀 α, the expression 𝑚 ≫= (\𝑥 → 𝑛) has the type 

𝑀 β, where β is the resulting type of the higher order function. In an imperative language, 

or even in a functional language using let bindings, this “reassignment” of the 

computation result value would not be made apparent in the typing of the program, and 

the effect of computation would not be visible. 

 What this means for a strong type system, and for runtime safety, is that that 

encoding values this way makes these otherwise “invisible” effects, like IO, or exceptions 

as an Either monad, very apparent in the type signatures of our functions. Furthermore, 

given this ability to abstract the existence of effects into our type system, we can ensure 

in the semantics of a language that the results of these effects are never ignored by a 

program writer, by designing any potentially unsafe standard library function with this 

model in mind. Indeed, languages such as Elm, and of course Haskell as we observed, 

provide type and runtime safety through this means. 

 However, there is still some degree to which runtime safety can be further 

improved, which a few select languages attempt to make. For example, in addition to Elm, 
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the Dhall programming and configuration language all but guarantees runtime safety. As 

a brief overview, Dhall is a Turing incomplete language, with a syntax like that of 

Haskell’s. Dhall is interestingly specific and concise in its goals, which is to act as a 

programmable, but also relatively inert, configuration language. To achieve this, it 

completely forbids any side-effects. Note that this is significantly different than 

abstracting side-effects with the use of an IO monad. This is in accordance with Dhall’s 

stated “marketing” of displacing YAML. It deems that it would be undesirable for a 

configuration language to perform arbitrary effects when referencing data from it. 

Furthermore, Dhall’s Turing incompleteness generally provides a guarantee that the 

program will complete in reasonable time, which is another aspect that developers would 

expect from a configuration language. While Dhall’s Turing incompleteness will be 

discussed in later sections, these aspects still provide a novel intuition on approaches to 

runtime safety. Primarily, Dhall’s usage as a “second language” of sorts allows it to 

impose constraints on itself and offer according guarantees. Developers using a less safe 

language can migrate aspects of their code configurations to Dhall for more soundness 

and rely on the safety of Dhall instead (“The Dhall configuration language”). This aspect 

will be the greatest influence of Dhall on the design of Zenith, which we will see in 

Chapter 3. 

 Focusing back on Elm, despite being somewhat more of a feature heavy language, 

Elm still attempts to provide a guarantee on throwing no runtime errors (“A delightful 

language…”). While this is not always true in any arbitrary edge-case program, the 

remaining types of runtime errors are relatively uncommon occurrences, and not 

something we necessarily consider in a formal language (Payr, 2021, p. 17). These 
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exceptions include out of memory errors, function comparison, and infinite recursion. 

While these exceptions can be significant in select programs, we will not focus on out of 

memory errors, and for the sake of brevity will forgo allowing function comparison to 

take place in our language semantics. We will cover issues with recursion in brief in 

Section 2.3.  

 Elm follows a similar doctrine as Dhall. It has a concise “market”, in Dhall’s 

terms, to be a language for front-end webpages. As such, it is relatively difficult in Elm to 

perform arbitrary side-effects outside of this target domain, and effects within are safely 

abstracted. Of course, being a Turing complete language, it can be used for different 

programs, but pragmatically, within the language semantics, it is designed to implement 

those specific set of programs. This allows Elm to reduce the uncertainty involved in 

performing IO, and the potential for “silently erroring” during execution. Elm in this 

sense is a concise second language, designed to interact with other languages when 

developing a more interactive website. 

As stated before, realistically, Elm and Dhall can still encounter runtime errors. 

But they are still novel and state-of-the-art languages in their effort of preventing them, 

as we have seen in their design. Given the similarity between the high-level type systems 

employed between Elm, Dhall, and other languages like Haskell, we can understand that 

there are still more aspects about a language’s semantics and implementation that can 

help prevent runtime errors. In this case, an interesting and novel aspect of Elm and Dhall 

that helps them provide more guarantees, is the constraint that they impose upon 

themselves on what programs it can compile. 
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 We will further reason about maintaining a strict language domain in Section 3, 

where this paper will cover how Zenith follows a similar principle in its semantics to 

tactfully exchange responsibility of execution with Lua. In summary however, the 

functional data types that are offered by strong type checking system, as well as 

functional purity, allow us to abstract the potentially erroneous effects and exceptions of 

a program, into a model that can be deconstructed using strongly typed functions. These 

models protect the “edges” of our program that interact with unsafe data and allow us to 

achieve greater runtime safety. In chapter 3, we will see how these data types take form 

in Zenith and its standard library and see how Zenith is able to protect itself against errors 

through these language semantics. 

 

2.3 Totality and Turing Completeness 

As an aside to type checking, it is also worth investigating total programming, and 

the value, or lack thereof, of Turing completeness and what tradeoffs can be made. 

Originally in this research project, considerations were made for Zenith to be a Turing 

incomplete language. Turing incomplete languages are generally able to provide a greater 

degree of verifiability before runtime. This is due to the property of Turing incomplete 

languages being able to “subvert” Rice’s Theorem.  

Rice’s theorem (Rice, 1953) essentially states that nontrivial properties of 

languages are undecidable (Kozen, 1977). As such, this implies that static analysis of 

Turing complete languages is limited to some degree, or is otherwise undecidable as well 

(Pickard, 2020). The idea behind many Turing incomplete languages then is to avoid this 

problem all together by forbidding the possibility of the halting problem, which Rice’s 
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theorem proves to be a reduction to. This includes forbidding arbitrary recursion, by 

banning it all together, or relying on means such as dependent typing to prove 

termination after recursion. As we saw in Dhall, the language takes the approach of 

forbidding recursion to achieve Turing incompleteness, guaranteeing its own termination.  

However, it is known that while these languages forbid an infinitely long runtime, 

they cannot forbid an arbitrarily long one. This is not necessarily a massive flaw in their 

design; of course, implementors of these languages are aware of such an issue, but this 

speaks more to the aspect of “marketing” in their languages, in Dhall’s terms. We argue 

that including Turing incompleteness in a language’s design is a signal or summary of the 

goals of a language to potential users, but in of itself is a relatively inconsequential aspect, 

excluding dependent typing. A language designer who builds a language that is type safe 

and Turing incomplete will be aware and cautious of other safety issues in a language’s 

semantics, which is generally what appeals to developers looking for a safe language. 

Indeed, the communities behind Turing incomplete languages like Dhall and Idris (Brady, 

2013) place a heavy emphasis on safety and soundness. However, in the absence of 

dependent typing and other features like hashing in Dhall, we find that Turing-

incompleteness is not particularly useful for a language like Zenith. The only true benefit 

to Turing-incompleteness for a basic HM system, appears to be guaranteeing termination. 

This is somewhat inconsequential when considering that termination is not itself a 

significant guarantee, as it can still allow programs to run for an arbitrarily unlimited 

amount of time, which just happens to be predefined. We would also be able to introspect 

more into programs before runtime given Turing-incompleteness, but given the exclusion 
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of side-effects already and usage of HM over dependent typing, there is not much benefit 

for this introspection. 

In summary, we have researched the various aspects that we will include or 

exclude from Zenith, such that Zenith may implement programs that are guaranteed to be 

safe during runtime. We primarily investigated how functional languages, and 

particularly statically typed, HM languages, protect their runtime by catching errors 

during compile time, or force them out of the language semantics all-together. With this 

foundational knowledge, we can begin to construct the language design of Zenith 

formally. 
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CHAPTER 3 

 

THE ZENITH LANGUAGE 

The language of Zenith, as mentioned prior, greatly resembles the Haskell 

language, albeit with simplified semantics. This was chosen due to Haskell’s 

predominant role in the functional programming space, and general recognizability to 

functional programmers. Furthermore, Haskell’s declaration and module semantics 

provide a straightforward mapping to Lua’s module system, because of their relative 

similarity in certain use cases, which we can dictate. It also provides a strong foundation 

for the implementation of the HM type system that is intended for Zenith.  

Section 3.1 will provide the Zenith syntax in Backus-Naur-Form. Section 3.2 will 

cover the type system for Zenith, the implementation of HM and typing judgments made, 

and the implementation of Algorithm W of HM.  Section 3.3 will showcase design of the 

Zenith standard library for functional programming and type safety. Finally, Section 3.4 

will cover the considerations of Zenith regarding IO, and how Zenith interacts with Lua 

as a second language. 
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3.1 Syntax 

 Zenith’s syntax is as follows: 

 

𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ∷=  𝑚𝑜𝑑𝑢𝑙𝑒 

𝑚𝑜𝑑𝑢𝑙𝑒 ∷=  ℎ𝑒𝑎𝑑𝑒𝑟 𝑏𝑜𝑑𝑦 

ℎ𝑒𝑎𝑑𝑒𝑟 ∷= "module" id "where" 

𝑏𝑜𝑑𝑦 ∷=  𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 + 

𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∷=  𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 

𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ∷= 𝑖𝑑 "::" 𝑡𝑦𝑝𝑒𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 

𝑘𝑒𝑦𝑤𝑜𝑟𝑑 ∷=  "𝑖𝑓" | "𝑡ℎ𝑒𝑛" | "𝑒𝑙𝑠𝑒"  | "𝑑𝑎𝑡𝑎" 

𝑏𝑖𝑛𝐹𝑛 ∷=  " + " | " − " | " ∗ " | "/" 

𝑏𝑖𝑛𝐹𝑛𝐴𝑝𝑝 ∷=  𝑏𝑖𝑛𝐹𝑛 𝑒𝑥𝑝𝑟 

𝑏𝑜𝑜𝑙𝑒𝑎𝑛 ∷= "𝑇𝑟𝑢𝑒" | "𝐹𝑎𝑙𝑠𝑒" 

𝑖𝑑 ∷=  −𝑘𝑒𝑦𝑤𝑜𝑟𝑑 𝑖𝑑𝑆𝑡𝑎𝑟𝑡 𝑖𝑑𝑃𝑎𝑟𝑡 ∗ 

𝑖𝑑𝑆𝑡𝑎𝑟𝑡 ∷=  𝑙𝑒𝑡𝑡𝑒𝑟 | "_" 

𝑖𝑑𝑃𝑎𝑟𝑡 ∷=  𝑎𝑙𝑛𝑢𝑚 | "_" 

𝑐𝑠𝑣 ∷= "," 𝑒𝑥𝑝𝑟 

𝑙𝑖𝑠𝑡 ∷= "[" 𝑒𝑥𝑝𝑟 𝑐𝑠𝑣 ∗ "]" 

𝑎𝑡𝑜𝑚 ∷=  𝑑𝑖𝑔𝑖𝑡 +  | 𝑠𝑡𝑟 | 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 | 𝑖𝑑 | 𝑙𝑖𝑠𝑡 

𝑒𝑥𝑝𝑟 ∷=  𝑠𝑡𝑎𝑟𝑡𝐸𝑥𝑝𝑟 𝑒𝑛𝑑𝐸𝑥𝑝𝑟 

𝑠𝑡𝑎𝑟𝑡𝐸𝑥𝑝𝑟 ∷=  𝑎𝑡𝑜𝑚 

𝑒𝑛𝑑𝐸𝑥𝑝𝑟 ∷=  𝑏𝑖𝑛𝐹𝑛𝐴𝑝𝑝 | 𝑒𝑥𝑝𝑟 | 𝜖 

𝑡𝑦𝑝𝑒𝐷𝑒𝑐 ∷=  𝑡𝑦𝑝𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔𝑇𝑦𝑝𝑒𝑠 ∗ 

𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔𝑇𝑦𝑝𝑒𝑠 ∷= "→ " type 

𝑡𝑦𝑝𝑒 ∷=  𝑏𝑎𝑠𝑖𝑐𝑇𝑦𝑝𝑒 | 𝑙𝑖𝑠𝑡𝑇𝑦𝑝𝑒 

𝑏𝑎𝑠𝑖𝑐𝑇𝑦𝑝𝑒 ∷=  𝑢𝑝𝑝𝑒𝑟 𝑖𝑑𝑃𝑎𝑟𝑡 ∗ 

𝑙𝑖𝑠𝑡𝑇𝑦𝑝𝑒 ∷= "[" 𝑏𝑎𝑠𝑖𝑐𝑇𝑦𝑝𝑒 "]" 

𝑖𝑚𝑝𝑙 ∷= 𝑖𝑑 𝑎𝑟𝑔𝑠 "=" 𝑒𝑥𝑝𝑟 

𝑎𝑟𝑔𝑠 ∷=  𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 ∗ 

 

( 3 ) 
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In implementation, the grammar of the language is slightly more complex and has 

several lower-level definitions, as Zenith does not include a lexing stage. Notably, we 

have excluded rules for parsing whitespace. Additionally, it may be noticed how 

expressions are split into a start and end expression form, where the starting atom is 

parsed, followed by various possibilities of the end expression, such as function 

application, or binary function application. This is to assist the recursive descent parser 

by factoring out left-recursive grammars, which would otherwise not terminate. 

 

3.2 Type System 

 Zenith’s complete type system is an implementation of type inference following 

HM, and type assignment using Algorithm W of HM, as described in Principal Type-

Schemes for Functional Programs by Luis Damas and Robin Milner (1982). This section 

will provide some brief introduction to understanding any type notation used. 

 After simplification, Zenith’s core language essentially becomes a collection of a 

function definitions. A function is defined in two parts, through an (optional) type 

annotation, and through the value definition, which is the name of the function, followed 

by the declared bindings for arguments, and then by the body expression. To begin, we 

will look at the core language of expressions, which is almost identical to that given by 

Damas and Milner in the first definition of Algorithm 𝑊 (1982) and to the lambda 

calculus, with the exclusion of let expressions. Here we define expressions as 𝑒 and the 

set of identifiers as 𝑥. 

 e ∷= x|e e |λx. e  
( 4 ) 
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With the language in (4), we represent the core functionality of expressions in 

Zenith. For example, more complex expressions, like if expressions, are reduced to this 

form. Now, the first step in an HM type system, is for it to deduce a type-scheme, in other 

words a polymorphic type inference, based on some string from this language. In general, 

all types in HM are constructions of constant types like int and bool, or type variables 

like α, β, which are combined using type operators. Based on the expression language, we 

infer type-schemes based on this logic, which will give us a similar form of 𝑡𝑦𝑝𝑒𝑠 τ, and 

of type − schemes σ as the type-schemes paper (Damas & Milner, 1982). 

 
τ ∷= α | ι | τ → τ 

σ ∷=  τ | ∀ασ  

( 5 ) 

 

In (5), we can see constant, primitive types represented as ι, type variables as α, 

and a function type as τ → τ. Type schemes map to either a direct 𝑡𝑦𝑝𝑒 τ or a quantified 

type scheme, for a type variable α. This is the standard makeup of our language for types. 

From here, we collect a set of assumptions about expressions and type-schemes, written 

as: 

 A ⊢  e ∶ σ  
( 6 ) 

 

This can be read as “given a set of assumptions 𝐴, it can be proven that 𝑒 is of 

type-scheme σ”. The set 𝐴 here is derived from the standard type inference rules that 

Damas and Milner uses (1982), which are rewritten below for our understanding: 
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 TAUT: 
 

𝐴 ⊢ 𝑒 ∶ 𝜎
  INST: 

 𝐴 ⊢ 𝑒 ∶ 𝜎

𝐴 ⊢ 𝑒 ∶ 𝜎
 

( 7 ) 

 

 GEN: 
 𝐴 ⊢ 𝑒 ∶ 𝜎

𝐴 ⊢ 𝑒 ∶ ∀𝛼𝜎
 𝐴𝑃𝑃: 

 𝐴 ⊢ 𝑒: 𝜏 → 𝜏     𝐴 ⊢ 𝑒 : 𝜏

𝐴 ⊢ (𝑒 𝑒 ): 𝜏
  

 𝐴𝐵𝑆: 
 𝐴  ⋃ {𝑥: 𝜏 } ⊢ 𝑒: 𝜏

𝐴 ⊢ (𝜆𝑥. 𝑒): 𝜏 → 𝜏
  

We exclude the let inference used by the original HM implementation, as in 

Zenith let expressions are not a fundamental expression. Regardless, from these inference 

rules, the earlier set 𝐴 of assumptions can be derived from arbitrary expressions, by 

composing sound inference rules together. In Zenith, the implementation of type 

inference is essentially just the translation of these rules to code form. 

 The final inclusion in the type system of Zenith is the implementation of 

Algorithm 𝑊 provided by Damas and Milner (1982). Algorithm 𝑊 allows our type 

system to find a type-scheme σ, such that 𝐴 ⊢ 𝑒: σ, given 𝐴 and 𝑒. Furthermore, the 

algorithm will also find a substitution 𝑆 and type τ,  such that 𝑆𝐴 ⊢ 𝑒 ∶  τ, where 

applying 𝑆 to assumptions 𝐴 allows 𝑒 to be a concrete type τ. To implement the 

algorithm, we first follow the unification algorithm 𝑈 by Robinson in A machine-oriented 

logic based on the resolution principle (Robinson, 1965). However, we will still 

primarily follow the description of the algorithm used by Damas and Milner. Here the 

algorithm, given a pair of types τ, τ , either returns a substitution 𝑉 which unifies τ τ , or 

if a substitution 𝑆 unifies τ, τ , returns a substitution 𝑅, such that composing the 

substitutions together as 𝑅𝑉, equals 𝑆. 

 

 



  22 

After this, the final Algorithm 𝑊 is as so (Damas & Milner, 1982): 

𝑊(𝐴, 𝑒) = (𝑆, τ) where the following conditions must be met based on the form of 𝑒: 

(i) If 𝑒 is an identifier expression 𝑥, and 𝑥 is included in the set of 

assumptions 𝐴, then substitution 𝑆 will be the empty substitution, 

returning the same value of 𝐴, and 𝜏 will be the type bound by 𝑥. 

(ii) If 𝑒 is the application expression 𝑒  𝑒 , then recursively solve 𝑊(𝐴, 𝑒 ) =

(𝑆 , 𝜏 ), for the proper substitutions and types of 𝑒 . Then recursively 

solve 𝑊(S 𝐴, 𝑒 ) = (𝑆 , 𝜏 ) for return type of the expression after 

application of the substitution. Finally, let 𝛽 be a new type variable in the 

unification 𝑈(𝑆 𝜏 , 𝜏 → 𝛽) = 𝑉, and return the final substitution as the 

composition of substitutions 𝑆 = 𝑉𝑆 𝑆  and the final type as the return 

type substitution on the type variable 𝛽, as 𝜏 = 𝑉𝛽.1 

(iii) If 𝑒 is the abstraction expression λ𝑥. 𝑒 , then let β represent a new type 

variable, and 𝑊(𝐴 ⋃{𝑥 : β},  𝑒 ) = (𝑆 , τ ), resulting in 𝑆 = 𝑆  and τ =

𝑆 β → τ . This effectively binds 𝑥 in the lambda expression to type 

variable β and provides the substitutions to constrain β. 

Again, in our implementation we exclude the case of let expressions. Additionally, 

an improperly formed expression 𝑒 will result in a compile-time error. Cases like the 

identifier expression 𝑒 being unbound will also throw a compile-time error. In summary, 

by following the implementation of HM type inference and the type assignment 

algorithm 𝑊, we build the foundation of a strong and concise static type checking system 

 
1 In original publication of (Damas, 1982), there is a typographic error in part (ii). I have chosen to correct 
this error in this implementation of 𝑊, but correctness of this fix can be contested. 
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in Zenith. The rest of the work in type checking is trivial, and mainly involves reducing 

expressions to sound forms in HM. In actual implementation, much of the code also 

follows Typing Haskell in Haskell by Mark P. Jones (2000) for a Haskell translation of 

these algorithms. Regardless, with the HM type system in place, Zenith can provide the 

additional components of runtime safety that we researched in the prior review, namely 

functional data types and classes, which will be covered in the next section. 

 

3.3 Functional Programming in Zenith 

 As discussed in the prior research, functional programming is essential in the 

pursuit of maintain runtime safety. Much of Zenith’s standard library includes general 

purpose functional programming functions. This includes transformers like 𝑚𝑎𝑝, 𝑓𝑖𝑙𝑡𝑒𝑟, 

𝑓𝑜𝑙𝑑, various composition operators, and functions to use with type classes like the 

Maybe type class. These functions allow for both the manipulation of functional control 

flow in place of imperative constructs, as well as for the transformation of immutable 

data. This is also a sort of byproduct and benefit to using Zenith that Lua developers may 

notice, where Zenith provides additional standard library components. 

 Being a functional language, Zenith excludes semantics that violate functional 

programming practices, regardless of whether they exist in Lua. Indeed, Zenith primarily 

focuses on its own semantics and goals, before including Lua features. For example, 

mutable variables are not possible in Zenith, as the language offers no such ability to re-

assign a variable. Most notably, Zenith also enforces purity using the various methods 

studied in Section 2. For example, possible exceptions are always wrapped in a Result 

type, where a return value is either encoded as the successful value, or an erroring type. 
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With this, regardless of outcome, the result of the function must be considered at 

compile-time, which eliminates the possible of an impure return from functions that may 

error. Furthermore, null values are wrapped in a Maybe type, forcing the programmer to 

consider nullable values while writing the program, averting the risk of an error 

appearing during runtime. These functional data types and similar ones avert most 

runtime errors, but similar implementations for IO can still often error or result in 

unpredictable behavior, due to the interaction with external systems. IO monads, while a 

being a significantly useful tool in managing effects, do not fix the fundamental 

uncertainty of IO, and as such are excluded from Zenith itself. This will be explored 

further in the next section. 

  

3.4 IO and Modules 

 Zenith is designed to work in tandem with the Lua programming language. In fact, 

Zenith on its own is not capable of many significant systems, as language semantics 

intentionally forgo IO. As we have seen from other runtime safe languages like Dhall and 

Elm, by constraining the codomain of a language, we are able to provide safer bounds on 

what the language may error upon. Particularly, Elm and Dhall restricting their own 

behavior offers more runtime safety than even the IO monad can. While Elm does have 

monad like operators, and a monadic Command type for IO, these are still generally 

performing effects within Elm’s abstraction of webpages, like HTTP requests or DOM 

updates. Elm’s Command type does not provide a means of executing other IO like 

accessing local file systems or launching other programs. Furthermore, as we saw in 
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Dhall, the language completely excludes arbitrary effects and instead operates as what we 

saw as a “second language”.  

Indeed, this is the same principle guiding Zenith’s approach to effects, where we 

choose to exclude side-effects and offload the action of performing IO to the main Lua 

program using Zenith. While of course this may result in the greater Lua program being 

unsafe, what this allows for is for much of a Lua-Zenith system to be contained in a safe 

Zenith “interior”. Developers will know based on the guarantees provided by Zenith’s 

implementation that modules and libraries generated by Zenith are safe to use in runtime 

and can therefore offload more error-prone systems into Zenith. The responsibility of Lua 

in this case becomes simplified, and where the developer needs only to implement the 

imperative, IO “shell” of the program in Lua. Giving the uncertainty and flexibility that 

IO may introduce, this is a task already well-suited for dynamic languages and Lua, so 

long as we do not perform computations on this data before passing it into a Zenith-

generated library. 

 By essentially wrapping much of the Lua language, Zenith is also capable of 

providing additional benefits to the Lua developer. As mentioned, Zenith builds upon and 

extends the Lua standard library with its own. Furthermore, Zenith can ideally abstract 

the somewhat fragmented versions of Lua into a centralized form. For example, Lua 

tends to be split between the mainline versions of Lua, such as Lua versions between Lua 

5.1 to Lua 5.4, and LuaJIT, a fast, Just-In-Time compiler version of Lua. Converting code 

between these versions may not always be trivial, due to occasional syntax and semantic 

differences, but as an overhead layer, Zenith should be capable of compiling to different 

Lua versions. It should be noted however that the initial release of Zenith with this paper 
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does not include this feature, but we still choose to elaborate feature due to it being a 

relatively common feature of superset languages like Zenith, such as Typescript. As such 

it is intended to be a future implementation. 

 As an aside, Lua includes many notable metaprogramming capabilities, such as 

metatables that allow developers to rewrite the semantics behind tables and objects. 

While certain aspects of metatables may be considered as mutations and non-declarative, 

unsafe code, there may be interesting aspects of metatables to include in Zenith. However, 

given the scope of this thesis, this is not explored in this paper. 

 With these features of Zenith combined, we have provided a rigorously safe, 

functionally pure language that eliminates runtime errors. Zenith provides a strong type 

system based on the well-established HM type system, encodes functions to safely handle 

and manipulate otherwise potentially erroring values in a functional programming 

manner, and integrates with Lua to handle effects and provide guarantees to users of the 

dynamically typed language. While edge case conditions exist for Zenith, as they do for 

other runtime safe languages, such as memory and resource errors, based on current state-

of-the-art and other attempts at reducing runtime errors from a language semantics 

perspective, Zenith is a reasonable and sound approach to providing safety. 
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CHAPTER 4 

 

IMPLEMENTING ZENITH 

This section will briefly cover the programming implementation of the Zenith 

compiler. To begin, Zenith is implemented in Haskell. Given their similarity in syntax 

and types, this was a reasonable and useful choice in implementation, particularly for 

managing the type system. Zenith is parsed using parser combinators, a common function 

method of parsing languages. This has some consequences on the language grammar, as 

parser combinators are restricted in the grammars they can read. This includes left-

recursive grammars, which are subsequently factored out of Zenith’s lower-level syntax 

language. Furthermore, given the usage of parser combinators, the performance of 

Zenith’s parsing can be exponentially long, but since this was not a major focus in this 

thesis, this issue is not addressed. After parsing, data types are coalesced into the AST 

data type. 

The parser itself may parse forms that are syntax sugar for more fundamental 

forms, so from the AST, the next step of Zenith is to desugar and simplify various forms, 

such that they may be accepted by the HM type system. Particularly, functions of 

multiple arguments are reduced to a curried form, where each argument is applied 

individually, returning the function that accepts the next argument. This is generally 

standard behavior for functional language and is also the form that the type system reads 

for simplicity. Furthermore, because of the reliance on Lua, the language can circumvent 

certain expressions and reimplement them in Lua. For example, if expressions are 

reduced to ∀α 𝑐𝑜𝑛𝑑(𝐵𝑜𝑜𝑙𝑒𝑎𝑛, α, α), where 𝑐𝑜𝑛𝑑 is a replacement for if expressions 
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included in the standard library. This also allows us to be sure that forms we parse as 

expressions indeed behave as expressions in the final Lua rendering, rather than an 

imperative statement. 

The type checking system was already mostly covered in Section 3, but we will 

also briefly cover additional implementation details not specified by the HM 

implementation. Mainly, the HM implementation primarily focuses on the type inference 

and assignment of individual and nested expressions. In our language, we of course need 

to extend this behavior to the top-level function definitions and bindings. As such, the 

implementation maintains a single rolling environment of type-schemes and bindings for 

a module, and sequentially adds each binding and its type-scheme to the environment. 

This way, later calls to a top-level function are not unbound. Furthermore, the type 

checker must also check whether the type annotation of a function and the type inference 

of its implementation match, which we add in this implementation by running inference 

on implementation and parsing the annotation into a usable type to compare against. 

Finally, given the corrected AST, the Zenith renderer will generate and format the 

proper strings of Lua code based on the AST. The renderer keeps a small degree of state 

between expressions, to maintain indentation, but does not include some notable features 

a renderer may have due to the scope of this paper. Namely, indentation is the only 

changing variable in the rendering process, and as such the rendering of functions is 

generally one-to-one between expression and Lua string, regardless of context. This 

means that the generated string is not formatted based on other expressions that may 

appear, which may not adhere to common Lua style guides. This also means that line-

numbers may not necessarily match with the source Zenith code. Also, since Lua is of 
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course dynamically typed, all type-related syntax is excluded during the rendering 

process. Finally, comments and certain whitespace choices by the writer are not retained 

during the rendering process. 

These choices were mostly made due to the scope of this thesis and may be 

included in a more feature complete release of Zenith. However, despite these 

shortcomings, the implementation of Zenith is still generally robust, and adheres to the 

choices made in the language design. 
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CHAPTER 5 

 

USAGE AND EVALUATION 

 As a demonstration of the capabilities of Zenith, as well as an overview of the 

workflow using the language, we will briefly cover examples of two libraries developed 

using Zenith. In total, these programs should cover the basic features of Zenith, as well as 

components of the standard library. To begin with a smaller program, we first look at the 

following Zenith code: 

Figure 1 

Code of Zenith Syntax and Types 

addMaybe :: Number -> Maybe Number -> Maybe Number 

addMaybe x my = mapMaybe (\y -> x + y) my 

 

unsafe :: Number -> Maybe Number 

unsafe n = n / 0 

 

test1 = addMaybe 1 (Just 2) 

test2 = addMaybe 1 (Nothing) 

test3 = addMaybe 1 (unsafe 1) 

 

 In this code example, despite being a somewhat trivial program, we see how 

Zenith may be used to abstract and compose unsafe functions and other functions 

together. Zenith by default returns a 𝑀𝑎𝑦𝑏𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 type for division, meaning that we 

do not encounter any unexpected behavior when dividing by 0. Being a 𝑀𝑎𝑦𝑏𝑒 type, we 

can then map the underlying value further, and derive new values through this way.  
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Figure 2 

Code of List Operations and Recursion in Zenith 

-- Fibonacci Number 

fib :: Number -> Number 

fib 0 = 0 

fib 1 = 1 

fib n = (fib (n - 1)) + (fib (n - 2)) 

 

-- List Operations 

concat :: List a -> List a -> List a 

concat Nil bs = bs 

concat as Nil = as 

concat (Cons a Nil) bs = Cons a bs 

concat as bs = Cons (unsafeHead as) (concat (tail as) bs) 

 

filter :: (a -> Boolean) -> List a -> List a 

filter p Nil = Nil 

filter p (Cons a as) = if (p a) then (Cons a (filter p as)) 

else (filter p as) 

 

-- QuickSort 

qsort :: List Number -> List Number 

qsort Nil = Nil 

qsort (Cons x xs) = (concat  

(concat (qsort (filter (< x) xs))(Cons x Nil))  

(qsort (filter (>= x) xs))) 
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In the provided code in Figure 2, we see a more non-trivial example of Zenith, 

where we use a more complete set of its features to build a program. As a brief 

introduction to recursion in Zenith, we reference the Fibonacci sequence algorithm. With 

recursion, in both Zenith and many functional languages, much the language design 

focuses on pattern matching, where we can elaborate the base and special cases of 

recursion through various patterns, as we can see in the 𝑓𝑖𝑏 function.  

More notably however is the implementation of the quick sort algorithm, using 

various list operations. To begin, the Zenith standard library packages the 𝐿𝑖𝑠𝑡 data type, 

which itself represents either a pair, as 𝐶𝑜𝑛𝑠, or the empty list as 𝑁𝑖𝑙. Lists are then 

formed as conjoined sequences of these pairs, essentially forming a linked list data 

structure. As such, we can implement the 𝑐𝑜𝑛𝑐𝑎𝑡 function in the recursive manner shown. 

Filter is implemented in a similar method, recursively applying a higher order function to 

the list values, in order to evaluate the condition. Finally, we compose these functions 

together to form the recursive quick sort function, where we filter lower and higher 

values of a list and concatenate their sorted result together. Also, as a note on the use of 

𝑢𝑛𝑠𝑎𝑓𝑒𝐻𝑒𝑎𝑑 in this section, normally, the head function will return a 𝑀𝑎𝑦𝑏𝑒 type. For 

brevity however, this figure utilizes 𝑢𝑛𝑠𝑎𝑓𝑒𝐻𝑒𝑎𝑑 for direct access to the List head. 

To some degree, these example programs are still relatively simple, and are 

somewhat constrained by the current implementation of Zenith, and its limited standard 

library. However, we can also see how we are able to use Zenith to compose functions 

and programs of increasing complexity. From the implementation of List, Maybe, and 

other data types, along with Zenith’s basic functionality, we are provided a foundational 

basis for the well-typed lambda calculus, and as such we can develop reasonably similar 
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programs. In the next section, we will evaluate Zenith’s current implementation, against 

its goals of reducing runtime errors. 

 

5.1 Evaluation against Errors 

So far in this chapter, we have seen how Zenith is a rudimentary but type safe and 

functional language. However, based on this usage, it is prudent to evaluate the extent to 

which Zenith accomplishes its goal of eliminating runtime errors. To begin, it is 

necessary to elaborate the domain of runtime errors that we evaluate upon. Different 

languages and systems abstract runtime errors in unique ways, and as such may have a 

variety of runtime exception categories. Since Zenith is specifically focusing on the Lua 

programming language, we will first need to identify the categories of Lua runtime errors. 

However, the first issue we encounter is that Lua does not provide a centralized 

document or structure of the different exceptions in the language, such as the exception 

hierarchy class in the Python documentation (Python Software Foundation). Being 

frequently included in embedded contexts, Lua does not necessarily operate its own well-

defined exception handling system. Rather, when an error is raised, Lua returns control to 

the host program, which can then react to the error. In the case of the Lua standalone 

interpreter, this may be a response such as printing out the error, a stack traceback, or 

some call to a C function. Because of this ambiguity, we will instead roughly follow the 

exception hierarchy that Python provides as a rough outline of the classes of exceptions 

that a dynamically typed language may encounter, and then adjust for Lua’s semantics 

when necessary. 
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Following the hierarchy, exceptions are divided into the various categories they 

might appear as, such as arithmetic errors and import errors. In this paper, we will group 

these categories by how Zenith may secure these errors, or by how Lua already 

eliminates them. First, we can safely ignore consideration for errors that are not present 

during runtime, and for errors that are not possible in static languages. 

 

Table 1    

Runtime Errors in Zenith and Lua 

Error type Example Lua Zenith 

Arithmetic Error 1/0 𝑖𝑛𝑓 𝑀𝑎𝑦𝑏𝑒 type 

Attribute Error local x = 1 
x.insert(2) Error Type checked 

Assertion Error assert(n==3,‘msg’) Error N/A 

Import Error require(‘invalid’) Error N/A (IO) 

Lookup Error local x = {1,2,3} 
print(x[10]) 𝑛𝑖𝑙 𝑀𝑎𝑦𝑏𝑒 type 

Memory Error  Stack overflow Stack overflow 

Name Error 10 + x Error Type checked 

OS Error os.remove(‘invalid’) Error N/A (IO) 

Recursion Error  Stack overflow Stack overflow 

 

 As we see, Zenith is mostly capable of securing the runtime errors present in Lua, 

particularly regarding types and data, and the means of accessing data. Furthermore, Lua 

may return unsafe or unexpected values like 𝑛𝑖𝑙 in specific cases. In these cases, we see 



  35 

how Zenith may abstract this behavior more safely, into a functional data type. However, 

we can also see that Zenith does not provide much protection regarding IO, which we 

may expect from the design of Zenith relying on Lua for IO. In regard to Zenith’s own 

safety, we see that the single remaining class of runtime errors are memory related, being 

memory errors and recursion errors. In earlier chapters, we made the decision to provide 

a Turing-complete language over an incomplete one, so therefore the presence of 

recursion and out of memory errors is the natural tradeoff. 

 However, Zenith does introduce its own unique form of error, where a developer 

may provide incorrect type annotations for an external Lua function. At the moment, 

Zenith has no capability for verifying these external annotations. An incorrect annotation 

may be considered as a logical error but may indeed throw a runtime error depending on 

the incorrect type. Additionally, Zenith contains a small number of bugs in its current 

implementation. Most notably, pattern matching is not checked for exhaustiveness. 

Therefore, it is possible to match on a non-existent case, where in the absence of a default 

case, will cause a runtime error. However, while this issue is significant and will not be 

detected by the compiler, it can be mitigated by including a default case where pattern 

matches appear. Furthermore, as mentioned in Chapter 4, the renderer for Zenith to Lua 

is relatively basic. An untested issue that may arise is the possibility of namespace 

collisions between variables, after the compiling process, which may lead to runtime 

errors. Despite these issues however, based on their infrequency, and from the example 

programs and errors that Zenith secures, we evaluate that Zenith is a reasonable approach 

to providing runtime safety for Lua. 
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CHAPTER 5 

 

CONCLUSIONS 

 Zenith provides a functional, concise, and most importantly safe means of writing 

Lua code that may be otherwise unsafe, by using the ideas and work grounded in type 

theory, functional programming, and language design. By making guided decisions while 

following these concepts and understanding when to make tradeoffs in the case of 

Turing-completeness, this paper introduces a programming language uniquely capable of 

providing safety to the Lua language. While programming in Zenith, writing code and 

modeling safe systems are all one and the same, and the Zenith programmer can be 

assured that if the program compiles, it will indeed not error based on the errors we 

evaluated. 

 However, there is still a significant amount of future work that may be conducted 

regarding Zenith. For example, dependent typing, as mentioned, was a notable 

consideration for the language that did not make it to implementation but would further 

allow for safety constraints on a program, using its type system. Dependent typing was 

largely avoided due to the complexity it tends to add to languages, but novel approaches 

may be possible when considering Zenith’s design as a “second language”. Furthermore, 

this paper was largely theoretical and abstract, laying out the groundwork for Zenith to be 

built upon. However, a programming language is much more than just its design. More 

work can be investigated into language tooling for Zenith, and greater optimizations can 

be added into the core compiler and type checker itself. Additionally, a key component 

that was left out of early consideration for Zenith was usage of the LuaRocks package 
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manager. Languages like Elm exclude much of the community package manager system 

for their base language, but other languages like TypeScript add support for the common 

package managers through community efforts. This is a notable decision for Zenith to 

make in the future, and work can be done on justify whichever choice to make. 

 Regardless, what this paper hopes to show through this project and review is how 

we can utilize functional programming and static typing principals to secure a language’s 

runtime and handle the challenges of unsafe code. In addition, the Zenith language is an 

exploration of secondary languages, and how programming systems can benefit from a 

separation of responsibilities. In Zenith, these ideas have filled the critical role of safety 

in a programming system, and as such we hope that Zenith is able to be of benefit to the 

Lua development space. 
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