
Zenith: Type Safe, Functional Programming Language for Lua

by

Abhash Shrestha

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2023 by the
Graduate Supervisory Committee:

Gennaro De Luca, Co-Chair

Ajay Bansal, Co-Chair
Yinong Chen

ARIZONA STATE UNIVERSITY

May 2023

 i

ABSTRACT

 This paper introduces Zenith, a statically typed, functional programming language

that compiles to Lua modules. The goal of Zenith is to be used in tandem with Lua, as a

secondary language, in which Lua developers can transition potentially unsound

programs into Zenith instead. Here developers will be ensured a set of guarantees during

compile time, which are provided through Zenith’s language design and type system.

This paper formulates the reasoning behind the design choices in Zenith, based on prior

work. This paper also provides a basic understanding and intuitions on the Hindley-

Milner type system used in Zenith, and the functional programming data types used to

encode unsound functions. With these ideas combined, the paper concludes on how

Zenith can provide soundness and runtime safety as a language, and how Zenith may be

used with Lua to create safe systems.

 ii

ACKNOWLEDGMENTS

I would like to express my deep gratitude to my undergraduate chair and current

co-chair Professor Gennaro De Luca, as well as the rest of the committee, for this

opportunity and for their infinite patience, trust, and feedback throughout the course of

this project. I thank you all not only for reading and providing feedback on this thesis, but

for also teaching the classes that evoked these ideas long before this project began. I also

thank my graduate advisors Wendy Biresch and Wendy Gibson-Wright for their

invaluable guidance and assistance in pursuing this project, this project would likely not

have been possible had it not been for their planning and insights.

Lastly, I would like to thank my family and friends for their encouragement and

advice during this journey, I will always be inspired by you all.

 iii

TABLE OF CONTENTS

 Page

CHAPTER

1 INTRODUCTION .. 1

2 BACKGROUND AND PRIOR WORK .. 3

 Static Typing and Type Safety .. 3

 Functional Programming ... 4

Hindley-Milner Type Systems ... 6

Functional Data Types and Type Classes.. 7

 Effects ... 10

 Totality and Turing Completeness .. 14

3 THE ZENITH LANGUAGE .. 17

 Syntax .. 18

 Type System .. 19

 Functional Programming in Zenith ... 23

 IO and Modules ... 24

4 IMPLEMENTING ZENITH .. 27

5 USAGE AND EVALUATION .. 30

 Evaluation against Errors ... 33

6 CONCLUSIONS ... 36

REFERENCES .. 32

 1

CHAPTER 1

INTRODUCTION

Between statically and dynamically typed programming languages, dynamically

typed languages are a popular choice among developers for short scripts and programs,

thanks to the simplicity and low overhead in their language semantics. However, when

these scripts develop into being larger programs and systems, bugs can quickly arise that

may have not been apparent at smaller scales. These bugs oftentimes may have been

easily caught by a simple static type checking system, and even more can be eliminated

with more sophisticated design choices. Indeed, the static analysis that these type

checking systems can provide are invaluable for reducing runtime errors before a

program even begins. Consequently, a recent trend in programming language

development has focused on providing type safe alternative languages, or typed supersets

of dynamic languages, so that these dynamically typed programs can be extended safely.

As such, this paper introduces Zenith, a type safe, functional programming

language that compiles to and interoperates with the Lua programming language, in the

form of modules. The Lua language is a popular, dynamically typed language, that is

often used in embedded contexts. With no static typing system however, it lacks safety

guarantees that can be found in statically typed language. Zenith is designed to provide

these type safety and runtime guarantees to Lua developers, while introducing minimal

overhead to a Lua environment. Furthermore, since Zenith focuses on the functional

programming paradigm, it utilizes Hindley-Milner (HM) type inference, which allows for

easier developer usage and simpler semantics based on type inference, resulting in less-

 2

error prone programs. Ultimately, the goal of Zenith that is investigated in this paper, is

to approach a total guarantee on runtime safety with modules compiled by Zenith.

To achieve this goal, this paper will lay out the fundamental groundwork behind

Zenith’s design choices in Chapter 2, where we will form an understanding of the prior

work involved in runtime safety, static type systems, and functional programming. We

will also review other notable attempts different programing languages make in providing

safety guarantees. Furthermore, while this paper assumes some knowledge of functional

programming, this paper is intended to be understandable for those not familiar in type

theory and will therefore attempt to summarize and provide intuitions behind notable

types, algorithms, and systems behind the HM type system and Zenith’s. Once we have

established an understanding of these programming language and type system aspects, we

will begin to construct the language of Zenith in Chapter 3. Here, the paper will cover the

design choices by Zenith, based on the knowledge gathered in Chapter 2. Finally, Section

4 will briefly cover the additional implementation details that were not included in

Section 3, for the sake of reproducibility. With this all combined, we will see how Zenith

is able to be a flexible, functional, and most notably safe programming language for Lua.

 3

CHAPTER 2

BACKGROUND AND PRIOR WORK

 The design and implementation of Zenith builds upon the prior work and

commonly known aspects about type systems and safety, as well as functional

programming. The goal of the language is to guarantee a safe runtime, while both

compiling to a dynamic language, and being in used in tandem with the target language.

As such, most aspects regarding implementation are not necessarily novel, but are still

interesting and compelling in the combination of design choices that are used in the

makeup of Zenith. This chapter primarily focuses upon the motivations and tradeoffs

behind those choices. Furthermore, based on the existing state of the art, this chapter will

also attempt to provide a brief understanding of the components considered for and

implemented in the Zenith language. This includes the static typing and type safety

features, as well as functional programming, functional data types and type systems,

effects, and language interoperation. As part of a complete review, we will also briefly

investigate the considered but ultimately rejected features for the Zenith language, being

Turing incompleteness and totality, to understand the reasoning more fully behind these

decisions.

2.1 Static Typing and Type Safety

Static typing is commonly known as the usage of a well-defined type system, such

that the types of different expressions in a program are known to the compiler or type

checker during compile time. This may be implemented in a language’s semantics

 4

through the usage of static type annotations and type inference. With this, statically typed

languages can eliminate incorrect programs before runtime even begins, as well as being

able to include type level abstractions in the language semantics. Indeed, not only does a

static type system check for compile time errors, but it also forces the programmer to

consider potentially erroring components while writing the program. Other benefits of

static typing that are not included in Zenith include deeper code optimizations,

autocompletion, IDE tools, etc. While later chapters will explain more on static typing as

it related to functional programming, we can see already how static typing systems are

the basis of any programming language attempting to reduce runtime errors.

2.2 Functional Programming

Zenith’s strict adherence to the functional programming paradigm is also an

equally important aspect of the language to consider. In a functional programming

language, functions are regarded as first-class, meaning that functions themselves can be

passed and referenced in the same way as other bindings. Furthermore, functions may

accept other functions as a parameter, in what is called a higher-order function.

fn ∶ ∀𝛼∀𝛽(𝛼 → 𝛽)

map ∶ ∀𝛼∀𝛽 (𝛼 → 𝛽) → (𝛼𝑙𝑖𝑠𝑡) → βlist

(1)

As we can see in (1), 𝑚𝑎𝑝 is a higher-order function, that may take a function like 𝑓𝑛 as

an argument, so long as 𝑓𝑛 matches the types necessitated by 𝑚𝑎𝑝. This builds up many

different design patterns, and as such, functional programs are often the composition of

many functions being brought together in this manner.

 5

However, this trait is not entirely unique to functional languages, and many multi-

paradigm or even object-oriented languages include some implementation of higher-order

functions, such as lambdas in Python or Java. What sets functional programming further

apart, is that functional languages follow certain self-imposed constraints, that in

exchange provide for corresponding guarantees. These constraints are that functions must

be pure, and that all values are immutable. Functions being pure in this context denotes

that functions should always maintain the same output give the same set of inputs. As an

example, consider a function like 𝑠𝑖𝑛𝑒, where it will always return the same number

value if given the same input. Conversely, a random number generation function (without

any seed value), may be considered as impure, as the return value cannot be predicted

based on input. With the second constraint, values being immutable is to say that all

values in the program cannot change implicitly throughout the runtime. After being

declared, the value of an identifier is set for its declared scope, and the programmer can

rely on that certainty. For simple primitive type values, this means assigning a new

binding for when a number or Boolean for example is calculated, rather than mutating the

original binding. More complex data types may be copied with new changes when an

update is required, without modifying the original reference, nor the underlying value or

values. Immutability provides a level of clarity and transparency that mutability may not.

In a mutable program, a variable may make a surprising change after being passed

through a function, which can lead to unexpected behavior and errors.

The combination of these constraints allows for programs to be deterministic,

where both the programmer and compiler itself can expect guaranteed outcomes based on

inputs. Nonfunctional, statically typed programming languages may include strong type

 6

systems like Zenith, but the lack of these guarantees is often a shortcoming in protecting

runtime type safety. For instance, in these languages, even after typing checking an object

type at compile time, behavior during runtime may mutate the object structure, which can

cause expected properties of the object to change, causing errors when interacting with

the object.

2.2.1 Hindley-Milner Type Systems

 As seen in certain functional languages, like Clojure, Elixir, or Erlang, functional

programming languages do not need to be statically typed, and indeed the properties of

functional programming do not necessitate any such type system. Similarly, an inverse is

also true; many statically typed languages are imperative or object oriented. However,

when using the two language properties in conjunction, as in Zenith, or other languages

like Haskell (Jones, 2002) and Elm (Czaplicki, 2012), a language can gain interesting and

useful additional capabilities in this intersection.

 To begin, many of these statically typed functional programming languages

follow the type system known as the Hindley-Milner (HM) type system. HM is the

groundwork for many of these successful statically typed functional languages, thanks to

the variety of features in its framework that we can see be elaborated in Mark P. Jones’

paper Functional Programming with Overloading and Higher-Order Polymorphism,

being type security, type inference, flexibility, and ease of implementation (Jones, 1995).

 Type security, or soundness, in HM according to Jones, ensures that the behavior

of a type system is consistent and guaranteed based on the types of a well-typed program.

We can expect a language that has properly implemented HM to have correct values for

 7

bindings based on the type of binding. Furthermore, the type inference that HM provides

is a convenient tool for writing concise programs, without littering the entire syntax with

type annotations and operators. Programmers who do still choose to use additional type

annotations also benefit from type inference applying a consistency check to their code

against the declared type annotation. Regarding type security however, HM is expected to

make conservative assumptions for inference based on annotated bindings. What is

notable here is that we must be sure that the language using the HM system does not

incorrectly infer a type and will prioritize caution over an unsafe inference.

 Flexibility in this context refers to the property of polymorphism in HM, which

enables much of the type level abstractions and safety that Zenith and established HM-

based languages rely on. Polymorphism allows function types and kinds to generalize and

abstract over multiple data types, represented often by a type variable. This contrasts with

monomorphically typed languages, where a function may need to be rewritten in several

implementations to operate on arguments and return values of different types (Jones,

1995). We will see the usage of these polymorphic functions in the next section covering

functional data types, where polymorphism will assist these abstract data types in

covering a wider range of types more concisely.

2.2.2 Functional Data Types and Type Classes

 Functional programming languages are generally split into two different

methodologies, beyond static and dynamic typing. These are languages that (attempt to)

adhere to the purity constraint of functional programming, like Haskell and Elm, and

languages that do not, such as Scheme and Erlang. Languages that do not are allowed to

 8

perform an arbitrary degree of different side effects, such as IO. This may make code

easier to write at first but can introduce unexpected behavior when calling and composing

functions. On the other hand, of course, most “pure” functional languages often still need

to perform some degree of side effects and IO to be observable and do anything of

practical use. However, designers of these languages are still able to eliminate much of

the actual impact of performing effects on the language semantics, through the usage of

different functional data types and type classes (Jones, 2007).

Pure functional languages based on HM and other similar type systems often

make use of a similar set of data types, implemented on polymorphic type classes. Type

classes in functional programming define a set of functions that can be performed for a

particular type (Wadler & Blott, 1989). The fundamental type classes discussed in this

paper are often rooted in category theory, dealing with the composition of different

structures, a practice very familiar to functional programmers. However, for brevity, this

paper will forego the detailed category theory concepts behind each type class and data

type and will focus on the practical applications of pertinent structures regarding

functional programming. It should also be noted that the following types may not

necessitate type classes for their implementation, but assuming the semantics of type

classes can make the discussion of their general use more straightforward.

To gain a baseline understanding of the data types relevant to runtime safety, we

begin with a breakdown of the essential functional type classes. To build an

understanding of functional data types, we begin with functors. Functors are an essential

component of many statically typed functional languages. Functional programmers will

be familiar with the 𝑚𝑎𝑝 function, which can be derived from the 𝑓𝑚𝑎𝑝 function used

 9

with the functor type class. Here, the functor type class represents data structures that

possess some value that can be mapped to a different value of the same structure. For

instance, functional languages often consider the common data type 𝐿𝑖𝑠𝑡, as a functor.

Here, 𝐿𝑖𝑠𝑡 α would the type for a list of type α, and 𝑓𝑚𝑎𝑝: (α → β) → f α → β, the

mapping function, would be how that functor 𝐿𝑖𝑠𝑡 α may be mapped to a 𝐿𝑖𝑠𝑡 β, after the

function is applied with an expression like 𝑓𝑚𝑎𝑝 λ𝑥. 𝑥: α (x → β) (𝐿𝑖𝑠𝑡 α). In the

context of this paper, the primary aspect of functors that we take away is how we might

“transform” and encode an underlying type, based on the structure of a type

Monads are a similar data type used in functional languages. To explain, it may be

simpler to begin with types of the necessary functions in a monad (Wadler, 1995).

Unit: ∀α(α → 𝑀 α)

Bind ∶ ∀𝛼∀𝛽(Mα → (α → Mβ) → Mβ)

(2)

It is also worth noting that the names of these functions may differ in implementations,

such as unit being often referred to as 𝑟𝑒𝑡𝑢𝑟𝑛 in Haskell, and bind being the operator >>

= as syntax sugar. However, the function types should remain the same between different

implementations. Regardless, here the 𝑢𝑛𝑖𝑡 function can be understood as a function that

lifts a value into monadic form. For example, for a 𝐿𝑖𝑠𝑡 monad, the value of 𝑢𝑛𝑖𝑡 α

would return 𝐿𝑖𝑠𝑡 α. This is useful to combine with other monadic functions later.

The 𝑏𝑖𝑛𝑑 function, as we can see from the type signature, is a higher order

function that takes a monad of value α, and a function which takes underlying value α to

return value β, and returns a monad β. In this case, it may help to think of the bind

function almost as a combination of 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 and 𝑚𝑎𝑝. Returning to our 𝐿𝑖𝑠𝑡

 10

example, if we choose to bind a 𝐿𝑖𝑠𝑡 𝐼𝑛𝑡 of [1,2,3] with a function converting 𝐼𝑛𝑡 to

[𝐶ℎ𝑎𝑟], we may receive the value "123", equivalent for [′1′, ′2′, ′3′], being each value

mapped to a 𝐶ℎ𝑎𝑟 type, and concatenated together into a 𝐿𝑖𝑠𝑡 𝐶ℎ𝑎𝑟. Contrast this with

the 𝑓𝑚𝑎𝑝 function of functors. If we were to use 𝑚𝑎𝑝 in place of bind here, we would

end up with the value [[′1′], [′2′], [′3′]], the type 𝐿𝑖𝑠𝑡 𝐿𝑖𝑠𝑡 𝐶ℎ𝑎𝑟. Essentially, monads

have enabled us to write a composition between a structure, and a function that

“contributes” to the structure. While the benefits to monads here may seem abstract and

unapparent, we will cover them more in depth in Section 2.2.3.

We cover these data types because of their usage in statically typed functional

languages to model different structures and behaviors. Particularly, we are interested in

how these types abstract over the effects and exception behaviors, to see how they may

be used in providing soundness. Fundamentally, as we have seen here, by abstracting

certain behaviors into the type of a data structure, we can enforce the proper usage and

handling of said behaviors.

2.2.3 Effects

 With the described properties and constraints of functional programming as

mentioned, an issue that arises is how a functional language may model the usage of

effects, such as IO, and in the case of Zenith, exceptions. We briefly established the

foundations for the functional data types that may be used to model such structures, so we

will begin to deconstruct in what manner effects may modeled, such that the semantics of

the language remain “pure”, and so that we can provide additional safety to Zenith.

 11

 In a paper by developers of the Haskell language, A History of Haskell: Being

Lazy with Class, S.P. Jones. describes the progression of Haskell’s effect handling

methods (2007). We see that Haskell eventually decides on the usage of monads to model

effects in a publication by Philip Wadler, Monads for functional programming (1992).

Using our understanding of monads and functional data types, we see here that the

Haskell Committee decide to model a “computation” of type α, under monadic form, as

the 𝑀 α type we are familiar with. Furthermore, as shown in the paper, we can compose

additional functions onto the result of the computation, using the 𝑏𝑖𝑛𝑑 function. For

example, with our computation monad 𝑀 α, the expression 𝑚 ≫= (\𝑥 → 𝑛) has the type

𝑀 β, where β is the resulting type of the higher order function. In an imperative language,

or even in a functional language using let bindings, this “reassignment” of the

computation result value would not be made apparent in the typing of the program, and

the effect of computation would not be visible.

 What this means for a strong type system, and for runtime safety, is that that

encoding values this way makes these otherwise “invisible” effects, like IO, or exceptions

as an Either monad, very apparent in the type signatures of our functions. Furthermore,

given this ability to abstract the existence of effects into our type system, we can ensure

in the semantics of a language that the results of these effects are never ignored by a

program writer, by designing any potentially unsafe standard library function with this

model in mind. Indeed, languages such as Elm, and of course Haskell as we observed,

provide type and runtime safety through this means.

 However, there is still some degree to which runtime safety can be further

improved, which a few select languages attempt to make. For example, in addition to Elm,

 12

the Dhall programming and configuration language all but guarantees runtime safety. As

a brief overview, Dhall is a Turing incomplete language, with a syntax like that of

Haskell’s. Dhall is interestingly specific and concise in its goals, which is to act as a

programmable, but also relatively inert, configuration language. To achieve this, it

completely forbids any side-effects. Note that this is significantly different than

abstracting side-effects with the use of an IO monad. This is in accordance with Dhall’s

stated “marketing” of displacing YAML. It deems that it would be undesirable for a

configuration language to perform arbitrary effects when referencing data from it.

Furthermore, Dhall’s Turing incompleteness generally provides a guarantee that the

program will complete in reasonable time, which is another aspect that developers would

expect from a configuration language. While Dhall’s Turing incompleteness will be

discussed in later sections, these aspects still provide a novel intuition on approaches to

runtime safety. Primarily, Dhall’s usage as a “second language” of sorts allows it to

impose constraints on itself and offer according guarantees. Developers using a less safe

language can migrate aspects of their code configurations to Dhall for more soundness

and rely on the safety of Dhall instead (“The Dhall configuration language”). This aspect

will be the greatest influence of Dhall on the design of Zenith, which we will see in

Chapter 3.

 Focusing back on Elm, despite being somewhat more of a feature heavy language,

Elm still attempts to provide a guarantee on throwing no runtime errors (“A delightful

language…”). While this is not always true in any arbitrary edge-case program, the

remaining types of runtime errors are relatively uncommon occurrences, and not

something we necessarily consider in a formal language (Payr, 2021, p. 17). These

 13

exceptions include out of memory errors, function comparison, and infinite recursion.

While these exceptions can be significant in select programs, we will not focus on out of

memory errors, and for the sake of brevity will forgo allowing function comparison to

take place in our language semantics. We will cover issues with recursion in brief in

Section 2.3.

 Elm follows a similar doctrine as Dhall. It has a concise “market”, in Dhall’s

terms, to be a language for front-end webpages. As such, it is relatively difficult in Elm to

perform arbitrary side-effects outside of this target domain, and effects within are safely

abstracted. Of course, being a Turing complete language, it can be used for different

programs, but pragmatically, within the language semantics, it is designed to implement

those specific set of programs. This allows Elm to reduce the uncertainty involved in

performing IO, and the potential for “silently erroring” during execution. Elm in this

sense is a concise second language, designed to interact with other languages when

developing a more interactive website.

As stated before, realistically, Elm and Dhall can still encounter runtime errors.

But they are still novel and state-of-the-art languages in their effort of preventing them,

as we have seen in their design. Given the similarity between the high-level type systems

employed between Elm, Dhall, and other languages like Haskell, we can understand that

there are still more aspects about a language’s semantics and implementation that can

help prevent runtime errors. In this case, an interesting and novel aspect of Elm and Dhall

that helps them provide more guarantees, is the constraint that they impose upon

themselves on what programs it can compile.

 14

 We will further reason about maintaining a strict language domain in Section 3,

where this paper will cover how Zenith follows a similar principle in its semantics to

tactfully exchange responsibility of execution with Lua. In summary however, the

functional data types that are offered by strong type checking system, as well as

functional purity, allow us to abstract the potentially erroneous effects and exceptions of

a program, into a model that can be deconstructed using strongly typed functions. These

models protect the “edges” of our program that interact with unsafe data and allow us to

achieve greater runtime safety. In chapter 3, we will see how these data types take form

in Zenith and its standard library and see how Zenith is able to protect itself against errors

through these language semantics.

2.3 Totality and Turing Completeness

As an aside to type checking, it is also worth investigating total programming, and

the value, or lack thereof, of Turing completeness and what tradeoffs can be made.

Originally in this research project, considerations were made for Zenith to be a Turing

incomplete language. Turing incomplete languages are generally able to provide a greater

degree of verifiability before runtime. This is due to the property of Turing incomplete

languages being able to “subvert” Rice’s Theorem.

Rice’s theorem (Rice, 1953) essentially states that nontrivial properties of

languages are undecidable (Kozen, 1977). As such, this implies that static analysis of

Turing complete languages is limited to some degree, or is otherwise undecidable as well

(Pickard, 2020). The idea behind many Turing incomplete languages then is to avoid this

problem all together by forbidding the possibility of the halting problem, which Rice’s

 15

theorem proves to be a reduction to. This includes forbidding arbitrary recursion, by

banning it all together, or relying on means such as dependent typing to prove

termination after recursion. As we saw in Dhall, the language takes the approach of

forbidding recursion to achieve Turing incompleteness, guaranteeing its own termination.

However, it is known that while these languages forbid an infinitely long runtime,

they cannot forbid an arbitrarily long one. This is not necessarily a massive flaw in their

design; of course, implementors of these languages are aware of such an issue, but this

speaks more to the aspect of “marketing” in their languages, in Dhall’s terms. We argue

that including Turing incompleteness in a language’s design is a signal or summary of the

goals of a language to potential users, but in of itself is a relatively inconsequential aspect,

excluding dependent typing. A language designer who builds a language that is type safe

and Turing incomplete will be aware and cautious of other safety issues in a language’s

semantics, which is generally what appeals to developers looking for a safe language.

Indeed, the communities behind Turing incomplete languages like Dhall and Idris (Brady,

2013) place a heavy emphasis on safety and soundness. However, in the absence of

dependent typing and other features like hashing in Dhall, we find that Turing-

incompleteness is not particularly useful for a language like Zenith. The only true benefit

to Turing-incompleteness for a basic HM system, appears to be guaranteeing termination.

This is somewhat inconsequential when considering that termination is not itself a

significant guarantee, as it can still allow programs to run for an arbitrarily unlimited

amount of time, which just happens to be predefined. We would also be able to introspect

more into programs before runtime given Turing-incompleteness, but given the exclusion

 16

of side-effects already and usage of HM over dependent typing, there is not much benefit

for this introspection.

In summary, we have researched the various aspects that we will include or

exclude from Zenith, such that Zenith may implement programs that are guaranteed to be

safe during runtime. We primarily investigated how functional languages, and

particularly statically typed, HM languages, protect their runtime by catching errors

during compile time, or force them out of the language semantics all-together. With this

foundational knowledge, we can begin to construct the language design of Zenith

formally.

 17

CHAPTER 3

THE ZENITH LANGUAGE

The language of Zenith, as mentioned prior, greatly resembles the Haskell

language, albeit with simplified semantics. This was chosen due to Haskell’s

predominant role in the functional programming space, and general recognizability to

functional programmers. Furthermore, Haskell’s declaration and module semantics

provide a straightforward mapping to Lua’s module system, because of their relative

similarity in certain use cases, which we can dictate. It also provides a strong foundation

for the implementation of the HM type system that is intended for Zenith.

Section 3.1 will provide the Zenith syntax in Backus-Naur-Form. Section 3.2 will

cover the type system for Zenith, the implementation of HM and typing judgments made,

and the implementation of Algorithm W of HM. Section 3.3 will showcase design of the

Zenith standard library for functional programming and type safety. Finally, Section 3.4

will cover the considerations of Zenith regarding IO, and how Zenith interacts with Lua

as a second language.

 18

3.1 Syntax

 Zenith’s syntax is as follows:

𝑝𝑟𝑜𝑔𝑟𝑎𝑚 ∷= 𝑚𝑜𝑑𝑢𝑙𝑒

𝑚𝑜𝑑𝑢𝑙𝑒 ∷= ℎ𝑒𝑎𝑑𝑒𝑟 𝑏𝑜𝑑𝑦

ℎ𝑒𝑎𝑑𝑒𝑟 ∷= "module" id "where"

𝑏𝑜𝑑𝑦 ∷= 𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 +

𝑑𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∷= 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ∷= 𝑖𝑑 "::" 𝑡𝑦𝑝𝑒𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛

𝑘𝑒𝑦𝑤𝑜𝑟𝑑 ∷= "𝑖𝑓" | "𝑡ℎ𝑒𝑛" | "𝑒𝑙𝑠𝑒" | "𝑑𝑎𝑡𝑎"

𝑏𝑖𝑛𝐹𝑛 ∷= " + " | " − " | " ∗ " | "/"

𝑏𝑖𝑛𝐹𝑛𝐴𝑝𝑝 ∷= 𝑏𝑖𝑛𝐹𝑛 𝑒𝑥𝑝𝑟

𝑏𝑜𝑜𝑙𝑒𝑎𝑛 ∷= "𝑇𝑟𝑢𝑒" | "𝐹𝑎𝑙𝑠𝑒"

𝑖𝑑 ∷= −𝑘𝑒𝑦𝑤𝑜𝑟𝑑 𝑖𝑑𝑆𝑡𝑎𝑟𝑡 𝑖𝑑𝑃𝑎𝑟𝑡 ∗

𝑖𝑑𝑆𝑡𝑎𝑟𝑡 ∷= 𝑙𝑒𝑡𝑡𝑒𝑟 | "_"

𝑖𝑑𝑃𝑎𝑟𝑡 ∷= 𝑎𝑙𝑛𝑢𝑚 | "_"

𝑐𝑠𝑣 ∷= "," 𝑒𝑥𝑝𝑟

𝑙𝑖𝑠𝑡 ∷= "[" 𝑒𝑥𝑝𝑟 𝑐𝑠𝑣 ∗ "]"

𝑎𝑡𝑜𝑚 ∷= 𝑑𝑖𝑔𝑖𝑡 + | 𝑠𝑡𝑟 | 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 | 𝑖𝑑 | 𝑙𝑖𝑠𝑡

𝑒𝑥𝑝𝑟 ∷= 𝑠𝑡𝑎𝑟𝑡𝐸𝑥𝑝𝑟 𝑒𝑛𝑑𝐸𝑥𝑝𝑟

𝑠𝑡𝑎𝑟𝑡𝐸𝑥𝑝𝑟 ∷= 𝑎𝑡𝑜𝑚

𝑒𝑛𝑑𝐸𝑥𝑝𝑟 ∷= 𝑏𝑖𝑛𝐹𝑛𝐴𝑝𝑝 | 𝑒𝑥𝑝𝑟 | 𝜖

𝑡𝑦𝑝𝑒𝐷𝑒𝑐 ∷= 𝑡𝑦𝑝𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔𝑇𝑦𝑝𝑒𝑠 ∗

𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔𝑇𝑦𝑝𝑒𝑠 ∷= "→ " type

𝑡𝑦𝑝𝑒 ∷= 𝑏𝑎𝑠𝑖𝑐𝑇𝑦𝑝𝑒 | 𝑙𝑖𝑠𝑡𝑇𝑦𝑝𝑒

𝑏𝑎𝑠𝑖𝑐𝑇𝑦𝑝𝑒 ∷= 𝑢𝑝𝑝𝑒𝑟 𝑖𝑑𝑃𝑎𝑟𝑡 ∗

𝑙𝑖𝑠𝑡𝑇𝑦𝑝𝑒 ∷= "[" 𝑏𝑎𝑠𝑖𝑐𝑇𝑦𝑝𝑒 "]"

𝑖𝑚𝑝𝑙 ∷= 𝑖𝑑 𝑎𝑟𝑔𝑠 "=" 𝑒𝑥𝑝𝑟

𝑎𝑟𝑔𝑠 ∷= 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 ∗

(3)

 19

In implementation, the grammar of the language is slightly more complex and has

several lower-level definitions, as Zenith does not include a lexing stage. Notably, we

have excluded rules for parsing whitespace. Additionally, it may be noticed how

expressions are split into a start and end expression form, where the starting atom is

parsed, followed by various possibilities of the end expression, such as function

application, or binary function application. This is to assist the recursive descent parser

by factoring out left-recursive grammars, which would otherwise not terminate.

3.2 Type System

 Zenith’s complete type system is an implementation of type inference following

HM, and type assignment using Algorithm W of HM, as described in Principal Type-

Schemes for Functional Programs by Luis Damas and Robin Milner (1982). This section

will provide some brief introduction to understanding any type notation used.

 After simplification, Zenith’s core language essentially becomes a collection of a

function definitions. A function is defined in two parts, through an (optional) type

annotation, and through the value definition, which is the name of the function, followed

by the declared bindings for arguments, and then by the body expression. To begin, we

will look at the core language of expressions, which is almost identical to that given by

Damas and Milner in the first definition of Algorithm 𝑊 (1982) and to the lambda

calculus, with the exclusion of let expressions. Here we define expressions as 𝑒 and the

set of identifiers as 𝑥.

 e ∷= x|e e |λx. e
(4)

 20

With the language in (4), we represent the core functionality of expressions in

Zenith. For example, more complex expressions, like if expressions, are reduced to this

form. Now, the first step in an HM type system, is for it to deduce a type-scheme, in other

words a polymorphic type inference, based on some string from this language. In general,

all types in HM are constructions of constant types like int and bool, or type variables

like α, β, which are combined using type operators. Based on the expression language, we

infer type-schemes based on this logic, which will give us a similar form of 𝑡𝑦𝑝𝑒𝑠 τ, and

of type − schemes σ as the type-schemes paper (Damas & Milner, 1982).

τ ∷= α | ι | τ → τ

σ ∷= τ | ∀ασ

(5)

In (5), we can see constant, primitive types represented as ι, type variables as α,

and a function type as τ → τ. Type schemes map to either a direct 𝑡𝑦𝑝𝑒 τ or a quantified

type scheme, for a type variable α. This is the standard makeup of our language for types.

From here, we collect a set of assumptions about expressions and type-schemes, written

as:

 A ⊢ e ∶ σ
(6)

This can be read as “given a set of assumptions 𝐴, it can be proven that 𝑒 is of

type-scheme σ”. The set 𝐴 here is derived from the standard type inference rules that

Damas and Milner uses (1982), which are rewritten below for our understanding:

 21

 TAUT:

𝐴 ⊢ 𝑒 ∶ 𝜎
 INST:

 𝐴 ⊢ 𝑒 ∶ 𝜎

𝐴 ⊢ 𝑒 ∶ 𝜎

(7)

 GEN:
 𝐴 ⊢ 𝑒 ∶ 𝜎

𝐴 ⊢ 𝑒 ∶ ∀𝛼𝜎
 𝐴𝑃𝑃:

 𝐴 ⊢ 𝑒: 𝜏 → 𝜏 𝐴 ⊢ 𝑒 : 𝜏

𝐴 ⊢ (𝑒 𝑒): 𝜏

 𝐴𝐵𝑆:
 𝐴 ⋃ {𝑥: 𝜏 } ⊢ 𝑒: 𝜏

𝐴 ⊢ (𝜆𝑥. 𝑒): 𝜏 → 𝜏

We exclude the let inference used by the original HM implementation, as in

Zenith let expressions are not a fundamental expression. Regardless, from these inference

rules, the earlier set 𝐴 of assumptions can be derived from arbitrary expressions, by

composing sound inference rules together. In Zenith, the implementation of type

inference is essentially just the translation of these rules to code form.

 The final inclusion in the type system of Zenith is the implementation of

Algorithm 𝑊 provided by Damas and Milner (1982). Algorithm 𝑊 allows our type

system to find a type-scheme σ, such that 𝐴 ⊢ 𝑒: σ, given 𝐴 and 𝑒. Furthermore, the

algorithm will also find a substitution 𝑆 and type τ, such that 𝑆𝐴 ⊢ 𝑒 ∶ τ, where

applying 𝑆 to assumptions 𝐴 allows 𝑒 to be a concrete type τ. To implement the

algorithm, we first follow the unification algorithm 𝑈 by Robinson in A machine-oriented

logic based on the resolution principle (Robinson, 1965). However, we will still

primarily follow the description of the algorithm used by Damas and Milner. Here the

algorithm, given a pair of types τ, τ , either returns a substitution 𝑉 which unifies τ τ , or

if a substitution 𝑆 unifies τ, τ , returns a substitution 𝑅, such that composing the

substitutions together as 𝑅𝑉, equals 𝑆.

 22

After this, the final Algorithm 𝑊 is as so (Damas & Milner, 1982):

𝑊(𝐴, 𝑒) = (𝑆, τ) where the following conditions must be met based on the form of 𝑒:

(i) If 𝑒 is an identifier expression 𝑥, and 𝑥 is included in the set of

assumptions 𝐴, then substitution 𝑆 will be the empty substitution,

returning the same value of 𝐴, and 𝜏 will be the type bound by 𝑥.

(ii) If 𝑒 is the application expression 𝑒 𝑒 , then recursively solve 𝑊(𝐴, 𝑒) =

(𝑆 , 𝜏), for the proper substitutions and types of 𝑒 . Then recursively

solve 𝑊(S 𝐴, 𝑒) = (𝑆 , 𝜏) for return type of the expression after

application of the substitution. Finally, let 𝛽 be a new type variable in the

unification 𝑈(𝑆 𝜏 , 𝜏 → 𝛽) = 𝑉, and return the final substitution as the

composition of substitutions 𝑆 = 𝑉𝑆 𝑆 and the final type as the return

type substitution on the type variable 𝛽, as 𝜏 = 𝑉𝛽.1

(iii) If 𝑒 is the abstraction expression λ𝑥. 𝑒 , then let β represent a new type

variable, and 𝑊(𝐴 ⋃{𝑥 : β}, 𝑒) = (𝑆 , τ), resulting in 𝑆 = 𝑆 and τ =

𝑆 β → τ . This effectively binds 𝑥 in the lambda expression to type

variable β and provides the substitutions to constrain β.

Again, in our implementation we exclude the case of let expressions. Additionally,

an improperly formed expression 𝑒 will result in a compile-time error. Cases like the

identifier expression 𝑒 being unbound will also throw a compile-time error. In summary,

by following the implementation of HM type inference and the type assignment

algorithm 𝑊, we build the foundation of a strong and concise static type checking system

1 In original publication of (Damas, 1982), there is a typographic error in part (ii). I have chosen to correct
this error in this implementation of 𝑊, but correctness of this fix can be contested.

 23

in Zenith. The rest of the work in type checking is trivial, and mainly involves reducing

expressions to sound forms in HM. In actual implementation, much of the code also

follows Typing Haskell in Haskell by Mark P. Jones (2000) for a Haskell translation of

these algorithms. Regardless, with the HM type system in place, Zenith can provide the

additional components of runtime safety that we researched in the prior review, namely

functional data types and classes, which will be covered in the next section.

3.3 Functional Programming in Zenith

 As discussed in the prior research, functional programming is essential in the

pursuit of maintain runtime safety. Much of Zenith’s standard library includes general

purpose functional programming functions. This includes transformers like 𝑚𝑎𝑝, 𝑓𝑖𝑙𝑡𝑒𝑟,

𝑓𝑜𝑙𝑑, various composition operators, and functions to use with type classes like the

Maybe type class. These functions allow for both the manipulation of functional control

flow in place of imperative constructs, as well as for the transformation of immutable

data. This is also a sort of byproduct and benefit to using Zenith that Lua developers may

notice, where Zenith provides additional standard library components.

 Being a functional language, Zenith excludes semantics that violate functional

programming practices, regardless of whether they exist in Lua. Indeed, Zenith primarily

focuses on its own semantics and goals, before including Lua features. For example,

mutable variables are not possible in Zenith, as the language offers no such ability to re-

assign a variable. Most notably, Zenith also enforces purity using the various methods

studied in Section 2. For example, possible exceptions are always wrapped in a Result

type, where a return value is either encoded as the successful value, or an erroring type.

 24

With this, regardless of outcome, the result of the function must be considered at

compile-time, which eliminates the possible of an impure return from functions that may

error. Furthermore, null values are wrapped in a Maybe type, forcing the programmer to

consider nullable values while writing the program, averting the risk of an error

appearing during runtime. These functional data types and similar ones avert most

runtime errors, but similar implementations for IO can still often error or result in

unpredictable behavior, due to the interaction with external systems. IO monads, while a

being a significantly useful tool in managing effects, do not fix the fundamental

uncertainty of IO, and as such are excluded from Zenith itself. This will be explored

further in the next section.

3.4 IO and Modules

 Zenith is designed to work in tandem with the Lua programming language. In fact,

Zenith on its own is not capable of many significant systems, as language semantics

intentionally forgo IO. As we have seen from other runtime safe languages like Dhall and

Elm, by constraining the codomain of a language, we are able to provide safer bounds on

what the language may error upon. Particularly, Elm and Dhall restricting their own

behavior offers more runtime safety than even the IO monad can. While Elm does have

monad like operators, and a monadic Command type for IO, these are still generally

performing effects within Elm’s abstraction of webpages, like HTTP requests or DOM

updates. Elm’s Command type does not provide a means of executing other IO like

accessing local file systems or launching other programs. Furthermore, as we saw in

 25

Dhall, the language completely excludes arbitrary effects and instead operates as what we

saw as a “second language”.

Indeed, this is the same principle guiding Zenith’s approach to effects, where we

choose to exclude side-effects and offload the action of performing IO to the main Lua

program using Zenith. While of course this may result in the greater Lua program being

unsafe, what this allows for is for much of a Lua-Zenith system to be contained in a safe

Zenith “interior”. Developers will know based on the guarantees provided by Zenith’s

implementation that modules and libraries generated by Zenith are safe to use in runtime

and can therefore offload more error-prone systems into Zenith. The responsibility of Lua

in this case becomes simplified, and where the developer needs only to implement the

imperative, IO “shell” of the program in Lua. Giving the uncertainty and flexibility that

IO may introduce, this is a task already well-suited for dynamic languages and Lua, so

long as we do not perform computations on this data before passing it into a Zenith-

generated library.

 By essentially wrapping much of the Lua language, Zenith is also capable of

providing additional benefits to the Lua developer. As mentioned, Zenith builds upon and

extends the Lua standard library with its own. Furthermore, Zenith can ideally abstract

the somewhat fragmented versions of Lua into a centralized form. For example, Lua

tends to be split between the mainline versions of Lua, such as Lua versions between Lua

5.1 to Lua 5.4, and LuaJIT, a fast, Just-In-Time compiler version of Lua. Converting code

between these versions may not always be trivial, due to occasional syntax and semantic

differences, but as an overhead layer, Zenith should be capable of compiling to different

Lua versions. It should be noted however that the initial release of Zenith with this paper

 26

does not include this feature, but we still choose to elaborate feature due to it being a

relatively common feature of superset languages like Zenith, such as Typescript. As such

it is intended to be a future implementation.

 As an aside, Lua includes many notable metaprogramming capabilities, such as

metatables that allow developers to rewrite the semantics behind tables and objects.

While certain aspects of metatables may be considered as mutations and non-declarative,

unsafe code, there may be interesting aspects of metatables to include in Zenith. However,

given the scope of this thesis, this is not explored in this paper.

 With these features of Zenith combined, we have provided a rigorously safe,

functionally pure language that eliminates runtime errors. Zenith provides a strong type

system based on the well-established HM type system, encodes functions to safely handle

and manipulate otherwise potentially erroring values in a functional programming

manner, and integrates with Lua to handle effects and provide guarantees to users of the

dynamically typed language. While edge case conditions exist for Zenith, as they do for

other runtime safe languages, such as memory and resource errors, based on current state-

of-the-art and other attempts at reducing runtime errors from a language semantics

perspective, Zenith is a reasonable and sound approach to providing safety.

 27

CHAPTER 4

IMPLEMENTING ZENITH

This section will briefly cover the programming implementation of the Zenith

compiler. To begin, Zenith is implemented in Haskell. Given their similarity in syntax

and types, this was a reasonable and useful choice in implementation, particularly for

managing the type system. Zenith is parsed using parser combinators, a common function

method of parsing languages. This has some consequences on the language grammar, as

parser combinators are restricted in the grammars they can read. This includes left-

recursive grammars, which are subsequently factored out of Zenith’s lower-level syntax

language. Furthermore, given the usage of parser combinators, the performance of

Zenith’s parsing can be exponentially long, but since this was not a major focus in this

thesis, this issue is not addressed. After parsing, data types are coalesced into the AST

data type.

The parser itself may parse forms that are syntax sugar for more fundamental

forms, so from the AST, the next step of Zenith is to desugar and simplify various forms,

such that they may be accepted by the HM type system. Particularly, functions of

multiple arguments are reduced to a curried form, where each argument is applied

individually, returning the function that accepts the next argument. This is generally

standard behavior for functional language and is also the form that the type system reads

for simplicity. Furthermore, because of the reliance on Lua, the language can circumvent

certain expressions and reimplement them in Lua. For example, if expressions are

reduced to ∀α 𝑐𝑜𝑛𝑑(𝐵𝑜𝑜𝑙𝑒𝑎𝑛, α, α), where 𝑐𝑜𝑛𝑑 is a replacement for if expressions

 28

included in the standard library. This also allows us to be sure that forms we parse as

expressions indeed behave as expressions in the final Lua rendering, rather than an

imperative statement.

The type checking system was already mostly covered in Section 3, but we will

also briefly cover additional implementation details not specified by the HM

implementation. Mainly, the HM implementation primarily focuses on the type inference

and assignment of individual and nested expressions. In our language, we of course need

to extend this behavior to the top-level function definitions and bindings. As such, the

implementation maintains a single rolling environment of type-schemes and bindings for

a module, and sequentially adds each binding and its type-scheme to the environment.

This way, later calls to a top-level function are not unbound. Furthermore, the type

checker must also check whether the type annotation of a function and the type inference

of its implementation match, which we add in this implementation by running inference

on implementation and parsing the annotation into a usable type to compare against.

Finally, given the corrected AST, the Zenith renderer will generate and format the

proper strings of Lua code based on the AST. The renderer keeps a small degree of state

between expressions, to maintain indentation, but does not include some notable features

a renderer may have due to the scope of this paper. Namely, indentation is the only

changing variable in the rendering process, and as such the rendering of functions is

generally one-to-one between expression and Lua string, regardless of context. This

means that the generated string is not formatted based on other expressions that may

appear, which may not adhere to common Lua style guides. This also means that line-

numbers may not necessarily match with the source Zenith code. Also, since Lua is of

 29

course dynamically typed, all type-related syntax is excluded during the rendering

process. Finally, comments and certain whitespace choices by the writer are not retained

during the rendering process.

These choices were mostly made due to the scope of this thesis and may be

included in a more feature complete release of Zenith. However, despite these

shortcomings, the implementation of Zenith is still generally robust, and adheres to the

choices made in the language design.

 30

CHAPTER 5

USAGE AND EVALUATION

 As a demonstration of the capabilities of Zenith, as well as an overview of the

workflow using the language, we will briefly cover examples of two libraries developed

using Zenith. In total, these programs should cover the basic features of Zenith, as well as

components of the standard library. To begin with a smaller program, we first look at the

following Zenith code:

Figure 1

Code of Zenith Syntax and Types

addMaybe :: Number -> Maybe Number -> Maybe Number

addMaybe x my = mapMaybe (\y -> x + y) my

unsafe :: Number -> Maybe Number

unsafe n = n / 0

test1 = addMaybe 1 (Just 2)

test2 = addMaybe 1 (Nothing)

test3 = addMaybe 1 (unsafe 1)

 In this code example, despite being a somewhat trivial program, we see how

Zenith may be used to abstract and compose unsafe functions and other functions

together. Zenith by default returns a 𝑀𝑎𝑦𝑏𝑒 𝑁𝑢𝑚𝑏𝑒𝑟 type for division, meaning that we

do not encounter any unexpected behavior when dividing by 0. Being a 𝑀𝑎𝑦𝑏𝑒 type, we

can then map the underlying value further, and derive new values through this way.

 31

Figure 2

Code of List Operations and Recursion in Zenith

-- Fibonacci Number

fib :: Number -> Number

fib 0 = 0

fib 1 = 1

fib n = (fib (n - 1)) + (fib (n - 2))

-- List Operations

concat :: List a -> List a -> List a

concat Nil bs = bs

concat as Nil = as

concat (Cons a Nil) bs = Cons a bs

concat as bs = Cons (unsafeHead as) (concat (tail as) bs)

filter :: (a -> Boolean) -> List a -> List a

filter p Nil = Nil

filter p (Cons a as) = if (p a) then (Cons a (filter p as))

else (filter p as)

-- QuickSort

qsort :: List Number -> List Number

qsort Nil = Nil

qsort (Cons x xs) = (concat

(concat (qsort (filter (< x) xs))(Cons x Nil))

(qsort (filter (>= x) xs)))

 32

In the provided code in Figure 2, we see a more non-trivial example of Zenith,

where we use a more complete set of its features to build a program. As a brief

introduction to recursion in Zenith, we reference the Fibonacci sequence algorithm. With

recursion, in both Zenith and many functional languages, much the language design

focuses on pattern matching, where we can elaborate the base and special cases of

recursion through various patterns, as we can see in the 𝑓𝑖𝑏 function.

More notably however is the implementation of the quick sort algorithm, using

various list operations. To begin, the Zenith standard library packages the 𝐿𝑖𝑠𝑡 data type,

which itself represents either a pair, as 𝐶𝑜𝑛𝑠, or the empty list as 𝑁𝑖𝑙. Lists are then

formed as conjoined sequences of these pairs, essentially forming a linked list data

structure. As such, we can implement the 𝑐𝑜𝑛𝑐𝑎𝑡 function in the recursive manner shown.

Filter is implemented in a similar method, recursively applying a higher order function to

the list values, in order to evaluate the condition. Finally, we compose these functions

together to form the recursive quick sort function, where we filter lower and higher

values of a list and concatenate their sorted result together. Also, as a note on the use of

𝑢𝑛𝑠𝑎𝑓𝑒𝐻𝑒𝑎𝑑 in this section, normally, the head function will return a 𝑀𝑎𝑦𝑏𝑒 type. For

brevity however, this figure utilizes 𝑢𝑛𝑠𝑎𝑓𝑒𝐻𝑒𝑎𝑑 for direct access to the List head.

To some degree, these example programs are still relatively simple, and are

somewhat constrained by the current implementation of Zenith, and its limited standard

library. However, we can also see how we are able to use Zenith to compose functions

and programs of increasing complexity. From the implementation of List, Maybe, and

other data types, along with Zenith’s basic functionality, we are provided a foundational

basis for the well-typed lambda calculus, and as such we can develop reasonably similar

 33

programs. In the next section, we will evaluate Zenith’s current implementation, against

its goals of reducing runtime errors.

5.1 Evaluation against Errors

So far in this chapter, we have seen how Zenith is a rudimentary but type safe and

functional language. However, based on this usage, it is prudent to evaluate the extent to

which Zenith accomplishes its goal of eliminating runtime errors. To begin, it is

necessary to elaborate the domain of runtime errors that we evaluate upon. Different

languages and systems abstract runtime errors in unique ways, and as such may have a

variety of runtime exception categories. Since Zenith is specifically focusing on the Lua

programming language, we will first need to identify the categories of Lua runtime errors.

However, the first issue we encounter is that Lua does not provide a centralized

document or structure of the different exceptions in the language, such as the exception

hierarchy class in the Python documentation (Python Software Foundation). Being

frequently included in embedded contexts, Lua does not necessarily operate its own well-

defined exception handling system. Rather, when an error is raised, Lua returns control to

the host program, which can then react to the error. In the case of the Lua standalone

interpreter, this may be a response such as printing out the error, a stack traceback, or

some call to a C function. Because of this ambiguity, we will instead roughly follow the

exception hierarchy that Python provides as a rough outline of the classes of exceptions

that a dynamically typed language may encounter, and then adjust for Lua’s semantics

when necessary.

 34

Following the hierarchy, exceptions are divided into the various categories they

might appear as, such as arithmetic errors and import errors. In this paper, we will group

these categories by how Zenith may secure these errors, or by how Lua already

eliminates them. First, we can safely ignore consideration for errors that are not present

during runtime, and for errors that are not possible in static languages.

Table 1

Runtime Errors in Zenith and Lua

Error type Example Lua Zenith

Arithmetic Error 1/0 𝑖𝑛𝑓 𝑀𝑎𝑦𝑏𝑒 type

Attribute Error local x = 1
x.insert(2) Error Type checked

Assertion Error assert(n==3,‘msg’) Error N/A

Import Error require(‘invalid’) Error N/A (IO)

Lookup Error local x = {1,2,3}
print(x[10]) 𝑛𝑖𝑙 𝑀𝑎𝑦𝑏𝑒 type

Memory Error Stack overflow Stack overflow

Name Error 10 + x Error Type checked

OS Error os.remove(‘invalid’) Error N/A (IO)

Recursion Error Stack overflow Stack overflow

 As we see, Zenith is mostly capable of securing the runtime errors present in Lua,

particularly regarding types and data, and the means of accessing data. Furthermore, Lua

may return unsafe or unexpected values like 𝑛𝑖𝑙 in specific cases. In these cases, we see

 35

how Zenith may abstract this behavior more safely, into a functional data type. However,

we can also see that Zenith does not provide much protection regarding IO, which we

may expect from the design of Zenith relying on Lua for IO. In regard to Zenith’s own

safety, we see that the single remaining class of runtime errors are memory related, being

memory errors and recursion errors. In earlier chapters, we made the decision to provide

a Turing-complete language over an incomplete one, so therefore the presence of

recursion and out of memory errors is the natural tradeoff.

 However, Zenith does introduce its own unique form of error, where a developer

may provide incorrect type annotations for an external Lua function. At the moment,

Zenith has no capability for verifying these external annotations. An incorrect annotation

may be considered as a logical error but may indeed throw a runtime error depending on

the incorrect type. Additionally, Zenith contains a small number of bugs in its current

implementation. Most notably, pattern matching is not checked for exhaustiveness.

Therefore, it is possible to match on a non-existent case, where in the absence of a default

case, will cause a runtime error. However, while this issue is significant and will not be

detected by the compiler, it can be mitigated by including a default case where pattern

matches appear. Furthermore, as mentioned in Chapter 4, the renderer for Zenith to Lua

is relatively basic. An untested issue that may arise is the possibility of namespace

collisions between variables, after the compiling process, which may lead to runtime

errors. Despite these issues however, based on their infrequency, and from the example

programs and errors that Zenith secures, we evaluate that Zenith is a reasonable approach

to providing runtime safety for Lua.

 36

CHAPTER 5

CONCLUSIONS

 Zenith provides a functional, concise, and most importantly safe means of writing

Lua code that may be otherwise unsafe, by using the ideas and work grounded in type

theory, functional programming, and language design. By making guided decisions while

following these concepts and understanding when to make tradeoffs in the case of

Turing-completeness, this paper introduces a programming language uniquely capable of

providing safety to the Lua language. While programming in Zenith, writing code and

modeling safe systems are all one and the same, and the Zenith programmer can be

assured that if the program compiles, it will indeed not error based on the errors we

evaluated.

 However, there is still a significant amount of future work that may be conducted

regarding Zenith. For example, dependent typing, as mentioned, was a notable

consideration for the language that did not make it to implementation but would further

allow for safety constraints on a program, using its type system. Dependent typing was

largely avoided due to the complexity it tends to add to languages, but novel approaches

may be possible when considering Zenith’s design as a “second language”. Furthermore,

this paper was largely theoretical and abstract, laying out the groundwork for Zenith to be

built upon. However, a programming language is much more than just its design. More

work can be investigated into language tooling for Zenith, and greater optimizations can

be added into the core compiler and type checker itself. Additionally, a key component

that was left out of early consideration for Zenith was usage of the LuaRocks package

 37

manager. Languages like Elm exclude much of the community package manager system

for their base language, but other languages like TypeScript add support for the common

package managers through community efforts. This is a notable decision for Zenith to

make in the future, and work can be done on justify whichever choice to make.

 Regardless, what this paper hopes to show through this project and review is how

we can utilize functional programming and static typing principals to secure a language’s

runtime and handle the challenges of unsafe code. In addition, the Zenith language is an

exploration of secondary languages, and how programming systems can benefit from a

separation of responsibilities. In Zenith, these ideas have filled the critical role of safety

in a programming system, and as such we hope that Zenith is able to be of benefit to the

Lua development space.

 38

REFERENCES

A delightful language for reliable webapps. (n.d.). Retrieved April 1, 2023, from
https://elm-lang.org/

Brady, E. (2013). Idris, a general-purpose dependently typed programming language:

Design and implementation. Journal of Functional Programming, 23(5), 552-593.
doi:10.1017/S095679681300018X

Czaplicki, E. (2012). Elm : Concurrent FRP for Functional GUIs.

Damas, L., & Milner, R. (1982). Principal Type-Schemes for Functional

Programs. Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 207–212. Presented at the Albuquerque,
New Mexico.

Dhall configuration language. (n.d.). Retrieved April 1, 2023, from https://dhall-lang.org/

Jones, M. P. (1995). Functional Programming with Overloading and Higher-Order

Polymorphism. Advanced Functional Programming, First International Spring
School on Advanced Functional Programming Techniques-Tutorial Text, 97–136.
Berlin, Heidelberg: Springer-Verlag.

Jones, S. P. (ed.) (2002). Haskell 98 Language and Libraries: The Revised Report.

http://haskell.org/

Jones, S. P. (2007, June). A History of Haskell: being lazy with class. The Third ACM

SIGPLAN History of Programming Languages Conference (HOPL-III).

Kozen, D.C. (1977). Rice’s Theorem. In: Automata and Computability. Undergraduate

Texts in Computer Science. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-85706-5_42

Payr, L. (2021). Refinement types for Elm. Linz : Research Institute for Symbolic

Computation (RISC).

Pickard, Gabriel. (2020, November). Programming languages shouldn’t and needn’t be

Turing complete.

Python Software Foundation. (n.d.). Built-in exceptions. Python documentation.

Retrieved April 19, 2023, from https://docs.python.org/3/library/exceptions.html

Rice, H.G. (1953). Classes of recursively enumerable sets and their decision

problems. Transactions of the American Mathematical Society, 74, 358-366.

 39

Wadler, P. (1995). Monads for functional programming. NATO ASI PDC.

