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ABSTRACT

Machine learning advancements have led to increasingly complex algorithms, re-

sulting in significant energy consumption due to heightened memory-transfer require-

ments and inefficient vector matrix multiplication (VMM). To address this issue,

many have proposed ReRAM analog in-memory computing (AIMC) as a solution.

AIMC enhances the time-energy efficiency of VMM operations beyond conventional

VMM digital hardware, such as a tensor processing unit (TPU), while substantially

reducing memory-transfer demands through in-memory computing. As AIMC gains

prominence as a solution, it becomes crucial to optimize ReRAM and analog crossbar

architecture characteristics.

This thesis introduces an application-specific integrated circuit (ASIC) tailored for

characterizing ReRAM within a crossbar array architecture and discusses the interfac-

ing techniques employed. It discusses ReRAM forming and programming techniques

and showcases chip’s ability to utilize the write-verify programming method to write

image pixels on a conductance heat map. Additionally, this thesis assesses the ASIC’s

capability to characterize different aspects of ReRAM, including drift and noise char-

acteristics. The research employs the chip to extract ReRAM data and models it

within a crossbar array simulator, enabling its application in the classification of the

CIFAR-10 dataset.
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Chapter 1

INTRODUCTION

Machine learning (ML) has gained significant prominence within the continually

evolving domain of engineering. Due to the increase in algorithm complexity, en-

gineers are becoming more commonly faced with the problem of computationally

expensive machine learning. Advanced ML algorithms are known to consume a large

amount of energy over the long period of time that it takes to train these models

[1, 2]. There are many factors causing more energy consumption in ML, but a root

cause is the constant transfer of data between separated memory and compute mod-

ules [3, 4, 5, 6]. As ML algorithms become more advanced, so do the memory-transfer

requirements for performing computations on the data. Furthermore, repetitive ma-

trix computations must be performed on increasingly large amounts of data, further

increasing time-energy costs [5, 7].

These challenges have motivated architects to design more optimal methods and

hardware architectures for ML work-loads. Most solutions suggest parallel digital

architectures for ML acceleration. Parallel hardware architectures are useful for ML

due to the parallel nature of matrix multiplication, which is the key ML operation.

Using the highly parallel graphics processing unit (GPU) and tensor processing unit

(TPU) architectures for training and classification has become a popular solution

[8, 9]. Because of the success of GPUs and TPUs in ML, most advanced ML models

are no longer trained using CPUs exclusively [1].
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1.1 Resistive Crossbar Arrays

Beyond digital accelerators, a resistive crossbar array can perform vector-matrix

multiplication (VMM) operations in the analog domain. Crossbar arrays are useful

as multiplication can be done at the circuit level by multiplying a voltage across

a resistor (Ohm’s law) and addition can be performed by summing currents on a

single node (Kirchoff’s current law). In the case of a VMM operation, the target

matrix can be programmed into the array of resistors while the vector values can be

supplied by voltages on the rows. The output vector is then realized as the sum of

the parallel currents at the end of each column (Figure 1.1). The matrix values for

a resistive crossbar VMM are usually represented by the conductance of the resistors

since I=VxG. Hence, Figure 1.1 labels the resistors with their conductance.

Figure 1.1: VMM crossbar array circuit illustration

Emerging non-volatile memory technologies, referred to as resistive random access

memory (ReRAM), may be used as the tunable resistors in Figure 1.1. ReRAM has

the ability to finely tune and retain a specific conductance state. The conductance of

a ReRAM device is changed by applying voltage pulses across the device. Increasing

the conductance of the device can be done by applying a voltage pulse to the top

electrode (TE) of the device; this is also known as set operation. Likewise, a reset
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operation, to decrease the conductance, is done by applying a voltage pulse to the

bottom electrode (BE) of the device.

Using ReRAM in a crossbar array allows for a weight-stationary operation, known

as in-memory computing (IMC). IMC is useful in the context of ML as it eliminates

significant data movement, ultimately leading to higher energy efficiency [10, 11].

While digital domain calculations are discrete and repeatable, these analog in-memory

computing (AIMC) computations are performed in a mix of the analog and digital

domains, and typically have a reduced accuracy due to device-level noise and vari-

ability. Specifically, for analog resistors such as ReRAM, device-level variability and

noise degrade the accuracy of neural network inference. The impact of this variability

depends heavily on the workload being run.

In a crossbar array architecture, it is most common to implement a transistor

in series with each ReRAM cell as a ”select” switch for the memory-cell or bit-cell.

This crossbar array configuration is known as 1-transistor 1-resistor (1T1R). These

arrays can be integrated onto an application specific integrated circuit (ASIC) and

controlled by test equipment or specified interfacing hardware. In the case of mixed

digital/analog interfacing hardware, digital to analog converters (DACs) can be used

to provide input voltages and analog to digital converters (ADCs) can be used to

convert the result into a digital format.

1.2 Background

ReRAM crossbar arrays have been explored in the past. Most previous work

consists of neural network inference simulations. However, more recently, some groups

have begun experimenting with this technology in hardware. Below a few of the most

notable implementations of the crossbar array are discussed.
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1.2.1 ’In-Memory Computing with Memristor Arrays’ [12]

In a 2018 paper titled ’In-Memory Computing with Memristor Arrays,’ Li et al

introduces an integrated circuit (IC) containing a 1T1R array of 128x64 Ta/HfO2

ReRAM devices [12]. A figure illustrating a simple 1T1R cell from Li’s paper is

shown in Figure 1.2. A PCB, probe card, and MATLAB programming are used to

Figure 1.2: Li et al’s 1T1R cell illustration [12]

interface with their chip. They implement transimpedance amplifiers (TIA) at the

end of every column to convert the current into a voltage. These voltages can be

fed back into different rows in the case of a multi-layered neural network, or used to

measure the current from the column.

The paper describes a current-limited pulse programming procedure. When pro-

gramming the ReRAM device starting from a lower conductance (set operation), the

pulse voltage is applied to the TE and the current is limited by a pulse to the gate

of the series transistor. The magnitude of the pulse voltage is strategically picked to

limit a precise amount of current based on the voltage-transfer characteristics (VTC)

of the transistor. With this programming technique, the series transistor limits the

current through the ReRAM device and, by consequence, the resulting conductance of

the device is associated with the applied gate voltage. In the case of a reset operation,

the authors first reset the device past the target conductance by applying a pulse only

to the BE of the device. They then set the device using the set technique previously
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described. Using this programming technique allows the devices to be programmed

into a target conductance range using at most only two voltage pulses. The authors

do not go into details on the precision of this programming technique or the noise

stability of the devices afterwards.

The authors demonstrate their ReRAM devices functioning properly as mostly-

linear resistors within an operating range of 0V to 0.2V. Figure 1.3 shows a voltage

sweep of all of their working devices at several different conductance levels. In addition

Figure 1.3: Li et al’s ReRAM voltage sweep [12]

to their linear functionality, the paper demonstrates the stability of the ReRAM

conductance states from 250uS to 900uS over a period of six and a half hours. This

data from the paper is shown in Figure 1.4. Note, there are many conductance levels

shown in this single plot so it is difficult to visually detect when the conductance

levels overlap with each other. Hence, the figure does not portray any information on

the noise of these devices.
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Figure 1.4: Li et al’s ReRAM conductance vs time measurement [12]

The main goal of their paper was to use their chip to demonstrate in-situ training

in a ReRAM array. The authors trained their array on the Modified National In-

stitute of Standards and Technology (MNIST) dataset. Their model is implemented

using a two-layer neural network with positive/negative differential weights. After

training, their model placed MNIST samples with 91.71% accuracy (roughly 2.4%

from ideal). They demonstrate this data by plotting the ideal and experimental ac-

curacy versus number of training samples (shown in Figure 1.5). Their experimental

results fluctuate between 2%-4% from ideal.

This paper has successfully implemented an image processing ML algorithm onto

a IC developed with the analog ReRAM crossbar array. The authors have demon-

strated the effectiveness of analog ReRAM crossbar arrays for ML, achieving accuracy

within almost 2% from ideal. However, one key aspect to in-situ training, as is used in

this paper, is that non-idealities of the ReRAM and the array structure are automat-

ically diminished during training. Realistically, chips such as these should be able

6



Figure 1.5: Li et al’s neural network classification results [12]

to have weights from already trained networks programmed into the ReRAM cells

for inference. To achieve this, further research must be done on the non-idealities of

ReRAM and issues with various implementations of the crossbar array architecture.

Further, the authors mention an 11% failure rate of their ReRAM device which should

also be improved upon.

1.2.2 ’Reinforcement learning with analogue memristor arrays’ [13]

The previous paper has shown the feasibility of ReRAM crossbar arrays for in-

situ supervised learning image processing scenarios [12]. In this subsection, we delve

into a 2019 paper, authored by Zhongrui Wang et al, that adopts a novel approach

to ReRAM crossbars by employing in-situ reinforcement learning (RL) [13]. RL is

a branch of ML that allows a model to learn by interacting with an environment

and receiving differently weighted rewards for making good or bad decisions. It is

commonly used to train neural networks to play games, such as chess.
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For this demonstration, the authors use an 128x64 1T1R ReRAM array and they

interface with the array by generating signals off-chip. The array is partitioned into

three distinct sections to allocate their network layers. The authors illustration of the

array and layer allocation is shown in Figure 1.6. For programming, the authors use

Figure 1.6: Wang et al’s 128x64 1T1R layer allocation [13]

Figure 1.7: Wang et al’s ReRAM programming procedure [13]

the same current limiting technique as described in the previously discussed paper [12].

Wang et al demonstrate this two pulse procedure in their supplementary information

and it is illustrated here in Figure 1.7. The waveform on the left shows a reset pulse

in preparation for a set. They hold a strong gate voltage of 3V for the reset pulse and
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perform the actual pulse by applying -2.5V on the TE of the 1T1R cell. The current

measurement of the waveform verifies the conductance has been reduced to near zero.

The waveform on the right demonstrates the set pulse which occurs directly following

the reset pulse. The conductance is determined by the applied gate voltage. In this

particular case, the authors use 1V for the gate voltage. When the 2V set pulse is

applied to the TE, the current through the cell jumps up, implying the conductance

has been increased.

The authors experiment with two separate common RL problems: the cart pole

game and the mountain car game. The goal of the cart pole game is to keep a pole

balanced in a cart by moving the cart back and forth as the pole begins to sway. The

game ends when the pole falls over. In the case of RL, for each state of the game,

the neural network outputs a control: either right or left. The inputs to the neural

network are the single-dimensional position of the cart, the velocity of the cart, the

angle of the pole, and the angular velocity of the pole. In the mountain car game, the

goal is to drive up a large mountain by driving the car back and forth between two

mountains to build up momentum. The control outputs from the RL neural network

are again either left or right for this game and the inputs to the network are the

single-dimensional position and velocity of the car. A borrowed illustration of the

cart pole game and the mountain car game are shown in Figure 1.8. We will only

analyze the results of the cart pole game.

The author’s results for the cart pole game are shown in Figure 1.9. The four

curves shown in the figure represent their simulated results with 0 µS, 4 µS, and 8 µS

noise applied to their model as well as the result from their actual experiment. The

graph plots the number of rewards earned by the RL model versus the number of

training epochs the model has undergone. For each discrete time step, their model

receives a binary reward of 1 as long as the pole has not fallen past a set angle and

9



Figure 1.8: Wang et al’s cart pole and mountain care games illustration [13]

Figure 1.9: Wang et al’s cart pole game results [13]

the cart has not run into the wall, and it receives a 0 otherwise. When the model is

rewarded a 0, the simulation restarts from the beginning. In other words, the number

of rewards earned by the model is equal to the number of discrete time steps the

model successfully maintained balance of the pole. Many discrete time steps may

occur in a single epoch. The red curve from the figure is their ideal curve with no

noise while the blue and green curves simulate 4 µS and 8 µS of noise. The black

curve shows the actual experimental results. The similarity between the blue and

black curves indicate that 4 µS is a good estimation for device noise. The results
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show that the model started finding success around 30 epochs.

This paper has demonstrated the possibilities of using reinforcement learning in

ReRAM crossbar array circuits. The authors found success in training a network of

ReRAM to play a simple game using reinforcement learning techniques. They have

also provided more insight on the two-pulse ReRAM programming procedure. Like

the Li et al paper, this paper is a good demonstration on the effectiveness of in-situ

training in ReRAM crossbar arrays and it is unique in the sense that it was used for

reinforcement learning.

1.2.3 ’Thousands of conductance levels in memristors integrated on CMOS’ [14]

Another key paper, published in 2023 demonstrates the ability for ReRAM to have

up to 2048 discrete, non-overlapping conductance levels [14]. The authors point out

that it is difficult to perform in-situ training for datasets that have been previously

trained. Rather, it is much more practical for weights should be downloaded and

programmed into the ReRAM array for inference. As pointed out previously, the

non-idealities of ReRAM are minimized when training in-situ. Thus, when in-situ

training is not used, the importance of ReRAM stability becomes critical. This

paper emphasises a denoising technique used to drastically increase the stability and

precision of ReRAM such that up to 2048 discrete conductance states can be realized

without noise overlap.

The paper uses a 256x256 array of devices for experimental results. Figure 1.10

shows their graph of a single device programmed to 2048 different conductance levels.

They illustrate this by sweeping the read voltage across the device at each different

conductance level and plot them all on the same graph. Note they expanded a small

portion to show none of the curves overlap at any point during the sweep. One

other interesting detail the authors included in this figure is the 256x256 heat map.
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Figure 1.10: Rao et al’s 2048 conductance levels sweep [14]

They split the array up into 64 separate 32x32 blocks and program each block to

a different conductance level to show that their entire array can be programmed to

specific conductance levels.

To achieve the level of ReRAM precision shown in the data above, they used a

denoising procedure to minimize the noise of the device after each program. In Figure

1.11, they show the noise on a device before and after the denoising process. In this

experiment, the authors first measured the current through a device continuously at

0.2V immediately following programming (blue). They then did the experiment again

but this time added in their denoising technique before measuring the device (red).

The results show a significant decrease in the noise of the device.

The authors theorize that the discrete noise levels are caused by incomplete con-

ductance channels in the device. Occasionally, current will leak through these in-

complete channels causing the current measurements to jump around. The proposed
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Figure 1.11: Rao et al’s reads before and after denoise [14]

denoising solution is to use low magnitude biphasic pulses (one positive pulse followed

by a negative pulse) to smooth out the incomplete conductance channels. However,

sometimes the biphasic pulses can cause the devices to fall out of the desired target

range; thus, a more complicated programming algorithm is required. The authors

included a more detailed explanation on their precise programming algorithm in the

supplementary information for their paper.

In Figures 1.12 and 1.13, the authors used conductive atomic force microscopy

(C-AFM) to help visualize the conductance channels of a ReRAM device on a heat

map. In both figures, the incomplete channel is circled. Figure 1.12 shows an example

of an incomplete channel that was removed by denoising, and Figure 1.13 shows an

example of an incomplete channel that was completed by denoising.

Due to device noise, there is a limit on how many discrete conductance levels can

be achieved. The authors point out that, up until this point, no published results have

shown more than 200 discrete, stable conductance states. This paper demonstrates
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Figure 1.12: Rao et al’s denoising removing incomplete channel [14]

Figure 1.13: Rao et al’s denoising completing incomplete channel [14]

over 2,000 conductance states are possible when a proper programming technique

is implemented. These results will allow more researchers to begin exploring this

denoising technique or various types of ReRAM and lead to more accurate neural

network inference in analog crossbar arrays.
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1.3 Need for Characterization

The recent research on ReRAM crossbar arrays has revealed the potential for

a wide range of applications, including neuromorphic computing and non-volatile

memory. However, as ReRAM technology advances, the need for improved charac-

terization of both the arrays and the individual ReRAM cells becomes increasingly

apparent. This need is driven by the inherent challenges in crossbar array architec-

tures, including parasitic effects, analog-to-digital conversion issues, and the intricate

interplay of nanoscale resistive switching mechanisms. These complexities are cru-

cial to address as they directly impact the array’s operational accuracy, stability,

endurance, and the unique switching behaviors of individual ReRAM cells. Addition-

ally, it is difficult to accurately predict the impact of device variability and noise on

the accuracy of neural network inference based on one or a small handful of devices.

Hence, it is important to comprehensively characterize a statistically significant set

of ReRAM devices in order to predict the IMC system’s viability.

This thesis introduces an ASIC designed to cater specifically to the rigorous de-

mands of characterizing ReRAM at a substantial scale, with a particular focus on the

intricate crossbar array architecture. This dedicated ASIC endows us with excellent

control over the crossbar array, allowing us to pulse individual devices and interface

with it on the digital level. This digital-level interfacing capability empowers us to

conduct rapid and extensive measurements, providing a versatile and comprehensive

tool for researchers and engineers as we navigate the complexities of this promising

technology. Additionally, our ASIC has been designed to accommodate various types

of ReRAM, enhancing its versatility and making it an even more valuable character-

ization tool. The results of this thesis focus specifically on an array of TaOx-based

ReRAM devices.
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Chapter 2

CAIRN DESIGN

2.1 Top Level Functionality

One of the key design details of the ASIC featured in this research, named Cairn, is

its 2.5D architecture capable of supporting multiple types of ReRAM. With this 2.5D

architecture, a control ASIC is layered on top of an interposer, which is populated with

ReRAM devices. The benefit of this layered architecture is we can fabricate the ASIC

and the interposer separately, and if design changes need to be made, they are only

made to the layer that requires the change. Hence, Cairn enables the characterization

of different types of ReRAM with the same ASIC design. The interposer size defines

Figure 2.1: Interposer floor plan
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the main chip area while the control ASIC is bump bonded on top of it. Figure 2.1

shows the floor plan for the interposer. The micro-pad area, seen in the figure, is

where the ReRAM devices are deposited on the interposer. Connections are made

between the ReRAM and ASIC through the bump bonds. The test structure block

consists of an isolated 2x10 array of ReRAM devices for post-process testing. These

devices do not have internal connections to the ASIC and cannot be tested using the

interface.

Cairn contains 32x32 array-size architecture with 32 analog input pins for row

input voltages. At the end of every column is a 10-bit current-based ramp ADC.

The most significant bit (MSB) for every current is determined by the polarity of

the current while the remaining 9 bits are the current magnitude. The ADC uses

a 512-clock ramp to determine the 9 bits of magnitude. Once the current has been

converted, the data for all 32 columns is stored into a 320-bit register (10 bits for

each column). The user can then serially read the data out of the register for data

analysis. A block diagram is shown in Figure 2.2 to illustrate how the different parts

of the chip work together.

Figure 2.2: Cairn architecture block diagram
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Bits Name Description

0-31 C[0:31] Column selects

32-63 R[0:31] Row selects

64 SLER Select erase - configures bit-cell for reset

65 SLPR Select program - configures bit-cell for set

66 SLBID
Select biphasic direction - 0: reset → set; 1: set → reset

(when SLER=SLPR=1)

67 SELGT Select gate - allows gate to be pulsed for 3-terminal devices

68 ETRGBP Enable trigger bypass - makes pulse width equal to TRG width

69-73 DLY[0:4] Delay - pulse width delay stages (32 selections)

74 SELVI Select Vin - enables switches connecting Vins to array

75 ESALL Enable shunt all - enables the shunt switches

76 SILM
Select current limit - 0: disables NMOS pullup for reset pulses

(this allows for the PMOS to set a current limit)

77 EV Enable voltage - enables the TIA to wire bond pad

78 EDR Enable direct read - connects the column to wire bond pad

79 RD Read - connects column connection to current-based ADC

80 STOF
Select transmission gate offset - connects Vins to VREF

(for offset calibration)

81 EADCRCK Enable ADC ramp clock - 0: manual clock; 1: internal clock

82 ENADC Enable ADC - turns on ADC circuitry

83-85 SLI[0:2] Select current - selects current ranging in current comparator

86-88 SLIB[0:2] Select current bit - selects current bit division steps

Table 2.1: List of Cairn configurations

The ASIC has circuitry to support different configurations of the array. This

18



circuitry can be controlled by changing bits in an on-chip configuration register that

is written through a serial interface. Changing the configurations allows the user to

select/deselect ReRAM cells in the array and shunt the ReRAM devices. It also allows

the user to configure the internal pulser to apply voltage pulses across the ReRAM

devices for forming and programming of the devices. A list of the configurations can

be seen in Table 2.1. Some of these circuit configurations will be explained in the

following sections.

2.2 Cairn Crossbar

Figure 2.3 shows a simplified schematic view of Cairn’s crossbar array. The figure

was put together in such a way that it would be comparable with the crossbar array

represented in Figure 1.1. Some circuitry has been omitted from this schematic to

prevent over-complicating the array structure. This 32x32 structure has also been

simplified down to a 3x3 structure.

Cairn is designed to work on a voltage rail of 0V to 3.3V with a mid-rail reference

voltage of VREF = 1.65V. The current to digital converters at the bottom of each

column have amplifiers that force the columns to VREF. This means the current

through any one device is given by

I = (V ix− V REF ) ∗Gx, y,

and the current on a column is

I =
∑

[(V ix− V REF ) ∗Gx, y]

summed over x where x is the row number and y is the column number. To multiply

a given voltage by the conductance of the ReRAM device, the user can set the input

voltage to 1.65V (VREF) higher than the desired multiplying voltage (Vmul) to cancel
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Figure 2.3: Cairn simplified crossbar array

VREF. The equation then becomes:

I = [(V mul + V REF )− V REF ] ∗Gx, y = V mul ∗Gx, y.

The access switches shown in Figure 2.3 are used to select the devices in the array.

This is useful because it allows the user to read and/or apply pulses to individual

devices. It also allows the user to perform operations on a single row or column at

a time. There are 32 row selects and 32 column selects in the 89 bit configuration

register (see Table 2.1). The access switches are controlled with the row and column

selects as well as the SELVI configuration, which can be toggled as an easy way to

connect/disconnect all ReRAM devices in the array. Additionally, there is a column

access switch at the bottom of every column that allows the user to disconnect the

column from the current to digital converter. These switches are turned on with the

column selects and the RD configuration. A good reason to toggle RD off is so the
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current can be directly measured from the wire bond pad connected to the column

(not shown in Figure 2.3) to test it against the digital result.

There are also shunt switches that create a low resistance path across the ReRAM

devices. The shunt switch is always enabled whenever the ReRAM device is not

selected to ensure there is no voltage difference across the device when it is not in

use. The shunt devices can also be turned on manually with the ESALL configuration.

These switches act as low resistance resistors so they are useful for testing the array

when there are no ReRAM devices or when the devices are still unformed.

2.2.1 Column Access Circuitry

Figure 2.4: Cairn column to wire bond pad circuitry

The column can be directly measured through a wire bond pad. This feature is

useful for verifying the current to digital conversion is working properly. There are

two switches connecting the column to the wire bond pad. The first is enabled with
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the EDR configuration and it creates a direct connection between the column and the

wire bond pad. The second is enabled with EV and it creates a connection between

the column and the wire bond pad through a TIA with a 50 kΩ feedback resistor

so that a voltage can be measured instead of a current. Unfortunately, an error was

made in the design that causes the output of the TIA to be shorted to VREF when

the TIA is enabled. This means measurements cannot be made using the TIA until

this problem is fixed in a future version of the chip. These connections to the wire

bond pad, which are omitted from Figure 2.3, are shown in Figure 2.4. In most cases,

the column switch should be turned off when making measurements on the wire bond

pad to prevent the ADC circuitry from interfering with the measurement.

2.2.2 Pulser Circuitry

Also omitted from Figure 2.3 is the circuitry that allows pulses to be applied across

the ReRAM devices. There are multiple switches in both the row and the column

that allow the device to be forward or reverse biased (Figure 2.5). In this figure, the

disconnected circuitry is shown faded so that the active circuitry can be emphasised.

The switches shown in the figure can be configured to issue a set or reset pulse to

make the ReRAM device more or less conductive respectively. The two separate set

and reset configurations are emphasized in Figure 2.6. The documentation for Cairn

refers to a set pulse as a program and a reset pulse as an erase. Every column has a

switch to pull the column (TE of the device) up to a program voltage (VPP) in the

case of a set operation, and a switch to pull the column down to ground in the case

of a reset operation. Likewise, every bit-cell has a pair of switches to pull the BE of

the ReRAM device up to an erase voltage (VEE) in the case of a reset operation, and

to pull it down to ground in the case of a set operation.

SLPR and SLER are the configurations used to configure the circuit for a set or
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Figure 2.5: Bitcell pulser circuitry

Figure 2.6: Set and reset pulse configurations

reset operation respectively. The device to be pulsed can be selected with the row

and column selects. It is important to deselect SELVI to ensure there is no contention

on the row side of the device, and to deselect RD, EDR, and EV to ensure there is

no contention on the column side of the device. If SLPR and SLER are both set to
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1, a biphasic pulse will be issued. The SLBID configuration determines whether a

set or reset pulse comes first. After the circuit has been configured for a pulse, an

external signal named TRG can be brought high to cause the pulse to occur. The

pulse begins when PRP or ERP show up on the gate of either the pull down or pull

up transistor in the bit-cell and the pulse ends when PRP/ERP go low. PRP and

ERP come from an on-chip pulser which can be configured for different pulse widths.

These pulse widths are determined by 32 selections from an inverter chain, which, in

turn, are controlled by five DLY configuration bits. Additionally, the pulse width can

also be controlled manually with TRG by setting the ETRGBP to 1. This setting

makes the pulse width equal to the length of TRG. Note that ETRGBP must be 0

in order to perform a biphasic pulse.

The circuitry described above has a built-in current limiting feature to prevent

excessive current from going through the device during a pulse. The current limit is

determined by the gate voltage applied to the pull up and pull down transistors in the

bit-cell during the duration of PRP or ERP. These gate voltages are supplied from

the external sources VN and VP. Setting VN lower will cause a stricter current limit

during a set pulse and setting VP higher will cause a stricter current limit during a

reset pulse. VP is applied to the PMOS device in the pull up transmission gate. For

current limiting to work properly, the NMOS device in the transmission gate must be

turned off so that all current is limited by the PMOS transistor alone. This NMOS

transistor can be turned off by setting the SILM configuration to 0 (1 turns on the

NMOS device). These current limiting transistors are useful for setting a current

limit while trying to form ReRAM devices to help prevent the devices from becoming

over-formed during forming. Additionally, they can be used to experiment with the

two-pulse programming procedure described in [12] and [13] in the future.
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Chapter 3

INTERFACE DESIGN

To interface with Cairn, we are using a customized hardware setup. The setup

consists of a PC, Opal Kelly FPGA, and a custom PCB with a pin grid array (PGA)

socket for Cairn. An image of the physical setup is shown in Figure 3.1. The PCB

connects directly to an FPGA which, in turn, is connected to a PC through a USB

cable. The custom PCB is populated with DACs as a means to provide analog signal

inputs to the ASIC. All of the digital signals can be fed from the FPGA directly into

the ASIC through digital level shifters on the PCB.

Figure 3.1: Physical interface setup

The end user can make use of all of the ASIC’s functionalities from a PC interface

program. All functionalities are abstracted to a higher level to make using the inter-

face program more trivial. A diagram of the data-flow path through the hardware

is illustrated in Figure 3.2. The FPGA has been configured to operate similar to a

microprocessor, which entails its ability to interpret a set of instructions containing
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opcodes. These instructions are processed sequentially, directing the FPGA to exe-

cute a range of predefined tasks. The FPGA’s logic is designed to decode the opcodes,

initiating the corresponding operations. The FPGA is programmed with two BRAM

blocks, with one serving as an instruction memory (BRAM I) for the FPGA and the

other (BRAM O) storing data results from Cairn, which are then transmitted back

to the PC. The instructions are encoded in the interface program and simultaneously

piped into the FPGA’s instruction BRAM for decoding.

Figure 3.2: Interface design and data flow diagram
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There are four key modules from Figure 3.2 critical to the functionality of this

system:

• Main Control Unit (MCU).

• Configuration Interface.

• DAC Interface.

• Deserializer/ADC Ramp Clock Controller.

The MCU is tasked with decoding the instructions in BRAM I, outsourcing jobs to

the other modules, and writing results into BRAM O. Each instruction is encoded

with an opcode which the MCU uses to determine which job needs to be done. The

instructions also contain data when the given operation requires it. The configuration

interface is responsible for serially writing and reading the 89 configuration bits into

the configuration register. The DAC interface serially writes the digital data to the

DACs as a means to provide analog signals to the Cairn. Finally, the ADC ramp

clock controller provides the ramp clock to the ADC to prepare the results from the

VMM operation while the deserializer serially collects the results from the on chip

ADC register.
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Chapter 4

CAIRN DEBUG

4.1 Polarity Bit Error

One of the first tests performed on Cairn involved a basic voltage sweep on one of

the row inputs, during which the shunt switches were activated to verify the appro-

priate reaction of both the analog and digital circuitry to the sweep. The raw ADC

output data from this sweep is plotted in Figure 4.1. Note, the most significant bit

(MSB) from each column is used to determine the polarity on the graph. The re-

maining bits of the ADC output code exhibit an inverse relationship with the current

in the columns, indicating that as the voltage increases, the current rises while the

output codes decrease. For this test, all columns were measured in parallel.

Figure 4.1: Column output codes vs Vin1 sweep
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As expected, the output codes decrease as the voltage is increased until Vin1

reaches Vref (1.65V). At this point, the MSB flips, causing the codes to jump positive.

However, there are several problems with this graph. The first problem is that the

curves do not overlap more closely. Ideally, the shunt switches should all have the

same resistance, or at least be very close in value. However, the figure indicates that

the resistance increases as the column number rises. This problem will be explored

in detail in section 4.2. Another problem is the column 31 curve (orange) is not

following the same trend as the rest of the curves. The column 31 issue is discussed

in section 4.3.

The most outstanding problem seen in Figure 4.1 is the spikes for when Vin is less

than Vref. When the current on the column is negative, there is a possibility for the

MSB to signify a positive current. While the MSB may be captured incorrectly, the

remaining nine bits of the output code remain correct. To demonstrate this, Figure

4.2 re-plots the data ignoring the MSB. Note, this shows the absolute value of Figure

4.1.

Figure 4.2: Absolute value of column output codes vs Vin1 sweep
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Figure 4.3 further illustrates the polarity bit error on a heat map of currents. In

this experiment, a small reverse bias is applied across the shunt switch to create a

negative current on the columns. Each misread shows up as a yellow pixel in the

heat map. This test was performed four times to verify the misreads were occurring

randomly. The polarity bit shows up as ’one’ if the current is negative and ’zero’

Figure 4.3: Heat map of currents to show polarity bit flip

otherwise. This shows us the data is occasionally being latched as ’zero’ when it

should be ’one.’ The randomness in this bit flipping problem indicates a race condition

is occurring when capturing the data. After inspecting simulations of the circuit, we

found there was a possible race condition between the comparator that detects the

current direction and the latch for the polarity bit. To remedy this issue, we’ve

updated the circuitry to latch the data on the rising edge of the polarity bit, rather

than latching it with the ADC ramp clock. This update will be implemented in future

versions of Cairn. The results in this paper intentionally work only in the positive

current domain to prevent this problem from skewing results.
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4.2 Row Resistance Problem

As pointed out in the previous section, the results in Figure 4.1 suggest a larger

than ideal resistance difference between the columns, which is better illustrated in

Figure 4.4. Figure 4.4 is a heat map showing the conductances of the shunt devices

across the array (excluding column 31). For these measurements, one row is read at

a time while each column in the row is measured in parallel (a total of 32 reads).

The figure demonstrates a gradient in the conductance along the rows. We initially

assumed the extra resistance across the rows was from resistance on the row wires.

However, there is about a 300 µS difference between both ends of the gradient. As-

suming the conductance of a single shunt switch is the most conductive device in the

heat map (450 µS), this means the row sees a total resistance of 1/(300 µS) = 3.33 kΩ.

This much parasitic row resistance would be a significant problem.

Figure 4.4: Parallel read heat map of shunt device conductances
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For the purpose of troubleshooting, instead of reading each column in parallel,

each shunt device was measured individually to see if the columns were somehow

affecting each other. Figure 4.5 shows a heat map of each device in the array read

separately from each other (1024 reads). Although there is still a very slight gradient

due to row resistance, it is negligible compared to the gradient seen in the parallel

read heat map from Figure 4.4. Not only is the gradient drastically improved, but

the shunt device conductance level appears to be closer to 650 µS instead of 450 µS

as previously assumed. This implies that reading multiple columns simultaneously

affects the current readings on the columns.

Figure 4.5: Serial read heat map of shunt device conductances

To better understand how parasitic row resistance could affect the currents dif-

ferently between a single column measurement and parallel column measurements,

some calculations were performed for both cases; they are shown in Figures 4.6 and

4.7 respectively. In the figures, the Rx1 and Rx2 resistors represent the shunt devices
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in series with the access switches and the Rwire resistors represent the parasitic row

resistance. The parasitic terms in the equations are circled in red.

Figure 4.6 corresponds to the serial read heat map in Figure 4.5. In this figure,

only a single column is active meaning Rwire and Rx1 are in series and all current

flowing through the row also flows to the end of the column. Ideally, the voltage across

the shunt device is Vin - Vref. The reduction in current is caused by a voltage drop

across Rwire. When the active column is the farthest from the Vin source, Rwire may

be 32 times greater compared to the scenario where the active column is closest to the

source. Thus, we still see a small gradient in Figure 4.5. For the equation in Figure

4.6, as long as Rwire is small, the effect due to parasitics is negligible. According

to simulations, the wire resistance is only about 3 Ω between each column. Because

there is only a minor change in current measurements across the rows, the parasitcs

can be ignored for serial device reads.

Figure 4.6: Single column with parasitic resistance calculation

Figure 4.7 shows the case of reading multiple columns in parallel. The main

difference between this and the previous scenario is the amount of current running

along the row. In the previous scenario, the only current through Rwire was the
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individual column current. However, in this scenario, the current through the resistor

between Vin and V1 is increased since Vin supplies current to both columns. The

increase of current through the resistor causes a larger voltage drop to be seen at V1.

Additionally, there will be another voltage drop from V1 to V2 caused by the current

I2 flowing through the parasitic resistance in the next segment of wire. We can see

from the equation for current as worked out in the figure that I2 is diminished by

both I1 and 2*I2. If there was a third column active with current I3, then I3 would

be diminished by I1, 2*I2, and 3*I3. Even with a row resistance of only 3 Ω per

segment, this stacking effect causes the current to be decreased exponentially as more

columns are activated (as seen when comparing Figures 4.4 and 4.5). Furthermore,

the calculations to correct for the diminished currents is more complicated than the

VMM operation this architecture is meant to achieve.

Figure 4.7: Parallel columns with parasitic resistance calculation

There are several other factors that are likely contributing to this problem. One

is the resistance of the access switches and column switches which are ignored for

the calculations above. Another is a built-in 15 Ω resistance on the Vin pads to help
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reduce electro-static discharge (ESD). The remaining results in this paper use only a

single column at a time to avoid this row resistance problem. To negate this problem

in the future, further versions of Cairn will have the 15 Ω resistors removed, increased

access switches by 4x, and wider row wires to reduce the row resistance.

4.3 Column 31 Issue

Previously seen in Figure 4.1 and 4.2, column 31 shows up as a large negative

current throughout the entire sweep. This problem also shows up on the a heat map

of shunt devices as seen in Figure 4.8. Note, in this heat map, every cell on column

31 shows up with maximum negative current for the current-range settings (512 µA),

making the other columns look more uniform. Previous heat maps were obtained

with column 31 disconnected from the circuit due to the extreme current difference

between column 31 and the rest of the columns.

Figure 4.8: Heat map of shunt devices with column 31 active
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The biases applied across the shunt devices in the figure is 100 mV. The negative

current signifies either a problem with the analog to digital circuitry or a short. To

test this, column 31 was connected to an external pin through a switch so that it

could be measured with a Keysight B1500 Semiconductor Parameter Analyzer. The

circuit configuration is shown in Figure 4.9.

Figure 4.9: Circuit configuration for B1500 experiment

In this experiment, a voltage sweep is forced on the Vin input pin and the current

is measured on both the column 31 pin and the Vin pin. This experiment disconnects

the ADC circuitry and allows us to inspect the current. Ideally, the only current path

is from Vin to the column 31 pin, so the current on Vin should match the measured

current on the column pin. The B1500 was used to hold the column at 1.65V (VREF)

for the duration of the sweep. The results from this experiment are shown in Figure

4.10. In the figure, the blue curve represents the current flowing into the column

from the Vin pin, while the orange curve represents the current flowing into the

column from the column pin. Ideally, these currents are equal and opposite to each
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Figure 4.10: Column 31 current versus Vin0 voltage sweep

Figure 4.11: Column 31 current versus Vin0 voltage sweep with 0V forced on column

other. However, the figure shows that the curves do not match each other, implying

that there is an unwanted connection somewhere on the column. Additionally, both

pins are sourcing current when only one should be sourcing/sinking at a time. This

implies that the unwanted connection is collecting the current and causing the column

current to be higher than expected.
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We can test for a short to ground by sweeping again and forcing the column to 0V.

If the column is shorted to ground, the current from Vin to the column pin should be

roughly equal and opposite since the column will not be fighting against the short.

This experiment is shown in Figure 4.11. The results are as expected implying a short

to ground.

This problem has been consistent across every Cairn prototype. The problem does

not occur in simulation and the chip has under-gone extensive failure analysis to help

us discover how this short may be occurring. We discovered a line of metal running

underneath the column 31 bump was causing a connection between the bump and the

metal and creating the short we were seeing. Fortunately, this problem only occurs on

column 31 and all other columns can be used normally while we wait for this problem

to be corrected in a Cairn re-spin.
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Chapter 5

RESULTS

5.1 Forming & Conductance Tuning

The Cairn platform has been utilized to measure properties of candidate ReRAM

arrays built from Sandia’s TaOx-based process, and the quality of these devices was

assessed relative to AIMC neural network workloads. When initially fabricated, most

of the ReRAM devices are still unformed, which means there has not been a current

channel formed between the two electrodes of the device. Forming is accomplished by

applying strong voltage pulses across the device. Cairn was designed with an on-chip

pulser specifically to apply typical forming and programming voltage pulse routines

to the ReRAM bit, such as monophasic and biphasic pulses.

Ninomiya et al found that biphasic-formed TaOx ReRAM are more dependable

than monophasic-formed devices [15]. We investigated both biphasic and monopha-

sic pulse forming routines and found a monophasic reset pulse lasting for several

microseconds was the procedure that most consistently formed these TaOx ReRAM

cells. Most devices required voltage pulses approaching 5V to successfully form, which

is the maximum voltage possible with this system. Forming routines are still being

optimized, and the Carin characterization platform is accelerating this research.

After a device has been formed, the ReRAM bit can be programmed to a target

conductance using a write-verify routine. This routine consists of iteratively apply-

ing voltage pulses across the device and reading the conductance back to verify the

change. A negative pulse applied to the TE (known as a reset) is used to lower the

conductance of the device and a positive pulse to the TE (known as a set) is used
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to raise the conductance of the device. The required programming voltage is signifi-

cantly lower than the forming voltage. The routine starts by applying relatively small

magnitude pulses to the ReRAM cell. If the conductance does not reach its target

after a predetermined number of write attempts, the pulse magnitude is increased. If

the conductance overshoots its target, the algorithm starts over with reverse polar-

ity. This write-verify procedure is plotted in Figure 5.1. The blue curve is the pulse

voltage applied to the device and the red curve is the measured conductance. In

this particular example, the device starts at a lower conductance and the write-verify

algorithm writes it up to 350 µS. The pulses start at 0.1V for 10 program attempts.

If they device has not reached its conductance by the end of the 10 pulses, the pulse

voltage is raised by 0.1V. Two other examples are shown in Figures 5.2 and 5.3. Fig-

Figure 5.1: Write-verify ’set’ example

ure 5.2 shows an example of a reset operation where the device starts at a higher

conductance and is reset down while Figure 5.3 shows how the programming voltage

changes when the conductance overshoots the target.
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Figure 5.2: Write-verify ’reset’ example

Figure 5.3: Write-verify overshoot example

This write-verify algorithm has been the exclusive method of programming through-

out this research. There are several ways this algorithm could be optimized. For ex-

ample, pulses under about 1V do not seem to have a large effect on the conductance

of the device; so the algorithm could start with a higher pulse voltage. It is also

worth trying to use the current limiting two-step programming technique explained

previously [12, 13]. Cairn could theoretically accomplish this using the current limit-
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ing feature built into the bit-cell pulser circuitry. These programming techniques will

continue to be explored in the future.

Immediately following forming, devices may become permanently stuck at a high

conductance if pulsed too aggressively or continually pulsed in the high conductance

state. When a device breaks, the conductance will spike and fall back down before

eventually hitting its target during a write-verify. However, once this has occurred,

the device cannot be programmed back down to a lower conductance; both set and

reset pulses will only cause the device to become more conductive. Figure 5.4 shows

an example of the device breaking during a write-verify and then running off to a

higher conductance when undergoing a reset. Fortunately, a burn-in procedure was

Figure 5.4: Example of breaking device

found that prevents this device from easily becoming shorted, as follows:

• Write the device to a low conductance level of 50 µS.

• Increase the conductance by about +10 µS to 60 µS.

• Repeat writing it back and forth between 50 µS and 60 µS about 10 times.

• Increase the upper bound by another +10 µS to 70 µS.

• Repeat writing it back and forth between 50 µS and 70 µS about 10 times.
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• Continue this process, each time raising the upper conductance by 10 µS, until

the device can be safely written all the way up to 350 µS without breaking.

This procedure enabled devices to be tuned to a high conductance immediately follow-

ing forming, without shorting. Once this algorithm is complete, the device is safe to

write to any conductance between 50 µs and 350 µS. This one-time burn in procedure

enabled 100% of newly formed devices to function correctly following forming. We

have also verified the device functions correctly following the programming routine

successfully over 20,000 times.

Figure 5.5: Conductance heatmap images

The forming and write-verify procedures described above have enabled the pro-

gramming of the entire 32x32 array of devices to specific conductances. To illustrate

this, Figure 5.5 shows a 32x32 heat map of conductances programmed on Cairn to

make up the pixels of the ASU pitchfork logo and the Sandia National Laboratories

Thunderbird Logo. These heat map images demonstrate Cairn’s ability to effectively

program ReRAM devices to a level accurate enough to visualize an image. It also

demonstrates our 100% yield of working devices for forming and programming.
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5.2 Drift & Noise Characterization

Ultimately, these ReRAM devices will be used to represent the weights of an

AIMC neural network inference accelerator. Hence, ReRAM bits must be able to

retain their memory states (or conductance levels) with minimum noise or variability.

ReRAM tends to drift from its targeted conductance level over time. In order to

provide a detailed understanding of how the devices drift from their initial state,

we can periodically measure the conductance of select devices and plot the data.

Time dependent conductance was collected by setting separate devices in the array

to a different conductance levels ranging from 50 µS to 350 µS using the write-verify

routine above.

Figure 5.6: Device stability for 40 minutes measured serially

Figure 5.6 shows the drift of 16 devices each programmed to 16 different con-

ductance levels for a total of 40 minutes. To combat the challenge of ensuring the

device starts in the targeted conductance range, the devices must pass a write-verify

with three consecutive verifies before drift measurements begin. Each of these three
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verifies are separated by a few hundred milliseconds to allow the ReRAM device time

to settle. In Figure 5.6, the devices were each individually measured for 40-minutes

at a time to negate cross-talk effects from reads/writes on other devices. The figure

shows the devices hold their conductance with minimal drift. However, noise may

cause some of the conductance states to overlap. This noise greatly reduces the num-

ber of possible conductance states. If the ReRAM is used as digital memory, state

overlap causes read errors. In the case of AIMC, this overlap tends to degrade the

accuracy of the network. It may be possible to increase the number of states by

pushing the dynamic range of the devices past 350 µS. The Li et al paper exemplifies

this by showing their devices reach up to 900 µS [12] and the devices in the Rao et

al paper are programmed as high as 4,144 µS [14]. However, as a precaution against

shorting devices, our devices on Cairn have not been tested above 350 µS. More ex-

perimentation for pushing the conductance limit on our devices will take place in the

future.

As mentioned previously, the measurements in Figure 5.6 are taken serially. How-

ever, it is unreasonable to use serial measurements for a large number of devices.

Thus, a routine was written to overlap measurements so that multiple devices could

be measured simultaneously. The routine works as such: once a device has been

successfully verified to its target, the routine keeps track of what time the next mea-

surement should be made on that device. Figure 5.7 depicts another experiment

involving the same 16 devices, using the new measurement routine, this time lasting

for 12 hours. In this experiment, some of the devices fall to a lower conductance

shortly after measurements begin. They also tend to shift again after several hours.

Note the extreme random telegraph noise (RTN) seen on the pink curve may be

explained by incomplete conductance channels as discussed in the Rao et al paper

[14]. While these devices may look significantly more noisy than the device shown in
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Figure 5.7: Device stability for 12 hours

Figure 5.6, these devices were measured for a much longer period of time with many

more data points, which may cause them to appear more noisy. With this routine,

writes and reads may affect other devices via cross talk, posing a possible issue. It is

initially unclear if any of the extra noise or shifts in conductance in Figure 5.7 is due

to cross-talk. While the scope of this thesis ignores the possibility of this problem in

the results, it is worth investigation in the future.

For the following experiments, the conductances of the entire array were measured

in 30 second increments over 300 seconds (five minutes) with each row set to a different

conductance level. This data was used to measure the median change in conductance

over time for four conductance levels (each with 31 devices). This data is plotted in

Figure 5.8. Initially, the difference between the measured conductance and target can

be considered a programming error due to the imperfect write-verify routine. The

initial difference in the conductance from the target is only -0.2 µS (-0.05%), and the

worst case is -0.8 µS (-0.24%). The majority of the drift occurs over the first 300s.

At the end of 300s, the departure of the conductance from the target is about -2.8
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Figure 5.8: Median drift at four target conductance levels

Figure 5.9: Standard deviation vs target conductance level

µS (-0.8%), and the maximum drift is about -4.2 µS (-1.2%). This level of uniform

departure from the target conductance is not expected to significantly degrade the

accuracy of analog IMC inference.

However, in addition to the drift, it is important to consider the evolution of the

standard deviation from the target conductance over time, which can be considered
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Figure 5.10: Standard deviation of conductance vs time

a measure of noise. It should be noted that standard deviation is taken for all 31

devices that were programmed to the same target level in a particular row. Figure

5.9 plots the standard deviation vs target conductance of the array at the 0 and 30

second marks and Figure 5.10 plots the standard deviation in conductance at four

different target conductance levels over 300s. These results indicated that device noise

increases significantly over time. The initial median standard deviation was 1.61 µS,

(0.46%) and a worst case of 2.4 µS (0.69%). After 300s, median standard deviation

has increased to 5.5 µS (1.58%) and a maximum of 8.1 µS (2.30%). Hence, the noise,

as measured by standard deviation of conductance for a target level is worse than the

drift from that target. Additionally, devices with a mid-range conductance level (100

µS to 250 µS) deviate more drastically from their targets than devices targeted at

the two ends of the conductance spectrum, as illustrated by Figure 5.9. This is also

indicated in Figure 5.10 by curves 147 µS and 253 µS both trending higher than the

50 µS and 350 µS curves. This data suggests the ReRAM devices are significantly

more stable at high conductance levels.
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An important conclusion of these results is that increase in standard deviation is

higher than drift from the target conductance. This random noise is likely to be the

most significant factor for degrading neural network accuracy, and the most difficult to

correct for. One possible solution to minimize this noise is to implement the denoising

technique discussed in the Rao et al paper [14]. As explained in chapter 1 in the

background section (1.2.3), Rao et al’s denoising technique involves issuing biphasic

pulses after programming as an attempt to either complete or remove the incomplete

conductance channels responsible for the noise. This research begins to experiment

with this technique by implementing biphasic pulses into our device measurement

routine. In the following experiments were taken on the array of the devices to see

how they react to having a given number of biphasic pulses applied after programming.

The programming procedure is as follows:

• A device is programmed to a target conductance using write-verify.

• One or more 0.35V biphasic pulses are applied to the device.

• Three reads, each separated by 0.5 seconds, are performed on the device.

• The process repeats if the device does not pass all three reads in the target

conductance range.

Once the device passes all three reads, the measurements begin for that particular

device. This experiment was done both with and without the biphasic pulses to see

if the pulses make any kind of a difference. It should be noted that this procedure

varies slightly from Rao et al’s procedure. In their procedure, they use a different

programming algorithm and they do multiple measurements of the conductance to

measure the standard deviation to determine if a pulse is needed to decrease the

standard deviation. Our procedure uses our write-verify algorithm and issues the
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biphasic pulse(s) regardless. Additionally, in their procedure, they use much longer

biphasic pulses which we have yet to try.

Figures 5.11, 5.12, and 5.13 show the results of the experiment described above.

Each figure presents the median standard deviation over a 12-hour period at four

distinct target conductance levels, with time represented on a logarithmic scale. These

figures depict the results when no biphasic pulses, one biphasic pulse, and five biphasic

pulses are applied after programming, respectively.

Figure 5.11: Median standard deviation for 12 hours with no biphasic pulses

Each graph shows the four curves growing with time at a similar rate. From these

results, we can see that neither one nor five biphasic pulses have a strong impact

on the standard deviation of the conductance. However, the pulses do seem to have

an affect on the drift of the devices. Figures 5.14, 5.15, and 5.16 display the drift

measurements for the same experiment described above. The drift results in Figure

5.14 follow a trend consistent with that seen in Figure 5.8. At the end of the 12

hours, the devices have drifted between 2 µS (0.57%) and 6 µS (1.71%) from the

target. However, inspection of the drift after a single biphasic pulse has been applied

(Figure 5.15) suggests the drift has been improved with the worst case drift being the
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Figure 5.12: Median standard deviation for 12 hours with 1 biphasic pulse

Figure 5.13: Median standard deviation for 12 hours with 5 biphasic pulses

350 µS curve with about 5 µS (1.43%) from target and the best case being the 50 µS

curve with a little over 1 µS (0.29%) from the target. Additionally, the drift appears

to improve even more when five biphasic pulses are applied. In Figure 5.16, the curves

each stay more level and close to the target. After the 12 hours, the conductances

have only drifted between about 1 µS (0.29%) and 4 µS (1.14%) from the target.

This data suggests that biphasic pulses do indeed improve the drift characteristics of

the ReRAM devices. However, as mentioned earlier, the main factor responsible for
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degrading neural network accuracy is the noise characteristics. These results are only

the initial results from the denoising experiment and there are many factors that may

cause our results to vary from the Rao et al paper. Thus, there is still much work

and research to do to improve these results. These results will likely improve when

we adjust our denoising algorithm to follow more closely to that as seen in the Rao

et al paper.

Figure 5.14: Median drift for 12 hours with no biphasic pulses

Figure 5.15: Median drift for 12 hours with 1 biphasic pulse
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Figure 5.16: Median drift for 12 hours with 5 biphasic pulses

5.3 CIFAR-10 Accuracy Modeling

The data described above was used to model the impact of device drift and noise

on inference accuracy for an IMC accelerator based on the TaOx ReRAM array.

CrossSim [16] was used to model the ResNet-56 network [17] classifying 1000 images

from the CIFAR-10 data set [18]. Target weights were modified using a normal

distribution accounting for the device drift and variability data obtained from Cairn

(Figures 5.8-5.10) as a function of time and target conductance. The accuracy as a

function of time is shown in Figure 5.17. Due to the variability inherent in randomly

modifying the weights, each data point was averaged over 10 runs. Additionally, the

same experiment was performed with the 5-pulse denoised data modeled in CrossSim

and this data is shown in Figure 5.18. The red dashed line in both figures plots a

polynomial fit. For both cases, this fit shows the accuracy is beginning to stabilize

following 300s.

In a digital baseline system with floating point precision, the network can accu-

rately classify the images into the correct category with 91.5% accuracy using the same

ResNet-56 model. The time zero accuracy with ReRAM and no denoise pulses was
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Figure 5.17: CIFAR-10 classification accuracy vs ReRAM drift time with no denoise

Figure 5.18: CIFAR-10 classification accuracy vs ReRAM drift time with denoise

91.2%, representing only a 0.3% departure from ideal due to programming error. This

is within the bounds required for a production IMC accelerator. However, following

300s, the accuracy is degraded to 88.6%, representing a 2.9% accuracy degradation

versus ideal. Additionally, in the case of denoised ReRAM, the accuracy at time zero

was 91.4%, which is almost ideal. By the end of the 300s, the accuracy falls to 89.6%,
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which is only a 1.9% degradation from ideal, suggesting a 1% improvement from the

non-denoised data. This data is tabulated in Table 5.1.

Time Non-denoised Denoised Ideal

0s 91.2% 91.4% 91.5%

300s 88.6% 89.6% 91.5%

Table 5.1: CIFAR-10 classification accuracy

From Figures 5.17 and 5.18, we can see that the denoised accuracy begins to level

off sooner than non-denoised accuracy. This data suggests that the denoised pulses

do, in fact, help improve the accuracy. Given our previous results, this accuracy

improvement is likely reflected from the drift stability improvements. However, the

majority of the degradation seen in this data is likely due to noise rather than drift.

In the future, these results may be improved by improving the noise characteristics

of these devices and perfecting the denoising technique described earlier.
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Chapter 6

CONCLUSION

The exponential rise in energy costs caused by machine learning advancement

calls for more energy efficient methods of accelerating neuromophic computing. In-

memory computing using ReRAM in analog crossbar arrays offers a valuable solution

to help decrease these energy costs by removing the memory-transfer requirements

and improving the energy efficiency of matrix operations. The reprogrammability

and non-volatile storage characteristics of ReRAM makes them an ideal tool for in-

memory computing with low power. Researches have begun experimenting with in-

situ learning for analog IMC accelerators and have shown that there is only a small

decrease in accuracy from an ideal digital model. However, in-situ training trains on

the non-idealities inherent in analog in-memory computing and thus crossbar arrays

cannot be used to implement previously trained networks without retraining. It

then becomes important to remove the AIMC non-idealities using methods such as

the denoising technique mentioned by Rao et al [14]. In addition, the effectiveness of

techniques such as these must be tested on many different types of emerging ReRAM.

As analog in-memory computing moves closer to reality, it has become increasingly

important to develop large scale methods of statistically characterizing candidate

memory devices. This work has introduced the Cairn 32x32 crossbar array platform,

which is capable of electroforming, programming, and collecting detailed statistics

for resistive memories. Cairn has been designed with a 2.5D architecture capable of

supporting multiple types of ReRAM for characterization. In addition, an interfacing

technique using an FPGA and custom PCB has been introduced. This interface

is controlled through an intricate interface program used for abstracting low-level
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functionalities to a high-level for a user.

Additionally, this thesis covers some of the debug challenges that were encountered

during testing of Cairn. An issue was discovered that causes the ADC current polarity

bit to occasionally result in a misread when the current is negative. This error was

caused by a design flaw which resulted in the polarity bit being latched in at the wrong

time. The problem only occurs when the current is negative and thus this research

avoids the negative current domain. This thesis also points out skewed results caused

by parasitic resistance seen in the crossbar structure as well as a problem with a

short on column 31. All three of these problems are being fixed or improved upon in

a revised version of the Cairn chip.

This thesis has explained and demonstrated the characterization abilities with

Sandia’s TiN/TaOx/Ta/TiN ReRAM cell. This research suggests the most optimal

forming pulse for these devices is a reverse-biased pulse lasting for several micro-

seconds with a close-to 5V magnitude. The platform has enabled the discovery of

optimized steps for a device burn-in procedure after forming. This burn-in procedure

has allowed for an 100% yield of working device. To demonstrate the reprogramma-

bility of these ReRAM devices, a write-verify programming procedure is employed,

treating the device conductances as pixels on a heat map to create an image.

The characterization potential of this platform was demonstrated by characteriz-

ing the drift and noise of the 32x32 ReRAM array and experimenting with a denoising

routine. All cells in the array were set to 32 different conductance levels and measured

over time. The median standard deviation and median delta drift characteristics were

extracted from this data and compared against similar data that had biphasic denoise

pulses applied to the cells after programming. This experiment finds that the denoise

pulses provide no improvement for the standard deviation but do provide a consid-

erable improvement of device drift. The data was then used with CrossSim to model
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the accuracy of an analog IMC inference accelerator based on these ReRAM devices.

Inference of this model shows only a small decrease in accuracy at time zero. Random

noise rather than conductance drift over the first 300s appears to be the dominant

factor degrading the inference accuracy from 91.2% (as programmed) to 88.6%. How-

ever, stabilizing the drift with the denoise pulses does result in a slight improvement

of inference accuracy. For the stabilized models, the accuracy only degrades to 89.6%

and begins to level off quicker than pre-stabilization (Figures 5.17 and 5.18).

In the future, Cairn will continue to be used for array and device characterization.

The denoise procedure used in this research is still unoptimized. This procedure can

be improved by checking the standard deviation on a device before determining if

a biphasic pulse should be issued. The pulse duration and magnitude can also be

optimized to better match that seen in the Rao et al paper. In addition, there is a

noticeable amount of quantization noise from the ADC that adds to programming

error and makes it difficult to get accurate conductance readings. The precision of

a least significant bit (LSB) from the ADC can be improved by experimenting with

built-in current ranging settings, thus reducing the quantization noise. There are

also offsets inherent in the ADC circuitry that should be extracted and accounted

for. In the future, code will be adjusted to compensate for these inherit offsets

to improve read accuracy from the ADC. The two-pulse programming procedure

introduced will also be attempted in the future. This two-pulse procedure allows for

quick and accurate programming of ReRAM. Problems such as the polarity bit error,

row resistance problem, and column 31 issue will all be fixed or improved upon in

future iterations of the chip. Work will continue to improve the software and FPGA

interfacing code to better optimize and allow for new testing procedures.
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APPENDIX A

STATEMENT FOR ’ARRAY-SCALE CHARACTERIZATION OF RERAM
ARRAYS FOR ANALOG IN-MEMORY COMPUTING’
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In this thesis, I would like to acknowledge that certain portions of the text and
figures included here have previously appeared in a paper, authored by me and others,
titled ’Array-Scale Characterization of ReRAM Arrays for Analog In-Memory Com-
puting,’ [23] that will be officially published in 2023 IEEE International Conference
on Rebooting Computing (ICRC) in December 2023.

Certain parts of the introduction section in chapter 1 are explained using the same
or similar wording as seen in the ICRC paper. Likewise, some of Cairn’s functionality
explained in chapter 2 also appears in the ICRC paper. Some results and wording in
chapter 5 appear in the ICRC paper as well. Finally, the conclusion in chapter 6 also
overlaps with the conclusion in the ICRC paper.

Figures 1.1, 2.2, 3.2, 5.1, 5.5, 5.10, 5.9, 5.17, and a simplified version of figure 2.3
all appear in the ICRC paper. These figures are in chapters 1, 2, 3, and 5.

I would also like to acknowledge that I have received permission from the co-
authors to use the previously published work in this thesis.
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