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ABSTRACT

Matching or stratification is commonly used in observational studies to remove

bias due to confounding variables. Analyzing matched data sets requires specific

methods which handle dependency among observations within a stratum. Also, mod-

ern studies often include hundreds or thousands of variables. Traditional methods for

matched data sets are challenged in high-dimensional settings, mixed type variables

(numerical and categorical), nonlinear and interaction effects. Furthermore, machine

learning research for such structured data is quite limited. This dissertation addresses

this important gap and proposes machine learning models for identifying informative

variables from high-dimensional matched data sets.

The first part of this dissertation proposes a machine learning model to identify

informative variables from high-dimensional matched case-control data sets. The

outcome of interest in this study design is binary (case or control), and each stratum

is assumed to have one unit from each outcome level. The proposed method which

is referred to as Matched Forest (MF) is effective for large number of variables and

identifying interaction effects.

The second part of this dissertation proposes three enhancements of MF algo-

rithm. First, a regularization framework is proposed to improve variable selection

performance in excessively high-dimensional settings. Second, a classification method

is proposed to classify unlabeled pairs of data. Third, two metrics are proposed to

estimate the effects of important variables identified by MF.

The third part proposes a machine learning model based on Neural Networks to

identify important variables from a more generalized matched case-control data set

where each stratum has one unit from case outcome level and more than one unit

from control outcome level. This method which is referred to as Matched Neural
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Network (MNN) performs better than current algorithms to identify variables with

interaction effects.

Lastly, a generalized machine learning model is proposed to identify informative

variables from high-dimensional matched data sets where the outcome has more than

two levels. This method outperforms existing algorithms in the literature in identi-

fying variables with complex nonlinear and interaction effects.
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Chapter 1

INTRODUCTION

In many applications, observations in data sets often show a dependency or grouping

in their structure, where observations within a group or stratum tend to be corre-

lated. Examples include blood pressure measured for each patient at different time

points, measurements taken from different locations on each wafer, and subjects with

and without diabetes matched together based on their age and gender. The valid

analysis of these data sets requires methods that handle dependency structure among

observations.

The focus of this dissertation is the analysis of matched study designs where the

researcher is interested in identifying variables associated with a condition of interest

and assess their effect. We use the terms outcome and condition of interest inter-

changeably in this dissertation. The outcome is nominal and units are sampled from

populations corresponding to each outcome level. The variables which we would like

to analyze their effect are referred as exposure variables. A special type of matched

study designs is matched case-control study where observations are taken from a

binary outcome including case or control. In clinical applications, case typically cor-

responds to units with a disease and control corresponds to those without the disease.

In matched study designs, units are matched based on some baseline characteristics

which are also referred as matching variables. That is, units within a stratum differ

with respect to their outcome level but similar with respect to the values of matching

variables.

As an example, consider a study that aims to identify the effect of diet on hearth

disease using a matched study design where subjects with and without hearth disease
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are matched based on their age and sex. Here, the outcome is binary; each unit is

either with hearth disease or without hearth disease. The exposure variable of interest

is diet and matching variables are age and sex.

This dissertation focuses on high-dimensional matched study designs where hun-

dreds or thousands of exposure and dozens of matching variables with potential in-

teraction among them exist. The interaction might be between multiple exposure

variables or between matching and exposure variables. It is more appropriate to

use the term effect modification for an interaction between matching and exposure

variables, but to make it simple, we use the term interaction. For example, the child-

hood acute lymphoblastic leukemia study (Bhojwani et al. (2006)) uses a matched

study design with 35 strata to evaluate 22283 genes (exposure variables) which are

differentially expressed between the two states of the disease (diagnosis and relapse).

Matching is commonly used in observational studies to create a balance in the

distribution of baseline variables in different outcome levels (Rothman et al. (2008)).

Matching is performed on confounding variables which are associated with both the

condition of interest and exposure variables (Rose and Van der Laan (2009)). If

matching variable is not associated with either outcome and exposure variable, the

efficiency of parameter estimations will be affected (Rose and Van der Laan (2009)).

Also, matching variable should not be in the causal pathway between exposure and

outcome, otherwise, the estimated parameters will be biased (Stuart (2010) and Rose

and Van der Laan (2009)). The ideal method for matching is the exact matching

method (Stuart (2010)) which creates strata such that the vector of matching values

for units within a stratum have exactly zero distance. However, finding exact matches

is difficult when number of matching variables is large. The common method for

matching is the nearest neighbour method (Stuart (2010)). In the nearest neighbor

matching, units with minimum distance between their matching vectors are selected
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to create matched sets or strata. The purpose of this dissertation is not studying

matching methods. Throughout this dissertation, we assume that matched data sets

are provided and the exact matching method is used to create each stratum.

The analysis of matched data sets requires specific methods that account for

matching structure of data. Paired t-test is the traditional method for analyzing

matched data sets with binary outcome. It tests if the mean of an exposure vari-

able differs between two outcome levels. This method is a univariate analysis which

considers each exposure variable individually. It also does not test the existence of

interactions among neither exposure variables nor matching and exposure variables.

Tan et al. (2007) uses a modified version of paired t-test for a matched pair data set.

We do not compare this with our proposed methods in this dissertation because of

the limitations of paired t-test mentioned above.

When an outcome has more than two levels, the analysis of matched study designs

is similar to the analysis of variance method for randomized block designs. Matched

data sets have a similar structure as randomized block designs. The matching vari-

ables have the same role of blocking variables, and each stratum in matched study

design can be considered as a block. In randomized block designs, the objective is to

test if the mean of a variable differ among treatment levels. The objective of matched

studies is also similar; we are interested in identifying if an exposure variable differ

among different outcome levels. The analysis of variance method has similar limita-

tions of paired t-test. This method cannot be used to test the existence of interaction

between matching and exposure variables. Thus, we do not use it in this dissertation

for comparison with our proposed methods.

The predominant method in the literature to analyze matched data sets with nom-

inal outcome is Conditional Logistic Regression (CLR) model (Hosmer and Lemeshow

(2000), Vierkant et al. (1999), Le Hesran et al. (2004) and Peleg et al. (2007)). CLR
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accounts for the matched structure of data sets using a conditional likelihood ap-

proach which was introduced by Cox and Snell (1989). CLR is a multivariate linear

model which estimates the effect of each exposure variable.

CLR has some disadvantages which limit its use in the analysis of matched data

sets. First, to assess interaction effects between exposure variables or between expo-

sure and matching variables, interaction terms (products of two or more variables)

need to be included in the model. This increases the dimensionality of matched data

sets significantly, especially when the number of variables is large. Second, it does

not inherently handle categorical variables. We need to first convert categorical vari-

ables to one-hot encoded vectors, which increases the number of variables and leads

to convergence problem. Other versions of CLR also have been proposed by Bala-

subramanian et al. (2014), Qian et al. (2014) and Asafu-Adjei et al. (2017) to handle

high-dimensionality in matched data sets. These methods are linear and they still

need interaction terms to capture their effects. When data set is high-dimensional,

the number of added terms can be extremely large.

Throughout this dissertation, we propose methods to address the challenges ex-

ist in analyzing high-dimensional matched data sets. The methods are designed for

the task of variable selection, effect estimation and classification in high dimensional

matched data sets. Existing methods, as mentioned above, have difficulty in identi-

fying interaction effects in high-dimensional data sets and they may not converge if

the number of variables is excessive. Our proposed methods are able to inherently

detect interaction effects without the need for adding the interaction terms. Thus,

our models are more efficient for analyzing high-dimensional matched data sets.

In Chapter 3, we propose Matched Forest (MF) to address the problem of high-

dimensionality in variable selection from matched case-control data sets. The method

is designed for data sets with binary outcome where each stratum consists of one case
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and one control. MF is a supervised machine learning algorithm based on Ran-

dom Forest (RF) which inherently handles high-dimensionality without the need for

including interaction terms in model. Also, it detects complex non-linear and inter-

action effects and handles both numerical and categorical variables. We demonstrate

the effectiveness of MF in variable selection through extensive simulations and case

studies. This work is published in Shomal Zadeh et al. (2020).

In Chapter 4, we propose three enhancements of Matched Forest (MF). First, we

propose Weighted Matched Forest (WMF) to improve the variable selection accuracy

in extremely high-dimensional data sets. WMF adaptively regularizes MF to focus

on highly important variables. We show in our simulations and case studies that

WMF outperforms MF in selecting important variables. Second, we generalize the

application of MF to classification problems. we explain how MF can be used to

classify instances in a matched pair to either case or control given the assumption

that there is only one case and one control within each pair. Thus, the proposed

algorithm classifies a pair as either case-control or control-case. Our experiments

show that MF not only performs well in variable selection, but also has a better

classification accuracy than competing algorithms. Finally, after important variables

are identified, we explain how classification probabilities estimated by MF can be

used to assess the effect of important exposure variables.

In Chapter 5, we propose Matched Neural Network (MNN) to assign importance

scores to variables in high-dimensional matched case-control study designs. This

method is suitable for both matched pairs with one case and one control within

each stratum and matched 1 − L study designs where each stratum consists of one

case unit and L ≥ 2 control units. This method handles interactions inherently

without any need to include interactions terms. We compared the performance of

MNN with alternative methods in the literature including MF and observed in our
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simulations and case studies that MNN performs better than alternative methods

in identifying complex interaction effects. Another advantage of MNN compared

to alternative methods is the use of interpretable SHAP scores (Lundberg and Lee

(2017)) to measure the importance of each matching and exposure variable in matched

data sets.

Chapters 3, 4 and 5 all propose methods for matched data sets with binary out-

come. Chapter 6 focuses on matched data sets where outcome has more than two

levels and proposes a machine learning model to assign importance scores to each

matching and exposure variable in high-dimensional setting. Our empirical studies

and analysis on a real data set show the advantages of our method in identifying

important variables compared with existing methods in the literature.
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Chapter 2

BACKGROUND

2.1 Matched Case-Control Study Design

Case-control study designs are commonly used in a wide range of applications as

illustrated in Chapter 1 to identify exposure variables associated with a condition

of interest. Case and control correspond to units with and without the condition of

interest respectively. As an example in clinical application, consider a case-control

study that aims to identify the effect of drinking coffee on hearth disease. Here,

case group includes subjects with hearth disease present and control group includes

subjects without hearth disease. The exposure variable of interest is drinking coffee.

To estimate the effect of coffee on hearth disease, the amount of coffee consumed by

subjects in these two groups is compared. Case-control studies are prone to selection

bias which occurs when control samples are not representative of the population that

produces the cases. To have a reliable comparison, case and control groups should be

selected from a same population and only differ in the outcome of interest when there

is no association between the disease and exposure variables. Matched case-control

study designs are used to reduce this source of bias at the design stage.

A matched case-control study design is a special type of case-control studies where

case and control subjects are grouped based on some matching variables. In particu-

lar, case subjects are matched with control subjects such that each group or matched

set includes both cases and controls and subjects in a group have same values for

the matching variables. The matched sampling increases the efficiency by making a

balance in the distribution of confounding variables for cases and controls (Rothman
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et al. (2008)). For example, in the aforementioned study, assume that smoking is a

confounding variable which has different distribution in case and control samples. To

remove the effect of smoking from analysis, matching is done to create homogeneous

groups which are either smokers or non-smokers.

The number of case and control subjects within each group or stratum can vary,

however, the most common designs include one case and 1 to 5 controls (Hosmer and

Lemeshow (2000)). These data sets are called 1−Lmatched case-control study designs

where L is the number of controls in each stratum. When each stratum includes one

case and one control, it is also called 1-1 matched design and matched pairs. The

application of this study design is widespread. For example, Balasubramanian et al.

(2014) conducted a 1-1 matched study design to identify biomarkers associated with

cardio-vascular disease after matching controls to cases on age, gender, race, ethnicity

and severity of coronary artery disease.

2.2 Variable Selection Methods For Matched Case-Control Data Sets

2.2.1 Conditional Logistic Regression and Variants for High-dimensional Setting

The traditional approach to analyze matched case-control data sets is conditional

logistic regression (CLR) which is a specialized type of logistic regression model (LR).

CLR estimates the coefficients of each exposure variable based on a conditional likeli-

hood function, but it cannot estimate the coefficients of matching variables. We first

explain CLR for 1-1 matched design with one case and one control in each stratum.

Then, we explain how it can be generalized to 1 − L matched designs with one case

and L > 1 controls.

Consider a matched case-control study design with N matched pairs, R exposure

variables, and M matching variables. Let x1(i) and x0(i) denote R−dimensional
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vectors of exposure values for case and control subjects respectively and V (i) denote

an M−dimensional vector of matching values corresponding to pair i. Additionally,

let y1(i) and y0(i) denote the case-control status of case and control subjects in pair

i respectively, such that yj(i) (j ∈ {0, 1}, i ∈ {1, 2, . . . , N}) takes 1 for cases and 0

for controls. The conditional likelihood for pair i is defined as

li(β) =
eβ

′x1(i)

eβ′x1(i) + eβ′x0(i)
(2.1)

where β
′
= {β1, β2, . . . , βR} is the vector of coefficients for R exposure variables. The

coefficients of exposure variables (β) have the same interpretation as logistic regression

(LR). The interpretation of each βi is the change in logit for one unit increase in the

corresponding exposure variable given all variables are constant within each matched

pair. The conditional likelihood in equation 2.1 is in fact the probability that the case

subject in pair i is actually a case given exposure values and under the assumption

that one of the subjects in the pair is case. Based on this definition, li(β) can also be

represented as

li(β) = p(y1(i) = 1|y1(i) + y0(i) = 1, x1(i), x0(i)) (2.2)

As can be seen in equation 2.1, the conditional likelihood function does not include any

term corresponding to matching variables (V ), thus, CLR cannot estimate the effect

of matching variables and their effect can be estimated only when their interaction

with other exposure variables is evaluated. The full conditional likelihood function is

the product of li(β) over N matched case-control pairs, namely,

l(β) =
N∏
i=1

li(β) (2.3)

The coefficients β can be estimated by maximizing the conditional likelihood function

in equation 2.3.
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The conditional likelihood in equation 2.1 can be simply generalized for 1 − L

matched case-control study designs when L > 1 controls are matched with one case.

To simplify the notation, consider a study where L = 3. We use x1(i) to denote

exposure values of the case in stratum i and (x01(i), x02(i), x03(i)) to denote exposure

values of three control subjects in stratum i. The contribution of this stratum to the

conditional likelihood function is obtained by

li(β) =
eβ

′x1(i)

eβ′x1(i) + eβ′x01(i) + eβ′x02(i) + eβ′x03(i)
(2.4)

The interpretation of coefficients B is similar to equation 2.1 and the conditional

likelihood function (li) computes the conditional probability that the subject with

exposure values x1(i) is a case given the other three subjects (x01(i),x02(i), and x03(i))

are controls.

CLR model is not suitable for high-dimensional matched case-control data sets

with hundreds and thousands of exposure and matching variables. If we are also in-

terested in non-linear and interaction effects, the dimensionality of data sets becomes

even larger because we need to include non-linear and interaction terms (e.g. prod-

ucts of two or more variables and non-linear transformation of a variable) in data

sets. CLR becomes intractable in such a high-dimensional setting. So far, variants

of CLR have been introduced to handle high-dimensionality in matched case-control

data sets and are presented as follows.

Random Penalized Conditional Logistic Regression (RPCLR): Balasub-

ramanian et al. (2014) proposed an ensemble approach to assess variable importance

in high-dimensional matched case-control data sets. To account for the matched struc-

ture of data, they use a penalized conditional logistic regression model. The method

is proposed for matched pairs, but it can be extended to matched case-control 1− L

designs where L is above 1. Specifically, their method consists of three major steps:
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(i) a bootstrap sample is selected from matched pairs; (ii) for each bootstrap sample,

a CLR model with ridge penalty is fitted to a random sample of variables with their

pairwise interactions, and variable importance score of each variable is assessed; and

(iii) finally, the importance score of each variable is computed as the average of scores

over the bootstrap samples.

Penalized Conditional and Unconditional Logistic Regression: Qian et al.

(2014) proposed a two-stage procedure which selects important variables from high-

dimensional data sets in the first stage, and predicts outcome for future subjects in

the second stage. For the variable selection method in stage one, first, main effects

are identified by fitting a CLR model and then pairwise interaction of selected main

effects is investigated by a penalized CLR model. For prediction in the second stage,

the estimated coefficients for variables in stage one are used with unconditional logistic

regression model to matched case-control data set. However, this method may fail to

identify variables which do not have main effects but have pure interaction effects.

Bayesian Variable Selection Conditional Logistic Regression (BVS

CLR): Asafu-Adjei et al. (2017) proposed a variable selection method for high di-

mensional matched case-control data sets which combines the advantages of CLR

and Bayesian approaches. This method estimates the coefficients of variables and

gives the probability estimates for inclusion of variables in the model, which can be

used to rank variables. This method ignores interactions among variables including

both matching and exposure. Although this method focuses on matched pairs design,

Asafu-Adjei et al. (2017) claimed that it can be applied to more general 1 : L matched

designs too.
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2.2.2 Generalized Linear Mixed Models

An alternative method traditionally used for matched case-control studies is Gen-

eralized Linear Mixed Models (GLMM) (McCulloch and Neuhaus (2005)). For exam-

ple, Szyszkowicz (2006) and Keogh (2017) applied GLMM on matched case-control

data sets. This method uses a regression model which incorporates fixed effects for

exposure variables and random effects for matching variables. Inclusion of random

effects enables the heterogeneity of matched pairs in the analysis. GLMM also has

similar disadvantages of CLR. It is not suitable for high-dimensional settings (large

number of matching and exposure variables) where interaction among variables is

also important. Interaction terms (cross products two or more variables) are needed

to capture their effects. This increases the input dimension and can make this model

intractable. Also, it does not inherently handle categorical variables. A conversion

to binary variables increases the dimensionality further, especially with cross-product

terms.

2.2.3 Boosting Methods

Adewale et al. (2010) proposed two variants of a boosting algorithm to classify

matched pairs and select important variables from high-dimensional matched case-

control data sets. The first method, Weighted L2 Boosting (“WL2Boosting”), com-

bines gradient decent boosting algorithm with weighted L2 loss function. The corre-

lation between observations within each matched pair is handled through the matrix

of weights which represents the unknown variance-covariance matrix of observations.

The structure of this variance-covariance matrix is pre-specified and its parameters

are estimated through an iterative procedure by minimizing the weighted L2 loss

function.
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The second method, named 1-Step Penalized Quasi-Likelihood (“1-Step PQL-

Boost”) modifies the likelihood-based boosting algorithm (Tutz and Binder (2006))

via a generalized linear mixed model to handle correlation among observations in

matched pairs. This method is similar to penalized quasi-likelihood (Breslow and

Clayton (1993) and Molenberghs and Verbeke (2006)) that fits the linear mixed model

on the pseudo data. However, instead of iterative fitting of linear mixed models as

in PQL, the authors employ a one-step fitting. This boosting method also does not

handle interactions among variables. After the classifier F (X) is learned by each

boosting method, the relative influence of each selected variable xj is assessed using

the following influence measure Ij proposed by Friedman (2001).

Ij =

(
E

[
∂F (X)

∂xj

]2

.var(xj)

)1/2

(2.5)

The weak learner used in each iteration of both boosting algorithms is a simple linear

regression model, and it does not handle interactions among variables.

2.2.4 Conditional Classification Algorithms

Stanfill et al. (2019) proposed a data transformation approach to generalize clas-

sification algorithms to matched case-control data sets. The new classification al-

gorithms resulting from this data transformation are called conditional classification

algorithms. The data transformation centers each strata by the mean values of ex-

posures. For example, consider a case-control pair with one exposure variable which

is measured as 750 and 250 for case and control respectively. After data transforma-

tion, the values of exposure will be 250 and −250 for case and control respectively.

Formally, this approach is equivalent to the statistical practice of mapping a feature

matrix into the null space. The authors employed this data transformation with 7

different linear and non-linear classification algorithms including Linear Discriminant
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Analysis, CLR, Naive Bayes, Support Vector Machines with radial and linear ker-

nels, Random Forest, and RPCLR. This method does not handle dependency among

units within a stratum, which is recommended by statistical principles. It breaks

each stratum into multiple instances which are known to be dependent. However, our

proposed methods in this dissertation follow the statistical principles and construct

data sets where instances are independent.

2.3 Variable Importance Measure Via Random Forest

Random Forest (RF) (Breiman (2001)) is an efficient and accurate machine learn-

ing algorithm for both classification and regression problems. RF is a combination

of decision trees, each of which is grown on a bootstrap sample of training data set.

Thus, each decision tree is built on a sample of data set, and the remaining data not

used in a decision tree is called out-of-bag (oob) data. Another source of random-

ness in RF is injected when considering candidate variables for a split. In particular,

instead of evaluating all variables for the best split, a random sample of variables is

selected and then the best split is determined using this subset of variables. In R

randomForest package, the default number of variables evaluated for the best split

is
√
p where p is the total number of variables in data set. The outcome for an

unseen data is predicted by aggregating the predictions from all decision trees. For

the classification problems, the final label is determined by majority votes and for

regression problems, the final response is determined as the average of predictions

over the decision trees.

RF is robust to overfitting as the number of decision trees increases (Breiman

(2001)). The random sampling of variables at each node makes it an efficient algo-

rithm when data set is high dimensional. Unlike many classification algorithms such

as logistic regression, support vector machines and neural networks, RF inherently
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handles both numerical and categorical variables and there is no need to convert

categorical variables to binary one-hot encoded vectors before growing RF. Another

interesting characteristic of RF is its ability to compute variable importance scores

which can be used to select important variables.

Decision trees built by RF are based on the CART algorithm Breiman et al. (1984)

which uses binary splits to divide the space. In classification setting, information gain

based on the Gini index is used to evaluate candidate variables for the best split. Gini

index at node ν is defined as

Gini(ν) = 1−
C∑
c=1

w2
c

where C is the number of classes and wc is the proportion of instances at node ν

with class c. Gini information gain resulting from variable z at the parent node ν

is defined as the difference between the Gini index at parent node (ν) and weighted

average of Gini index of left (νl) and right (νr) child nodes. That is,

IG(z, ν) = Gini(ν)− plGini(νl)− prGini(νr)

where pl and pr are the proportions of samples in node v which are assigned to left

and right nodes respectively.

RF has two measures for computing the variable importance score in a classifi-

cation problem including Gini importance or Mean Decrease Gini (MDG) which is

based on the information gain resulting from a split and Permutation importance

or Mean Decrease Accuracy (MDA) which is based on the decrease in accuracy af-

ter permuting the values of a variable in oob data. In what follows, we explain the

Gini importance in more details because this is used in this research. For more de-

tails regarding the Permutation importance of RF, see Breiman (2001) and Breiman

(2002).
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The R implementation of RF (Liaw and Wiener (2002a)) defines Gini importance

of variable z (V I(z)) as the sum of weighted Gini information gain over nodes where

variable z is used to split normalized by the number of trees. That is,

V I(z) =
1

ntree

∑
{ν|s(ν)=z}

NνIG(z, ν)

where ntree is the number of decision trees in RF, s(ν) is the variable selected to

split at node ν, and Nν is the number of instances reaching node ν.

2.4 Variable Importance Measure Via Artificial Neural Networks

Neural network is a machine leaning algorithm which is extensively used in com-

puter vision, natural language processing and time series prediction. There are dif-

ferent structures of neural networks including Multilayer Perceptron, Convolutional

Neural Networks, and Recurrent Neural Networks, where each is suitable for a spe-

cific type of application. Figure shows the neural network structure for Multilayer

perceptron (MLP). MLP consists of an input layer, an output layer, and at least one

hidden layer with one or multiple neurons. This is a fully connected network because

each neuron in a layer is connected to every neuron in the previous layer. Figure

shows the neural network structure for MLP. Each neuron learns an output using a

function of its inputs. Let x1, x2, . . . , xH be inputs of neuron j, then its output oj is

computed as

oj = f

(
H∑
i=1

xiwij + b

)
(2.6)

where f is the activation function, wij is the weight of input xi for neuron j, and b is

the bias. Activation function can be as simple as a linear function or a more complex

non-linear function such as rectified linear unit function (ReLU), Hyperbolic Tangent

(TanH) and softmax. MLP learns the weights wij using backpropagation technique.
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Neural networks achieve high accuracy in many applications and they can learn

complex relationships between inputs and outputs. However, the black box nature

of these models limits their use in applications such as healthcare and finance where

interpretability is also important. A number of approaches have been proposed to

address this challenge and to explain predictions of neural networks in terms of their

inputs. These methods assign an attribution value, sometimes referred as contribution

or relevance, to each input feature, which measures the contribution of that feature to

the predicted output. In classification tasks, usually the output of interest is the one

corresponding to the correct class. The feature attribution value computed by these

methods is instance-level, and if all attributions are arranged in a two-dimensional

matrix with the same size as input data, the resulting attribution will be called

attribution map (Ancona et al. (2017)).

Shrikumar et al. (2017) and Ancona et al. (2017) provide an overview of fea-

ture attribution methods for neural networks. These methods are categorized as

perturbation-based methods (Zeiler and Fergus (2014), Zhou and Troyanskaya (2015)

and Zintgraf et al. (2017)), gradient-based methods (Simonyan et al. (2013), Sun-

dararajan et al. (2016), Springenberg et al. (2014), Bach et al. (2015), Shrikumar

et al. (2017) and Lundberg and Lee (2017)), and Grad-CAM and Guided CAM (Sel-

varaju et al. (2017)). Here, we explain one of the gradient-based methods, DeepSHAP

Lundberg and Lee (2017), because it is used in Chapter 5 of this dissertation.

DeepSHAP is a feature attribution method designed for deep neural networks. It

modifies DeepLIFT algorithm (Shrikumar et al. (2017) and Shrikumar et al. (2016))

to estimate SHAP (SHapley Additive exPlanations) values (Lundberg and Lee (2017))

over the feature space for each individual prediction.

SHAP is connected with Shapley values (Shapley (1953)) from game theory which

explains the output of any machine learning model f by assigning an importance
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value to each feature j (φj) that represents the effect of including that feature on

prediction. To compute this effect for feature j, a model fx(S ∪ j) is trained on a

subset of features S ⊆ F , where F is the set of all features, with feature j present and

another model fx(S) is trained on the feature subset S with feature j withheld. The

marginal effect of feature j when it is added to feature subset S is then computed

by fx(S ∪ j) − fx(S). When the model f is non-linear or feature variables are not

independent, the marginal contribution of a variable depends on the other features

in the model (S), thus, Shapley values arise from the weighted average of marginal

contributions over all possible feature subsets S ⊆ F \ {j}:

φj =
∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!

|F |!
[fx(S ∪ j)− fx(S)] (2.7)

For many of the machine learning models, it is not feasible to predict the output of

the model for a subset of features. SHAP uses a conditional expectation function

of the original model to define simplified input features. That is, it defines fx(S)

by E[f(x)|xS] which is the expected value of the model conditioned on the feature

subset S. The exact computation of SHAP values is challenging for complex models.

However, existing additive feature attribution models can be modified to approximate

SHAP values.

DeepLift is an additive feature attribution method for neural network which

is modified in DeepSHAP to approximates SHAP values. DeepLift is one of

backpropagation-based approaches that propagate an importance signal from an out-

put neuron through hidden layers and finally to input features. This is computation-

ally efficient because importance scores are computed in only one backward pass. Let

y be a target neuron which is defined as y = f(x) and x be a vector of n features

{x1, x2, . . . , xn}. DeepLIFT assigns to each feature xi a contribution score C∆xi∆y

that represents the amount of difference in output y from a reference attributed to
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the difference of that feature from the reference. The choice of a reference depends

on domain-specific knowledge. For example, Shrikumar et al. (2017) uses an image

with all zeros as the reference for MNIST data set because this is the background

of all images in this data. DeepLIFT is an additive feature attribution method that

follows ”summation-to-delta” property:

n∑
i=1

C∆xi∆y = ∆y (2.8)

where ∆y = f(x)−f(x0) and ∆xi = xi−x0
i . Similar to how chain rule is constructed

for partial derivatives to compute the gradient of the output with respect to an input,

DeepLIFT uses “chain rule for multipliers” to compute the global multiplier for any

neuron to a given target neuron via backpropagation. For a given input x and target

neuron y, the multiplier is defined as:

m∆x∆y =
C∆x∆y

∆x
(2.9)

which is the contribution of input x to target neuron y divided by the difference-from-

reference of the input ∆x. When ∆x is close to zero, the definition of multiplier will

be similar to partial derivative ∂y
∂x

which is the change in y caused by an infinitesimal

change in x divided by the infinitesimal change in x. According to the chain rule for

multipliers, the global multiplier from input x to target neuron y (m∆x∆y) is computed

by recursively passing the multipliers backward through the network and summing

them up over all paths connecting input x to target neuron y. Assuming that there

is a hidden layer with neurons h1, . . . , hn between input neuron x and target neuron

y, the global multiplier for x to y is computed as follows:

m∆x∆y =
∑
i

m∆x∆hi ×m∆hi∆y (2.10)

and the the contribution score of input neuron x to target neuron y is computed as

C∆x∆y = m∆x∆y ×∆x (2.11)
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Shrikumar et al. (2017) introduces some rules including linear, rescale and reveal

cancel to compute the multiplier for each neuron to its immediate inputs. These

rules are suitable for activations with linear functions or nonlinear functions with only

one input. Non-linear functions with multiple inputs are not addresses in Shrikumar

et al. (2017), and the public implementation of DeepLIFT uses the gradient for such

functions (Ancona et al. (2017)).

DeepSHAP modifies DeepLift by computing SHAP values for smaller components

of neural network analytically and propagate them backward through the network

using DeepLift’s multipliers. If we interpret the reference input in Equation 2.8 by

E[x] (expected value of inputs), DeepLift approximates SHAP values assuming that

input feature are independent and neural network model is linear.
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Chapter 3

MATCHED FOREST: SUPERVISED LEARNING FOR HIGH-DIMENSIONAL

MATCHED CASE-CONTROL STUDIES

3.1 Introduction

Matched case-control designs are commonly used in a wide range of applications

as illustrated in Chapter 1 to remove the effect of confounding variables in identi-

fying important variables associated with a condition of interest. Case and control

correspond to units with and without the condition of interest respectively. Case and

control instances are grouped into a stratum based on some matching variables and

a number of exposure variables are studied for their effect on the condition of inter-

est. For example, Heller et al. (2008) aims to identify differentially expressed genes

between two subgroups of leukemia patients after matching on variables including

age, sex, multi-drug resistance (mdr), the stage of cell differentiation (stage) and an

indicator variable of whether the chromosome number was large.

We should include all variables as matching which are associated with both ex-

posure and health condition (case or control) (Rose and van der Laan (2009)). If

a matching variables is only associated with either the health condition or exposure

variables, the variance will increase (Rose and van der Laan (2009)). Also, we should

not match on variables which are affected by the exposure to avoid post-treatment

bias (Ho et al. (2007) and Rose and van der Laan (2009)).

Traditionally, matched case-control data sets were analyzed by Conditional Logis-

tic Regression (CLR) (Hosmer and Lemeshow (2000)) which tests the significance of

each exposure variable in the full logistic regression model including all variables. For
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example, Vierkant et al. (1999), Le Hesran et al. (2004) and Peleg et al. (2007) all

applied CLR to analyze matched case-control data, with applications to epidemiol-

ogy (based on a conditional likelihood function Cox and Snell (1989)). An alternative

approach is a Generalized Linear Mixed Model (GLMM). For example, Szyszkowicz

(2006) and Keogh (2017) applied GLMM on matched case-control data sets. This

method uses a regression model which incorporates fixed effects for exposure variables

and random effects for matching variables. Inclusion of random effects enables the

heterogeneity of matched pairs in the analysis. Both CLR and GLMM have some dis-

advantages which limit their use in matched case-control analysis. Difficulties occur

with high dimensional data with a large number of exposure variables and interac-

tion between variables is of interest. Interaction terms (cross products two or more

variables) are needed to capture their effects. This increases the input dimension and

can make these models intractable. CLR also runs into convergence problem for high

dimensional data (Asafu-Adjei et al. (2017)). Also, both CLR and GLMM do not

inherently handle categorical variables. A conversion to binary variables increases the

dimensionality further, especially with cross-product terms.

High dimensionality was considered by Balasubramanian et al. (2014), Qian et al.

(2014), Adewale et al. (2010), Tan et al. (2007) and Asafu-Adjei et al. (2017). These

methods basically adapt linear models, sometimes supplemented with some cross-

product terms to consider interactions. In high dimensional data, the added terms

can become excessive. Our method is quite different, with an inherent capability to

handle interactions. Also, the Random Forest (RF) algorithm (Breiman (2001)) is

a popular method for variable selection in high dimensional data sets. However, RF

does not take into account the matched structure of data. Balasubramanian et al.

(2014) showed some limitations of RF in analyzing matched case-control data and we

also illustrate weaknesses in experiments relative to our method.
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We present a quite different approach for variable selection in high dimensional

matched case-control studies.Our key idea is to transform data based on the potential

outcome model (Neyman (1923), Rubin (1977)). A new label is defined and a super-

vised learner is applied to the transformed data with modified variable importance

(VI) scores. We use a RF for our learner due to its ability to identify complex in-

teraction effects in high dimensional settings and provide VI scores. The approach is

conceptually simple and computationally scales well. Experiments demonstrate the

effectiveness of the proposed approach in the presence of large number of matching

and exposure variables.

Section 3.2 presents background on matched case-control analysis, existing meth-

ods for high dimensional settings and RF VI scores. Section 3.3 describes the method.

Section 3.4 presents the results from experiments on simulated and biomedical data

sets. Section 3.5 provides conclusions.

3.2 Background

3.2.1 Matched Case-Control Analysis

Consider data where subjects are paired based on a number of matching variables

and exposure variables are to be studied for their effects on a binary outcome. As

an example, subjects can be paired based on age, the exposure variable of interest is

diet, and the subjects are evaluated for heart disease (outcome of interest). For every

subject with heart disease present (a case), there is a subject selected of the same age

without heart disease (a control). The analysis is to study the relationship between

heart disease and diet.

Let x represent the average daily calorie intake and x0 and x1 denote the values

for the control and the case, respectively. Figure 3.1a shows a scatter plot of x0 versus
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x1 for each pair from a simulated data set. From the figure, there does not seem to be

regions where x differs between the cases and the controls. That is, we do not detect

regions in the x0 and x1 space where the value of case is consistently greater/smaller

than the value of control. Hence, no effect of diet is observed in the plot.

(a) No effect (b) Exposure effect

Figure 3.1: Scatter Plot of Control (x0) Versus Case (x1) for Exposure Variable x

with (a) No Effect and (b) Effect

Now, consider the example from a simulated data set in Figure 3.1b. Many pairs

are present with x1 > x0 that indicate an effect of diet. However, standard supervised

learners that do not consider matching have difficulty identifying this effect because

the methods compare the overall distribution of x1 and x0 and they do not consider

how case and control values differ within each pair.

Sometimes the effect is more subtle. Consider the example in Figure 3.2 from a

simulated data set with an interaction effect between an exposure and a matching

variable (denoted as v and binary such as male or female patients). In Figure 3.2,

blue (circles) and green (triangles) represent male and female groups, respectively.

The majority of pairs in male group have x1 smaller than x0, while the majority
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of pairs in female group present the opposite effect. Therefore, there is an effect

from the exposure variable, however, it is interacted with the matching variable v. If

the matching is not considered, we may incorrectly conclude that there is no effect

because the number of pairs with case greater than control are almost equal to the

number of pairs with control greater than the case for exposure variable x.

Figure 3.2: Scatter Plot of Control Versus Case for an Exposure Variable x with

Matching-exposure Interaction Effect. Blue (Circles) and Green (Triangles) Represent

Male (Encoded as 0) and Female (Encoded as 1) Groups of the Matching Variable,

Respectively.

3.2.2 Existing Methods For High-Dimensional Matched Case-Control Data Sets

The problem of high dimensionality in matched case-control analysis has been con-

sidered by Tan et al. (2007), Adewale et al. (2010), Balasubramanian et al. (2014),

Qian et al. (2014) and Asafu-Adjei et al. (2017). Tan et al. (2007) developed a two-

stage variable selection approach, where in the first stage a modified t-test statistic

is used, and in the second stage, a support vector classifier based on selected vari-

ables is built. However, the variable selection procedure uses a univariate analysis
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which does not include interaction effects. Also, matching is not incorporated in

the classification model. Adewale et al. (2010) proposed two variants of a boosting

algorithms for matched case-control analysis. The first method combines a generic

gradient boosting algorithm with a weighted least square loss function that handles

correlated binary outcomes. The second method modifies a likelihood optimization

boosting algorithm by using GLMMs. However, both boosting algorithms do not

include interaction terms in their model. Balasubramanian et al. (2014) used an en-

semble approach. For each bootstrap sample, a CLR model with ridge penalty is fit to

a random subset of features with their pairwise interaction. This model only includes

interaction terms between two variables, thus, it does not detect interaction effects

which include larger number of exposure and matching variables. This method also

had some convergence problems in our implementation for our experiments. Qian

et al. (2014) developed two variable selection approaches based on conditional and

unconditional logistic regression as well as lasso and ridge penalties. The first method

employs a procedure which selects variables by CLR, and then uses unconditional lo-

gistic regression for prediction. For variable selection at stage one, first, important

main effects are identified, and then pairwise interaction of selected variables are in-

vestigated. However, this method may not identify variables which do not have main

effects, but more pure interaction effects, or higher order interactions (¿2) among

exposure and matching variables. Their second method performs variable selection

and prediction simultaneously by fitting an unconditional logistic regression model.

Although the second model includes both matching and exposure variables with their

interactions, it becomes intractable for high dimensional data sets because of the

addition of many interaction terms. Asafu-Adjei et al. (2017) proposed a Bayesian

variable selection approach for matched case-control analysis which is formulated in
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a CLR framework. This method also ignores interaction effects between variables

including both matching and exposure.

Breiman’s Random forest (RF) (Breiman (2001)) is an efficient supervised method

for assessing VI in high dimensional data sets. RF naturally handles different scales,

non-linear effects, interactions, categorical and numerical variables. Additionally, RF

computes VI score for each variable in data set. As mentioned, researchers used RF to

analyze matched case-control data Tsou et al. (2007). However, they did not account

for matching in their analysis.

RF consists of several trees each is built on a bootstrap sample of data set. A

subset of variables are randomly selected and evaluated to split instances at each node.

Most implementations of RF offer two measures for variable importance including

Gini importance which is based on the decrease in the impurity after the split and the

permutation importance which is based on the decrease in accuracy after permuting

values of a variable (Strobl and Zeileis (2008)). As this paper uses the Gini importance

measure, we explain this in more details. If variable z is selected to splitN instances at

node ν into left child node νl and right child node νr with proportions of instances pl =

Nl/N and pr = Nr/N , respectively, the Gini information gain of variable z for splitting

at node ν (IG(z, ν)) is computed as IG(z, ν) = Gini(ν)−plGini(νl)−prGini(νr). Gini

impurity at node ν (Gini(ν)) is defined as 1−
∑C

c=1 w
2
c where C is the number of classes

and wc is the proportion of instances at node ν with class c. The R implementation of

RF (Liaw and Wiener (2002b)) computes importance measure for variable z denoted

as V I(z) by the sum of weighted Gini information gain over all nodes where variable

z is used to split normalized by the number of trees:

V I(z) =
1

ntree

∑
ν∈{ν|s(ν)=z}

NνIG(z, ν)
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where ntree is the number of trees in random forest, s(ν) is the variable selected to

split at node ν, and Nν is the number of instances reaching node ν.

3.3 Matched Forest

We introduce a new algorithm, Matched Forest (MF), for variable selection in high

dimensional matched case-control data set. Existing models for matched case-control

data require additional terms (cross products) to be explicitly added to handle interac-

tions. But this increases the dimensionality significantly and make variable selection

a more difficult problem. MF is both simple conceptually and easy to implement, yet

based on the established potential outcome model (Rubin (1977)). MF consists of

two simple steps: 1) a transformation to convert the variable selection problem into

a supervised setting based on the potential outcome framework for causal inference;

2) a supervised learner which is able to inherently detect the complex interactions

involving both exposure and matching variables in high dimensional setting using the

transformed data set.

3.3.1 Transform to Supervised Learning

A task for causal effects is to use observed exposure values to estimate unobserved

ones which are also known as counterfactuals. In matched case-control study designs,

because subjects within each pair are similar to each other in terms of matching

variables, we can use the control’s observed exposure to represent the case’s counter-

factual (He et al. (2016)). Similarly, the case’s observed exposure is used to represent

control’s counterfactual.

Formally, suppose that (i1, i0) denotes, respectively, case and control subjects in

pair i. The observed values of exposure for case and control subjects in this pair are

x1(i1) and x0(i0), respectively, and the counterfactuals are x0(i1) and x1(i0). Here
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x0(i1) is the potential exposure value if the case subject were the control (analogously

x1(i0)). To estimate the individual causal effect for pair i which is defined as δi =

x1(i1)− x0(i1), we need to first estimate the counterfactual x0(i1). In matched case-

control study designs, the control’s observed exposure x0(i0) is used to estimate cases’s

counterfactual x0(i1). Thus, δ̂i = x1(i1) − x0(i0) is an estimate of individual causal

effect. The average effect of exposure is then estimated from the mean difference in

a sample of N matched case-control pairs as

δ̂ =
1

N

N∑
i=1

[x1(i1)− x0(i0)]

Our method compares the observed values of exposure and counterfactuals, but with

a different approach that extends beyond the average of differences and can detect

more complex relationships between exposures and outcomes.

Because we only need the observed exposure values to estimate the causal effect,

we simplify notation to x1(i) and x0(i) to denote, respectively, the observed exposure

values x1(i1) and x0(i0) for case and control subjects in pair i. Let N denote the

number of matched case-control pairs. We generate new case and control variables,

denoted as (x∗1 and x∗0), with 2N rows. For the first N rows, the instances match

the original instances and for the second set of N rows, case and control values of the

exposure are interchanged within each pair. That is,

x∗k(i) =


xk(i) for i = 1, 2, . . . , N ,

x1−k(i−N) for i = N + 1, N + 2, . . . , 2N

for k = {0, 1}. The second N rows represent the counterfactuals (estimated based

on the potential outcome model for a matched case-control study design). Because

the effect of an exposure is dependent on the difference between its case and control

values within each pair, if the exposure variable is numerical, we also create new
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variable d∗ defined as

d∗(i) = x∗1(i)− x∗0(i)

for i = 1, 2, . . . , 2N . We distinguish the observed and counterfactual pairs with a

label, defined as y(i) equals 0 and 1 for the original and counterfactual rows, re-

spectively. MF uses a classifier on the transformed data set consisting of x∗1, x∗0,

d∗ and y to evaluate the effect of exposure x. If the exposure variable x has an ef-

fect on outcome (δ 6= 0), we would expect the classifier to separate the original and

counterfactual pairs.

To illustrate our method, recall the examples in Figures 3.1a and 3.1b. In Figures

3.3a and 3.3b, we plot x∗0 versus x∗1 with observed exposure values in black (circles)

and counterfactuals in red (triangles), respectively. In Figure 3.3a the observed and

counterfactuals are not clearly separated so that a supervised learner with x∗1, x∗0

and d∗ would not classify well. In our approach, this indicates no effect for exposure

variable x. However, in Figure 3.3b, many of the observed exposure values are below

the 45 degree line while their counterfactuals are above this line. Thus, a supervised

learner can use x∗1, x∗0, and d∗ to classify well. Variable d∗ is useful to separate

observed and counterfactual pairs because its value is positive (negative) for many of

the original (counterfactual) pairs. For a numerical predictor, potentially either x∗0

or x∗1 could be removed from the analysis when d∗ is included, but we prefer to keep

both to maintain the symmetry and a general approach.

Our method can be easily extended to a number of exposure and matching vari-

ables, with subsequent major advantages to handle multiple effects and detect in-

teractions. Consider a data set with R exposure variables denoted by x1, x2, . . . , xR

and M matching variables denoted by v1, v2, . . . , vM . We denote the case and control

values for an exposure variable xr as x1
r and x0

r, respectively. As described previously,

our approach adds counterfactuals and variables to the original data set to generate
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(a) No effect (b) Exposure effect

Figure 3.3: Scatter Plot of New Control (x∗0) Versus New Case (x∗1) Variables As-

sociated with Exposure Variable x with (a) No Effect and (B) An Effect. Observed

Exposure Values (y = 0) and Counterfactuals (y = 1) Are Shown by Black (Circles)

and Red (Triangles).

new variables, denoted by x∗1r and x∗0r . If our data set has R1 numerical exposure

variables, then we also generate difference variables

d∗r = x∗1r − x∗0r

for r = 1, 2, . . . , R1. To detect interaction effects between matching and exposure

variables, additional variables are generated. We create new matching variables v+
m

for m = 1, 2, . . . ,M by extending the original matching variables (vm) to 2N instances

as

v+
m(i) =


vm(i) for i = 1, 2, . . . , N ,

vm(i−N) for i = N + 1, N + 2, . . . , 2N

for m = 1, 2, . . . ,M . Therefore, the transformed data set has 2N instances and

M + 2R +R1 + 1 columns.

To illustrate the role of v+
m, recall the example in Figure 3.2. In Figure 3.4a,

we plot x∗0 versus x∗1 with the observed in black (circles) and counterfactuals in

red (triangles). Although x has an effect, Figure 3.4a shows that the observed and
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counterfactuals are not clearly separated However, when the matching variable v+

is included in the data and we view the three-dimensional plot of v+, x∗1 and x∗0

in Figure 3.4b, the observed and counterfactuals are separated and a classifier using

these variables would perform well.

(a) No effect (b) Exposure effect

Figure 3.4: Scatter Plot of Control x∗0 Versus Case x∗1 (a) Without and (b) with

Matching Variable v Illustrate An Interaction Effect Between x and v. Observed

Exposure Values (y = 0) and Counterfactuals (y = 1) Are Shown by Black (Circles)

and Red (Triangles).

3.3.2 MF Variable Importance

Our MF algorithm applies RF on the transformed data set to identify important

matching and exposure variables. One of the advantages of our method is that widely

available algorithms can be simply applied. We selected RF due to its ability to handle

high dimensionality, mixed variables, and interaction effects and to measure VI scores

which can be used for variable selection.

To select important variables, we compute a MF variable importance score, de-

noted as MFI, for each variable based on the Gini method, but modified for the

matched analysis. The MFI score for matching variable vm for m = {1, 2, . . . ,M} is
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computed as MFI(vm) = V I(v+
m). The MFI score for exposure variable xr is com-

puted by summing up the Gini importance scores of all case, control and difference

variables related to exposure variable xr as

MFI(xr) = V I(x∗0r ) + V I(x∗1r ) + V I(d∗r)

All these variables are derived from exposure variable xr and can appear as splitting

variables in trees. Therefore, the summation is used to provide an overall score for

the importance of xr.

The computational cost for MFI scores is the same as VI scores and it depends

on the number of pairs (N), the number of variables selected at each split (mtry)

and the number of trees (ntree). Thus, for a fixed mtry, MF and RF have the same

computational cost for computing MFI and VI scores respectively. In the default

parameter setting of R randomForest package, mtry is set to (
√
p) where p is the

total number of variables in data set. The data transformation step in MF increases

p linearly in the number of matching and exposure variables which does not change

the computational cost.

3.4 Experiments

We compared MF with either CLR, RF, or Boosting Weighted L2 Loss

(WL2Boost) (Adewale et al. (2010)) in a series of experiments. In section 3.4.1,

simulations are used to demonstrate the performance of MF. The full description of

simulations and results are provided in the supplementary information. In section

3.4.2, four biomedical data sets are analyzed to evaluate MF.
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3.4.1 Simulation Studies

We tested the performance of MF in variable selection through extensive simula-

tion studies. In particular, we generated data sets with no effect of exposure and five

different effect types including linear, non-linear, matching and exposure interaction,

two exposures interaction and three exposures interaction. In our simulations, num-

ber of pairs (N) and number of exposure variables (R) range from 300 to 1000 and 20

to 150, respectively. For all simulation studies, unless otherwise stated, each control

variable x0
r for r = 1, 2, . . . , R is generated randomly from a uniform distribution be-

tween 1 and 50 and each case variable x1
r for r = 1, 2, . . . , R is generated according to

x0
r + dr where dr follows N(µr, 1). In our simulations, µr is set to 0 for exposure vari-

ables without any effect, to {−0.5,−0.75,−1} for exposure variables with negative

effect and to {1, 1.5, 2} for exposure variables with positive effect. Let the absolute

value of µr (|µr|) be the effect size. Larger values for |µr| indicate stronger effects

of exposure variables. Number of instances with negative, positive and no effect are

also changed for some variables to generate different types of effects. Variables in

interaction effects are simulated so that they individually do not have an effect on

the outcome, but their combination with other variables show an effect. Moreover,

matching variables are generated independently from Poisson (5) distribution. This

provides discrete matching values with common values that might be expected in

practice (e.g., age intervals).

For each simulation study, we generated 100 data sets and compared the perfor-

mance of variable selection from MF, RF, and CLR. To select important variables

from MF (RF), we compared MFI (VI) scores to the null distribution generated from

randomly assigned labels. In particular, for each simulated data set, we permuted

the case and control instances within a pair for each exposure variable and computed
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MFI (VI) scores on the new data sets to estimate the null distribution for each MFI

(VI) score. Observed MFI (VI) scores using the original data set are compared with

the estimated null distributions and variables with MFI (VI) score significantly large

at level α are selected as important. We did not adjust α for the multiple comparison

problem in our simulations, although the problem exists due to the large number of

variables. The objective is to show the relative performance of MF to the alternatives

without model-building for simulated data sets.

We used default parameters in R randomForest package to run MF. Specifically, we

set ntree = 500, mtry =
√
p, and grow trees to purity. To evaluate the performance

of variable selection, we used ROC curve which plots true positive rate (TPR) versus

false positive rate (FPR) along different values of significance level α. Let I and I ′

be sets of important and noise variables (both exposure and matching) respectively

and Nα(z) be the number of simulations out of 100 simulated data sets that selected

variable z as important at significance level α. Then, TPR and FPR are defined

respectively as

TPR =

∑
z∈I Nα(z)

100|I|
and FPR =

∑
z∈I′ Nα(z)

100|I ′|

where |{.}| denotes the cardinality of set {.}. In our simulations, α ranges from 0 to 1

incremented by 0.01. As CLR is not able to estimate the effect of matching variables,

Nα(z) = 0 for z ∈ {v1, v2, . . . , vM}. Our experiments show that MF outperforms

CLR in detecting non-linear and interaction effects, however, they have similar per-

formance when the exposure variable is linearly associated with the outcome. Also,

MF performs better than RF in identifying different effect types. Here, we show

results for the simulation study with an interaction between a matching and an expo-

sure variable. For a full description of simulations and results, see the supplementary

information.
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We simulated an interaction effect between exposure variable x1 and matching

variable v1 with no other effects. Values for v1 are generated from a Poisson (5)

distribution and sorted in an ascending order. Variable x1
1 is generated to have positive

effect for smaller values of v1 and negative effect for higher values of v1. That is, for the

first N/4 instances, µ1 = 2 (positive effect), for the next N/4 of instances, µ1 = 0 (no

effect) and for the last N/2 instances µ1 = −1 (negative effect).The mean difference

is 0 (δ̂1 = 0) so that x1 individually does not have an effect. Also, µr = 0 for

r = {2, . . . , R}. Figure 3.5a shows ROC curves from MF, RF, and CLR and Figures

3.5b and 3.5c show MFI scores of matching and exposure variables respectively for

data sets with a matching-exposure interaction, N = 800 and R = 100. From Figure

3.5a, we can see that MF is more accurate in identifying important variables compared

to RF and CLR because its ROC curve dominates the other two methods. Also from

Figure 3.5b and Figure 3.5c, we observe that matching variable v1 and exposure

variable x1 both have higher MFI scores than other exposure and matching variables.

3.4.2 Biomedical Examples

Three unmatched data sets from UCI benchmark database Lichman (2013) and

one paired gene expression data set were used for analysis. The unmatched data sets

were converted to a matched design to be used for matched case-control analysis. Age

and gender are two variables commonly used for matching in clinical studies. For each

data set, we used at least one of these variables to match controls to similar cases.

We used the R package Matchit for exact matching of controls to cases. Instances

that were not matched were removed from the analysis. Further details regarding

matching for each data set are described in the corresponding section.

We ran MF on each data set 10 times to account for randomness of MF in com-

puting the MFI scores. Similar to section 3.4.1, important variables are selected by
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(a) ROC curve

(b) MFI scores: matching variables (c) MFI scores: exposure variables

Figure 3.5: (a) Comparison Between the Performance of MF, RF, and CLR in Vari-

able Selection Accuracy, (b) MFI Scores of Matching Variables, and (c) MFI Scores

of Exposure Variables for Data Sets Simulated with Matching-Exposure Interaction

Between v1 and x1, N = 800 and R = 100. MF Performs Better than RF and

CLR in Identifying the Correct Effect. MFI Plots Show That Both x1 and v1 Have

Substantially Higher MFI Scores than the Other Exposure and Matching Variables.

comparing the average of MFI scores over 10 runs of MF with the estimated null

distributions. We permuted instances in a pair 100 times to estimate the null distri-

butions for MFI scores.

MF was compared with CLR and WL2Boost for unmatched data sets. However,

for the gene expression data set, only WL2Boost was used for comparison because
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this data set has a large number of variables (> 22, 000) and CLR has convergence

problem for high dimensional data sets (Asafu-Adjei et al. (2017)).

Indian liver patient data set: This data set contains 416 instances labeled as

liver patients (cases) and 145 instances labeled as non-liver patients (controls). We

used age (discretized by 5 year intervals) and gender as matching variables and studied

the effect of the remaining 8 exposure variables on liver disease: Total Bilirubin (x1),

Direct Bilirubin (x2), Alkphos (x3), SGPT (x4), SGOT (x5), Total Protiens (x6),

Albumin (x7) and A/G ratio (x8). Variable x8 had 4 missing values which were

replaced by the average of non-missing values. Using exact matching to match case

and control instances by Age and Gender resulted in a data set with 153 matched

case-control pairs.

Figure 3.6a shows MFI scores for exposure variables and Figure 3.6b shows p-

values of each exposure variable from MF and CLR. Variables x3, x4, and x5 were

selected by MF at significance level 0.05 and they all have received large MFI scores

compared to other variables. However, CLR did not select any of these variables at

this significance level. This difference can be due to existence of interactions between

variables that CLR did not detect. To test if variable x5 interacts with other exposure

variables, a similar approach to Balasubramanian et al. (2014) was used. We fit the

following two conditional logistic regression models

logit(p) = β1x5

logit(p) = β1x5 + β2z + β3x5z

where z is any other variable in the data set. A likelihood ratio test was performed at

level 0.05 to compare the two nested models. Variable x5 has significant interactions

with variables x1, x2 and x3. Also, the result from WL2Boost differs from MF.

WL2Boost selected variable x7 as an important variable, but this received a large
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p-value by MF. This difference is possibly due to interactions between the variables

which WL2Boost has difficulty to detect.

(a) MFI scores (b) P-values from MF and CLR

Figure 3.6: Indian Liver Patient Data Set: (a) MFI Scores for Exposure Variables

and (b) P-values from MF and CLR.

Pima indians diabetes data set: This data set contains diabetes diagnostic

information for 268 women diagnosed with diabetes and 500 without. We matched

instances based on age (discretized by 5 year intervals) and generated 241 pairs. The 7

exposure variables were number of times pregnant (x1), Plasma glucose concentration

(x2), Diastolic blood pressure (x3), Triceps skin fold thickness (x4), 2-Hour serum

insulin (x5), Body mass index (x6), and Diabetes pedigree function (x7). Figure 3.7a

shows MFI scores for exposure variables and Figure 3.7b compares p-values from MF

and CLR. Here, the results obtained by MF, CLR, and WL2Boost are similar and

they all selected variables x2 and x6 as important variables. Also, we can observe in

Figure 3.7a that both variables have relatively large MFI scores compared to other

variables.

Statlog heart disease data set: The Statlog heart disease data set contains 120

and 150 instances, with and without heart disease, respectively. Exposure variables
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(a) MFI scores (b) P-values from MF and CLR

Figure 3.7: Pima Indians Diabetes Data Set: (a) MFI Scores for Exposure Variables

and (b) P-values from MF and CLR.

of interest are Resting Blood Pressure (x1), Serum Cholestoral (x2), max heart rate

(x3), Oldpeak (x4), Slope of peak ST segment (x5), and Major vessels colored (x6).

Age (discretized by 5 year intervals) and gender were used to match controls to similar

cases using the exact matching method. This resulted in 80 matched pairs.

Figure 3.8a shows MFI scores for exposure variables and Figure 3.8b shows p-

values from MF and CLR. Variable x6 was selected by both methods at significance

level 0.05, but there exists several differences between the two methods. Variable

x5 was selected by MF, while CLR did not detect the effect of this variable. The

reason why variable x5 received a relatively small MFI score is that this variable has

only 3 unique values and RF tends to get higher Gini importance score for numerical

variables with several unique values (Strobl and Zeileis (2008)). From MFI scores in

Figure 3.8a, we see that both x3 and x4 have relatively large and almost similar MFI

scores, so they potentially have effects on the outcome. CLR only detected the effect

of x3, but MF did not detect the effect of x3 nor x4. If we look at p-values of x∗0r ,

x∗1r , and d∗r for r ∈ {3, 4}, we observe that both d∗3 and d∗4 are significant at α = 0.05,
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thus, further work is required to refine the method and improve the power of MF.

We also applied WL2Boost on this data set and observed that only variable x6 was

selected.

(a) MFI scores (b) P-values from MF and CLR

Figure 3.8: Statlog Heart Disease Data Set: (a) MFI Scores for Exposure Variables

and (b) P-values from MF and CLR.

Childhood Acute Lymphoblastic Leukemia Study: The childhood acute

(a) (b)

Figure 3.9: (a) Average MFI Scores for the 100 Highest MFI Importance Variables.

Genes Selected by WL2Boost Are Shown in Dark Shade. (b) Scatter Plot of Control

Versus Case for Gene 213166 x at Indicates An Effect.
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lymphoblastic leukemia study is a matched paired study design conducted by Bho-

jwani et al. (2006) to study underlying mechanisms leading to relapse. They analyzed

gene expression profiles of 35 children who were diagnosed with childhood acute lym-

phoblastic leukemia and relapsed after therapy. This study used 35 pairs, each of

which consisted of gene expression profiles in bone marrow of diagnosis and relapsed

samples taken from the same patient. The study evaluated 22,283 gene expressions to

identify genes which were differentially expressed between selected pairs. Although

matching variable is not measured in this data set, we can still use MF to select

important genes.

MF was conducted in 10 replicates and 50, 000 trees and compared with

WL2Boost. Variables (Gene expression profiles) were ranked from most (rank 1)

to least (rank 22283) important based on MFI scores and important variables were

selected by randomly assigned labels. At α = 0.01, MF selected 284 variables which

include 11 out of 12 variables selected by WL2Boost and at α = 0.02, all 12 variables

were selected by MF. Figure 3.9a shows the average MFI scores over the 10 replicates

of MF for the 100 highest MFI importance variables. Not all bars are labeled in the

figure. Here 9 of the 12 variables which were selected by WL2Boost are shown in dark

shade (while all 12 are within the top 200 of MFI scores). WL2Boost selected the

top two MFI highest ranked variables. However, variables of rank 3 through 8 based

on MFI scores, which also received small p-values, were not selected by WL2Boost.

Figure 3.9b is a scatter plot of the MFI rank 3 gene 213166 x at and it illustrates that

for many pairs x1 > x0 so that we see a strong effect based on our potential outcome

approach. Also, Adewale et al. (2010) considered a classifier to distinguish the case

and control samples. Based on a MF model from only the 10 MFI highest-ranked

genes, we obtain a cross validated error rate of approximately 3%, substantially lower

than the 23% error rate of the 12-variable model from WL2Boost.
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Also, we viewed a variable selected by WL2Boost, but ranked lower by MF, such

as 218561 s at (155th). It can be shown that this variable has less predictive scatter

plot (as measured by the difference between the number of pairs with x1 > x0 and

x1 < x0) when viewed individually than approximately 900 other variables, so the

lower rank is reasonable. Its rank of 155 is higher than the scatter plot measure

would indicate, presumably from a role of this variable in interactions captured by

MFI scores. Still, our model ranked many other genes higher and this gene was not

needed for a good prediction.

3.5 Conclusions

We presented Matched Forest (MF), a machine learning algorithm for variable

selection in high dimensional matched case-control data set. The method differs

substantially from previous approaches and is developed to detect complex effects.

Data is transformed so that advantages of supervised learners can be used to identify

important variables. MF also uses a modified variable importance measure for variable

selection. MF is both conceptually simple and easy to apply with widely available

software tools.

We compared the performance of MF to alternative approaches including CLR,

RF and WL2Boost using simulated and biomedical data sets. The simulation studies

demonstrate the effectiveness of MF to detect important variables with interaction

effects. Also, the analysis on biomedical data sets shows that results from MF can

be different from alternative approaches because of its ability to detect complex in-

teraction effects.
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3.6 Supporting Information: Simulation Studies

The full description of simulations and their results are presented here. Data

sets are generated with different conditions defined by effect type, the size of the

effect, number of exposure variables and number of strata to test the performance

of Matched Forest (MF) in detecting important variables. MF was compared with

Random Forest(RF) and Conditional Logistic Regression (CLR) based on ROC curve

which plots true positive rate (TPR) versus false positive rate (FPR) at different

values of significance level α. For the simulations in section 3.6.1 where there is no

effect, the three methods were compared based on their FPR at different values of α.

We also show the MFI scores for the top 20 most important exposure variables and

for all 5 matching variables in our simulation studies.

3.6.1 Null Scenario

For the null scenario, we simulated data sets with no effect of exposure variables.

Two simulation experiments were designed to generate data sets with no effects. In the

first experiment, all variables (matching and exposure) were simulated independently

and in the second experiment, a matching variable (v1) is simulated to be associated

with the exposure variable (x1). We compared the performance of MF, RF and

CLR when N = 600 and R = 100 for both simulation experiments. For the first

experiment with independent variables, we set µr = 0 for r = 1, 2, . . . , R. Figure 3.10

shows the results for the simulation experiment with independent variables. Figure

3.10a compares FPR values from MF, RF, and CLR at different values of α for

this experiment. We can see that MF and CLR both have small and similar FPR

and α < 0.3 guarantees that MF has smaller FPR than RF. Also, MFI scores of

matching and exposure variables do not show any variable with significantly higher
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score than the other matching and exposure variables. (Figures 3.10b, 3.10c). We

also considered the effect of N and R in the performance of MF and observed that

FPR of MF is similar for different values of N and R that we tested and almost equal

to the significance level α (Figure 3.12).

For the second simulation experiment, x0
1 and x1

1 are generated from matching

variable v1 according to v1+t where t follows N(0, 1). All other variables are simulated

in the same fashion as the first experiment with µr = 0. Figure 3.10 shows the results

for the simulation experiment with matching associated with an exposure. Figure

3.11a compares FPR values from MF, RF, and CLR at different values of α for this

experiment. We can see that MF and CLR both have small and similar FPR and

α < 0.3 guarantees that MF has smaller FPR than RF. Also, MFI scores of matching

and exposure variables do not show any variable with significantly higher score than

the other matching and exposure variables. (Figures 3.11b and 3.11c). We also

considered the effect of N and R in the performance of MF and observed that FPR

of MF is similar for different values of N and R that we tested and almost equal to

the significance level α. (Figure 3.13) Therefor, MF behaves comparably to CLR in

terms of FPR when all variables are simulated with no effect. Also, MF and CLR

perform better than RF only when α < 0.3.

3.6.2 Linear Exposure Effect

Here, exposure variable x1 is simulated to have a negative effect. In particular, we

set µ1 = −1 for N/2 instances and to generate some noise, µ1 = 0 for the remaining

instances, and µr = 0 for r = {2, . . . , R}. Figure 3.14a shows ROC curves from

MF, RF, and CLR, and Figures 3.14b and 3.14c show MFI scores for matching and

exposure variables respectively. From Figure 3.14a, we can see that both MF and CLR

are accurate in terms of selecting important variable x1 and their TPR is always 1
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at any given FPR. However, RF has smaller TPR than MF and CLR at any given

FPR. We can also observe that variable x1 has substantially higher MFI score than

the other exposure variables (Figure 3.14c) and all 5 matching variables have small

and almost identical MFI scores (Figure 3.14b).

We also tested the effect of number of pairs (N), number of exposure variables

(R), and µ1 for instances with negative effect (µ1(−)) in the performance of MF and

observed that MF is accurate in identifying variable x1 as important in ranges of

values that we tested and its TPR is equal to 1 at any given FPR (Figure 3.15).

Therefore, both MF and CLR perform comparably and better than RF in identifying

variables with linear effect.

3.6.3 Non-Linear Exposure Effect

Here, x1 has an effect that changes with the value of x0
1, that is, x1 has a positive

effect when x0
1 < 25 and has a negative effect when x0

1 > 25. We use a uniform

distribution to generate x0
1 such that the first N/6 instances are between 1 and 25,

the nextN/3 instances are between 25 and 50 and the remaining instances are between

1 and 50. To generate x1
1, µ1 = 2 for the first N/6 instances (positive effect), µ1 = −1

for the next N/3 instances (negative effect), µ1 = 0 for the remaining N/2 instances.

Also, µr = 0 for r = {2, . . . , R}. Figure 3.16a shows ROC curves from MF, RF,

and CLR and Figures 3.16b and 3.16c show MFI scores for matching and exposure

variables respectively for data sets with a non-linear effect, N = 600 and R = 100.

Figure 3.16a shows that MF dominates the other two methods as it always has higher

TPR at any given FPR. Also, variable x1 has received a substantially higher MFI

score than the other exposure variables (Figure 3.16c) and MFI scores of matching

variables are all small and almost equal and no matching variable with unusually high

score is seen in Figure 3.16b as expected.
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We also evaluated the performance of MF for different values of number of pairs

(N), number of exposure variables (R), and µ1 for instances with positive and negative

effects (µ1(+), µ1(−)). Figure 3.17 shows the results from this sensitivity analysis for

N ∈ {300, 600, 900}, R ∈ {20, 100, 150}, (µ1(+), µ1(−)) ∈ {(1,−0.5), (1.5,−0.75),

(2,−1)} respectively. The performance of MF improves by increasing the number of

pairs from 300 to 900. MF also is more accurate when number of variables is small

and its performance slightly drops as the number of variables increases. Also, as the

effect size (|µ1|) increases, MF will be more accurate in identifying the correct effect.

Therefore, MF performs better than both CLR and RF in identifying the effect of

variables with non-linear effects, and the performance of MF in variable selection

improves with larger number of strata, smaller number of exposure variables, and an

increase in effect size of the important variable.

3.6.4 Matching-Exposure Interaction

Here, data sets are generated with an interaction between exposure variable x1 and

matching variable v1 with no other effects in a similar fashion as described in section

4.1 in the manuscript. We compared the performance of MF with CLR and RF in

Figure 8 of the manuscript. In this section, we show how the performance of MF is

affected by change in number of pairs (N), number of exposure variables (R), and

µ1 for instances with positive and negative effects (µ1(+), µ1(−)). Figure 3.18 shows

the results from this sensitivity analysis for N ∈ {600, 800, 1000}, R ∈ {20, 100, 150},

(µ1(+), µ1(−)) ∈ {(1,−0.5), (1.5,−0.75), (2,−1)}. MF is accurate in identifying the

interaction effect between v1 and x1 and its TPR is near or equal to 1 at all tested

values for N and R. Also, the performance of MF improves as the effect size (|µ1|)

increases. Therefore, MF is effective in identifying an interaction between a matching

and an exposure variable, and its performance improves as effect size increases.
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3.6.5 Exposure-Exposure Interaction

An interaction between exposure variables x1 and x2 is generated, without indi-

vidual effects. That is, µ1 = µ2 = 2 for the N/4 instances, µ1 = µ2 = −1 for N/2

instances, and to create some noise, µ1 = µ2 = 0 for the remaining N/4 instances.

Other exposure variables are generated with µr = 0 for r = {3, . . . , R}. Figure 3.19a

shows ROC curves from MF, RF, and CLR and Figures 3.19b and 3.19c show MFI

scores for matching and exposure variables respectively for data sets with exposure-

exposure interaction, N = 800 and R = 100. From Figure 3.19a, we can see that MF

outperforms RF and CLR in identifying the correct effects because its TPR is almost

always higher than TPR of RF and CLR at any given value of FPR. Also, MFI scores

in Figure 3.19b and Figure 3.19c show that both x1 and x2 have significantly higher

scores than other exposure variables and there is no matching variable whose MFI

score is significantly higher than other matching variables.

We also considered the effect of number of pairs (N), number of exposure vari-

ables (R), and µ2 for instances with positive and negative effects (µ2(+), µ2(−))

on the performance of MF. Figure 3.20 shows the results from this sensitiv-

ity analysis for N ∈ {600, 800, 1000}, R ∈ {20, 100, 150}, (µ2(+), µ2(−)) ∈

{(1,−0.5), (1.5,−0.75), (2,−1)}. MF has TPR equal or very close to 1 at any given

FPR for all values of N and R that we tested so its performance is not sensitive to

changes in these two parameters. Also, as the effect size (|µ2|) increases, MF per-

forms better in identifying variables in an exposure-exposure interaction. Therefore,

MF performs better than both CLR and RF in identifying interaction effects between

two exposure variables, and the performance of MF in variable selection improves

with an increase in the strength of the interaction effect.
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3.6.6 Exposure-Exposure-Exposure Interaction

Data sets with a three-way interaction effect between exposure variables x1, x2,

and x3 and with no effects for other variables are generated for this simulation study.

Table 3.1 describes how the interaction is designed. We indicate pairs with negative

and positive effect of each case variable with − and +, respectively. For example, the

first row in Table 3.1 indicates that N/8 instances are generated with positive effect

for x1
1, negative effect for x1

2, and positive effect for x1
3. Number of pairs with negative

and positive effects and µr are selected such that no effect is observed from one of

the variables or a combination of two, but all three variables together show an effect.

In our simulations µr(+) = 2|µr(−)| for r ∈ {1, 2, 3}. We also added some noise to

data sets by generating N/8 pairs with µ1 = µ2 = µ3 = 0.

Table 3.1: Design Table for Exposure-exposure-exposure Interaction Simulation.

x1
1 Case 1 x1

2 Case 2 x1
3 Case 3 Number of instances

+1 -1 +1 N/8

+1 +1 -1 N/8

-1 -1 -1 3N/8

-1 +1 +1 N/8

Figure 3.21a shows ROC curves from MF, RF, and CLR, Figure 3.21b shows MFI

scores of matching variables and Figure 3.21c shows MFI scores of exposure variables

for data sets with exposure-exposure-exposure interaction, N = 800 and R = 100.

There can be seen in Figure 3.21a that MF has better performance in identifying

important variables compared to RF and CLR because its ROC curve dominates the

ROC curves of RF and CLR. Also, MFI scores for exposure variables in Figure 3.21c

show that x1, x2 and x3 have significantly higher scores than other exposure variables
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and MFI scores of matching variables in Figure 3.21b do not indicate any variable

with significantly large MFI score than other variables.

We also tested the effect of number of pairs (N), number of exposure variables

(R), and µ3 for instances with positive and negative effects (µ3(+), µ3(−)) on the

performance of MF. Figure 3.22 shows the results for N ∈ {600, 800, 1000}, R ∈

{20, 100, 150}, (µ3(+), µ3(−)) ∈ {(1,−0.5), (1.5,−0.75), (2,−1)}. The performance

of MF is good for all values of N and R that we tested and its TPR is equal or very

close to 1 at any given FPR. Also, as the effect size (|µ3|) increases, the performance

of MF improves in selecting variables in an exposure-exposure-exposure interaction.

Therefore, MF performs better than both CLR and RF in identifying interaction

effects between three exposure variables, and the performance of MF in variable

selection improves with an increase in the strength of the interaction effect.

(a) FPR curve (b) MFI scores: matching

variables

(c) MFI scores: exposure

variables

Figure 3.10: Null Scenario With Independent Variables: (a) Comparison Between

the Performance of MF, RF, and CLR in Terms of FPR, (b) MFI Scores of Matching

Variables and (c) MFI Scores of Exposure Variables. Results Are Shown for Data

Sets Simulated with N = 600 and R = 100. MF and CLR Have Small and Similar

FPR and If α < 0.3, MF Has Smaller FPR than RF. MFI Plots Do Not Indicate Any

Variable With Unusual High Score.
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(a) FPR curve (b) MFI scores: matching

variables

(c) MFI scores: exposure

variables

Figure 3.11: Null Scenario with Matching Associated with Exposure: (a) Comparison

Between the Performance of MF, RF, and CLR in Terms of FPR, (b) MFI Scores of

Matching Variables and (c) MFI Scores of Exposure Variables. Results Are Shown

for Data Sets Simulated With N = 600 and R = 100. MF and CLR Have Small and

Similar FPR and If α < 0.3, MF Has Smaller FPR Than RF. MFI Plots Do Not

Indicate Any Variable With Unusual High Score.

(a) Effect of N (b) MFI scores

Figure 3.12: Null Scenario with Independent Variables: Effect of Number of Pairs

(N) and Number of Exposure Variables (R) on MF Performance. Results Are Shown

for N ∈ {300, 600, 900} and R ∈ {20, 100, 150}. FPR of MF Is Small at Different

Values of α and Is Not Sensitive to the Range of Values That We Tested for N and

R.
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(a) Effect of N (b) MFI scores

Figure 3.13: Null Scenario With Matching Associated With Exposure: Effect of

Number of Pairs (N) and Number of Exposure Variables (R) on MF Performance.

Results Are Shown for N ∈ {300, 600, 900} and R ∈ {20, 100, 150}. FPR of MF Is

Small at Different Values of α and Is Not Sensitive to the Range of Values That We

Tested for N and R.

3.6.7 Summary of simulation results

We observed in our simulations that MF performs better than CLR in identifying

interaction effects between exposure variables and matching and exposure variables,

however, their performance is comparable when the important variable has a linear

effect. Also, MF performs better than RF for different effect types including linear,

non-linear and interactions. The variable selection performance of MF generally im-

proves with larger number of strata, larger effect size and smaller number of exposure

variables.
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(a) ROC curves (b) MFI scores: matching

variables

(c) MFI scores: exposure

variables

Figure 3.14: Linear Exposure: (a) Comparison Between the Performance of MF, RF,

and CLR in Variable Selection Accuracy, (b) MFI Scores of Matching Variables and

(c) MFI Scores of Exposure Variables. Results Are Shown for Data Sets Simulated

with a Linear Effect of x1, N = 600 and R = 100. MF and CLR Are Accurate in

Detecting the Linear Effect of x1 and Their Roc Curve Dominates RF. MFI Plots

Show That x1 Has Substantially Higher MFI Score than the Other Exposure Variables

and Matching Variables Have Small and Almost Identical MFI Scores.

(a) Effect of N (b) Effect of R (c) Effect of µ1

Figure 3.15: Linear Exposure: Effect of Number of Pairs (N), Number of Expo-

sure Variables (R), and µ1 for Instances With Negative Effect (µ1(−)) on MF Per-

formance. Results Are Shown for N ∈ {300, 600, 900}, R ∈ {20, 100, 150}, and

µ1(−) ∈ {−0.5,−0.75,−1} Respectively. MF Selects Variable x1 As Important in

Different Ranges of Values That We Tested and Its TPR Is Always Equal to 1 at Any

Given Value of FPR.
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(a) ROC curves (b) MFI scores: matching

variables

(c) MFI scores: exposure

variables

Figure 3.16: Non-linear Exposure: (a) Comparison Between the Performance of MF,

RF, and CLR in Variable Selection Accuracy (b) MFI Scores of Matching Variables

and (c) MFI Scores of Exposure Variables. Results Are Shown for Data Sets Simulated

with Non-linear Exposure Effect of x1, N = 600 and R = 100. MF Performs Better

than RF and CLR in Identifying the Non-linear Effect of x1. MFI Plot Shows That

x1 Has Substantially Higher MFI Score than the Other Exposure Variables and All

Matching Variables Have Small and Similar MFI Scores.

(a) Effect of N (b) Effect of R (c) Effect of µ1

Figure 3.17: Non-linear Exposure: Effect of Number of Pairs (N), Number of

Exposure Variables (R), and µ1 for Instances with Positive and Negative Effects

(µ1(+), µ1(−)) on MF Performance. Results Are Shown for N ∈ {300, 600, 900},

R ∈ {20, 100, 150}, (µ1(+), µ1(−)) ∈ {(1,−0.5), (1.5,−0.75), (2,−1)} Respectively.

The Performance of MF Improves with Larger Number of Pairs, Effect Size and

Smaller Number of Variables.
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(a) Effect of N (b) Effect of R (c) Effect of µ1

Figure 3.18: Matching-exposure Interaction: Effect of Number of Pairs (N), Num-

ber of Exposure Variables (R), and µ1 for Instances with Positive and Negative

Effects (µ1(+), µ1(−)) on MF Performance in Identifying a Matching-exposure In-

teraction. Results Are Shown for N ∈ {600, 800, 1000}, R ∈ {20, 100, 150}, and

(µ1(+), µ1(−)) ∈ {(1,−0.5), (1.5,−0.75), (2,−1)}. MF Selects Important Variables

Accurately with TPR near or Equal to 1 at Any given Value of FPR for All Ranges

of Values That We Tested for N and R and Its Performance Improves with Larger

Effect Size.
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(a) ROC curve (b) MFI scores: matching

variables

(c) MFI scores: exposure

variables

Figure 3.19: Exposure-exposure Interaction: (a) Comparison Between the Perfor-

mance of MF, RF, and CLR in Variable Selection Accuracy, (b) MFI Scores of

Matching Variables and (c) MFI Scores of Exposure Variables for Data Sets Sim-

ulated with Exposure-exposure Interaction Between x1 and x2, n = 800 and r = 100.

MF Performs Better than RF and CLR in Identifying the Correct Effect. MFI Plots

Show That Both x1 and x2 Have Considerably Higher MFI Scores than the Other

Exposure Variables and There Is No Matching Variable with Significantly Higher MFI

Score than Others.
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(a) Effect of N (b) Effect of R (c) Effect of µ2

Figure 3.20: Exposure-exposure Interaction: Effect of Number of Pairs (N), Number

of Exposure Variables (R), and µ2 for Instances with Positive and Negative Effects

(µ2(+), µ2(−)) on MF Performance in Identifying An Exposure-exposure Interaction.

Results Are Shown for N ∈ {600, 800, 1000}, R ∈ {20, 100, 150}, (µ2(+), µ2(−)) ∈

{(1,−0.5), (1.5,−0.75), (2,−1)}. MF Is Almost Accurate in All the Settings That We

Tested for N and R and Its Performance Improves for Larger Effect Size.
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(a) ROC curve (b) MFI scores: matching

variables

(c) MFI scores: exposure

variables

Figure 3.21: Exposure-exposure-exposure Interaction: (a) Comparison Between the

Performance of MF, RF, and CLR in Variable Selection Accuracy, (b) MFI Scores of

Matching Variables and (c) MFI Scores of Exposure Variables for Data Sets Simulated

With Exposure-exposure-exposure Interaction Between x1, x2 and x3, N = 800 and

R = 100. The Performance of MF Is Better Than RF and CLR in Identifying

the Correct Effects. MFI Plots Show That Variables x1, x2 and x3 Have Received

Considerably Higher MFI Scores Than the Other Exposure Variables and MFI Scores

for Matching Variables Do Not Indicate Any Variable With Significantly Larger Score

Than Others. All the Settings That We Tested for N and R and Its Performance

Improves for Larger Effect Size.
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(a) Effect of N (b) Effect of R (c) Effect of µ3

Figure 3.22: Exposure-exposure-exposure Interaction: Effect of Number of Pairs

(N), Number of Exposure Variables (R), and µ3 for Instances with Positive and

Negative Effects (µ3(+), µ3(−)) on MF Performance in Identifying An Exposure-

exposure-exposure Interaction Effect. Results Are Shown for N ∈ {600, 800, 1000},

R ∈ {20, 100, 150}, (µ3(+), µ3(−)) ∈ {(1,−0.5), (1.5,−0.75), (2,−1)}. MF Performs

Well for All Values of N and R That We Tested and Its Performance Improves as

Effect Size Increases.
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Chapter 4

ENHANCEMENTS OF MATCHED FOREST

4.1 Introduction

Matched case-control analysis is commonly used in a wide range of applications

to remove the effect of confounding variables in identifying important variables and

building predictive models. Case and control correspond to units with and without

the condition of interest respectively. Case and control instances are grouped into a

stratum based on some matching variables and a number of exposure variables are

studied for their effect on the condition of interest. In clinical applications, matching

is usually done on demographic variables such as age and gender to remove the effect

of confounding variables which can lead to spurious results. For example, Balasubra-

manian et al. (2014) matched subjects with and without cardio-vascular disease (case

and control) based on age, gender, race and severity of coronary artery disease to

identify biomarkers associated with the disease.

There are several variable selection and prediction approaches for analysing

matched case-control data sets. Conditional logistic regression (CLR) (Hosmer and

Lemeshow (2000)) and its variants for high-dimensional data sets (Balasubramanian

et al. (2014), Asafu-Adjei et al. (2017), and Qian et al. (2014)) have been commonly

used for variable selection from matched case-control data sets. Another commonly

used method for matched case-control data set is generalized linear mixed models

(GLMM) for binary outcomes. For example, Szyszkowicz (2006) used GLMM to

evaluate the association between air pollution and health outcomes. Two modified

boosting algorithms were also proposed by Adewale et al. (2010) for data sets with
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correlated binary outcome and recently Stanfill et al. (2019) presented a conditional

classification method to account for matched structure of data in distinguishing be-

tween case and control units. However, all of these algorithms struggle to detect

non-linear and interaction effects, particularly when data set is high-dimensional.

Recently, Shomal Zadeh et al. (2020) proposed Matched Forest, a supervised ma-

chine learning method for variable selection in high-dimensional matched case-control

data sets. This method converts a matched case-control data set to a supervised set-

ting which controls for its matched structure and then applies Random Forest (RF) on

the transformed data set to compute variable importance score and select important

variables. Shomal Zadeh et al. (2020) evaluated the variable selection accuracy of MF

in high-dimensional data sets with different types of effects. They observed that MF

has a significantly better variable selection performance than competing algorithms,

including CLR, Boosting Weighted L2 Loss (WL2Boost) (Adewale et al. (2010)), and

unmatched RF.

Here, we propose three enhancements of MF to improve its performance in high-

dimensional setting, evaluate its classification accuracy and estimate the effect of

important variables. First, a regularized version of MF is proposed to improve its

variable selection accuracy in extremely high-dimensional matched case-control data

sets. Our regularized version of MF which we refer to as Weighted Matched Forest

(WMF) is motivated by Basu et al. (2018). It sequentially grows a feature-weighted

version of MF to reduce the dimensionality and focus on highly informative variables.

Second, we propose a prediction method based on MF to classify matched pairs into

case-control or control-case. For the classification approach, we use the predicted

labels by MF for observed and counterfactual pairs to predict a label for an unlabeled

pair of data. Third, we propose a method to estimate the effect of important exposure

variables selected by MF.
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In Section 4.2, we present background on classification algorithms for matched

case-control data sets and Matched Forest algorithm. Section 4.3 proposes methods

for three enhancements of MF, including Weighted Matched Forest (WMF), classi-

fication of matched pairs and effect estimation. Section 4.4 presents the results and

section 4.5 provides the conclusion.

4.2 Background

4.2.1 Classification of Matched Case-Control Data Sets

Majority of classification algorithms for matched case-control data sets are based

on Conditional Logistic Regression (CLR). CLR and its variants for high-dimensional

setting (Balasubramanian et al. (2014), Asafu-Adjei et al. (2017), and Qian et al.

(2014)) predict the conditional probability that the first member in a stratum is

a case given the assumptions: (1) there is only one case in each stratum and (2)

logistic regression is the correct model to predict outcomes of subjects in the stratum.

Formally, let (x1(i), x0(i)) denote feature vectors and (y1(i), y0(i)) be case-control

status corresponding to case and control subjects in pair i respectively, such that

yj(i) takes 1 for cases and 0 for controls for j ∈ {0, 1}. CLR computes the conditional

probability as follows:

p(y1(i) = 1|y1(i) + y0(i) = 1, x1(i), x0(i)) (4.1)

Thus, for matched pairs, CLR predicts the probability that a pair of subjects is

either case-control or control-case, because only one instance in a pair can be a case.

CLR and its variants for high-dimensional setting use a linear model which requires

interaction terms (products of two or more variables) to assess their effect. Thus, they

are not suitable for high-dimensional matched case-control data sets with complex

relationships among variables.
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Matched case-control data sets have been also analyzed by methods which are not

based on CLR. Adewale et al. (2010) proposed two variants of boosting algorithm

for the classification of correlated binay data sets and selecting important variables.

The first method is Boosting Weighted L2 Loss (WL2Boost) which uses the gradient

boosting algorithm with a modified loss function that handles the correlation among

subjects within a stratum. The second method, Penalized Quasi-Likehood Boosting

algorithm (PQLBoost), modifies the likelihood function in the boosting algorithm

to make it suitable for matched case-control data sets. Both methods classify each

instance as either case or control, without any assumption on the number of cases

within each stratum. However, they are both linear methods and are not able to

handle non-linear and interactions effects.

Recently, Stanfill et al. (2019) proposed a data transformation approach to gen-

eralize classification algorithms to matched case-control data sets. Specifically, they

center each strata by the mean values of exposure and map the exposure value of

each unit to its difference from the center. This method does not handle depen-

dency among units within a stratum, which is recommended by statistical principles.

It breaks each stratum into multiple instances which are known to be dependent.

However, our proposed method construct data sets where instances are independent.

We show in our experiments in Chapter 5 that variable selection performance of our

method is better than the method proposed by Stanfill et al. (2019), especially when

informative variables have nonlinear or interaction effects.

4.2.2 Matched Forest (MF)

MF (Shomal Zadeh et al. (2020)) is applied on matched pairs to identify expo-

sure and matching variables which are important in distinguishing between case and

control subjects. MF consists of two steps, including a transformation of matched

63



pairs to a supervised setting based on potential outcome framework of causal infer-

ence and a classifier which inherently detects interactions involving both matching

and exposure variables in high-dimensional setting. A wide range of classifiers can be

used in the second step. Shomal Zadeh et al. (2020) chose RF due to its ability to

handle high-dimensionality, mixed variables (numerical and categorical), interactions

and non-linear effects.

In the data transformation step, MF creates new case and control variables x∗1r

and x∗0r for each exposure variable xr with 2N instances as

x∗kr (i) =


xkr(i) for i ∈ {1, 2, . . . , N},

x1−k
r (i−N) for i ∈ {N + 1, N + 2, . . . , 2N}

(4.2)

for r ∈ {1, 2, . . . , R} and k ∈ {0, 1}. That is, for the first N rows, the case and control

values match the original pairs, but for the second N rows (referred as counterfactual),

the values of case and control are interchanged within each pair. Variables d∗r are also

created for each numerical exposure variable as

d∗r = x∗1r − x∗0r (4.3)

to help identify the correct effect. Variables v+
1 , v

+
2 , . . . , v

+
M are also created by ex-

tending the original matching variables as

v+
m(i) =


vm(i) for i ∈ {1, 2, . . . , N},

vm(i−N) for i ∈ {N + 1, N + 2, . . . , 2N}
(4.4)

to help identify the interaction effects between matching and exposure variables. A

label is also defined for each pair as

y(i) =


0 for i ∈ {1, 2, . . . , N},

1 for i ∈ {N + 1, N + 2, . . . , 2N}
(4.5)
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to distinguish between observed values and counterfactuals. If all exposure variables

are numerical, this transformation will create new matched case-control data set D∗

with 2N instances and M + 3R + 1 columns.

In the second step of MF, RF is applied on D∗ to distinguish between observed

pairs and their counterfactuals and identify important matching and exposure vari-

ables based on a new variable importance score denoted as MFI. The new MFI

score is computed from the variable importance score of RF based on mean decrease

in Gini information gain denoted as V I. The MFI score of exposure variable xr is

computed as

MFI(xr) = V I(x∗0r ) + V I(x∗1r ) + V I(d∗r) (4.6)

for r ∈ {1, 2, . . . , R} and the MFI score of matching variable vm is computed as

MFI(v+
m) = V I(v+

m) (4.7)

for m ∈ {1, 2, . . . ,M}

4.3 Weighted Matched Forest, Classification And Effect Estimation

Section 4.3.1 proposes WMF which is an enhancement of MF to increase its power

in identifying important variables. Section 4.3.2 explains how MF can be used for

classification of matched pairs. In section 4.3.3, we propose a method to estimate the

effect of important variables selected by MF.

4.3.1 Weighted Matched Forest

Consider a matched case-control data set D with N strata consisting of one case

and one control, R exposure variables denoted by {x1, x2, . . . , xR} and M matching

variables denoted by {v1, v2, . . . , vm}. Let D∗ be the transformed data set obtained by
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MF according to Section 4.2.2 with new variables x∗0r , x∗1r and d∗r for r ∈ {1, 2, . . . , R}

and v+
m for m ∈ {1, 2, . . . ,M}.

Weighted Matched Forest (WMF) adaptively regularizes MF to focus on highly

important variables for splits. Let w = {w1, w2, . . . , wp} be a vector of non-negative

weights corresponding to p variables in the transformed data set (D∗), and RF(w)

be the RF algorithm built on D∗ using feature weights w. In RF(w), instead of

random sampling of variables at each node, variable j is selected proportional to wj

so that variables with higher weights have more chance to be selected for splits. In the

original Breiman’s RF algorithm (Breiman (2001)), all variables have similar weights

equal to 1/p.

Weighting can be done by measuring the ability of each variable to predict the

outcome. For example, Basu et al. (2018) used variable importance score of RF to as-

sign weights to each variable in unmatched data sets. To make the weighting suitable

for matched setting, we should account for the dependency between case, control,

and difference variables associated with an exposure in D∗, because if an exposure

variable is important, all of its associated case, control, and difference variables help

detect its effect. WMF modifies the weighting method proposed by Basu et al. (2018)

for matched data sets.

The WMF algorithm updates the weights in a number of iterations. Given an

iteration number T , WMF builds RF(w) iteratively on the transformed data set D∗

with feature weights equal to w. The first iteration of WMF is equivalent to MF;

WMF starts with equal weights w1 = {1/p, 1/p, . . . , 1/p} for all p variables in D∗ and

the variable importance scores of RF(w1) are stored as VI1 to update the weights

for the next iteration. This is repeated until iteration T , that is, in each iteration t,

we compute wt from the variable importance scores at previous iteration V I t−1 and

build RF(wt) to compute the importance scores V I t. The MFI scores for exposure
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and matching variables are computed in the final iteration of WMF (T ) according to

Equations 4.6 and 4.7 respectively.

Equations 4.8 and 4.9 show how weights are determined for matching and exposure

variables, respectively, in matched case-control data sets with one case and one control

in each stratum. Basically, the weight of a matching variable v+
m at iteration t is equal

to its VI score at previous iteration of RF and the weights of variables corresponding

to an exposure variable xr, including x∗0r , x∗1r , and d∗r are equal to the average of their

VI scores at previous iteration of RF.

wt(v+
m) = V I t−1(v+

m) (4.8)

wt(x∗0r ) = wt(x∗1r ) = wt(d∗r) =
V I t−1(x∗0r ) + V I t−1(x∗1r ) + V I t−1(d∗r)

3
(4.9)

In our simulations, we tested different weighting methods for exposure variables in-

cluding summation and maximum of V I t−1(x∗0r ), V I t−1(x∗1r ) and V I t−1(d∗r), but we

observed that WMF which uses the average of these scores as weights in each itera-

tion of WMF outperforms the other two weighting methods in selecting the important

matching and exposure variables. The reason why we use an equal weight for x∗0r ,

x∗1r , and d∗r in each iteration of WMF is that if variable xr is important, all of the

three corresponding variables can help classify observed and counterfactual pairs, and

by giving all the same weight, we allow all three of them to have the same chance

to be selected at a node of Random Forest. As it will be shown in our simulations

in section 4.4.1, this approach improves the variable selection performance of MF in

identifying important variables.

4.3.2 Matched Forest for Classification of Matched Pairs

In this section, we explain how MF is applied for the classification of matched

pairs. Given an unlabeled matched pair i, the objective is to map each instance in
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the pair to either case or control given the assumption that there is only one case in

the pair. Thus, the problem is equivalent to predicting the label of a pair yi as either

case-control (y(i) = 0) or control-case (y(i) = 1). Let p(y(i) = 0) and p(y(i) = 1)

denote the predicted probabilities that the label of pair i is 0 and 1 respectively. Also,

let ∆(i) denote the margin for pair i which measures how certain a classifier is in its

prediction for pair i. The margin for pair i is defined as

∆(i) = |p(y(i) = 0)− p(y(i) = 1)| (4.10)

Larger values of margin indicate that classifier is more certain about its prediction.

Our method obtains the label of pair i by comparing the predicted labels and

margin for the observed pair i and its corresponding counterfactual pair denoted

by ĩ. The feature vectors corresponding to the counterfactual pair ĩ is obtained by

permuting the exposure values within each pair. The rules for predicting the label

for pair i is summarized in Table 4.1.

Table 4.1: Prediction of a New Pair Based on the Predicted Labels for Its Observed

and Counterfactual Pairs

Label of the observed

pair i

Label of the counterfactual

pair ĩ

Final label of the pair i

0 1 0

1 0 1

0 0 label =


0 ∆(i) > ∆(̃i)

1 ∆(i) ≤ ∆(̃i)

1 1 label =


1 ∆(i) > ∆(̃i)

0 ∆(i) ≤ ∆(̃i)
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4.3.3 Effect Estimation

Matched Forest algorithm (MF) aims at identifying important exposure and

matching variables from high-dimensional matched case-control data sets. Once im-

portant variables are identified, another step is to estimate the effect of important

variables. In this section, we propose two metrics to measure the effect of important

exposure variables identified by MF. These two metrics are suitable for variables with

main effects. Thus, if multiple variables have been identified as important by MF,

we first need to distinguish between variables with main effects and variables with

interaction effects. One algorithm which can be used for this purpose is Iterative

Random Forest (iRF) which was proposed by Basu et al. (2018) to detect variables

with interactions.

Our method for estimation of effects is motivated by Conditional Logistic Re-

gression (CLR) model, but we use a substantially different approach. CLR uses a

linear logistic regression model and a conditional likelihood approach to estimate the

coefficients associated with exposure variables. The coefficients estimated by CLR

have the same interpretation as logistic regression. Each coefficient is interpreted as

the change in logit for one unit increase in the corresponding exposure variable given

all other variables are constant within each stratum. Our method defines two new

metrics instead of logit function. These metrics are obtained based on the predicted

labels and margin for observed case-control strata whose labels are equal to 0.

Let D represents our matched data set with N case-control strata labeled as 0,

R exposure variables denoted by {x1, x2, . . . , xR} and M matching variables denoted

by {v1, v2, . . . , vM}. Let (x1
r(i), x

0
r(i)) represents the value of exposure variable xr for

case and control units in stratum i respectively. Assume that we are interested in

identifying the effect of exposure variable xl. Let f denote MF algorithm trained
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on matched data set D and ŷ(i) ∈ {0, 1} denote the predicted label by MF for each

case-control stratum i. The procedure to estimate ŷ(i) was explained in Table 4.1.

The first metric which we denote as M1 is defined as

M1 =
1

N

N∑
i=1

∆(i)1(ŷ(i) = 0) (4.11)

where 1(.) is the indicator function and ∆(i) is the margin for pair i computed based

on Equation 4.10. The second metric which we denote as M2 is defined as

M2 =
Pr0

Pr1

(4.12)

where Prc = 1
N

∑N
i=1 1(ŷ(i) = c) is the proportion of N strata classified as c ∈ {0, 1}

by MF.

Our method estimates the effect of exposure variable xl as the change in metric M1

or M2 after d ∈ IR (d 6= 0) unit change in xl for only case subjects, given that all other

exposure and matching variables are left unchanged for each stratum. Formally, Let

M0
1 and M0

2 denote metrics obtained by Equations 4.11 and 4.12 respectively using

predictions from model f for matched data set D. Our method creates a new data

set D̃ which is the same as D except for the exposure variable xl. In matched data

sets D̃, the case and control values of xl are changed according to (x1
l (i) + d, x0

l (i))

for i ∈ {1, 2, . . . , N}, where d is a nonzero scalar. Let Md
1 and Md

2 denote metrics

obtained by Equations 4.11 and 4.12 respectively using predictions from model f for

the new matched data set D̃. We denote the effect of exposure variable xl for d unit

change by φd(xl) which is computed as

φd(xl) = Md
1 −M0

1 (4.13)

or

φd(xl) = Md
2 −M0

2 (4.14)
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based on metric M1 and M2 respectively. A modified M2 could also use the log of

ratio in Equation 4.12.

4.4 Experiments

4.4.1 Simulations

We conducted simulation studies to demonstrate the effectiveness of proposed

methods. In the first set of simulations, the objective is to compare WMF with

MF and see how the performance of WMF changes depending on the number of

iterations. In the second set of simulations, the objective is to evaluate our effect

estimation method.

Simulation 1: WMF

The simulation designs implemented here are similar to Chapter 3. In particular, we

generated matched pairs with no effect of exposure and 5 different effect types includ-

ing linear, non-linear, interaction between a matching and an exposure, interaction

between two exposures and interaction between three exposures. For each simulation,

100 data sets are generated. The number of matched pairs (N) in data sets gener-

ated for null scenario, linear and non-linear effects is 600, and it is increased to 800

for data sets generated with interaction effects. We also set the number of exposure

variables (R) to 100 and number of matching variables (M) to 5. The values of all

control variables xr for r ∈ {1, 2, . . . , R}, unless otherwise stated, are generated from

a uniform distribution between 1 and 50 and case values are generated according to

x0
r + dr where dr follows normal distribution N(µr, 1). In our simulations, µr = 0 for

exposure values with no effect, µr ∈ {1, 1.5, 2} for exposure variables with positive

effect and µr ∈ {−0.5,−0.75,−1} for exposure variables with negative effect. The
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absolute value of µr (|µr|) indicates the effect size. In addition, matching variables

are generated from Poisson (5) distribution. For more details regarding how data sets

are generated for each simulation, see Chapter 3.

We used the default parameters in R randomForest package at each iteration of

WMF. In particular, we set number of trees to 500, number of variables selected

at each split to
√
p where p is the number of variables in the transformed data set

(D∗) and grow trees to purity. The performance of WMF was tested at different

number iterations t ∈ {1, 2, 3}. The WMF algorithm with t = 1 is equivalent to

the MF algorithm. To select important variables from WMF, a similar approach to

Chapter 3 was used, that is, observed MFI scores in each iteration were compared

with the null distributions generated from randomly assigned labels in each pair. We

compared the variable selection performance of WMF in three iterations using ROC

curves which plots true positive rates (TPR) versus false positive rates (FPR) along

different values of the significance level α. We also measured the variable selection

accuracy of WMF as the area under the curve (AUC). For more details regarding

the variable selection procedure, see Shomal Zadeh et al. (2020). For each simulation

design, we show MFI scores of the top 20 exposure variables with the largest scores

and all 5 matching variables at third iteration k = 3. Also, we show ROC curves at

iterations k ∈ {1, 2, 3} with their AUC.

Null scenario: Here, data sets are generated with no effect of exposure variables.

Similar to Chapter 3, We used two generative models to simulate data sets with no

effect of exposures. One experiment simulates data sets where exposure variable x1

is associated with the matching variable v1 and the other model simulates data sets

where all variables are independent.

Figures 4.1 and 4.2 correspond to simulations where matching variable v1 is asso-

ciated with exposure variable x1. From Figure 4.1, we can observe that MFI scores
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of exposure and matching variables do not indicate any variable with significantly

larger score than others and as t increases the MFI scores remain consistent or de-

crease slightly Figure 4.2 shows how WMF performs in selecting important variables.

The false positive rates (FPR) are small at different values of α and do not change

by increasing t. Therefore, WMF performs comparable to MF in terms of FPR and

they both have small FPR. Figures 4.3 and 4.4 correspond to the simulations with

independent variables. From Figure 4.3, we can observe that MFI scores of exposure

and matching variables do not indicate any variable with significantly larger score

than others and as t increases the MFI scores remain consistent or decrease slightly.

Figure 4.4 shows how WMF performs in selecting important variables. The false pos-

itive rates (FPR) are small at different values of α and do not change by increasing t.

Therefore, WMF performs comparable to MF in terms of FPR and they both have

small FPR.

(a) MFI scores: exposure variables (b) MFI scores: matching variables

Figure 4.1: Null Scenario Where Matching Variable v1 Is Associated with Exposure

Variable x1: MFI Scores of (a) Exposure Variables and (b) Matching Variables in

Iteration t ∈ {1, 2, 3}. MFI Scores of Exposure and Matching Variables Either

Decrease Slightly or Remain Consistent with Increasing t.
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Figure 4.2: Null Scenario Where Matching Variable v1 Is Associated with Exposure

Variable x1: Evaluating the Performance of WMF in Terms of Its FPR along Different

Values of Significance Level α. FPR of WMF Remains Consistent by Increasing t.

(a) MFI scores: exposure variables (b) MFI scores: matching variables

Figure 4.3: Null Scenario With Independent Variables: MFI Scores of (a) Exposure

Variables And (b) Matching Variables in Iterations t ∈ {1, 2, 3}. MFI Scores of

Exposure and Matching Variables Either Decrease Slightly or Remain Consistent

with Increasing t.

Linear exposure effect: We simulated data sets where variable x1 has a negative

effect and all other variables are noise. To generate case values of x1 for small,

moderate, and strong effect size, µ1 is set to {−0.5,−0.75,−1} respectively for pairs

with negative effect. The size of the effect is small relative to standard deviations.

Figure 4.5 shows MFI scores of exposure and matching variables at t ∈ {1, 2, 3} when
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Figure 4.4: Null Scenario with Independent Variables: Evaluating the Performance

of WMF in Terms of Its FPR along Different Values of Significance Level α. FPR of

WMF Remains Consistent by Increasing t.

µ1 = −1 for pairs with negative effect. From Figure 4.5a, we observe that MFI score

of exposure variable x1 is larger that other exposure variables at all iterations and its

MFI score increases with increasing t, while MFI scores of other exposure variables

which are noise remain consistent as t increases. Figure 4.5b shows that MFI scores

of matching variables decreases with increasing t due to their relatively small MFI

scores compared to other variables. We also tested the variable selection accuracy of

WMF at different levels of effect size. Figure 4.6 shows ROC curves and AUC for each

level of effect size in iterations t ∈ {1, 2, 3}. We observe that WMF achieves the ideal

variable selection accuracy (AUC=1) in all iterations. Therefore, WMF performs

better than MF (WMF with one iteration) in identifying variables with linear effects

and its performance improves as the number of iterations gets larger.

Non-linear exposure effect: Here, data sets are simulated with a non-linear

effect for exposure variable x1 and no other effect from other variables. Variable x1

is generated such that there is a positive effect of x1 when x0
1 < 25 and a negative

effect when x0
1 > 25. To generate x1

1 for small, moderate, and strong effect size, µ1

is set to {−0.5,−0.75,−1} for pairs with negative effect and {1, 1.5, 1} for pairs with
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(a) MFI scores: exposure variables (b) MFI scores: matching variables

Figure 4.5: Linear Exposure Effect: MFI Scores of (a) Exposure Variables And

(b) Matching Variables in Iterations t ∈ {1, 2, 3}. Results Are Shown for Data Sets

Simulated with a Linear Effect of x1 Where µ1 = −1 for Pairs with Negative Effect

Of x1. MFI Score of Exposure Variable x1 Is Larger than Other Exposure Variables

in All Iterations and It Improves with Increasing t, While the MFI Scores of Other

Exposure Variables Remain Consistent with Increasing t. Matching Variables Have

Small MFI Scores Which Drop with Increasing t.

positive effect. Figure 4.7 shows MFI scores of exposure and matching variables

for simulation with µ1 ∈ {2,−1}. Figure 4.7a shows that MFI scores of exposure

variable x1 is significantly larger than other exposure variables at all iterations and it

improves as t increases. However, the MFI scores of other exposure variables remain

consistent with increasing t. From Figure 4.7b, there can be seen that MFI scores of

matching variables drop by increasing t due to their relatively smaller MFI score at

t = 1 compared to other variables in data sets. We also evaluated the performance

of WMF at different levels of effect size. Figure 4.8 shows ROC curves and AUC

for each level of effect size in iterations t ∈ {1, 2, 3}. The ROC curve and AUC are

comparable or better for increasing t. As t increases, the amount of improvement is

larger when the effect size is small (µ1 ∈ {1,−0.5}). Therefore, WMF performs better
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(a) Small effect (µ1 = −0.5) (b) Moderate effect (µ1 = −0.75)

(c) Strong effect (µ1 = −1)

Figure 4.6: Linear Exposure Effect: Evaluating WMF Performance by Effect Size

Using ROC Curves. The Variable Selection Accuracy (AUC) Is 1 for All Three Effect

Size in Different Iterations.

than MF (WMF with one iteration) in identifying variables with non-linear effects

and its performance improves as the number of iterations gets larger, especially when

effect size is smaller.

Interaction between a matching and an exposure: Here data sets are sim-

ulated with an interaction effect between matching variable v1 and exposure variable

x1. The data generative model in this simulation study is similar to Shomalzadeh

et al. (2019). Variables v1, x0
1 and x1

1 are generated so that the exposure variable x1

has positive effect for smaller values of v1 and negative effect for larger values of v1.

To generate pairs with negative and positive effects, µ1 is set to {−0.5,−0.75,−1}
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(a) MFI scores: exposure variables (b) MFI scores: matching variables

Figure 4.7: Non-linear Exposure Effect: MFI Scores of (a) Exposure Variables and

(b) Matching Variables in Iterations t ∈ {1, 2, 3}. Results Are Shown for Data Sets

Simulated with a Non-linear Effect of x1 Where µ1 ∈ {−1, 2}. MFI Score of Ex-

posure Variable x1 Is Larger than Other Exposure Variables in All Iterations and

It Improves with Increasing t, While the MFI Scores of Other Exposure Variables

Remain Consistent with Increasing t. Matching Variables Have Small MFI Scores

Which Drop with Increasing t.

and {1, 1.5, 2}, respectively. For a small effect, µ1 ∈ {−0.5, 1}, a moderate effect,

µ1 ∈ {−0.75, 1.5} and for a strong effect, µ1 ∈ {−1, 2}.

Figure 4.9 shows MFI scores of exposure and matching variables when µ1 ∈

{−1, 2}. MFI score of exposure variable x1 is significantly larger than other exposure

variables and its MFI score improves with increasing the number of iterations. Other

exposure variables which are noise have relatively smaller MFI scores than exposure

variable x1 and their scores remain consistent with increasing t. Similarly, matching

variable v1 has a significantly larger MFI score than other matching variables and

its score increases with t, while other matching variables have a relatively smaller

MFI score which is consistent with increasing t. We also tested the performance of

WMF in selecting important variables at different effect size. Figure 4.10 shows ROC
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(a) Small effect µ1 ∈ (1,−0.5) (b) Moderate effect µ1 ∈ (1.5,−0.75)

(c) Strong effect µ1 ∈ (2,−1)

Figure 4.8: Non-linear Exposure Effect: Evaluating WMF Performance by Effect Size

Using ROC Curves. The Variable Selection Accuracy (AUC) Improves or Remains

Consistent with Increasing t and the Amount of Improvement Is Larger When the

Effect Size Is Small.

curves and their AUC for small, moderate, and strong effects. There can be seen that

the performance of WMF improves by increasing t. Also, the amount of increase in

AUC is larger when the effect size is small. Therefore, WMF performs better than

MF (WMF with one iteration) in identifying interaction effects between matching

and exposure variables and its performance improves as the number of iterations gets

larger, especially when effect size is smaller.

Interaction between two exposures: data sets are generated with a two-way

interaction between exposure variables x1 and x2 according to Shomal Zadeh et al.

79



(a) MFI scores: exposure variables (b) MFI scores: matching variables

Figure 4.9: Interaction Effect Between a Matching and An Exposure: MFI Scores of

(a) Exposure Variables and (b) Matching Variables in Iterations t ∈ {1, 2, 3}. Results

Are Shown for Data Sets Simulated with An Interaction Effect Between Matching

Variable v1 and Exposure Variable x1 Where µ1 ∈ {−1, 2}. MFI Score of Exposure

Variable x1 Is Larger than Other Exposure Variables in All Iterations and It Improves

with Increasing t, While the MFI Scores of Other Exposure Variables Remain Con-

sistent with Increasing t. Matching Variable v1 Has Larger MFI Score than Other

Matching Variables and It Improves with Increasing t, While the MFI Scores of

Other Matching Variables Remain Consistent with Increasing t.

(2020) such that the effect of variable x2 changes at different levels of x1. To generate

x1
1 for pairs with negative and positive effects, µ1 ∈ {−1, 2} and to generate x1

2 for pairs

with negative and positive effect, µ2 ∈ {−0.5, 1} for a weak effect, µ2 ∈ {−0.75, 1.5}

for a moderate effect, and µ2 ∈ {−1, 2} for a strong effect. Figure 4.11 shows MFI

scores of exposure and matching variables for µ2 ∈ {−1, 2} in iterations t ∈ {1, 2, 3}.

Figure 4.11a shows that MFI scores of exposure variables x1 and x2 are larger than

other exposure variables and their scores improve with increasing t. However, MFI

scores of other exposure variables which are noise remain consistent or decrease with

increasing t. From Figure 4.11b, we observe that MFI scores of matching variables
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(a) Small effect µ1 ∈ {1,−0.5} (b) Moderate effect µ1 ∈ {1.5,−0.75}

(c) Strong effect µ1 ∈ {2,−1}

Figure 4.10: Interaction Effect Between a Matching and An Exposure: Evaluating

WMF Performance by Effect Size Using ROC Curves. The Variable Selection Accu-

racy (AUC) Improves with Increasing t and the Amount of Improvement Is Larger

When the Effect Size Is Small.

drop as number of iterations increases from 1 to 3. We also evaluated the performance

of WMF at different levels of effect size. Figure 4.12 shows ROC curves and AUC

of WMF for data sets simulated with weak, moderate, and strong effect in iterations

t ∈ {1, 2, 3}. ROC curve and AUC improve or remain consistent as t increases

and the amount of improvement is larger when the effect size is small. Therefore,

WMF performs better than MF (WMF with one iteration) in identifying interaction

effects between two exposure variables and its performance improves as the number

of iterations gets larger, especially when effect size is smaller.
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(a) MFI scores: exposure variables (b) MFI scores: matching variables

Figure 4.11: Interaction Effect Between Two Exposure Variables: MFI Scores of (a)

Exposure Variables and (b) Matching Variables in Iterations t ∈ {1, 2, 3}. Results

Are Shown for Data Sets Simulated with An Interaction Between Exposure Variables

x1 and x2 Where µ1 = µ2 ∈ {−1, 2}. MFI Score of Exposure Variables x1 and x2

Are Larger than Other Exposure Variables in All Iterations and Their Scores Improve

with Increasing t, While the MFI Scores of Other Exposure and Matching Variables

Remain Consistent or Decrease with Increasing t.

Interaction between three exposures: Here, we generated an interaction ef-

fect between exposure variables x1, x2, and x3 and no effect from other variables.

That is, data sets are generated where the effect of x3 changes at different levels of

x1 and x2. To generate x1
1 and x1

2, µ1 = µ2 = −1 for pairs with negative effect and

µ1 = µ2 = 2 for pairs with positive effect. Also, to generate variable x1
3 for pairs

with negative and positive effects, µ3 ∈ {−0.5, 1} for a small effect, µ3 ∈ {−0.75, 1.5}

for a moderate effect, and µ3 ∈ {−1, 2} for a strong effect. Figure 4.13 shows MFI

scores of exposure and matching variables when µ3 ∈ {−1, 2}. From Figure 4.13a,

we can observe that variables x1, x2 and x3 received relatively larger MFI scores

than other exposure variables in all three iterations and their scores improve as t

increases. However, MFI scores of other exposure variables which are noise remain
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(a) Small effect µ2 ∈ {1,−0.5} (b) Moderate effect µ2 ∈ {1.5,−0.75}

(c) Strong effect µ2 ∈ {2,−1}

Figure 4.12: Interaction Effect Between Two Exposure Variables: Evaluating WMF

Performance by Effect Size Using ROC Curves. The Variable Selection Accuracy

(AUC) Improves with Increasing t and the Amount of Improvement Is Larger When

the Effect Size Is Small.

consistent for increasing t. Also, Figure 4.13b shows that MFI scores of matching

variables drop with increasing t. We also tested the performance of WMF in detect-

ing effects with different strengths, whose results are shown in Figure 4.14. It can

be seen in Figure 4.14 that ROC curve and AUC improve as t increases and larger

improvement is achieved when the effect size is small. Therefore, WMF performs

better than MF (WMF with one iteration) in identifying interaction effects between

three exposure variables and its performance improves as the number of iterations

gets larger, especially when effect size is smaller.
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(a) MFI scores: exposure variables (b) MFI scores: matching variables

Figure 4.13: Interaction Effect Between Three Exposure Variables: MFI Scores of

(a) Exposure Variables and (b) Matching Variables in Iterations t ∈ {1, 2, 3}. Results

Are Shown for Data Sets Simulated with An Interaction Between Exposure Variables

x1, x2 and x3 Where µ1(−) = µ2(−) = µ3(−) = −1 and µ1(+) = µ2(+) = µ3(+) = 2.

MFI Score of Exposure Variables x1, x2 and x3 Are Larger than Other Exposure

Variables in All Iterations and Their Score Improves with Increasing t, While theMFI

Scores of Other Exposure Variables Remain Consistent with Increasing t. Matching

Variables Have Small MFI Scores Which Drop with Increasing t.

Summary of simulation results: We observed in our simulations that WMF

performs better than MF in identifying variables with different effect types including

linear, non-linear, interactions between exposure variables, and interactions between

matching and exposure variables. We showed in our experiments in Chapter 3 that

MF is better than competing algorithms including CLR and the boosting method

(Adewale et al. (2010)), thus, WMF also outperforms these algorithms. We also

observed in our simulations as the number of iterations increases in WMF, its vari-

able selection improves, and the amount of improvement is larger when effect size is

smaller.
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(a) Small effect µ3 ∈ {1,−0.5} (b) Moderate effect µ3 ∈ {1.5,−0.75}

(c) Strong effect µ3 ∈ {2,−1}

Figure 4.14: Interaction Effect Between Three Exposure Variables: Evaluating WMF

Performance by Effect Size Using ROC Curves. The Variable Selection Accuracy

(AUC) Improves with Increasing t and the Amount of Improvement Is Larger When

the Effect Size Is Small.

Simulation 2: Effect Estimation

Here, we simulated a matched data set with linear exposure effect according to the

simulation design described in Section 4.4.1. In particular, we simulated a matched

data set with 600 strata, 100 exposure variables, and 5 matching variables. The

exposure variable x1 is simulated with a negative effect where for all strata µ1 is set

to −1, and the remaining exposure variables {x2, x3, . . . , x100} are simulated with no

effect (µr = 0).

85



To estimate the effect of exposure variable x1, we used Neural Network as the

classifier instead of Random Forest algorithm. We selected Neural Network because

it is more sensitive to the change in feature values than Random Forest algorithm.

The Neural Network model used in this simulation study consists of 3 hidden layers

of size 10 with Relu activation function followed by a softmax output layer with 2

nodes. The number of epochs is set to 30, batch size to 5 and learning rate to 0.001.

Also, L1 regularization with parameter 0.007 is used for the weights connecting input

layer to the first hidden layer to handle overfitting. Using other hyper parameter

values and Neural network architectures might improve the results.

We used both metrics M1 and M2 to evaluate the effect of exposure variable x1

for d ∈ {−1.5,−1,−0.5, 0.5, 1, 1.5}. To estimate the classification probabilities, we

used 5−fold cross validation to split strata into training and test sets. The detailed

procedure is summarized as follows:

1. The matched case-control pairs are randomly split into 5 disjoint sets s =

1, 2, . . . , 5. Let D(s) shows feature values in the transformed data set corre-

sponding to matched pairs in set s.

2. For each set s ∈ {1, 2, . . . , 5}:

(a) Train Neural Network on the transformed data set including matched pairs

in all sets except s.

(b) Predict classification probabilities for matched sets in test set s with feature

values D(s).

(c) Add d units to the value of exposure variable x1 for case units in test

set s. Let D′(s) denote new feature values in the transformed data set

corresponding to matched pairs in set s.
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(d) Predict classification probabilities for matched sets in test set s with feature

values D′(s).

3. Compute φd(x1) based on metrics M1 and M2 using Equations 4.11 and 4.12

respectively.

Figure 4.15 shows the results of simulation. The measure of effect size based on

metric M1 is shown in red color (triangle) on the right y-axis, and the measure of

effect size based on M2 is shown in blue color (circle) on the left y-axis. Each point

on this plot shows effect size corresponding to a metric (M1 or M2) and a value of

d. We observe in Figure 4.15 that when d is set to a positive value, both measures

of effect size are negative. This shows that our method correctly identifies the sign

of effect. We also observe larger variation in the measures of effect size based on M1

when d > 0 than d < 0. However, an opposite pattern is seen for effect size measures

based on M2. That is, effect size is more sensitive to the change in d for d < 0 than

d > 0.

4.4.2 Case Studies

Our case studies include 2 biomedical data sets, namely, Statlog heart disease

(Lichman (2013)) and childhood acute lymphoblastic leukemia study (Bhojwani et al.

(2006)). The childhood acute lymphoblastic leukemia study consists of matched case-

control pairs. The Statlog heart disease data set does not have a matched design, so

it is first converted into matched pairs before analysis. We used R MatchIt package

for the exact matching of controls to cases. Further details regarding the matching

procedure have been provided in the corresponding section.

We evaluated the performance of proposed methods using these case studies. We

set number of iterations in WMF to 3 and use the default parameters of R random-
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Figure 4.15: Effect Size Measures Based on Metrics M1 and M2 for a Variable

Simulated with Negative Linear Effect. The Effect Size Is Estimated for d ∈

{−1.5,−1,−0.5, .5, 1, 1.5}. The Measure of Effect Size Based on M1 Is Shown in

Red (Triangles) on the Right Y-axis and the Measure Based on M2 Is Shown in Blue

(Circle) on the Left Y-axis.

Forest package (ntree = 500, mtry =
√
p and mxnodes = NULL) to run WMF,

except for the childhood acute lymphoblastic luekemia study which was evaluated

with 50, 000 decision trees due to its large number of variables. Also, to account for

randomness in WMF, each algorithm was run in 100 replicates on each data set.

For variable selection, we used a method similar to Shomal Zadeh et al. (2020).

To generate null distribution for each variable’s MFI score, we permuted the case

and control instances within each stratum 100 times and ran WMF on each permuted

data set once. The generated null distributions were compared with the original MFI

scores to select variables with MFI scores significantly large at a predetermined

significance level α.

We evaluated the variable selection performance of WMF and classification ac-

curacy of MF (WMF with one iteration) on both case studies. The classification

accuracy of MF is compared with CLR for statlog heart disease data set. However,

ClR does not converge for the childhood acute lymphoblastic luekemia study due to
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its large number of variables, thus, WL2Boost is used for comparison on this data set.

We used 10−fold cross validation and ran both MF and CLR 100 times to account

for randomness in cross-validation. The average of accuracy over 100 runs of MF and

CLR was used as the evaluation metric.

Case Study 1: Statlog Heart Disease Data Set

This data set includes 120 subjects with heart disease (case) and 150 subjects without

heart disease (control). The subjets in this data set are not matched, thus, we created

matched pairs by matching each case with a control using variables age (discretized

by 5-year intervals) and gender. The resulting matched data set has 80 case-control

pairs. We analyzed the effect of 6 numerical exposure variables on heart disease.

These exposures include Resting Blood Pressure (x1), Serum Cholestoral (x2), max

heart rate (x3), Oldpeak (x4), Slope of peak ST segment (x5), and Major vessels

colored (x6).

Figure 4.16 and Figure 4.17 show respectively MFI scores and p-values of WMF

in iterations t ∈ {1, 2, 3}. Variables x3, x4, x6 received relatively large MFI scores

compared to other exposure variables and their MFI scores increase as t increases.

The WMF algorithm also selects variables x5 and x6 as important in all iterations

and at significance level α = 0.05 (Figure 4.17). By examining the scatterplots of

control versus case for each exposure variable, we observed that variables x3, x4, x5,

and x6 potentially have an effect. In particular, for these 4 variables, we observed

larger difference between the number of pairs with case greater than control and pairs

with control greater than case. The relatively larger MFI scores of x3, x4 and x6

also indicate that they are important. Although the p-values corresponding to x3 and

x4 decreased by an increase in the number of iterations in WMF, they are still not

significant at α = 0.05. Thus, further modification in variable selection method of
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WMF is required to improve its power. The reason why variable x5 did not receive a

large MFI score is that it only has 3 unique values and Strobl et al. (2007) showed in

their experiments that RF’s Gini importance score is smaller for variables with small

number of unique values. Strobl et al. (2007) suggested using RF’s permutation score

when variables differ in the number of unique values. The variables selected by MF

were compared with CLR in Shomal Zadeh et al. (2020). CLR selected variables x3

and x6 as important at α = 0.05. Using all variables in data set, the classification

accuracy of MF was compared with CLR. The average of accuracy over 100 runs of

each algorithm was used as the metric for comparison. MF achieves a classification

accuracy of 80% which is comparable with the classification accuracy of CLR (79%).

Figure 4.16: Statlog Heart Disease Data Set: MFI Scores of WMF at t ∈ {1, 2, 3}.

Variables x3, x4 and x6 Received Relatively Larger Scores than Other Exposure Vari-

ables and Their MFI Scores Improve as t Increases.

Case study 2: Childhood Acute Lymphoblastic Leukemia Study

The childhood acute lymphoblastic leukemia study is a matched pair study design

conducted by Bhojwani et al. (2006) to identify factors leading to relapse. They se-

lected 35 children with acute lymphoblastic leukemia who were relapsed after therapy
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Figure 4.17: Statlog Heart Disease Data Set: P-values Computed by WMF at t ∈

{1, 2, 3}. Variables x5 and x6 Were Selected by WMF in t ∈ {1, 2, 3} at Significance

Level α = 0.05.

and analyzed 22, 283 gene expression profiles in bone marrow of diagnosis (control)

and relapsed (case) samples taken from the same patient. Thus, this data set contains

35 matched pairs and 22, 283 exposure variables.

We ran WMF on this data set with 100 replicates and 50, 000 trees. The average

of MFI scores in each iteration were ranked from 1 (the most important) to 22, 283

(the least important) and important variables were selected at α = 0.01. Figure

4.18 shows MFI scores in the third iteration of WMF for the top 50 variables with

highest MFI scores. The 50 most important variables selected in iteration three

were ranked no lower than 82 and 68 by the first and second iterations of WMF,

respectively. Using the variable selection method based on permuting the labels

within each pair, WMF selects 283, 144 and 177 variables in first, second, and third

iterations, respectively. Thus, the regularization in WMF leads to smaller number of

variables to be selected than MF (WMF at t = 1). We also evaluated the classification

accuracy of WMF using the 50 most important variables identified in the last iteration

of WMF. Using 10-fold cross-validation, MF achieves a classification accuracy of 98%,
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which is substantially higher than 77% classification accuracy from WL2Boost by

using its 12 selected variables and 5-fold cross validation.

Figure 4.18: Childhood Acute Lymphoblastic Leukemia Study: MFI Scores of Top

50 Important Variable from the Third Iteration of WMF.

4.5 Conclusion

We presented three enhancements of MF, a powerful variable selection algorithm

for high-dimensional matched case-control data sets. In particular, we proposed a

regularized version of MF with improved power, a prediction algorithm based on

MF to classify matched pairs into case-control or control-case, and two interpretable

measures to estimate the effect of important variables identified by MF.

We tested the performance of proposed methods through extensive simulations

and case studies. Our results demonstrate the effectiveness of WMF in selecting

important variables. WMF is more useful for high-dimensional data sets with few

informative variables and small effect size. We also observed in our case studies

that MF has better classification accuracy than its competing algorithms for high-

dimensional matched case-control data sets. The two metrics that we proposed for

effect estimation can be effectively used to measure the effect of important variables

identified by MF.
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Chapter 5

MATCHED CASE-CONTROL ANALYSIS USING NEURAL NETWORKS

Matched case-control study designs are commonly used in healthcare, social, and

behavioral sciences due to their ability to remove the effect of confounding and im-

prove the efficiency in identifying important features. In matched case-control studies,

observations with the outcome of interest (case) are grouped with observations with-

out the outcome of interest (control) based on some matching variables. Often the

goal of matched case-control studies is to identify matching and exposure variables

informative in distinguishing between case and control units. The number of cases

and controls within each matched set or stratum can vary, but usually one case is

matched with a fixed number of controls that ranges between 1 to 5 (Hosmer Jr et al.

(2013)). This study design is referred as matched 1− L case-control, where L is the

number of controls matched to each case. In the special case where L = 1, the study

design is referred as matched pairs too. The common reason why more than one con-

trol is matched to a case or treated unit in matched case-control studies is to increase

the power of a test of no effect of exposure variables assuming that matching variables

are sufficient to remove the bias from nonrandom treatment assignment (Rosenbaum

(2013)). In healthcare applications, matching is usually done on demographic vari-

ables such as age and gender to remove the effect of confounding variables which

can lead to spurious results. For example, people with a disease may be matched

with people without a disease based on their age and sex to identify gene expres-

sion markers significantly different between case and control observations. Regular

machine learning algorithms such as Random Forest and Neural Network cannot be

directly applied to matched case-control data sets because they assume observations
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in data are independent. However, in matched case-control studies, correlation exists

among units within a matched set, thus, specific methods are required to account for

the matching structure of data. Analysis of matched case-control study designs will

become challenging when data sets are high-dimensional with hundreds and thou-

sands of variables or when the relationship between variables and outcome is highly

nonlinear and involves interaction.

To address these challenges which exist in many of the modern real data sets,

complex models such as neural networks are required. Neural networks have achieved

high accuracy in several applications, e.g computer vision, that involve hundreds or

thousands of variables. Also, recent innovations have enabled users to explain the

predictions of neural networks in terms of input variables. One of the most recent

explanation methods for neural networks is DeepSHAP (Lundberg and Lee (2017)

and Chen et al. (2019)) that estimates Shapely values (Shapley (1953)) for neural

networks. These properties of neural networks motivated us to adapt neural networks

to matched case-control study designs.

Here, we present a neural network based approach which we call matched neu-

ral network (MNN), to assign importance scores to variables in a high-dimensional

matched case-control study design. We first explain our method for matched pairs

and then extend it to matched 1 − L case-control study designs with L > 1. Our

method first transforms data to a supervised setting, then, a neural network classifier

is trained on this data and importance of each variable is computed using DeepSHAP.

The data transformation method is motivated by Shomal Zadeh et al. (2020) and

SHAP scores computed by the neural network model are modified for the matched

study.

Section 5.1 explains existing variable selection methods for high-dimensional

matched case-control studies and provides a description of DeepSHAP method for
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assigning importance scores to variables based on the predictions of neural network

models. In section 5.2, we explain our method, matched neural network. Section 5.3

shows the effectiveness of our method through simulation and case studies. Section

5.5 concludes this research work.

5.1 Background

5.1.1 Variable Selection Methods For High-dimensional Matched Case-control

Datasets

Majority of algorithms proposed for high-dimensional matched case-control data

sets are based on the conditional logistic regression (CLR) model, for example Bal-

asubramanian et al. (2014), Asafu-Adjei et al. (2017), and Qian et al. (2014) all use

a CLR-based approach to identify important variables from matched case-control

studies. They use a linear model with conditional likelihood function which is supple-

mented with cross products of two or more variables to handle interactions. However,

these methods could become intractable in high-dimensional settings with hundreds

or thousands of variables. There are also other algorithms which are not based on

CLR. For example, Adewale et al. (2010) proposed two variants of boosting algorithm

for data sets with correlated binary outcome. The first method is based on gradient

descent boosting algorithm that uses a modified loss function to handle correlations

among data. The second method modifies the likelihood optimization boosting algo-

rithm using a generalized linear mixed model. The drawback of these methods could

be their poor performance to detect variables with non-linear effects or interaction

effects with other variables. Also, Stanfill et al. (2019) proposed a data preprocessing

approach to generalize classification algorithms to matched case-control data sets, and

referred to these modified methods as Conditional Classification algorithms. Their

method centers each strata by the mean values of exposure and map the exposure
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value of each unit to its difference from the center. This method does not handle

dependency among units within a stratum, which is recommended by statistical prin-

ciples. It breaks each stratum into multiple instances which are known to be depen-

dent. Our experiments show that this method has difficulty detecting variables with

non-linear and interaction effects. Matched Forest (MF) proposed by Shomal Zadeh

et al. (2020) is also a recent method for variable selection from high-dimensional

matched case-control data sets. This method transforms a matched case-control data

set to a supervised setting which accounts for the matching structure of data and then

applies Random Forest (RF) on the transformed data set to compute variable impor-

tance score and select important variables. This method is able to detect nonlinear

effects and interactions between exposure and matching variables in high-dimensional

matched case-control data sets.

5.1.2 DeepSHAP

DeepSHAP is a feature attribution method designed for deep neural networks. It

modifies DeepLIFT algorithm (Shrikumar et al. (2017) and Shrikumar et al. (2016)) to

estimate SHAP (SHapley Additive exPlanations) values (Lundberg and Lee (2017))

over the feature space for each individual prediction. In what follows, we first ex-

plain the general approach for computing SHAP values, and then explain how SHAP

values are estimated by DeepSHAP through a modification on DeepLift attribution

algorithm.

SHAP is connected with Shapley values (Shapley (1953)) from game theory which

explains the output of any machine learning model y = f(x) by assigning an impor-

tance value to each feature xj (φ(xj)) that represents the effect of including that

feature on prediction. To compute this effect for feature xj, a model fS∪{j}(xS∪{j}) is

trained on a subset of features S ⊆ F , where F is the set of all features, with feature
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xj present and another model fS(xS) is trained on the feature subset S with feature

xj withheld. The marginal effect of feature xj when it is added to feature subset S is

then computed by fS∪{j}(xS∪{j})−fS(xS). When the model f is non-linear or feature

variables are not independent, the marginal contribution of a variable xj depends

on the other features in the model (S), thus, shapley values arise from the weighted

average of marginal contributions over all possible feature subsets S ⊆ F \ {j}:

φ(xj) =
∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!

|F |!
[fS∪{j}(xS∪{j})− fS(xS)] (5.1)

where |S| represents the size of set S. For many of the machine learning models,

it is not feasible to predict the output of the model for a subset of features. SHAP

(Lundberg and Lee (2017)) uses a conditional expectation function of the original

model to define simplified input features. That is, it defines fx(S) by E[f(x)|xS]

which is the expected value of the model conditioned on the feature subset S. The

exact computation of SHAP values is challenging for complex models. However,

existing additive feature attribution models can be modified to approximate SHAP

values.

DeepLift is an additive feature attribution method for neural network which

is modified in DeepSHAP to approximate SHAP values. DeepLift is one of

backpropagation-based approaches that propagates an importance signal from an

output neuron through hidden layers and finally to input features. This is compu-

tationally efficient because importance scores are computed in only one backward

pass. DeepLIFT assigns to each feature xj a contribution score C∆xj∆y that rep-

resents the amount of difference in output y from a reference y0 attributed to the

difference of that feature xj from the reference x0
j . The choice of a reference depends

on domain-specific knowledge. For example, Shrikumar et al. (2017) uses an image

with all zeros as the reference for MNIST data set because this is the background
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of all images in this data. DeepLIFT is an additive feature attribution method that

follows ”summation-to-delta” property:

n∑
j=1

C∆xj∆y = ∆y (5.2)

where ∆y = f(x)−f(x0) and ∆xj = xj−x0
j . Similar to how chain rule is constructed

for partial derivatives to compute the gradient of the output with respect to an input,

DeepLIFT uses ”chain rule for multipliers” to compute the global multiplier for any

neuron to a given target neuron via backpropagation. For a given input xj and target

neuron y, the multiplier is defined as:

m∆xj∆y =
C∆xj∆y

∆xj
(5.3)

which is the contribution of input xj to target neuron y divided by the difference-from-

reference of the input ∆xj. According to the chain rule for multipliers, the global

multiplier from input xj to target neuron y (m∆xj∆y) is computed by recursively

passing the multipliers backward through the network and summing them up over

all paths connecting input xj to target neuron y. Assuming that there is a hidden

layer with neurons h1, . . . , hn between input neuron xj and target neuron y, the global

multiplier for xj to y is computed as follows:

m∆xj∆y =
∑
i

m∆xj∆hi ×m∆hi∆y (5.4)

and the the contribution score of input neuron xj to target neuron y is computed as

C∆xj∆y = m∆xj∆y ×∆xj (5.5)

Shrikumar et al. (2017) introduces some rules including linear, rescale and reveal

cancel to compute the multiplier for each neuron to its immediate inputs. These

rules are suitable for activations with linear functions or nonlinear functions with only
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one input. Non-linear functions with multiple inputs are not addresses in Shrikumar

et al. (2017), and the public implementation of DeepLIFT uses the gradient for such

functions (Ancona et al. (2017)).

DeepSHAP modifies DeepLift by computing SHAP values for smaller components

of neural network analytically and propagate them backward through the network

using DeepLift’s multipliers. Also, DeepSHAP uses multiple background samples

instead of one reference and averages the resulting attributions with respect to one

reference sample at a time (Chen et al. (2019)). Chen et al. (2019) argues that

averaging SHAP values over one reference sample approaches the true SHAP values

for a given background distribution.

5.2 Method: Matched Neural Network

In this section, we explain how we extend neural networks to matched case-control

study designs with many variables (hundreds and thousands) for the purpose of iden-

tifying informative variables in distinguishing between case and control units. Our

method is suitable for matched 1 − L case-control study designs with L ≥ 1. It is

built upon the idea behind Matched Forest algorithm, that is, we first transform data

to a supervised setting while maintaining the matching structure of data, then, we

train a neural network classifier on this transformed data set to classify each stratum

and measure the importance of variables. For simplicity, we first explain how neural

networks are extended to matched case-control study designs with one case and one

control (matched 1 − 1 design), then, we will extend the method to a more general

matched 1− L study design where each stratum has one case and L > 1 controls.
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5.2.1 Matched 1− 1 Study Design

We use the notation in Shomal Zadeh et al. (2020) to describe the problem. Con-

sider a matched case-control data set D with N strata consisting of one case and one

control, R exposure variables denoted by x1, x2, . . . , xR and M matching variables

denoted by v1, v2, . . . , vM . The case and control values of an exposure variable xr

for stratum i are shown by x1
r(i) and x0

r(i), respectively. We transform data to a

supervised setting that accounts for the matched structure of data using the data

transformation method in Shomal Zadeh et al. (2020). That is, new case and control

variables x∗1r (i) and x∗0r (i) are created for each exposure variable xr as

x∗kr (i) =


xkr(i) for i ∈ {1, 2, . . . , N},

x1−k
r (i−N) for i ∈ {N + 1, N + 2, . . . , 2N}

(5.6)

for r ∈ {1, 2, . . . , R}. The first N rows are the original pairs and the second N rows

(referred as counterfactual) are new matched pairs for each of which the exposure

values of case and control are interchanged. Variable d∗r is also created for each

numerical exposure variable as

d∗r = x∗1r − x∗0r (5.7)

to help identify the correct effect. The method also generates new columns for match-

ing variables as

v+
m(i) =


vm(i) for i ∈ {1, 2, . . . , N},

vm(i−N) for i ∈ {N + 1, N + 2, . . . , 2N}
(5.8)

A label is also defined for each matched pair as

y(i) =


1 for i ∈ {1, 2, . . . , N},

0 for i ∈ {N + 1, N + 2, . . . , 2N}
(5.9)
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to distinguish between observed values and counterfactuals. If allR exposure variables

in D are numerical, this transformation will create new matched case-control data set

D∗ with 2N instances and M + 3R + 1 columns.

We train a neural network classifier on this transformed data set D∗ to classify

data and measure the importance of each variable in predicting the class probabilities.

Our method uses DeepSHAP to explain the predicted output and assign SHAP values

to each individual variable. SHAP value of a variable is a measure of its importance

score. It measures the impact of each variable for every single prediction. A positive

(negative) SHAP score of a variable indicates that it increases (decreases) model’s

prediction. In matched case-control analysis, we are interested in the importance of

each matching variable vm and each exposure variable xr that has three associated

columns in D∗, namely, x∗1r , x∗0r and d∗r. Thus, to compute an importance score

for the exposure variable xr, we need to aggregate the SHAP scores of its three

associated variables. As DeepSHAP is an additive feature attribution method, a

summation of these scores would represent the whole impact of exposure variable

xr on model’s prediction. Let V I denote the original SHAP values computed by

DeepSHAP method and let MNI be the Matched Neural Network’s importance score

which is a modification of V I scores for the matched dataset.

The MNI score of a matching variable vm for stratum i is computed as

MI(vm(i)) = V I(v+
m(i)) (5.10)

for m ∈ {1, 2, . . . ,M} and i ∈ {1, 2, . . . , 2N}. The MNI score of each exposure

variable xr is computed as

MI(xr(i)) = V I(x∗1r (i)) + V I(x∗0r (i)) + V I(d∗r(i)) (5.11)

for r ∈ {1, 2, . . . , R} and i ∈ {1, 2, . . . , 2N}. The global score for each matching

and exposure variable is then computed by taking the average of absolute values of
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MNI scores over the entire strata in the D∗. That is, we use 1
2N

∑2N
i=1 |MNI(xr(i))|

and 1
2N

∑2N
i=1 |MNI(vm(i))| as the global importance score of exposure variable xr for

r ∈ {1, 2, . . . , R} and matching variable vm for m ∈ {1, 2, . . . ,M}, respectively.

5.2.2 Matched 1− L Study Design

Here, we extend our method to matched case-control study designs with L >

1. Similar to the notations used in section 5.2.1, let N be the number of strata,

{x1, x2, . . . , xR} denote R exposure variables, and {v1, v2, . . . , vM} denote M matching

variables. For stratum i, we show the case value for exposure variable xr by x1
r(i)

and its L controls by x01
r (i), x02

r (i), . . . , x0L
r (i). Our method first creates L difference

variables {d1
r, d

2
r . . . , d

L
r } for each exposure variable xr as

dlr(i) = x1
r(i)− x0l

r (i)

for r ∈ {1, 2, . . . , R}, l ∈ {1, 2, . . . , L} and i ∈ {1, 2, . . . , N}. Generally, for an

exposure variable that has an effect, its associated difference variables should be

significantly larger (or smaller) than 0 for many strata. Our method transforms this

problem to a supervised setting and let the classifier detect important variables with

an effect. The key idea is to keep all the available information corresponding to a

stratum (matching, case and control values) in one row of data set and transform data

to a supervised setting which enables the classifiers to detect important variables. Our

method transforms data by creating new L difference variables {d∗1r , d∗2r . . . , d∗Lr } for

each exposure variable xr as

d∗lr (i) =


dlr(i) for i ∈ {1, 2, . . . , N},

−dlr(i−N) for i ∈ {N + 1, N + 2, . . . , 2N}
(5.12)
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for r ∈ {1, 2, . . . , R} and l ∈ {1, 2, . . . , L}. A label is also defined for each stratum as

y(i) =


1 for i ∈ {1, 2, . . . , N},

0 for i ∈ {N + 1, N + 2, . . . , 2N}
(5.13)

to distinguish between the original differences in the first N rows and their negative

values in the second N rows. If an exposure variable is important, the classifier should

be able to distinguish between different labels and identify its effect. To enable the

method to detect nonlinear and interaction effects between exposures, variables x∗1r

and x∗0r are generated for each exposure variable xr as

x∗1r (i) =


x1
r(i) for i ∈ {1, 2, . . . , N},

1

L

L∑
l=1

x0l
r (i−N) for i ∈ {N + 1, N + 2, . . . , 2N}

(5.14)

and

x∗0r (i) =


1

L

L∑
l=1

x0l
r (i) for i ∈ {1, 2, . . . , N},

x1
r(i−N) for i ∈ {N + 1, N + 2, . . . , 2N}

(5.15)

for r ∈ {1, 2, . . . , R}. Equations 5.14 and 5.15 are similar to Equation 5.6, but

here, we use the average of L control values of an exposure within a stratum. New

matching variables {v+
1 , v

+
2 , . . . , v

+
M} are also generated similar to Equation 5.8 to

help identify interaction effects between matching and exposure variables. This data

transformation method will create new data set D∗ with 2×N rows and M + (L +

2)×R + 1 columns.

Similar to our method for matched 1− 1 study design, we train a classifier, here

neural network, on this transformed data set to classify strata and to identify impor-

tant variables. The importance of each variable is measured through SHAP values

which are estimated by the DeepSHAP algorithm. The matched neural network’s
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importance score of exposure variable xr for stratum i is computed as

MNI(xr(i)) = V I(x∗1r (i)) + V I(x∗0r (i)) +
l=L∑
l=1

V I(d∗lr (i)) (5.16)

for r ∈ {1, 2, . . . , R} and i ∈ {1, 2, . . . , 2N}. The matched neural network importance

score of matching variable v+
m for stratum i is computed as

MNI(vm(i)) = V I(v+
m(i)) (5.17)

for m ∈ {1, 2, . . . ,M} and i ∈ {1, 2, . . . , 2N}. To measure the global importance score

of a variable across all strata, we use 1
2N

∑2N
i=1 |MNI(xr(i))| for exposure variable

xr, r ∈ {1, 2, . . . , R}, and 1
2N

∑2N
i=1 |MNI(vm(i))| for matching variable vm, m ∈

{1, 2, . . . ,M}.

5.3 Experiments

Here, we demonstrate the effectiveness of our method in identifying important

variables from high-dimensional matched case-control studies through simulations

and a biomedical application. We also compared the performance of our method

with Matched Forest and Conditional Classification method.

5.3.1 Simulation Study

We simulated matched case-control data sets to evaluate the performance of our

method and compared it with Matched Forest (Shomal Zadeh et al. (2020)) and the

conditional classification method (Stanfill et al. (2019)). The conditional classifica-

tion method proposes a data preprocessing approach and then trains a classifier on

this transformed data to classify case and control instances and identify important

exposure variables. In our experiments, we used neural network algorithm for the

conditional classification method and refer to it as conditional neural network. Their
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method did not provide any explanation of how matching variables are handled, so

we include them in the transformed data without any transformation of their values.

For each simulation study, 10 matched case-control data sets are generated with

600 strata, 5 matching and 100 exposure variables. The number of controls matched

to each case (L) ranges from 1 to 4, and it is constant across strata for each sim-

ulation study. The data sets are simulated with different types of effects including

linear, interaction between a matching and an exposure and interaction between two

exposure variables. Data sets with interaction effects are simulated based on XOR

rule such that each variable individually does not have any marginal effect, but its

combination with other variables shows an effect. Our data generation process is

motivated by Shomal Zadeh et al. (2020). Each matching variable unless otherwise

stated is generated randomly from Poisson (λ = 5) distribution. To generate the

case and control variables of exposure variable xr, unless otherwise stated, the case

values (x1
r) are first generated according to the Uniform distribution between 1 and 50

(U(1, 50)) and values of each control variable (x0l
r , for l ∈ {1, 2, . . . , L}) are generated

according to x0l
r = x1

r − dlr where dlr is normally distributed N(µlr, 1). In our simula-

tions, µlr ∈ {1, 1.5, 2} for exposure variables with positive effect, µlr ∈ {−1,−1.5,−2}

for exposure variables with negative effect and µlr = 0 for exposure variables without

any effect. Let |µlr| be the effect size. Larger values of |µlr| indicate a stronger effect.

The neural network architecture used in our proposed method and the conditional

classification algorithm consists of 3 fully connected layers of size 30 with Relu activa-

tion followed by the softmax output layer with 2 nodes. To handle overfitting due to

large number of variables, we used L1 regularization with λ ∈ {0.005, 0.007} on the

weights connecting input layer to the first hidden layer. The networks were trained

using Adam optimization algorithm with learning rate of 0.01. The number of epochs

is set to 120 and batch size to 5. We used 5 fold cross validation to split the strata
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into training and test sets, and applied DeepSHAP with 600 background samples to

estimate the effect of each variable for instances in each test set. DeepSHAP method

provides SHAP scores corresponding to each output node of the model. When the

label is binary, the SHAP values of the 2 output nodes have the same value but dif-

ferent sign. In our simulation results, we report only SHAP values estimated for the

first output node that takes 1 for the observed strata and 0 for the counterfactuals.

To train Matched Forest, we set number of trees to 1000, number of variables

selected at each split to
√

(p) where p is total number of variables in the transformed

data and grow trees to purity. We also used 5 fold cross validation to split strata into

training and test sets. Matched Forest was trained on the training portion and the

average of Matched Forest importance scores (MFI) over 10 folds was used for the

importance of each variable. MFI scores are based on the Gini importance measure

of Random Forest algorithm.

Linear Effect

Here, we simulated matched case-control data sets with L = 2 such that exposure

variable x1 has a positive linear effect and the remaining exposure variables xr ∈

{x2, x3, . . . , xR} have no effect. That is, we set µl1 = 1 for l ∈ {1, 2} and µlr = 0 for

r ∈ {1, 2, . . . , R} and l ∈ {1, 2}.

Figures 5.1a, 5.1b and 5.1c show respectively MNI scores from Matched Neural

Network, MFI scores from Matched Forest and SHAP values from Conditional Neural

Network for exposure variables. For brevity, we only show the top 20 most important

exposure variables from each method. We observe that all three methods detect

the effect of x1 because this variable has received the highest importance value by

all the methods. Figure 5.1d shows a summary of SHAP values obtained from one

replicate of matched neural network for the top 5 most important variables. Each
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point in this plot is the estimated SHAP value for each instance and each variable

in the transformed data set D∗. The y axis represents the variables sorted based

on their global importance (the average of SHAP value magnitudes over all samples)

and the x axis shows the SHAP values. The color represents the values of features

from the smallest (blue) to the largest (red). From this figure, we can observe that

the difference variables d∗11 and d∗21 associated with exposure variable x1 are the most

important features in distinguishing between observed strata and counterfactuals, and

their SHAP values also increase with their feature values in D∗. We also tested the

change in the accuracy of matched neural network by changing the number of controls

matched to each case (L) and the effect size (|µl1| for l ∈ {1, 2, . . . , L}). The results

are shown in Figure 5.1e for L ∈ {1, 2, 3, 4} and |µl1| ∈ {1, 1.5, 2}. There can be seen

that the accuracy of matched neural network increases with larger L and effect size.

Interaction Effect Between A Matching And An Exposure

Here, data sets are simulated with an interaction effect between matching variable

v1 and exposure variable x1 and no effect for other exposure variables. The number

of controls matched to each case is set to 2. Exposure variable x1 is generated with

a positive effect when v1 ≤ 5 and a negative effect when v1 > 5. Specifically, for

N/2 of the strata, µl1 > 0 for l ∈ {1, 2} and v1 is generated from U(1, 5) and for the

remaining N/2 strata, µl1 < 0 for l ∈ {1, 2} and v1 is generated from U(5, 10).

Figure 5.2 shows variable importance measures of matching and exposure (top

20) variables from matched neural network (Figures 5.2a and 5.2b), matched forest

(Figures 5.2c and 5.2d), and the conditional neural network model (Figures 5.2e and

5.2f). Both matched neural network and conditional neural network models detect

the interaction effect between variables v1 and x1 because these two variables have

received significantly larger importance scores than other matching and exposure
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(a) (b)

(c) (d)

(e)

Figure 5.1: Linear Effect: (a) MNI Scores (Shap Values) of Exposure Variables from

Matched Neural Network. (b) MFI Sores of Exposure Variables from Matched For-

est. (c) SHAP Values of Exposure Variables from Conditional Neural Network. (d)

Summary Plot of SHAP Values Estimated by Matched Neural Network. Each Point

Corresponds to a Variable and an Instance, and the Color Represents the Feature

Values from Low (Blue) to High (Red). (e) Effect of l and Effect Size (|µl1|) on the

Accuracy of Matched Neural Network.
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variables. However, matched forest only detects the effect of matching variable v1

and it fails to detect the effect of x1 because it is not in the list of top 20 most

important variables shown in Figure 5.2c.

Figure 5.3a shows how the impact of variable d∗11 on model’s output changes as

its value varies across strata. Each point in this plot corresponds to a stratum. The

x-axis shows the feature value of d∗11 and y-axis shows its corresponding SHAP value.

The color represents the feature value of v1 in D∗ from the smallest value (blue)

to largest (red). This plot also shows how these two variables are interacted. For

example, for strata with d∗11 > 0, the impact of d∗11 on model’s output is larger when

V 1 < 5, and it increases with larger values of d∗11 . We also tested the impact of

number of controls (L) and effect size (|µl1| for l ∈ {1, 2, . . . , L}) on the accuracy of

matched neural network. The results are shown in Figure 5.3b for L ∈ {1, 2, 3, 4} and

|µl1| ∈ {1, 1.5, 2}. The accuracy of matched neural network increases as |µl1| and L

become larger.

Interaction Effect Between Two Exposure Variables

In this section, we explain our simulation study for matched data sets with an inter-

action effect between exposure variables x1 and x2, and no effect for other exposure

variables {x3, x4, . . . , xR}. The number of controls matched to each case is set to

2. Data sets are generated such that x1 has a positive effect when x∗12 < 25 and a

negative effect when x∗12 ≥ 25. That is, for N/2 strata, µl1 = 1 for l ∈ {1, 2} and x∗12

is generated from U(1, 25), and for the remaining strata, µl1 = −1 for l ∈ {1, 2} and

x∗12 is generated from U(25, 50). For exposure variables {x2, x3, . . . , xr}, d∗lr = 0 for

l ∈ {1, 2}.

Figures 5.4a, 5.4b and 5.4c show variable importance scores of the top 20 exposure

variables from matched neural network, matched forest and conditional neural net-
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work, respectively. Matched neural network detects the simulated interaction effect

between x1 and x2, because they both have received significantly larger scores than

other variables. For matched forest, although x1 and x2 are in the top 3 variables,

they do not have significantly larger scores than other exposure variables without any

effect, thus, matched forest only weakly detects this interaction effect. Conditional

neural network also fails to detect the interaction effect because neither x1 nor x2 are

seen in the top 20 variables shown in Figure 5.4c.

Figure 5.4d shows how the impact of d∗11 on model’s output changes with its

feature value and the value of x∗12 . When d∗11 > 0, its impact on models output is

larger for x∗12 < 25 than x∗12 > 25. Also, when x∗12 < 25, the impact of d∗11 increases

as its feature value becomes larger, and when x∗12 > 25, the impact of d∗11 increases

as its feature value becomes smaller. We also tested the effect of number of controls

(L) and effect size of exposure variable x1 (|µl1| for l ∈ {1, 2, . . . , L}) on the accuracy

of matched neural network. Figure 5.4e shows the results for L ∈ {1, 2, 3, 4} and

|µl1| ∈ {1, 1.5, 2}. We can see in this Figure that the accuracy of matched neural

network generally improves when L and |µl1| increase. But there can be seen that

the accuracy of MNN decreases when number of controls changes from 3 to 4 for the

effect size is of 2. Thus, number of controls matched to a case should be selected with

cautious.

Summary of Simulation Results

We observed in our simulations that MNN performs better than MF and Conditional

Neural Network in identifying variables with interaction effects. However, they all

perform comparably when important variables have linear effects. Also, generally,

when number of controls matched to a case unit increases, the accuracy of MNN

improves. But the accuracy might also decrease when number of controls is very
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large. Thus, the number of controls matched to each case should be selected with

cautious.

5.4 Case Study: Childhood Acute Lymphoblastic Leukemia Study

In this section, we utilize Childhood Acute Lymphoblastic Leukemia data set

(Bhojwani et al. (2006)) to show the effectiveness of matched neural network in iden-

tifying important variables. This data set includes 35 matched pairs where each

represent a child with acute lymphoblastic leukemia who were relapsed after therapy.

Each pair consists of 22, 283 gene expression profiles in bone marrow measured at

the diagnosis (Case) and relapsed stage (control). The objective of this study is to

identify gene expression profiles significantly different between cases and controls.

We trained matched neural network on this data set to evaluate the importance of

each gene expression profile, and compared its performance with Matched Forest. The

neural network architecture consists of 3 hidden layers of size 50 with Relu activation

function followed by the softmax output layer with 2 nodes. To reduce the risk of

overfitting due to the large number of exposure variables (22, 283), L1 regularization

with parameter λ = 0.005 is used for the weights connecting the input layer to the

first hidden layer. We used stochastic gradient descent as the optimization algorithm

for training neural network and set learning rate to 0.001, weight decay parameter to

0.01, and momentum to 0.9. The number of epochs is set to 30 and the batch size

to 5. We also used 10 fold cross validation to separate data into training and test,

and to account for the randomness in cross validation, this training procedure was

repeated 10 times. Matched Forest was also conducted in 10 replicates with 10, 000

trees and 10 fold cross validation. The number of variables selected at each split is

also set to (
√

(22283)) and trees were grown to purity.
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Figure 5.5a shows the median of MNI scores over the 10 replicates of matched

neural network for the top 50 genes with largest importance scores. These variables

were ranked from the most (rank 1) to the least (rank 22, 283) importance based

on their importance values. There are a number of differences between variables

ranking from matched neural network and Matched Forest. Among the top 100 most

important variables selected by Matched Neural Network, 41 of them are also ranked

between 1 to 100 by Matched Forest. Some of the most important genes selected

by both methods are 204642 at, 205167 s at, 200980 s at and 217491 x at which are

ranked 3rd, 2nd, 4th and 7th by Matched Neural Network respectively and ranked 1st,

9th, 5th and 33rd by Matched Forest, respectively. There are also some genes which

are ranked high by Matched Neural Network, but received lower ranks by Matched

Forest. For example, 202867 s at is ranked 18th by Matched Neural Network and

234th by Matched Forest. The median of accuracy over 10 runs of Matched Neural

network is 78 which is lower than the median of accuracy for Matched Forest which is

83. We think that lower accuracy of Matched Neural Network is due to small number

of matched pairs (only 35), because Neural Network models usually work better when

a large amount of data is available.

As MNI scores are computed for each instance individually, we can plot MNI

scores of a variable across all matched pairs and see how its impact changes as its

value varies. For example, we can see in Figure 5.5b for exposure variable 208511 at

(ranked 17th) that the impact of its associated difference variable d∗208511 at increases

as its value gets larger. However, we can see a decreasing trend in Figure 5.5c for

exposure variable 217099 s at (ranked 15th) which indicates that the impact of its

difference variable d∗217099 s at decreases as its value becomes larger.
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5.5 Conclusion

We proposed Matched Neural Network that identifies important matching and

exposure variables from high-dimensional matched case-control data sets with hun-

dreds and thousands of variables. This method is suitable for matched case-control

study designs where each case is matched to a fixed number of controls. Matched

case-control data sets are first transformed to a supervised setting while accounting

for its matched structure and then a Neural Network classifier is trained on this data

to identify important variables. We used a modification of SHAP values to compute

the importance of each matching and exposure variable.

We compared the performance of Matched Neural Network with alternative

variable selection methods including Matched Forest and Conditional Classification

through simulation studies and a biomedical application. We observed in our sim-

ulations that Matched Neural Network performs better than alternative methods to

identify interaction effects. However, when number of strata is small, we observed in

the analysis of biomedical data set that Matched Neural Network does not perform

as well as Matched Forest. Also, SHAP values enable us to see how the impact of a

variable varies depending on its values and the value of an interacting variable.
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(a) Matched neural network: MNI scores of

exposure variables

(b) Matched neural network: MNI

scores of matching variable

(c) Matched forest: MFI scores of exposure

variables

(d) Matched forest: MFI scores of

matching variables

(e) Conditional neural network: SHAP values

of exposure variables

(f) Conditional neural network:

SHAP values of matching variables

Figure 5.2: Interaction between Matching Variable v1 and Exposure Variable x1: (a)

MNI Scores (SHAP Values) of Exposure Variables from Matched Neural Network. (b)

MNI Scores (SHAP Values) of Matching Variables from Matched Neural Network.(c)

MFI Sores of Exposure Variables from Matched Forest. (d) MFI Scores of Matching

Variables from Matched Forest.e SHAP Values of Exposure Variables from Condi-

tional Neural Network. (f) SHAP Values of Matching Variables from Conditional

Neural Network.
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(a) (b)

Figure 5.3: Interaction between Matching Variable v1 and Exposure Variable x1: (a)

SHAP Dependence Plot to Show the Effect of d∗11 Across All Data and Its Interaction

with Matching Variable v1 (b) Effect of l and Effect Size (|µl1|) on the Accuracy of

Matched Neural Network.
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(a) (b)

(c) (d)

(e)

Figure 5.4: Interaction between Exposure Variables x1 and x2: (a) MNI Scores (SHAP

Values) of Exposure Variables from Matched Neural Network. (b) MFI Scores of

Exposure Variables from Matched Forest. (c) SHAP Values of Exposure Variables

from Conditional Neural Network. (d) Summary Plot of Shap Values Estimated by

Matched Neural Network. Each Point Corresponds to a Variable and an Instance,

and the Color Represents the Feature Values from Low (Blue) to High (Red). (e)

Effect of L and Effect Size (|µl1|) on the Accuracy of Matched Neural Network.
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(a)

(b) (c)

Figure 5.5: Childhood Acute Lymphoblastic Leukemia Study: (a) The Median of

MNI Scores (SHAP Values) over the 10 Replicates of Matched Neural Network for the

Top 50 Genes with Largest Importance Scores. (b) The Impact of Variable d∗208511 at

Versus Its Value Across All Data. (c) The Impact of Variable 217099 s at Versus Its

Value Across All Data.
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Chapter 6

MULTINOMIAL MATCHED LEARNER: SUPERVISED MACHINE LEARNING

FOR HIGH-DIMENSIONAL MATCHED STUDIES WITH MULTIPLE LEVELS

OF THE OUTCOME

6.1 Introduction

In many applications, observations within a data set have some dependency in

their structure. They usually form groups of observations where observations in a

group are correlated. Examples include longitudinal data sets where repeated obser-

vations taken from a unit at different time points or occasions, variables measured

for a same subject before and after of an intervention (e.g., treatment), and matched

study designs where observations are grouped together based on some baseline vari-

ables. The analysis of this kind of data sets requires techniques to handle dependency

among observations to achieve valid inference.

In this research, we consider a matched study design with the objective of iden-

tifying important variables associated with a nominal outcome with more than two

levels. In this study design, each stratum consists of three or more units where each

is from one of the outcome levels. Units per stratum differ with respect to their out-

come level, but similar with respect to certain baseline variables used for matching

(for example, age and gender). These baselines variables used to create matched sam-

ples are also referred as matching variables. For each unit within a stratum, a large

number (hundreds or thousands) of exposure variables are measured. For example,

in a clinical application, these variables may include patient characteristics, health
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conditions, or genes. The objective of this study is to assess the relationship between

exposure variables and the nominal outcome of interest.

Matching is commonly performed in observational studies to increase efficiency by

equating the distribution of baseline variables in different outcome levels (Rothman

et al. (2008)). Matching is performed on variables believed to be confounders; vari-

ables which are associated with both exposure variables and the outcome of interest

(Rose and Van der Laan (2009)). If the matching variable is only associated with the

outcome, there is a loss of efficiency compared to an unmatched study design. Also,

if the matching variable is only associated with the exposure, but not the outcome,

the variance of estimator will increase. We should also avoid selecting variables for

matching which are along the causal pathway between exposure variables and the

outcome of interest, because this will create bias in our estimation (Stuart (2010)

and Rose and Van der Laan (2009)). Variables which are typically used for matching

in epidemiological studies are demographic variables such as age, sex, race, etc. An

ideal method for matching is the exact matching method where units within each

matched set have the equal values for all matching variables (Stuart (2010)). An-

other commonly used matching method is the nearest neighbor matching where units

within a stratum have the smallest distance from each other (Stuart (2010)). In this

research, we assume that matched sets or strata are created by the exact matching

method. The number of units from each outcome level within each stratum can vary

in general. In this research, we assume that each stratum has one unit from each

outcome level.

Traditional methods for analysing this type of study design are not suitable for

high-dimensional matched data sets with hundreds or thousands of variables and

complex relationship among them. Majority of these methods are based on the con-

ditional logistic regression (CLR) (Hosmer Jr et al. (2013)) model which uses a linear
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logistic regression model and a conditional likelihood approach to handle the matched

structure of data set. To assess interaction effects among variables, interaction terms

(products of two or more variables) are included in the CLR model. However, this

increases the dimensionality of data set and makes this model intractable.

These limitations of the CLR based models have motivated us to use a machine

learning model for matched study designs; a model which inherently handles high-

dimensionality, complex nonlinear and interaction effects. We present a new ma-

chine learning algorithm, Multinomial Matched Learner (MML) to identify impor-

tant variables from high-dimensional matched data with multiple levels for the out-

come. Our method is motivated by the Matched Forest (MF) algorithm developed

by Shomal Zadeh et al. (2020) for matched case-control study designs where outcome

has two levels. The main idea of our method is to transform data set to a supervised

setting based on the potential outcome model (Neyman (1923), Rubin (1977)) while

accounting for the matched structure of data set. Similar to MF, for each unit within

a stratum, we estimate its counterfactual which is defined for the case (control) unit

as its potential exposure value if the unit was a control (case). Then a label is defined

for each stratum and a classifier with modified variable importance score is used to

identify important variables. One advantage of our method is that any classifier can

be applied. We used Random Forest and Neural Network in our experiments because

both handle high-dimensionality, nonlinear and interaction effects in high-dimensional

setting.

Section 6.2 presents previous work on matched study designs. Section 6.3 describes

our method. Section 6.4 presents and discusses simulation and case studies. Finally,

section 6.5 concludes this work.
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6.2 Background

6.2.1 Related Work

Th predominant method in the literature for analyzing matched study designs with

binary outcome is Conditional Logistic Regression (CLR) and its variants for high-

dimensional setting for example Balasubramanian et al. (2014), Asafu-Adjei et al.

(2017), and Qian et al. (2014). These models all use a linear model which is supple-

mented by interaction terms to assess interactions among variables. Thus, they are

not suitable for matched data sets with hundreds or thousands of variables.

There are also other references which are not based on CLR. For example, Adewale

et al. (2010) proposed two versions of boosting algorithms for data sets with correlated

binary outcome levels. The first algorithm uses gradient boosting algorithm with

weighted least square loss function that handles correlation among outcomes. In the

second algorithm a likelihood optimization boosting algorithm is modified by using a

generalized linear mixed model. Both algorithms proposed by Adewale et al. (2010)

use a linear model which requires interaction terms to assess interactions among

variables. Thus, they have difficulty identifying non-linear and interaction terms in

high-dimensional matched data sets.

Another research in this domain is by Stanfill et al. (2019) who proposed a data

transformation method which transforms exposure variables to their null space and

applies any classification method on this transformed data set to identify important

exposure variables. This method does not handle dependency among units within a

stratum, which is recommended by statistical principles. It breaks each stratum into

multiple instances which are known to be dependent. We observed in our experiments

in Chapter 5 that this method has difficulty identifying interaction effects between

exposure variables.
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Matched Forest (MF) proposed by Shomal Zadeh et al. (2020) is also a recent

method for identifying important variables from matched data sets with binary out-

come. This method uses a data transformation method based on the potential out-

come model (Splawa-Neyman et al. (1990) and Rubin (1974)) to convert matched

data sets to supervised setting while accounting for their matched structure. Then,

it applies a classifier on the transformed data set to identify important matching and

exposure variables. This method does not have the limitations of methods described

previously. It inherently handles high-dimensionality, nonlinear and interaction ef-

fects. Section 6.2.2 explains Matched Forest in more details because this is the basis

of our method.

Research on matched data sets with more than two outcome levels is limited. The

traditional method is to use the binary CLR method for each pair of outcomes (Liang

and Stewart (1987)). Also, there are some references that use a joint modeling of

all outcome levels to estimate the coefficients of exposure variables. For example,

Liang and Stewart (1987), Becher and Jöckel (1990) and Gebregziabher et al. (2010)

extend CLR to matched case-control data sets where either case or control units

are selected from multiple groups. Each group is considered as an outcome level.

Mukherjee et al. (2007) demonstrated that the joint modeling of multiple outcomes

is more efficient than using separate CLR models for each pair of outcome levels.

These models also have similar limitations as CLR model for binary outcome, which

makes them not suitable for high-dimensional matched data sets with hundreds or

thousands of variables and complex nonlinear and interaction effects.

6.2.2 Matched Forest

Here, we provide a summary of Matched Forest (MF) algorithm which was pro-

posed by Shomal Zadeh et al. (2020) for matched study designs with two possible
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outcomes in each stratum. Our method is the extension of MF for matched study

designs with more than two outcome levels in each stratum.

The MF algorithm first converts the matched data set into a supervised setting

based on the potential outcome frame work (Splawa-Neyman et al. (1990) and Ru-

bin (1974)). Second, a classifier is trained on this transformed data set to identify

important variables.

Consider a matched study design with N strata and an outcome with T = 2 levels

with no specific ordering, where t ∈ {0, 1} shows the outcome level. Shomal Zadeh

et al. (2020) considered a matched case-control study design for their analysis where

each stratum has one case unit (t = 1) and one control unit (t = 0). Let

{x1, x2, . . . , xR} denote R exposure variables and {v1, v2, . . . , vM} be M matching

variables to create N strata. The value of the exposure variable xr for the case

and control units in stratum i are represented by x1
r(i) and x0

r(i) respectively for

i ∈ {1, 2, . . . , N} and r ∈ {1, 2, . . . , R}. It is assumed that an exact matching method

is used to create each strata. The value of matching variable vm for units in the

stratum i is represented by vm(i) for m ∈ {1, 2, . . . ,M} and i ∈ {1, 2, . . . , N}.

MF creates new variables x∗1r and x∗0r for each exposure variable xr as

x∗tr (i) =


xtr(i) for i ∈ {1, 2, . . . , N},

x1−t
r (i−N) for i ∈ {N + 1, N + 2, . . . , 2N}

(6.1)

for r ∈ {1, 2, . . . , R} and t ∈ {0, 1}. That is, the first N rows for x∗1r and x∗0r

correspond to original values of exposure for each stratum and the second N rows

(referred as counterfactual) are generated by swapping the exposure values of case and

control within each stratum. To help identify important variables, MF also creates a

difference variable d∗r corresponding to each exposure variable xr as

d∗r = x∗1r − x∗0r (6.2)
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for r ∈ {1, 2, . . . , R}. Each matching variable vm is also transformed according to

Equation 6.3 for m ∈ {1, 2, . . . ,M} to help identify interaction effects between match-

ing and exposure variables.

v+
m(i) =


vm(i) for i ∈ {1, 2, . . . , N},

vm(i−N) for i ∈ {N + 1, N + 2, . . . , 2N}
(6.3)

A key step is to associate a label with each pair and its counterfactual as

y(i) =


0 for i ∈ {1, 2, . . . , N},

1 for i ∈ {N + 1, N + 2, . . . , 2N}
(6.4)

to distinguish between original strata and counterfactuals. A random forest classifier

with a modified importance score for matched data sets is trained on this transformed

data set to identify important matching and exposure variables.

Figures 6.1 and 6.2 illustrate why MF works. Figure 6.1 corresponds to a matched

data set with one exposure variable x simulated with no effect. Figures 6.1a and 6.1b

show respectively the original and transformed data sets for this exposure variable.

Each point on these plots corresponds to a stratum with exposure values for the case

and control outcomes on the x and y axes, respectively. In Figure 6.1b, the original

strata are shown in blue (circle), and counterfactuals are shown in red (×). In Figure

6.1a, there is no region where the value of x1 is significantly larger or smaller than x0

for majority of strata. In the transformed data set shown in Figure 6.1b, the original

and counterfactual pairs cannot be separated and a classifier will correctly not detect

any effect.

Figure 6.2a and 6.2b show respectively the original and transformed data set by

MF for a simulated matched data set with one exposure variable x that has a linear

effect. Each point on these plots corresponds to a stratum with exposure values for

the case and control outcomes on the x and y axes, respectively. In Figure 6.2b, the
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(a) (b)

Figure 6.1: The Scatter Plot of Control Versus Case for Exposure Variable x with No

Effect in Original (a) and Transformed Data Set (b).

original and counterfactual pairs are shown in blue (circle) and red (×) respectively. In

Figure 6.2a, we can see that for majority of strata x1 > x0, hence, there is a difference

between exposure values of the case and control units. In the transformed data set

shown in Figure 6.2b, the original and counterfactual pairs are distinguishable. The

classifier trained on this transformed data set can accurately assign labels to most of

these pairs and detect the effect of the exposure variable.

6.3 Multinomial Matched Learner

We propose a new machine learning algorithm, Multinomial Matched Learner

(MML), to identify important variables from high-dimensional matched data sets

where outcome has more than two levels. We assume that each stratum has only

one unit from each level of the outcome. Our method generalizes Matched Forest

(MF) proposed in Chapter 3 to matched data sets with more than two levels for

the outcome. When outcome is binary, MML is equivalent to MF. Similar to MF,

our method has two major steps: (i) transform matched data set to a supervised
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(a) (b)

Figure 6.2: The Scatter Plot of Control Versus Case for Exposure Variable x with

Linear Effect in Original (a) and Transformed Data Set (b).

setting that accounts for the matched structure of data. (ii) train a classifier with

modified importance score on this transformed data set which is able to inherently

identify complex relationships (nonlinear or interaction effects) between large number

of exposure and matching variables.

6.3.1 Data Transformation To Supervised Setting

Consider that the outcome of interest has more than two levels (T > 2) where

t ∈ {0, 1, . . . , T − 1} denotes the level of the outcome. Let N denote the number of

strata, {x1, x2, . . . , xR} denote R exposure variables and {v1, v2, . . . , vM} be M match-

ing variables. The feature matrix associated with exposure variable xr has N rows

and T columns. We denote the T columns associated with exposure variable xr by

{x0
r, x

1
r, . . . , x

(T−1)
r } and the T−dimensional row vector for observed exposure values

corresponding to stratum i by xr(i) = (x0
r(i), x

1
r(i), . . . , x

(T−1)
r (i)) for i ∈ {1, 2, . . . , N}.

Our data transformation method creates counterfactual for each stratum. Let

x̃r(i) denote the counterfactual corresponding to stratum i for exposure variable xr.
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Also, let u denote the T−dimensional column vector with all elements equal to 1. We

estimate x̃r(i) as the reflection of observed exposure for stratum i (xr(i)) along the

vector u. That is, x̃r(i) is obtained as

x̃r(i) = xr(i)Z (6.5)

Where Z is the T ×T reflection matrix (Z) corresponding to vector u. The Reflection

matrix Z is obtained as

Z = 2P − I (6.6)

where P = u(uTu)−1uT is the T ×T orthogonal projection matrix onto u and I is the

T × T identity matrix.

We denote the T columns associated with exposure variable xr in the transformed

data set by {x∗0r , x∗1r , . . . , x
∗(T−1)
r }. The first N rows of variables {x∗0r , x∗1r , . . . , x

∗(T−1)
r }

match with observed feature matrix corresponding to xr and the second N rows are

counterfactuals defined in Equation 6.5. Let x∗r(i) = (x∗0r (i), x∗1r (i), . . . , x
∗(T−1)
r (i))

denote the T−dimensional feature vector associated with exposure variable xr in the

ith row of transformed data set. Thus, the vector x∗r(i) is obtained by

x∗r(i) =


xr(i) for i ∈ {1, 2, . . . , N},

x̃r(i) for i ∈ {N + 1, N + 2, . . . , 2N}
(6.7)

for r ∈ {1, 2, . . . , R}.

We create a new label column denoted by y in our transformed data set to distin-

guish between original strata and counterfactuals. The label y is defined as

y(i) =


0 for i ∈ {1, 2, . . . , N},

1 for i ∈ {N + 1, N + 2, . . . , 2N}
(6.8)

If an exposure variable xr is important, we expect the difference between its orig-

inal values and counterfactuals to have large magnitude for majority of strata. Thus,
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to help identify important exposure variables, for each exposure variable xr, we cre-

ate T difference variables denoted by {d∗0r , d∗1r , . . . , d
∗(T−1)
r }. The ith row of difference

variables associated with exposure variable xr is defined by the T−dimensional vector

d∗r(i) = (d∗0r (i), d∗1r (i), . . . , d
∗(T−1)
r (i)) which is defined as

d∗r(i) =


x∗r(i)− x∗r(i+N) for i ∈ {1, 2, . . . , N},

x∗r(i)− x∗r(i−N) for i ∈ {N + 1, N + 2, . . . , 2N}
(6.9)

for r ∈ {1, 2, . . . , R}.

Each matching variable vm is also transformed to v+
m for m ∈ {1, 2, . . . ,M} accord-

ing to Equation 6.10 to enable the method to identify interactions between matching

and exposure variables.

v+
m(i) =


vm(i) for i ∈ {1, 2, . . . , N},

vm(i−N) for i ∈ {N + 1, N + 2, . . . , 2N}
(6.10)

Assuming that all exposure variables are numerical, this data transformation method

creates a new data set with M + 2RT + 1 columns.

In the second step of our method, a supervised learner is trained on this trans-

formed data set to distinguish between original strata and counterfactuals and eval-

uate the effect of exposure and matching variables. If an exposure variable has an

effect, we would expect the supervised learner to separate the original strata and

counterfactuals and identify the effect of exposure variable.

Our method compares the exposure values under T outcome levels with their

average and uses a supervised learner to identify if there are any large differences

between them. For an exposure variable xr and a stratum i, the counterfactual

corresponding to the observed stratum xr(i) = (x0
r(i), x

1
r(i), . . . , x

(T−1)
r (i)) is x̃r(i) =

xr(i)Z = 2x̄r(i)− xr(i) where x̄r(i) is a T−dimensional row vector with all elements

equal to 1
T

∑T−1
t=0 x

t
r(i). The difference vector d∗r(i) computed by Equation 6.9 can be
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simplified and re-written as

d∗r(i) =


2[xr(i)− x̄r(i)] for i ∈ {1, 2, . . . , N},

2[x̄r(i−N)− xr(i−N)] for i ∈ {N + 1, N + 2, . . . , 2N}
(6.11)

for r ∈ {1, 2, . . . , R}. It can be seen in Equation 6.11 that original exposure values

are compared with their average over the T outcome levels.

Our method is the generalization of MF for matched data sets whose outcome

has more than two levels. For a binary outcome matched data set, the original

exposure values corresponding to exposure variable xr and stratum i are represented

by the vector xr(i) = (x0
r(i), x

1
r(i)). MF creates counterfactual by interchanging

the exposure values of the two outcome levels within each stratum. That is, the

counterfactual of the original point (x0
r(i), x

1
r(i)) is estimated as (x1

r(i), x
0
r(i)). Our

generalized method for T ≥ 2 creates the counterfactual point corresponding to xr(i)

as x̃r(i) = xr(i)Z = 2x̄r(i) − xr(i) which is simplified to (x1
r(i), x

0
r(i)) for matched

data sets with a binary outcome. MF also defines a difference variable d∗r for each

exposure variable computed by Equation 6.2. This variable is the simplified version

of the difference vector computed by Equation 6.11. When the outcome is binary, our

generalized method creates a two-dimensional vector d∗r = (d∗0r , d
∗1
r ) for each exposure

variable xr from Equation 6.11 which is simplified for each individual variable d∗0r and

d∗1r as

d∗tr (i) =


xtr(i)− x(1−t)

r (i) for i ∈ {1, 2, . . . , N},

x(1−t)
r (i−N)− xtr(i−N) for i ∈ {N + 1, N + 2, . . . , 2N}

(6.12)

for t ∈ {0, 1} and r ∈ {1, 2, . . . , R}. The data transformation method of MF uses

only one of the variables d∗0r and d∗1r . These two variables are computed similarly and

one of them is enough for identifying important variables.

To illustrate our method, consider Figure 6.3 which corresponds to a simulated

matched data set with three outcome levels and one exposure variable x with no
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effect. Figure 6.3a shows the scatter plot of x0, x1 and x2 for each stratum in the

original data set. The dashed line corresponds to the vector u. As can be seen in

Figure 6.3a, all points are scattered randomly around the u and there is no region

in this 3−dimensional space where x0, x1 and x2 differ significantly from each other.

Figure 6.3b shows the scatterplot of x∗0, x∗1 and x∗2 for this exposure variable in

the transformed data set. The original strata are shown in blue (circle) and their

counterfactuals are shown in red (×). The original strata and their counterfactuals

are not clearly separated and a supervised learner will not classify well.

(a) (b)

Figure 6.3: The Scatter Plot of Exposure Variable x Simulated with No Effect for All

Strata in Original (a) and Transformed Data Set (b).

Now, consider Figure 6.4 which corresponds to a matched data set with three

outcome levels and an exposure variable x simulated with an effect. Figure 6.4a

shows the original data set. For many of strata, there is a considerable difference

between the values of x0, x1 and x2. Figure 6.4b shows the scatterplot of x∗0, x∗1 and

x∗2 for this exposure variable in the transformed data set. We can see in Figure 6.4b
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that original strata and their counterfactuals are clearly separated and a supervised

learner would classify well and identify the effect of this exposure variable.

(a) (b)

Figure 6.4: The Scatter Plot of Exposure Variable x Simulated with an Effect for All

Strata in Original (a) and Transformed Data Set (b).

6.3.2 Variable Importance

Our algorithm applies a supervised learner on the transformed data set to identify

important exposure and matching variables. The variable importance score of the

supervised learner are modified to compute importance score for each matching and

exposure variable in the matched data set.

To find important variables, we compute matched importance score denoted by

MI for each exposure and matching variable. Variables with larger MI scores are

more important. Let V I denote the original importance score obtained by the chosen

classifier. The matched importance score of exposure variable xr (MI(xr)) is obtained
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by the summation of the importance score of its associated variables as

MI(xr) =
T−1∑
t=0

V I(x∗tr ) +
T−1∑
t=0

V I(d∗tr ) (6.13)

for r ∈ {1, 2, . . . , R}. If an exposure variable is important, we expect all of its as-

sociated variables help classify original strata and counterfactuals. Therefore, the

summation is used to provide an overall score for the importance of xr. When SHAP

(Lundberg and Lee (2017) and Lundberg et al. (2018)) is used to measure the im-

portance of each variable, the MI scores of each exposure variable is first computed

for each stratum i and then to summarize these scores and obtain one measure for

each variable, we take the mean magnitude of SHAP scores across all strata similar

to Lundberg et al. (2018) and Lundberg et al. (2019). That is, we first compute the

stratum level SHAP score for each exposure variable xr as

MI(xr(i)) =
T−1∑
t=0

V I(x∗tr (i)) +
T−1∑
t=0

V I(d∗tr (i)) (6.14)

for i ∈ {1, 2, . . . , 2N} and r ∈ {1, 2, . . . , R}. Then, the global SHAP score for xr is

computed as

MI(xr) =
1

2N

2N∑
i=1

|MI(xr(i))| (6.15)

for r ∈ {1, 2, . . . , R}. As SHAP is an additive feature attribution method, Equation

6.14 gives the overall score of the group of variables including {x∗0r , x∗1r , . . . , x
∗(T−1)
r }

for stratum i.

The matched importance of a matching variable vm (MI(vm)) is also computed

as

MI(vm) = V I(v+
m) (6.16)

for m ∈ {1, 2, . . . ,M}. When SHAP is used to measure the importance of a variable,

the matched importance score of the matching variable vm for stratum i (MI(vm(i)))
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is first computed as

MI(vm(i)) = V I(v+
m(i)) (6.17)

for m ∈ {1, 2, . . . ,M} and i ∈ {1, 2, . . . , 2N}. Then, its global score across all strata

is computed as

MI(vm) =
1

2N

2N∑
i=1

|MI(vm(i))| (6.18)

for m ∈ {1, 2, . . . ,M}.

6.4 Experiments

In this section, we evaluate the performance of our proposed method through

simulation studies and a real clinical application. Section 6.4.1 explains the data gen-

eration procedure, parameter settings of the Neural Network classifier and results for

our simulations. Section 6.4.2 explains the usefulness of our method in a real clinical

application. We did not compare our method with traditional methods for matched

data sets in our simulations, because our experiments on Chapter 3 showed the lim-

itation of these methods in identifying important variables from high-dimensional

matched data sets with interaction effects. However, we compared the performance

of our method with binary conditional logistic regression for the real data set which

has small number of variables.

6.4.1 Simulation Study

We simulated matched data sets with nominal outcome with the number of levels

ranging from 3 to 7. Each matched data set has 600 strata, 100 exposure variables

and 5 matching variables. We consider a simple scenario with one important exposure

variable and a complex scenario with an interaction effect between two exposure vari-

ables where the effect of one exposure variable depends on the value of the other expo-
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sure. Each matching variable vm is generated independently according to the Poisson

distribution with the parameter equal to 5. The values of each exposure variable xr

under the outcome level t (xtr) is generated as xtr = br + dtr where br, unless otherwise

stated, is uniformly distributed between 1 and 50, and dtr is normally distributed with

the mean of µtr and the standard deviation of 1. In our simulations, to generate the

exposure variable xr with no effect, µtr is set to 0 for all t ∈ {0, 1, . . . , T − 1}. Also,

to generate the exposure variable xr with an effect, µ0
r ∈ {−2,−1.5,−1, 1, 1.5, 2} and

µtr = 0 for t ∈ {1, 2, . . . , T − 1}. We use |µ0
r| as the measure of effect size. Larger

values of |µ0
r| indicate larger effect size. More details regarding data simulation for the

simple and complex scenarios are provided in Sections 6.4.1 and 6.4.1 respectively.

For each simulation scenario, we generated 10 data sets to account for the ran-

domness in our variables and used Neural Network as the classifier because it handles

high-dimensionality, non-linear and interaction effects. The neural network architec-

ture used in our simulations consists of 3 fully connected layers of size 30 followed

by an output layer of size 2. To avoid overfitting due to the large number of vari-

ables, we used L1 regularization with penalty parameter equal to 0.008 for weights

connecting the input layer to the first hidden layer. We used Adam optimization

algorithm for training the Neural Network algorithm. Also, the learning rate is set

to 0.001, number of epochs is set to 250, and batch size is set to 5. We used 5-fold

cross validation to split 600 strata into training and test sets. The neural network

algorithm is trained on the training set and the trained model is used to predict out-

put for each stratum in the test set. We used DeepSHAP algorithm (Lundberg and

Lee (2017)) to estimate SHAP scores of each variable using the predictions of Neural

Network model for strata in the test set. DeepSHAP provides SHAP scores for each

output node of the model. The Neural Network model trained on the transformed

data set has two output nodes. The first and second output node of Neural Network
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model take 0 and 1 for original strata and 1 and 0 for counterfactuals. When Neural

Network model has two output nodes, the estimated SHAP scores for the two output

nodes have similar value but different sign. In our simulations, we used SHAP scores

corresponding to the first output node. The matched importance scores for exposure

variables are computed based on Equations 6.14 and 6.15 and for matching variables

based on Equations 6.17 and 6.18.

Simple Scenario: One Important Exposure Variable

Here, we simulated matched data sets with an effect for exposure variable x1 and no

effect for other exposure variables {x2, x3, . . . , x100}. That is, we simulated x1 such

that the distribution of xt1 differ among the T outcome levels. In particular, we set

µ0
1 ∈ {1, 1.5, 2} and µt1 = 0 for t ∈ {1, 2, . . . , (T − 1)}. For the remaining exposure

variables with no effect, µtr = 0 for r ∈ {2, 3, . . . , 100} and t ∈ {0, 1, . . . , T − 1}.

Figure 6.5 shows MI scores for the top 20 exposure variables with largest MI

scores for effect size (|µ0
1|) ∈ {1, 1.5, 2} and T ∈ {3, 5, 7}. Each plot corresponds to

a specific effect size (|µ0
2|) and number of outcome levels (T ). As can be seen in this

Figure, the effect of exposure variable x1 has been detected by our method because it

received a significantly larger importance scores than other exposure variables in all

of these 9 plots. The situation with effect size of 2 and T = 3 is an easy case which

is shown at the top left corner of Figure 6.5. As the effect size becomes smaller for

a fixed value of T (moving from top to bottom), identifying the effect of x1 becomes

harder because the difference between the importance of x1 and other noise variables

becomes smaller. The change in T for a fixed effect size (moving from left to right)

does not change MI score of exposure variables significantly for this simple scenario,

and they remain fairly consistent.
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Figure 6.5: Simple Scenario with One Important Exposure Variable x1: Matched

Importance Score of the Top 20 Exposure Variables with Largest Scores for Effect

Size (|µ0
1|) ∈ {1, 1.5, 2} and T ∈ {3, 5, 7}.

Complex Scenario: Interaction Between Two Exposure Variables

Here, we consider a more complex scenario and simulated matched data sets with

an interaction effect between the two exposure variables x1 and x2 and no effect

for other exposure variables {x3, x4, . . . , x100}. In these simulated data sets, when

exposure variable x2 is considered individually, no effect is observed, however, when

it is considered with exposure variable x1, we observe an effect which changes with the

values of x1. In particular, when b1 < 25, we set µ0
2 ∈ {1, 1.5, 2} and when b1 ≥ 25,

we set µ0
2 ∈ {−1,−1.5,−2}. For all other outcome levels t ∈ {1, 2, . . . , T −1}, µt2 = 0.

The value for µ0
2 is selected such that in each simulation, the average of d0

2 over all
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strata is equal to zero. This forces the variable x2 to be important only when it is

considered with exposure variable x1. For the remaining exposure variables with no

effect, µtr = 0 for r ∈ {3, 4, . . . , 100} and t ∈ {0, 1, . . . , T − 1}.

Figure 6.6 represents MI scores of the top 20 exposure variables with largest

scores for effect size (|µ0
2|) ∈ {1, 1.5, 2} and T ∈ {3, 5, 7}. Each plot corresponds to a

specific effect size (|µ0
2|) and number of outcome levels (T ). We can see in nearly all

of these plots that exposure variables x1 and x2 have received significantly larger MI

scores than other noise variables. Thus, the effect of x1 and x2 have been detected by

our method. The plot on the top left corresponding to T = 3 and effect size of 2 is

the easy case and used as the reference. As the effect size decreases (moving from top

to bottom) or T increases (moving from left to right), identifying the effects of x1 and

x2 becomes harder, because their MI scores become closer to the MI scores of noise

variables. We observed in our simulations in Chapter 3 that MF for binary outcome

(T = 2) performs better than CLR in identifying interaction effects. The performance

of MML method for T > 2 is also as good as MF, and we see in Figure 6.6 that the

effects of both exposure variables x1 and x2 are detected. Thus, we expect that MML

also performs better than CLR in identifying interaction effects.

6.4.2 Clinical Application

We considered the data set EEG which can be accessed through R MANOVA.RM

package. This data set contains information of 160 patients who were diagnosed with

either Alzheimer disease (AD), mild cognitive impairment (MCI), or subjective cogni-

tive complaints (SCC). For each patient, z-scores for brain rate and Hjorth complexity

are measured at three brain regions including frontal, temporal, and central. The sub-

ject specific factors considered in this data set are sex (men vs. women), diagnosis

(AD vs. MCI vs. SCC) and age (< 70 vs. ≥ 70). In addition, within subject factors
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Figure 6.6: Complex Scenario with an Interaction Effect Between Two Exposure

Variables x1 and x2: Matched Importance Scores of the Top 20 Exposure Variables

with Largest Scores for Effect Size (|µ0
2|) ∈ {1, 1.5, 2} and T ∈ {3, 5, 7}.

are brain region (frontal, temporal, central) and numerical EEG variables including

brain rate and complexity. The research question here is whether the structure of

EEG variables (brain rate and complexity) differ across three brain regions (frontal,

temporal, central).

This data set has the structure of a matched study design. Each subject can

be considered as a matched set or stratum and the three subject specific variables

(sex, diagnosis and age) which are consistent within each stratum can be considered

as matching variables. The two EEG features (brain rate and complexity) are to

be compared across brain regions as two exposure variables, and the brain region is

considered as the nominal outcome of interest with three categories or levels (T = 3).

138



To evaluate the matched importance score of the two exposure variables including

brain rate and complexity, we augmented this data set by including 70 other expo-

sure variables simulated with no effect. The matched importance scores of these 70

simulated exposure variables is used to set a threshold to identify important EEG

variables. We denote these simulated exposure variables by {x1, x2, . . . , x70}. The

simulation procedure for variables {x1, x2, . . . , x70} is similar to what was described

in section 6.4 for exposure variables with no effect. We simulated these 70 exposure

variables 10 times to account for the randomness in our simulated variables, applied

our method on this data set and measured the MI score of each variable based on

Equations 6.13 and 6.16 for exposure and matching variables, respectively.

We used Random Forest as the classifier because it handles high-dimensionality,

mixed numerical and categorical variables, non-linear and interaction effects. The

number of trees in Random Forest is set to 500, the number of variables selected at

each split is set to
√

(p) (p is the number of variables in the transformed data set),

and trees were grown to purity. We also used 5 fold cross validation to separate data

into training and test and used the average of variable importance scores over 5 folds

as the importance score (V I) of each variable.

Figure 6.7 shows the MI scores of matching and exposure variables obtained

from our method. Figure 6.7a and Figure 6.7b show respectively the MI scores of

the 20 most important exposure variables and the MI scores of matching variables

for 10 simulated data set. We can observe in Figure 6.7a that variable complexity

has received considerably larger MI score than simulated variables with no effect.

But, the MI score of exposure variable brain rate is not considerably larger than the

simulated noise variables. Thus, we can conclude that the values of complexity differ

among frontal, central and temporal brain regions in this data set. From Figure 6.7b,
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we can observe that matching variable diagnosis has received larger MI scores than

variables age and sex.

For comparison, Conditional Logistic Regression (CLR) model was applied for

each pair of outcome levels. We used central outcome level as the reference and fit

two CLR models where one compares the outcome level frontal with central and

the other one compares the outcome level temporal with central. If the p-value of a

variable obtained from any of these two models is significant at α = 0.05, the variable

is selected as important. Our results show that CLR did not select exposure variables

complexity and brain rate in any of 10 simulated data sets, but it selected incorrectly

some of the variables simulated with no effect. Therefore, the variables selected by our

method and CLR are different. This difference can be due to existence of interactions

between variables that CLR did not detect.

(a) (b)

Figure 6.7: EEG Data Set: Matched Importance Scores of Exposure (a) and Matching

(b) Variables.

6.5 Conclusion

We proposed a new machine learning algorithm to identify important variables

from high-dimensional matched data sets with more than two outcome levels. Our
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method is suitable for matched data sets with hundreds or thousands of variables,

and is developed to detect complex non-linear and interaction effects. We showed our

method is the generalization of Matched Forest algorithm proposed for matched data

sets with binary outcome. Our method first transforms matched data set to supervised

setting and then applies a supervised learner with modified variable importance score

on the transformed data set to identify important exposure and matching variables.

Our simulation studies showed the effectiveness of our method in identifying com-

plex interactions among variables. Also, the analysis on the clinical data set showed

that results from our method can be different from alternative approaches because of

its ability to detect complex interaction effects.
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Chapter 7

CONCLUSION

In this dissertation, machine learning models have been proposed for the analy-

sis of high-dimensional matched data sets with hundreds or thousands of exposure

variables and dozens of matching variables. The proposed models in this dissertation

are designed for the task of variable selection, effect estimation and classification in

high-dimensional matched data sets. The proposed methods are effective in high-

dimensional settings where interaction among variables exists.

In Chapter 3, we proposed Matched Forest (MF) to identify important variables

from high-dimensional matched case-control data sets. The outcome of interest is

binary (case or control) and each stratum consists of one case and one control unit.

Our experiments showed that MF is effective in identifying complex non-linear and

interaction effects. This work is published in Shomal Zadeh et al. (2020).

In Chapter 4, we proposed three enhancements of Matched Forest (MF). First, we

proposed Weighted Matched Forest (WMF) which adaptively regularizes MF to focus

on highly important variables for splits. Our results showed that WMF has better

variable selection performance than MF. Second, we generalized the application of

MF to classification problems. we explained how MF is used to classify an unlabeled

pair to either case-control or control-case. Our results showed that MF not only

performs well in variable selection, but also has a better classification accuracy than

existing algorithms. Finally, in the third enhancement, we proposed two new metrics

to estimate the effect of variables identified as important by MF.

In Chapter 5, we generalized MF to matched case-control study designs where

multiple controls are matched to each case. We also used Neural Network with SHAP

142



scores to identify important variables from high-dimensional matched case-control

data sets. This method is referred to as Matched Neural Network (MNN), and our

results showed that it performs better than MF for identifying interaction effects

when number of strata is sufficiently large.

In Chapter 6, we generalized our variable selection method to matched data sets

where outcome has more than two levels. Our method is referred to as Multinomial

Matched Learner (MML) which aims at identifying important variables from high-

dimensional matched data sets with multiple outcome levels. Our results showed the

superiority of our method in identifying important variables compared with existing

methods in the literature.

The application of our methods is not limited to only matched study designs. One

research area which may benefit from our methods is causal inference. The traditional

methods for estimation of causal effect of a treatment variable on the outcome focused

on the population average treatment effect. However, the causal effect of a variable

on the outcome may not be constant over the entire population and it may change

depending on other variables. This concept is known as heterogeneous treatment

effect or effect modification, and variables across which the causal effect of interest

differs are referred as effect modifiers. Our proposed methods can be combined with

outcome based modeling approaches to identify effect modifiers.
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