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ABSTRACT 

Mechanical fatigue has been a research topic since quite a long time. It is a complex 

phenomenon at molecular level. The fact that fatigue failure occurs much below material’s 

yield point, made it much interesting area for research. So, to understand the physics behind 

fatigue failure became an important research topic. Fatigue failure is characterized by crack 

initiation and then crack propagation to finally fracture the material. If this could be 

modelled mathematically, then it would save lot of resources and would assure the 

structural integrity of given component. Many such mathematical models were published 

to calculate fatigue crack growth for Constant Amplitude Loading, but most of the time the 

applied loads are variable in nature. So, to address this problem a mathematical model 

which will predict fatigue life in terms of time history is needed. This research study 

focuses on improving previously developed subcycle fatigue crack growth model also 

known as small time scale model which works well in Paris regime. In the first part, focus 

has been given on estimating threshold point using subcycle model by applying load 

shedding techniques. Later subcycle model has been modified to include fatigue crack 

growth in threshold region. In the second part of this research study, the concept of 

Equivalent Initial Flaw Size (EIFS) and fracture mechanics approach has been used to 

compute fatigue life for Constant as well as Random Amplitude Loading. Further the 

model has been extended to compute the fatigue life under Mixed Mode Loading (Mode I 

& Mode II). Standard material properties are used to calibrate the model parameters. The 

fatigue life results were validated using available open literature data as well as 
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experimental testing data. The subcycle model can be used to calculate fatigue life in case 

of HCF and LCF, which is suggested as a future work for this research study. 
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CHAPTER 1 

INTRODUCTION 
 

1.1 Objective 

 

The main objective of this thesis work is to develop a mathematical model using 

concepts in the field of Fracture Mechanics which can estimate the fatigue crack growth 

phenomenon and fatigue life of a given specimen under different spectrum loading 

including constant as well as random amplitude loading. Initially the existing model has 

been used to predict the threshold stress intensity factor using various loading techniques. 

Existing subcycle time scale model has been modified to include threshold stress intensity 

condition and EIFS (Equivalent Initial Flaw Size) to predict the fatigue life in case of 

uniaxial loading condition. Using the concepts of Equivalent stress intensity factor, two 

channel loadings i.e., tension/compression loading, and torque loading has been combined 

to get equivalent tension/compression loading to predict fatigue life. It can be summarized 

as  

• Use existing subcycle time scale model to predict the threshold stress intensity 

factor using standard loading techniques. 

• Integrating concept of EIFS (Equivalent Initial Flaw Size) with the time-based 

subcycle crack growth function and use fracture mechanics approach to compute 

fatigue life. 
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• Extend the existing subcycle crack growth model to include threshold stress 

intensity factor to predict the fatigue life under constant as well as random 

amplitude loading.  

• Combine Mode I and Mode II loading to get and equivalent Mode-I loading and 

predict the fatigue life under mixed mode constant and random amplitude loading. 

The proposed modification has been validated using various open literature test results data 

as well as testing data obtained by doing actual test at ASU PARA lab, thus verifying the 

integrity of proposed model. To begin with this study a brief background study as well as 

literature study has been covered in this chapter. 

1.2 Background and literature Review  

 

Mapping a mechanical fatigue phenomenon into a physical mathematical model 

has been a prominent research topic in the field of Fracture Mechanics. The fatigue failure 

phenomenon is characterized by crack or discontinuity formation or initiation in a material. 

If the cyclic loading is continued, then this crack tends to grow till a level where it will 

cause a fracture in that component. This crack initiation and propagation is very complex 

phenomenon which is difficult to capture in a mathematical model. Several models were 

presented by researchers to capture this phenomenon which we are discussed in this 

chapter.  

In this chapter concepts related to fracture mechanics and fatigue crack growth propagation 

has been discussed briefly.  
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1.2.1 Stress intensity factor  

 

 Stresses near the crack tip can be expressed in terms of a scaling factor known as 

stress intensity factor, more often denoted by letter K with some additional subscripts.  

𝐾 = 𝑌. 𝜎. √𝜋𝑎 

Where, Y is geometric correction factor which depends on the type of crack, geometry of 

a specimen to be evaluated. σ is applied stress which can be tension/compression in case 

of a mode- I loading and shear in case of Mode II loading. a is current crack length. From 

the above K equation, we can see that K depends on the current crack length in the 

specimen. So, for a given constant amplitude loading, even if the applied stress is constant, 

still we can have an increased value of K because of increasing crack length value.  

 Loading stresses can be categorized into three different loading modes, named as Mode 

I, Mode II and Mode III, which is explained in figure 1.  

 

 

Fig 1. Fracture mode crack loading  

 

1.2.2 Crack Tip Opening Displacement (CTOD) & Crack Tip Blunting  
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Fig 2. Crack Tip Opening Displacement (δ) 

Crack Tip Opening Displacement is measured as the distance between the opposite faces of a crack 

tip at a 90° intercept position as shown in the figure 2. This parameter is used in fracture mechanics 

to characterize the stress intensity factor. We will be using this parameter to model the crack growth 

phenomenon later in this study. 

In case of ductile material, when the tensile loading is applied on a specimen, a very high stress 

concentration begins to form at the end of a crack. As a result of this high stress concentration, 

material starts yielding at that point. When the tip starts yielding, the shape of the tip starts 

becoming more rounded compared to earlier sharp edge as shown in figure 3. This phenomenon is 

called blunting. In blunted crack, as it’s no longer a sharp corner, stresses start to relax in that area. 

When the material undergoes more plastic deformation, they become more brittle. After some 

amount of crack tip blunting the material at the bottom of the crack becomes brittle and there 

becomes another point at the bottom of the crack where the stresses go higher, and the material 

starts cracking again and this part is called tearing as shown in figure 3. 

 

Fig.3 Crack Tip Blunting 



 

5 
 

1.2.3 Crack growth propagation rate  

 

Fig.4 Crack Propagation rate 

Crack growth propagation rate has mainly characterized in three stages. Detailed analysis of these 

3 stages can be explained by plotting crack growth per cycle versus the applied stress intensity 

factor range. In this plot, stage 1 also known as threshold region where crack starts growing 

asymptotically to the vertical axis. For a specific material, this threshold stress intensity point is a 

constant which acts like a material property constant. Many researchers have proposed different 

methods to estimate this point which are discussed in the later part of this report. Very large number 

of cycles are involved in this region, to initiate the crack growth. So, to correctly estimate this point 

becomes an important topic of research.  

Stage 2 crack growth rate is linear in nature where crack growth rate is directly proportional to the 

applied stress intensity factor range. This region is also known as Paris region. The slope and the y 

axis intercept of this straight line are constant for a specific material also known as Paris constants.  

It got its name after P C Paris [1] published a paper in 1961, where he introduced the idea that rate 
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of crack growth depends on the stress intensity factor and he proposed a equation, commonly 

known as Paris equation as 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾)𝑚 

In stage 3, crack growth starts accelerating as applied stress intensity factor reaches the critical 

stress intensity factor. It is the values, beyond which if the loading is continued material will 

experience failure mostly because of fracture. The crack growth behaviour in stage 3 is asymptotic 

with respect to vertical axis, same as in stage 1. 

Stress ratio R is the most common term used to define the ratio of minimum to the maximum stress 

applied in each loading. Materials can be loaded to different stress condition, keeping constant 

stress ratio or vice versa. 

 

1.2.4 Crack growth models 

Many researchers proposed crack growth models with different focus. The most popular model 

which was published by Paris [1] in 1961 is widely used to calculate crack growth. As discussed in 

previous section Paris law represents a line with constants C and m, which means its only effective 

in calculating the crack growth in stage 2. Also, it does not account for change in the applied stress 

ratio. For different values of stress ratio, we must compute respective C and m values, to calculate 

the crack growth. It does not consider the threshold and critical region crack growth.  

Forman [2] in 1967 modified this equation to account for different stress ratio R and crack growth 

propagation in region 3 considering critical stress intensity factor in to account. 

𝑑𝑎

𝑑𝑁
= 𝐶

∆𝐾𝑛

(1 − 𝑅)𝐾𝐼𝐶 − ∆𝐾
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Here, C and n are fitting parameters and 𝐾𝐼𝐶 is critical stress intensity factor which is a material 

property constant for a particular material. 

Khan [3] again modified the crack growth rate function to incorporate the crack growth in threshold 

region by including  𝐾𝑡ℎ term in the crack growth function. This model also considers maximum 

stress intensity factor in a current cycle. 

𝑑𝑎

𝑑𝑁
= 𝐴

(∆𝐾 − 𝐾𝑡ℎ)
𝑛

𝐾𝐼𝐶 − 𝐾𝑚𝑎𝑥
 

Elber [4]  in 1970 proposed an hypothesis that, while loading a specimen from sigma min to sigma 

max, crack will not start growing until it reaches a sigma opening stress level which is in between 

sigma min and sigma max. This Sigma opening stress values is a function of applied stress ratio, 

with higher stress ratio this value tends to approach sigma min which in tern accelerate the crack 

growth rate. If the applied stress is less than the sigma opening level, then crack will not propagate.  

Newman [5] proposed that the sigma opening is function of stress level and need to be calculated 

for different cycles.   

All above discussed model has one thing in common, that they calculate fatigue life in terms of 

number of cycles and gives us the crack growth values at the end of each applied loading cycle.  

 

1.3 Need for new model. 
 

As discussed in earlier section, there were many fatigue life models were proposed, which will 

given calculate fatigue life of a given specimen under applied loading in terms of loading cycles. 

Almost all the models will provide fatigue life in number of cycles. This works well in case of 
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constant amplitude loading condition, where cycles are perfectly defined as shown in figure. Where 

one cycle is counted as distance between two consecutive points of same loading nature. 

 

Fig. 5 Constant Amplitude Loading Spectrum 

In case of random amplitude loading condition, as shown in figure. Counting fatigue life in terms 

of cycles is ambiguous as cycles are not defined perfectly. Most of the real-life loading conditions 

are random amplitude only. So, to address this problem, a time-based crack growth model was 

proposed by Lu and Liu [6] which calculates crack growth at any arbitrary point in loading history 

 

Fig. 6 Random Amplitude Loading Spectrum 
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1.4 Chapter Summary 
 

We discussed main objective behind this research work, that we are proposing a time-based 

fatigue life model which will calculate fatigue life under various loading conditions. Later we 

discussed the basic terminologies and concepts from solid mechanics such as Stress intensity factor, 

Crack tip opening displacement, essential for this study, which we will use in later chapter to help 

build the mathematical model. We also discussed state of the art fatigue life model, proposed by 

various researchers and the advantages and disadvantages of each model. In the end we clarified 

the need for new model, which is best suitable to predict the fatigue life of a specimen under random 

amplitude loading condition. In the next chapter we will introduce new model and explain the 

concept of EIFS and how it can be coupled with the crack growth function to estimate the fatigue 

life. 
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CHAPTER 2 

NEW TIME-BASED SUBCYCLE FATIGUE LIFE MODEL 
 

2.1 Overview  
 

In this chapter, first we will be using load shedding technique to estimate the 

threshold stress intensity factor and later we will introduce the new fatigue life model 

which is obtained by modifying the existing crack growth function with the threshold stress 

intensity factor and coupling it with Equivalent Initial Flaw size to use the fracture 

mechanics approach to compute the fatigue life under various loading conditions. 

As discussed in the chapter 1, crack growth mechanics falls under three stages. Threshold 

region, Paris region and critical crack growth region. Threshold stress intensity is a point 

below which crack will not grow. As per the research goes, a very large number of loading 

cycles are involved in the threshold region. So, to estimate this point correctly, it becomes 

very important aspect as far as the prediction of structural reliability is concerned. Paris [1] 

proposed a method in early 1970s to predict threshold stress intensity factor, known as 

Load reduction method. A constant decreasing load cycles are applied on a specimen, so 

that we can get K data in the threshold region. Further this method was analyzed by Hudak 

et al. [7] and Bucci et al.[8] and later included in ASTM E-645 fatigue crack growth rate 

testing standard.  

2.1.1 Load Reduction Method 

 



 

11 
 

In Load reduction method, a specimen is initially loaded with a cyclic loading 

condition with a constant stress ratio and crack growth is observed. After certain loading 

cycles, the max and min stress amplitude values are decreased in a manner so that stress 

ratio will remain constant. At this stress ratio and loading amplitude, specimen is loaded 

for certain loading cycles. (This certain loading number of cycles were defined as number 

of cycles till 0.2% crack extension. Here we initially ran simulation with 0.2% crack 

extension criteria and then to standardize we again ran simulation for 400 loading cycles. 

The final threshold estimation with both the cases showed same results, so we followed 

400 loading cycles at each loading amplitude). 

This Loading shedding is continued till we get zero crack growth, at that point loading is 

stopped to note the threshold stress intensity values. Similar load shedding method is used 

with different R ratios to get threshold stress intensity factor.  After we get the threshold 

values, a increasing loading is applied in order to get the remaining da/dN vs DeltaK curve.  

 

Fig.7. Load Reduction Spectrum 

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

0 10 20 30 40 50 60 70 80

St
re

ss
 (

P
a)

Time

Load Reduction 



 

12 
 

Researchers analyzed a key observation about the load reduction method that, with varying 

R values, the threshold region data points showed a large dispersion among the values. 

Normally in case of a da/dN vs DeltaK curve, as we change the load ratio R, the whole 

curve shifts upwards or downwards depending upon the change in R and the new shifted 

curve remains parallel to the original curve. But in case of load shedding technique by 

changing load ratio R, the curve was remaining parallel in the Paris region but showing 

large dispersion in the threshold region. This effect is called ‘fanning’ in threshold region. 

One of the major reasons for this kind of behaviour was attributed to the loading history in 

the load shedding method. As the load ratio is increased, more fanning was observed 

because of plasticity induced due to the higher loading cycles. Other reason could be 

formation of oxide debris because of environmental effect which causes higher crack 

closure level. To overcome these issues, another method was proposed which can takes 

care of loading history in the applied loading spectrum and the oxide formation condition 

known as Compression pre-cracking Constant amplitude which is discussed below. 

2.1.2 CPCA and CPLR methods 

 

In case of Load shedding technique, we are gradually decreasing the loading 

amplitude to arrive at threshold stress intensity value. The main drawback of this technique 

is the results which we are getting, they are highly influenced by the loading history. So, 

to overcome this problem CPCA technique were developed [9]. In this technique before 

applying tensile loading, compressive load cycles are applied to get rid of any time of load 

history. After that, a very small magnitude of tensile loading cycle is applied. If crack 

growth is observed, then same loading cycle is continued to be applied, if there is not any 
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crack growth then the max loading value is increased by 10%. This process is repeated 

until there is a crack growth observed that value is noted as threshold stress intensity factor. 

 

Fig. 8. CPCA Loading Spectrum 

When first apply compressive loading cycles to a specimen, we can be sure of fact of 

Global crack closure. With this mechanics the oxide debris formed in the crack region can 

go under compressive loading, which will minimize its effect when the tensile loading is 

applied on the specimen. Aligning with CPCA method, one more method has been 

proposed known as CPLR which stands for compression pre-cracking load reduction 

method, where the first part of compressive loading is same as that of earlier proposed 

method but instead of increasing constant amplitude loading cycles, decreasing constant 

amplitude loading cycles.  

Compressive Pre-cracking Load reduction is same as CPCA technique as explained earlier. 
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applied, and crack growth is observed. The point where crack growth becomes zero can be 

referred as threshold stress intensity factor.  

 

Fig.9. CPLR Loading Spectrum 
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Equivalent initial flaw size (EIFS) concept was developed in 1980s by El Haddad et al. 

[10]  in an attempt to use it as a initial crack length in case of calculating the fatigue life 

using the fracture mechanics approach. It uses the standard material constants as well as 

back extrapolation method for fitting the parameters. One important thing about to be 

understood about the EIFS is that it is not an actual quantity or actual initial crack length 

present in the material. Its that values, with which if we performed our fracture mechanics 

life calculation, we should get the fatigue life of a component which agrees with the 

experimental data for similar specimen. EIFS is determined by matching the infinite life of 

a specimen as stress level at infinite life.  Yongming Liu and Sankaran Mahadevan [11] 

proposed a methodology in 2009 which uses fatigue limit data and fatigue threshold stress 

intensity factor to determine the EIFS for a specific specimen. This method does not use 

the back extrapolation to calculate the initial flaw size. 

2.2.1 EIFS Calculation 

One way to predict the fatigue life of a specimen is to perform crack growth analysis 

starting from initial crack size. Most of the initial flaws are on the range of microns or even 

less than that. If we look at microstructure of a material, initial flaw size may be less than 

the average grain size of that specific material. If we decided to measure the initial crack 

size with the help of some non-destructive techniques, many NDT have limitations below 

which they can not measure the actual size. If we consider the lower limit of NDT as our 

initial crack length, then it would be a conservative approach to get to the initial crack 

length and may give large deviations in the calculation of fatigue life. Microstructural 

behaviour of small crack growth and large crack growth has a large deviation.  
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Fig. 10 Schematic illustration of small and long crack growth. 

If we look at the small crack growth mechanism, it shows some wavy nature with respect 

to the applied stress intensity factor, this is mainly because when a small crack grows it 

initially starts within a particular grain as the crack reaches the grain boundary it faces 

crack growth retardation because of a grain boundary. As the applied stress intensity factor 

increases, crack growth enters a new grain and starts accelerating. This phenomenon 

continues and gives unsteady crack growth mechanism which when grown to a certain limit 

starts following long crack growth mechanism. The detail study of small crack growth 

mechanism is beyond the scope of this study. We will be focusing on long crack growth to 

formulate initial flaw size and use it to calculate the fatigue life of a specimen. 

If we have to use the fracture mechanics approach, then the fatigue life of a specimen can 

be found out by integrating the fatigue crack growth rate cure which uses initial and final 

crack length as the limits of the integration function.  A general fatigue life model can be 

written as 
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𝑑𝑎

𝑑𝑁
= 𝑔(𝑎) 

Here, g(a) is a function which describes the relationship between crack growth rate and 

applied loading. In this study we are proposing a modified subcycle time-based model as 

our crack growth rate and applied loading function which is covered in the next section. 

Here want to derive the relation between the initial crack length and fatigue life. By using 

variable separation and integrating above equation we can write 

Fatigue life, 𝑁 = ∫
1

𝑔(𝑎)
𝑑𝑎

𝑎𝑐
𝑎𝑖

 

Here 𝑎𝑖 is an initial crack length present in the specimen and ac is the critical crack length 

at failure which can be computed using critical stress intensity factor, which is a material 

constant for a specific material. Now if we consider actual initial crack size as initial crack 

length, then we must use small crack growth rate function 𝑔𝑠(𝑎) and fatigue life can be 

written as  

 𝑁 = ∫
1

𝑔𝑠(𝑎)
𝑑𝑎

𝑎𝑐
𝐼𝐹𝑆

 

If we use Equivalent initial crack length and use long crack growth rate function, 𝑔𝑙(𝑎) 

then fatigue life of a specimen can be computed as  

𝑁 = ∫
1

𝑔𝑙(𝑎)
𝑑𝑎

𝑎𝑐

𝐸𝐼𝐹𝑆

 

If we choose EIFS value properly then both the approaches should give us the same fatigue 

life. The reason of choosing EIFS over actual initial flaw size is that small crack growth 

rate function is much more complex and dependent on the microstructure of the material. 
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There are higher chances to get the wrong initial size if we were to follow small crack 

growth rate function. The physical interpretation using above mentioned two functions can 

be seen in the fig. X where underlying areas for the two functions are same. We use fatigue 

limit of a specimen to calculate the EIFS value. Fatigue limit for various materials can be 

obtained from open literature S-N curve data. 

 

Fig. 11 Schematic illustration of actual and equivalent initial flaw size 

Fatigue limit or endurance limit is a parameter widely used while designing structures or 

any other component which is subjected to cyclic loading. It is the limit value of applied 

stress below which a specimen will have infinite fatigue life. Most of the time infinite 

fatigue life terms refer to fatigue life of 1e7 to 1e9 cycles. Materials like steel have a 

specific fatigue limit value. In case of aluminum, it does not show a specific fatigue limit 

value, instead to get the fatigue limit values we average the applied stress values which 

gives us the fatigue life in the range of 1e7 to 1e9. 
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Fatigue limit for these materials can be found out by smooth specimen testing. El Haddad 

et al. [10] proposed a model to express the fatigue limit, ∆𝜎𝑓 focusing the fatigue threshold 

stress intensity factor, ∆𝐾𝑡ℎ and a fictional crack length a 

∆𝐾𝑡ℎ = ∆𝜎𝑓𝑌√𝜋𝑎 

Y is a geometry correction factor which depends upon the specimen type, crack length, 

thickness of specimen etc. A specimen with infinite length and a crack length of 2a, Y is 

1. In a similar manner Y for any specimen can be found out using Geometry Correction 

factor handbook. Equation can be rewritten to get a as EIFS as. 

 

We will be using this equation to compute the initial crack length size and use the fracture 

mechanics approach to calculate the fatigue life. Another important element for using 

fracture mechanics approach to calculate fatigue life is a crack growth with respect to 

loading function. We will be using small time scale crack growth function with a 

modification to include threshold stress intensity factor which is discussed in the next 

section. 

If we were to calculate the structural reliability of a specimen or any other component 

subjected to the cycling loading with fracture mechanics approach, we must consider the 

largest crack present in the specimen. These largest cracks are the results of manufacturing 

method defects, machining defects or erosion due to environmental conditions. The current 

𝐸𝐼𝐹𝑆 =  
1

𝜋
(
∆𝐾𝑡ℎ
∆𝜎𝑓 𝑌

)

2
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EIFS methodology applies to a smooth specimen only. Proper modification is needed if the 

material is pre-cracked, considering the geometry and shape of crack.  

 

2.3 Time Based Subcycle Fatigue Crack Growth Function  
 

Various cycle-based fatigue crack growth models were developed for constant amplitude 

loading condition. But estimating crack propagation phenomenon in number of cycles for 

random amplitude loading condition is ambiguous, as cycles cannot be properly defined in 

case of random amplitude loading. To address this problem, small time scale model has 

been developed by Lu and Liu [12] later named as Subcycle Fatigue Crack Growth model. 

The main concept behind developing a time-based crack growth model is that we can 

calculate instantaneous crack growth at any arbitrary point during the loading history. In 

case of conventional cycle-based model, we can calculate crack growth at the end of 

respective cycle not at any arbitrary point in the loading history. In case of time-based 

model, we can not only compute the crack growth at any arbitrary point but also, we can 

get the crack growth over an entire cycle by integrating over time domain. Crack increment 

at any arbitrary point can be calculated as 

𝑎 + ∆𝑎 =  ∫
𝑑𝑎

𝑑𝑡
(𝜎, 𝑎, 𝐸, 𝜎𝑦 , … )

𝑡+∆𝑡

𝑡

𝑑𝑡 

The function in the integration is a generic time-based function which depends on the 

material constants such as E and 𝜎𝑦 and on the applied loading condition σ.∆𝑎 is a crack 

increment in ∆𝑡 because of applied load. 
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Zhang and Liu [13] performed in situ SEM testing for aluminum alloy and noted that crack 

growth has some correlation with the CTOD (crack tip opening displacement) and also 

depends on the maximum applied stress intensity factor 𝐾𝑚𝑎𝑥 and proposed a crack growth 

function as 

a = A𝐾𝑚𝑎𝑥
𝐵 𝛿𝐷 

where a is crack extension and A, B, D are fitting parameters. For Al 7075 series D was 

found out to be ½. S, we can say that crack extension is proportional to the square root of 

CTOD at an instantaneous point in loading history. If we differentiate the above equation 

with respect to time, we get. 

𝑑𝑎 =
A𝐾𝑚𝑎𝑥

𝐵

2√𝛿
𝑑𝛿 

As discussed in the earlier section, we modified the crack growth function to include the 

threshold stress intensity factor. This modification was done to make this crack growth 

function to behave asymptotic to the vertical axis at threshold point, which was observed 

in the testing data. The modified form of crack growth function can be written as 

𝑑𝑎 =
A(𝐾𝑚𝑎𝑥 − 𝐾𝑡ℎ)

𝐵

2√𝛿
𝑑𝛿 

Following are the hypotheses which are being followed in this time-based crack growth 

function: (1) Crack does not grow in the unloading part of the loading spectrum; it will 

only grow for loading part of it. (2) While loading, crack will not grow until it reaches a 
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crack opening stress level, 𝜎𝑜𝑝. (3) If the applied ∆𝐾 is less than 𝐾𝑡ℎ value, then the crack 

will not grow. 

2.3.1 CTOD variation  

To calculate CTOD at any arbitrary point in a loading spectrum is a complex nonlinear 

phenomenon and usually it requires techniques like finite element modelling. Liu et. al. 

[14]  proposed a algorithm to associate CTOD and loading parameters along with  material 

constants in a linear approximation and it showed a good agreement with the finite element 

model. CTOD approximation for initial loading condition can be written as 

 𝛿 =  
𝐾2

𝐸𝜎𝑦
 

𝛿 =  
(𝜎𝑌√𝜋𝑎)2

𝐸𝜎𝑦
 

It depends on loading condition 𝜎 and material constants like Youngs Modulus E and yield 

strength 𝜎𝑦. Above equation was proposed by Suresh in 1998 for monotonic loading 

condition. Rice and Suresh [15] made a statement about the yield strength in the above 

equation that material yielding can be replaced by 2𝜎𝑦 while unloading it and external 

loading can be replaced by -∆𝑃 

Using Dugdale’s general model [16] CTOD at any point in time can be expressed as  

𝛿 = 𝛿𝑚𝑎𝑥 −
(𝐾𝑚𝑎𝑥 − 𝐾)

2

2𝐸𝜎𝑦
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In case of a random amplitude loading there are multiple local minima and maxima points 

in the loading history. These loading minima and maxima can be expressed as 𝜎𝑚𝑖𝑛,𝑚 

, 𝜎𝑚𝑎𝑥,𝑚. Where m is a local peak and valley index. Corresponding CTOD values at these 

local peak and valley can be written as 𝛿𝑚𝑖𝑛,𝑚 , 𝛿𝑚𝑎𝑥,𝑚. The tracking of CTOD variation 

is done by cycle removal method [17] which is described in this literature in a detail. 

Mathematical calculations for these CTOD are done using following equations. 

 

𝛿𝑙𝑜𝑎𝑑𝑖𝑛𝑔 =

{
 
 

 
 

𝐾2

𝐸𝜎𝑦
                     𝐾 > 𝐾𝑚𝑎𝑥,𝑚𝑒𝑚

𝛿𝑚𝑖𝑛,𝑚−1 +  
(𝐾−𝐾𝑚𝑖𝑛,𝑚−1)

2

2𝐸𝜎𝑦
     𝐾𝑚𝑎𝑥.𝑚𝑒𝑚 ≥ 𝐾 ≥  𝐾𝑚𝑎𝑥,𝑚−1

𝛿𝑚𝑖𝑛,𝑚 +  
(𝐾−𝐾𝑚𝑖𝑛,𝑚)

2

2𝐸𝜎𝑦
          𝐾𝑚𝑎𝑥,𝑚−1 ≥ 𝐾

 

 

 

CTOD variation for monotonic loading followed by cyclic loading can be explained by 

using a loading spectrum and corresponding CTOD values as follows. 

𝛿𝑢𝑛𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = {
𝛿𝑚𝑎𝑥,𝑚−1 +  

(𝐾𝑚𝑎𝑥,𝑚−1  − 𝐾)2

2𝐸𝜎𝑦
      𝐾 ≤ 𝐾𝑚𝑖𝑛,𝑚−1

𝛿𝑚𝑎𝑥,𝑚 +  
(𝐾𝑚𝑎𝑥,𝑚−1 −𝐾)2

2𝐸𝜎𝑦
              𝐾 ≥ 𝐾𝑚𝑖𝑛,𝑚−1
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Fig.12 Tensile Loading-Unloading Path 

 

Fig.13 CTOD variation in one cycle 
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Fig.14 CTOD variation in cyclic loading 

If we take a monotonic loading spectrum as shown in figure 1, in here path 1-2 is loading 

and path 2-3 is unloading. The corresponding CTOD variation is given in figure 2, where 

path 1-2 a quadratic function shows the loading path and in a similar way path 2-3 shows 

unloading. If we repeat the loading spectrum for multiple times a hysteresis loop as shown 

in figure 2 will form. Its not visible in the plot but as the cyclic constant amplitude loading 

continues, the hysteresis loop will move in positive x direction because K values starts 

going up with the crack propagation. 

2.3.2 Crack Opening Stress Level 

 

Crack opening is a complex phenomenon caused by the interaction of forward plastic zone 

formation in the loading path and reverse plastic zone formation in the unloading path [18]. 
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Liu and Karthik [19] came up with the equation for crack opening stress. Detail derivation 

can be found in [18] this literature. It is derived by equating virtual reverse plastic zone to 

the addition of reverse plastic zone and forward plastic zone.  

𝑑𝑟,𝑣𝑖𝑟𝑡𝑢𝑎𝑙 = 𝑑𝑟 + 𝑑 

With appropriate substitution we get equation for crack opening stress level as follows: 

𝜎𝑜𝑝 = 𝜎𝑚𝑖𝑛 +
1

𝑌
{
1

𝜋𝑎
[
1

4
((
𝑟𝑓

𝛼
)
0.5

𝜎𝑦 − 𝜎𝑚𝑖𝑛𝑌√𝜋𝑎)
2 −

8𝜎𝑦
2𝑑𝑟

𝜋
]}

1/2

 

 

2.4 New Time-based Subcycle Fatigue Life Model 
 

We discussed concept of EIFS and time-based crack growth formulation in section 

2.2 and 2.3. We have modified time-based crack growth formulation to include threshold 

stress intensity factor 𝐾𝑡ℎ in it. Using this information, we are proposing a new time-based 

subcycle fatigue model, which will use equivalent initial flaw size as a initial crack length 

in case of smooth specimen and with this we will use fracture mechanics approach to 

calculate fatigue life using modified time-based crack growth formulation. 

2.4.1 Failure criteria 

 

Time-based subcycle fatigue model has two failure criteria: 

1. When the 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑 exceeds 𝐾𝐶 (Fracture toughness), then failure occurs. 

2.  When crack growth exceeds by 0.01 m in single cycle, then failure occurs (>0.01 

m indicates unstable crack growth) 
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When either of the criteria is meet, then calculation loop stops indicating fatigue failure 

has occurred. Normally first criteria get satisfied almost all the times. Even if we suppress 

the first criteria then after couple of hundreds of cycles, second criteria get triggered and 

calculation stops indicating failure. (Mainly because when 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑 is approaching 𝐾𝐶, 

crack growth accelerates very fast, it enters in region 3 crack growth as per da/dN vs ∆K 

curve.) 

 

2.4.2 Crack Growth Criteria 

 

 

 

 

 

 

 

Fig. 15. Loading spectrum schematic to understand terminologies.   

Fig. 10 shows the schematic of different terminologies used for crack growth criteria.  

Condition 1:  

if ∆K >  ∆Kth  then crack will grow 

∆K <  ∆Kth then crack won′t grow  

Condition 2: 

𝐾𝑚𝑎𝑥 

𝐾𝑚𝑖𝑛 

∆𝐾 
𝐾𝑜𝑝 = 0.4 ∗ 𝐾𝑚𝑎𝑥 

𝐾𝑚𝑎𝑥 

∆𝐾𝑒𝑓𝑓 =  𝐾𝑚𝑎𝑥 − 𝐾𝑜𝑝 
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if ∆K >  ∆Kth  then crack will grow in ∆Kop region 

Condition 1 is tested first if its satisfied then crack growth is calculated for  ∆Keff region.  

2.4.3 Crack Growth formulation 

As discussed in the section 2.3, in time-based crack growth function, crack increment is a 

function of CTOD and for Al 7075 series its proportional to the square root of CTOD. So, 

we can write da as 

𝑑𝑎 = 𝑓(𝐾) ∗ √𝛿 

Where f(K), we are defining as a kernel function which depends on material fitting 

parameters and applied loading condition. Differentiating da with respect to t to get crack 

growth per unit time. 

𝑑𝑎 =
A(𝐾𝑚𝑎𝑥 − 𝐾𝑡ℎ)

𝐵

2√𝛿
𝑑𝛿 

𝑑𝑎

𝑑𝑡
=  

𝑓(𝐾) ∗ 𝑑𝛿

2√𝛿𝑖
 

𝑑𝑎

𝑑𝑡
=  

𝑓(𝐾) ∗ 𝑑𝛿

√𝛿𝑖 + √𝛿𝑖−1
 

As discussed in the section 2.3 modified form of f(K) given as  

f(K) = A*(𝐾𝑚𝑎𝑥 −𝑲𝒕𝒉)
𝐵 

Where A and B are material constants and can be found out by using Paris constants C and 

m as follows [19]. 
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𝐴 =  
𝐶(1 − 𝑅)𝐵√2 𝐸 𝜎𝑦

0.6
 

          B = m – 1  

Using this formulation and EIFS as starting crack length we can compute fatigue life of a 

specimen under uniaxial constant amplitude loading as well as random amplitude loading. 

Same methodology can be extended to get the fatigue life for multiaxial condition which 

is discussed in the next section. 

 

 2.5 Extending Time-based Subcycle Fatigue Model to Multiaxial Loading. 
 

When a specimen or any mechanical component is subjected to more than one type 

of loading, it is known as multiaxial loading condition. It can be any combination of Mode 

I, II & III type of loading. In real world, most of the mechanical components are subjected 

to multiaxial loading. So, it becomes important to estimate the fatigue life for multiaxial 

loading condition. As discussed in the earlier section, a time-based subcycle model with 

the EIFS concept can predict the fatigue life in case of uniaxial condition. In this section, 

an attempt has been made to extend this method to predict the fatigue life for multiaxial 

condition using mixed mode fatigue crack growth model [20]. 

One if the key concept in case of multiaxial loading is Proportional and Non-proportional 

loading. When two different channels of loading acting on a component are in phase are 

called proportional loading. e.g., when normal stress reaches its maximum value, shear 

stress is also reaching its maximum value. Same in case of minimum value. This type of 

loading is called proportional loading. Opposite to the proportional loading in non-
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proportional loading normal stress and shear stress are out of phase with respect to each 

other. 

Liu and Mahadevan [21] proposed a critical plane model based on general fatigue limit 

criteria, described below 

√(
𝜎𝑐
𝑓−1
) + (

𝜏𝑐
𝑡−1
) + 𝐴(

𝜎𝐻

𝑓−1
) = 𝐵 

Where A and B are material fitting parameters. 𝜎𝑐 , 𝜏𝑐 and 𝜎𝐻are the normal and shear 

stress range acting on critical plane. 𝑓−1 and  𝑡−1  are fully reversed normal and shear 

fatigue limit. 

One more important material parameter we need to define which related to the material 

ductility and used in the critical plane orientation calculation is the ratio of shear fatigue 

limit to the normal fatigue limit, abbreviated as s=𝑡−1  /𝑓−1 .  Detailed derivation for 

equivalent multiaxial loading can be found in [20] this literature. Brief formulation is given 

below. 

Mode I stress intensity factor can be written as 

𝐾𝐼 = 𝜎√𝜋𝑎 

Mode II stress intensity factor can be written as 

𝐾𝐼𝐼 = 𝜏√𝜋𝑎 
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Fig. 16 Mode I and Mode II Loading 

The loading related parameters at any time t during the loading history is given as 

 

 

Fig. 17 Multiaxial loading element 

𝑘1,𝑡 =
𝐾𝐼,𝑡
2
(1 + cos 2 ∝) + 𝐾𝐼𝐼,𝑡 sin 2 ∝ 

𝑘2,𝑡 = −
𝐾𝐼,𝑡
2
(𝑠𝑖𝑛 2 ∝) + 𝐾𝐼𝐼,𝑡 𝑐𝑜𝑠 2 ∝ 

𝑘𝑡
𝐻 =

𝐾𝐼,𝑡
3
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Angle 𝛼 is a critical plane angle, 𝛼 =  𝛽 + 𝛾 , 𝛽 is maximum normal stress amplitude 

plane, 𝛾 is material parameter. 

 

Fig. 18 Critical angle schematic 

 

An equivalent stress intensity factor can be written as  

𝐾𝑚𝑖𝑥𝑒𝑒𝑑,𝑒𝑞 =
1

𝐵
√(𝑘1)2 +  (

𝑘2
𝑠
)
2

+ 𝐴(𝑘𝐻)2 

The value of s depends on the material ductility and its typically in the range of 0.55 to 0.8. 

The material property parameters are reported in [20] paper. 
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Fig.19 Fitting plot for s ratio and applied load 

With this formulation we can convert mixed mode loading into an equivalent tension-

compression loading and can use the same time-based subcycle fatigue life model to 

compute the fatigue life of a specimen. 

2.5.1 Elastic Plastic correction factor  

 

The above discussed formulation is applicable in case of elastic analysis which is normally 

the case in high cycle fatigue analysis. In case medium and low cycle fatigue analysis, if 

the applied stress crosses the material yield point, in such cases material undergoes the 

plastic deformation, which needs to be considered while predicting the fatigue life in low 

cycle fatigue analysis. 

To include the effect of elastic deformation, an elastic-plastic correction factor is proposed 

[20] as 

y = 1.5522x-0.14

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0 100 200 300 400 500 600

s

Sigma (Mpa)

s vs sigma



 

34 
 

𝜌 = 𝑎 (𝑠𝑒𝑐
𝜋𝜎𝑚𝑎𝑥(1 − 𝑅)

4𝜎0
− 1) 

Where 𝜌 is plastic zone size using dislocation theory.  This correction factor is added in 

the existing crack length to get the new crack length as 

𝑎′ = 𝑎 + 𝜌 

𝑎′ = 𝑎 + 𝑎 (𝑠𝑒𝑐
𝜋𝜎𝑚𝑎𝑥(1 − 𝑅)

4𝜎0
− 1) 

𝑎′ = 𝑎 ∗ 𝑠𝑒𝑐
𝜋𝜎𝑚𝑎𝑥(1 − 𝑅)

4𝜎0
 

From the above equation we can see that original crack length is multiplied by a secant 

function, value of which will approach infinity as angle approaches 𝜋/2 shown in the fig.  

 

 

Fig.20 Correction factor behaviour with applied stress 
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2.6 Chapter Summary 
 

In this chapter we have discussed in detail about the effect of threshold stress intensity 

factor in fatigue life prediction. We also have discussed various methods to estimate the 

threshold stress intensity factor and effect of each of them. In the second part of this chapter 

we discussed, how we can use concept of equivalent initial flaw size and use the fracture 

mechanics approach to estimate the fatigue life of a specimen. Further we modified the 

existing time-based subcycle fatigue crack growth formulation to include the threshold 

term in the main kernel function and integrated this formulation with EIFS to arrive at New 

time-based subcycle fatigue life model. We further extended this model using equivalent 

stress intensity factor to predict fatigue life in case of Multiaxial loading conditions. We 

added elastic-plastic correction factor to consider the effect of elastic deformation in case 

of low cycle fatigue.  

In the next chapter we will be discussing the results for fatigue life of Al 7075 specimen 

and validation with experimental data as well as open literature data. 
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CHAPTER 3 

MODEL VALIDATION AND DEMONSTRATION 

 

3.1 Overview 
 

This chapter provides the information about testing data generation method, 

material fitting parameters, material properties used to calibrate the model and the results 

obtained using time-based subcycle fatigue modelling. These results are verified against 

the experimental results as well as the results available in open literature. In the first part, 

results for load shedding are presented. In the second part of this chapter, results for fatigue 

life in case of uniaxial constant amplitude, uniaxial random amplitude, multiaxial constant 

amplitude, and multiaxial random amplitude loadings are presented, respectively. 

3.1.1 Material Properties  

Most of the results are validated for Al-7075, mechanical properties of which are taken 

from open literature data [11]. 

Table 1. Mechanical Properties of Aluminum 7075 

Materials 𝝈𝒚 

(Mpa) 

𝝈𝒖 

(Mpa) 

C R m ∆𝑲𝒕𝒉(Mpa-

𝒎𝟎.𝟓) 

∆𝝈𝒇 

(Mpa) 

7075-T6 520 575 7.29E-11 0 2.3398 0.5202 227.2 

 501 569 1.62E-10 -1 2.3398 1.0034 402.5 

 520 575 7.41E-11 0.1 2.3398 0.5202 227.2 
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The fitting parameter A and B can be found out by using Paris Constants C and m. Another 

approach to get the fitting parameters A and B is that we can plot da/dN vs ∆𝐾 values for 

the time-based subcycle model and iterate A and B values so that we get same C and m 

values in the da/dN vs ∆𝐾 plots as that of experimental results. Both the methods have been 

used, later shown more accurate agreement with the experimental fatigue life data.  

3.2 Results from Load shedding  
 

1. ∆𝑲𝒕𝒉 v/s R by Load Shedding technique 

 

Fig. 21. ∆𝐾 vs R plot 

Load shedding spectrums were used to get the threshold stress intensity factor for different 

stress ratio to analyze the effect of stress ratio on ∆𝑲𝒕𝒉. Fig 6. plot shows, how ∆𝑲𝒕𝒉( 
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(Threshold stress intensity factor) varies with stress Ratio R. For any stress ratio, threshold 

value lies in between the two points plotted vertically on the plot. With change in stress 

ratio, a negative correlation has been observed in the threshold stress intensity factor. 

Similar type of trend has been reported by Stewart [22].  

2. ∆𝑲𝒕𝒉 by varying initial loading condition in Load Shedding. 

 

Fig.22 ∆𝐾 vs R plot when 𝜎1= 80 Mpa. 

 

Fig.23 ∆𝐾 vs R plot when 𝜎1= 40 Mpa. 
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Fig.24 ∆𝐾 vs R plot when 𝜎1=20 Mpa 

As shown in the above plots (Fig 6), we performed load shedding on a same 

specimen but with different starting values of applied load and results for which 

confirms that in load shedding technique, as the starting stress value changes the 

corresponding threshold stress intensity factor also changes. From the above results 

it shows that, there is a positive correlation between, starting value of applied stress 

and the threshold stress intensity factor. So, with this result we can confirm that, 

the threshold value which we are getting here, is not an intrinsic material property, 

rather it is an effect of external loading conditions.  
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3. da/dN v/s ∆𝐾 plot 

 

 

Fig. 25 da vs ∆𝐾  for R0.4 and R0.7 
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With the help of load shedding technique, we also plotted the da v/s ∆𝐾 curve in 

threshold and Paris region and compared with the similar load shedding, 

experimentally plotted da v/s ∆𝐾 curve from literature data [12]. The threshold 

value from literature was around 2.1 Mpa√𝑚 . stress ratio of 0.4, whereas threshold 

value from subcycle model was around 2.64 Mpa√𝑚 . Subcycle model was 

overpredicting the threshold stress intensity factor by a significant margin. In a 

similar way for stress ratio of 0.7, threshold value was found around 1.4 Mpa√𝑚  

from literature, whereas from subcycle model we got around 2.3 Mpa√𝑚 . 

 

Fig. 26. da vs ∆𝐾 for CPCA and Load Reduction 

 

We also tried other methods such as CPCA, CPLR mentioned earlier and compared with 

the literature data [2]. We performed CPLR for various stress ratios. Results for stress ratio 
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0.4 shown in the above plots. With CPCA loading we observed similar trend. Subcycle 

model tend to overpredict the threshold stress intensity factor value by a significant margin 

(around 0.5 Mpa√𝑚 ). One main reason behind this mismatch could be that subcycle 

fatigue crack growth model was only calibrated in Paris region where crack growth 

behavior is linear with respect to applied stress intensity factor. In subcycle modelling, the 

threshold region line is interpolated to follow linear trend same as Paris region. But most 

of the experimental data shows that crack growth behavior is not linear, moreover 

asymptotic in threshold region.  

3.3 Results for Uniaxial Loading 
 

In this section we will be using subcycle model to estimate fatigue life of a given specimen 

under constant amplitude and variable amplitude uniaxial loading and compare the results 

with the experimental data. Following the methodology described in the previous section, 

fatigue life for aluminum 7075 has been calculated.  
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1. Constant Amplitude Uniaxial Loading Condition 

 

Fig. 27. Results for SN curve Prediction. 

The Proposed model with the described methodology has been validated with the help of 

experimental data available in the literature [11]. Figure 27 plot, which indicates fatigue 

life prediction by subcycle model shows a good agreement with the experimental data. 

 

2. Random Amplitude Uniaxial Loading condition 

Random amplitude uniaxial loading test was carried out with MTS multipurpose elite 

software.  

6 different types of loading spectrums were used for testing purpose. The time difference 

between two adjacent loading point was 0.05 sec, giving frequency of 20 Hz. The random 
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loading spectrum were repeated till the specimen fails. The linear non-stationary spectrum 

fatigue spectrum was generated using Auto regressive process. A nonlinear nonstationary 

fatigue spectrum was generated using Genesis 4 fatigue software. FELIX spectrum is direct 

experimental loading data from rotors of helicopter. Another FELIX spectrums were 

generated by multiplying each loading point by 1.17 and named as FELIX*1.17 and adding 

35 Mpa to the maximum value known as MAXFELIX + 35. These modifications made 

FELIX spectrum more severe to get shorter fatigue life. Simple Linear and simplified max 

FELIX + 35, these two spectrums were obtained by using continuous wavelet transform 

method [23]. These random amplitude loading spectrums are shown in figure 28.  The 

results for experimental fatigue life are shown in table 2. 

 

Fig. 28 Random Amplitude Loading Spectrum 
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Table 2. Experimental Life & Subcycle Model Life Prediction 

 

 

 

 

 

 

 

 

Fig. 29. Results for constant & random loading prediction. 

Loading Spectrum  Exp Nf Subcycle Nf 

Linear 2.10E+06 780000 

Simplified Linear 736000 300000 

Felix 1.60E+07 1.28E+07 

Felix*1.17 1.50E+06 1777000 

Felix*1.17 674000 1777000 

maxFelix+35 5.90E+06 6594000 

maxFelix+35 1.90E+06 6594000 

maxFelix+35 2.90E+06 6594000 

simlified max felix + 35 1.10E+06 1010000 
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The proposed framework is validated using the experiment data obtained from ASU and 

MERC. The random loading spectrum, the experiment fatigue life, and the predicted 

fatigue life using subcycle model are shown in table 1. The comparison between the 

prediction and experimental data are plotted in Fig.28. 

3.4 Results for Multiaxial Loading 
 

In this section we will be using time-based subcycle model to estimate fatigue life of a 

given specimen under constant amplitude and variable amplitude multiaxial loading and 

compare the results with the experimental data. Following the methodology described in 

the Chapter 2, fatigue life for aluminum 7075 has been calculated.  

1. Results for Constant Amplitude Multiaxial Loading. 

 

As discussed in chapter 2 section 2.5, that we are using same crack growth function which 

was used to get the results for uniaxial loading condition. Additionally, we are using 

equivalent stress intensity factor concept to combine tension loading and shear loading into 

equivalent tension loading and predicting fatigue life with time-based subcycle fatigue life 

formulation.  Table 3 shows the results for experimental and predicted fatigue life results 

for multiaxial condition. This table also contains the equivalent sigma values for 

corresponding tension and shear loading. Later we introduced elastic-plastic correction 

factor to consider effect of plastic deformation in low cycle region. Corrected Sigma 

equivalent values are also reported in the table. 
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Table 3. Multiaxial Constant Amplitude Results 

SN Sigma Tau Exp_Nf SigmaE s SigmaEq_s Predicted_Nf 

1 351.3 222 1967 479.8 0.65 501 5500 

2 165.6 216.2 9174 349.9 0.68 380 22000 

3 127.2 170.5 59194 274 0.70 286 100000 

4 166.1 110.4 136646 232.2 0.72 235 340000 

5 201.3 130 45500 277.7 0.70 284 100000 

6 377.6 241.8 2487 518.96 0.64 544 1800 

7 280.4 181.8 10191 387.55 0.67 401 17000 

8 200.9 131.6 29439 279 0.70 285 100000 

9 200.6 115.8 41747 263.9 0.71 268 118000 

 

The Proposed model with the described methodology has been validated with the help of 

experimental data available in the literature [24]. Figure 12 plot, which indicates fatigue 

life prediction by subcycle model shows a good agreement with the experimental data. 

 

Fig. 30 Results for multiaxial loading condition. 
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2. Results for Variable Amplitude Multiaxial Loading. 

 

For Multiaxial condition, limited data was available, to test the validity of the 

proposed methodology.  The proposed framework is validated using the experiment data 

obtained from ASU and MERC. The random loading spectrum, the experiment fatigue life, 

and the predicted fatigue life using subcycle model are shown in table 4. The comparison 

between the prediction and experimental data are plotted in Fig.30. 

  

  

Fig. 31 Multiaxial Random amplitude loading spectrum. 
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Table 4. Results for Random Amplitude Multiaxial Loading 

Spectrum Experimental Log_Exp Subcycle Log_Sub 

Proportional_350K 1.34E+06 6.126711 1.20E+06 6.079181246 

  1.75E+06 6.241954 1.20E+06 6.079181246 

Proportional_350k_edit 5.11E+06 6.708098 7.80E+06 6.892094603 

Non_proportional 1.19E+06 6.076102 3.00E+06 6.477121255 

Non_proportional_edited 4.05E+05 5.607512 1.50E+06 6.176091259 

 

 

Fig. 32 Results for Random amplitude multiaxial loading condition. 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 
 

4.1 Conclusion  
  

Previously developed time-based subcycle crack growth model has been modified 

to consider the effect of threshold stress intensity factor. Modification has been done in 

main kernel function for crack increment calculation by introducing ∆𝐾𝑡ℎ. Concept of EIFS 

has been integrated with this modified kernel function to calculate fatigue life using 

fracture mechanics approach. Effect of load shedding techniques has been reproduced 

using proposed model and validated against the literature data which shows, in load 

shedding technique threshold stress intensity factor is a function of applied loading and 

depends on load history as well as on the load ratio R.  

The goal to predict the fatigue life using proposed model has been achieved by 

validating results against several conditions such as constant and variable amplitude, 

uniaxial and multiaxial loading conditions. Most of the predicted fatigue life results lie 

with error factor range of 2, very few points lie within the error factor range of 3, which is 

assumed to be a good prediction for fatigue life. 

Model fitting parameters A and B are calibrated for a specific material, here in this 

study for Al 7075. For high strength aluminum with different mechanical properties than 

used in this literature, parameters need to be calibrated again using experimental testing 

data. More extensive validation is required for multiaxial random amplitude condition as 

testing data was limited. Overall the goal to Mathematically integrate EIFS into the 
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modified time-based subcycle fatigue crack growth function has been achieved and 

validated. 

 

4.2 Future Work 
 

The following topics can be considered as potential future work or areas that need 

to be studied in order improve the robustness of the model. 

1. We used the concept of equivalent initial crack size, which is not the actual crack in the 

material, its an approximation by ignoring small crack growth in the microstructure to get 

the fatigue life with fracture mechanics. Microstructure of a material i.e., the way grains 

are oriented, effects of grain boundaries and the crack growth withing the grain need to be 

studied to understand the effect of microstructure on the fatigue life. Mathematical 

modelling of fatigue crack growth is a complex phenomenon. If we take an example of 

testing data. There is a large amount of variation can be seen even when used exactly same 

specimen, all the same material properties. Still, we get variation in the fatigue life. So, at 

molecular level or the way microstructure has been aligned with respect to each other, the 

way grains oriented with respect to each other has a big impact of crack propagation, which 

need to be studied and need to be mathematically modelled.  

2.  In this study we followed the deterministic approach, like we have considered every 

other material property or loading data as a constant and a specific number, which is 

theoretically not possible. Every loading point or every constant data point has some 

variation in it which can be considered by following the probabilistic approach. Where we 
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consider the effect of random variation in the datapoints and then calculate how this 

randomness is getting propagated in our results. This area can be studied further to improve 

the robustness of the proposed model. 

3. We can couple this proposed framework with FEA simulation to improve the accuracy 

of the results. When we convert applied loading into a stress intensity factor, we use a 

geometry correction factor which depends upon the size and shape of a crack. While 

calculating EIFS, we are considering geometry correction factor, Y as a constant number. 

It is a continuous function of crack growth, which can be considered while calculating the 

EIFS.   
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