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ABSTRACT

When solving analysis, estimation, and control problems for Partial Differential

Equations (PDEs) via computational methods, one must resolve three main chal-

lenges: (a) the lack of a universal parametric representation of PDEs; (b) handling

unbounded differential operators that appear as parameters; and (c), enforcing aux-

iliary constraints such as Boundary conditions and continuity conditions.

To address these challenges, an alternative representation of PDEs called the ‘Par-

tial Integral Equation’ (PIE) representation is proposed in this work. Primarily, the

PIE representation alleviates the problem of the lack of a universal parametrization

of PDEs since PIEs have, at most, 12 Partial Integral (PI) operators as parameters.

Naturally, this also resolves the challenges in handling unbounded operators because

PI operators are bounded linear operators. Furthermore, for admissible PDEs, the

PIE representation is unique and has no auxiliary constraints — resolving the last of

the 3 main challenges.

The PIE representation for a PDE is obtained by finding a unique unitary map

from the states of the PIE to the states of the PDE. This map shows a PDE and its

associated PIE have equivalent system properties, including well-posedness, internal

stability, and I/O behavior. Furthermore, this unique map also allows us to construct

a well-defined dual representation that can be used to solve optimal control problems

for a PDE.

Using the equivalent PIE representation of a PDE, mathematical and computa-

tional tools are developed to solve standard problems in Control theory for PDEs.

In particular, problems such as a test for internal stability, Input-to-Output (I/O)

L2-gain, H∞-optimal state observer design, and H∞-optimal full state-feedback con-

troller design are solved using convex-optimization and Lyapunov methods for linear

PDEs in one spatial dimension. Once the PIE associated with a PDE is obtained,
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Lyapunov functions (or storage functions) are parametrized by positive PI operators

to obtain a solvable convex formulation of the above-stated control problems. Lastly,

the methods proposed here are applied to various PDE systems to demonstrate the

application.
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Chapter 1

INTRODUCTION

US Energy Information Agency forecasts indicate that the global electricity en-

ergy demand will likely reach 45 trillion kilowatt hours (kWh) as reported by U.S.

EIA (2023)– a 45% increase from current electricity demands. With new policies

being proposed to reduce carbon emissions and a projected growth of 1.8% per year

in electricity generation across all sectors, we will likely not meet future electricity

demands unless there is a rapid increase in energy production from clean sources.

Hence, many efforts have been directed toward finding new means of energy produc-

tion, the most notable of which is nuclear fusion. Nuclear fusion is a highly tempting

alternative to current methods of energy production because it has no carbon or ra-

dioactive byproducts, and the fuel required for the fusion is abundant. Hence, efforts

have been directed toward harnessing the energy released during fusion reactions to

generate electricity; however, to date, there has been no success.

While the research into controlled fusion in fusion reactors has been ongoing since

the early 1930s, we have yet to see a large-scale reactor that can produce a break-

even fusion reaction. The most recent development was the break-even fusion reaction

conducted by Lawrence Livermore National Laboratory (LLNL) in December 2022,

documented by Bishop (2022), that produced an excess of 1 megajoule of energy —

a 1.5% gain over the energy put into the lasers that help sustain the nuclear fusion

reaction. Needless to say, a fusion reactor built on this principle is not commercially

viable since the projected gain in energy has to be over 2000% for the entire system

to be self-sufficient and produce excess energy that can be supplied to the grid. More

importantly, however, the biggest challenge in building a fusion reactor is confining
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the plasma in a small space so that a critical temperature is reached and a self-

sustained thermonuclear fusion reaction occurs. Confining a plasma at very high

temperatures requires the plasma to be suspended in a vacuum to avoid damage to

the reactor. Consequently, the pressure required to confine this plasma has to be

generated through indirect contact, e.g., using magnetic fields. An example of such

a reactor is the Tokamak that was first conceived by Dolgov-Saveliev et al. (1958).

However, due to the inefficiencies in the reactor’s operation, the energy required

to confine the plasma through magnetic force is higher than the energy produced

through the fusion reaction. Consequently, there is no net energy gain. While the

source of the inefficiency can be attributed to many different factors, including model

inaccuracies, hardware limitations, inefficient placement of the magnetic coils, etc.,

there is one particular aspect of the fusion reactor system that is often ignored –

the control laws used to do stabilize and control the magnetic fields. However,

controlling the magnetic field in a Tokamak requires controlling nonlinear vector-

valued Partial Differential Equations (PDEs) in 2D or 3D space (depending on the

geometry considered and the model approximations).

Consequently, various efforts have been made in recent times to address the control

aspect of the fusion problem — See the thesis by Witrant (2015) and the paper by

Mechhoud et al. (2014), for example. Unfortunately, treating the control design issue

of fusion reactors as a challenge specific to an application masks the more fundamental

problem in the control of PDE systems. The lack of reliable methods for control of

PDEs is also seen in other applications such as vibration control of beam models

from Timoshenko (1921), turbulent fluid flow control methods by Alfonsi (2009), and

reaction kinetics control by Chakraborty and Balakotaiah (2005) and Christofides and

Chow (2002). In all such applications, efficient control techniques for a general PDE

model can improve safety and operational costs. For instance: controllers designed
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using Euler or Timoshenko beam models can suppress seismic and wind disturbances

in buildings and bridges (e.g., see designs introduced by Kannan et al. (1995), Ikeda

(2004), and Fisco and Adeli (2011)) thereby reducing structural damage; controllers

for fluid-flow models can reduce drag on aircraft wings (e.g., see the work by Quadrio

(2011)) thereby reducing fuel costs; and controllers for reaction-diffusion equations

can improve homogeneity (or desired stratification) of concentration and temperature

in chemical reactors (e.g., see papers by Mao and Yang (2017) and Chakraborty and

Balakotaiah (2005)) thereby optimizing reaction rates. One can refer to the paper by

Pesch (2012) for a survey on PDE models in other applications.

Despite the significance of PDEs in the modeling and control of physical systems,

the progress in the control of a general PDE model has been lacking compared to

the progress in the simulation and analysis of PDEs because only a small portion

of research exposition on PDEs focuses on controlling PDEs. Even when an expo-

sition focuses on the control aspect of PDEs, it is tailored to a specific application.

For instance, the Backstepping and infinite-dimensional Algebraic Riccati Equation

(ARE) approaches for parabolic PDEs were presented by Deutscher (2015) and Ha-

gen (2006), whereas the methods for hyperbolic PDEs were proposed by Krstic and

Smyshlyaev (2008) and Moghadam et al. (2010). Furthermore, there are even more

variations in control approaches when just the boundary conditions are changed while

keeping the PDE dynamics the same. Despite these works on the control of PDEs, the

methods presented therein are hard to extend or generalize to other systems governed

by PDEs.

This does not mean that there do not exist methods that can be applied to a gen-

eral PDE. Indeed, there exist control approaches that are not tailored for a specific

application, e.g., early-lumping methods. However, all such methods approximate

the PDE by an Ordinary Differential Equation (ODE) at some stage of the control
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design process – making it difficult to control the higher-frequency modes of the PDE

solution, which is critical in systems sensitive to high-frequency perturbations. Fur-

thermore, since early-lumping methods design the control for an ODE approximation

of the PDE do not generally have any accuracy bounds on the solution of the ODE,

there may be little or no relation between the solution of the ODE approximation

and the solution of the original PDE. Thus, such methods, although generalizable,

do not provide any stability guarantee or performance metrics. Clearly, despite the

significance of the PDE control problem and decades of efforts spent to resolve this

problem, there is still a lack of good methods that can resolve it, and this scarcity can

be attributed to, as will be shown in this thesis, the lack of understanding of the PDE

models as a whole.

The primary motivation behind this dissertation and its results is to revive the

inquiries into the fundamental approach taken in the analysis, estimation, and con-

trol of PDEs and to propose a new approach that provides a different perspec-

tive/understanding of the challenges therein. While the results of this work do not

cover the control of nonlinear PDEs and, consequently, control of magnetic fields in

a Tokamak, they are intended to be a foundation that advances the state-of-the-art

approaches in control of PDEs without restricting to a specific application or a specific

PDE model.

To find a fresh perspective on the analysis and control problems for PDE systems,

we first need to identify the characteristics of a PDE that complicate the solution

methods of such problems. More specifically, we must identify the characteristics

that make general control methods, such as Linear Matrix Inequalities (LMIs) for

linear state-space ODEs, difficult/inapplicable for PDEs. Therefore, let us look at

the minimal set of characteristics seen in a PDE model.

A brief history of PDEs First introduced during the 17th century in the ground-
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breaking works by, namely, Newton (1999) and Leibniz and Leibniz (1989), a PDE

was typically characterized by a spatially-distributed differential equation used to

model various physical phenomena such as heat and mass transfer. However, the

central importance of Boundary Conditions (BCs) when defining a PDE model was

not formally recognized until the time of Dirichlet whose work has been summarized

by Fischer (1994); Also see works by Cajori (1928) and Cheng and Cheng (2005)

for an overview of the history of PDEs and BCs. However, even with the inclusion

of BCs, a PDE model is not complete without a restriction on the ‘continuity’ of

the solution – spatial derivatives and boundary values must be suitably well-defined.

The mathematical formalism for a continuity restriction was only established in the

middle of the 20th century by Sergei Sobolev, defining what is now termed a Sobolev

space and allowing for generalized functions or distributions to define weak solutions.

When the PDE, BCs, and continuity constraints are combined, we obtain what

can be called a PDE model – a system defined by three types of constraints, none

of which is individually sufficient but which, when combined, yield a well-posed map

from an initial state to a unique solution. In the latter half of the 20th century, this

map and its continuity properties were formalized and generalized by the notion of

a C0-semigroup, with the BCs and continuity constraints of the PDE system (now

including delay systems and PDEs coupled with ODEs) being defined as the ‘domain

of the infinitesimal generator’; Works by Engel and Nagel (2000) and Curtain and

Zwart (1995) provide a thorough introduction to the semigroup theory and its ap-

plication in control theory. Today, as a consequence of almost 300 years of careful

study and mathematical progress, we may conclude that a well-posed PDE model

is necessarily defined by three constraints: a) the differential equation, or ‘PDE’,

which constrains the spatio-temporal evolution of the solutions inside the domain, c)

the continuity condition, which ensures that the solutions have sufficient regularity

5



for the BCs to be well-defined; and c) the BCs, which may constrain the limit values

or other properties of the solutions as permitted by the regularity guaranteed by the

continuity constraints.

While the representation of spatially distributed systems using the three-constraint

PDE model has a significant history and is the natural modeling framework, the

presence of unbounded operators, continuity constraints, and BCs poses significant

challenges to the development of a universal computational framework for analysis,

control, and simulation. The recent development of efficient algorithms for opti-

mization on the cone of positive semidefinite matrices has led to the use of Linear

Matrix Inequalities (LMI) and Semi-Definite Programming (SDP) in control theory,

especially for Linear state-space ODE systems. This has simplified, in terms of math-

ematical representation and high-level programming, the development of tools for the

analysis and control of state-space linear ODEs. Unfortunately, this same simplicity

has not yet been extended to PDE systems because the 3-constraint model of a PDE

has certain ‘undesirable’ traits that are not present in state-space linear ODEs, which

will be described below using a simple PDE model for demonstration.

A simple PDE model Linear state-space ODE systems have two crucial charac-

teristics that allow the use of LMI-based methods in analysis and control: a) they

are parameterized by bounded and algebraic operators, and b) they have no auxil-

iary constraints. In contrast, PDEs have unbounded operators, differential operators,

point values in the form of BCs, and auxiliary continuity constraints — making the

analysis and control via LMI-based methods quite tricky and ad hoc. We will discuss

below, in detail, how these characteristics of PDEs lead to various challenges and how

they are typically addressed by existing methods.

Challenges in Numerical simulation: To illustrate, consider the problem of com-

puting the evolution of a PDE model from a given initial condition. Specifically,
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consider a simple transport equation ut = us and construct a finite-difference approx-

imation of us = u(si+1)−u(si)
∆s

– yielding an finite-dimensional representation ẋ(t) =

1
∆s

Ax(t), where xi = u(si), ∆s = si+1 − si is uniform, and A is a bi-diagonal matrix

of ±1 entries. In an ideal simulation, we would desire ∆s → 0 – which implies that

an ideal ODE representation of the transport equation would have all infinitely large

coefficients.

Of course, we can avoid many problems associated with discretization by con-

structing an explicit basis for the domain of the infinitesimal generator (bases that

satisfy the continuity constraints and BCs) and projecting our solution onto this ba-

sis – an approach used in Galerkin projection. The problem, however, is that every

change in the set of BCs and continuity constraints necessitates a change in the basis

functions. Such changes require significant ad hoc analysis – an obstacle to the design

of general/universal simulation tools.

Even if we manage to design a tool that includes a large number of variations of

the 3-constraint PDE model to minimize the ad hoc steps, many problems involving

PDEs remain inaccessible from a numerical perspective. To elaborate further, con-

sider the linear transport equation used to model gas transport through a network of

pipelines Baker et al. (2021)

∂tρk + ∂xφk = 0, δ∂tφk + σ2∂xρk = αρk + βφk,

where ρk stands for the density of the gas and φk the flow-rate in a pipe k. If we

represent the pipeline network structure using an adjacency matrix E = {eij} on a

set of nodes N = {0, · · · , n}, where eij is zero if node i and j are not connected, 1 is

gas flows from i to j and −1 otherwise, we can specify the boundary conditions as

∑
j∈N

eijφk(i,j)(t, li) = 0, ρ0(t, l0) = ρin(t), φi(t, li) = wi(t),
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where wi is the withdrawal of gas at node i, li the location of node i, and k(i, j)

the index of the pipe connecting nodes i and j. One of the important problems

in the gas pipeline infrastructure is the operational cost, which is directly tied to

regulating the compressors that control the gas pressure by changing ρin. Although

many algorithms exist that discretize a transport equation to obtain an ODE and

simulate given some initial and boundary conditions, they are not scalable because

such gas networks typically have a large number of nodes and pipes. Therefore, one

cannot use numerical or convex optimization-based methods to solve this PDE and

devise a feedback control that can regulate the inlet density, ρin, under fluctuating

withdrawal rates wi.

Challenges in Computational analysis: Next, consider the problem of computa-

tional analysis and control of a PDE model. For simplicity, consider the very stable

heat equation ut = uss with zero BCs, e.g. u(t, 0) = us(t, 1) = 0, and propose

an energy metric (Lyapunov function) of the form V (u) =
∫ 1

0
u(s)2ds. This en-

ergy metric is uniformly decreasing with time – thus proving the stability of the

PDE model. The challenge, however, is to use computation to prove this fact. By

parametrizing positive operators using positive matrices, optimization-based meth-

ods for stability analysis can easily recognize that V (u) = ⟨u, u⟩L2
and hence V is

a positive form (i.e., a valid candidate Lyapunov function) —Peet et al. (2009) pro-

vided a parametrization of such positive forms on L2. However, the algorithm must

also verify that V̇ (u(t)) ≤ 0 for all solutions u(t) ∈ W2 satisfying the PDE model.

Unfortunately, if we differentiate V (u(t)) in time along solutions of the PDE model

we obtain V̇ (u(t)) = 2 ⟨u(t), ∂2
su(t)⟩ = 2

∫ 1

0
u(t, s)uss(t, s)ds. Because differentiation

is not embedded in a ∗-algebra, we cannot simply parameterize a cone of positive

quadratic forms involving differential operators, e.g., ⟨∂su, ∂su⟩. Moreover, since the

derivative operator is unbounded, the functions u and uss are independent until the
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continuity constraints and BCs are enforced. However, accounting for the continu-

ity and BCs is an ad hoc process, using integration-by-parts or inequalities such as

Wirtinger or Poincare.

Such ad hoc methods have been used to generate computational stability tests

and input-output analysis for specific classes of PDE models (See works by Pa-

pachristodoulou and Peet (2006), Datko (1970), Fridman and Orlov (2009a), Val-

morbida et al. (2016), Ahmadi et al. (2016a), and Gahlawat and Peet (2016a) for

LMI-based methods, Meurer (2012) for early-lumping methods, Lasiecka and Trig-

giani (2000a) for late-lumping methods, and Villegas (2007) for Port-Hamiltonian

methods), however, there exists no universal approach to computational analysis of

PDE models.

The primary challenge in using such model-specific methods is that they become

inapplicable just by introducing a simple variation to the model. For instance, if we

consider heat conduction through a fin used in cooling systems with forced convection

(e.g., heat-sink mounted on CPUs), we can model this phenomenon using the heat

equation PDE with a minor modification. Assuming the fin to be a 1D rod, we

can model the heat transfer process, as shown by Kraus et al. (2001), by using the

PDE u̇(t, s) = c(s)uss(t, s) + d(s)w(t) with boundary conditions u(t, 0) = 0 and

us(t, 1) = g(t) where c, d are coefficients dependent on the cross-section of the fin, w

is the forced convection heat loss and g heat flux at the tip. In such systems, where

the parameters vary with space, simple Lyapunov functions of the form V (u) = ⟨u, u⟩

do not help prove stability or analyze input-output properties. Thus, one would need

to consider parameterized quadratic Lyapunov functions, such as V (u) = ⟨u, Pu⟩

for some operator P . However, we must take special care to ensure P satisfies the

BCs and thus vanishes at the boundary. However, depending on the BCs, finding an

appropriate parametric form for P may not be trivial. Thus, such a step cannot be
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automated in a computational framework.

Challenges in control: The scalability issues and non-universality problems also

appear when one considers the control problem of PDE systems. In this context,

let us discuss the lumping-based methods for control of PDEs. Unlike PDEs, many

efficient algorithms exist for optimal control of state-space ODEs, with such con-

trollers typically obtained by solving either Riccati Equations, e.g., as proposed by

Locatelli and Sieniutycz (2002) and Gerdts (2011) or LMIs, e.g., proposed by Boyd

et al. (1994), the controller design for linear state-space systems is well-developed

and considered a solved problem. Thus, the most common approach to the control of

PDEs is to approximate the PDE model using a lumped state-space ODE model us-

ing methods such as projection employed in works by Bamieh et al. (2002), Apkarian

and Noll (2020), and Collis and Heinkenschloss (2002) or finite-difference approxima-

tion methods used by Christofides and Daoutidis (1996), Ito and Ravindran (1998a),

and Ito and Ravindran (1998b). Even ignoring the question of integration of lumped

controllers with a PDE with distributed state, Kotsiantis and Kanellopoulos (2006)

and Morris and Levine (2010) have proved that that stability and performance gains

of the closed-loop state-space ODE do not necessarily translate to stability or perfor-

mance of the optimal closed-loop PDE. While for specific systems for which we have

an eigendecomposition and a finite number of unstable modes as shown by Prieur and

Trélat (2018), projection onto these eigenfunctions can sometimes be used to obtain

a stable closed-loop controller, such exceptions are rare.

If one wants to avoid reducing the PDE model to a linear state-space ODE,

then there exist methods for formulating the optimal control problem in an abstract

operator-theoretic state-space framework where the system solution is defined by a

strongly continuous semigroup. In this context, one may formulate an operator equiv-

alent of the Riccati Equations for controller synthesis, e.g., see the book by Lasiecka
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and Triggiani (2000b), and papers by Hulsing (1999) and Morris (2001). Unfortu-

nately, however, the operators in these Riccati equations are typically unbounded.

They cannot be easily parameterized so that instead of solving the equations directly,

projection is gain used so that the numerical solution obtained defines the operator

only when restricted to the projected subspace. This approach is often referred to

as late-lumping, and applications can be found in, e.g., the paper by Moghadam

et al. (2013). The downsides of late-lumping are: the projection requires extensive ad

hoc analysis for any given PDE; the operator solutions are never obtained explicitly,

only their projection onto a finite-dimensional subspace; and the closed-loop is not

guaranteed to be stable for any given order of projection.

Closely related to the so-called ”late-lumping” approach is backstepping, an ap-

proach thoroughly described in works by Karafyllis and Krstic (2019) and Meurer

(2012), which uses the input to provide an algebraic mapping of the state to that

of a nominal stable system. The advantage of backstepping is that the mapping is

parameterized explicitly using integral operators and the algebraic conditions then

translate to a set of PDEs on the kernels which define these integral operators. The

disadvantages of backstepping are: the kernel map must be re-derived for every PDE;

a parametrization of the kernels is required in order to solve the resulting PDEs

numerically; and the controllers obtained are not optimal, only stabilizing.

To create more explicit parametrizations of the Lyapunov operators used in late-

lumping, recently, many Control Theorists have focused on the construction of posi-

tive Lyapunov functions for use in the control of PDEs, often using positive matrices

and semidefinite programming to enforce the positivity of these Lyapunov functions,

e.g., Fridman and Orlov (2009b), Peet and Papachristodoulou (2010), and Gahlawat

and Peet (2016b). The advantage of the approach presented by these theorists is that

the resulting closed-loop controllers almost always have provable closed-loop proper-
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ties. The downsides of this approach are: the assumption of specific structure on the

Lyapunov function and controller adds conservatism to the problem; the use of ad

hoc steps such as Poincare and Wirtinger inequalities to upper bound the derivative

of the Lyapunov function by exploiting boundary conditions and continuity of the

solution; and failure to resolve the bilinearity between the Lyapunov operator and

the controller often renders the problem non-convex or severely limits the structure

of the Lyapunov function and/or controller.

Clearly, when considering computational methods for the analysis, control, and

simulation of spatially distributed phenomena, the use of a 3-constraint PDE model

is inconvenient. Unfortunately, there is no direct way to eliminate these inconve-

niences because the well-posedness of a PDE requires these auxiliary constraints.

Furthermore, one cannot avoid using such 3-constraint PDE models since the natural

representation of physical phenomena such as diffusion is necessarily a 3-constraint

PDE model — given the historical context and the clear physical interpretation of

spatial derivatives and BCs. To summarize, the 3-constraint PDE model poses sig-

nificant challenges to the development of a universal computational framework for

analysis, control, and simulation. The most significant inconveniences are as follows:

1. Non-Algebraic Structure All computation is fundamentally algebraic – con-

sisting primarily of a sequence of addition and multiplication operations. The

PDE model formulation, however, is defined by spatial differentiation and eval-

uation of limit points (Dirac operations). Neither differentiation nor Dirac op-

erators can be embedded in a ∗-algebra of bounded linear operators on a Hilbert

space, a result proved by Segal (1947). The unbounded nature of the differen-

tial and Dirac operators complicates both simulation and analysis – resulting

either in ill-conditioned ODE representations or a lack of the algebraic structure

needed for parametrization and optimization.
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2. No Universality Computational methods are traditionally centered on the

‘PDE’ part of the ‘PDE model’ and are designed for a fixed set of BCs and

continuity constraints. This means every change in boundary condition or con-

tinuity constraint requires a change in the algorithm, with such changes being

ad hoc and requiring significant mathematical analysis. As a result, there are no

generic/universal algorithms for the analysis, control, and simulation of PDEs.

However, these limitations are primarily an artifact of the PDE modeling approach,

are not inherent to spatially distributed systems, and can be remedied by using an

alternative modeling framework defined by Partial Integral Equations (PIEs).

Partial Integral Equation (PIE) models describe system behaviors encountered in

elasticity, mechanical fracture, etc., and were recently revived and studied by Appell

et al. (2000) and Gil (2015). The simplest form of PIE, in which we ignore ODEs,

inputs, and outputs, is defined by two Partial Integral (PI) operators, T ,A : L2 → L2

as ∂t(T v)(t) = Av(t), where the state, v(t) ∈ L2 admits no continuity constraints

or BCs. An operator P is said to be a 3-PI operator if there exist R0 ∈ L∞ and

separable functions R1, R2 such that

(Pu) (s) =R0(s)u(s) +

s∫
a

R1(s, θ)u(θ) dθ +

b∫
s

R2(s, θ)u(θ) dθ.

To illustrate a simple PIE, let us revisit the heat equation PDE model, ut = uss

with BCs u(t, 0) = us(t, 1) = 0, continuity constraint u ∈ W2 and initial condition

u(0, ·) = u0 ∈ W2. A PIE representation of this PDE model is given by

∂t

(∫ s

0

θ v(t, θ) dθ +

∫ 1

s

s v(t, θ) dθ

)
= −v(t, s) (1.1)

with initial condition v(0, ·) = ∂2
su0 ∈ L2. In this case, T is parameterized by

R1(s, θ) = −θ, R2(s, θ) = −s with R0 = 0, while A is parameterized by R0(s) = I

with R1 = R2 = 0. The solution to the PIE yields a solution to the PDE model
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as u(t, s) = T v(t, s), so that u(t, s) = −
∫ s

0
θ v(t, θ)dθ −

∫ 1

s
s v(t, θ)dθ. Note that

since the solution of the PIE v is in L2, we do not need any additional boundary

conditions or differentiability constraints to find a unique solution. Thus, if one con-

siders the Lyapunov function V (u) = ⟨u,Pu⟩L2
= ⟨T v,PT v⟩L2

parametrized by a

PI operator P , then the time derivative along the solutions of the PIE (1.1) is given

by V̇ (v(t)) = ⟨v(t), (A∗PT + T ∗PA)v(t)⟩L2
— i.e., the proof of stability requires

showing that there exists a P ≻ 0 such that A∗PT + T ∗PA ⪯ 0. Since all the PI

operators that define this PIE system are bounded, linear, integral operators on L2

Hilbert space, and more significantly, since these PI operators form a ∗-algebra, one

can find V̇ without any ad-hoc manipulation such as integration-by-parts. Instead,

algebraic operations on PI operators, such as addition, composition, transpose, and

concatenation operations, can be performed by operating on their parameters. Fur-

thermore, we can parameterize positive operators of this class using a basis and a

positive matrix. Thus, one can solve operator-valued optimization problems involv-

ing PI operator decision variables and constraints — i.e., we can solve the proof of

stability test given by the constraints P ≻ 0 A∗PT + T ∗PA ⪯ 0. This allows us to

overcome the earlier problems in computational analysis, estimation, and control.

In short, PIE models can be considered a generalization of the integro-differential

systems. A PIE model, unlike a PDE, is defined by a single integro-differential equa-

tion, is parameterized by the ∗-algebra of Partial Integral (PI) operators, and can be

used to represent almost any well-posed PDE model. Furthermore, computational

analysis of PIE systems can be performed algorithmically and without ad hoc manip-

ulations involving boundary conditions or continuity constraints. Therefore, if we can

use the properties of a PIE model of a PDE to infer the properties of the PDE, then we

can resolve the challenges faced in the computational analysis of PDEs. The remain-

der of this thesis will focus on using the PIE representation to develop computational
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tools that prove the properties of a PDE.

The main contributions of this work are: a) developing an alternative repre-

sentation of Linear PDE systems that is universal, defined by algebraic, bounded

linear operators, called the Partial Integral Equation; b) proving the equivalence in

the two representations of an infinite-dimensional system; and c) building computa-

tional/numerical tools for the analysis, estimation, and control of these PIEs inspired

by the LMI-based methods called PIETOOLS. An alternative to PIETOOLS does not

exist currently because, as elaborated above, a PDE model is ill-suited for developing

such tools.

The proposed methodology to achieve the research goals can be divided into the

following steps:

1. Express a given 3-constraint PDE model as an equivalent PIE model.

2. Develop computational tools for analysis and control of a PIE model.

3. Use these computational tools on the PIE obtained from a PDE to solve analysis

and control problems for the PDE.

1.1 Overview

The content of this thesis can largely be divided into two parts: one covering the

particulars of linear PDE models that admit an equivalent PIE representation, and

the second leveraging the benefits of the PIE representation to formulate analysis,

estimation, and control problems as solvable convex-optimization problems.

Part I: Representation and Parametrization of Linear

Infinite-dimensional Systems

Here, we outline the class of PDEs for which the analysis, estimation, and control

problems are addressed in this work. Specifically, in Chapter 3, We will introduce
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a standard parametric representation (although non-universal and not exhaustive)

covering a large class of linear PDEs on one spatial dimension to aid in develop-

ing a standard computational framework. While such a parametric representation

is not necessary to find an equivalent PIE representation, it is required to build a

computational framework that can convert a PDE representation input to its corre-

sponding PIE representation– i.e., a representation that is consistent, unambiguous,

and standard is needed.

Chapter 4 follows the theme of Chapter 3 in specifying a standard parametric

representation of a PIE system that will provide an unambiguous interpretation in

a computational framework. These standard representations will allow one to build

a computational tool that can solve standard problems in analysis, estimation, and

control, as will be seen later in Part II.

Lastly, to wrap up Part I, in Chapter 5, we will show that under certain admis-

sibility conditions, the standard parametric representation of a GPDE introduced in

Chapter 3 has an equivalent PIE representation of the standard parametric form in-

troduced in Chapter 4. We will show that the notions of equivalence come from the

solutions for the two representations, where the solution to one representation can be

used to determine the solution to the other. We will see that this equivalence of solu-

tions automatically leads to identical properties of the systems in terms of stability,

stabilizability, controllability, etc.

Part II: Analysis, Estimation, and Control of GPDEs

Here, we will focus on utilizing the new PIE representation to formulate and solve

problems in the analysis, estimation, and control of PDEs as solvable LMI problems.

Specifically, in Chapter 6, we will discuss the concepts of stability and dual stability,

which are then used to develop optimization-based certificates for exponential stabil-
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ity, stabilizability, and controllability of a GPDE model. To establish dual stability,

we will propose a PIE system of a specific form to be the dual of a given PIE system

where the dual has the same stability properties as the given PIE. Furthermore, the

proposed dual is chosen to have the same standard parametric representation intro-

duced in Chapter 4. By virtue of this parametric representation, the conditions to test

stability for a PIE can be extended to its dual to formulate dual stability conditions,

which naturally extends to convex formulations for stabilizability criterion.

Having established internal stability properties, we include the inputs and outputs

of the GPDE model in Chapter 7 to find provable input-output properties of the

system, namely, H∞-norm and passivity.

In Chapter 8, combining the duality results and input-output properties, we will

formulate the H∞-optimal observer and controller design problems to finally resolve

the two important unresolved problems in the control theory of linear PDEs.
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Chapter 2

BACKGROUND MATERIAL

2.1 Introduction

In this chapter, we briefly introduce the concepts of convex optimization and

LMIs and then show how these techniques are used to solve convex optimization

problems such as Sum-of-Squares (SOS) problems and Linear Partial Integral In-

equalities (LPIs) — problems that commonly arise in control theory. Specifically in

Section 2.3, we will use Lyapunov methods and show how the analysis, estimation,

and control problems of Linear dynamical systems can be posed as an LMI, SOS, or

LPI problem. In addition, we also discuss LPI problems in detail by formally defining

the parametric form of Partial Integral (PI) Operators, proving some of their useful

algebraic properties, and proposing a method for solving LPI optimization problems

using LMIs.

2.1.1 Notation

Before starting, let us look at some commonly used notation and principles in

naming variables. In addition to denoting the empty set, ∅ is occasionally used

to denote a matrix or matrix-valued function with either zero row or column di-

mension and whose non-zero dimension can be inferred from context. We denote

by 0m,n ∈ Rm×n the matrix of all zeros, 0n = 0n,n, and In ∈ Rn×n the identity

matrix. We use 0 and I for these matrices when dimensions are clear from con-

text. R+ is the set of non-negative real numbers. The set of k-times continuously

differentiable n-dimensional vector-valued functions on the interval [a, b] is denoted
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by Cn
k [a, b]. Ln

2 [a, b] is the Hilbert space of n-dimensional vector-valued Lebesgue

square-integrable functions on the interval [a, b] equipped with the standard inner

product. Lm,n
∞ [a, b] is the Banach space of m × n-dimensional essentially bounded

measurable matrix-valued functions on [a, b] equipped with the essential supremum

singular value norm. Normal font u or u(t) typically implies that u or u(t) is

a scalar or finite-dimensional vector (e.g. u(t) ∈ Rn), whereas the bold font, x

or x(t), typically implies that x or x(t) is a scalar or vector-valued function (e.g.

u(t) ∈ Ln
2 [a, b]). For a suitably differentiable function, x, of spatial variable s, we

use ∂j
sx to denote the j-th order partial derivative ∂jx

∂sj
. For a suitably differentiable

function of time and possibly space, we denote ẋ(t) = ∂
∂t
x(t). We use W n

k to de-

note the Sobolev spaces W n
k [a, b] = {u ∈ Ln

2 [a, b] | ∂l
su ∈ Ln

2 [a, b] ∀ l ≤ k} with

inner product ⟨u,v⟩Wn
k
=
∑k

i=0 ⟨∂i
su, ∂

i
sv⟩Ln

2
. Clearly, W n

0 [a, b] = Ln
2 [a, b]. For given

n = {n0, · · · , nN} ∈ NN+1, we define the Cartesian product space W n =
∏N

i=0 W
ni
i

and for u = {u0, · · · ,uN} ∈ W n and v = {v0, · · · ,vN} ∈ W n we define the associ-

ated inner product as ⟨u,v⟩Wn =
∑N

i=0 ⟨ui,vi⟩Wni
i
. We use RLm,n

2 [a, b] to denote the

space Rm × Ln
2 [a, b] and for x =

x1

x2

 ∈ RLm,n
2 and y =

y1
y2

 ∈ RLm,n
2 , we define

the associated inner product as

〈x1

x2

,
y1
y2

〉
RLm,n

2

= xT
1 y1 + ⟨x2,y2⟩Ln

2
.

Frequently, we omit the domain [a, b] and simply write Ln
2 , W

n
k , W

n, or RLm,n
2 . For

functions of time only (L2[R+] and Wk[R+]), we use the truncation operator

(PTx)(t) =


x(t), if t ≤ T

0, otherwise,
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to denote the extended subspaces of such functions by L2e[R+] and Wke[R+] respec-

tively as

L2e[R+] = {x | PTx ∈ L2[R+] ∀ T ≥ 0} ,

Wke[R+] = {x | PTx ∈ Wk[R+] ∀ T ≥ 0} .
Finally, for normed spaces A,B, L(A,B) denotes the space of bounded linear op-

erators from A to B equipped with the induced operator norm. L(A) = L(A,A).

Specifically in Chapter 8, the symbol L may appear without an argument, which is

assumed to be an operator representing the observer gains.

2.2 Convex Optimization

A convex optimization problem involves minimizing a convex function over convex

sets. In general, any convex optimization problems can be written in the form of

min
x∈X

c(x), s.t., (2.1)

fi(x) ≤ 0, gj(x) = 0 i ∈ {0, · · · ,m}, j ∈ {0, · · · , n}

where fi, gi : X → Y (X and Y can be the set of reals, real-valued vectors, real-

valued matrices, etc.) are convex functions, c : X → R is an objective function to be

minimized, and x are decision variables. An x ∈ X is said to be a feasible solution

if x satisfies the equality and inequality constraints — fi(x) ≤ 0, and gj(x) = 0. An

x∗ ∈ X is said to be an optimal solution to the above problem if x∗ is a feasible

solution and c(x∗) ≤ c(x) for any x ∈ X.

Various problems in Control theory for dynamical systems can be formulated in

this form for an appropriate choice of the convex functions c, fi, and gi. For example,

given a linear ODE system in state-space representation ẋ(t) = Ax(t), one can prove

stability by proving that a feasible solution exists for the optimization problem

∃ P > 0, s.t., ATP + PA ≤ 0.

20



In this case, P is a matrix decision variable, c(P ) = 0, f0(P ) = −P , and f1(P ) =

ATP + PA.

While optimization problems, in general, need not be defined only by convex

functions, in this dissertation, we will restrict to the class of problems that are convex

optimization problems because, in the case of convex optimization problems, any local

minima is also the global minimum— i.e., if x∗ and y∗ are two optimal solutions to the

above optimization problem in Equation (2.1) then x∗ = y∗. This property is desirable

since any method used to solve convex optimization problems, such as gradient descent

and interior-point methods Boyd and Vandenberghe (2004), converges to the best

possible solution in polynomial time.

Every optimization problem in which c, fi, and gi are linear functions is a con-

vex optimization problem because linear functions are convex, and linear constraints

(equality or inequality) define a convex region of feasible solutions. However, we are

particularly interested in optimization problems where decision variables are matri-

ces, and functions are on matrix variables — a specific class of convex optimization

problems called Semi-Definite Programming (SDP), commonly encountered in Con-

trol Theory. Note that the linear ODE stability test presented above is an SDP

problem. In the remaining subsections, we will focus on SDPs and their application

in Control Theory.

2.2.1 Semi-definite Programming

Semi-definite Programming is a subclass of convex optimization problems that

involve matrix-valued decision variables and linear sign-definite constraints on matrix-

valued variables — i.e., the set of feasible solutions is described by the cone of positive

semi-definite matrices. A matrix, P ∈ Rn×n, is said to be positive semi-definite if for

any x ∈ Rn, xTPx ≥ 0 (or, positive definite if the inequality is strict for all x ̸= 0).
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SDP problems typically take the form

min
P∈Rn×n

trace(CTP ), s.t.,

P ≥ 0, trace(AT
i P ) ≤ bi, i ∈ {0, · · · ,m},

for some known reals bi, and matrices C and Ai. Such optimization problems are

solved using Interior-point methods first introduced by Adler et al. (1989) and shown

to be solvable in polynomial time by Alizadeh (1995). More significantly, as previously

demonstrated in this section using the stability test for linear state-space ODEs,

many problems in the control of linear state-space ODE systems lead to a class of

SDP problems referred to as ‘Linear Matrix Inequalities’ (LMIs), a thorough study

of which can be found in the book by Boyd et al. (1994), that take the form

min
P∈Rn×n

trace(CTP ), s.t.

P ≥ 0, F T
i PGi +GT

i PFi ≤ 0, i ∈ {0, · · · ,m}.

While it is possible (and required) to reformulate the LMIs in the standard SDP

format to use SDP solvers, many parsers, such as Yalmip by Lofberg (2004), can

directly parse LMIs and convert them into the standard SDP format before linking

with solvers, such as SeDuMi by Sturm (1999), Mosek by Andersen and Andersen

(2000); ApS (2019), etc., to apply interior-point methods.

2.2.2 Positive Polynomials and Sum-of-Squares Polynomials

Before moving on to the particulars of formulating control problems as LMIs, we

will briefly introduce optimization problems involving positive polynomials and the

Sum-of-Squares approach here — a class of optimization problems that commonly

appear in problems involving non-linear ODE systems.

We say, a polynomial p(x1, · · · , xn) is positive if for all x ∈ Rn, we have p(x) > 0.
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Such polynomials are useful to parametrize Lyapunov functions that will be intro-

duced in the next section. However, for a simple demonstration, consider a dynamical

system model given by a nonlinear ODE ẋ(t) = f(x(t)). We can prove the stability

of this system by finding a Lyapunov function V that satisfies V (x) > 0 for all x ̸= 0

and V̇ (x(t)) ≤ 0 along the solutions of the dynamical system. Clearly, if we choose

V (x) to be a polynomial, we can parameterize the coefficients of this polynomial

and search for coefficients such that V satisfies the above-stated constraints — i.e.,

V (x) > 0 and ∇V (x)Tf(x) ≤ 0 for all x ∈ R. Thus, we can pose the question of the

existence of a Lyapunov function as an optimization problem involving polynomials

with positivity constraints. However, for multivariate polynomials V (x), there is no

practical way to verify the positivity since the problem is NP-hard.

To overcome the computational demands, we can tighten the constraints — i.e.,

instead of searching for a positive V (x), we can search for a polynomial V (x) that

is a sum of squares of other polynomials. In other words, we will look for a V (x)

such that we can write V (x) =
∑n

i=0 anfn(x)
2 for some polynomials fn(x) and coef-

ficients an > 0. If such a decomposition exists, then clearly, V (x) is non-negative for

all x. We refer to such polynomials as Sum-of-Squares (SOS) polynomials. While

this parametrization of Lyapunov functions is more conservative, by replacing the

constraint V (x) > 0 with ‘V is an SOS polynomial’, the optimization problem be-

comes computationally tractable as shown by Parrilo (2000). This is because an SOS

polynomial V can be written in the quadratic form

V (x) = Z(x)TPZ(x),

for some positive semidefinite matrix P and an appropriate monomial basis vector,

Z(x), in independent variables x. Thus, one can replace the positivity constraints
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(consequently, the test for stability) on the Lyapunov function V , given by

V (x) > 0 V̇ (x) = (∇V (x))Tf(x) ≤ 0

with the constraints

P > 0, Q > 0, V (x) = Z(x)TPZ(x), (∇V (x))Tf(x) + Z(x)TQZ(x) = 0.

This problem is, in fact, an LMI optimization problem with some additional linear

equality constraints — a convex optimization problem. Thus, it can be solved using

standard interior-point methods in polynomial time. We should note at this point

that one need not set up or extract the decision variables from the above formulation

to solve the underlying SDP problem because there are many parses/libraries that

aid in this process, such as SOSTOOLS by Prajna et al. (2005), SOSOPT by Seiler

(2013), Yalmip by Lofberg (2004), etc.

While optimization problems involving SOS polynomials are not directly used in

this work, as will be seen in Section 2.4, we will use this idea of sum-of-squares to

parametrize positive, infinite-dimensional operators that appear in the convex formu-

lations of the analysis, estimation, and control problems for PDEs.

2.3 Lyapunov Theory

Lyapunov Theory refers to the mathematical tools derived from the work of Lya-

punov (1992) on the stability of dynamical systems where standardized concepts of

stability and methods to determine stability were proposed. Using Lyapunov’s first

and second methods, the stability of various dynamical systems can be proved. Ar-

guably, the more impactful result, Lyapunov’s second method (or, popularly called,

the Direct method), can be used to prove stability without constructing or finding

a solution for the dynamical system. Instead, the direct method relies on proving
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stability properties by proving the existence of a proxy energy functional V (x) > 0

defined on state x of the dynamical system that decreases with time (i.e., V̇ (x(t)) ≤ 0

along the solution of the dynamical system).

Since then various converse Lyapunov theorems have been proposed to show the

necessity of the existence of such energy functionals of a particular form, e.g., La Salle

and Lefschetz (2012) proved that for asymptotically stable linear state-space ODE

systems of the form ẋ(t) = Ax(t) there must be a quadratic Lyapunov function of

the form V (x) = xTPx such that V (x) > 0 and V̇ (x(t)) ≤ 0.

Thus, using Lyapunov’s direct method and various converse Lyapunov theorems,

many analysis and control problems for linear ODE systems have been formulated as

optimization problems. In this work, we will particularly look at the use of Lyapunov’s

direct method in solving problems such as proving stability and passivity, estimating

H∞-norm, or designing H∞-optimal observers and controllers for the system.

2.3.1 Lyapunov Methods for Analysis, Estimation, and Control

In this subsection, we will discuss two approaches to employing Lyapunov’s di-

rect method to solve different analysis, estimation, and control problems. The first

approach is finding Lyapunov functions, which can then be used to verify internal

stability or prove the stabilizability and detectability of a dynamical system. The

second approach involves finding a storage function, which acts as an energy met-

ric, to prove input-output properties such as input-to-output L2-gain and passivity

of a system. Applying these approaches together, one can solve problems such as

H∞-optimal estimator and controller design for dynamical systems.

To describe the first approach involving Lyapunov functions, we must first define

Lyapunov functions and stability. Standard definitions for these terms are given

below, first, starting with a definition for Lyapunov functions.
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Definition 2.1. Given an autonomous dynamical system

ẋ(t) = f(x(t)), f : X → X, x(0) = x0 ∈ X,

with an equilibrium point x = 0, a Lyapunov function is a scalar function V : X → R,

that is continuous and differentiable up to order 1, such that V (0) = 0, V (x) > 0 for

all x ̸= 0, and V̇ (x(t)) = (∇V (x(t)))Tf(x(t)) ≤ 0 in an open-neighborhood around

x = 0.

Next, in regards to stability, there is more than one definition of stability; however,

in this work, we will consider the three commonly used notions, namely, Lyapunov,

Asymptotic and Exponential stability.

Definition 2.2. Consider an autonomous dynamical system

ẋ(t) = f(x(t)), f : X → X, x(0) = x0 ∈ X,

with an equilibrium point x = 0.

1. This equilibrium is said to be Lyapunov stable, if, for every ϵ > 0, there exists

δ > 0 such that ∥x(0)∥ < δ implies ∥x(t)∥ ≤ ϵ for all t ≥ 0.

2. This equilibrium is said to be Asymptotically stable, if it is Lyapunov stable

and there exists δ > 0 such that ∥x(0)∥ < δ implies limt→∞ ∥x(t)∥ = 0.

3. This equilibrium is said to be Exponentially stable with decay rate α > 0, if

there exist M and δ > 0 such that ∥x(0)∥ < δ implies ∥x(t)∥ ≤ M ∥x(0)∥ e−αt

for all t ≥ 0.

If there is only one equilibrium point, then the stability of the equilibrium point

also alludes to the system’s stability. The real benefit of these definitions, however, lies

in Lyapunov’s ‘Direct’ method, wherein an equilibrium point of a dynamical system

is:
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1. Lyapunov stable, if there exists a Lyapunov function V such that V̇ (x) ≤ 0

for any solution x of the system.

2. Asymptotically stable, if there exists a Lyapunov function V such that

V̇ (x) < 0 for any solution x of the system.

3. Exponentially stable with decay rate α, if there exists a coercive Lyapunov

function V such that V̇ (x) ≤ −2αV (x) for any solution x of the system.

Therefore, one can prove stability by finding an appropriate Lyapunov

function. This will be the primary approach taken in this work to prove stability,

stabilizability, and detectability. Given an autonomous system, we parameterize Lya-

punov function candidates V (x) using quadratic forms V (x) = ⟨x, Px⟩ and search

for a P > 0 while restricting V̇ (x) = (2Px)Tf(x) ≤ 0 (< 0 if proving asymptotic

stability, < −2αV (x) if exponential). Thus, the task of proving stability can be posed

as an optimization problem with P as a decision variable. Likewise, as will be shown

later in Chapter 6, tests for stabilizability and detectability can also be formulated

as optimization problems.

The second approach requires storage functionals to prove the input-output prop-

erties of a system. We will only discuss the problems of finding the H∞-norm and

proving the passivity of a system, however, the second approach can be used for other

problems, such as finding the H2-norm. As before, we must first define the terms.

Definition 2.3. Given an autonomous system

ẋ(t) = f(x(t), u(t)), z(t) = g(x(t), u(t)), x(0) = 0

we say

1. the system is passive if, for any L2-bounded input u, any solution {x, z} that

satisfies the system also satisfies ⟨z(t), u(t)⟩ ≥ 0 for all t ≥ 0.
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2. γ > 0 is the H∞-norm of the system if, for any L2-bounded input u, any solution

{x, z} that satisfies the system also satisfies ∥z∥L2
≤ γ ∥u∥L2

.

Using a positive storage function, one can alternatively formulate the constraints

in the above definitions as

1. the system is passive if there exists a storage function V (0) = 0, V (x) > 0 for

all x ̸= 0, such that V̇ (x) − 2 ⟨z, w⟩ ≤ 0 for all {x, z} that satisfies the system

for any input u.

2. γ > 0 is an upper bound on the H∞-norm of the system if there exists a storage

function V (0) = 0, V (x) > 0 for all x ̸= 0, such that V̇ (x) + ∥z∥2 − γ2 ∥u∥2 ≤ 0

for all {x, z} that satisfies the system for any input u.

Thus, one can, again, parameterize storage functionals V (quadratic form intro-

duced earlier being a popular choice) and add appropriate constraints to formulate

the above problems as an optimization problem. In the above case of finding H∞-

norm of a system, γ is merely an upper bound and not the exact H∞-norm. However,

one can use γ as an objective function and solve the constraints of the optimization

problem while minimizing this objective to find a better estimate of the H∞-norm of

the system. In addition, one can also parameterize a feedback input u(t) = h(x(t))

and solve for h along with the parameters of V while minimizing γ to design H∞-

optimal observers and controllers — an approach discussed in detail in Chapter 8. In

the following sections, we will divert our attention to the class of Partial Integral op-

erators and their properties, which will prove useful later in parametrizing Lyapunov

functions (or storage functions) and feedback inputs for infinite-dimensional systems

such as PDEs.
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2.4 Partial Integral Operators

In this section, we discuss the class of Partial Integral (PI) operators in one-

spatial dimension and their properties. As noted here, and later in Chapter 4, this

class of operators is a natural extension of matrices — matrices are operators on

finite-dimensional vector spaces, whereas PI operators are a generalization of matrix

operators on infinite-dimensional Hilbert spaces. This class of operators will be use-

ful in parametrizing the class of Partial Integral Equations (PIEs), which is being

proposed as an alternative representation of PDE models. We will also introduce the

class of optimization problems with PI operator decision variables and constraints

called Linear Partial-integral Inequalities (LPIs), which are a natural extension of

LMI optimization problems to operator-valued optimization problems. Lastly, we

will present a method to solve these LPIs using LMIs – a crucial result that will later

allow us to solve analysis, estimation, and control problems for PDE systems using

convex-optimization methods.

First, we start with a formal definition of PI operators and the set of PI operators,

also called ‘PI-algebras’. The PI-algebras are parameterized classes of bounded linear

operators on RLm,n
2 (the product space of Rm and Ln

2 ). Here, we specifically denote

two sub-algebras of these operators and associate a notation to them because they

will be extensively used in the dissertation. The first is the algebra of 3-PI operators,

which map Ln
2 → Ln

2 , that is exclusively defined by parameters that are separable

functions, which are defined below.

Definition 2.4 (Separable Function). We say R : [a, b]2 → Rp×q is separable if there

exist r ∈ N, F ∈ Lr×p
∞ [a, b] and G ∈ Lr×q

∞ [a, b] such that R(s, θ) = F (s)TG(θ).

Using separable functions as the parameters that define a 3-PI operator, we next

define a standard notation for this subclass of PI operators as follows.
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Definition 2.5 (3-PI operators, ΠΠΠ3). Given R0 ∈ Lp×q
∞ [a, b] and separable functions

R1, R2 : [a, b]
2 → Rp×q, we define the operator Π {Ri} for v ∈ L2[a, b] as

(
Π {Ri}v

)
(s) = R0(s)v(s) +

∫ s

a

R1(s, θ)v(θ)dθ +

∫ b

s

R2(s, θ)v(θ)dθ. (2.2)

Furthermore, we say an operator, P, is 3-PI of dimension p×q, denoted P ∈ [ΠΠΠ3]p,q ⊂

L(Lq
2, L

p
2), if there exist functions R0 and separable functions R1, R2 such that P =

Π {Ri}.

For any p ∈ N, [ΠΠΠ3]p,p is a ∗-algebra, being closed under addition, composition,

scalar multiplication, and adjoint. Closed-form expressions for these algebraic oper-

ations on 3-PI operators are included in the following subsections.

The algebra of 3-PI operators can be extended to L(RLm,p
2 ,RLn,q

2 ) as follows.

Definition 2.6 (4-PI operators, ΠΠΠ4). Given P ∈ Rm×n, Q1 ∈ Lm×q
∞ , Q2 ∈ Lp×n

∞ , and

R0, R1, R2 with P{Ri} ∈ [ΠΠΠ3]p,q, we say P = Π

 P Q1

Q2 {Ri}

 ∈ L(RLn,q
2 ,RLm,p

2 ) if

P

u
v


 (s) =

 Pu+
∫ b

a
Q1(θ)v(θ)dθ

Q2(s)u+
(
Π {Ri}v

)
(s)

 . (2.3)

Furthermore, we say P, is 4-PI, denoted P ∈ [ΠΠΠ4]
m,n
p,q , if there exist P,Q1, Q1, R0, R1, R2

such that P = Π

 P Q1

Q2 {Ri}

.
Similar to [ΠΠΠ3]p,p, for any p, q ∈ N, [ΠΠΠ4]

q,q
p,p is a ∗-algebra, being closed under

addition, composition, scalar multiplication, and adjoint. Closed-form expressions

for these algebraic operations are included in the following subsections.

Note, from here onward, we will omit the subscripts/superscripts for ΠΠΠ3 and ΠΠΠ4

when the dimensions are either evident from the context or are irrelevant.
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2.4.1 Algebra of PI Operators

This subsection primarily deals with formally defining *-algebras and proving that

the set of PI operators with polynomial parameters (denoted by [ΠΠΠp
3] and [ΠΠΠp

4]) form

a *-subalgebra.

Definition 2.7 (Algebra). A vector space, A, equipped with a multiplication opera-

tion, is said to be an algebra if, for every X, Y ∈ A, we have XY ∈ A.

Definition 2.8 (Associative Algebra). An algebra, A, is said to be associative if for

every X, Y, Z ∈ A

X(Y Z) = (XY )Z

where XY denotes a multiplication operation between X and Y .

Definition 2.9 (∗-algebra). An algebra, A, over the R with an involution operation

∗ is called a ∗-algebra if

1. (X∗)∗ = X, ∀X ∈ A

2. (X + Y )∗ = X∗ + Y ∗, ∀X, Y ∈ A

3. (XY )∗ = Y ∗X∗, ∀X, Y ∈ A

4. (λX)∗ = λX∗, ∀λ ∈ R, X ∈ A

For the set of PI operators, ΠΠΠi, we choose the addition of operators and compo-

sition of operators as the binary operations addition and multiplication, respectively.

The involution is chosen to be the adjoint operation with respect to the RL2-inner

product. Then, we can represent these algebraic operations on PI operators as a

linear map of the parameters of the PI operators. Note that the scalar multiplication
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requirement, point (4) in the above definition, is automatically satisfied because PI

operators are linear operators and hence, the proof is omitted here.

Parametric Representation of Operations on ΠΠΠi: Algebraic operations on ΠΠΠi

are defined by algebraic operations on the parameters that represent these operators.

Specifically, corresponding to ΠΠΠ3 and ΠΠΠ4 let us associate the corresponding parameter

spaces

[Γ3]p,q = {{R0, R1, R2} : Ri ∈ Lp×q
∞ , R1, R2 are separable},

[Γ4]
m,p
n,q =


 P Q1

Q2 {Ri}

 : P ∈ Rm×n, Q1 ∈ Lm×q
∞ , Q2 ∈ Lp×n

∞ , {Ri} ∈ [Γ3]p,q

 .

Then if the parametric maps Pi
×, P

i
+ : [Γi] × [Γi] → [Γi], P

i
∗ : [Γi] → [Γi] are as

defined in Lemmas 2.1 to 2.3, for any S, T ∈ [Γi], we have

Π [Pi
×(S, T )] = Π [S]Π [T ], Π [Pi

∗(S)] = Π [S]∗, Π [Pi
+(S, T )] = Π [S] + Π [T ].

Lemma 2.1 (Addition). For any matrices A,L ∈ Rm×p and L∞-bounded functions

B1,M1 : [a, b] → Rm×q, B2,M2 : [a, b] → Rn×p, C0, N0 : [a, b] → Rn×q, and separable

functions C1, C2, N1, N2 : [a, b]
2 → Rn×q, define a linear map P4

+ : [Γ4]
m,p
n,q × [Γ4]

m,p
n,q →

[Γ4]
m,p
n,q such that P Q1

Q2 {Ri}

 = P4
+

 A B1

B2 {Ci}

 ,

 L M1

M2 {Ni}


where

P = A+ L, Qi = Bi +Mi, Ri = Ci +Ni.
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If P,Qi, Ri are as defined above, then, for any x ∈ Rp and z ∈ Lq
2([a, b])

Π

P4
+

 A B1

B2 {Ci}

 ,

 L M1

M2 {Ni}


x
z


=

Π

 A B1

B2 {Ci}

+ Π

 L M1

M2 {Ni}


x
z

 .

Proof. The proof is in the Appendix B.1.

Lemma 2.2 (Composition). For any matrices A ∈ Rm×k, P ∈ Rk×p and L∞-bounded

functions B1 : [a, b] → Rm×l, Q1 : [a, b] → Rk×q, B2 : [a, b] → Rn×k, Q2 : [a, b] → Rl×p,

C0 : [a, b] → Rn×l, R0 : [a, b] → Rl×q, and separable functions C1, C2 : [a, b]2 →

Rn×l, R1, R2 : [a, b]
2 → Rl×q, define a linear map P4

× : [Γ4]
m,k
n,l × [Γ4]

k,p
l,q → [Γ4]

m,p
n,q such

that  P̂ Q̂1

Q̂2 {R̂i}

 = P4
×

 A B1

B2 {Ci}

 ,

 P Q1

Q2 {Ri}


where

P̂ = AP +

∫ b

a

B1(s)Q2(s)ds, R̂0(s) = C0(s)R0(s),

Q̂1(s) = AQ1(s) +B1(s)R0(s) +

∫ b

s

B1(η)R1(η, s)dη +

∫ s

a

B1(η)R2(η, s)dη,

Q̂2(s) = B2(s)P + C0(s)Q2(s) +

∫ s

a

C1(s, η)Q2(η)dη +

∫ b

s

C2(s, η)Q2(η)dη,

R̂1(s, η) = B2(s)Q1(η) + C0(s)R1(s, η) + C1(s, η)R0(η)

+

∫ η

a

C1(s, θ)R2(θ, η)dθ +

∫ s

η

C1(s, θ)R1(θ, η)dθ +

∫ b

s

C2(s, θ)R1(θ, η)dθ,

R̂2(s, η) = B2(s)Q1(η) + C0(s)R2(s, η) + C2(s, η)R0(η)

+

∫ s

a

C1(s, θ)R2(θ, η)dθ +

∫ η

s

C2(s, θ)R2(θ, η)dθ +

∫ b

η

C2(s, θ)R1(θ, η)dθ.
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If P̂ , Q̂i, R̂i are as defined above, then, for any x ∈ Rm and z ∈ Ln
2 ([a, b]),

Π

P4
×

 A B1

B2 {Ci}

 ,

 P Q1

Q2 {Ri}


x
z


= Π

 A B1

B2 {Ci}


Π

 P Q1

Q2 {Ri}


x
z


 .

Proof. The proof is in the Appendix B.1.

Lemma 2.3 (Adjoint). For any matrices P ∈ Rm×p and L∞-bounded functions Q1 :

[a, b] → Rm×q, Q2 : [a, b] → Rn×p, R0 : [a, b] → Rn×q, and separable functions

R1, R2 : [a, b]
2 → Rn×n, define a linear map P4

∗ : [Γ4]
m,p
n,q → [Γ4]

p,m
q,n such that P̂ Q̂1

Q̂2 {R̂i}

 = P4
∗

 P Q1

Q2 {Ri}


where

P̂ = P T , Q̂1(s) = QT
2 (s), Q̂2(s) = QT

1 (s),

R̂0(s) = RT
0 (s), R̂1(s, η) = RT

2 (η, s), R̂2(s, η) = RT
1 (η, s). (2.4)

Then, for any x ∈ RLm,n
2 ,y ∈ RLp,q

2 , then we have〈
x, Π

 P Q1

Q2 {Ri}

y

〉
RLm,n

2

=

〈
Π

P4
∗

 P Q1

Q2 {Ri}

x,y

〉
RLp,q

2

, (2.5)

Proof. The proof is in the Appendix B.1.

Note that the above Lemmas lead to obvious definitions for P3
+, P3

×, and P3
∗

involving only the 3-PI parameters. Thus, we will omit explicit definitions here.

Now that we have formally defined the binary and involution operations on the set

of PI operators, the following two results are fairly straightforward and require simple

algebraic manipulations, such as changing the variable or the order of integration.
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Lemma 2.4. The set [Πi] equipped with composition operation forms an associative

algebra.

Proof. The proof is in the Appendix B.1.

Lemma 2.5. The set [Πi] equipped with the binary operations of addition and com-

position and the involution operation given by the adjoint w.r.t. RL2 inner product is

a ∗-algebra.

Proof. The proof is in the Appendix B.1.

Lastly, a trivial extension of the above result is that the set of PI operators with

polynomial parameters, ΠΠΠp
i , also forms a ∗-subalgebra. This is because algebraic

operations on the parameters of a PI operator involve addition, multiplication, inte-

gration, and transpose, all of which preserve the polynomial form of the parameters.

Therefore, all algebraic operations, namely addition, composition, and adjoint, on PI

operators with polynomial parameters will give another PI operator with polynomial

parameters — i.e., the set ΠΠΠp
i is a closed subalgebra of a ∗-algebra.

2.4.2 Positive PI Operators and Linear PI Inequalities

A convex optimization problem with PI operator decision variables and sign-

definite constraints on self-adjoint PI operators is called a ‘Linear PI Inequality’

(LPI) optimization problem. Such optimization problems arise in various PIE sys-

tems analysis, estimation, and control problems as demonstrated in Chapter 1 with

a stability test example and later in Part II.

Definition 2.10 (LPI). A Linear PI Inequality optimization problem is a convex
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optimization of the form

min
Pi∈Π

m∑
i=0

ci(Pi) s.t.,

Pi ⪰ 0, A∗
iPiAi +Qi ⪯ 0,

where Ai,Qi are known PI operators with Qi self-adjoint, and ci : Π → R are linear

functionals on PI operators for all i ∈ {0, · · · ,m}.

To solve optimization problems involving PI operators, e.g., Pi ∈ Π4, we need

the ability to enforce/test positivity constraints Pi ⪰ 0. For this, we will use an

idea identical to the SOS parametrization of positive polynomials introduced earlier

in Section 2.2.2. In the case of positive PI operators, we will use a parametrization

that is a linear combination of the sum-of-squares of the PI operator basis instead

of the polynomial basis. Such a parametrization of PI operators can be written

in a quadratic form using positive matrices as P = Z∗PZ for a fixed operator Z

and positive semidefinite matrix P ⪰ 0. The following theorem provides a sufficient

condition for the positivity of a 4-PI operator. This result allows us to parameterize a

cone of positive PI operators as positive matrices, implement LPI constraints as LMI

constraints, and solve LPI optimization problems using semi-definite programming

solvers such as SeDuMi by Sturm (1999), Mosek by Andersen and Andersen (2000),

etc.

Theorem 2.6 (Positive PI). For any functions Z1 : [a, b] → Rd1×n, Z2 : [a, b] ×
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[a, b] → Rd2×n, if g(s) ≥ 0 for all s ∈ [a, b] and

P = T11

∫ b

a
g(s)ds, R0(s) = g(s)Z1(s)

TT22Z1(s),

Q(η) = g(η)T12Z1(η) +

∫ b

η
g(s)T13Z2(s, η)ds+

∫ η

a
g(s)T14Z2(s, η)ds,

R1(s, η) = g(s)Z1(s)
TT23Z2(s, η) + g(η)Z2(η, s)

TT42Z1(η) +

∫ b

s
g(θ)Z2(θ, s)

TT33Z2(θ, η)dθ

+

∫ s

η
g(θ)Z2(θ, s)

TT43Z2(θ, η)dθ +

∫ η

a
g(θ)Z2(θ, s)

TT44Z2(θ, η)dθ,

R2(s, η) = g(s)Z1(s)
TT32Z2(s, η) + g(η)Z2(η, s)

TT24Z1(η) +

∫ b

η
g(θ)Z2(θ, s)

TT33Z2(θ, η)dθ

+

∫ η

s
g(θ)Z2(θ, s)

TT34Z2(θ, η)dθ +

∫ s

a
g(θ)Z2(θ, s)

TT44Z2(θ, η)dθ. (2.6)

where

T =



T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44


⪰ 0,

then the operator Π

 P Q1

Q2 {Ri}

 as defined in Equation (2.3) is positive semidefinite,

i.e.

〈
x, Π

 P Q1

Q2 {Ri}

x

〉
≥ 0 for all x ∈ Rm × Ln

2 [a, b].

Proof. The proof is in the Appendix B.2.

Then, any LPI optimization problem of the form

min
Pi∈Π

m∑
i=0

ci(Pi) s.t., Pi ⪰ 0, A∗
iPiAi +Qi ⪯ 0,
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can be converted to an LMI optimization problem of the form

min
Pi,Qi∈Rn×n

m∑
i=0

tr(CT
i Ai) s.t.,

Pi ⪰ 0, PD
i +Qi = 0,

Pi = Z∗
i PiZi, A∗

iPiAi = Z∗
i P

D
i Zi, Qi = Z∗

i QiZi,

where Zi are chosen basis PI operators, Ci are known matrices, Ai, Qi are given

PI operators with Qi self-adjoint. Later in Part II of this dissertation, we will show

that the problems in the analysis and control of PIEs, e.g., H∞-optimal observer and

controller design problems, can be formulated as LPI optimization problems.

Since all the conditions presented in this thesis are in the form of LPIs, we de-

veloped computational methods for solving LPIs (See the paper by Shivakumar and

Peet (2019)). In brief, the bases used in PIETOOLS for a positive PI operator

are nth-order basis of PI operators, Zn, whose parameters are monomial vectors

up to order n. For example, P ⪰ 0 if there exists some matrix Q ≥ 0 such that

P = Z∗
nQZn = Z∗

nQ
1
2Q

1
2Zn ⪰ 0, where the basis Zn is constructed using a vector of

monomials in s up to order n, Zn, as

Zn

x
x

 (s) =



x

Zn(s)x(s)∫ s

a
(Zn(s)⊗ Zn(θ))x(θ)dθ∫ b

s
(Zn(s)⊗ Zn(θ))x(θ)dθ


, (2.7)

where ⊗ denotes the tensor product. The highest order of these monomials, n, can

be used as a measure for the order of complexity of the LPIs, which will later be used

to ascertain the accuracy and convergence of the solution to an LPI optimization

problem.

Lastly, we will use the MATLAB toolbox that was developed to solve LPI op-

timization problems, PIETOOLS, because the toolbox offers convenient MATLAB
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functions to convert PDEs to PIE, declare PI decision variables, add LPI constraints,

and solve the resulting optimization problem. We refer to the PIETOOLS User Man-

ual by Shivakumar et al. (2021) for details.

2.4.3 Inverse of PI Operators

In this subsection, we address the problem of inverting PI operators of the form

Π

 P Q

QT {Ri}

 ∈ ΠΠΠ4. Such an inverse is needed in order to reconstruct the controller

gains K = ZP−1 or observer gains L = P−1Z where P ,Z are solutions obtained from

an LPI optimization problem. In the special case where P = P∗ ≻ 0 and R1 = R2,

an analytic expression for this inverse was given by Peet (2020a). However, the

restriction R1 = R2 to integral operators with separable kernels introduces significant

conservatism and reduces the accuracy of LPI tests for H∞-norm bounds and H∞-

optimal control. Therefore, we need an analytical expression to construct the inverse

without constraining the parameters of the PI operator. For this purpose, we use

an iterative algorithm for constructing the inverse based on the generalization of a

method proposed by (Gohberg et al., 2013, Chapter IX.2), which is restated below in

a concise form without proof.

Lemma 2.7. Define P = Π {I,H1,H2} where Hi(s, t) = −Fi(s)Gi(t) for some Fi, Gi ∈

L2[a, b]. Let U and V be the unique solutions to

U(s) = I +

∫ s

a

B(t)C(t)U(t)dt and V (t) = I −
∫ t

a

V (s)B(s)C(s)ds

where C(s) =

[
F1(s) F2(s)

]
, B(s) =

 G1(s)

−G2(s)

. Then V (s)U(s) = U(s)V (s) = I.

Furthermore, if we partition

U(b) =

U11 U12

U21 U22

 , U22 ∈ Rq×q,
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where q is the number of columns in F2, then P is invertible if and only if U22 is

invertible and P−1 = Π {I,L1,L2} where

P =

 0 0

U−1
22 U21 Iq

 ,
L1(s, t) = C(s)U(s)(I − P )V (t)B(t),

L2(s, t) = −C(s)U(s)PV (t)B(t).

Note that, by construction, L1 and L2 are separable – i.e., there exist Hi, Ji such

that L1(s, θ) = H1(s)J1(θ) and L2(s, θ) = H2(s)J2(θ). This implies that P−1 is

a PI operator, albeit not necessarily with polynomial parameters. We can extend

this result to a more general class of integral operators (PI operators of the form

Π {R0,R1,R2}) as follows.

Corollary 2.8. Given H0(s), H1(s, θ) = H1a(s)H1b(θ), and H2(s, θ) = H2a(s)H2b(θ),

with H0 invertible, define Fi = −H−1
0 Hia and Gi = Hib. Then, if P = Π {I,H−1

0 H1,H
−1
0 H2}

is invertible and P−1 is as defined in Lemma 2.7, we have Π−1
{Hi} = Π {R̂i} where

R̂0 = H−1
0 , R̂1(s, θ) = L2(s, θ)R̂0(θ), and R̂2(s, θ) = L1(s, θ)R̂0(θ).

Proof. If Hi, R̂i, Li are as defined, from the rules for composition given in Lemma 2.2,

we have

Π−1
{H0,H1,H2}

= (Π {H0,0,0}Π {I,R̂0(s)H1(s,θ),R̂0(s)H2(s,θ)})
−1 = Π−1

{I,R̂0(s)H1(s,θ),R̂0(s)H2(s,θ)}Π
−1
{H0,0,0}

=
(
Π {I,−F1(s)G1(θ),−F2(s)G2(θ)}

)−1 Π {R̂0,0,0} = Π {I,L1,L2}Π {R̂0,0,0} = Π {R̂0,R̂1,R̂2}.

The inverse P−1 in Lemma 2.7 (and Corollary 2.8) is defined in terms of some

matrix-valued functions U , V which satisfy a set of Volterra-type integral equations

of the 2nd kind. However, Lemma 2.7 does not provide a method for solving these

equations to find U and V . Fortunately, however, this class of integral equations
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has been well-studied, and iterative algorithms have been proposed for solving this

class of equations. Our approach to constructing the inverse is based on the method

of successive approximation class of algorithms, the convergence of which has been

established in the following Lemma that’s proved in (Gohberg et al., 2013, Chapter

IX.2). Also, see approaches presented by Brunner (2017) and Rahman (2007).

Lemma 2.9. Let A : [a, b] → Rn×n be Lebesgue integrable on [a, b]. Then, the series

In +
∑∞

i=1 Uk(s), where Uk =
∫ s

a
A(θ)Uk−1(θ)dθ and U1(s) =

∫ s

a
A(θ)dθ, converges

uniformly on s ∈ [a, b] to a unique function, U : [a, b] → Rn×n, that solves U(s) =

In +
∫ s

a
A(θ)U(θ)dθ. Furthermore, for any k ∈ N,

∥Uk(s)∥ ≤ 1

k!

(∫ b

a

∥A(s)∥ ds
)k

, s ∈ [a, b].

Lemma 2.9 can be used to formulate an algorithm for computing the U(s) and

V (t) matrix function needed to define P−1 in Lemma 2.7 (V is found by solving for

its transpose) as follows.

Algorithm 1 Approximating the inverse of

Rx(s) =x(s)−
s∫
a

F1(s)G1(θ)x(θ)dθ −
b∫
s

F2(s)G2(θ)x(θ)dθ

1: Given: n, ϵ, [a, b], Fi, Gi. Set: U0 = V0 = I,N = 0.

2: for i ∈ {0, · · · , n} do si = a+ i(b−a)
n

3: C(si) =

[
F1(si) F2(si)

]
, B(si) =

 G1(si)

−G2(si)

, A(si) = B(si)C(si)

4: end for

5: while
(∑i=n

i=1 ∥A(si)∥
)k

≥ ϵ · k! do N = N + 1

6: for i ∈ {1, · · · , n} do

7: Uk+1(si) =
(b−a)
2n

j=i∑
j=1

[
A(sj) A(sj−1)

] Uk(sj)

Uk(sj−1)


8: Vk+1(si) =

(a−b)
2n

j=i∑
j=1

[
Vk(sj) Vk(sj−1)

] A(sj)

A(sj−1)


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9: end for

10: end while

11: for i ∈ {0, · · · , n} do

12: U(si) =
∑N

i=0 Uk(si) V (si) =
∑N

i=0 Vk(si)

13: U(si) = C(si)U(si) V (si) = V (si)B(si).

14: end for

15:

U11 U12

U21 U22

 = U(b) P =

 0 0

U−1
22 U21 I


16: Solve the problem

min
α,β∈Rd+1

n∑
i=0

∥Up(si)− U(si)∥22 + ∥Vp(si)− V (si)∥22

s.t. Up(s) = αcol(1, s, · · · , sd), Vp(s) = βcol(1, s, · · · , sd).

17: L1(s, t) = Up(s)(I − P )Vp(t) L2(s, t) = −Up(s)PVp(t) return L1, L2

The algorithm presented above finds an approximation of the inverse of R at

various locations si ∈ [a, b] and a polynomial is fit, using least-squares regression, at

the end to express R−1 as a PI operator of the form Π {I,L1,L2}.

Corollary 2.8, unfortunately, only works for P ∈ ΠΠΠ3. However, one can extend

this result, with some additional assumptions, to any P ∈ ΠΠΠ4 using a generalization

of a standard formula for block matrix inversion.

Lemma 2.10. Suppose Π

 P Q1

Q2 {Ri}

 ∈ ΠΠΠ4 with P invertible, then Π

 P Q1

Q2 {Ri}


is invertible if and only if Π

 ∅ ∅

∅ {Hi}

 is invertible where H0 = R0 and Hi(s, θ) =

Ri(s, θ)−Q2(s)P
−1Q1(θ). Furthermore, if Hi satisfy the conditions of Corollary 2.8

and R̂i are as defined therein, we have that

Π

 P Q1

Q2 {Ri}

−1

= Π

 I −P−1Q1

0 {I, 0, 0}

Π

P−1 0

0 {R̂i}

Π

 I 0

−Q2P
−1 {I, 0, 0}

 .

42



Proof. Suppose P is invertible. Then

Π

 P Q1

Q2 {Ri}

 =

M=︷ ︸︸ ︷
Π

 I 0

Q2P
−1 {I, 0, 0}


Q=︷ ︸︸ ︷

Π

 P 0

0 {Ri}


N=︷ ︸︸ ︷

Π

 I P−1Q1

0 {I, 0, 0}

 .

Clearly, M,N are invertible with

N−1= Π

 I −P−1Q1

0 {I, 0, 0}

 ,M−1= Π

 I 0

−Q2P
−1 {I, 0, 0}

 .

Hence invertibility of Π

 P Q1

Q2 {Ri}

 is now equivalent to invertibility of Π

 0 0

0 {Ri}

.
Now if R̂i are as defined in Corollary 2.8, we have

Q−1 = Π

 P 0

0 {Ri}

−1

= Π

 P−1 0

0 {R̂i}


which completes the proof.

The inversion formula for PI operators in Lemma 2.10 is expressed in terms of the

composition of PI operators. This implies the inverse is a PI operator, and using the

composition rules for PI operators listed above, we may obtain a precise expression

for the parameters in this inverse.

Π

 P̂ Q̂1

Q̂2 {R̂i}

 = Π

 P Q1

Q2 {Ri}

−1

For convenience, these are listed in Appendix B.3.

Note that while Lemma 2.10 requires invertibility of the matrix P , such invertibil-

ity is not necessary for invertibility of the operator P = Π

 P Q1

Q2 {Ri}

. However,

for controller reconstruction, we often require strict positivity of P to establish sta-

bility of the real part of the state – such as in the case of time-delay systems. In this

case, Lemma 2.10 is necessary and sufficient. However, the invertibility of P may be
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avoided if, instead, Π

 ∅ ∅

∅ {Ri}

 is invertible. Such invertibility is ensured in the

case of strict positivity of these operators – i.e., R0(s) ≥ ϵI. In this case, we consider

generalizing the second formula for block matrix inversion.

Lemma 2.11. Suppose P = Π

 P Q1

Q2 {Ri}

 ∈ ΠΠΠ4 with Π {Ri} invertible. Then P is

invertible if and only if the matrix

P̂ = P − Π

 ∅ Q1

∅ {∅}

Π−1
{Ri}Π

 ∅ ∅

Q2 {∅}


is invertible. Furthermore, if Hi = Ri satisfy the conditions of Corollary 2.8 and R̂i

are as defined therein, we have that

P−1 = U Π

 P̂−1 0

0 {R̂i}

V

where

U = Π

 I 0

0 {R̂i}

 Π

 I 0

−Q2 {Ri}

 V = Π

 I −Q1

0 {Ri}

 Π

 I 0

0 {R̂i}

 .

Proof. Suppose Π {Ri} is invertible. Then, by defining

R = Π

 I 0

0 {R̂i}

 ,

we have

Π

 P Q1

Q2 {Ri}

 =

M=︷ ︸︸ ︷
Π

 I Q1

0 {Ri}

R

Q=︷ ︸︸ ︷
Π

 P̂ 0

0 {Ri}


N=︷ ︸︸ ︷

RΠ

 I 0

Q2 {Ri}

 .

Clearly, M,N are invertible with N−1 = U and M−1 = V . Hence, the invertibility of

P is now equivalent to the invertibility of P̂ . Now if R̂i are as defined in Corollary 2.8,

we have

Q−1 = Π

 P̂ 0

0 {Ri}

−1

= Π

 P̂−1 0

0 {R̂i}


which completes the proof.
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Given a PI operator invertible, we may now reconstruct the inverse by using

Lemma 2.11 in combination with Algorithm 1 to find the solution of the Volterra

integral equations in Lemma 2.7. This will prove useful in Chapter 8 to reconstruct

observer and controller gains to be implemented on the original PDE system.

2.5 PIETOOLS

Lastly, we will briefly introduce PIETOOLS, a toolbox developed to perform the

operations introduced in the previous section using simple high-level programming

syntax. Specifically, this toolbox allows one to define and manipulate PI operators in

Matlab in a manner similar to the matrix variables. For example, one can declare a

PI operator P : RL2,1
2 [0, 1] → RL1,2

2 [0, 1] given by

P = Π


[
−1 2

]
3− s20 −s

s 0

 {

 1

s3

 ,

s− θ

θ

 ,

 s

θ − s

}


and assign parameters using the code

>> pvar s theta; opvar P;

>> P.P = [-1,2]; P.Q1 = (3-s^2); P.Q2 = [0,-s; s,0];

>> P.R.R0 = [1; s^3]; P.R.R1 = [s-theta; theta]; P.R.R2 = [s; theta-s];

Once defined, one can manipulate such PI operator variables, similar to matrices,

such as

1. For addition of two PI operators: A+B

2. For composition of two PI operators: A*B

3. For adjoint of a PI operator: A’

4. For concatenation: [A; B] or [A, B]
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5. For inversion: inv(A)

While the above operations simplify the process of setting up/parsing an LPI op-

timization problem in Matlab, most of the LPIs presented in this work have been

implemented as standard functions in PIETOOLS for convenience. Thus, provided

appropriate supporting libraries, such as SOSTOOLS, Multipoly toolbox by Seiler

(2013), and a supported SDP solver, are installed, one can solve such LPIs just using

simple function calls. While a detailed discussion about all the features offered by

PIETOOLS can be found in the user manual by Shivakumar et al. (2021), we will

mention a few key steps that will allow one to solve the numerical examples presented

in this work.

A standard PIETOOLS program/script will require the following steps to be per-

formed in proper order:

1. Define independent variables

>> pvar s t theta;

2. Define a PDE (either using the symbolic parser or the GUI). Here, we will

demonstrate define a reaction-diffusion PDE using the symbolic parser. Given

a PDE

ẋ(t, s) = 5x(t, s) + ∂2
sx(t, s) + w(t),

z(t) =

∫ 1

0

x(t, s)ds, x(t, 0) = ∂s(t, 1) = 0,

we can define the PDE in PIETOOLS as
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>> x=state(’pde’); z = state(’out’); w = state(’in’); pde = sys();

>> eqns = [diff(x,t)==5*x+diff(x,s,2)+w; z==int(x,s,[0,1];

subs(x,s,0)==0; subs(diff(x,s),s,1)==0];

>> pde = addequation(pde,eqns);

3. Convert PDE to its PIE form

>> pie = convert(pde,’pie’);

4. Set up an LPI optimization problem. For instance, to test stability, one can use

the code

>> opts = lpisettings(’heavy’);

>> [sol,P]= lpisolve(pie,opts,’stability’);

where sol is a structure that stores the optimization problem solution status,

P = P is the PI operator in the Lyapunov function V (x) = ⟨x,Px⟩ that proves

the stability of the PIE, and hence the PDE. Details on the proof behind these

conclusions will be presented in Chapters 5 and 6.

5. Simulate the PDE for some initial conditions and input using piesim as

>> opts.pde.ic = s*(s-1); % initial condition for x

>> opts.tf = 5; % simulation time in seconds

>> opts.N = 8; % number of Chebyshev bases

>> inp.w = sin(5*t); % input disturbance w(t)

>> [solution] = piesim(pde,opts,inp);
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where solution is a structure that stores the time-dependent solution xN(t, s)

that is an Nth-order Chebyshev approximation of the solution of the PDE,

x(t, s).

Likewise, one can solve various analysis, estimation, and control problems by

changing the third argument of the function lpisolve(), e.g., ’l2gain’ forH∞-norm

bound, ’hinf-estimator’ for H∞-optimal state observer design, ’hinf-control’

for H∞-optimal state-feedback controller synthesis. If solving an observer design

or controller synthesis problem, one can construct the closed-loop system using the

function call pie_cl= closedLoopPIE(pie,K,’control’); and then simulate using

piesim() function. The code required to run the numerical examples will not be

presented in the document; however, it can be found online in GitHub repository of

Shivakumar et al. (2020b).

The remainder of the thesis will utilize the concepts introduced in this chapter

to formulate the analysis, estimation, and control problems of linear PDEs in one

spatial dimension as convex LPI optimization problems that can be solved using

LMIs. However, we must first express PDEs that have 3 constraints and unbounded

and non-algebraic operators using PI operators that are algebraic. Furthermore, we

must show that such a transformation does not affect any of the system properties

that are being investigated. Therefore, Part I will focus on formally introducing the

class of PDEs that admit such representations and prove the properties of the new

representation.
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Part I

REPRESENTATION AND

PARAMETRIZATION OF

LINEAR

INFINITE-DIMENSIONAL

SYSTEMS
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Chapter 3

GENERALIZED PARTIAL DIFFERENTIAL EQUATIONS

3.1 Introduction

As briefly mentioned in Chapter 1, a universal parametric representation of linear

PDEs in one spatial dimension does not exist. However, to develop a computational

framework for the analysis, estimation, and control of PDEs, we need to establish

some standard representation for the PDEs so that a PDE can be defined unam-

biguously and passed as an input to this framework. Therefore, in this chapter, we

will introduce a parametric representation for linear PDE systems to encompass a

large class of PDEs, such as linear parabolic PDEs with nth-order spatial derivatives,

ODE coupling, integral terms, boundary values terms, and inputs all of which can be

present either in the dynamics of the PDE, the outputs, or the boundary conditions.

We will later derive a PIE representation before the analysis and design step for the

PDEs that can be represented in the parametric form proposed here.

Before presenting the complete parametric form of a general linear PDE model

considered in this work, let us illustrate a typical PDE model using a diffusion equa-

tion example to identify the various parameters needed to fully define a PDE:

ẋ(t, s) = c∂2
sx(t, s), s ∈ (0, 1), t ≥ 0

x(t, 0) = 0 x(t, 1) = 0,

x(t, ·) ∈ X = {x ∈ L2[0, 1] : ∂sx, ∂
2
sx ∈ L2[0, 1]}.

The first constraint, referred to as the ‘PDE dynamics’, dictates the change of state x

within the interior of the domain, s ∈ (0, 1). The two algebraic conditions, x(t, 0) = 0
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and x(t, 1) = 0, are referred to as ‘boundary conditions’ since these dictate the

value of the state x at the boundary. Lastly, the continuity constraints on the PDE

state x are specified by x(t, ·) ∈ X. In general, a PDE model is of interest only

if it is well-posed. While an exhaustive set of conditions for well-posedness may be

difficult to formulate, one can specify certain baseline conditions that are sensible

mathematically and useful in modeling a physical phenomenon. An example of such

baseline conditions is Hadamard’s criteria, proposed by Hadamard (1902), for well-

posedness, which are listed below:

� The problem has a solution.

� The solution is unique.

� The solution’s behavior changes continuously with the initial conditions.

The first criterion, although it is the most fundamental requirement, is also the most

vague requirement because the criterion itself does not specify what a solution is or

what properties a solution must have. Typically, in the case of PDEs, the notion of a

solution is obtained from the physics that is being modeled. In the heat equation PDE

modeling the temperature distribution in a 1D rod, for instance, this criterion would

imply that the solution must be sufficiently continuous for the spatial derivatives and

boundary values to be well-defined. However, many PDEs used to model various

phenomenon, if not most, do not have a solution that is differentiable in the classical

sense but such PDEs have important applications and must not be excluded — e.g.,

transport equation used to model traffic flow. Hence, to satisfy the first criterion of

Hadamard, we require the x to be only weakly differentiable and allow PDEs to have

weakly differentiable solutions to expand the class of PDEs that can be considered

well-posed.
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The latter two of Hadamard’s criteria are more direct in the sense they can be

stated mathematically as: if x and y are solutions of the PDE then x = y, and if

x(0, s) is perturbed by δ > 0 then x(t, s) is perturbed by some ϵ > 0. These two crite-

ria are motivated from the perspective of application. Uniqueness is required because

if a model of the system has multiple solutions, then one cannot possibly anticipate

the solution trajectory that will be taken by the system — undermining the primary

purpose (of analysis/control) of modeling the system. The last criterion ensures that

minor errors in initial conditions, which are inevitable due to limited precision and

numerical errors, do not lead to large errors later on. To summarize, any well-posed

solution to the above heat equation PDE must: a) satisfy all 3 constraints, strongly

or weakly; b) must be unique; and c) depend continuously on initial conditions.

Since the first criterion is the most ambiguous of the three, we will look into it

more thoroughly in this chapter. Particularly, since the criterion is determined by the

dynamics, BCs, and continuity constraints, we will focus on these 3 constraints. The

3 constraints are independent to some extent and can, in fact, be parameterized sepa-

rately, as will be shown later. The constraints in other PDEs, with more complicated

terms such as ODE coupling, integral terms, etc., also conform to this categorization.

Therefore, instead of providing more illustrations of such PDEs, we will skip a beat

and directly consider the exhaustive class of PDEs (with ODEs, inputs, and outputs)

that will be handled in the dissertation while defining the standard parametrization.

In the following sections, we first parameterize the class of ODE-PDE models for

which we may solve the analysis, estimation, and control problems. To account for

the generality of the class of PDEs being considered, we will see that a large number

of constraints and parameters are required in the standard representation. Further-

more, the number of these constraints and parameters will depend on the type of PDE

and thus is not a fixed quantity. Therefore, to simplify the notation and analysis, we

52



will compartmentalize the constraints of these models into two subsystems – ODE

and PDE subsystems – that are interconnected; See Figure 3.3. This class of inter-

connected ODE-PDE models will be referred to as ‘Generalized Partial Differential

Equations’ (GPDEs). Having separated the constraints into subsystems, we then fur-

ther categorize the parameters associated with these constraints based on the type of

constraint, namely, dynamics, boundary conditions, and continuity constraints. The

constraints and parametrization of the ODE subsystem are defined in Section 3.2.1,

whereas the constraints and the parametrization of the PDE subsystem are defined

in Section 3.2.2. Finally, the subsystems are combined in Section 3.2.3 to obtain the

full standard representation of a GPDE system.

3.2 Parametrization of GPDEs

In this section, we will introduce the parameters of the ODE and PDE subsystems

separately. While the parameters of an ODE subsystem can be represented by a

single set containing 12 matrices, the parameters of a PDE subsystem would require

3 different sets since a PDE is defined by 3 different types of constraints, namely, the

dynamics, the boundary conditions, and the continuity constraints. Thus, we will

need a total of 4 sets of parameters to fully define a GPDE as will be shown in the

following subsections.

3.2.1 ODE Subsystem

The ODE subsystem of the GPDE model, illustrated in Figure 3.1, is a typical

state-space representation with real-valued inputs and outputs. These inputs and

outputs are finite-dimensional and include both the interconnection with the PDE

subsystem and the inputs and outputs of the GPDE model as a whole. Specifically,

we partition both the input and output signals into 3 components, differentiating
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these channels by function. The input channels are: the control input to the GPDE

(u(t) ∈ Rnu), the exogenous disturbance/source driving the GPDE (w(t) ∈ Rnw) and

the internal feedback input (r(t) ∈ Rnr) which is the output of the PDE subsystem.

The output channels of the ODE subsystem are: the regulated output of the GPDE

(z(t) ∈ Rnz); the sensed outputs of the GPDE (y(t) ∈ Rny); and the output from the

ODE subsystem which becomes the input to the PDE subsystem (v(t) ∈ Rnv).

Definition 3.1 (Solution of an ODE Subsystem). Given matrices A, Bxw, Bxu, Bxr,

Cz, Dzw, Dzu, Dzr, Cy, Dyw, Dyu, Dyr, Cv, Dvw, Dvu of appropriate dimension, we

say {x, z, y, v} with {x(t), z(t), y(t), v(t)} ∈ Rnx ×Rnz ×Rny ×Rnv satisfies the ODE

with initial condition x0 ∈ Rnx and input {w, u, r} if x is differentiable, x(0) = x0

and for t ≥ 0 

ẋ(t)

z(t)

y(t)

v(t)


=



A Bxw Bxu Bxr

Cz Dzw Dzu Dzr

Cy Dyw Dyu Dyr

Cv Dvw Dvu 0





x(t)

w(t)

u(t)

r(t)


. (3.1)

Notation: For brevity, we collect all matrix parameters from the ODE subsystem in

Equation (3.1) and introduce the shorthand notation Go which represents the labeled

tuple of such parameters as

Go = {A,Bxw, Bxu, Bxr, Cz, Dzw, Dzu, Dzr, Cy, Dyw, Dyu, Dyr, Cv, Dvw, Dvu} . (3.2)

When this shorthand notation is used, it is presumed that all parameters have ap-

propriate dimensions. Further note that, while the size of the matrices may vary, the

number of parameters in this set, Go, remain fixed.
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w, u
ODE subsystem

z, y
r v

Figure 3.1: Depiction of the ODE subsystem for use in defining a GPDE. All external

input signals in the GPDE model pass through the ODE subsystem and are labeled as

u(t) ∈ Rnu and w(t) ∈ Rnw , corresponding to control input and disturbance/forcing

input. Likewise, all external outputs pass through the ODE subsystem and are labeled

y(t) ∈ Rny and z(t) ∈ Rnz , corresponding to measured output and regulated output.

All interaction with the PDE subsystem is routed through two vector-valued signals,

where r(t) ∈ Rnr is the sole output of the PDE subsystem and v(t) ∈ Rnv is the sole

input to the PDE subsystem.

3.2.2 PDE Subsystem

Our parametrization of the PDE subsystem is divided into three parts: the conti-

nuity constraints, the in-domain dynamics, and the BCs. The continuity constraints

specify the existence of partial derivatives and boundary values for each state as re-

quired by the in-domain dynamics and BCs. The BCs are represented as a real-valued

algebraic constraint subsystem that maps the distributed state and inputs to a vector

of boundary values. The in-domain dynamics (or generating equation) specify the

time derivative of the state, x̂(t, s), at every point in the interior of the domain, and

are expressed using integral, Dirac, and N th-order spatial derivative operators. The

PDE subsystem is illustrated in Figure 3.2. For simplicity, no external inputs or out-

puts are defined for the PDE subsystem since these external signals may be included

by routing the desired signal through the ODE subsystem using the internal signals,

v(t) and r(t).
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PDE+BC

+continuity constraints

x̂F x̂,Bx̂
Differential operator

Dirac operator

Figure 3.2: Depiction of the PDE subsystem for defining a GPDE. All interaction of

the PDE subsystem with the ODE subsystem is routed through the two vector-valued

signals, r and v, where r(t) ∈ Rnr is an output of the PDE subsystem (and input to

the ODE subsystem) and v(t) ∈ Rnv is an input to the PDE subsystem (and output

from the ODE subsystem). Although there are no external inputs and outputs of the

GPDE, such signals can be routed to and from the PDE subsystem through the ODE

subsystem using r and v.

The Continuity Constraint

The ‘continuity constraint’ partitions the state vector of the PDE subsystem, x̂(t, ·),

and specifies the differentiability properties of each partition as required for existence

of the partial derivatives in the generator and limit values in the boundary condition.

This partition is defined by the parameter n ∈ NN+1 = {n0, · · ·nN}, wherein ni

specifies the dimension of the ith partition vector so that x̂i(t, s) ∈ Rni . The partitions

are ordered by increasing differentiability so that

x̂(t, ·) =


x̂0(t, ·)

...

x̂N(t, ·)

 ∈ W n =


W n0

0

...

W nN
N

 .

Given the partition defined by n ∈ NN+1, and given x̂ ∈ W n, we would like to list all

well-defined partial derivatives of x̂. To do this, we first define nx̂ = |n|1 =
∑N

i=0 ni
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to be the number of states in x̂, nSi
=
∑N

j=i nj ≤ nx̂ to be the total number of i-times

differentiable states, and nS =
∑N

i=1 nSi
to be the total number of possible partial

derivatives of x̂ as permitted by the continuity constraint.

Notation: For indexed vectors (such as n or x̂) we occasionally use the notation

x̂i:j to denote the components i to j. Specifically, x̂i:j = col(x̂i, · · · , x̂j), ni:j :=∑j
k=i nk and nSi:j

=
∑j

k=i nSk
.

Next, we define the selection operator Si : Rnx̂ → RnSi which is used to select

only those states in x̂ which are at least i-times differentiable. Specifically, for x̂ ∈

W n, we have Si =

[
0nSi

×nx̂−nSi
InSi

]
, so that (Six̂)(s) =


x̂i(s)

...

x̂N(s)

 . We may now

conveniently represent all well-defined ith-order partial derivatives of x̂ as ∂i
sS

ix̂ so

that

(∂i
sS

ix̂)(s) =


∂i
sx̂i(s)

...

∂i
sx̂N(s)

 and (F x̂)(s) =



x̂(s)

(∂sSx̂)(s)

...

(∂N
s SN x̂)(s)


where F concatenates all

the ∂i
sS

ix̂ for i = 0, · · · , N — creating an ordered list including both the PDE state,

x̂, as well as all nS possible partial derivatives of x̂ as permitted by the continuity

constraint and the vector (F x̂)(s) ∈ RnS+nx .

This notation also allows us to specify all well-defined boundary values of x̂ ∈ W n

and of its partial derivatives. Specifically, we may construct (Cx̂)(s) ∈ RnS , the vector

of all absolutely continuous functions generated by x̂ and its partial derivatives. Using

Cx̂, we may then construct Bx̂ ∈ R2nS , the list all possible boundary values of x̂ ∈ W n.
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Specifically, Cx̂ and Bx̂ are defined as

Cx̂(s) =



(Sx̂)(s)

(∂sS
2x̂)(s)

...

(∂N−1
s SN x̂)(s)


and Bx̂ =

(Cx̂)(a)
(Cx̂)(b)

 . (3.3)

Combining F x̂ and Bx̂, we obtain a complete list of all well-defined terms which may

appear in either the in-domain dynamics or BCs.

Boundary Conditions (BCs)

Given the notational framework afforded by the continuity condition, and equipped

with our list of well-defined terms (F x̂ and Bx̂), we may now parameterize a general-

ized class of BCs consisting of a combination of boundary values, integrals of the PDE

state, and the effect of the input signal, v. Specifically, the BCs are parameterized by

the square integrable function BI : [a, b] → RnBC×(nS+nx̂) and matrices Bv ∈ RnBC×nv

and B ∈ RnBC×2nS as∫ b

a

BI(s)(F x̂(t))(s)ds+

[
Bv −B

] v(t)

Bx̂(t)

 = 0 (3.4)

where nBC is the number of user-specified BCs. For reasons of well-posedness, we

typically require nBC = nS. If fewer BCs are available, the continuity constraint is

likely too strong – the user is advised to consider whether all the partial derivatives

and boundary values are actually used in defining the PDE subsystem.

Now that we have parameterized a general set of BCs, we embed these BCs in

what is typically referred to as the domain of the infinitesimal generator – which

combines the BCs and continuity constraints into a set of acceptable states.

Xv =

x̂ ∈ W n[a, b] :
∫ b

a
BI(s)(F x̂)(s)ds+

[
Bv −B

] v

Bx̂

 = 0

 (3.5)
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The set Xv is used to restrict the state and initial conditions as x̂(t) ∈ Xv(t) and

x̂(0) = x̂0 ∈ Xv(0).

Notation: For convenience, we collect all the parameters which define the constraint

in Equation (3.4) and use Gb to represent the labeled tuple of such parameters as

Gb = {B, BI , Bv} . (3.6)

When this shorthand notation is used, it is presumed that all parameters have ap-

propriate dimensions.

In-Domain Dynamics of the PDE Subsystem

Having specified the continuity constraint and BCs using {n,Gb}, we once again

use our list of well-defined terms (F x̂ and Bx̂) to define the in-domain dynamics

of the PDE subsystem and the output to the ODE subsystem. These dynamics

are parameterized by the functions A0(s), A1(s, θ), A2(s, θ) ∈ Rnx̂×(nS+nx̂), Cr(s)

∈ Rnr×(nS+nx̂), Bxv(s) ∈ Rnx̂×nv , Bxb(s) ∈ Rnx̂×2nS , and matrices Drv ∈ Rnr×nv and

Drb(s) ∈ Rnr×2nS as follows. ˙̂x(t, s)

r(t)

 =

A0(s)(F x̂(t))(s)

0

+

Bxv(s) Bxb(s)

0 Drb


 v(t)

Bx̂(t)


+


s∫
a

A1(s, θ)(F x̂(t))(θ)dθ +
b∫
s

A2(s, θ)(F x̂(t))(θ)dθ∫ b

a
Cr(θ)(F x̂(t))(θ)dθ

 (3.7)

Note: Many commonly used PDE models are defined solely by A0. For example,

if we consider ut = λu+ uss, then A0 =

[
λ 0 1

]
and all other parameters are zero.

The motivation for the parameters in this representation (other than A0) can be

summarized as follows: The kernels A1, A2 model non-local effects of the distributed

state; the function Bxv represents the distributed effect of the disturbance/forcing
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function v on the generating equation; and Bxb represents the distributed effect of

the boundary values on the generating equation. In addition: Cr is used to model

the influence of the PDE subsystem state on the dynamics and outputs of the ODE

subsystem; Drb is used to model the effect of boundary values of the PDE subsystem

on the dynamics and outputs of the ODE subsystem.

Notation: For convenience, we collect all parameters from the in-domain dynamics

of the PDE subsystem (Equation (3.7)) and use Gp to represent the labelled tuple of

such parameters as

Gp = {A0, A1, A2, Bxv, Bxb, Cr, Drb} . (3.8)

When this shorthand notation is used, it is presumed that all parameters have ap-

propriate dimensions. We may now define a notion of solution for a PDE subsystem.

3.2.3 GPDE: Interconnection of ODE and PDE Subsystems

Given the definition of ODE and PDE subsystems, a GPDE model is the mutual

interconnection of these subsystems through the interconnection signals (r, v) and is

collectively defined by Equations (3.1) and (3.7). This interconnection is illustrated

in Figure 3.3.

Given suitable inputs w,u, for a GPDE model, parameterized by {n,Go,Gb,Gp},

we define the continuity constraint and time-varying BCs by {x(t), x̂(t)} ∈ Xw(t),u(t)

where

Xw,u =


x
x̂

 ∈ Rnx ×Xv | v = Cvx+Dvww +Dvuu

 . (3.9)

Illustrative Example of the GPDE Representation

In this subsection, we illustrate the process of identifying the GPDE parameters of

a given system. We begin this process by introducing a conventional PDE repre-
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Figure 3.3: A GPDE is the interconnection of an ODE subsystem (an ODE with

finite-dimensional inputs w, u, v and outputs z, y, r) with a PDE subsystem (N th-

order PDEs and BCs with finite-dimensional input r and output v). The BCs and

internal dynamics of the PDE subsystem are specified in terms of all well-defined

spatially distributed terms as encoded in F x̂(t) and all well-defined limit values as

encoded in Bx̂(t).

sentation. We then divide the system into ODE and PDE subsystems and focus on

identifying the continuity constraint for the PDE subsystem – always the least re-

strictive constraint necessary for existence of the partial derivatives and boundary

values. We then proceed to identify the remaining parameters.

Example 3.1. (Damped Wave equation with delay and motor dynamics) Let us con-

sider a wave equation

η̈(t, s) = ∂2
sη(t, s), defined on the interval s ∈ [0, 1], (3.10)

to which we apply the typical boundary feedback law ηs(t, 1) = −ηt(t, 1), but where

there is an actuator disturbance and where the control is implemented using a DC
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motor and where the output from the DC motor experiences a distributed delay, so

that ηs(t, 1) = w(t) +
∫ 0

−τ
µ(s/τ)T (t + s) where T (t) is the output of the DC motor

and µ(s) is a given multiplier. The delay is represented using a transport equation

with distributed state p(t, s) on the interval [−1, 0] so that

ṗ(t, s) =
1

τ
ps(t, s), p(t, 0) = T (t), η(t, 1) =

0∫
−1

µ(s)p(t, s)ds.

The DC motor dynamics relate the voltage input, u(t) to the torque T (t) through the

current, i(t) as

i̇(t) =
−R

L
i(t) + u(t) T (t) = Kti(t).

Finally, the sensed output is the typical feedback signal ηt(1, t) and the regulated output

is a combination of the integral of the displacement and controller effort so that

z(t) =

∫ 1

0
η(t, s)ds

u(t)

 , y(t) = ηt(1, t).

Since we require all states to have first order derivatives in time and be defined on

same spatial interval, we introduce the change of variables ζ1 = η, ζ2 = η̇, ζ3(t, s) =

p(t, s− 1). A complete list of equations is now i̇(t) = −R
L
i(t) + u(t) and

ζ̇1(t, s) = ζ2(t, s), ζ̇2(t, s) = ∂2
sζ1(t, s),

ζ̇3(t, s) =
1

τ
∂sζ3(t, s), ζ1(t, 0) = 0, ζ3(t, 1) = Kti(t),

∂sζ1(t, 1) = w(t) +

∫ 1

0

µ(s− 1)ζ3(t, s)ds,

z(t) =

∫ 1

0
ζ1(t, s)ds

u(t)

 , y(t) = ζ2(t, 1), s ∈ [0, 1], t ≥ 0.

ODE Subsystem: We start by identifying the parameters of the ODE subsystem.

Since i(t) is the only finite dimensional state we set x(t) = i(t) to get ẋ(t) = −R
L
x(t)+

u(t). The ODE subsystem influences the PDE subsystem via signals w(t) and T (t).
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The effect of the PDE subsystem on the regulated and observed outputs (z and y,

respectively) is routed through r(t). The outputs, z, y and internal signals, v, r, are

now defined as

v(t) =

T (t)
w(t)

 =

Kt

0

 i(t) +

0
1

w(t),

r(t) =

∫ 1

0
ζ1(t, s)ds

ζ2(t, 1)

 ,

z(t)
y(t)

 =


0

u(t)

0

+


1 0

0 0

0 1

 r(t).

Expressing these equations in the form of Equation (3.1), we obtain



ẋ(t)

z(t)

y(t)

v(t)


=



−R/L 0 1 00
0


0
0


0
1


1 0

0 0


0 0 0

[
0 1

]
Kt

0


0
1


0
0


0
0







x(t)

w(t)

u(t)

r(t)


.

Extracting the submatrices of this ODE subsystem, we obtain an expression for Go

which has the following nonzero parameters: A = −R
L
, Bxu = 1, Dyr =

[
0 1

]
,

Dzu =

0
1

, Cv =

Kt

0

, Dvw =

0
1

, Dzr =

1 0

0 0

 .

PDE subsystem: Next, we need to define n, Gb, and Gp.

Continuity Constraint: To identify the continuity constraint, n, we consider the re-

quired partial derivatives and limit values for the three distributed states: ζ1, ζ2 and

ζ3. For ζ1, ∂
2
sζ1 appears in the in-domain dynamics and the BCs involve ζ1(t, 0) and

∂sζ1(t, 1). The least restrictive continuity constraint that guarantees the existence of
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all three terms is ζ1 ∈ x̂2. Next, no partial derivatives of ζ2 are needed, but the limit

value ζ(t, 1) appears in the BCs – so we restrict ζ2 ∈ x̂1. Finally, ∂sζ3 appears in the

in-domain dynamics and ζ3(t, 1) appears in the BCs – implying ζ3 ∈ x̂1. We conclude

that n = {n0, n1, n2} = {0, 2, 1} and the GPDE state is

x̂ =


x̂0

x̂1

x̂2

 =



∅ζ2(t, s)
ζ3(t, s)


ζ1(t, s)


Boundary Conditions: For this definition of the continuity constraint, n, we have

nx̂ = 3, nS0 = 3, nS1 = 3, nS2 = 1 and nS = 4 – i.e., there are three 0th-order,

three 1st-order and one 2nd-order differentiable states. In addition, nx̂ + nS = 7

indicates there are 7 possible distributed terms in F x̂ and 2nS = 8 indicates there are

8 possible limit values in Bx̂. Specifically, recalling that Six̂ is the vector of all ith

order differentiable states, we have

S0x̂ =


x̂0

x̂1

x̂2

=


ζ2

ζ3

ζ1

, S1x̂ =

x̂1

x̂2

=


ζ2

ζ3

ζ1

, S2x̂ = x̂2 = ζ1,

F x̂ = col(ζ2, ζ3, ζ1, ∂sζ2, ∂sζ3, ∂sζ1, ∂
2
sζ1),

Cx̂ = col(ζ2, ζ3, ζ1, ∂sζ1) Bx̂ =

Cx̂(0)
Cx̂(1)

 .

We now define the BCs. Recall that these appear in the form

∫ 1

0

BI(s)(F x̂(t))(s)ds+

[
Bv −B

] v(t)

Bx̂(t)

 = 0.

Checking our BCs, we note that ζ1(t, 0) = 0 can be differentiated in time to obtain
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ζ2(t, 0) = 0. Collecting all the BCs, and placing these in the required form, we have

∫ 1

0



0

0

0

µ(s− 1)ζ3(s)


ds =



ζ1(0)

ζ2(0)

ζ3(1)

∂sζ1(1)


+



0

0

−v1

−v2


Recalling the expansions of F x̂ and Bx̂, we may identify the parameters in Gb as

B =



0 0 1 01,2 0 0 0

1 0 0 01,2 0 0 0

0 0 0 01,2 1 0 0

0 0 0 01,2 0 0 1


, Bv =

02
I2

 , BI(s) =

03,1 03,1 03,5

0 µ(s− 1) 01,5

 . (3.11)

In-Domain Dynamics: To find the parameters Gp, first recall that PDE dynamics

have the form ˙̂x(t, s)

r(t)

=

A0(s)(F x̂(t))(s)

0

+

Bxv(s) Bxb(s)

0 Drb


 v(t)

Bx̂(t)


+

∫ s

a
A1(s, θ)(F x̂(t))(θ)dθ +

∫ b

s
A2(s, θ)(F x̂(t))(θ)dθ∫ b

a
Cr(θ)(F x̂(t))(θ)dθ

 .

Recalling the expansion of F x̂, we represent the dynamics as

˙̂x(t, s)=


∂2
sζ1(t, s)

1/τ∂sζ3(t, s)

ζ2(t, s)

=


0 01,3 0 0 1

0 01,3
1
τ

0 0

1 01,3 0 0 0


︸ ︷︷ ︸

A0

(F x̂(t))(s)
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Likewise, from the definition of r(t), we have

r(t) =

∫ 1

0
ζ1(t, s)ds

ζ2(t, 1)

 =

1∫
0

Cr︷ ︸︸ ︷01,2 1 01,4

01,2 0 01,4

(F x̂(t))(θ)dθ +

01,4 0 01,3

01,4 1 01,3


︸ ︷︷ ︸

Drb

Bx̂(t)

Thus we have A0, Cr, Drb – the only nonzero terms in Gp.

3.3 Definition of Solutions

Although Hadamard’s criteria for well-posedness specify the nature of a solution,

they do not define the solution itself. In the case of GPDEs, one must specify con-

straints on the continuity and differentiability properties for the solution of a GPDE

model while ensuring that the solution is unique. These definitions depend on the

specific GPDE under consideration and cannot be standardized. However, to build a

computational framework, one needs to have a general definition regardless. There-

fore, in this work, we will assume the existence of a well-posed weak solution for

the GPDEs and only consider the systems that satisfy this criterion. The motive

behind using a weak solution lies in the fact that many PDEs do not have classical

solutions or strong solutions – i.e., the solution may not be differentiable everywhere

in space or time. For instance, if we consider a transport PDE, ẋ(t, s) = −∂sx(t, s),

with boundary conditions x(t, 0) = 0 and initial condition x(0, s) = f(s). Then,

there exists a solution that transports the initial condition to the right as per the rule

x(t, s) = f(s− t) when s > t and x(t, s) = 0 when s ≤ t. While the solution can be

differentiable if f is sufficiently smooth, there may exist a solution to the transport

PDE that is not differentiable. Likewise, other PDEs can have solutions that may

not be differentiable at all points – an outcome contingent on the input, boundary

conditions, and initial conditions. Thus, to accommodate such solutions, one must
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relax the differentiability criteria, which leads to the definition of a generalized or

weak solution.

Having specified this assumption about the solution of a GPDE, we can now

formally define a solution for such a system. For convenience, we define the solutions

for the subsystem separately and then the full GPDE model.

Definition 3.2 (Solution of a PDE Subsystem). For given x̂0 ∈ Xv(0) and v ∈

Lnv
2e [R+] with Bvv ∈ W 2nS

1e [R+], we say that {x̂, r} satisfies the PDE subsystem de-

fined by n ∈ NN+1 and {Gb,Gp} (defined in Equations (3.6) and (3.8)) with initial

condition x̂0 and input v if r ∈ Lnr
2e [R+], x̂(t) ∈ Xv(t) for all t ≥ 0, x̂ is Frechét

differentiable with respect to the L2-norm almost everywhere on R+, x̂(0) = x̂0, and

Equation (3.7) is satisfied for almost all t ≥ 0.

The above definition is analogous to a weak solution of a PDE; See Evans (2022) for

standard definitions of solutions. Next, we can extend this concept of weak solutions

to a GPDE model by augmenting the conditions satisfied by the ODE solution and

the interconnection signals.

Definition 3.3 (Solution of a GPDE model). For given {x0, x̂0} ∈ Xw(0),u(0) and

w ∈ Lnw
2e [R+], u ∈ Lnu

2e [R+] with BvDvww ∈ W 2nS
1e [R+] and BvDvuu ∈ W 2nS

1e [R+], we

say that {x, x̂, z, y, v, r} satisfies the GPDE defined by {n, Go, Gb, Gp} (See Equa-

tions (3.2), (3.6) and (3.8)) with initial condition {x0, x̂0} and input {w, u} if

z ∈ Lnz
2e [R+], y ∈ L

ny

2e [R+], v ∈ Lnv
2e [R+], r ∈ Lnr

2e [R+], {x(t), x̂(t)} ∈ Xw(t),u(t) for

all t ≥ 0, x is differentiable almost everywhere on R+, x̂ is Frechét differentiable

with respect to the L2-norm almost everywhere on R+, x(0) = x0, x̂(0) = x̂0, and

Equations (3.1) and (3.7) are satisfied for almost all t ≥ 0.

Note there are many GPDEs that may not even have weak solutions.

One would need to relax the differentiability requirement further to ensure the PDE
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is well-posed. However, such GPDEs are outside the scope of this work and typically,

do not have a PIE representation.

3.4 Conclusion

In this chapter, we briefly introduced the concept of a generalized PDE (GPDE)

parametric representation and defined a notion of weak solutions for systems in this

parametric form. Specifically, we introduced a parametric representation of the PDE

model class — encompassing ODEs coupled with PDEs, mixed-order spatial deriva-

tives, integrals of the state, control inputs and disturbances, and sensed and regulated

outputs. Although the set of parameters is inconsistent and highly dependent on the

PDE, the type of BCs, and the continuity constraint, we managed to cover a large

class of GPDEs using this parametric representation. This parametric representation

was mainly achieved by utilizing a systematic approach: a) separating finite and in-

finite dimensional signals; b) identifying the continuity constraint parameter, n; and

c) initializing all possible parameters that can appear in PDEs with such an n and

assigning the non-zero parameters of a PDE in non-standard form to the appropriate

initialized parameters in the standard form.

Using this systematic approach, we have ensured that any mixed-order GPDE

can be represented in this form by a fixed set of parameters – a necessity when

building a computational framework that takes GPDEs as input. As will be shown in

Chapter 5, this standard representation also helps in identifying GPDEs that admit a

PIE representation as well as obtain analytic formulae to find the PIE representation

directly from the parameters of the GPDE.
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Chapter 4

PARTIAL INTEGRAL EQUATIONS

4.1 Introduction

As briefly mentioned in the previous chapter Chapter 3, we will now formally

introduce the class of Partial Integral Equations (PIE) and a universal parametric

representation of systems governed by PIE models. While the benefits of a PIE

model were discussed earlier in Chapters 1 and 2, we will briefly reiterate some of the

key features of a PIE model here to summarize the motivation behind such models.

The distinguishing feature of the class of PIE models is its parametrization using the

∗-algebras of PI operators (ΠΠΠi and ΠΠΠp
i ). In contrast to differential and Dirac operators

that constitute a majority of the parameters defining a GPDE, all the parameters of

PIE – i.e., PI operators – have the following properties:

1. Algebraic Structure The set of PI operators is a subspace of L(L2) – the

space of bounded linear operators on the Hilbert space L2. PI operators form

*-algebras, denoted ΠΠΠi, being closed under addition, composition, and transpo-

sition (See the Lemmas presented in Appendix H of the paper by Shivakumar

et al. (2022)). In addition, ΠΠΠ3 and ΠΠΠ4 are unital algebras – implying that these

operators inherit most of the properties of matrices, including operations that

preserve positivity.

2. Parametrization by Polynomials The subspaces of ΠΠΠi with polynomial pa-

rameters, denoted by ΠΠΠp
i , also form a *-subalgebra. PIEs that represent PDE

models are typically parameterized by operators in ΠΠΠp
i . Because polynomials
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admit a linear parametrization using coefficient vectors, and because multiplica-

tion, addition, and integration reduce to algebraic operations on these coefficient

vectors, the operations involving operators in ΠΠΠp
i can typically be performed in

polynomial time.

3. Computation via PIETOOLS Most matrix operations defined in Matlab

have a ΠΠΠp
i equivalent, which is easy to compute. These operations have been

embedded into an opvar class in the MATLAB toolbox PIETOOLS developed

by Shivakumar et al. (2020b). This toolbox also allows one to solve Linear PI

Inequality Optimization (LPIs) problems, which is a natural extension of the

class of Linear Matrix Inequality (LMI) optimization problems.

In addition to the simplicity of computationally handling PI operators of a PIE

model in comparison to handling unbounded differential operators of a GPDE model,

the PIE models themselves offer certain benefits. The primary benefit is the absence

of auxiliary constraints like BCs or continuity requirements. However, there are

some secondary benefits that are stated below and must be noted, because they

have significance in the context of computational analysis/control. These secondary

benefits can be summarized as:

1. Known map from GPDE model to PIE model For the large class of

well-posed linear GPDE models defined in this paper, we have explicit formulae

for the construction of an associated PIE model, including the map from PIE

solution to GPDE solution. In addition, most GPDE models map to PIE models

parameterized by PI operators with polynomial parameters.

2. State-Space Structure Because PIE models are parameterized by the PI

*-algebra of bounded linear operators on L2, PIEs inherit many of the bene-

fits of the state-space representation of linear ODEs. This implies that many
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numerical methods designed for analysis, control, and simulation of ODEs in

state-space form may be extended to PIEs. Specifically, many LMIs for analysis

and control of ODEs have been extended to PIEs, including, stability analysis

as shown by Peet (2021), L2-gain analysis as shown by Shivakumar et al. (2019),

H∞-optimal estimation as shown by Das et al. (2019), H∞-optimal control as

shown by Shivakumar et al. (2020a), and robust stability/performance as shown

by Das et al. (2020) and Wu et al. (2021).

3. Universal Methods A direct consequence of the PIE models being defined

by a single differential equation with no further constraints on the state, such

as BCs or continuity constraints, is that it allows us to develop universal algo-

rithms for analysis, control, and simulation, which apply to any well-posed PIE

model. Examples of such algorithms can be found in the toolbox developed by

Shivakumar et al. (2020b).

4.2 Parametrization of PIEs

A Partial Integral Equation (PIE) is an extension of the state-space represen-

tation of ODEs (vector-valued first-order differential equations on Rn) to spatially

distributed states on the product space RL2. Analogous to the 9-matrix optimal con-

trol framework developed for state-space systems, a PIE system is parameterized by

twelve 4-PI operators as


T ẋ
¯
(t)

z(t)

y(t)

 =


A B1 B2

C1 D11 D12

C2 D21 D22



x
¯
(t)

w(t)

u(t)

−


Twẇ(t) + Tuu̇(t)

0

0

 ,

x
¯
(0) = x

¯
0 ∈ RLm,n

2 [a, b], (4.1)
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where z(t) ∈ Rnz is the regulated output, y(t) ∈ Rny is the sensed output, w(t) ∈ Rnw

is the disturbance, u(t) ∈ Rnu is the control input, and x
¯
(t) ∈ RLnx,nx̂

2 is the internal

state. Note that, unlike the 9-matrix representation of linear state-space ODEs, a

PIE system has 3 additional parameters: T that appears on the left hand side of the

equation and two parameters, Tw and Tu, that appear on the right hand side. The

parameters Tw and Tu are associated with the time derivative of the disturbance input

w and control input u, respectively. Such terms corresponding to the time derivative

of the inputs typically do not appear in the case of ODEs. However, they are quite

common in the case of PIEs because inputs acting at the boundary of a GPDE model

take the form of time derivatives when converted to a PIE form.

No Spatial Derivatives or Boundary Conditions: Another feature to note

is that a PIE system does not permit spatial derivatives – only a first-order derivative

with respect to time. Since state of the PIE system, x
¯
∈ RL2[a, b], is an equivalence

class of functions, it is not necessarily well-defined at any given spatial point. Thus,

one cannot specify BCs in the PIE framework.

Before formalizing the definition of solution for a PIE system, let us note two sig-

nificant features of this definition. First, we observe that PIEs allow for the dynamics

to depend on the time-derivative of the input signals: ∂t(Tww) and ∂t(Tuu). Through

some slight abuse of notation, in this paper we will use expressions such

as T ẋ
¯
to represent ∂t(T x

¯
), Twẇ to represent ∂t(Tww), and Tuu̇ to represent

∂t(Tuu).

Second, the internal state of the solution of a PIE system, x
¯
, is required to be

Frechét differentiable. Recall that, from the definition of the Frechét derivative, a

function x
¯
: U → X is Frechét differentiable if there exists a linear operator D : X →

Y ⊆ X such that

lim
h→0

∥x
¯
(t+ h)− x

¯
(t)−Dx

¯
(t)∥X

h
= 0.
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Here, D is called the derivative operator. In the case of PIEs, we will require T x
¯
to be

Frechét differentiable (instead of just x
¯
) since this corresponds to the differentiability

of the GPDE state x = T x
¯
.

Notation: For brevity, we collect the 12 PI parameters that define a PIE system

in Equation (4.1) and introduce the shorthand notation GPIE which represents the

labeled tuple of such system parameters as

GPIE = {T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22} .

When this shorthand notation is used, it is presumed that all parameters have ap-

propriate dimensions.

4.3 Definition of Solutions

Just like in the case of GPDEs, we use weak solutions of PIE systems for analysis

and control in the future chapters. Therefore, we first need to define a notion of

weak solutions. Unlike the case of GPDEs, the solution of a PIE does not satisfy

any boundary conditions and hence is not necessarily continuous in space. However,

it does satisfy an initial condition and has a time derivative almost everywhere and

hence must be differentiable in time. These requirements, in fact, arise due to the

invertible mapping between a GPDE solution and its associated PIE solution. To be

precise, all the PIEs considered in this work are associated with a GPDE, in which

case, the solution of a GPDE x and a PIE x
¯
are related via a unitary map T as

x = T x
¯
.

Thus, if x is a weakly differentiable solution, T x
¯
has to be weakly differentiable since

unitary maps are isomorphic. Therefore, to have a PIE equivalent to a GPDE with

weak solutions, the solution of the PIE must also be defined in a generalized or weak
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sense. The below definition formalizes the requirements stated above to define a weak

solution for a PIE.

Definition 4.1 (Solution of a PIE system). For given inputs u ∈ Lnu
2e [R+], w ∈

Lnw
2e [R+] with (Tuu)(·, s) ∈ W nx+nx̂

1e [R+] and (Tww)(·, s) ∈ W nx+nx̂
1e [R+] for all s ∈ [a, b]

and x
¯

0(t) ∈ RLnx,nx̂
2 , we say that {x

¯
, z, y} satisfies the PIE defined by GPIE = {T ,

Tw, Tu, A, Bi, Ci, Dij} with initial condition x
¯

0 and input {w, u} if z ∈ Lnz
2e [R+],

y ∈ L
ny

2e [R+], x
¯
(t) ∈ RLnx,nx̂

2 [a, b] for all t ≥ 0, T x
¯

is Frechét differentiable with

respect to the L2-norm almost everywhere on R+, T x
¯
(0) = T x

¯
0, and Equation (4.1)

is satisfied for almost all t ∈ R+.

Now that we have established standard parametric representations for both GPDEs

and PIEs, we next proceed with establishing the conditions under which these para-

metric representations are equivalent — i.e., the conditions under which the solution

of a GPDE and a PIE are related by an invertible linear mapping. Furthermore,

we will also find analytical expressions to obtain the parameters of a PIE from the

parameters of its equivalent GPDE.

4.4 Conclusion

To summarize, in this chapter, we briefly discussed the motive behind the use of a

PIE model and defined a general parametric representation of a PIE model. We also

noted that, the set of parameters for a PIE is universal, and the parametric repre-

sentation itself is analogous to the 9-matrix representation of linear state-space ODE

systems. Furthermore, we noted that, unlike a GPDE, a PIE is exclusively described

by these dynamics and has no auxiliary constraints such as boundary conditions. As

will be seen later in Part II, the parametric representation proposed for a PIE, along

with the algebraic properties of the PI operators, allows an almost direct extension
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of various LMI results used in the analysis, estimation, and control of ODEs to PIE

systems. Lastly, following the idea of a weak solution for a GPDE, we defined the

notion of weak solutions for a PIE.
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Chapter 5

PIE REPRESENTATION OF A GPDE

In Chapter 3 and Chapter 4, we proposed parametric representations for a broad class

of coupled ODE-PDEs Systems (GPDEs) and PIE Systems. Furthermore, we looked

at the motivation behind the use of PI algebra and the benefits of PIE representation

as an alternative modeling approach. Now, we focus on finding this ‘PIE representa-

tion’ for a given GPDE model. We begin this process by focusing on the conversion

of the PDE subsystem to a restricted class of PIE subsystem of the formT̂ ˙̂x
¯
(t)

r(t)

 =

Â Bv

Cr Drv


x̂¯(t)
v(t)

−

Tvv̇(t)

0

 , (5.1)

with initial condition x̂
¯
0 ∈ Lm

2 . Such PIE subsystems are a special case of Defini-

tion 4.1 with parameter set given by

GPIEs =
{
T̂ , Tv, ∅, Â,Bv, ∅, Crv, ∅,Drv, ∅, ∅, ∅

}
.

In this section, we will show that for any admissible PDE subsystem defined by

{n,Gb,Gp}, there exists a corresponding PIE subsystem defined by {T̂ , Tv, Â, Bv,

Crv, Drv} such that for any suitable signal v, {x̂
¯
, r, ∅} is a solution of the PIE sub-

system with initial condition x̂
¯
0 and input v if and only if {T̂ x̂

¯
(t) + Tvv(t), r} is a

solution of the PDE subsystem with initial condition (T̂ x̂
¯
0 + Tvv(0)) and input v.

5.1 Admissiblity: Well-posedness of the Auxiliary Constraints

Before we proceed to prove the claim ‘any admissible GPDE has a PIE form’, we

must define admissibility. The admissibility criterion, in a sense, imposes a notion of
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well-posedness on Xv, the domain of the PDE subsystem defined by the continuity

constraints and the BCs. This condition ensures, e.g., that there are a correct number

of independent BCs to establish a mapping between the distributed state and its

partial derivatives. Without such a mapping, the solution to the PDE may not

exist (too many BCs) or may not be unique (too few BCs). However, this does not

explicitly guarantee a well-posed solution since a GPDE may be admissible and not

have a solution in the sense defined in Definition 3.3.

First, let us recall that we first define nx̂ = |n|1 =
∑N

i=0 ni to be the number

of states in x̂, nSi
=
∑N

j=i nj ≤ nx̂ to be the total number of i-times differentiable

states, and nS =
∑N

i=1 nSi
to be the total number of possible partial derivatives of

x̂ as permitted by the continuity constraint. For indexed vectors (such as n or x̂)

we occasionally use the notation x̂i:j to denote the components i to j. Specifically,

x̂i:j = col(x̂i, · · · , x̂j), ni:j :=
∑j

k=i nk and nSi:j
=
∑j

k=i nSk
.

Definition 5.1 (Admissibility). Given an n ∈ NN+1 (with corresponding continuity

constraint) and a parameter set, Gb = {B, BI , Bv}, we say the pair {n,Gb} (or

alternatively, the PDE subsystem defined by GPDEs or GPDE defined by GPDE) is

admissible if BT is invertible where

BT = B

 T (0)

T (b− a)

−
∫ b

a

BI(s)U2T (s− a)ds ∈ RnBC×nS ,
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and where T and U2 are defined (See also Block 5.1) as

Ti,j(s) =
s(j−i)

(j − i)!

0(nSi−nSj)×nSj

InSj

 ∈ RnSi×nSj , (5.2)

T (s) =



T1,1(s) T1,2(s) · · · T1,N(s)

0 T2,2(s) · · · T2,N(s)

...
...

. . .
...

0 0 · · · TN,N(s)


∈ RnS×nS , (5.3)

U2i =

0ni×ni+1:N

Ini+1:N

 ∈ RnSi
×nSi+1 , (5.4)

U2 =

diag(U20, · · · , U2(N−1))

0nN×nS

 ∈ R(nx̂+nS)×nS . (5.5)

Since BT must be square to be invertible, admissibility requires nBC = nS. One

way to interpret this condition is to note that whenever we differentiate a PDE state,

we lose some of the information required to reconstruct that state. As a result, if

we have nS possible partial derivatives, we need nS BCs to relate all the partial

derivatives to the original state vector. However, while the constraint nBC = nS is

necessary for admissibility, it is not sufficient – the BCs must be both independent and

provide enough information to allow us to reconstruct the PDE state. See Subsection

3.2.2 in the paper by Peet (2021) for an enumeration of pathological cases, including

periodic BCs.

Finally, note that the test for admissibility depends only on the continuity condi-

tion, n ∈ NN+1 and the parameters which define the boundary condition – admissi-

bility does not depend on the dynamics.
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Illustration of the Admissibility Condition

Example 5.1 (Damped wave equation with motor dynamics and delay). Let us revisit

the coupled ODE-PDE from Example 3.1. Recall that for this example, n = {0, 2, 1},

so nS0 = 3, nS1 = 3, nS2 = 1, nS = 4, and nx̂ = 3. In addition, Gb has parameters

as shown in Equation (3.11). Then, using Equations (5.3) and (5.5), we compute T ,

U2, and BT as

T1,1 =

03−3,3

I3

 , T1,2 = s

03−1,1

I1

 , T2,2 =

01−1,1

I1

 , U20 =

00,3
I3

 , U21 =

02,1
I1

 ,

T (s) =



1

1

1 s

1


, U2 =



I3 03,1

02,3 02,1

01,3 1

01,2 01,2


, BT =



0 0 1 0

1 0 0 0

0 1 0 0

0 −
∫ b

a
µ(s− 1)ds 0 1


.

BT is invertible for any µ, which implies the pair {n,Gb} is admissible.

Since analytical expressions are known to find the admissibility matrix BT for

arbitrary GPDEs defined by GPDE, we can test for admissibility using computation.

5.2 A Map from GPDE Parameters to PIE Parameters

In the following subsections, we will develop maps between the parameters of

a GPDE model GPDE and the parameters of a PIE model GPIE assuming that the

GPDE is admissible. However, the primary difficulty in finding GPIE from the param-

eters of the GPDE lies in the ‘PDE’ part of the GPDE. Thus, we will first handle the

‘PDE’ subsystem and find an equivalent PIE representation with parameters GPIEs

for the ‘PDE’ subsystem. Then, finding GPIE for the full GPDE becomes a matter

of augmenting states and algebraic manipulations.
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5.2.1 A PDE and its Associated PIE

Given an admissible pair {n,Gb}, we may construct a PIE subsystem which we

will associate with the PDE subsystem defined by those parameters. The first step

is to map x̂(t) ∈ Xv, the state of the PDE subsystem, to x̂
¯
(t) ∈ L2, the state of the

PIE subsystem using

x̂
¯
= Dx̂ =



x̂0

∂sx̂1

...

∂N
s x̂N


∈ Lnx̂

2 .

where D = diag(∂0
sIn0 , · · · , ∂N

s InN
). The following theorem shows that this mapping

is invertible, and the inverse is defined by PI operators.

Theorem 5.1. Given an n ∈ NN+1, and Gb with {n,Gb} admissible, let {T̂ , Tv}

be as defined in Block 5.1, Xv as defined in Equation (3.5) and D =diag(∂0
sIn0 , · · · ,

∂N
s InN

). Then we have the following: (a) For any v ∈ Rnv , if x̂ ∈ Xv, then Dx̂ ∈ Lnx̂
2

and x̂ = T̂ Dx̂ + Tvv; and (b) For any v ∈ Rnv and x̂
¯

∈ Lnx̂
2 , T̂ x̂

¯
+ Tvv ∈ Xv and

x̂
¯
= D(T̂ x̂

¯
+ Tvv).

Proof. First, we generalize the Fundamental Theorem of Calculus by using Cauchy’s

formula for repeated integration as

Lemma 5.2. Suppose x ∈ W n
N [a, b] for any N ∈ N. Then

x(s)= x(a) +
N−1∑
j=1

(s−a)j

j!
∂j
sx(a) +

s∫
a

(s−θ)N−1

(N − 1)!
∂N
s x(θ)dθ

where ∂i
sx is the ith classical-derivative of x when i < N and weak-derivative for

i = N .
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This gives a map from ∂j
s x̂(a) and x̂

¯
to x̂. Next we express all possible well-defined

boundary values in terms of the ∂j
s x̂(a) and x̂

¯
. Applying the boundary conditions in

Xv, we may now invert this map (using B−1
T ) to obtain an expression for the ∂j

s x̂(a)

in terms of x̂
¯
and v. Substituting this expression into Lemma 5.2, we obtain the

theorem statement. For details, see Appendix A.1.

For any given v ∈ Rnv , Theorem 5.1 provides an invertible map between the state

of the PIE subsystem, x̂
¯
(t) ∈ Lnx̂

2 and the state of the PDE subsystem, x̂(t) ∈ Xv.

Furthermore, this transformation is unitary, which will be proved later in this chapter.

In the following subsection, we apply this mapping to the internal dynamics of the

PDE subsystem in order to obtain an equivalent PIE representation of this subsystem.

5.2.2 A GPDE and its Associated PIE

Having converted the PDE subsystem to a PIE, integration of the ODE dynamics

is a simple matter of augmenting the PIE subsystem (Equation (5.1)) with the dif-

ferential equations which define the ODE (Equation (3.1)), followed by elimination

of the interconnection signals v and r. The result is an augmented PIE system, as

defined in Equation (4.1) whose parameters are 4-PI operators defined in Blocks 5.1

and 5.2.

Our first step in constructing the augmented PIE system, which will be associated

with a given GPDE model, is to construct the augmented map from the GPDE state

(defined on Xw,u) to the associated PIE state (defined on RLnx,nx̂
2 ). Specifically, given

a GPDE model {n,Gb,Go,Gp} with {n,Gb} admissible and state x =

x
x̂

 ∈ Xw,u,

the associated PIE system state is x
¯

=

 x

Dx̂

 ∈ RLnx,nx̂
2 where D = diag(∂0

sIn0 ,

· · · , ∂N
s InN

). Using this definition, one can prove Corollary 5.3 that shows that if
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{T , Tw, Tu} are as defined in Block 5.2, then the map x → x
¯
can be inverted as

x = T x
¯
+ Tww + Tuu.

Corollary 5.3. Given an n ∈ NN+1, and Gb with {n,Gb} admissible, let {T , Tw,

Tu} be as defined in Block 5.2, Xw,u as defined in Equation (3.9) and D =diag(∂0
sIn0 ,

· · · , ∂N
s InN

). Then for any w ∈ Rnw and u ∈ Rnu we have:

(a) If x = {x, x̂} ∈ Xw,u, then x
¯
= {x,Dx̂} ∈ RLnx,nx̂

2 and x = T x
¯
+ Tww + Tuu.

(b) If x
¯
∈ RLnx,nx̂

2 , then x = T x
¯
+ Tww + Tuu ∈ Xw,u and x

¯
=

Inx 0

0 D

x.

Proof. The proof simply applies the definitions of x, x
¯
, and v – See Appendix A.3 for

details.

Thus, for any given w, u, we have an invertible transformation from RLnx,nx̂
2 to

Xw,u.

Illustration of the Construction of the PIE Subsystem

In this subsection, we detail the application of the formulae in Blocks 5.1 and 5.2 to

a given GPDE model. Additional, less detailed examples are given in later chapters.

Example 5.2. (The Entropy PDE) A PDE model for entropy change in a 1D linear

thermoelastic rod clamped at both ends is given by Day (2013)

η̇(t, s) = ∂2
sη(t, s),

subject to the BCs

η(t, 0) +

∫ 1

0

η(t, s)ds = 0, η(t, 1) +

∫ 1

0

η(t, s)ds = 0.
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The GPDE representation of this model is defined by n = {0, 0, 2}, Gp = {A0 =[
0 0 1

]
}, and

Gb =

B =

1 0 0 0

0 0 1 0

 , BI = −

1 0 0

1 0 0


 .

Using the formulae in Blocks 5.1 and 5.2, we find the PIE subsystem as follows

(we neglect interconnection to the ODE subsystem as there are no ODEs, inputs, or

outputs).

U2 =


1 0

0 1

0 0

 , U1 =


0

0

1

 , T (s) =

1 s

0 1

 , Q(s) =

s
1

 ,

BT =

2 1/2

2 3/2

 , BQ(s) = (1− s)

 s
4

−1

 , G0(s) = 0,

G1(s, θ) = G2(s, θ) + (s− θ), G2(s, θ) = 3s
(s− 1)

4
.

The PIE form (η
¯
= ∂2

2η) of the entropy PDE is then given by

s∫
0

(
s2 +

s

4
− θ
)
η̇
¯
(t, θ)dθ +

1∫
s

3

4
(s2 − s)η̇

¯
(t, θ)dθ = η

¯
(t, s).

In the context of optimal control framework, one would expect inputs and outputs

to appear. Furthermore, such inputs and outputs maybe further classified as distur-

bance inputs, control inputs, regulated outputs, and observed outputs. The following

example demonstrates how one can construct a PIE representation for GPDE systems

while preserving this categorization of different input and output signals.

Example 5.3. Consider the vibration suppression problem for a cantilevered Euler-
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Bernoulli beam

ẋ(t, s) =

0 −0.1

1 0

 ∂2
sx(t, s) +

1
0

w(t) +

1
0

u(t),

[
1 0

]
x(t, 0) =

[
1 0

]
∂sx(t, 0) = 0,[

0 1

]
∂2
sx(t, 1) =

[
0 1

]
∂3
sx(t, 1) = 0,

where we define the state as x = col(∂tη, ∂
2
sη) where η is displacement, w is external

disturbance and u is control input. To regulate a combination of vibrations and control

effort we defined z(t) =

[∫ 1

0
η(t, s)ds u(t)

]T
. The goal is to find the controller gains

K : x(t) 7→ u(t) that minimizes sup
∥w∥L2

=1

∥z∥L2
. To define the values of T ,A,Bi, C, Di

we may apply the formulae in Shivakumar et al. (2022). However, for illustration,

we derive this representation directly. Specifically, from Cauchy’s rule for repeated

integration, we have

x(t, s) = x(t, 0) + s∂sx(t, 0) +

∫ s

0

(s− θ)∂2
sx(t, θ)dθ.

Substituting the boundary conditions, we obtain the direct relationship

x(t, s) =

∫ s

0

(s− θ) 0

0 0

 ∂2
sx(t, θ)dθ +

∫ 1

s

0 0

0 (θ − s)

 ∂2
sx(t, θ)dθ.

Substituting this expression into the dynamics, we obtain the PIE representation

∂t



∫ s

0

(s− θ) 0

0 0

 ∂2
sx(t, θ)dθ

+
∫ 1

s

0 0

0 (θ − s)

 ∂2
sx(t, θ)dθ


=

0 −0.1

1 0

 ∂2
sx(t, s) +

1
0

w(t) +

1
0

u(t).
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Finally, by inspection, we identify the non-zero parameters in the Partial Integral

operators T ,A,Bi, C, Di as

T = Π

 ∅ ∅

∅ {0, R1, R2}

 ,A = Π

 ∅ ∅

∅ {R0, 0, 0}

 ,

Bi = Π

 ∅ ∅

Q2 {∅}

 , C = Π

 ∅ Q1

∅ {∅}

 , D2 =

0
1

 ,

where

R1(s, θ)=

s− θ 0

0 0

 , R2(s, θ)=

0 0

0 θ − s

 , Q2 =

1
0

 ,

R0(s)=

0 −0.1

1 0

 , Q1(s)=

0 − s4

12
− s3

6
+ s2

2

0 0

 .

5.3 Equivalence of Representations

For finite-dimensional state-space systems, similarity transforms are used to con-

struct equivalent representations of the input-output map. Specifically, for any in-

vertible T , the system G = {A,B,C,D} with internal state x may be equivalently

represented as G = {T−1AT, T−1B,CT,D} with internal state x̂ = T−1x. In the

following subsections, we will apply this approach to show equivalence between a

GPDE and its PIE representation. As before, the primary difficulty in showing such

an equivalence stems from the ‘PDE’ part of a GPDE and thus, we will first show

the equivalence between a PDE subsystem and the PIE subsystem, then augment the

ODE subsystem to obtain the full GPDE.

5.3.1 A PDE and its Associated PIE

Now that we have obtained an invertible transformation from Lnx̂
2 to Xv, we apply

the logic of the similarity transform to the internal dynamics of the PDE subsystem
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in order to obtain an equivalent PIE subsystem representation. Specifically, in Theo-

rem 5.4, we substitute x̂ = T̂ x̂
¯
+Tvv in the internal dynamics of the PDE subsystem.

The result is a set of equations parameterized entirely using PI operators. These

PI operators, as defined in Block 5.2, specify a PIE subsystem whose input-output

behavior mirrors that of the PDE subsystem and whose solution can be constructed

using the solution of the PDE subsystem. Conversely, any solution of the associated

PIE subsystem can be used to construct a solution for the PDE subsystem.

Theorem 5.4. Given an n ∈ NN+1 and a set of PDE parameters {Gb, Gp} as

defined in Equations (3.6) and (3.8) with {n,Gb} admissible, suppose v ∈ Lnv
2e [R+]

with Bvv ∈ W 2nS
1e [R+], {T̂ , Tv} are as defined in Block 5.1 and {Â, Bv, Cr, Drv} are

as defined in Block 5.2. Define

GPIE =
{
T̂ , Tv, ∅, Â,Bv, ∅, Cr, ∅,Drv, ∅, ∅, ∅

}
.

Then we have the following.

1. For any x̂0 ∈ Xv(0) (Xv is as defined in Equation (3.5)), if {x̂, r} satisfies

the PDE defined by {n,Gb,Gp} with initial condition x̂0 and input v, then

{Dx̂, r, ∅} satisfies the PIE defined by GPIE with initial condition Dx̂0 ∈ Lnx̂
2

and input {v, ∅} where Dx̂ = col(∂0
s x̂0, · · · , ∂N

s x̂N).

2. For any x̂
¯

0 ∈ Lnx̂
2 , if {x̂

¯
, r, ∅} satisfies the PIE defined by GPIE for initial

condition x̂
¯

0 and input {v, ∅}, then {T̂ x̂
¯
+ Tvv, r} satisfies the PDE defined by

{n,Gb,Gp} with initial condition x̂0 = T̂ x̂
¯

0 + Tvv(0) and input v.

Proof. The proof is based on a partial similarity transform induced by x̂ = T̂ x̂
¯
+ Tvv

and details may be found in Appendix A.2.

The first part of Theorem 5.4 shows that the well-posedness of the PDE subsystem

guarantees the well-posedness of the associated PIE subsystem and shows that the
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input-output behavior of the PIE subsystem mirrors that of the PDE subsystem.

The second, converse, result shows that the well-posedness of the PIE subsystem

guarantees the well-posedness of the PDE subsystem and shows that the input-output

behavior of the PDE subsystem mirrors that of the PIE subsystem. Because PIEs are

potentially easier to numerically analyze, control, and simulate, this converse result

suggests that the tasks of analysis, control, and simulation of a PDE subsystem may

be more readily accomplished by performing the desired task on the PIE subsystem

and then applying the result to the original PDE subsystem.

5.3.2 A GPDE and its Associated PIE

Having handled the harder task, i.e., showing the equivalence of a PDE subsys-

tem and its associated PIE, we now define the PIE system associated with a given

admissible GPDE model and prove the equivalence of their solutions. This associ-

ated PIE system is defined by 4-PI parameters as defined in Blocks 5.1 and 5.2. For

convenience, we use

M : {n,Gb,Go,Gp} 7→ {T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22}

to represent the several formulae used to map GPDE parameters to PIE parameters.

Definition 5.2. Given {n,Gb,Go,Gp} where

Gb = {B,BI , Bv} , Gp = {A0, A1, A2, Bxv, Bxb, Cr, Drb}

Go = {A,Bxw, Bxu, Bxr, Cz, Dzw, Dzu, Dzr, Cy, Dyw, Dyu, Dyr, Cv, Dvw, Dvu}

we say that GPIE = M({n,Gb,Go,Gp}) if GPIE = {T , Tw, Tu, A, B1, B2, C1, C2,

D11, D12, D21, D22} where {T , Tw, Tu, A, B1, B2, C1, C2, D11, D12, D21, D22} are as

defined in Blocks 5.1 and 5.2.
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Having specified the PIE system associated with a given GPDE model, we now

extend the results of Theorem 5.4 to show that the map x 7→

I 0

0 D

x proposed

in Corollary 5.3 maps a solution of a given GPDE model to a solution of the associated

PIE system and that the inverse map x
¯
7→ T x

¯
+ Tww + Tuu maps a solution of the

associated PIE to a solution of the given GPDE model.

Corollary 5.5 (Corollary of Theorem 5.4). Given an n ∈ NN+1 and parameters {Go,

Gb, Gp} as defined in Equations (3.2), (3.6) and (3.8) with {n,Gb} admissible, let

w ∈ Lnw
2e [R+] with BvDvww ∈ W 2nS

1e [R+], u ∈ Lnu
2e [R+] with BvDvuu ∈ W 2nS

1e [R+].

Define

GPIE = {T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22} = M({n,Gb,Go,Gp}.

Then we have the following:

1. For any {x0, x̂0} ∈ Xw(0),u(0) (where Xw,u is as defined in Equation (3.9)), if

{x, x̂, z, y, v, r} satisfies the GPDE defined by {n, Go, Gb, Gp} with ini-

tial condition {x0, x̂0} and input {w, u}, then


 x

Dx̂

 , z, y

 satisfies the PIE

defined by GPIE with initial condition

 x0

Dx̂0

 and input {w, u} where Dx̂ =

col(∂0
s x̂0,· · · ,∂N

s x̂N).

2. For any x
¯

0 ∈ RLnx,nx̂
2 , if {x

¯
, z, y} satisfies the PIE defined by GPIE with

initial condition x
¯

0 and input {w, u}, then {x, x̂, z, y, v, r} satisfies the GPDE

defined by {n,Go,Gb,Gp} with initial condition

x0

x̂0

 = T x
¯

0+Tww(0)+Tuu(0)
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and input {w, u} wherex(t)
x̂(t)

 = T x
¯
(t) + Tww(t) + Tuu(t),

v(t) = Cvx(t) +Dvww(t) +Dvuu(t),

r(t) =

[
0nx̂×nx Cr

]
x
¯
(t) +Drvv(t),

and where Cr and Drv are as defined in Block 5.2.

Proof. The proof is simply a matter of applying Theorem 5.4 to the augmented states

and verifying that the definition of solution is satisfied for both the GPDE and PIE.

A detailed proof can be found in Appendix A.4.

5.4 Equivalence of System Properties

We have motivated the construction of PIE representations of GPDE models by

stating that many analysis, control, and simulation tasks may be more readily ac-

complished in the PIE framework. However, this motivation is predicated on the

assumption that the results of analysis, control, and simulation of a PIE system

somehow translate to analysis, control, and simulation of the original GPDE model.

For simulation, the conversion of a numerical solution of a PIE system to the nu-

merical solution of the GPDE is trivial, as per Corollary 5.5 through the mapping

x
¯
(t) 7→ T x

¯
(t) + Tww(t) + Tuu(t). In this section, we show that analysis and control

of the PIE system may also be translated to the GPDE model. For input-output

properties, this translation is trivial. For internal stability and control, an additional

mathematical structure is required.
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5.4.1 Stability

Unlike I/O properties, the question of the internal stability of a GPDE model is

complicated because there is no universally accepted definition of stability for such

models. Specifically, suppose the state-space of a GPDE model is defined to be Xu,w

(a subspace of the Sobolev space W n). In that case, the obvious norm is the Sobolev

norm – implying that exponential stability requires exponential decay with respect

to the Sobolev norm. However, many results on stability of PDE models use the L2

norm as a simpler notion of size of the state.

We will see that while both notions of stability are reasonable, the use of the

Sobolev norm and associated inner product confers significant advantages in terms of

mathematical structure on the GPDE model and offers a clear equivalence between

internal stability of the GPDE model and associated PIE system. In particular, we

first show that X0,0 is a Hilbert space when equipped with the Sobolev inner product.

Furthermore, the exponential stability of the GPDEmodel with respect to the Sobolev

norm is equivalent to the exponential stability of the PIE system with respect to the

L2 norm.

Topology of X0,0 (state space of a GPDE with no inputs)

Before we begin, for n ∈ NN , let us recall the standard inner product on Rnx ×W n

〈u
u

,
v
v

〉
Rnx×Wn

= uTv +
∑N

i=0
⟨ui,vi⟩Wni

i
,

⟨ui,vi⟩Wni
i

:=
∑i

j=0

〈
∂j
sui, ∂

j
sui

〉
L2
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with associated norms ∥ui∥Wni
i

:=
∑i

j=0 ∥∂j
sxi∥Lni

2
and∥∥∥∥∥∥∥

u
u


∥∥∥∥∥∥∥
Rnx×Wn

= ∥u∥R +
∑N

i=0
∥ui∥Wni

i
.

As we will see, however, the standard inner product Rnx ×W n is not quite the right

inner product for X0,0. For this reason, we propose a slightly modified inner product

which we will denote ⟨·, ·⟩Xn , and show that this new inner product is equivalent to

the standard inner product on W n. Specifically, we have

⟨u,v⟩Xn =
∑N

i=0

〈
∂i
sui, ∂

i
svi

〉
L
ni
2

= ⟨Du,Dv⟩Lnx
2

(5.6)

and define the obvious extension〈u
u

,
v
v

〉
Rnx×Xn

= uTv + ⟨u,v⟩Xn .

We now show that the norms ∥·∥Rnx×Wn and ∥·∥Rnx×Xn are equivalent on the

subspace X0,0.

Lemma 5.6. Suppose pair {n,Gb} is admissible. Then ∥u∥Rnx×Xn ≤ ∥u∥Rnx×Wn and

there exists c0 > 0 such that for any u ∈ X0,0, we have ∥u∥Rnx×Wn ≤ c0 ∥u∥Rnx×Xn.

Proof. Because the map x
¯
→ x is a PI operator, it is bounded, which allows a bound

on all terms in the Sobolev norm. See Appendix A.5.2 for a complete proof.

Trivially, using nx = 0, this result also extends to equivalence of ∥·∥Wn and ∥·∥Xn

on X0.

Next, we will show that T̂ and T are isometric whenX0 and X0,0 are endowed with

the inner products ⟨·, ·⟩Rnx×Wn and ⟨·, ·⟩Rnx×Xn , respectively. This implies that these

spaces are complete with respect to both ∥·∥Rnx×Xn (∥·∥Xn) and ∥·∥Rnx×Wn (∥·∥Wn).
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X0,0 is Hilbert and T is unitary

First, note X0 and X0,0 are defined by {n,Gb} as

X0 =

{
x̂ ∈ W n[a, b] : BBx̂ =

∫ b

a
BI(s)(F x̂)(s)ds

}
,

X0,0 =


x
x̂

 ∈ R×Xv : v = Cvx

 .

The sets X0 and X0,0 are the subspaces of valid PDE subsystem and GPDE model

states when v = 0 and when u = 0, w = 0, respectively. Previously, in Theorem 5.1,

we have shown that T̂ is a bijective map. In Theorem 5.7 we extend this result to

show that T̂ : Lnx̂
2 → Xn and T : RLnx,nx̂

2 → Rnx × Xn are unitary in that the

respective inner products are preserved under these transformations.

Theorem 5.7. Suppose {n,Gb} is admissible, {T̂ , Tv} are as defined in Block 5.1,

and {T , Tw, Tu} are as defined in Block 5.2 for some matrices Cv, Dvw and Dvu. If

⟨·, ·⟩Xn is as defined in Equation (5.6), then we have the following:

a) for any v1, v2 ∈ Rnv and x̂
¯
, ŷ
¯
∈ Lnx̂

2〈(
T̂ x̂
¯
+ Tvv1

)
,
(
T̂ ŷ
¯
+ Tvv2

)〉
Xn

=
〈
x̂
¯
, ŷ
¯

〉
L
nx̂
2

. (5.7)

b) for any w1, w2 ∈ Rnw , u1, u2 ∈ Rnu, x
¯
,y
¯
∈ RLnx,nx̂

2 ,

〈
(T x

¯
+ Tww1 + Tuu1),

(
T y
¯
+ Tww2 + Tuu2

)〉
Rnx×Xn

=
〈
x
¯
,y
¯

〉
RLnx,nx̂

2

. (5.8)

Proof. The proof follows directly from the definition of the Xn inner product and the

map x 7→ x
¯
. See Appendix A.5.1 for more details.
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Corollary 5.8. Suppose {n,Gb} is admissible, T̂ is as defined in Block 5.1, T is as

defined in Block 5.2, Xv is as defined in Equation (3.5) and, for any matrices Cv,

Dvw and Dvu, Xw,u is as defined in Equation (3.9). Then X0 is complete with respect

to ∥·∥Xn and X0,0 is complete with respect to ∥·∥Rnx×Xn. Furthermore, T̂ : Lnx̂
2 → X0

and T : RLnx,nx̂
2 → X0,0 are unitary (isometric surjective mappings between Hilbert

spaces).

Proof. From Theorem 5.1 and Corollary 5.3, we have that T is a bijective mapping

from RLnx,nx̂
2 to X0,0. From Theorem 5.7, we have that T is isometric with respect

to the Rnx ×Xn inner product. Since RLnx,nx̂
2 is complete, we conclude that X0,0 is

complete with respect to the Rnx × Xn norm. Completeness of X0 follows trivially

from the special case nx = 0.

As a direct consequence of Corollary 5.8 and Lemma 5.6, X0 and X0,0 are also

complete with respect to ∥·∥Wn and ∥·∥Rnx×Wn , respectively.

As shown in Theorem 5.7, the natural definition of exponential stability of a GPDE

model is with respect to the Rnx × Xn norm. However, as shown in Lemma 5.6,

exponential stability with respect to the Rnx ×Xn norm is equivalent to exponential

stability with respect to the Rnx ×W n norm. Hence, we formally define stability with

respect to the Rnx ×W n norm.

Definition 5.3 (Exponential Stability of a GPDE model). We say a GPDE model

defined by {n,Go,Gb,Gp} is exponentially stable if there exist constants M , α > 0

such that for any {x0, x̂0} ∈ X0,0, if {x, x̂, z, y, v, r} satisfies the GPDE defined by

{n,Go,Gb,Gp} with initial condition {x0, x̂0} and input {0, 0}, then∥∥∥∥∥∥∥
x(t)
x̂(t)


∥∥∥∥∥∥∥
Rnx×Wn

≤ M

∥∥∥∥∥∥∥
x0

x̂0


∥∥∥∥∥∥∥
Rnx×Wn

e−αt for all t ≥ 0.
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In contrast to the GPDE stability, the internal stability of a PIE system is with

respect to the RL2 norm because that is natural norm on the solution space that

preserves the topological structure.

Definition 5.4 (Exponential Stability of a PIE system). We say a PIE defined by

GPIE is exponentially stable if there exist M , α > 0 such that for any x
¯

0 ∈ RLnx,nx̂
2 , if

{x
¯
, z, y} satisfies the PIE defined by GPIE with initial condition x

¯
0 and input {0, 0},

then ∥x
¯
(t)∥RL2

≤ M ∥x
¯

0∥RL2
e−αt for all t ≥ 0.

Using these definitions of internal stability for GPDE and PIE representations,

one can show that the exponential stability of a GPDE model is equivalent to the

exponential stability of the associated PIE system, which is formalized below.

Theorem 5.9. Given {n,Go,Gb,Gp} with {n,Gb} admissible, the GPDE model

defined by {n,Go,Gb,Gp} is exponentially stable if and only if the PIE defined by

GPIE = M({n,Gb,Go,Gp}) is exponentially stable.

Proof. The proof is a direct application of the stability definitions, Theorem 5.7,

and Lemma 5.6 (See Appendix A.5.3).

The results of Theorem 5.9 also imply that Lyapunov and asymptotic stability of

the GPDE model in the Rnx ×W n norm are equivalent to Lyapunov and asymptotic

stability of the associated PIE system in the RL2 norm. Recall that Lyapunov and

asymptotic stability of GPDEs are defined as follows, which naturally lead to similar

definitions of stability for PIEs but in a different normed space.

Definition 5.5 (Lyapunov Stability).

1. We say a GPDE model defined by {n, Go, Gb, Gp} is Lyapunov stable, if

for every ϵ > 0 there exists a δ > 0 such that for any {x0, x̂0} ∈ X0,0 with
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∥∥∥∥∥∥∥
x0

x̂0


∥∥∥∥∥∥∥
Rnx×Wn

< δ, if {x, x̂, z, y, v, r} satisfies the GPDE defined by {n, Go,

Gb, Gp} with initial condition {x0, x̂0} and input {0, 0}, then∥∥∥∥∥∥∥
x(t)
x̂(t)


∥∥∥∥∥∥∥
Rnx×Wn

< ϵ for all t ≥ 0.

2. We say a PIE model defined by GPIE is Lyapunov stable if for every ϵ > 0 there

exists a constant δ > 0 such that for any x
¯

0 ∈ RLm,n
2 with ∥x

¯
0∥RLm,n

2
< δ, if

{x
¯
, z, y} satisfies the PIE defined by GPIE with initial condition x

¯
0 and input

{0, 0}, then ∥x
¯
(t)∥RLm,n

2
< ϵ for all t ≥ 0.

Definition 5.6 (Asymptotic Stability).

1. We say a GPDE defined by {n, Go, Gb, Gp} is asymptotically stable, if for every

{x0, x̂0} ∈ X0,0 and ϵ > 0, there exists a Tϵ > 0 such that if {x, x̂, z, y, v, r}

satisfies the GPDE defined by {n,Go,Gb,Gp} with initial condition {x0, x̂0}

and input {0, 0}, then

∥∥∥∥∥∥∥
x(t)
x̂(t)


∥∥∥∥∥∥∥
Rnx×Wn

< ϵ for all t > Tϵ.

2. We say a PIE model defined by GPIE is asymptotically stable, if for every x
¯

0 ∈

RLm,n
2 and ϵ > 0, there exists a Tϵ > 0 such that if {x

¯
, z, y} satisfies the PIE

defined by GPIE with initial condition x
¯

0 and input {0, 0}, then there exists

Tϵ > 0 such that ∥x
¯
(t)∥RLm,n

2
< ϵ for all t > Tϵ.

The equivalence of Lyapunov and asymptotic stability for the two representations

are formalized in the following Corollary.

Corollary 5.10. Given {n,Go,Gb,Gp} with {n,Gb} admissible, let GPIE = M ({n,

Gb, Go, Gp}). Then
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1. The GPDE model defined by {n,Go,Gb,Gp} is Lyapunov stable if and only if

the PIE system defined by GPIE is Lyapunov stable.

2. The GPDE model defined by {n,Go,Gb,Gp} is asymptotically stable if and only

if the PIE system defined by GPIE is asymptotically stable.

Proof. Based on the stability definitions, this result is a direct corollary of Theo-

rem 5.9 (See Appendix A.5.3).

5.4.2 Input-Output Properties

Recall the transformation of a PIE solution to the GPDE solution is limited to

the internal state of the PIE whereas the inputs and outputs are unchanged. Conse-

quently, Corollary 5.5 implies that all input-output (I/O) properties of the GPDE

model are inherited by the PIE system and vice versa. As a result, we have the

following Corollary, which can be trivially proved using the map between parameters

of a GPDE and the parameters of its associated PIE.

Corollary 5.11 (Input-Output Properties). Given an n ∈ NN+1 and parameters

{Go, Gb, Gp} as defined in Equations (3.2), (3.6) and (3.8) with {n,Gb} admissi-

ble, let w ∈ Lnw
2e [R+] with BvDvww ∈ W 2nS

1e [R+]. Let GPIE = M({n,Gb,Go,Gp}.

Suppose {x0, x̂0} = {0, 0}. Then the following are equivalent.

1. If {x, x̂, z, y, v, r} satisfies the GPDE defined by {n, Go, Gb, Gp} with initial

condition {0, 0} and input {w, 0}, then ∥z∥L2
≤ γ ∥w∥L2

.

2. If {x
¯
, z, y} satisfies the PIE defined by GPIE with initial condition 0 and input

{w, 0}, then ∥z∥L2
≤ γ ∥w∥L2

.

Suppose K :∈ L
ny

2e → Lnu
2e . Then the following are equivalent.
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1. If {x, x̂, z, y, v, r} satisfies the GPDE defined by {n, Go, Gb, Gp} with initial

condition {0, 0} and input {w,Ky}, then ∥z∥L2
≤ γ ∥w∥L2

.

2. If {x
¯
, z, y} satisfies the PIE defined by GPIE with initial condition 0 and input

{w,Ky}, then ∥z∥L2
≤ γ ∥w∥L2

.

Proof. Corollary 5.11 follows directly from Corollary 5.5. Since the change of internal

state from GPDE state {x, x̂} to the PIE state x
¯
does not change the inputs or outputs

and the solutions are equivalent, the input-output properties remain unaffected.

5.4.3 A Side Note on the Conversion of a GPDE to a PIE

Because the GPDE class of model is meant to be universal, construction of a

GPDE requires the identification of a large number of system parameters — most

of which are typically zero or sparse. Furthermore, construction of the associated

PIE system using the formulae in Blocks 5.1 and 5.2 can be cumbersome, requiring

one to parse a rather complicated notational system. This complicated process of

identification of parameters and application of formulae may thus impede the practical

application of the results in this paper. For this reason, PIETOOLS versions 2021a

and later include software interfaces for the construction of GPDE models, which

do not require the user to understand of the notational system defined here. For

example, PIETOOLS 2021b (By Shivakumar et al. (2020b)) includes a Graphical

User Interface (GUI), which allows the user to define a GPDE data structure one

term at a time. Because many GPDE models only consist of a few terms, this GUI

dramatically reduces the time required to declare a GPDE model. Furthermore, this

GUI automates the application of the formulae in Blocks 5.1 and 5.2 – allowing the

user to construct an associated PIE system data structure that is compatible with the

PIETOOLS utilities for analysis, control and simulation of PIEs. Additional details
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can be found in the PIETOOLS user manual by Shivakumar et al. (2021).

In addition to the GUI, PIETOOLS includes many tools for the analysis, control,

estimation, and simulation of PIE systems in the context of simple PDE models,

advanced GPDE models, and Delay Differential Equations.

5.5 Additional Examples

In this section, we present additional examples explaining the process of identi-

fication of GPDE parameters and finding PIE representation to illustrate the PIE

representation for a wide variety PDE systems.

Demonstration 5.1 (ODE coupled with PDE at the Boundary). In this example,

we consider a thermal reactor, Tr(t), which is modeled as an ODE and is coupled to a

cooling jacket, Tc(t, s), which is modeled as a PDE. The dynamics of the reactor and

jacket are given by

Ṫr(t) = λTr(t)− C(Tr(t)− Tc(t, 0)),

Ṫc(t, s) = k∂2
sTc(t, s), s ∈ (0, 1),

Tc(t, 0) = Tr(t), ∂sTc(t, 1) = 0 (5.9)

where λ is the reaction coefficient of the reactor, C is the specific heat of the reactor,

and k is a diffusivity parameter for the coolant. In this case, we first model the ODE,

where the influence of the PDE on the ODE is isolated in the signal r(t) = Tc(t, 0)

and the influence of the PDE on the ODE is isolated in the signal v(t) = Tr(t). The

state of the ODE subsystem is x(t) = Tr(t) with the following dynamics.

ẋ(t) = (λ− C)x(t) + r(t), v(t) = x(t), Ṫc(t, s) = k∂2
sTc(t, s), s ∈ (0, 1),

Tc(t, 0) = v(t), ∂sTc(t, 1) = 0 (5.10)
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Examining the ODE dynamics

ẋ(t)

z(t)

y(t)

v(t)


=



A Bxw Bxu Bxr

Cz Dzw Dzu Dzr

Cy Dyw Dyu Dyr

Cv Dvw Dvu 0





x(t)

w(t)

u(t)

r(t)


.

we may parameterize the ODE subsystem, Go as

Go : A = λ− C, Bxr = C, Cv = 1.

Now, examining the PDE subsystem, we have a system similar to Illustration in

Example 5.2 so that the continuity parameter is

n : n = {0, 0, 1} N = 2

with x̂2(t, s) = Tc(t, s). Again, the BCs appear in the form

0 =

∫ b

a

BI(s)F x̂(t, s)ds+

[
Bv −B

] v(t)

(Bx̂)(t)



=

∫ 1

0

BI(s)


Tc(t, s)

Tc,s(t, s)

Tc,ss(t, s)

 ds−B



Tc(t, 0)

Tc,s(t, 0)

Tc(t, 1)

Tc,s(t, 1)


+Bvv(t).

v(t) = x(t)Ṫc(t, s) = k∂2
sTc(t, s), s ∈ (0, 1),

Tc(t, 0) = v(t), ∂sTc(t, 1) = 0 (5.11)
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By inspection of the BCs, we may now define the parameters for Gb as

Gb : B =

1 0 0 0

0 0 0 1

 , Bv =

1
0

 .

To define the parameters of the PDE dynamics, we again ignore integral terms, yield-

ing

 ˙̂x(t, s)

r(t)

 =

Tc(t, s)

r(t)

 =


A0(s)


Tc(t, s)

Tc,s(t, s)

Tc,ss(t, s)


0


+

Bxv(s) Bxb(s)

0 Drb


 v(t)

(Bx̂)(t)

 .

By inspection of Equation (5.9), the only non-zero parameter in this expression is

Gp : A0 =

[
0 0 k

]
which becomes the entire parameter set for Gp.

Demonstration 5.2 (Second Order Time Derivatives). For our next illustration, we

consider wave motion

η̈(t, s) = c2∂2
sη(t, s), s ∈ (0, 1),

z(t, s) =

∫ 1

0

η(t, s)ds,

where z is a regulated output (the average displacement of the string) with a general

form of BCs (Sturm-Liouville type BCs) given by

η(t, 0)− k∂sη(t, 0) = 0, η(t, 1) + l∂sη(t, 1) = w(t),

where η stands for lateral displacement, c is the speed of propagation of a wave in the

string, and w is external disturbance acting on the boundary. The constants k and l

represent the reflection and mirroring of the wave at the boundary.
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To rewrite this PDE model as a state-space GPDE model, we must first eliminate

the second-order time-derivative. As is common in the state-space representation of

ODEs, we eliminate the 2nd order time-derivative by creating a new state ζ2 = η̇ with

ζ1 = η. This change of variable leads to a coupled PDE of the form

ζ̇1(t, s) = ζ2, s ∈ (0, 1),

ζ̇2(t, s) = c2∂2
sζ1(t, s),

z(t, s) =

∫ 1

0

ζ1(t, s)ds, (5.12)

with BCs

ζ1(t, 0)− k∂sζ1(t, 0) = 0, ζ1(t, 1) + l∂sζ1(t, 1) = w(t). (5.13)

Here we note that the ODE subsystem has the parameters related to outputs z and

inputs w, however, there is no ODE state. Thus, we only have parameters related to

z and w. First, we include the influence of PDE on the ODE into the interconnec-

tion signal as r(t) =
∫ 1

0
ζ1(t, s)ds, whereas the influence of the ODE on the PDE is

routed through v where v(t) = w(t). Then, by inspection, the output z can be written

as z(t) = r(t). Consequently, we find that Dzr = 1, while the remaining parame-

ters related to z are zero. Likewise, we note that Dvw = 1 and leave the remaining

parameters of v as empty. This completes the definition of the ODE subsystem.

Go : Dzr = 1 Dvw = 1.

By inspecting the partial derivatives and boundary values used in Equations (5.12)

and (5.13), we first define the continuity equation using n0 = 1 so that x̂0 = ζ2 and

n2 = 1 so that x̂2 = ζ1.

n : n = {1, 0, 1} N = 2.
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For this definition of n, we have nx̂ = nS0 = 2 and nS1 = nS2 = 1 – there are two 0th

order and one 1st and 2nd order partial derivatives. In addition, nS = 2, indicating

there are two possible partial derivatives. Thus

S0x̂ =

x̂1

x̂2

 =

ζ1
ζ2

 Sx̂ = S2x̂ = x̂2 = ζ1.

Next, we construct (Bx̂) – the vector of all possible boundary values of x̂ allowable

for the given n.

(Bx̂) =

(Cx̂)(0)
(Cx̂)(1)

 =



x̂2(0)

x̂2,s(0)

x̂2(1)

x̂2,s(1)


=



ζ(0)

ζ1,s(0)

ζ(1)

ζ1,s(1)


We may now define the BCs. There is no ODE state, however, there is a disturbance

w that influences the PDE via the signal v, which can be chosen as v(t) = w(t). Then,

the BCs appear in the form 0

v(t)

 =

∫ b

a
BI(s)F x̂(t, s)ds−B(Bx̂)(t)

=

∫ 1

0
BI(s)



x̂1(t, s)

x̂2(t, s)

x̂2,s(t, s)

x̂2,ss(t, s)


ds−B(Bx̂)(t) =

∫ 1

0
BI(s)



ζ1(t, s)

ζ2(t, s)

ζ1,s(t, s)

ζ1,ss(t, s)


ds−B



ζ1(t, 0)

ζ1,s(t, 0)

ζ1(t, 1)

ζ1,s(t, 1)


By inspection of Equation (5.13), we may now define the parameters for Gb and

hence Xv(t) as

Gb : B = −

1 −k 0 0

0 0 1 l

 Bv = −

0
1

 .

The final step is to define the parameters of the PDE dynamics. Ignoring the
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integral terms for simplicity, and noting that x̂ =

x̂0

x̂2

 =

ζ2
ζ1

, Sx̂ = S2x̂ = x̂2 = ζ1

and r = v = ∅, we have

ζ̇2(t, s)
ζ̇1(t, s)

 = A0(s)



ζ2(t, s)

ζ1(t, s)

ζ1,s(t, s)

ζ1,ss(t, s)


+Bxb(s)



ζ1(t, 0)

ζ1,s(t, 0)

ζ1(t, 1)

ζ1,s(t, 1)


.

By inspection of Equation (5.12), we have two non-zero parameters in Gp. However,

the interconnection signal r has an integral term, which can be written as

r(t) =

∫ b

a

Cr(s)F x̂(t, s)ds+Drb(Bx̂)(t)

=

∫ 1

0

Cr(s)



x̂1(t, s)

x̂2(t, s)

x̂2,s(t, s)

x̂2,ss(t, s)


ds+Drb(Bx̂)(t)

=

∫ 1

0

Cr(s)



ζ1(t, s)

ζ2(t, s)

ζ1,s(t, s)

ζ1,ss(t, s)


ds+Drb



ζ1(t, 0)

ζ1,s(t, 0)

ζ1(t, 1)

ζ1,s(t, 1)


.

Clearly, only Cr,0 =

[
1 0

]
is non-zero, whereas the remaining terms are zero, which

gives us the final set of parameters for the PDE subsystem as

Gp : A00 =

0 0

1 0

 , A02 =

c2
0

 , Cr,0 =

[
1 0

]
.

This completes the definition of the GPDE.
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Demonstration 5.3. Chemical Reactor with Cooling Jacket Consider a chemical re-

actor with a cooling jacket as described in Karafyllis and Krstic (2019). In this model,

the reactor temperature is a lumped parameter system while the coolant temperature

is a distributed state that varies along the length of the pipe. Assuming conduction

inside the cooling jacket to be negligible, we obtain the following coupled ODE-PDE.

ẋ(t) = kx(t) + µ

∫ 1

0

x(t, s)ds

ẋ(t, s) = −c∂sx(t, s)− ζx(t, s) + ζx(t) x(t, 0) = w(t) (5.14)

where x is the reactor temperature, x is the temperature in the cooling jacket, w(t)

is a disturbance, µ, c, ζ are positive constants, and k is a negative constant. In this

model, the distributed state x has a single boundary condition and the highest spatial

derivative of order 1, so n = {0, 1}. In order to retain the parameter dependencies,

we use the formulae in Blocks 5.1 and 5.2 to obtain the following PIE representation.

ẋ(t) = kx(t) +

∫ 1

0

µ(1− s)x̂
¯
(t, s)ds,∫ s

0

s ˙̂x
¯
(t, θ)dθ = ζx(t)− cx̂

¯
(t, s)−

∫ s

0

ζx̂
¯
(t, θ)dθ − ẇ(t)− ζw(t), (5.15)

or, alternatively,

Π

 1 0

0 {0, s, 0}


ẋ(t)
˙̂x
¯
(t)

+ Π

 0 0

1 {0}

 ẇ(t)

= Π

 k µ(1− s)

ζ {−c,−ζ, 0}


x(t)
x̂
¯
(t)

+ Π

 0 0

−ζ {0}

w(t),

where x̂
¯
= ∂sx.

5.6 Conclusion

In this chapter, we proposed a test for the admissibility of a given GPDE model

and proved that admissibility implies the existence of an associated Partial Integral
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Equation (PIE) representation of the GPDE model. Furthermore, we found a unitary

map from the state of the PIE system to the state of the GPDE model and proved

that this unitary map is a PI operator. Using this unitary mapping, parameters of

the GPDE model was mapped to the parameters of its associated PIE model via

analytical expressions. Lastly, we proved that many properties of the GPDE model

and associated PIE system are equivalent – including the existence of weak solutions,

input-output properties, and internal stability.

As a side note, to aid in the practical application of the proposed GPDE mod-

els and PIE conversion formulae, we introduced an efficient open-source software

(PIETOOLS) for the construction of the GPDE model, conversion to PIE system,

simulation of the GPDE/PIE, and analysis/control of the GPDE/PIE. This software

includes a GUI for the construction of GPDE models and conversion to an associated

PIE system – a feature demonstrated on several example problems.

105



nx̂ =
N∑
i=0

ni, nSi
=

N∑
j=i

nj, nS =
N∑
i=1

nSi
ni:j =

j∑
k=i

nk, τi(s) =
si

i!
,

Qi(s) =



0 τ0(s)Ini

0 τ1(s)Ini+1

. . .

0 τN−i(s)InN


, Q(s) =


Q1(s)

...

QN(s)

 , U1i =

 Ini

0ni+1:N ,ni

 ,

Ti,j(s) = τ(j−i)(s)

0(nSi−nSj),nSj

InSj

 , T (s) =


T1(s)

...

TN(s)

 =


T1,1(s) · · · T1,N(s)

...
. . .

...

0 · · · TN,N(s)

 ,

U1 = diag(U10, · · · , U1N), U2i =

0ni,ni+1:N

Ini+1:N

 , U2 =

diag(U20, · · · , U2(N−1))

0nN ,nS

 ,

BT = B

 T (0)

T (b− a)

−
∫ b

a

BI(s)U2T (s− a)ds, Gv(s) =

 0

T1(s− a)B−1
T Bv

 ,

BQ(s)=B−1
T

BI(s)U1+

b∫
s

BI(θ)U2Q(θ − s)dθ −B

 0

Q(b− s)


 , G0 =

In0

0(nx̂−n0)

 ,

G2(s, θ) =

 0

T1(s− a)BQ(θ)

 , G1(s, θ) =

 0

Q1(s− θ)

+G2(s, θ),

T̂ = Π

 ∅ ∅

∅ {Gi}

 , Tv = Π

 ∅ ∅

Gv {∅}

 .

Block 5.1: Definitions based on n ∈ NN+1 and the parameters of Gb = {B, BI , Bv}

used in Theorem 5.1.
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RD,2(s, θ) = U2T (s− a)BQ(θ), RD,1(s, θ) = RD,2(s, θ) + U2Q(s− θ),

Υ =




Inv

B−1
T Bv

T (b− a)B−1
T Bv




0nr×nx

BQ(s)

T (b− a)BQ(s) +Q(b− s)


U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

 ,

Ξ =

 [
0 Drb

]
Cr[

Bxv Bxb

]
{Ai}

 ,

 Drv Crx

Bxv {Âi}

 = P4
× (Ξ,Υ)

Â = Π

 ∅ ∅

∅ {Âi}

 , Bv = Π

 ∅ ∅

Bxv {∅}

 , Cr = Π

 ∅ Crx

∅ {∅}

 , Drv = Π

 Drv ∅

∅ {∅}

 ,

T =

 Inx 0

GvCv T̂

 , Tw =

 0 0

GvDvw 0

 , Tu =

 0 0

GvDvu 0

 , A =

A+BxrDrvCv BxrCr
BvCv Â

 ,

B1 =

Bxw +BxrDrvDvw

BvDvw

 , B2 =

Bxu +BxrDrvDvu

BvDvu

 ,

C1 =
[
Cz +DzrDrvCv DzrCr

]
, C2 =

[
Cy +DyrDrvCv DyrCr

]
, D11 = Dzw +DzrDrvDvw,

D12 = Dzu +DzrDrvDvu, D21 = Dyw +DyrDrvDvw, D22 = Dyu +DyrDrvDvu.

Block 5.2: Definitions based on the PDE and GPDE parameters in Gp= {A0, A1,

A2, Bxv, Bxb, Cr, Drb} and Go = {A, Bxw, Bxu, Bxr, Cz, Dzw, Dzu, Dzr, Cy, Dyw,

Dyu, Dyr, Cv, Dvw, Dvu}, the Definitions from Gb as listed in Block 5.1 and the map

P4
× as defined in Lemma 2.2
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Part II

ANALYSIS, ESTIMATION, AND

CONTROL OF GPDES
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Chapter 6

STABILITY, STABILIZABILITY, AND DETECTABILITY

6.1 Introduction

One of the important problems in control theory is to establish the stability of a

system in the absence of inputs and to stabilize an unstable system or improve the

stability of a stable system by finding feedback control.

Although there are different definitions of stability for a system, even more for

infinitesimal systems due to different available choices for the norm used in the Lya-

punov function, we will only look at the stability of GPDEs when the associated Lya-

punov functions that prove stability are defined using the L2-norm. Consequently,

the stability of the state is also expressed in terms of L2-norm, in the sense if we say

limt→t0 x(t) = x0, we imply limt→t0 ∥x(t)− x0∥L2
= 0.

In this chapter, we will introduce slightly different notions of stability for PIEs,

namely asymptotic and exponential, that use a different norm than the ones pre-

sented in Definitions 5.4 to 5.6. The stability notions will be defined based on the

rate of convergence of T x
¯
as opposed to x

¯
in the previous definitions. As a result,

we have a weaker stability result for the corresponding GPDE state x in terms of

RL2-norm instead of the Sobolev norm. However, as will be seen later, this weaker

notion is needed to maintain symmetry between a PIE and its dual representation –

a representation needed for stabilizability and controller synthesis.

Using the new stability definitions, we will present associated sufficient conditions

to prove the stability of a GPDE in the PIE form. Furthermore, we will look at a

method to design a feedback input to stabilize unstable systems or enhance stability,
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e.g., use feedback to convert an asymptotically stable GPDE to an exponentially

stable GPDE. For the design of such feedback inputs, we will also need a concept of

dual stability for reasons explained in the following sections by using an ODE system

for demonstration.

6.2 Stability and Dual Stability

Lyapunov’s direct method allows us to verify/prove the properties of a dynamical

system without requiring us to find a solution for the equations describing the system.

The typical steps involved in Lyapunov methods are listed below:

1. Define a parameterized Lyapunov function (or a storage function) that is strictly

positive (or positive definite for a storage function).

2. Find the time derivative of the said parametrized function along the solutions

of the dynamical system.

3. Search for the parameters of this function such that the time derivative com-

puted in Step 2 is negative (or satisfies some input-to-output bounds).

For example, to find a stabilizing state-feedback controller for an ODE given by

ẋ(t) = Ax(t) +Bu(t),

where A and B are matrices, we can parameterize the control signal as u(t) = Kx(t).

By defining a Lyapunov function V (x) = xTPx where P is a positive definite matrix,

we find that the time derivative of V along the solutions of the ODE is given by

V̇ (t) = x(t)T ((A + BK)TP + P (A + BK))x(t). Thus, if we solve an optimization

problem searching for variables K and P , subject to the constraints P > 0 and

(A+BK)TP +P (A+BK) ≤ 0, then we can find the controller K that stabilizes the
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ODE and the associated Lyapunov function V that proves the stability of the said

controller.

However, as we can note, this optimization problem is bilinear and hence non-

convex. Thus, although the Lyapunov method gives us solvable conditions to find a

provably stable controller, K, the problem is computationally intractable. To over-

come this practical limitation, we use a dual ODE representation to convexify this

optimization problem as described below.

The concept of dual representation arises from the fact that A and AT have the

same eigenvalues. Therefore, ẋ = Ax (primal ODE) is stable if and only if ẏ = ATy

(dual ODE) is stable. Using Lyapunov’s method for the primal ODE, the stability can

be verified by solving the LMI optimization problem, P > 0 such that ATP +PA ≤ 0

— referred to as the ‘primal stability test’. Applying the primal stability to the

dual ODE, we get the LMI optimization problem P > 0 such that AP + PAT ≤ 0

— referred to as the ‘dual stability test’. Since the stability of the two ODEs is

equivalent, the two tests are also equivalent. Therefore, if a primal ODE ẋ = Ax+Bu

is stabilized by a state-feedback control u = Kx leading to the closed-loop ODE

ẋ = (A + BK)x, then the dual ODE ẏ = (A + BK)Ty is also stable. Then, we

can find the controller by solving the dual stability test: find P > 0 such that

(A + BK)P + P (A + BK)T ≤ 0. The key difference, however, is the bilinearity can

now be eliminated by introducing a new variable Z = KP which leads to the LMI

constraint AP +BZ + (AP +BZ)T ≤ 0.

Likewise, while finding optimal control for any ODE (primal ODE ) with inputs

and output as shown below,

ẋ = Ax+Bu, z = Cx+Du,
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one can show that there exists a dual ODE given by

ẋ = ATx+ CTu, z = BTx+DTu,

such that the two ODEs have the same internal stability and I/O properties. Any

bilinearity that appears in the optimization problem while searching for a controller

for the primal ODE using Lyapunov methods can be convexified by considering the

dual ODE and the dual optimization problem.

In particular, the equivalence in the stability and I/O properties of a primal ODE

and its dual ODE are crucial results that are used to reformulate optimal controller

synthesis for ODEs as an LMI problem. Since we wish to reformulate optimal con-

troller synthesis for PIEs as a convex optimization problem, we need duality results

for a PIE and its dual. Therefore, before discussing the use of Lyapunov methods,

we first introduce the duality concept for PIEs and then look at the use of Lyapunov

methods for the stability and stabilizability of PIEs.

For any PIE system of the form in Equation (4.1), we may associate a dual PIE

system, also of the same form as shown below.

Definition 6.1. (Dual PIE) Given a PIE system of the formT ẋ
¯
(t)

z(t)

 =

A B

C D


x¯ (t)
w(t)

 , x
¯
(0) ∈ RLm,n

2 , (6.1)

defined by PI operators T , A, B, C and D, we define the ‘dual PIE system’ asT ∗ ˙̄x(t)

z̄(t)

 =

A∗ C∗

B∗ D∗


x̄(t)
w̄(t)

 , x̄(0) ∈ RLm,n
2 , (6.2)

where ∗ represents the adjoint of an operator with respect to the R×L2 inner product.

Recall that, given the polynomial parameters that define the operators T ,A, B, C,

and D, the polynomials that parameterize the dual PIE operators are easily obtained
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from the formula

Π

 P Q1(s)

Q2(s) {R0(s), R1(s, θ), R2(s, θ)}

∗

= Π

 PT Q2(s)
T

Q1(s)
T {R0(s)

T , R2(θ, s)
T , R1(θ, s)

T }

 .

In the following subsections, we will establish that a PIE system and its dual are

equivalent in terms of internal stability; In particular, we consider the asymptotic

stability, which is defined as follows.

Definition 6.2 (Asymptotic Stability). We say that the PIE defined by {T ,A} ⊂ ΠΠΠ4

is Asymptotically Stable if for any x0 ∈ RL2, if T x
¯
(0) = T x0 and T ẋ

¯
(t) = Ax

¯
(t),

then

lim
t→∞

∥T x
¯
(t)∥RL2

= 0.

For convenience, we drop the ∥·∥ in the following theorem, however, it is implied

that the metric used in the solution space is induced by the L2-norm and limit values

must be evaluated with respect to this metric.

Theorem 6.1. Suppose T ,A ∈ L(RLm,n
2 ) are PI operators. Then, the following

statements are equivalent.

a) lim
t→∞

T x
¯
(t) = 0 for any x that satisfies T ẋ

¯
(t) = Ax

¯
(t) with initial condition

x
¯
(0) ∈ RLm,n

2 .

b) lim
t→∞

T ∗x̄(t) = 0 for any x̄ that satisfies T ∗ ˙̄x(t) = A∗x̄(t) with initial condition

x̄(0) ∈ RLm,n
2 .

Proof. To show sufficiency (i.e. a) implies b)), suppose x
¯
satisfies T ẋ

¯
(t) = Ax

¯
(t) with

initial condition x
¯
(0) ∈ RLm,n

2 and limt→∞ T x
¯
(t) = 0. Let x̄ satisfy T ∗ ˙̄x(t) = A∗x̄(t)
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with initial condition x̄(0) ∈ RLm,n
2 . Then for any finite t > 0, using integration-by-

parts, we get∫ t

0

⟨x̄(t− s), T ẋ
¯
(s)⟩RL2

ds = ⟨x̄(0), T x
¯
(t)⟩RL2

− ⟨x̄(t), T x
¯
(0)⟩RL2

(6.3)

−
∫ t

0

⟨∂sx̄(t− s), T x
¯
(s)⟩RL2

ds.

Then, we use a change of variable (θ = t− s) on the last term in Equation (6.3) to

show ∫ t

0

⟨∂sx̄(t− s), T x
¯
(s)⟩RL2

ds=

∫ t

0

〈
˙̄x(θ), T x

¯
(t− θ)

〉
RL2

dθ

=

∫ t

0

〈
T ∗ ˙̄x(θ),x

¯
(t− θ)

〉
RL2

dθ.

Furthermore, using the same variable change on the left-hand side of Equation (6.3),

we get ∫ t

0

⟨x̄(t− s), T ẋ
¯
(s)⟩RL2

ds =

∫ t

0

⟨x̄(t− s),Ax
¯
(s)⟩RL2

ds

=

∫ t

0

⟨A∗x̄(θ),x
¯
(t− θ)⟩RL2

dθ.

Substituting these two expressions into Equation (6.3), we have∫ t

0

⟨A∗x̄(θ),x
¯
(t− θ)⟩RL2

dθ = ⟨x̄(0), T x
¯
(t)⟩RL2

− ⟨x̄(t), T x
¯
(0)⟩RL2

+

∫ t

0

〈
T ∗ ˙̄x(θ),x

¯
(t− θ)

〉
RL2

dθ.

However, A∗x̄(θ) = T ∗ ˙̄x(θ) for all θ ∈ [0, t], and hence

⟨x̄(0), T x
¯
(t)⟩RL2

= ⟨x̄(t), T x
¯
(0)⟩RL2

, for all t > 0. (6.4)

Since limt→∞ T x
¯
(t) = 0 for any x

¯
(0) ∈ RL2, we have

lim
t→∞

⟨x̄(0), T x
¯
(t)⟩RL2

= lim
t→∞

⟨T ∗x̄(t),x
¯
(0)⟩RL2

= 0,

for any x̄(0) ∈ RL2. Therefore, for any x̄(0) ∈ RL2, we have limt→∞ T ∗x̄(t) = 0.

Thus we have sufficiency. Since T ∗∗ = T , sufficiency implies necessity.
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From a computational perspective, testing asymptotic stability is difficult and

controls that provide asymptotic stability are typically impractical. Hence, in the

following, we consider the exponential stability and show that the primal and the

dual PIE have equivalent exponential stability properties as well.

Definition 6.3 (Exponential Stability). We say that the PIE defined by {T ,A} ⊂ ΠΠΠ4

is Exponentially Stable with decay rate α > 0 if there exists some M > 0 such

that for any x0 ∈ RL2, if x
¯
(0) = x0 and T ẋ

¯
(t) = Ax

¯
(t), then

∥T x
¯
(t)∥RL2

≤ M ∥x0∥RL2
e−αt for all t ≥ 0.

Note that this definition implies that the GPDE state (T x
¯
) decays exponentially

in the RL2-norm, but does not necessarily guarantee exponential stability of the PIE

state (x) unless T has a bounded inverse.

Corollary 6.2. Suppose T ,A ∈ L(RLm,n
2 ) are PI operators. Then the following

statements are equivalent:

a) There exists M > 0 and α > 0 such that

∥T x
¯
(t)∥ ≤ M ∥x

¯
(0)∥ e−αt

for any x that satisfies T ẋ
¯
(t) = Ax

¯
(t) with initial condition x

¯
(0) ∈ RLm,n

2 .

b) There exists M > 0 and α > 0 such that

∥T ∗x̄(t)∥ ≤ M ∥x̄(0)∥ e−αt

for any x̄ that satisfies T ∗ ˙̄x(t) = A∗x̄(t) with initial condition x̄(0) ∈ RLm,n
2 .

Proof. To show sufficiency (i.e. a) implies b)), suppose x̄ satisfies T ∗ ˙̄x(t) = A∗x̄(t)

for some initial condition x̄(0) ∈ RLm,n
2 . Then for any t > 0, let x

¯
satisfy T ẋ

¯
(t) =
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Ax
¯
(t) with initial condition x

¯
(0) = T ∗x̄(t). Then, we have from Equation (6.4) in

Theorem 6.1,

⟨x̄(0), T x
¯
(t)⟩ = ⟨T ∗x̄(t),x

¯
(0)⟩ = ∥T ∗x̄(t)∥2 .

Then, from Cauchy-Schwarz inequality,

∥T ∗x̄(t)∥2 = ⟨x̄(0), T x
¯
(t)⟩ ≤ ∥T x

¯
(t)∥ ∥x̄(0)∥

≤ M ∥x
¯
(0)∥ e−αt ∥x̄(0)∥ = M ∥T ∗x̄(t)∥ e−αt ∥x̄(0)∥ ,

which implies

∥T ∗x̄(t)∥ ≤ M ∥x̄(0)∥ e−αt.

Thus we have sufficiency. Since T ∗∗ = T , sufficiency implies necessity.

Now, we can use the Lyapunov approach introduced earlier to formulate sufficient

conditions for the stability of a PIE, as shown in the following subsections.

6.2.1 LPI for Testing Stability

In the following theorem, we propose primal and dual LPI tests for exponential

stability and use Corollary 6.2 to show that the feasibility of either implies exponential

stability of both the primal and dual systems.

Theorem 6.3. Suppose that either of the two statements hold for some α > 0 and

bounded linear operator P = P∗ ⪰ ηI with η > 0.

a) T ∗PA+A∗PT ⪯ −2αT ∗PT

b) T PA∗ +APT ∗ ⪯ −2αT PT ∗

Then the PIEs defined by {T ,A} ⊂ ΠΠΠ4 and {T ∗,A∗} ⊂ ΠΠΠ4 are Exponentially

Stable with decay rate α.
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Proof. Suppose a) holds. Define V (x
¯
) = ⟨T x

¯
,PT x

¯
⟩RL2

. Since P is bounded,

η ∥T x
¯
∥2 ≤ V (x

¯
) ≤ ∥P∥L(RL2)

∥T x
¯
∥2 .

Suppose x
¯
(t) satisfies x

¯
(0) = x0 and T ẋ

¯
(t) = Ax

¯
(t). Differentiating V (x

¯
(t)) with

respect to time, t, we obtain

V̇ (x
¯
(t)) = ⟨T x

¯
(t),PAx

¯
(t)⟩+ ⟨Ax

¯
(t),PT x

¯
(t)⟩

= ⟨x
¯
(t), (T ∗PA+A∗PT )x

¯
(t)⟩ ≤ −2αV (x

¯
(t)).

Therefore, we conclude V̇ (x
¯
(t)) ≤ −2αV (x

¯
(t)) for all t and, from Gronwall-Bellman

inequality, V (x
¯
(t)) ≤ V (x

¯
(0))e−2αt. Let β = ∥T ∥L(RL2)

and ζ = ∥P∥L(RL2)
. Then

∥T x
¯
(t)∥2 ≤ 1

η
V (x

¯
(t)) ≤ 1

η
V (x

¯
(0))e−2αt

≤ 1

η
ζ ∥T x

¯
(0)∥2 e−2αt ≤ ζβ2

η
∥x
¯
(0)∥2 e−2αt.

By taking square root on both sides,

∥T x
¯
(t)∥ ≤ M ∥x

¯
(0)∥ e−αt

where M =
√

ζ
η
β. This implies the PIE defined by {T ,A} ⊂ ΠΠΠ4 is Exponentially

Stable with decay rate α. Then, from Corollary 6.2, the PIE defined by {T ∗,A∗} ⊂

ΠΠΠ4 is Exponentially Stable with decay rate α.

The proof similarly establishes exponential stability for b) with T 7→ T ∗ and

A 7→ A∗.

Both a) and b) in Theorem 6.3 imply exponential stability of both primal and

dual using the definition of exponential stability in Definition 6.3, ∥T x
¯
(t)∥RL2

≤

M ∥x0∥RL2
e−αt where the upper bound is defined using the L2-norm of the PIE initial

condition (which is equivalent to the Sobolev norm of the PDE initial condition). This

slightly stronger norm is needed to preserve the symmetry of the primal and dual.
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However, we also note that from the proof of Theorem 6.3, a) implies exponential

stability of the primal and b) implies exponential stability of the dual using an upper

bound of the form ∥T x
¯
(t)∥RL2

≤ M ∥T x0∥RL2
e−αt. Practically, however, there is no

difference between these definitions of exponential stability since we always assume

that x0 ∈ RL2.

It is worth noting that, although we do not explicitly provide a condition to

test asymptotic stability, we can use the conditions of Theorem 6.3 with α = 0 to

establish asymptotic stability. Asymptotic stability is considered inferior in practice

since it does not provide any practical metric to quantify the time a system takes

to reach equilibrium. Therefore, moving forward, we will exclusively consider the

case of exponential stability. On the note of practicality, in Theorem 6.3, we used

a Lyapunov function of the form V (x
¯
) = ⟨x

¯
, T ∗PT x

¯
⟩ where P is a bounded linear

operator. However, if one carefully inspects the proof, one does not necessarily need

P to be bounded in the Lyapunov function V to be positive as long as PT is bounded;

Boundedness of P is used only in the last step

1

η
V (x

¯
(0))e−2αt ≤ 1

η
ζ ∥T x

¯
(0)∥2 e−2αt ≤ ζβ2

η
∥x
¯
(0)∥2 e−2αt.

The conclusion will hold when PT is bounded even if P is not — i.e., 1
η
V (x

¯
(0))e−2αt ≤

M ∥x
¯
(0)∥2 e−2αt when PT is bounded. Therefore, one can relax this boundedness

constraint on P , while computationally searching for P , to obtain a less conservative

test for stability as shown in the following results.

Corollary 6.4. Suppose there exist α > 0, η > 0 and PI operator P = P∗ ⪰ ηI, such

that either (a) or (b) is satisfied:

(a) T ∗PA+A∗PT ⪯ −2αT ∗PT

(b) T PA∗ +APT ∗ ⪯ −2αT PT ∗
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Then:

1. There exist PI operators Q and R with R ⪰ 0, such that

(c) T ∗Q = Q∗T = R, Q∗A+A∗Q+ η(T ∗A+A∗T ) ⪯ −2αR

if (a) is satisfied. Otherwise, if (b) is satisfied, then there exist PI operators Q

and R with R ⪰ 0, such that

(d) T Q = Q∗T ∗ = R, Q∗A∗ +AQ+ η(T A∗ +AT ∗) ⪯ −2αR.

2. For any x0 ∈ L2, the PIE systems (A) and (B)

(A) T ẋ
¯
(t) = Ax

¯
(t), x

¯
(0) = x0,

(B) T ∗ ˙̄x(t) = A∗x̄(t), x̄(0) = x0,

are exponentially stable with a decay rate α.

Proof. The proof is similar to the proof of Theorem 6.3. If conditions of (a) are

satisfied, then we see that for Q = PT + ηT , the conditions of 1c) are automatically

satisfied. Likewise, one can verify that (b) implies conditions 1d) are satisfied with

Q = PT ∗ + ηT ∗. Furthermore, from Theorem 6.3, we automatically get the 2A) and

2B).

6.3 Stabilizability and Detectability

So far, we have introduced the concepts of stability and a proof of stability by

finding Lyapunov functions. However, in practice, one would be more interested in

stabilizing an unstable system via a feedback input or improving the stability by

increasing the speed at which the system moves to the equilibrium point. However,

such a feedback input may not always exist, e.g., a car cannot be made to fly.
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Therefore, we need a test to determine if a system can be stabilized using a feed-

back input; If such a feedback control exists, then the system is said to be stabilizable.

Another concept somewhat similar to stabilizability is detectability. We say a sys-

tem is detectable if all unstable states can be inferred by using output measurements.

In the case of ODEs, the concepts of stabilizability and detectability are duals – i.e.,

given a state-space ODE (A,B,C,D), the pair (A,B,−) is said to be stabilizable if

and only if the pair (AT ,−, BT ) is also detectable.

This dual relationship between stabilizability and detectability can be extended

to PIEs defined by {T ,A,B, C, D} of the form

T ẋ
¯
(t) = Ax

¯
+ Bw z(t) = Cx

¯
(t) +Dw(t).

In case of PIEs, we can show that {T ,A,B,−} is stabilizable if and only if {T ∗, A∗,

−, B∗} is detectable. This is a direct consequence of the choice of parametrization

of the dual PIE for a given PIE system. However, to prove these claims, we need to

define the stabilizability and detectability of a PIE formally.

Definition 6.4. If there exists a PI operator K such that the PIE defined by {T ,A+

BK} is asymptotically stable, then we say PIE system defined by {T ,A,B, C, D} is

stabilizable. If {T ,A+ BK} is exponentially stable with some decay rate α > 0, then

we say the PIE is exponentially stabilizable.

Definition 6.5. If there exists a PI operator L such that the PIE defined by {T ,A+

LC} is asymptotically stable, then the PIE system defined by {T ,A,B, C, D} is de-

tectable. If {T ,A+ LC} is exponentially stable with some decay rate α > 0, then we

say the PIE is exponentially detectable.

Using the definitions above, we can now arrive at the duality relationship between

stabilizability and detectability of a PIE system.
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Theorem 6.5. Given =T ,A,B, C ∈ ΠΠΠ4, and a matrix D the following two statements

are equivalent:

1. The PIE defined by {T ,A,B, C, D} is stabilizable.

2. The PIE defined by {T ∗,A∗, C∗,B∗, DT} is detectable.

Proof. The proof simply follows form the definition of stabilizability and detectabil-

ity. Let the PIE defined by {T ∗,A∗, C∗,B∗, DT} be detectable. Then, there exists

a PI operator L, such that {T ∗,A∗ + LB∗} is asymptotically stable. Then, from

Theorem 6.1, we have that the PIE defined by

{(T ∗)∗, (A∗ + LB∗)} = {T ,A+ BL∗)}

is also asymptotically stable. Therefore, there exists K = L∗, a PI operator, such

that {T ,A + BK} is asymptotically stable. Likewise, one can prove the converse

implication using the same approach.

Remark 6.6. Note that since exponentially stability of a PIE and its dual are also

equivalent, the above dual relationship also holds for exponential stabilizability and

exponential detectability of a PIE system.

6.3.1 LPI for Stabilizability and Detectability

Now that we have the dual stability test for the PIEs, we can use the change

of variable trick to eliminate the bilinearity that appears in the controller synthesis

problem. Given a PIE of the form,

T ẋ
¯
(t) + Tuu̇(t) = Ax

¯
(t) + Bu(t)

we present the LPI that is used to find a stabilizing state-feedback controller of the

form u(t) = Kx(t) where K : RLm,n
2 [a, b] → Rq is a 4-PI operator. By Definition 6.4,

this LPI will also be a test for stabilizability of PIEs.
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Since the presence of Tu term introduces a quadratic nonlinearity in the optimiza-

tion problems, we will treat the two cases (Tu = 0 and Tu ̸= 0) separately.

Stabilizability of PIEs with Tu = 0

When GPDE systems that do not have inputs at the boundary are converted to PIEs,

we always obtain a PIE with dynamics of the form

T ẋ
¯
(t) = Ax

¯
(t) + Bu(t).

Since the Tu term is zero in the above case, we can directly employ the dual LPI for

stability along with the change of variable trick to derive an LPI to find a stabilizing

controller which gives us the following result.

Theorem 6.7. Suppose there exist α > 0, η > 0, and bounded linear operators

P ⪰ ηI and Z, such that

(AP + BZ)T ∗ + T (AP + BZ)∗ ≤ −2αT PT ∗. (6.5)

Then, for u(t) = Kx
¯
(t), where K = ZP−1, the PIE defined by {T ,A+ BK} ⊂ ΠΠΠ4 is

exponentially stable with a decay rate of α.

Proof. Let Z = KP . Define a Lyapunov candidate as V (y) = ⟨T ∗y,PT ∗y⟩RL2
. Then

η ∥T ∗y∥2RL2
≤ V (y) ≤ ∥P∥ ∥T ∗y∥2RL2

.

The time derivative of V (y) along the solutions of the PIE

T ∗ ˙̄x(t) = A∗x̄(t) +K∗B∗x̄(t), y(0) ∈ RLm,n
2 [a, b]
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is given by

V̇ (x̄(t)) =
〈
T ∗x̄(t),PT ∗ ˙̄x(t)

〉
+
〈
T ∗ ˙̄x(t),PT ∗x̄(t)

〉
= ⟨T ∗x̄(t),PA∗x̄(t)⟩+ ⟨A∗x̄(t),PT ∗x̄(t)⟩

+ ⟨T ∗x̄(t),PK∗B∗x̄(t)⟩+ ⟨K∗B∗x̄(t),PT ∗x̄(t)⟩

= ⟨x̄(t), T PA∗x̄(t)⟩+ ⟨x̄(t),APT ∗x̄(t)⟩

+ ⟨x̄(t), T Z∗B∗x̄(t)⟩+ ⟨x̄(t),BZT ∗x̄(t)⟩

≤ −ϵ ∥T ∗x̄(t)∥RL2
≤ − ϵ

β
V (x̄(t)).

Then, by using Gronwall-Bellman Inequality, there exists constants M and k such

that

V (x̄(t)) ≤ V (x̄(0))Me(−kt).

As t → ∞, V (x̄(t)) → 0 which implies ∥T ∗x̄(t)∥RL2
→ 0. Then, from Theorem 6.1,

∥T x
¯
(t)∥RL2

→ 0 where x
¯
satisfies the equation

T ẋ
¯
(t) = Ax

¯
(t) + BKx

¯
(t) = Ax

¯
(t) + Bu(t)

for any x
¯
(0) ∈ RLm,n

2 [a, b].

Similar to the case of the stability test, we can relax the boundedness require-

ment of P in the above theorem to obtain a less conservative LPI condition for the

stabilizability of a PIE, as shown below.

Corollary 6.8. Suppose there exist α > 0, η > 0, and bounded linear operators

P ⪰ ηI and Z, such that

(AP + BZ)T ∗ + T (AP + BZ)∗ ≤ −2αT PT ∗. (6.6)

Then, there exist bounded linear operators Q, ZQ, and R ⪰ 0 such that

AQ+ BZQ + (AQ+ BZQ)
∗ + η(T A∗ +AT ∗) ≤ −2αR. (6.7)
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Then, for u(t) = Kx
¯
(t), where K = ZQQ−1, the PIE defined by {T ,A + BK} ⊂ ΠΠΠ4

is exponentially stable with a decay rate of α.

Proof. The proof for the above corollary is similar to the proof of Corollary 6.4. We

can show that Q = PT ∗+ηT ∗ and ZQ = ZT ∗ satisfy Equation (6.7) if Equation (6.5)

is satisfied.

Stabilizing control of PIEs with Tu ̸= 0

In the case of GPDE systems with inputs at the boundary, i.e., BvDvu ̸= 0, the PIE

representation of the GPDE is of the form

T ẋ
¯
(t) + Tuu̇(t) = Ax

¯
(t) + Bu(t).

For such PIEs (with Tu ̸= 0), the following Corollary can be used to find a stabilizing

state-feedback controller of the form u(t) = Kx(t) where K : RLm,n
2 [a, b] → Rq is a

4-PI operator, however, note that the constraints are non-convex and quadratic in

the decision variable K.

Corollary 6.9. Suppose there exist bounded linear operators P : RLm,n
2 [a, b] →

RLm,n
2 [a, b], such that P is self-adjoint, coercive and

(AP + BKP)(T + TuK)∗ + (T + TuK)(AP + BKP)∗

≤ −ϵ(T + TuK)(T + TuK)∗. (6.8)

Then, for u(t) = Kx
¯
(t), any x

¯
∈ RLm,n

2 [a, b] that satisfies the system

T ẋ
¯
(t) + TuKu̇(t) = Ax

¯
(t) + Bu(t), x(0) = x0 ∈ RLm,n

2 [a, b]

also satisfies limt→∞ ∥T x
¯
(t)∥ = 0.

Proof. The proof is similar to the proof for Theorem 6.7. Replace T by T + TuK in

all the steps.
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To eliminate the quadratic terms in the inequality Equation (6.8), we use the

result, Young’s relation for matrices Zemouche et al. (2016), and extend it to PI

operators.

Lemma 6.10. For any Z1 : RLm,n
2 → RLp,q

2 , Z2 : RLm,n
2 → RLl,k

2 and P : RLm,n
2 →

RLm,n
2 , such that P ≻ 0,

⟨x,Z1PZ∗
2y⟩+ ⟨y,Z2PZ∗

1x⟩ ≼ ⟨x,Z1PZ∗
1x⟩+ ⟨y,Z2PZ∗

2y⟩

where x ∈ RLp,q
2 and y ∈ RLl,k

2 .

Proof. Suppose P is coercive. Then, the following sequence of inequalities holds.

0 ≼ ⟨(Z∗
1x−Z∗

2y),P(Z∗
1x−Z∗

2y)⟩

= ⟨x,Z1PZ∗
1x⟩ − ⟨y,Z2PZ∗

1x⟩ − ⟨x,Z1PZ∗
2y⟩+ ⟨y,Z2PZ∗

2y⟩

Therefore, by rearranging the terms in the inequality,

⟨x,Z1PZ∗
1x⟩+ ⟨y,Z2PZ∗

2y⟩ ≽ ⟨y,Z2PZ∗
1x⟩+ ⟨x,Z1PZ∗

2y⟩ .

Similar to Schur’s complement for matrices, we can also find the Schur’s comple-

ment for the 4-PI operators.

Lemma 6.11. Suppose E, F , and G are 4-PI operators where G is positive definite.

Then  E F

F∗ G

 ≻ 0 (6.9)

if and only if E − FG−1F∗ ≻ 0.
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Proof. Suppose E , F , and G are as stated above. Then G−1 exists and is positive

definite (refer Theorem 2 of Peet (2020a)). Then the following inequalities are equiv-

alent.  E F

F∗ G

 ≻ 0,

I −FG−1

0 I


 E F

F∗ G


I −FG−1

0 I


∗

≻ 0,

E − FG−1F∗ 0

0 G

 ≻ 0,

E − FG−1F∗ ≻ 0.

Using the above Lemmas, we can derive the LPI to find a stabilizing controller

for PIEs with Tu ̸= 0 as follows.

Theorem 6.12. Suppose there exists a P ≻ 0 and Z, such that
PH TuZ BZ

Z∗T ∗
u −P 0

Z∗B∗ 0 −P

 ≼ 0 (6.10)

where

PH = T PA∗ +APT ∗ +

[
TuZ BZ

]A∗

T ∗

+

[
A T

]Z∗T ∗
u

Z∗B∗

 .

Then the system,

(T + TuK)∗ẋ(t) = (A+ BK)∗x(t)

is Lyapunov stable for K = ZP−1.
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Proof. Define a quadratic Lyapunov functional,

V (x(t)) = ⟨(T + T uK)∗x(t),P(T + T uK)∗x(t)⟩RL2

where P ≻ 0. Since P ≻ 0, V (x(t)) > 0 for all t > 0 such that x(t) ̸= 0. Suppose

there exists a Z such that P and Z satisfy the LPI Equation (6.10). If x satisfies the

equation

(T + TuK)∗ẋ(t) = (A+ BK)∗x(t),

then the time derivative of V (t) is

V̇ (t) = ⟨x(t), (T + TuK)P(A∗ +K∗B∗)x(t)⟩+ ⟨x(t), (A+ BK)P(T ∗ +K∗T ∗
u )x(t)⟩

= ⟨x(t), (T PA∗ +APT ∗)x(t)⟩+ ⟨x(t), (TuKPA∗ + BKPT ∗)x(t)⟩

+ ⟨x(t), (APK∗T ∗
u + T PK∗B∗)x(t)⟩+ ⟨x(t), (TuKPK∗B∗ + BKPK∗T ∗

u )x(t)⟩

= ⟨x(t),PHx(t)⟩+ ⟨x(t), (TuKPK∗B∗ + BKPK∗T ∗
u )x(t)⟩ .

However, using Lemma 6.10, if we choose Z1 = TuK and Z2 = BK then

TuKPK∗B∗ + BKPK∗T ∗
u ≼ TuKPK∗T ∗

u + BKPK∗B∗. (6.11)

Then,

V̇ (t) ≤ ⟨x(t),PHx(t)⟩+ ⟨x(t), (TuKPK∗T ∗
u + BKPK∗B∗)x(t)⟩

= ⟨x(t),PHx(t)⟩+
〈
x(t), (TuZP−1Z∗T ∗

u + BZP−1Z∗B∗)x(t)
〉

(6.12)

where we have substituted KP = Z. Let E , F , and G be 4-PI operators defined as

follows.

E = (T PA∗ +APT ∗ + TuZA∗ + BZT ∗ +AZ∗T ∗
u + T Z∗B∗),

F =

[
TuZ BZ

]
, G = −

P 0

0 P

 .
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Then, the inequality in Equation (6.12) can be compactly written as

V̇ (t) ≤
〈
x(t), (E − FG−1F∗)x(t)

〉
RL2

. (6.13)

Furthermore, the LPI Equation (6.10) can be written in a compact form as E F

F∗ G

 ≺ 0, (6.14)

where G ≺ 0 and invertible because P is coercive (refer Theorem 2 in Peet (2020a)).

Then, by Lemma 6.11,

(E − FG−1F∗) ≺ 0. (6.15)

Combining the inequalities, Equations (6.13) and (6.14) we get

V̇ (t) ≤
〈
x(t), (E − FG−1F∗)x(t)

〉
RL2

≤ 0, ∀x(t) ∈ RLm,n
2 .

Hence the system is Lyapunov stable.

Unfortunately, unlike Theorem 6.3 and Corollary 6.4, one cannot obtain a less

conservative version of Theorem 6.12 because setting PT ∗ = Q would require in-

version of T ∗ during the reconstruction of a controller. Although this can be done

using the inverse formulae presented in Section 2.4, the inverse of T ∗ happens to be a

differential operator if the PIE represents a GPDE and thus unbounded — leading to

both numerical and well-posedness issues when trying to find the closed-loop GPDE.

6.4 Numerical Examples

All the numerical tests in this section are performed using PIETOOLS toolbox in

MATLAB. The standard process of using PIETOOLS includes: a) defining the GPDE

using the parser; b) conversion of GPDE to its PIE representation; and c) setting up
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and solving the LPI optimization problem for the PIE (specifically, stability and sta-

bilizability using lpisolve() function). Furthermore, all of the following tests were

performed using lpisettings(’heavy’), which is typically passed to the lpisolve

function in the form lpisolve(PIE, lpisettings(’heavy’),lpi-test-type). For

more details on the PIETOOLS functions and settings, refer Shivakumar et al. (2021).

We apply the primal and dual LPIs for the exponential decay rate in Corollary 6.2

to a linear delay-differential equation and a PDE reaction-diffusion equation to obtain

the maximum lower bound on the exponential decay rate, α. To maximize α, we

observe that the LPIs in Corollary 6.2 are convex in α for a fixed P – which implies

a bisection search on α can be used to maximize the lower bound on exponential

decay rate. Note that these LPIs have been implemented as a standard function in

PIETOOLS and are accessed through lpisolve function.

Example 6.1 (Exponential Stability of a Linear Time-Delay System). Consider

the following autonomous linear delay-differential equation from, e.g. Mondie and

Kharitonov (2005).

ẋ(t) =

−4 1

0 −4

x(t) +

0.1 0

4 0.1

x(t− 0.5)

The formulae for conversion of a delay-differential equation to a PIE can be found

in Peet (2020b) and is automated in PIETOOLS. The primal and dual LPIs obtained

lower bounds on the exponential decay rate of αp = αd = 1.1534. These are similar

to the estimate of α = 1.153 as reported in Mondie and Kharitonov (2005).

Example 6.2 (Exponential Stability of a reaction-diffusion PDE). Consider the fol-

lowing PDE model of a reaction-diffusion equation.

ẋ(t, s) = 2x(t, s) + ∂2
sx(t, s), x(t, 0) = ∂sx(t, 1) = 0.
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Using PIETOOLS, we find the relevant parameters of the PIE representation of this

PDE to be

T = Π

 ∅ ∅

∅ {0,−θ,−s}

 ,A = Π

 ∅ ∅

∅ {1,−λθ,−λs}

 .

Using the primal and dual LPIs in Corollary 6.2, the primal and dual lower bounds on

exponential decay rate are αp = αd = 0.4674. One can find an analytical solution to

the above PDE (by performing a change of variable y(t, s) = e−2tx(t, s) and using the

method of separation of variables) and see that the largest eigenvalue of the solution

is −0.4674 – validating the lower bound obtained from the LPIs.

Next, we look at an unstable PDE and test if the PDE is stabilizable using the

LPI presented in Theorem 6.7.

Example 6.3. Consider the reaction-diffusion equation given by

ẋ(t, s) = 10x(t, s) + ∂2
sx(t, s), s ∈ [0, 1], t > 0,

x(t, 0) = x(t, 1) = 0,x(0, s) = x0 ∈ W2[0, 1].

Then, one can show analytically that the system is unstable. To stabilize the system,

we introduce an in-domain control input leading to an altered dynamics

ẋ(t, s) = 10x(t, s) + ∂2
sx(t, s) + u(t)

where u(t) =
∫ 1

0
K(s)∂2

sx(t, s)ds is the control input. Converting this PDE to a PIE,

we get

T = Π {0,sθ−θ,sθ−s},A = Π {1,10(sθ−θ),10(sθ−s)},B = 1.

Then, by solving the LPI in Theorem 6.7, we can prove that the PDE is stabilizable.

Furthermore, using the inversion technique presented in Section 2.4.3, we find that

the operator Kx =
∫ 1

0
K(s)∂2

sx(t, s)ds stabilizes the system where

K(s) =0.29s5 − 1.01s4 + 0.95s3 + 0.16s2 − 0.51s+ 0.98
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6.5 Conclusions

In this chapter, we introduced slightly weaker notions of stability for PIEs and

showed that under these notions, there exists a dual PIE with the same stability

properties as the primal PIE. Using Lyapunov approach, we formulated primal and

dual LPI optimization formulations to test for the internal stability of a PIE. Fur-

thermore, we used the primal LPI formulation to formulated detectability of a PIE

system. We proved the duality between the notions of stabilizability and detectability

that allowed use to obtain an LPI formulation of the stabilizability problem using the

dual LPI test for internal stability.

Lastly, using the numerical examples, we verified that there is no conservatism

in the bounds on the exponential decay rate obtained by using LPIs in Theorem 6.3

and corollary 6.4.
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Chapter 7

INPUT-OUTPUT PROPERTIES

7.1 Introduction

While Chapter 6 focused on internal stability in the absence of external inputs,

dynamical systems rarely are isolated from surroundings and hence, in this chapter,

we look at systems with inputs and outputs. While stability is an important property

of interest, one should consider the impact of external inputs on the system to deter-

mine the system behavior under non-ideal conditions. For this purpose, some of the

standard properties to investigate are the impact of an input of unit energy on the

equilibrium state of the system (input-to-state stability) or the output of the system

(input-to-output stability) when the state cannot be measured completely – referred

to as the H∞-norm of the system. Additionally, passivity of the system is another

input-output property that is commonly investigated as it allows one to identify com-

ponents of a dynamical system that follow Thermodynamic laws and do not produce

energy.

7.2 H∞-norm and Passivity

Here, we briefly recall the LMI approach to bound the H∞-norm of an ODE

system. For an ODE system represented in traditional state-space representation

Equation (7.1),

ẋ(t) = Ax(t) +Bw(t), x(0) = 0

y(t) = Cx(t) +Dw(t) (7.1)

132



the following LMI condition by Boyd et al. (1994), established using bounded-real

lemma, can be used to find a bound on H∞-norm.

Theorem 7.1. Define:

G(s) = C(sI − A)−1B +D.

If there exists a positive definite matrix P , such that
ATP + PA PB CT

BTP −γI DT

C D −γI

 ≤ 0, (7.2)

then ∥G∥H∞
≤ γ.

In the following subsections, we generalize this LMI to a general class of infinite-

dimensional systems - replacing the matrices A,B,C,D with operators A,B, C,D and

the positive matrix variable P with an operator variable P .

The second input-to-output property that we consider is the passivity. Recall

that the ODE Equation (7.1) is passive if for any input w ∈ L2, we have y ∈ L2 and

⟨w, y⟩L2
≥ 0. For ODEs, an LMI test for passivity can be formulated as follows.

Theorem 7.2. If there exists a positive definite matrix P such thatATP + PA PB − CT

BTP − C −(D +DT )

 ≤ 0 (7.3)

then for any w ∈ L2 and y ∈ L2 which satisfy Equation (7.1) for some x, ⟨w, y⟩L2
≥ 0.

In the upcoming subsections, we will look at the LPI formulations of these analysis

problems for PDEs, however, first we will establish the duality results for input-output

properties of PIEs similar to the duality results for stability of PIEs to allow dual

LPI formulations. As will be seen in Chapter 8, we will use these dual formulations

in H∞-optimal controller design.
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Theorem 7.3. (Dual L2-gain) Suppose T ,A ∈ L(RLm,n
2 ), B ∈ L(Rp,RLm,n

2 ), and

C ∈ L(RLm,n
2 ,Rr) are PI operators and D ∈ Rr×p is a matrix. Then the following

statements are equivalent.

a) For x
¯
(0) = 0 and any w ∈ Lp

2[0,∞), if x
¯
(t) ∈ RLm,n

2 and z(t) ∈ Rr satisfyT ẋ
¯
(t)

z(t)

 =

A B

C D


x¯ (t)
w(t)

 , (7.4)

then ∥z∥L2
≤ γ ∥w∥L2

.

b) For x̄(0) = 0 and any w̄ ∈ Lr
2[0,∞), if x̄(t) ∈ RLm,n

2 and z̄(t) ∈ Rp satisfyT ∗ ˙̄x(t)

z̄(t)

 =

A∗ C∗

B∗ DT


x̄(t)
w̄(t)

 , (7.5)

then ∥z̄∥L2
≤ γ ∥w̄∥L2

.

Proof. To show sufficiency (i.e. a) implies b)), let x
¯
(t) ∈ RLm,n

2 and z(t) ∈ Rr

satisfy Equation (7.4) for x
¯
(0) = 0 and some w ∈ Lp

2[0,∞). Then, ∥z∥L2
≤ γ ∥w∥L2

.

Let x̄(t) ∈ RLm,n
2 and z̄(t) ∈ Rp satisfy Equation (7.5) for x̄(0) = 0 and some

w̄ ∈ Lr
2[0,∞). Then, by using Equation (6.3) in Theorem 6.1 and substituting initial

conditions, we find

t∫
0

⟨x̄(t− s), T ẋ
¯
(s)⟩RL2

ds=

t∫
0

〈
T ∗ ˙̄x(θ),x

¯
(t− θ)

〉
RL2

dθ. (⋆)

Furthermore, by using the variable change θ = t−s on the left-hand side of the above

equation, ∫ t

0

⟨x̄(t− s), T ẋ
¯
(s)⟩RL2

ds (#)

=

∫ t

0

⟨x̄(t− s),Ax
¯
(s)⟩RL2

ds+

∫ t

0

⟨x̄(t− s),Bw(s)⟩RL2
ds

=

∫ t

0

⟨A∗x̄(θ),x
¯
(t− θ)⟩RL2

dθ +

∫ t

0

B∗x̄(θ)Tw(t− θ)dθ.
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Combining the two Eqns. (⋆) and (#), we obtain∫ t

0

〈
T ∗ ˙̄x(θ),x

¯
(t− θ)

〉
RL2

dθ

=

∫ t

0

⟨A∗x̄(θ),x
¯
(t− θ)⟩RL2

dθ +

∫ t

0

B∗x̄(θ)Tw(t− θ)dθ.

However, T ∗ ˙̄x(t)−A∗x̄(t) = C∗w̄(t). Then∫ t

0

⟨C∗w̄(θ),x
¯
(t− θ)⟩RL2

dθ

=

∫ t

0

〈
T ∗ ˙̄x(θ)−A∗x̄(θ),x

¯
(t− θ)

〉
RL2

dθ

=

∫ t

0

B∗x̄(θ)Tw(t− θ)dθ.

Since z = Cx
¯
+Dw, we obtain∫ t

0

w̄(θ)T z(t− θ)dθ −
∫ t

0

w̄(θ)T (Dw(t− θ))dθ

=

∫ t

0

w̄(θ)T (Cx
¯
(t− θ))dθ =

∫ t

0

⟨C∗w̄(θ),x
¯
(t− θ)⟩RL2

dθ

=

∫ t

0

B∗x̄(θ)Tw(t− θ)dθ.

Likewise, we know z̄ = B∗x̄+DT w̄. Hence∫ t

0

z̄(θ)Tw(t− θ)dθ −
∫ t

0

DT w̄(θ)Tw(t− θ)dθ

=

∫ t

0

B∗x̄(θ)Tw(t− θ)dθ

=

∫ t

0

w̄(θ)T z(t− θ)dθ −
∫ t

0

w̄(θ)T (Dw(t− θ))dθ.

We conclude that for any t > 0, if z and w satisfy the primal PIE and z̄ and w̄ satisfy

the dual PIE, then ∫ t

0

z̄(θ)Tw(t− θ)dθ =

∫ t

0

w̄(θ)T z(t− θ)dθ. (7.6)

For any w̄ ∈ L2, let z̄ solve the dual PIE for some x̄. For any fixed T > 0, define

w(t) = z̄(T − t) for t ≤ T and w(t) = 0 for t > T . Then w ∈ L2 and for this input,
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let z solve the primal PIE for some x
¯
. Then, if we define the truncation operator PT ,

we have

∥PT z̄∥2L2
=

∫ T

0

z̄(s)T z̄(s)ds =

∫ T

0

z̄(s)Tw(T − s)ds

=

∫ T

0

w̄(s)T z(T − s)ds ≤ ∥PT w̄∥L2
∥PT z∥L2

≤ ∥PT w̄∥L2
∥z∥L2

≤ γ ∥PT w̄∥L2
∥w∥L2

= γ ∥PT w̄∥L2
∥PTw∥L2

= γ ∥PT w̄∥L2
∥PT z̄∥L2

.

Therefore, we have that ∥PT z̄∥L2
≤ γ ∥PT w̄∥L2

for all T ≥ 0. We conclude that

∥z̄∥L2
≤ γ ∥w̄∥L2

. Since T ∗∗ = T and(A∗)∗ (B∗)∗

(C∗)∗ (DT )T

 =

A∗ C∗

B∗ DT


∗

=

A B

C D


∗∗

=

A B

C D


we have that sufficiency implies necessity.

Remark 7.4. Note the relationship between primal and dual mappings w 7→ z and

w̄ 7→ z̄ as given in Equation (7.6) of the proof:∫ t

0

z̄(θ)Tw(t− θ)dθ =

∫ t

0

w̄(θ)T z(t− θ)dθ.

If one were to define a Laplace transform for these inputs (ŵ, ẑ, ˆ̄w, ˆ̄z) and transfer

function for the systems (ẑ(s) = G(s)ŵ(s) and ˆ̄z(s) = Gd(s) ˆ̄w(s)), then this equation

would imply ˆ̄z(s)T ŵ(s) = ˆ̄w(s)T ẑ(s) or ˆ̄w(s)TGd(s)
T ŵ(s) = ˆ̄w(s)TG(s)ŵ(s) so that

Gd(s)
T = G(s) — which is precisely the standard interpretation of the dual transfer

function for ODEs. In addition, we note that while Theorem 7.3 assumes input-output

stability of the primal and dual, the relationship in Equation (7.6) holds for any finite

time, t, and hence does not require the primal or dual to be input-output stable.

The duality relation, Equation (7.6), between input and outputs is a crucial re-

quirement in proving the equivalence in I/O properties of a PIE and its dual. This
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relation can be verified numerically for any PIE and its dual. To perform the nu-

merical verification, we simulate various PIE systems of the form Equation (7.4) and

the corresponding dual systems Equation (7.5) using a MATLAB library, PIESIM

(See Peet and Peet (2020)). For each example, the simulations are performed with

zero initial conditions and L2-bounded disturbance inputs, w(t) = sin(5t) exp(−2t)

for the primal representation of a PIE and w̄(t) = (t− t2) exp(−t) for the correspond-

ing dual PIE. The simulation is performed for a total time t = 5 and the outputs

from these simulations, z and z̄, are used to measure the error, if any, in the duality

relation Equation (7.6) by using the quantity, err, defined as

err(t) =

∫ t

0

(
z̄(θ)Tw(t− θ)− w̄(θ)T z(t− θ)

)
dθ.

The PIE examples used in the simulations are obtained by converting the following

PDEs to PIEs:

(E1) ẋ(t, s) = ∂2
sx(t, s) + w(t), x(t, 0) = x(t, 1) = 0, z(t) =

∫ 1

0
x(t, s)ds.

(E2) ẋ(t, s) = −∂sx(t, s) + w(t), x(t, 0) = 0, z(t) = x(t, 1).

(E3) ẋ(t, s) = 3x(t, s) + ∂2
sx(t, s) + w(t), x(t, 0) = ∂sx(t, 1) = 0, z(t) = x(t, 1).

For each PDE listed above, we use the formulae presented in (Shivakumar et al.,

2022, Block 4 and 5)) to find the parameters {T ,A,B, C,D} that define the PIEs

Equation (7.4) and Equation (7.5). The results of the simulation are tabulated in

Table 7.1 which indicates that err(t) is close to numerical zero for all t and for all

examples.

Note that Example (E3) is unstable and hence its primal and dual PIE represen-

tation is likewise unstable. However, as mentioned in Remark 7.4, the intertwining

relationship in Equation (7.6) does not require stability – an assertion verified by the

numerical analysis in Table 7.1.
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Example (E1) (E2) (E3)

err(1.0) 1.2e-07 -3.2e-06 2.1e-06

err(2.5) -4.7e-07 2.8e-05 -2.3e-05

err(5.0) -2.2e-07 1.6e-05 -2.3e-04

Table 7.1: In this table, we list the error in the intertwining relationship given

by the quantity err(t) =
∫ t

0

(
(z̄(θ))Tw(t− θ)− (w̄(θ))T z(t− θ)

)
dθ obtained by nu-

merical integration, where z, z̄ are obtained from simulation of different exam-

ples of primal PIE Equation (7.4) and its dual Equation (7.5) under disturbance

w = sin(5t) exp(−2t) and w̄ = (t− t2) exp(−t).

Remark 7.5. Finally, we remark that the significance of Theorems 6.1 and 7.3 is

not simply that a dual representation exists but that it has the same parametrization

as the primal (making the primal and dual interchangeable). In addition, the proofs

of Theorems 6.1 and 7.3 do not utilize the algebraic structure of the PI algebra –

implying that the duality result (and intertwining relationship) holds for any class of

well-posed systems parameterized by a set of bounded operators on a reflexive Hilbert

space which is closed under adjoint.

7.2.1 LPI for Upper-bounding H∞-norm

In the following theorem, we propose LPI generalizations of the primal and dual

versions of the KYP Lemma and use Theorem 7.3 to show that the solution of either

proves a bound on the L2-gain of both the primal and dual systems.

Note that the LPI conditions in Theorem 7.6 are expressed using an extension of

block matrices to block PI operators – The formal definition of concatenation of PI

operators can be found in Appendix B.1.1. However, because the domain and range
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of PI operators of the form given in Definition 2.6 are an ordered concatenation of R

and L2, the arrangement of the blocks of the operators in the proposed LPI conditions

are slightly different from that in the tradition formulations of the KYP Lemma for

state-space ODEs.

Theorem 7.6. Suppose that either of the two statements hold for some γ > 0 and

bounded linear operator P = P∗ ⪰ 0.

a)


−γI D C

DT −γI B∗PT

C∗ T ∗PB T ∗PA+A∗PT

⪯ 0

b)


−γI DT B∗

D −γI CPT ∗

B T PC∗ T PA∗ +APT ∗

⪯ 0

Then, for any w ∈ L2, if z satisfies eitherT ẋ(t)

z(t)

 =

A B

C D


x(t)
w(t)

 , (7.7)

or T ∗ẋ(t)

z(t)

 =

A∗ C∗

B∗ DT


x(t)
w(t)

 , (7.8)

for some x(t) with x(0) = 0, then ∥z∥L2 ≤ γ ∥w∥L2
.

Proof. Suppose a) holds. Define V (x) = ⟨T x,PT x⟩RL2
. For any w ∈ L2, suppose

z satisfies Equation (7.7) for some x with x(0) = 0. Differentiating V (x(t)) with

respect to time, t, we obtain

V̇ (x(t)) = ⟨T x(t),P (Ax(t) + Bw(t))⟩+ ⟨(Ax(t) + Bw(t)),PT x(t)⟩

=

〈w(t)
x(t)

,
 0 B∗PT

T ∗PB T ∗PA+A∗PT


w(t)
x(t)

〉 .
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Now let v(t) = 1
γ
z(t). Then we have

V̇ (x(t))− γ ∥w(t)∥2R +
1

γ
∥z(t)∥2R = V̇ (x(t))− γ ∥w(t)∥2 − 1

γ
∥z(t)∥2 + 2

γ
∥z(t)∥2

= V̇ (x(t))− γ ∥w(t)∥2 − γ ∥v(t)∥2 + v(t)T z(t) + z(t)Tv(t)

=

〈
v(t)

w(t)

x(t)

,

−γI D C

DT −γI B∗PT

C∗ T ∗PB T ∗PA+A∗PT



v(t)

w(t)

x(t)


〉

≤ 0.

Integrating this inequality in time, we obtain

V (x(T ))− V (x(0)) ≤ γ

∫ T

0

∥w(t)∥2 dt− 1

γ

∫ T

0

∥z(t)∥2 dt.

Now, since x(0) = 0 and V (x(T )) ≥ 0 for all T ≥ 0, we obtain ∥z∥2L2
≤ γ2 ∥w∥2L2

.

Furthermore, Theorem 7.3 implies the same bound hold if z and x satisfy Equa-

tion (7.8).

Since T ∗∗ = T and(A∗)∗ (B∗)∗

(C∗)∗ (DT )T

 =

A∗ C∗

B∗ DT


∗

=

A B

C D


∗∗

=

A B

C D


we have that b) likewise implies the same bounds.

Before applying the results of Theorem 7.6 to controller synthesis, we note that

while the operator variable, P , that is used to parameterize storage function V (x) =

⟨T x,PT x⟩ in Theorem 7.6 is not required to be strictly positive we will require strict

positivity of this operator during observer design and controller synthesis in order to

ensure boundedness of P−1.

As with the case of stability LPIs, we can relax the boundedness constraint on P by

changing the parametric form of the storage function V to obtain a less conservative

LPI, as shown below.
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Corollary 7.7. Suppose there exist γ > 0 and PI operator P with P = P∗ ⪰ 0, such

that either (a) or (b) is satisfied:

a)


−γ DT B∗PT

D −γ C

T ∗PB C∗ T ∗PA+A∗PT

 ⪯ 0

b)


−γ D CPT ∗

DT −γ B∗

T PC∗ B T PA∗ +APT ∗

 ⪯ 0

Then, we have the following two results:

1. If (a) is satisfied, there exist PI operators Q and R with R ⪰ 0, such that

T ∗Q = Q∗T = R and 
−γ DT B∗Q

D −γ C

Q∗B C∗ Q∗A+A∗Q

 ⪯ 0.

Otherwise, if (b) is satisfied, then there exist PI operators Q and R with R ⪰ 0,

such that T Q = Q∗T ∗ = R and
−γ D CQ

DT −γ B∗

Q∗C∗ B Q∗A∗ +AQ

 ⪯ 0.

2. For any w ∈ L2, if z satisfies either Equation (7.7) or Equation (7.8) for some

x, then ∥z∥ ≤ γ ∥w∥.

Proof. The proof is trivial and follows directly from the assumptions of the Corollary

statement. One can show that Q = PT and R = T ∗PT ⪰ 0 satisfy (1) if (a) is

satisfied. Likewise, for (b) we have Q = PT ∗ and R = T PT ∗.

The second statement, (2), follows directly from Theorem 7.6.
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7.2.2 LPI for Passivity

In the following theorem, we propose LPI generalizations of the primal and dual

versions of the Positive-real Lemma to show that the solution of either proves the

passivity of both the primal and dual systems.

Theorem 7.8. Suppose that either of the two statements hold for some bounded

linear operator P = P∗ ⪰ 0.

a)

−(D +DT ) T ∗PB − C∗

B∗PT − C T ∗PA+A∗PT

⪯ 0

b)

−(D +DT ) T PC∗ − B

CPT ∗ − B∗ T PA∗ +APT ∗

⪯ 0

Then, for any w ∈ L2, if z satisfies either Equation (7.7) or Equation (7.8) for some

x(t) with x(0) = 0, then ⟨w, z⟩L2
≥ 0.

Proof. The proof for this is trivial and follows the same steps as the proof of The-

orem 7.6. Assuming a) holds, one can define V (x) = ⟨T x,PT x⟩RL2
and show that

V̇ (x(t)) − ⟨w(t), z(t)⟩ − ⟨z(t), w(t)⟩ ≤ 0. Again, integrating forward in time, using

Gronwall-Bellman inequality, and initial conditions, one can show that the system is

passive. Likewise, the converse can be proven either using the symmetry argument

or using T ∗ instead of T in V .

Mirroring the previous subsection, we also have a less conservative LPI for the

Positive-real Lemma, as shown below.

Corollary 7.9. Suppose there exists P with P = P∗ ⪰ 0, such that either (a) or (b)

is satisfied:
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a)

−(D +DT ) T ∗PB − C∗

B∗PT − C T ∗PA+A∗PT

⪯ 0

b)

−(D +DT ) T PC∗ − B

CPT ∗ − B∗ T PA∗ +APT ∗

⪯ 0

Then:

1. If (a) is satisfied, there exist PI operators Q and R with R ⪰ 0, such that

T ∗Q = Q∗T = R and−(D +DT ) Q∗B − C∗

B∗Q− C Q∗A+A∗QT

⪯ 0.

Otherwise, if (b) is satisfied, then there exist PI operators Q and R with R ⪰ 0,

such that T Q = Q∗T ∗ = R and−(D +DT ) Q∗C∗ − B

CQ− B∗ Q∗A∗ +AQ

⪯ 0.

2. For any w ∈ L2, if z satisfies either Equation (7.7) or Equation (7.8) for some

x(t) with x(0) = 0, then ⟨w, z⟩L2
≥ 0.

Proof. The proof is trivial and follows directly from the assumptions of the Corollary

statement. One can show that Q = PT and R = T ∗PT ⪰ 0 satisfy (1) if (a) is

satisfied. Likewise, for (b) we have Q = PT ∗ and R = T PT ∗.

The second statement, (2), follows directly from Theorem 7.8.

7.3 Numerical Examples

All the numerical tests in this section are performed using PIETOOLS toolbox in

MATLAB. The standard process of using PIETOOLS includes: a) defining the GPDE
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using the parser; b) conversion of GPDE to its PIE representation; and c) setting up

and solving the LPI optimization problem for the PIE (specifically, H∞-norm and

passivity using lpisolve() function). Unless stated otherwise, all of the following

tests were performed using lpisettings(’heavy’), which is typically passed to the

lpisolve function in the form

lpisolve(PIE, lpisettings(’heavy’),lpi-test-type).

For more details on the PIETOOLS functions and settings, refer to the user manual

by Shivakumar et al. (2021).

In this section, we perform various numerical tests to find conservatism, scalability,

and accuracy of the LPIs proposed in Theorem 7.6 and corollary 7.7 to find bounds on

the H∞-norm of a GPDE system using the PIETOOLS toolbox and finite difference

discretization method. We compare the estimate of H∞ norm bound obtained using a

numerical discretization (2nd-order central difference approximation is used for spatial

derivatives to obtain an ODE approximation of PDE) with the estimate obtained

using LPIs in Theorem 7.6 and corollary 7.7 implemented in PIETOOLS.

Example 7.1. Consider the system shown below. In Peet (2018), it was shown to be

stable for λ < 4.65.

ut(t, s) = A0(s)u(t, s) + A1(s)us(t, s) + A2(s)uss(t, s) + w(t)

z(t) =

∫ 1

0

u(t, s)ds, u(t, 0) = 0, us(t, 1) = 0

A0(s) = (−0.5s3 + 1.3s2 − 1.5s+ 0.7 + λ)

A1(s) = (3s2 − 2s), A2(s) = (s3 − s2 + 2)

Figure 7.1a shows the variation of an estimate of the L2 gain obtained from

spatial discretization while varying mesh size. At a mesh size of 600, we had an L2
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Figure 7.1: For the PDE system in Example 7.1, we approximate the PDE by an ODE,

which is obtained using a central difference scheme of 2nd order on spatial derivatives.

Then, an estimate L2-gain bounds for the obtained ODE is found using MATLAB

hinfnorm function. The above plots show: (a) Mesh size vs L2-gain obtained, (b)

value of the parameter, λ vs L2-gain obtained

gain of 14.82 (LPI bound was 14.99). Although this example obtained the largest

residual gap of all examples at 3%, this residual is likely due to our naive method of

discretization and not conservatism in Theorem 7.6. Figure 7.1b shows the bounds

obtained when the system parameter λ is varied. Using higher degree polynomials

shows minor change in the L2-gain bound, typically of the order 10−6. This suggests

that relatively low-degree polynomials give tight bounds.

Example 7.2. For the PDE systems listed below, we compare the L2-gain bounds

obtained by our algorithm and finite difference discretization method in Example 7.2.

B.1: Following PDE is stable for λ ≤ π2.

ut(t, s) = λu(t, s) + uss(t, s) + w(t)

z(t) =

∫ 1

0

u(t, s)ds, u(t, 0) = 0, u(t, 1) = 0.
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B.2: Following PDE is stable for λ ≤ 2.467.

ut(t, s) = λu(t, s) + uss(t, s) + w(t)

z(t) =

∫ 1

0

u(t, s)ds, u(t, 0) = 0, us(t, 1) = 0.

B.3: The following coupled PDE was shown to be stable for R < 21 in Ahmadi et al.

(2016b).

ut(t, s) =


0 0 0

s 0 0

s2 −s3 0

u(t, s) +
1

R
uss(t, s) + w(t)

z(t) =

∫ 1

0

u(t, s)ds, u(t, 0) = 0 u(t, 1) = 0

LPI from Theorem 7.6a Discretization approach Parameter

B.1 8.214 8.253 λ = 0.98π2

B.2 12.03 12.31 λ = 2.4

B.3 3.9738 3.9708 R = 20

Table 7.2: A bound on L2 gain using different methods.

Example 7.3. Consider,

ut,i(t, s) = λui(t, s) +
i∑

k=1

uss,k(t, s) + w(t)

z(t) =

∫ 1

0

u(t, s)ds, u(t, 0) = 0 u(t, 1) = 0.

This example was tailored to test the time complexity of the algorithm proposed. We

use the value λ = 0.5π2 for all i. CPU time of the algorithm for different number of

coupled PDEs is tabulated in Table II.
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i 1 2 3 4 5 10 20

CPU time(s) 0.60 1.45 5.22 13.7 36.5 2317 27560

Table 7.3: This table shows the computational cost scaling of the L2-gain primal LPI

for an increasing number of PDEs in a coupled PDE system. The CPU runtime on a

standard Intel i7 (4 CPUs) with 16GB RAM laptop is shown for a system of i coupled

PDEs. Refer Example 7.3

Example 7.4. Next, to verify the claim that results of Theorem 7.6 are indeed more

conservative in practice than Corollary 7.7, we will apply both the results to the exam-

ples in the PDE library of the PIETOOLS as well as the some examples that are not

present in the PDE library; All the PDEs are listed below. The results are tabulated in

the tables that follow (See Example 7.4). Note that for most of these PDE examples,

an analytical value of H∞-norm is not known.

A.1 ẋ(t, s) = A0(s)x(t, s) + A1(s)∂sx(t, s) + A2(s)∂
2
sx(t, s) + w(t),

x(t, 0) = ∂sx(t, 1) = 0, and z(t) = x(t, 1)

where

A0(s) = −0.5s3+1.3s2−1.5s+0.7+4.6, A1(s) = 3s2−2s, A2(s) = s3−s2+2.

A.2 ẋi(t, s) = 0.99π2xi(t, s) +
∑i

k=1 ∂
2
sxk(t, s) + w(t), x(t, 0) = x(t, 1) = 0, and

z(t) =
∫ 1

0
x(t, s)ds.

A.3 ẋ(t, s) = Cm(s)x(t, s) +R∂2
sx(t, s) + w(t),

x(t, 0) = x(t, 1) = 0, and z(t) =
∫ 1

0

[
1 0

]
x(t, s)ds

where

Cm(s) =

1 1.5

5 0.2

 , R = 2.6.

147



A.4 ẋ(t, s) = Cm(s)x(t, s) +R∂2
sx(t, s) + w(t),

x(t, 0) = x(t, 1) = 0, and z(t) =
∫ 1

0
x(t, s)ds

where

Cm(s) =


0 0 0

s 0 0

s2 −s3 0

 , R =
1

20
.

A.5 ẋ(t, s) = ∂2
sx(t, s) + w(t),

x(t, 0) = x(t, 1) = 0, and z(t) =
∫ b

a
x(t, s)ds.

A.6 ẍ(t, s) = ∂2
sx(t, s) + w(t),

x(t, 0) = x(t, 1) = 0, and z(t) = ∂sx(t, 1).

A.7 ẋ(t, s) = ∂2
sx(t, s) + w(t),

x(t, 0) = ∂sx(t, 1) = 0,and z(t) =
∫ b

a
x(t, s)ds.

7.4 Conclusions

In this chapter, we developed results analogous to Bounded-real and Positive-

real Lemma for systems governed by PIEs. We also established that the duality

relationship, established in Chapter 6 on the equivalence of internal stability of a PIE

and its dual PIE, also extends to the input-output relationship. Thus, we showed

that there exist dual formulations of the Bounded-real and Positive-real Lemmas for

PIE systems.

Using numerical examples, we showed that the bounds on H∞-norm obtained

using the LPI optimization-based approach were accurate when compared against the

traditional discretization approach. Lastly, using numerical examples, we also showed

that the bounds obtained using the ‘modified’ LPIs presented in Corollary 7.7 are less

conservative in comparison to those obtained using LPIs in Theorem 7.6.
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Bound on H∞-norm

Settings “heavy” “veryheavy”

LPI Th. 7.6a (b) Cor. 7.7c (d) Th. 7.6a (b) Cor. 7.7c (d)

Ex. A.1 23.73 (*) 23.70 (24.85) 23.70 (23.70) 23.70 (23.70)

Ex. A.2 9.333 (*) 8.21 (8.21) 8.21 (10.05) 8.21 (8.21)

Ex. A.3 0.81 (13.25) 0.81 (0.81) 0.81 (3.501) 0.81 (0.81)

Ex. A.4 2.145 (*) 2.145 (2.157) 2.145 (9.427) 2.145 (2.145)

Ex. A.5 0.083 (8.00*) 0.0833 (0.0834) 0.083 (6.89*) 0.0833 (0.0833)

Ex. A.6 10.26* (18.3*) 0.5 (0.5) 4.23* (8.71*) 0.5 (0.5)

Ex. A.7 0.333 (3.93*) 0.33 (0.33) 0.33 (3.49*) 0.33 (0.33)

Table 7.4: This table lists the bounds on H∞-norm for the PDEs (from PIETOOLS

examples library and the examples listed in this subsection) obtained by solving

the LPI in Theorem 7.6a and Corollary 7.7c (value in parentheses correspond to

bound obtained by solving LPI in Theorem 7.6b and Corollary 7.7d) for different

LPI settings. The value ‘*’ indicates that the LPI was not successfully solved due to

numerical errors/infeasibility.
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Chapter 8

H∞-OPTIMAL OBSERVER AND CONTROLLER DESIGN FOR GPDES

8.1 Introduction

In this chapter, we will apply the various results derived in Chapters 6 and 7 to

formulate problems of H∞-optimal observer design and controller synthesis as LPI

problems. For the case of optimal observer design, we can simply use the primal LPI

in Theorem 7.6 on the PIE representation of the observer error dynamics to obtain

an LPI for observer synthesis. Although the optimization problem now involves two

decision variables, the parameters in the storage function P and observer gains L, the

optimization problem is still be convexified using a simple invertible variable change.

However, for controller synthesis, as previously mentioned in Section 6.2, the problem

is bilinear and non-convex. Thus, we must use the dual LPI from Theorem 7.6 to

overcome the non-convexity and obtain convex solvable LPI conditions.

8.2 State Observers

First we will solve the estimation problem since it is convex and thus easily solved.

Moreover, in practice, we find an observer to estimate the state x
¯
because, typically,

full information of the state is not available to perform state-feedback control and the

state must be estimated using sensor measurements y. If one considers a PIE model

of the form

T ẋ
¯
(t) = Ax

¯
+ B1w(t), x

¯
(0) = x0

z(t) = C1x
¯
(t) +D11w(t), y(t) = C2x

¯
(t) +D21w(t), (8.1)
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where z is the output to be regulated and x
¯
is the state to be measured using sensor

measurements y, we can design a Luenberger observer with dynamics

T ẋ
¯o(t) = Ax

¯o
+ L(yo(t)− y(t)), x

¯o
(0) = x0

zo(t) = C1x
¯o(t), yo(t) = C2x

¯o(t), (8.2)

where x
¯o is the observer’s estimation of the state, zo, yo are estimated outputs, and L

is the observer gain that drives the error between the estimate and the actual state

x
¯o

− x
¯
to zero via a feedback input L(yo(t)− y(t)).

Then, one can see that the dynamics of the observer error e = x
¯
− x

¯o is given by T ė(t)

zo(t)− z(t)

 =

(A+ LC2) −(B1 + LD21)

C1 −D11


e(t)
w(t)

 , e(0) = 0. (8.3)

Note that Equation (8.3) is in the standard form Equation (7.7), and we can use

Theorem 7.6a to formulate an optimization problem that searches for observer gains

L such that input-to-output gain ∥z−zo∥
∥w∥ is minimized.

8.2.1 LPI for H∞-optimal Observer Gains

Now, we look at the LPI to find the H∞-optimal observer, L, for PIEs of the form

Equation (8.1).

Theorem 8.1. Suppose there exist γ > 0 and PI operators P ,Z with P ⪰ ηI, such

that 
−γI −DT

11 −(B∗
1P +DT

21Z∗)T

−D11 −γI C1
−T ∗(PB1 + ZD21) C∗

1 T ∗PA+A∗PT + C∗
2Z∗T + T ∗ZC2

 ⪯ 0.

Then, for any w ∈ L2, if zo − z satisfies Equation (8.3) for some e and L = P−1Z,

then ∥zo − z∥ ≤ γ ∥w∥.
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Proof. Let P , Z, and L satisfy the corollary statement. Then, Z = PL, and
−γI −DT

11 −(B∗
1P +DT

21Z∗)T

−D11 −γI C1
−T ∗(PB1 + ZD21) C∗

1 T ∗PA+A∗PT + C∗
2Z∗T + T ∗ZC2



=


−γI −DT

11 −(B∗
1 +DT

21L∗)PT

(·)∗ −γI C1
(·)∗ (·)∗ (·)∗ + T ∗P(A+ LC2)

 ⪯ 0.

Thus, from Theorem 7.6 (statement a), for zo−z, w, e as in the Theorem statement,

we have that ∥zo − z∥L2 ≤ γ ∥w∥L2
.

As is customary from previous chapters, we also have the following less conser-

vative LPI for H∞-optimal observer design which is obtained by using a different

parametrization of the quadratic storage functions.

Corollary 8.2. Suppose there exist γ > 0 and PI operators P ,Z with P ⪰ ηI, such

that 
−γI −DT

11 −(B∗
1P +DT

21Z∗)T

−D11 −γI C1
−T ∗(PB1 + ZD21) C∗

1 T ∗PA+A∗PT + C∗
2Z∗T + T ∗ZC2

 ⪯ 0

Then:

1. There exist PI operators Q,ZQ and R with R ⪰ 0, such that T ∗Q = Q∗T = R

and
−γI −DT

11 −(B∗
1Q+DT

21Z∗
Q)

−D11 −γI C1
−(Q∗B1 + ZQD21) C∗

1 Q∗A+A∗Q+ C∗
2ZQ + Z∗

QC2 + η(T ∗A+A∗T )

 ⪯ 0.
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2. For any w ∈ L2, if zo − z satisfies Equation (8.3) for some e and L = P−1Z,

then ∥zo − z∥ ≤ γ ∥w∥.

Proof. The proof follows from the proof of Corollary 7.7.

Having devised a way to estimate the state x
¯
, we can now look toward design

state-feedback controllers for PIEs.

8.3 Full State-Feedback Controllers

In this section, we return to the state-feedback controller synthesis problems.

Specifically, given a PIE system

T ẋ
¯
(t)

z(t)

 =

A B1 B2

C D1 D2



x
¯
(t)

w(t)

u(t)

 ,

our goal is to synthesize state-feedback controllers of the form u(t) = Kx
¯
(t), where

x
¯
is the state of the PIE and the controller gain, K, is a PI operator. To do this, we

apply Corollary 6.2 and Theorem 7.6b to the closed-loop systemT ẋ
¯
(t)

z(t)

 =

A+ B2K B1

C +D2K D1


x¯(t)
w(t)

 . (8.4)

The resulting operator inequality then includes the term KP which is bilinear in the

decision variables K and P . However, as described in the introduction, and following

the approach used for SS ODEs, we then construct an equivalent LPI by making the

invertible variable substitution KP → Z. An iterative algorithm for the inversion of

this variable substitution is presented in Section 2.4. Finally, we address the PDE

implementation of both the stabilizing and H∞-optimal controllers.
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8.3.1 LPI for H∞-optimal Full State-Feedback Controller Gains

Next, we provide an LPI to find the H∞-optimal state-feedback controller, K, for

PIEs with inputs and outputs of the form Equation (8.4). Here, we use (·)∗ notation

to represent the symmetric adjoint/transpose of the block operators.

Theorem 8.3. Suppose there exist bounded linear operators Z, P = P∗ ⪰ ηI with

η > 0, and γ > 0 such that
−γI DT

1 B∗
1

D1 −γI (CP +D2Z)T ∗

B1 T (CP +D2Z)∗ (AP + B2Z)T ∗ + T (AP + B2Z)∗

 ⪯ 0.

Then if K = ZP−1, for any w ∈ L2, if z satisfiesT ẋ
¯
(t)

z(t)

 =

A+ B2K B1

C +D2K D1


x¯ (t)
w(t)

 , (8.5)

for some x
¯

with x
¯
(0) = 0, then ∥z∥L2

≤ γ ∥w∥L2
.

Proof. Let P , Z, and K satisfy the corollary statement. Then, Z = KP , and
−γI DT

1 B∗
1

(·)∗ −γI (CP +D2Z)T ∗

(·)∗ (·)∗ (·)∗ + T (AP + B2Z)∗

 =


−γI DT

1 B∗
1

(·)∗ −γI (C +D2K)PT ∗

(·)∗ (·)∗ (·)∗ + T P(A+ B2K)∗

 ⪯ 0.

Thus, from Theorem 7.6 (statement b), for z, w,x
¯
as in the Theorem statement,

we have that ∥z∥L2 ≤ γ ∥w∥L2
.

Given a PDE with associated PIE defined by {T ,A,Bi, C, Di}, Theorem 8.3 pro-

vides a controller gain K = ZP−1 such that u(t) = Kx
¯
(t) achieves a closed-loop per-

formance bound of ∥z∥L2
≤ γ ∥w∥L2

. Note that this controller does not necessarily

imply internal exponential stability unless P ,Z also satisfy the LPI in Theorem 6.7.
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Lastly, we also have a less conservative formulation of the H∞-optimal state-

feedback control problem, as shown below.

Corollary 8.4. Suppose there exist γ > 0 and PI operators P ,Z with P ⪰ ηI, such

that 
−γ D1 (CP +D2Z)T ∗

DT
1 −γ B∗

1

T (Z∗DT
2 + PC∗) B1 T PA∗ +APT ∗ + B2ZT ∗ + T Z∗B∗

2

 ⪯ 0

Then:

1. (Less conservative LPI) There exist PI operators Q,ZQ and R with R ⪰ 0,

such that T Q = Q∗T ∗ = R and
−γ D1 CQ+D2ZQ

DT
1 −γ B∗

1

Q∗C∗ + Z∗
QD

T
2 B1 Q∗A∗ +AQ+ B2ZQ + Z∗

QB∗
2 + η(T A∗ +AT ∗)

 ⪯ 0.

2. For any w ∈ L2, if z satisfies Equation (8.5) for some x
¯

and u = ZQQ−1x
¯

=

ZP−1x
¯
, then ∥z∥ ≤ γ ∥w∥.

Proof. The proof follows from the proof of Corollary 7.7.

Following suit from section 6.3, we will again use Young’s Lemma for PI operators

to handle the case of boundary control – i.e., when Tu ̸= 0.

H∞-optimal control of PIEs with Tu ̸= 0

ODE-PDE with inputs at the boundary, necessarily, have the PIE form given by

T v̇(t) + Tuu̇(t) = Av(t) + B1w(t) + B2u(t),

z(t) = C1v(t) +D11w(t) +D12u(t), (8.6)
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where z is the regulated output, w is the disturbance, and u is the input at the

boundary. If a state-feedback controller of the form u(t) = Kv(t) is used then the

system is written in the form

(T + TuK) v̇(t) = (A+ B2K)v(t) + B1w(t),

z(t) = (C1 +D12K)v(t) +D11w(t). (8.7)

The dual PIE for Equation (8.7) is then given by

(T + TuK)∗ ˙̄v(t) = (A+ B2K)∗ v̄(t) + (C1 +D12K)∗ w̄(t),

z(t) = B∗
1v̄(t) +D∗

11w̄(t). (8.8)

Theorem 8.5. (LPI for H∞ Optimal Boundary Controller Synthesis:) Suppose there

exist ϵ > 0, γ > 0, bounded linear operators P : RLm,n
2 [a, b] → RLm,n

2 [a, b] and Z :

RLm,n
2 [a, b] → Rp, such that P is self-adjoint, coercive and

−Γ D C

(·)∗ −P Z

(·)∗ (·)∗ (·)∗ + (T PA∗ ++TuZA∗ + T Z∗B∗
2)

 ≼ 0 (8.9)

Γ =

 γ −D∗
11

−D11 γ

 , C =

 B∗
1

C1 (PT ∗ + Z∗T ∗
u ) +D12ZT ∗

 ,

D =

0 0 0

0 0 D12Z

 , P =


P 0 0

0 P 0

0 0 P

 , Z =


√
2Z∗T ∗

u

Z∗B∗
2

0

 .

Then, for any w ∈ L2, for u(t) = Kx
¯
(t) where K = ZP−1, any v and z that satisfy

the PIE Equation (8.7) also satisfy ∥z∥L2
≤ γ ∥w∥L2

.

Proof. This can be proved by defining a Lyapunov function

V (t) = ⟨(T + TuK)∗ x(t),P (T + TuK)∗ x(t)⟩H
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and calculating the time derivative V̇ (t) along the solutions of the PIE Equation (8.7).

Finally, using Lemmas 6.10 and 6.11, by substituting KP = Z and V̇ , we can show

that the inequality Equation (8.9) implies

V̇ (t)− γ ∥w(t)∥2 + 1

γ
∥z(t)∥2 < 0.

The above inequality can be integrated with respect to t to prove the claims of the

Theorem.

8.3.2 A Note on Boundary Control

When the control input enters the dynamics of a PDE through the boundary

conditions (e.g., x(t, 0) = u(t)), novel questions arise that are not readily apparent in

the PDE representation but are made explicit when using the PIE framework. These

questions arise because PDEs with distributed states are partly rigid – i.e., they are

constrained by the continuity properties (e.g., x(t, ·) ∈ W2) necessary for boundary

values to be well defined. The simplest illustration of this is the heat equation with

boundary conditions x(t, 0) = u1(t) and ∂sx(t, 0) = u2(t). In this case, we have the

relationship

x(t, s) = u1(t) + su2(t) +

∫ s

0

(s− η)∂2
sx(t, η)dη

which implies that the effect of the input is felt immediately throughout the dis-

tributed state and is NOT filtered through the dynamics (as is the case in ODEs or

in-domain control). If we integrate this type of semi-algebraic relationship into the

dynamics, we obtain a unitary PIE representation of the heat equation as follows.

∂t

(∫ s

0

(s− η)∂2
sx(t, η)dη

)
= ∂2

sx(t, s)− u̇1(t)− su̇2(t)

In this representation, the partially algebraic nature of the boundary conditions is

made explicit in that the dependence is not on u1, u2, but on their time-derivatives.
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This type of dependence is allowed in the parametrization of PIE but is not included

in detail since the resulting controller synthesis problem is either nonconvex or con-

servative. One reason is that there is a valid argument to be made that such types

of control are unrealistic in that they do not account for the inertia of the beam (or

whatever the distributed state happens to be, assuming it has inertia) and, hence,

such inputs would be better modeled by filtering through an ODE which represents

the dynamics of the actuator. The other reason is that if we are searching for an

H∞-optimal controller, then we are trying to minimize the gain from ∥w∥L2
to ∥z∥L2

and, if we were to include the derivative ẇ, this implies that the natural norm for w

is the Sobolev norm – an approach taken in, e.g., (Curtain and Zwart, 1995, Thm.

3.3).

Therefore, to account for the case of inputs at the boundary, we will assume that

the actual disturbance or input signal is not w or u, but rather ẇ, u̇ which we can

relabel as wd, ud. This approach allows us to take any PIE optimal control problem

involving time derivatives of the inputs and reformulate it as a PIE free of such

derivatives. Specifically, if we are given a PIE representation of the form

T ẋ
¯
(t)

z(t)

 =

A B1 B2

C D1 D2



x
¯
(t)

w(t)

u(t)

+ B1dẇ(t) + B2du̇(t),
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then we will augment the state x
¯
(t) →


w(t)

u(t)

x
¯
(t)

 and redefine the PIE system as



T̂︷ ︸︸ ︷
I 0 0

0 I 0

0 0 T



ẇ(t)

u̇(t)

ẋ
¯
(t)


z(t)


=



Â︷ ︸︸ ︷
0 0 0

0 0 0

B1 B2 A



B̂1︷ ︸︸ ︷
I

0

B1d



B̂2︷ ︸︸ ︷
0

I

B2d


Ĉ︷ ︸︸ ︷[

D1 D2 C
]

0 0






w(t)

u(t)

x
¯
(t)


wd(t)

ud(t)


which is now of the form in Equation (4.1) using the parameters T̂ , Â, B̂1, etc.

Numerical examples of such boundary control problems are included in Section 8.4

as Examples 8.2 and 8.3.

8.4 Numerical Examples

All the numerical tests in this section are performed using PIETOOLS toolbox in

MATLAB. The standard process of using PIETOOLS includes: a) defining the GPDE

using the parser; b) conversion of GPDE to its PIE representation; and c) setting

up and solving the LPI optimization problem for the PIE (specifically, H∞-optimal

controller in this case using the lpisolve() function). Unless stated otherwise, all of

the following tests were performed using lpisettings(’heavy’). For more details

on the PIETOOLS functions and settings, refer Shivakumar et al. (2021).

We apply the LPI from Theorem 8.3 to find H∞-optimal state-feedback controllers

for 3 PDEs: 1) the Euler-Bernoulli beam equation with in-domain actuation; 2) a

reaction-diffusion PDE with actuation at the boundary; and 3) the wave equation

with actuation at the boundary.

Table 8.1 summarizes the achievable closed-loop L2-gain (H∞-norm) for monomial
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bases of order n = 1, 2, 3, 4 where the order is as defined in Equation (2.7). This table

also includes the computation time required to obtain the resulting controllers where

the solutions were obtained on a desktop computer with Intel Core i7-5960X CPU

and 64GB DDR4 RAM. In addition, each example includes the PI operators defining

the associated PIE representation (as determined by PIETOOLS) and the resulting

controller gains (as calculated for order n = 3). For examples 19) and 20), the

closed-loop response was simulated for a test disturbance using PIESIM Peet and

Peet (2020) to verify the closed-loop L2-gain bound is satisfied. Finally, in each case,

the achievable L2-gains were compared to those achievable using standard LMIs for

state-feedback as applied to an ODE approximation of the PDE. In each case, this

ODE was obtained using a simple finite difference (FD) approximation scheme where

a 2nd-order central difference approximation was used for 2nd-order spatial derivatives

and a first-order forward difference was used for time derivatives.

Example 8.1 (Euler-Bernoulli Beam equation). In Example 5.3, we formulated the

problem of optimal control of an Euler-Bernoulli (EB) beam model as follows:

ẋ(t, s) =

0 −0.1

1 0

 ∂2
sx(t, s) +

1
0

w(t) +

1
0

u(t),

z(t) =

 u(t)∫ 1

0

[
0 (0.5(1− s− s2)

]
x(t, s)ds

 ,

[
1 0

]
x(t, 0) =

[
1 0

]
∂sx(t, 0) = 0,[

0 1

]
∂2
sx(t, 1) =

[
0 1

]
∂3
sx(t, 1) = 0.

The parameters of the PIE representation associated with this PDE are given in Ex-

ample 5.3. Solving the LPI in Corollary 8.4, we find the H∞-optimized state-feedback
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(a) Response with u(t) = 0 (b) Response with u(t) = Kx(t)

Figure 8.2: Ex. 8.1: Surface plot of open loop (a) and closed-loop response (b) of

x1(t, s), as defined in Ex. 8.1 with disturbance w(t) = sin(3t)exp(−t) and control

input u(t) = Kx(t) with K defined in Example 8.1.

controller to be u(t) = Kx(t), where

Kx =

∫ 1

0

[
Qa(s) Qb(s)

]
∂2
sx(s)ds,

Qa(s)=6.61s5 − 16.6s4 + 14.5s3 − 7.43s2 + 3.99s− 1.47,

Qb(s)=0.68s5 − 1.72s4 + 1.59s3 − 0.87s2 + 0.04s+ 0.003.

The upper bound on the H∞-norm of the corresponding closed-loop PDE obtained

from the LPI in Corollary 8.4 is 0.73. The simulated L2-gain under disturbance

w(t) = sin(3t)exp(−t) is 0.1312 which verifies the bound. The closed-loop H∞-norm

bound using an ODE approximation of the PDE is 0.1030. In Figure 8.2a, Figure 8.2b

and Figure 8.3, we plot the system response for a disturbance w(t) = sin(3t)exp(−t)

with the zero initial conditions.

Example 8.2. Consider the following optimal boundary control problem of a reaction-
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Figure 8.3: Ex. 8.1: Plot of output z2(t) =
∫ 1

0
0.5(1− s− s2)x2(t, s)ds and z1 = u(t)

against t under the disturbance w(t) = sin(3t)exp(−t) is presented above.

diffusion PDE:

ẋ(t, s) = 5x(t, s) + ∂2
sx(t, s) + w(t), ẋ(t) = u(t),

z(t) =

 x(t)∫ 1

0
x(t, s)ds

 , x(t, 0) = 0, ∂sx(t, 1) = x(t),
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The parameters of the PIE representation associated with this PDE are

T = Π

 1 0

s {0,−θ,−s}

 ,A = Π

 0 0

5s {1,−5θ,−5s}

 ,

B1 = Π

 0 ∅

1 {∅}

 ,B2 = Π

 1 ∅

0 {∅}

 ,

C = Π


 1

0.5

  0

0.5s2 − s


∅ {∅}

 .

Solving the LPI in Corollary 8.4, we find the H∞-optimized state-feedback controller

to be u(t) = K

x
x

 (t), where

K

x
x

 = −6.71x+

∫ 1

0

K(s)∂2
sx(s)ds,

K(s) = (−11.68s8 + 44.23s7 − 65.93s6 + 49.38s5 − 19.82s4

+ 4.27s3 − 0.46s2 + 0.02s− 0.0002) · 103.

The upper bound on the H∞-norm of the corresponding closed-loop PDE obtained

from the LPI in Corollary 8.4 is 4.99. The simulated L2-gain under disturbance

w(t) = sin(3t)exp(−t) is 1.8905 which verifies the bound. The closed-loop H∞-norm

bound using an ODE approximation of the PDE is 3.441. In Figures 8.4a, 8.4b and

8.5, we plot the system response for a disturbance w(t) = sin(5t)exp(−t) with the zero

initial conditions.

Example 8.3 (Wave equation). Consider the following optimal boundary control
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(a) Response with u(t) = 0 (b) Response with u = K
[
x

x

]

Figure 8.4: Ex. 8.2: Surface plot of open loop (a) and closed-loop response (b) of

x(t, s), as defined in Example 8.1 with disturbance w(t) = sin(5t)exp(−t) and control

input u(t) = K
[
x

x

]
(t) with K defined in Example 8.2.

problem of a wave equation:

η̈(t, s) = ∂2
sη(t, s) + w(t), ẋ(t) = u(t)

z(t) =

 x(t)∫ 1

0
η(t, s)ds

 , η(t, 0) = 0, ∂sη(t, 1) = x(t).

We change the state variable to x = col(η, η̇) to obtain

ẋ(t, s)=

0 1

0 0

x(t, s)+

0 0

1 0

 ∂2
sx(t, s)+

0
1

w(t), ẋ(t)=u(t),

z(t)=

 x(t)∫ 1

0

[
1 0

]
x(t, s)ds

 ,

1 0 0 0

0 0 1 0


x(t, 0)
x(t, 1)

=
0
1

x(t).

We omit the parameters of the PIE associated with this PDE. Solving the LPI in

Corollary 8.4, we find the H∞-optimized state-feedback controller to be u(t) = K

x
x

 (t),
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Figure 8.5: Ex. 8.2: Outputs z1(t) = x(t, 1) and z2(t) = u(t) under the disturbance

w(t) = sin(5t)exp(−t) are shown above.

where

K

x
x

 = −0.17x+ 10−2

∫ 1

0

[
Q1(s) Q2(s)

]∂2
s 0

0 1

x(s)ds

Q1(s) = 0.5s8 − 2s7 + 3s6 − 2s5 − 30s4 + 60s3 − 70s2

+ 20s− 0.8,

Q2(s) = 0.2s8 − 0.7s7 + 0.06s6 + 0.6s5 − 5s4 − 20s3

+ 80s2 − 2s− 40.

The upper bound on the H∞-norm of the corresponding closed-loop PDE obtained
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Degree, n 1 2 3 4

Ex. 8.1 3.29 (6.2) 0.89 (15) 0.73 (30.5) 0.66 (67.4)

Ex. 8.2 7.86 (4.6) 5.11 (5.5) 4.59 (9.5) 4.25 (13.9)

Ex. 8.3 0.65 (10.9) 0.64 (27.1) 0.64 (49.5) 0.639 (87.5)

Table 8.1: In this table, we list the lower bound on H∞-norm for examples in Sec-

tion 8.4 by solving the LPI in Theorem 8.3 whose decision variables are parameterized

as P = Z∗
nQpZn, Z = QzZn, and Qp ≥ 0, Qz are matrices. The values within paren-

theses correspond to the total CPU runtime, in seconds, for solving the H∞-optimal

state-feedback problem — i.e., time for setting up the LPIs, solving the LPIs, and

controller reconstruction.

from the LPI in Corollary 8.4 is 0.64.

Lastly, from the estimates in Table 8.1, we conclude that the upper bound on the

H∞-norm of the controller has converged since increasing the order n does not cause

a significant change in the bound.

In the next example, we use Theorem 6.12 to find a boundary control law for

a PDE. However, note that, due to the conservatism the optimization problem was

solvable only when the stability parameter λ of the reaction-diffusion PDE was close

to stable values. For larger values of λ the LPI was unable to find a feasible solution

for low-order polynomial parametrization of the decision variables P and Z.

Example 8.4. Consider the reaction-diffusion PDE

ẋ(t, s) = λx(t, s) + ∂2
sx(t, s)

x(t, 0) = 0, x(t, 1) = u(t), z(t) =

 u∫ 1

0
x(t, s)ds

 .
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λ
Filtered

Boundary Control

Unfiltered

Boundary control

10 0.9334 8.023

12 5.696 27.687

15 2.83× 104 ∞

30 ∞ ∞

Table 8.2: In this table for the reaction-diffusion PDE in Example 8.4, we list the

H∞-norm bounds for controllers obtained by two different methods as the PDE be-

comes increasingly unstable, i.e., λ increases. The second column shows the filtered

controller approach where the control input is fed through an ODE at the boundary,

whereas the third column shows a boundary controller designed using the LPI in

Theorem 8.5. The cases listed as ∞ are those for which the optimization problem did

not yield a feasible solution.

This time, we use an unfiltered boundary input to stabilize the system instead of the

filtered boundary controller used in the previous examples. The goal of this exercise

was to determine if the conservative LPI derived in Theorem 8.5 can perform better

than the dynamic boundary controller approach. We will try to find a control law

u(t) =
∫ b

a
K(s)∂2

sx(t, s)ds by solving the LPI in Theorem 8.5. Preliminary tests

indicate that the conservatism of Young’s inequality LPI is too high. A stabilizing

static boundary controller could not be found for the PDE for large λ as documented

below.
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8.5 Conclusions

In this chapter, we have used the set of duality results to solve the H∞-optimal

state observer and state-feedback controller synthesis for GPDEs. Using the primal

LPI formulations of the stability and L2-gain, we solve the H∞-optimal state observer

design problem for GPDEs. Likewise, using the dual LPI formulations of the stability

and L2-gain LPIs, we solved the problem of stabilizing andH∞-optimal state-feedback

controller synthesis. Finally, numerical testing is used to verify the theorems and

obtain observers/controllers with provable H∞-norm bounds. The numerical results

show no apparent sub-optimality in the resulting observer/controller gains or H∞

bounds.

Although we presented a possible remedy to the non-convexity in the optimal

boundary feedback problem using Young’s inequality, numerical tests indicate that

the conservatism introduced by the use of Young’s inequality is significant even in the

case of a simple reaction-diffusion equation, however, alternative findings on time-

delay systems indicate that transport equation-type PDEs do not experience high

conservatism. However, more analysis is required for an in-depth insight and to make

provable claims.
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Chapter 9

CONCLUSIONS

Motivated by the challenges in computational analysis, estimation, and control posed

by the 3-constraint representation of PDE systems, we proposed an alternative class

of systems to represent PDE models called the class of Partial Integral Equations –

a class of systems parameterized by the ∗-algebra of Partial Integral operators. We

showed how PIEs are a natural extension of linear state-space ODE representation to

infinite dimensional systems and show that such a representation overcomes all the

challenges of the 3-constraint PDE model. The main contributions and insights of

this thesis can be divided into two parts that coincide with the Parts of this thesis.

In Part I, Representation and Parametrization of Linear Infinite dimen-

sional Systems, we considered a generalized class of coupled ODE-PDE mod-

els (GPDEs) which can be used to define analysis, simulation, and optimal con-

trol/estimation problems. This generalized class allows for inputs and outputs which

enter through the limit values of the GPDE model through the in-domain dynam-

ics of the PDE subsystem and a coupled ODE. The GPDE class allows for integral

constraints on the PDE state. Additionally, we may model integrals of the PDE

state acting: on the PDE dynamics, on a coupled ODE, or the outputs of the sys-

tem. Finally, this class includes PDE models with nth-order spatial derivatives. The

GPDE model unifies several existing classes of PDE models in a single parameterized

framework. Despite that, we showed that the parameter set for GPDEs changes with

the type of PDE, order of differentiation, and boundary conditions– unsuitable for

building algorithms for computational analysis and control.

Having parameterized a broad class of coupled ODE-PDE models, we proposed

169



a test for the admissibility of a given GPDE model. We showed that admissibility

implies the existence of an associated Partial Integral Equation (PIE) representation

of the GPDE model with a unitary map from the state of the PIE system to the

state of the GPDE model. Furthermore, we have shown that the unitary map from

PIE to GPDE state is a PI operator. This is analogous to the invertible coordinate

transforms used on linear state-space ODE systems. Using this analogy, we have

shown that many properties of the GPDE model and associated PIE system are

equivalent – including the existence of solutions, input-output properties, internal

stability, and controllability.

In Part II, Analysis, Estimation, and Control of GPDEs, we presented

notions of stability, stabilizability, and detectability for the class of PIE systems.

Using these definitions, we successfully replicated the duality properties seen in linear

state-space ODE systems. Specifically, we showed that every PIE system has a dual

PIE system with equivalent properties such as internal stability and input-output

L2-gain. Using this duality property, we proposed primal and dual formulations of a

test for internal stability, Bounded-real Lemma, and Positive-real Lemma for PIEs.

Then, using PI operators, we reformulated these tests as convex PI operator-valued

optimization problems called LPIs.

Similar to the idea of tightening positive polynomial constraints by using SOS

polynomial constraints, we proposed a quadratic form to parametrize positive PI

operators using positive matrices and PI operator bases. Consequently, the solution

set of the LPI optimization problems can be tightened to a set defined by the cone of

positive PI operators and solved using semidefinite programming.

We proposed an iterative method to invert positive PI operators, thus enabling the

reconstruction of H∞-optimal observer and controller gains from the solution of an

LPI optimization problem. In addition, we looked at less conservative versions of the
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various proposed LPIs and demonstrated their benefit in practice through numerical

examples.

Lastly, to aid in applying the proposed GPDE models and PIE conversion formu-

lae, we built efficient open-source software (PIETOOLS) for constructing the GPDE

model, conversion to the PIE system, simulation of the GPDE/PIE, and analy-

sis/control of the GPDE/PIE. This software includes a GUI for the construction of

GPDE models and conversion to an associated PIE system – a feature demonstrated

on several example problems.

We want to note that although this framework has addressed many unresolved

computational problems in the control theory of PDEs, as seen in Section 8.4, the

boundary control problem for PDEs is still unresolved because the LPIs proposed for

the boundary control problem seem to be very conservative and infeasible in practice.

Furthermore, possible extensions of the results in this work to GPDEs that do not

admit a PIE representation are unclear and an open question—an example of such

inadmissible systems is a PDE with periodic boundary conditions. Furthermore, it

is unclear if PDEs with less regular solutions have an equivalent PIE representation.

Even if they do, the equivalence of solutions and other system properties may not

hold.
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APPENDIX A

EQUIVALENCE IN REPRESENTATION OF A GPDE AND ITS ASSOCIATED
PIE
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In these appendices, we provide proofs for all theorems, lemmas, and corollaries
stated in the paper along with several intermediate lemmas. In Appendix A.1, the
goal is to prove Theorem 5.1 - the map between the domain of the PIE subsystem
and the domain of the PDE subsystem. In Appendix A.2, we prove equivalence of
solutions for the PIE subsystem and PDE subsystem. In Appendix A.3 we con-
struct the map between the domain of the GPDE and associated PIE representation.
In Appendix A.4, we prove equivalence of solutions of the GPDE and associated PIE
system. In Appendices A.5.1 to A.5.3, we prove that map from PIE to GPDE state
is unitary and that internal stability of PIE and GPDE model is equivalent. Finally,
in Appendices B.1 and B.1.1 we show that the Partial Integral (PI) operators form
a ∗-algebra and provide formulae for composition, adjoint, and concatenation of PI
operators.

A.1 Bijective Map Between PIE and PDE States

To find a map between the fundamental state (state of the PIE) and the primal
state (state of the PDE subsystem), we will use the Fundamental Theorem of Calculus
(FTC) and the BCs. First, we recall the FTC and extend it to vector-valued functions
on the interval [a, b] as shown below.

Lemma 5.2. Suppose x ∈ W n
N [a, b] for any N ∈ N. Then

x(s)= x(a) +
N−1∑
j=1

(s−a)j

j!
∂j
sx(a) +

s∫
a

(s−θ)N−1

(N − 1)!
∂N
s x(θ)dθ

where ∂i
sx is the ith classical-derivative of x when i < N and weak-derivative for

i = N .

Proof. We prove this using the principle of induction. Suppose the lemma is true for
some N and x ∈ Cn

N+1[a, b]. Because the lemma is true for N , we have

x(s) = x(a) +
N−1∑
j=1

(s− a)j

j!
(∂j

sx)(a) +

∫ s

a

(s− θ)N−1

(N − 1)!
(∂N

s x)(θ)dθ. (A.1)

Now, by the FTC, we have

∂N
s x(s) = (∂N

s x)(a) +

∫ s

a

(∂(N+1)
s x)(θ)dθ.

Next, we substitute the above identity into Equation (A.1), and using the integral
identity ∫ b

a

∫ θ

a

f(θ, η)dηdθ =

∫ b

a

∫ b

η

f(θ, η)dθdη

we have

x(s) = x(a) +
N−1∑
j=1

(s− a)j

j!
∂j
sx(a) +

∫ s

a

(s− θ)N−1

(N − 1)!

(
∂N
s x(a) +

∫ θ

a

∂(N+1)
s x(η)dη

)
dθ.
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While the first two terms are close to the required form, the last term (the integral
term) is not and can be simplified by using integration by parts. Then, from the
integral term we get∫ s

a

(s− θ)N−1

(N − 1)!

(
∂N
s x(a) +

∫ θ

a

∂(N+1)
s x(η)dη

)
dθ

=

(∫ s

a

(s− θ)N−1

(N − 1)!
dθ

)
∂N
s x(a) +

∫ s

a

∫ θ

a

(s− θ)N−1

(N − 1)!
∂(N+1)
s x(η)dη dθ

=
(s− a)N

N !
∂N
s x(a) +

∫ s

a

(∫ s

η

(s− θ)N−1

(N − 1)!
dθ

)
∂(N+1)
s x(η)dη

=
(s− a)N

N !
∂N
s x(a) +

∫ s

a

(s− η)N

N !
∂(N+1)
s x(η)dη.

Finally, by substituting the above terms back into the equation we get,

x(s) = x(a) +
N∑
j=1

(s− a)j

j!
∂j
sx(a) +

∫ s

a

(s− η)N

N !
∂(N+1)
s x(η)dη.

Therefore, if the statement of the lemma is true for N , then it is also true for N + 1.
Clearly, the lemma is true for N = 1.

We can extend Lemma 5.2 to obtain an expression for the derivatives of x ∈ Cn
N

in terms of ∂N
s x and of a given set of core boundary values of x.

Lemma A.1. Suppose x ∈ W n
N . Then, for any i < N , we have

(∂i
sx)(s) =

N−1∑
j=i

τj−i(s− a)(∂j
sx)(a) +

∫ s

a

τN−i−1(s− θ)(∂N
s x)(θ)dθ

where τi(s) =
si

i!
.

Proof. First note that τi(0) = 0 for any i > 0, ∂sτ0(s) = 0 and

τi(s) =
si

i!
→ ∂sτi(s) = i

si−1

i!
= τi−1(s)

and suppose the formula holds for i− 1 ≥ 0. Then

(∂i−1
s x)(s) =

N−1∑
j=i−1

τj−i+1(s− a)(∂j
sx)(a) +

∫ s

a

τN−i(s− θ)(∂N
s x)(θ)dθ.
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and hence, since ∂sτ0(s) = 0, we have

(∂i
sx)(s) = ∂s(∂

i−1
s x)(s)

=
N−1∑
j=i−1

(∂sτj−i+1(s− a)) (∂j
sx)(a) + τN−i(0)(∂

N
s x)(s) +

∫ s

a
(∂sτN−i(s− θ)) (∂N

s x)(θ)dθ.

=

N−1∑
j=i

(∂sτj−i+1(s− a)) (∂j
sx)(a) + τN−i(0)(∂

N
s x)(s) +

∫ s

a
(∂sτN−i(s− θ)) (∂N

s x)(θ)dθ.

=
N−1∑
j=i

τj−i(s− a)(∂j
sx)(a) +

∫ s

a
τN−i−1(s− θ)(∂N

s x)(θ)dθ.

By lemma 5.2, the result holds for i = 0, which completes the proof.

We now propose a mixed-order version of Lemma 5.2

Corollary A.2. Suppose x ∈∏N
i=0 C

ni
i and define

Ji,j =

[
0ni:j−1×nj:N

Inj:N

]
∈ Rni:N×nj:N , τi(s) =

si

i!
, Ti,j(s) = τj−i(s)Ji,j j ≥ i,

Cx =


Sx

∂sS
2x
...

∂N−1
s SNx

 ,

we havex1(s)
...

xN(s)

 = [T1,1(s− a) T1,2(s− a) · · · T1,N(s− a)] (Cx)(a)

+

∫ s

a

τ0(s− θ)In1

. . .
τN−1(s− θ)Ink

 ∂θx1(θ)
...

∂N
θ xN(θ)

 dθ

= T1(s− a)(Cx)(a) +
∫ s

a

Q1(s− θ)

 x0(θ)
...

∂N
θ xN(θ)

 dθ. (A.2)

Proof. For convenience, let us denote Pi,j ∈ Rni×nSj to be the uniquely defined 0-1
matrix so that xi(s) = Pi,jS

jx(s) and which is given by

Pi,j =
[
0ni×(nSj

−nSi−1
) Ini

0ni×nSi+1

]
=
[
0ni×nj:i−1

Ini
0ni×ni+1:N

]
.
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We now use Pi,j and the identity from Lemma 5.2 to write xi in terms of (Cx)(a)
and ∂i

sxi. Specifically, if xk ∈ Cnk
k [a, b], then

xi(s)

=

i−1∑
j=0

τj(s− a)∂j
sxi(a) +

∫ s

a
τi−1(s− θ)∂i

sxi(θ)dθ

=
i−1∑
j=0

τj(s− a)Pi,j+1∂
j
sS

j+1x(a) +

∫ s

a
τi−1(s− θ)∂i

sxi(θ)dθ

=
[
τ0(s− a)Pi,1 · · · τi−1(s− a)Pi,i

]  Sx(a)
...

∂i−1
s Six(a)

+

∫ s

a
τi−1(s− θ)∂i

sxi(θ)dθ

=
[
τ0(s− a)Pi,1 · · · 0ni×nSi+1:N

]  Sx(a)
...

∂N−1
s SNx(a)

+

∫ s

a
τi−1(s− θ)∂i

sxi(θ)dθ

=
[
τ0(s− a)Pi,1 · · · τi−1(s− a)Pi,i 0ni×nSi+1:N

]
(Cx)(a) +

∫ s

a
τi−1(s− θ)∂i

sxi(θ)dθ.

Now, we can concatenate the xi’s to get,x1(s)
...

xN(s)


=

τ0(s− a)P1,1 0 0
...

. . . 0
τ0(s− a)PN,1 · · · τN−1(s− a)PN,N

 (Cx)(a) +
∫ s

a

 τ0(s− θ)∂sx1(θ)
...

τN−1(s− θ)∂N
s xN(θ)

 dθ

=

τ0(s− a)


P1,1

P2,1
...

PN,1

 τ1(s− a)


0

P2,2
...

PN,2

 · · · τN−1(s− a)


0
0
...

PN,N


 (Cx)(a)

+

∫ s

a

 τ0(s− θ)∂sx1(θ)
...

τN−1(s− θ)∂N
s xN(θ)

 dθ

= [τ0(s− a)J1,1 τ1(s− a)J1,2 · · · τN−1(s− a)J1,N ] (Cx)(a)

+

∫ s

a

τ0(s− θ)
. . .

τN−1(s− θ)

 ∂θx1(θ)
...

∂N
θ xN(θ)

 dθ

= [T1,1(s− a) · · · T1,N(s− a)] (Cx)(a)

+

∫ s

a

τ0(s− θ)
. . .

τN−1(s− θ)

 ∂θx1(θ)
...

∂N
θ xN(θ)

 dθ
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where we have used the fact that for any i
Pi,i

Pi+1,i
...

PN,i

 =


[0ni×ni:i−1

Ini
0ni×ni+1:N ]

[0ni+1×ni:i
Ini+1

0ni+1×ni+2:N ]
...

[0nN×ni:N−1
InN

0nN×nN+1:N ]

 =


Ini

Ini+1

. . .
InN

 = Ini:N

and hence 
0n1:i−1×ni:N

Pi,i
...

PN,i

 =

[
0n1:i−1×ni:N

Ini:N

]
= J1,i.

We conclude that it is possible to express any continuously differentiable function
x ∈ ∏N

i=1C
ni
i using left boundary values (at s = a) of the continuous partial deriva-

tives (Cx) and the fundamental state x̂
¯
= col(x0, · · · , ∂N

s xN). Since we require a map
from the fundamental state x̂

¯
to the primal state x, we need to eliminate the left

boundary values (Cx)(a). The first step in this direction is to express Cx in terms of
x̂
¯
and (Cx)(a).

Corollary A.3. Suppose x ∈ ∏N
i=0 C

ni
i . Then, for T and Q are as defined in

Block 5.2, and

(Cx) =


Sx

∂sS
2x
...

∂N−1
s SNx

 , x̂
¯
=


x0

∂1
sx1
...

∂N
s xN

 ,

we have

(Cx)(s) = T (s− a)(Cx)(a) +
∫ s

a

Q(s− θ)x̂
¯
(θ)dθ.

Proof. We will use the identity from corollary A.2 and lemma A.1 to find ∂i−1
s Six for

all 1 ≤ i ≤ N and concatenate them vertically to obtain (Cx). First, we need to find
an expression for ∂i−1

s Six. By definition, we have

∂i−1
s Six(s) =


∂i−1
s xi(s)

∂i−1
s xi+1(s)

...
∂i−1
s xN(s)

 .

By lemma A.1,

(∂i
sx)(s) =

N−1∑
j=i

τj−i(s− a)(∂j
sx)(a) +

∫ s

a

τN−i−1(s− θ)(∂N
s x)(θ)dθ
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i which can be generalized for xk ∈ Ck with k < N as

(∂i
sxk)(s) =

k−1∑
j=i

τj−i(s− a)(∂j
sxk)(a) +

∫ s

a

τk−i−1(s− θ)(∂k
sxk)(θ)dθ.

To find the (i − 1)th− derivative for each component of the vector we just perform
concatenation to get

∂i−1
s Six(s) =


∂i−1
s xi(s)

∂i−1
s xi+1(s)

...
∂i−1
s xN (s)



=


(∂i−1

s xi)(a)
(∂i−1

s xi+1)(a) + τ1(s− a)(∂i
sxi+1)(a)

...

(∂i−1
s xN )(a) +

N−1∑
j=i

τj−i+1(s− a)(∂j
sxN )(a)

+

∫ s

a


(∂i

sxi)(θ)
τ1(s− θ)(∂i+1

s xi+1)(θ)
...

τ(N−i)(s− θ)(∂N
s xN )(θ)

 dθ.

The matrices Ji,j for j > i are used to select the elements from (∂j−1
s Sjx)(a) ∈ Rnj:N

(jth part of (Cx)(a)) which appear in the (j − i)th to (N − i)th components of
(∂i−1

s Six)(s) ∈ Rni:N (ith part of (Cx)(s)). Specifically, for j ≥ i, we will see that
∂i−1
s Six is the combination of terms of the form

0ni:j−1×1

(∂j−1
s xj)(s)

...
(∂j−1

s xN)(s)

 =

[
0ni:j−1×nj:N

Inj:N

] (∂j−1
s xj)(s)

...
(∂j−1

s xN)(s)

 =

[
0ni:j−1×nj:N

Inj:N

]
(∂j−1

s Sjx)(s)

= Ji,j(∂
j−1
s Sjx)(s).

By exploiting the Ji,j notation, we can represent the first term in the expression for
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∂i−1
s Six as

(∂i−1
s xi)(a)

(∂i−1
s xi+1)(a) + τ1(s− a)(∂i

sxi+1)(a)
...

(∂i−1
s xN)(a) +

N−1∑
j=i

τj−i+1(s− a)(∂j
sxN)(a)



= τ0(s− a)


∂i−1
s xi(a)

∂i−1
s xi+1(a)

...
∂i−1
s xN(a)

+ · · ·+ τj−i(s− a)


0ni:j−1×1

(∂j−1
s xj)(a)

...
(∂j−1

s xN)(a)

+ · · ·

+ τN−i(s− a)


0ni

0ni+1

...
∂N−1
s xN(a)


= τ0(s− a)(∂i−1

s Six)(a) + · · ·+ τj−i(s− a)Ji,j(∂
j−1
s Sjx)(a) + · · ·

+ τN−i(s− a)Ji,N(∂
N−1
s SNx)(a)

= [τ0(s− a)Ji,i · · · τN−i(s− a)Ji,N ]

 ∂i−1
s Six(a)

...
∂N−1
s SNx(a)



=
[
0ni:N×nS1:i−1

τ0(s− a)Ji,i · · · τN−i(s− a)Ji,N
]


Sx(a)
...

∂i−1
s Six(a)

∂i−1
s Si+1x(a)

...
∂N−1
s SNx(a)


= Ti(s− a)(Cx)(a).

The second vector with the integral terms can be written as

∫ s

a


∂i
sxi(θ)

τ1(s− θ)∂i+1
s xi+1(θ)
...

τN−i(s− θ)∂N
s xN(θ)

 dθ

=

∫ s

a


0 Ini

0 τ1(s− θ)Ini+1

...
. . .

0 τN−i(s− θ)InN




x0

∂sx1(θ)
...

∂N
s xN(θ)

 dθ

=

∫ s

a

Qi(s− θ)x̂
¯
(θ)dθ
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Therefore, combining both the terms we get

∂i−1
s Six(s) = Ti(s− a)(Cx)(a) +

∫ s

a

Qi(s− θ)x̂
¯
(θ)dθ.

Since ∂i−1
s Six(s) can be uniquely determined using (Cx)(a) and x̂

¯
, we can now gen-

eralize this to all of (Cx) by using concatenation of ∂i−1
s Six(s) over all i ∈ n as

(Cx)(s) =

 Sx(s)
...

∂N−1
s SNx(s)

 =


T1(s− a)
T2(s− a)

...
TN(s− a)




Sx(a)
∂sS

2x(a)
...

∂N−1
s SNx(a)

+

∫ s

a

Q1(s− θ)
...

QN(s− θ)

 x̂
¯
(θ)dθ

= T (s− a)(Cx)(a) +
∫ s

a

Q(s− θ)x̂
¯
(θ)dθ.

Next, we use the map from (Cx)(a) and x̂
¯
to (Cx) to obtain the following list of

identities.

Corollary A.4. Suppose x̂ ∈ W n for some v ∈ Rq. Define

(F x̂) =


x̂

∂sSx̂
...

∂N
s SN x̂

 , (Cx̂) =


Sx̂

∂sS
2x̂
...

∂N−1
s SN x̂

 , x̂
¯
=


x̂0

∂1
s x̂1
...

∂N
s x̂N

 .

Then we have the following.

(a) For Ui, T , and Q as defined in Block 5.2, we have

(F x̂)(s) = U1x̂
¯
(s) + U2(Cx̂)(s)

= U2T (s− a)(Cx̂)(a) + U1x̂
¯
(s) +

∫ s

a

U2Q(s− θ)x̂
¯
(θ)dθ.

(b) Given a set of parameters Gb, if {n,Gb} is admissible, then for BQ as defined
in Block 5.2

B

[
(Cx̂)(a)
(Cx̂)(b)

]
−
∫ b

a

BI(s)(F x̂)(s)ds = BT (Cx̂)(a)−
∫ b

a

BTBQ(s)x̂
¯
(s)ds.

(c) Given a set of parameters Gb, if x̂ ∈ Xv and {n,Gb} is admissible, then

(Cx̂)(a) =
∫ b

a

BQ(θ)x̂
¯
(θ)dθ +B−1

T Bvv.
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(d) Given a set of parameters Gb, if x̂ ∈ Xv and {n,Gb} is admissible, then[ v
(Bx̂)

]
(F x̂)(·)

 = Π


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

 [
0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)

]
U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

[vx̂
¯

]
.

Proof. Let x̂ ∈ Xv for some v ∈ Rq.
For (a), we examine the terms ∂i

sS
ix̂ in the vector (F x̂). These terms may be

divided into those from x̂
¯
and those from (Cx̂). Specifically, we define the permutation

matrix U = [U1 U2] so that
x̂(s)

∂sSx̂(s)
...

(∂N
s SN x̂)(s)


︸ ︷︷ ︸

(F x̂)

= U


x̂(s) Sx̂(s)
...

∂N−1
s SN x̂(s)


 = [U1 U2]

[
x̂
¯
(s)

(Cx̂)(s)
]
.

To justify our expression for the permutation matrix, U , first note that

∂i
sS

ix̂ =


∂i
sx̂i

∂i
sx̂i+1
...

∂six̂N

 =

[
x̂
¯i∂i

sS
i+1x̂

]
=

[
x̂
¯i(Cx̂)i+1

]

=

[[
Ini

0ni+1:N×ni

] [
0ni×ni+1:N

Ini+1:N

]] [
x̂
¯i

(Cx̂)i+1

]
= [U1,i U2,i]

[
x̂
¯i

(Cx̂)i+1

]
which holds for i < N . For i = N , we simply have

∂N
s SN x̂ = ∂N

s x̂N = x̂
¯N = InN︸︷︷︸

U1,N

x̂
¯N .

Clearly, then

(F x̂)

=

 ∂0
sS

0x̂
...

∂N
s SN x̂

 =

U1,0

. . .
U1,N


︸ ︷︷ ︸

U1

 x̂¯0...
x̂
¯N


︸ ︷︷ ︸

x̂
¯

+


U2,0

. . .
U2,(N−1)

0nN×n1:N · · · 0nN×nN :N


︸ ︷︷ ︸

U2

 (Cx̂)1...
(Cx̂)N


︸ ︷︷ ︸

(Cx̂)

= U1x̂
¯
+ U2(Cx̂).

Finally, by Corollary A.3, we write

(F x̂)(s) = U1x̂
¯
(s) + U2(Cx̂)(s) = U1x̂

¯
(s) + U2T (s− a)(Cx̂)(a) +

∫ s

a

U2Q(s− θ)x̂
¯
(θ)dθ

= U2T (s− a)(Cx̂)(a) + U1x̂
¯
(s) +

∫ s

a

U2Q(s− θ)x̂
¯
(θ)dθ
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Now, suppose we are given Gb = {B,BI , Bv} such that BT is invertible where

BT = B

[
InS

T (b− a)

]
−
∫ b

a

BI(s)U2T (s− a)ds.

For (b), we temporarily partition B as B = [Bl Br] where both Bl and Br have equal

number of columns. Then, we look at the expressionB

[
(Cx̂)(a)
(Cx̂)(b)

]
−
∫ b

a
BI(s)(F x̂)(s)ds.

Clearly, we need an expression for (Cx̂)(b) which can be obtained from corollary A.3
(by substituting s = b) as

(Cx̂)(b) = T (b− a)(Cx̂)(a) +
∫ b

a

Q(b− s)x̂
¯
(s)ds.

Replacing (Cx̂)(b) and (F x̂) in the expression for B

[
(Cx̂)(a)
(Cx̂)(b)

]
−
∫ b

a
BI(s)(F x̂)(s)ds,

we get

[
Bl Br

]︸ ︷︷ ︸
B

[
(Cx̂)(a)
(Cx̂)(b)

]
−
∫ b

a
BI(s)(F x̂)(s)ds

= (Bl +BrT (b− a))(Cx̂)(a) +
∫ b

a
BrQ(b− s)x̂

¯
(s)ds

−
(∫ b

a
BI(s)U2T (s− a)ds

)
(Cx̂)(a)−

∫ b

a

(
BI(s)U1 +

∫ b

s
BI(θ)U2Q(θ − s)dθ

)
x̂
¯
(s)ds

=

(
Bl +BrT (b− a)−

∫ b

a
BI(s)U2T (s− a)ds

)
︸ ︷︷ ︸

BT

(Cx̂)(a)

+

∫ b

a

(
BrQ(b− s)−BI(s)U1 −

∫ b

s
BI(θ)U2Q(θ − s)dθ

)
︸ ︷︷ ︸

BTBQ(θ)

x̂
¯
(s)ds

= BT (Cx̂)(a)−
∫ b

a
BTBQ(s)x̂

¯
(s)ds,

which proves the second statement of the corollary.
For (c), we have the additional constraint that x̂ ∈ Xv. Then, we know that

B

[
(Cx̂)(a)
(Cx̂)(b)

]
−
∫ b

a

BI(s)(F x̂)(s)ds−Bvv = 0.

Therefore, from second statement of the corollary, we have

BT (Cx̂)(a)−
∫ b

a

BTBQ(s)x̂
¯
(s)ds−Bvv = 0,
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and since BT is invertible, we can conclude that

(Cx̂)(a) =
∫ b

a

BQ(s)x̂
¯
(s)ds+B−1

T Bvv.

For (d), we know that (F x̂) and (Cx̂)(a) (from steps (a) and (b)) can be expressed
as

(F x̂)(s) = U2T (s− a)(Cx̂)(a) + U1x̂
¯
(s) +

∫ s

a

U2Q(s− θ)x̂
¯
(θ)dθ,

(Cx̂)(a) =
∫ b

a

BQ(s)x̂
¯
(s)ds+B−1

T Bvv.

Thus, by substituting (Cx̂)(a) in the expression for (F x̂), we get

(F x̂)(s)

= U2T (s− a)(Cx̂)(a) + U1x̂
¯
(s) +

∫ s

a

U2Q(s− θ)x̂
¯
(θ)dθ

= U2T (s− a)

(∫ b

a

BQ(s)x̂
¯
(s)ds+B−1

T Bvv

)
+ U1x̂

¯
(s) +

∫ s

a

U2Q(s− θ)x̂
¯
(θ)dθ

= Π
[ ∅ ∅

U2T (s− a)B−1
T Bv {U1, U2(T (s− a)BQ(θ) +Q(s− θ)), U2T (s− a)BQ(θ)}

] [
v

x̂
¯
(·)
]

=

(
Π
[ ∅ ∅

U2T (s− a)B−1
T Bv {U1, RD,1, RD,2}

] [
v
x̂
¯

])
(s).

where we define the variables

RD,1(s, θ) = RD,2(s, θ) + U2Q(s− θ), RD,2(, sθ) = U2T (s− a)BQ(θ).

Now, since x̂ ∈ Xv for all t ≥ 0, by Corollary A.3, we have

(Cx̂)(s) = T (s− a)(Cx̂)(a) +
∫ s

a

Q(s− θ)x̂
¯
(θ)dθ.

Furthermore, since BT is invertible, from Corollary A.4, we have

(Cx̂)(a) =
∫ b

a

BQ(θ)x̂
¯
(θ)dθ +B−1

T Bvv,

and hence we can express (Bx̂) in terms of x̂ and v as

(Bx̂) =
[
(Cx̂)(a)
(Cx̂)(b)

]
=

[
I

T (b− a)

]
(Cx̂)(a) +

∫ b

a

[
0

Q(b− θ)

]
x̂
¯
(θ)dθ

=

[
I

T (b− a)

](∫ b

a

BQ(θ)x̂
¯
(θ)dθ +B−1

T Bvv

)
+

∫ b

a

[
0

Q(b− θ)

]
x̂
¯
(θ)dθ

= Π

[ [
I

T (b− a)

]
B−1

T Bv

[
I

T (b− a)

]
BQ +

[
0
Q

]
∅ {∅}

][
v
x̂
¯

]
.
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To get an expression for the combined v, (Bx̂) and (F x̂), we can just concatenate
them vertically to get[ v

(Bx̂)
]

(F x̂)(·)

 = Π


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

 [
0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)

]
U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

[vx̂
¯

]
.

Now, from a), we have a map from {(Cx̂)(a), x̂
¯
} to the vector of all well-defined

terms, F x̂. Furthermore, from c), when the BCs are admissible we have a map from
{x̂
¯
, v} to (Cx̂)(a). This allows us to express the left boundary values, (Cx̂)(a) in

terms of {x̂
¯
, v} – yielding a map from x̂

¯
to (F x̂). Extending this result, we can

use corollary A.2 to obtain a map from {x̂
¯
, v} to x̂.

Theorem 5.1. Given an n ∈ NN+1, and Gb with {n,Gb} admissible, let {T̂ , Tv}
be as defined in Block 5.1, Xv as defined in Equation (3.5) and D =diag(∂0

sIn0 , · · · ,
∂N
s InN

). Then we have the following: (a) For any v ∈ Rnv , if x̂ ∈ Xv, then Dx̂ ∈ Lnx̂
2

and x̂ = T̂ Dx̂ + Tvv; and (b) For any v ∈ Rnv and x̂
¯

∈ Lnx̂
2 , T̂ x̂

¯
+ Tvv ∈ Xv and

x̂
¯
= D(T̂ x̂

¯
+ Tvv).

Proof. Proof of Part 1. Let x̂ ∈ Xv for some v ∈ Rq. Clearly, by definition of Xv,
∂i
sx̂i ∈ Lni

2 . Therefore, Dx̂ ∈ Lnx̂
2 . Next we need to express x̂ in terms of x̂

¯
= Dx̂

and v. For that, we will first express (Cx̂)(a) solely in terms of x̂
¯
and v. From

corollary A.4, we know that if {n,Gb} is admissible, then

(Cx̂)(a) =
∫ b

a

BQ(θ)x̂
¯
(θ)dθ +B−1

T Bvv.

Now that we have an expression for (Cx̂)(a), we simply substitute this into the ex-
pression for x̂ from Corollary A.2 to obtain

x̂1:N(s) = T1(s− a)(Cx̂)(a) +
∫ s

a

Q1(s− θ)x̂
¯
(θ)dθ

=

∫ b

a

T1(s− a)BQ(θ)x̂
¯
(θ)dθ +

∫ s

a

Q1(s− θ)x̂
¯
(θ)dθ + T1(s− a)B−1

T Bvv.
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Adding on the somewhat incongruous x̂0 term, we obtain

x̂(s) =

[
x̂0(s)
x̂1:N(s)

]
=

[
In0 0
0 0nx−n0

]
︸ ︷︷ ︸

G0

x̂
¯
(s) +

∫ b

a

[
0n0×nx̂

T1(s− a)BQ(θ)

]
︸ ︷︷ ︸

G2(s,θ)

x̂
¯
(θ)dθ +

∫ s

a

[
0n0×nx̂

Q1(s− θ)

]
︸ ︷︷ ︸
G1(s,θ)−G2(s,θ)

x̂
¯
(θ)dθ

(A.3)

+

[
0n0×nv

T1(s− a)B−1
T Bv

]
︸ ︷︷ ︸

Gv(s)

v

= G0x̂
¯
(s) +

∫ b

s

G2(s, θ)x̂
¯
(θ)dθ +

∫ s

a

G1(s, θ)x̂
¯
(θ)dθ +Gv(s)v

= (T̂ x̂
¯
)(s) + (Tvv)(s).

Proof. Proof of Part 2. Let v ∈ Rq and x̂
¯
∈ Lnx̂

2 be arbitrary. Our first step is to

show that D
(
T̂ x̂
¯
+ Tvv

)
= x̂

¯
∈ Lnx̂

2 . By the definition of T̂ and Tv, Eq. (A.3) at the

end of the proof of Part 1 shows that for any x̂
¯
∈ Lnx̂

2 and v ∈ Rq,

(T̂ x̂
¯
)(s) + (Tvv)(s)

=

[
I 0
0 0

]
x̂
¯
(s) +

∫ b

a

[
0

T1(s− a)BQ(θ)

]
x̂
¯
(θ)dθ +

∫ s

a

[
0

Q1(s− θ)

]
x̂
¯
(θ)dθ

+

[
0

T1(s− a)B−1
T Bv

]
v.

Thus, we may group the terms with T1(s− a) together and apply the D operator to
obtain

D
(
T̂ x̂
¯
+ Tvv

)
(s) = D

[
0

T1(s− a)

](∫ b

a

BQ(θ)x̂
¯
(θ)dθ +B−1

T Bvv

)
+D

([
In0 0
0 0

]
x̂
¯
(s) +

∫ s

a

[
0n0×nx̂

Q1(s− θ)

]
x̂
¯
(θ)dθ

)
.

Now, examining the first term we have

D
[

0
T1(s− a)

]
=

In0

. . .
∂N
s InN

[ 0
T1(s− a)

]

=


0∂sIn1

. . .
∂N
s InN

T1(s− a)



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and since ∂i
sτj(s) = 0 for any j > i, we have∂sIn1

. . .
∂N
s InN

T1(s− a)


=

∂sIn1

. . .
∂N
s InN

 [τ0(s− a)J1,1 τ1(s− a)J1,2 · · · τN−1(s− a)J1,N ]

=

∂sIn1

. . .
∂N
s InN

[τ0(s− a)In1:N

[
0

τ1(s− a)In2:N

]
· · ·

[
0

τN−1(s− a)InN

]]
= 0.

Hence the first term in our expression for D
(
T̂ x̂
¯
+ Tvv

)
is zero. Now, consider the

second term in the expression for D
(
T̂ x̂
¯
+ Tvv

)
,

D
([

In0 0
0 0

]
x̂
¯
(s) +

∫ s

a

[
0n0×nx

Q1(s− θ)

]
x̂
¯
(θ)dθ

)

= D

[In0 0
0 0

]
x̂
¯
(s) +

∫ s

a


0n0 0 0
0 τ0(s)In1

...
. . .

0 τN−1(s)InN

 x̂
¯
(θ)dθ

 .

For this term, we use an inductive approach. Specifically, we factor D into first-order
derivative operators as

D =


I

∂sI
. . .

∂N
s I

 =
N∏
i=1

[
In0:i−1

0
0 Ini:N

∂s

]
︸ ︷︷ ︸

Di

.

Now, since ∂sτi(s) = τi−1(s) for i ≥ 1, τi(0) = 0 for i > 0 and τ0(0) = 1, we have that
for any i < N ,

Di

[
0n0:i−1×nx

Qi(s− θ)

]
=

[
In0:i−1

0
0 Ini:N

∂s

]
0n0:i−1×n0:i−1

τ0(s)Ini

. . .
τN−i(s)InN



=


0n0:i×n0:i

τ0(s)Ini+1

. . .
τN−i−1(s)InN

 =

[
0n0:i×nx

Qi+1(s− θ)

]
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and DN

[
0n0:N−1×nx

QN(s− θ)

]
= 0. Additionally, for i ≥ 0, we have

[
0n0:i−1×nx

Qi(0)

]
=

[
0n0:i−1×n0:i−1

Ini

0ni+1:N×ni+1:N

]
.

We conclude that

Di

([
In0:i−1

0

]
x̂
¯
(s) +

∫ s

a

[
0n0:i−1×nx

Qi(s− θ)

]
x̂
¯
(θ)dθ

)
=

[
In0:i−1

0

]
x̂
¯
(s) +

[
0n0:i−1×nx

Qi(0)

]
x̂
¯
(s) +

∫ s

a

[
0n0:i×nx

Qi+1(s− θ)

]
x̂
¯
(θ)dθ

=

[
In0:i

0

]
x̂
¯
(s) +

∫ s

a

[
0n0:i×nx

Qi+1(s− θ)

]
x̂
¯
(θ)dθ.

Applying this inductive step to each of the Di operators in Dx̂, we have

D
([

In0 0
0 0

]
x̂
¯
(s) +

∫ s

a

[
0

Q1(s− θ)

]
x̂
¯
(θ)dθ

)
= DN · · · D1

([
In0 0
0 0

]
x̂
¯
(s) +

∫ s

a

[
0

Q1(s− θ)

]
x̂
¯
(θ)dθ

)
= x̂

¯
(s).

Combining these results, we conclude that for any x̂
¯
∈ Lnx̂

2(
D
(
T̂ x̂+ Tvv

))
(s)

= D
(∫ b

a
G2(s, θ)x̂

¯
(θ)dθ +Gv(s)v

)
+D

([
In0 0
0 0

]
x̂
¯
(s) +

∫ s

a

[
0

Q1(s− θ)

]
x̂
¯
(θ)dθ

)
= x̂

¯
(s).

Finally, we need to show that for any x̂
¯
∈ Lnx̂

2 , T̂ x̂
¯
+Tvv ∈ Xv. Let x̂ = T̂ x̂

¯
+Tvv.

Clearly, since Dx̂ = x̂
¯
∈ Lnx̂

2 , we have x̂ ∈ W n. To show that x̂ ∈ Xv, however,
we must now show that the BCs are satisfied. For this part, we have that if x̂ =
T̂ x̂
¯
+ Tvv ∈ W n, then by Corollary A.4,

B

[
(Cx̂)(a)
(Cx̂)(b)

]
−
∫ b

a
BI(s)(F x̂)(s)ds−Bvv = BT

(
(Cx̂)(a)−

∫ b

a
BQ(s)x̂

¯
(s)ds−B−1

T Bvv

)
.

Since x̂ ∈ W n and BT is invertible, we have that x̂ ∈ Xv if and only if

(Cx̂)(a)−
∫ b

a

BQ(s)x̂
¯
(s)ds−B−1

T Bvv = 0.
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Recall from the beginning of the proof of Part 2 that

x̂(s) =

[
x̂0(s)
x̂1:N(s)

]
=

[
I 0
0 0

]
x̂
¯
(s) +

∫ b

a

[
0

T1(s− a)BQ(θ)

]
x̂
¯
(θ)dθ +

∫ s

a

[
0

Q1(s− θ)

]
x̂
¯
(θ)dθ

+

[
0

T1(s− a)B−1
T Bv

]
v

and hence

x̂1:N(s) =

∫ b

a

T1(s− a)BQ(θ)x̂
¯
(θ)dθ +

∫ s

a

Q1(s− θ)x̂
¯
(θ)dθ + T1(s− a)B−1

T Bvv.

In addition, from Corollary A.3, we have

x̂1:N(s) = T1(s− a)(Cx̂)(a) +
∫ s

a

Q1(s− θ)x̂
¯
(θ)dθ.

Substituting this identity in the previous equation, we get

T1(s− a)(Cx̂)(a) +
∫ s

a

Q1(s− θ)x̂
¯
(θ)dθ

=

∫ b

a

T1(s− a)BQ(θ)x̂
¯
(θ)dθ +

∫ s

a

Q1(s− θ)x̂
¯
(θ)dθ + T1(s− a)B−1

T Bvv,

which implies

T1(s− a)

(
(Cx̂)(a)−

∫ b

a

BQ(θ)x̂
¯
(θ)dθ −B−1

T Bvv

)
= 0.

We will use induction to show that the above equality holds when T1 is replaced by
Ti. First, suppose

Ti(s− a)

(
(Cx̂)(a)−

∫ b

a

BQ(θ)x̂
¯
(θ)dθ −B−1

T Bvv

)
= 0.

Then, since

∂s [0ni+1:N×ni
Ini+1:N ]Ti(s− a) = Ti+1(s− a),

we have the relation

∂s [0ni+1:N×ni
Ini+1:N ]Ti(s− a)

(
(Cx̂)(a)−

∫ b

a

BQ(θ)x̂
¯
(θ)dθ −B−1

T Bvv

)
= Ti+1(s− a)

(
(Cx̂)(a)−

∫ b

a

BQ(θ)x̂
¯
(θ)dθ −B−1

T Bvv

)
= 0.
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Since the equality is true for i = 1, by induction we can conclude, for any i ≥ 1,

Ti(s− a)

(
(Cx̂)(a)−

∫ b

a

BQ(θ)x̂
¯
(θ)dθ −B−1

T Bvv

)
= 0.

By stacking all Ti’s and using T = col(T1, · · · , TN), for any s ∈ [a, b] we have

T (s− a)

(
(Cx̂)(a)−

∫ b

a

BQ(θ)x̂
¯
(θ)dθ −B−1

T Bvv

)
= 0.

and since T (0) = InS
, we have that

(Cx̂)(a)−
∫ b

a

BQ(θ)x̂
¯
(θ)dθ −B−1

T Bvv = 0.

which completes the proof.

A.2 Equivalence of PIE and PDE Subsystems

Now that we have established a PI map from L2 to Xv, we will obtain the PIE
associated with a PDE subsystem by replacing x̂ in the PDE subsystem with x̂ =
T̂ x̂
¯
+ Tvv. Because we have shown that this PI map is a bijection, we will then

conclude that existence of a solution for the PIE subsystem guarantees the existence
of a solution for the PDE subsystem. This proof is split into two parts.

Theorem 5.4. Given an n ∈ NN+1 and a set of PDE parameters {Gb, Gp} as
defined in Equations (3.6) and (3.8) with {n,Gb} admissible, suppose v ∈ Lnv

2e [R+]

with Bvv ∈ W 2nS
1e [R+], {T̂ , Tv} are as defined in Block 5.1 and {Â, Bv, Cr, Drv} are

as defined in Block 5.2. Define

GPIE =
{
T̂ , Tv, ∅, Â,Bv, ∅, Cr, ∅,Drv, ∅, ∅, ∅

}
.

Then we have the following.

1. For any x̂0 ∈ Xv(0) (Xv is as defined in Equation (3.5)), if {x̂, r} satisfies
the PDE defined by {n,Gb,Gp} with initial condition x̂0 and input v, then
{Dx̂, r, ∅} satisfies the PIE defined by GPIE with initial condition Dx̂0 ∈ Lnx̂

2

and input {v, ∅} where Dx̂ = col(∂0
s x̂0, · · · , ∂N

s x̂N).

2. For any x̂
¯

0 ∈ Lnx̂
2 , if {x̂

¯
, r, ∅} satisfies the PIE defined by GPIE for initial

condition x̂
¯

0 and input {v, ∅}, then {T̂ x̂
¯
+ Tvv, r} satisfies the PDE defined by

{n,Gb,Gp} with initial condition x̂0 = T̂ x̂
¯

0 + Tvv(0) and input v.

Proof. Suppose {x̂, r} satisfies the PDE Equation (3.7) defined by n ∈ NN+1 and
{Gb,Gp} with initial conditions x̂0 and input v. Then by Definition 3.2: a) r ∈
Lnr
2e [R+]; b) x̂(t) ∈ Xv(t) for all t ≥ 0; c) x̂ is Frechét differentiable with respect to the

L2-norm almost everywhere on R+; d) Equation (3.7) is satisfied for almost all t ≥ 0;
and e) x̂(0) = x̂0.
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Let x̂
¯
= Dx̂, x̂

¯
0 = Dx̂0, n = nx̂ and m = 0. Our goal is to show that for GPIE as

defined above, {x̂
¯
, r, ∅} satisfies the PIE defined by GPIE for initial condition x̂

¯
0 and

input {v, ∅}. For this, we must show that: 1) v ∈ Lnv
2e [R+] and (Tvv)(·, s) ∈ W nx̂

1e [R+]
for all s ∈ [a, b]; 2) x̂

¯
: R+ → RL0,nx̂

2 [a, b] and r ∈ Lnr
2e [R+]; 3) x̂

¯
0 ∈ RL0,nx̂

2 [a, b]

and x̂
¯
(0) = x̂

¯
0; 4) x̂

¯
is Frechét differentiable with respect to the T̂ -norm almost

everywhere on R+; and 5) Equation (4.1) is satisfied for almost all t ∈ R+.
For 1), v ∈ Lnv

2e [R+] from the theorem statement and by the definition of Tw,
Bvv ∈ W 2nS

1e [R+] implies

(Tww)(s) = (Tvv)(s) =

[
0

T1(s− a)

]
B−1

T Bvv ∈ W nx̂
1e [R+].

For 2), from Theorem 5.1a we have that x̂(t) ∈ Xv(t) implies x̂
¯
(t) = Dx̂(t) ∈

RL0,nx̂
2 = Lnx̂

2 for all t ≥ 0. Furthermore, from the definition of solution of the PDE,
r ∈ Lnr

2e [R+].
For 3), from Theorem 5.1a we have that x̂0 ∈ Xv(0) implies x̂

¯
0 = Dx̂0 ∈ RL0,nx̂

2 =
Lnx̂
2 . Furthermore, since x̂

¯
(t) = Dx̂(t) for all t ≥ 0, we have x̂

¯
(0) = Dx̂(0) = Dx̂0 =

x
¯
0.
For 4), because x̂ is Frechét differentiable almost everywhere on R+, the limit of

x̂(t+h)−x̂(t)
h

as h → 0+ exists for any t ≥ 0 when convergence is defined with respect
to the L2 norm. This, and the fact that Tvv ∈ W nv

1e implies that

lim
h→0+

T̂ x̂
¯
(t+ h)− T̂ x̂

¯
(t)

h
= lim

h→0+

x̂(t+ h)− x̂(t)

h
− lim

h→0+

Tvv(t+ h)− Tvv(t)

h

similarly exists for all t ≥ 0. Thus, T̂ x̂
¯

is Frechét differentiable with respect to
L2-norm, and hence, x̂

¯
is Frechét differentiable with respect to T̂ -norm.

Lastly, for 5), since x̂(t) satisfies (3.4)-(3.7) for almost all t ≥ 0, we have

[
˙̂x(t, s)
r(t)

]
=

N∑
i=0

A0(s) +
s∫
a

A1(s, ·) +
b∫
s

A2(s, ·)∫ b

a
Cr(·)

 (F x̂)(t, ·) (A.4)

+

[
Bxv(s) Bxb(s)

0 Drb

] [
v(t)

(Bx̂)(t)
]
. (A.5)

Since x̂(t) ∈ Xv(t) and x̂
¯
(t) = Dx̂(t) for all t ≥ 0, from Theorem 5.1, we have that

x̂(t) = T̂ x̂
¯
(t) + Tvv(t) which implies ˙̂x(t) = T̂ ˙̂x

¯
(t) + Tvv̇(t).

We can substitute this into Eq. A.5 and re-write Eq. A.5 using the PI operator
notation to get the compact relation[

r(t)

T̂ ˙̂x
¯
(t) + Tvv̇(t)

]
= Π

[
[0 Drb] Cr

[Bxv Bxb] {Ai}
][ v(t)

(Bx̂)(t)
]

(F x̂)(t)

 . (A.6)
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where we define

(F x̂)(t) = U1x̂
¯
(t) + U2(Cx̂)(t), (Bx̂)(t) =

[
(Cx̂)(t, a)
(Cx̂)(t, b)

]
(Cx̂)(t) =


(Sx̂)(t)

(∂sS
2x̂)(t)
...

(∂N−1
s SN x̂)(t)

 .

We know from Corollary A.4d that when BT is invertible, x̂(t) ∈ Xv(t) and x̂
¯
(t) =

Dx̂(t), we have the relation[ v(t)
(Bx̂)(t)

]
(F x̂)(t)

 = Π

[ [
I
Pb

] [
0
Qb

]
U2T (s− a)B−1

T Bv {{U1, RD,1, RD,2}}

] [
v(t)
x̂
¯
(t)

]
.

Using the above expression for

[
v(t)

(Bx̂)(t)
(F x̂)(t)

]
, we now expand Eq. A.6 to obtain

[
r(t)

T̂ ˙̂x
¯
(t) + Tvv̇(t)

]
= Π

[
[0 Drb] Cr

[Bxv Bxb] {Ai}
][ v(t)

(Bx̂)(t)
]

(F x̂)(t)


= Π

[
[0 Drb] Cr

[Bxv Bxb] {Ai}
]
Π

[ [
I
Pb

] [
0
Qb

]
U2T (s− a)B−1

T Bv {{U1, RD,1, RD,2}}

] [
v(t)
x̂
¯
(t)

]
= Π

[
Drv Crx

Bxv {Âi}
] [

v(t)
x̂
¯
(t)

]
where[

Drv Crx

Bxv Âi

]
=

P4
×

[ [0 Drb] Cr

[Bxv Bxb] Ai

]
,


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

 [
0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)

]
U2T (s− a)B−1

T Bv U1, RD,1, RD,2




which shows that {x̂
¯
, r, ∅} satisfies the PIE defined by GPIE for initial condition x̂

¯
0

and input {v, ∅}.
Theorem 5.4. Given an n ∈ NN+1 and a set of PDE parameters {Gb, Gp} as
defined in Equations (3.6) and (3.8) with {n,Gb} admissible, suppose v ∈ Lnv

2e [R+]

with Bvv ∈ W 2nS
1e [R+], {T̂ , Tv} are as defined in Block 5.1 and {Â, Bv, Cr, Drv} are

as defined in Block 5.2. Define

GPIE =
{
T̂ , Tv, ∅, Â,Bv, ∅, Cr, ∅,Drv, ∅, ∅, ∅

}
.

Then we have the following.
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1. For any x̂0 ∈ Xv(0) (Xv is as defined in Equation (3.5)), if {x̂, r} satisfies
the PDE defined by {n,Gb,Gp} with initial condition x̂0 and input v, then
{Dx̂, r, ∅} satisfies the PIE defined by GPIE with initial condition Dx̂0 ∈ Lnx̂

2

and input {v, ∅} where Dx̂ = col(∂0
s x̂0, · · · , ∂N

s x̂N).

2. For any x̂
¯

0 ∈ Lnx̂
2 , if {x̂

¯
, r, ∅} satisfies the PIE defined by GPIE for initial

condition x̂
¯

0 and input {v, ∅}, then {T̂ x̂
¯
+ Tvv, r} satisfies the PDE defined by

{n,Gb,Gp} with initial condition x̂0 = T̂ x̂
¯

0 + Tvv(0) and input v.

Proof. Suppose {x̂
¯
, r, ∅} satisfies the PIE Equation (4.1) defined by the set of param-

eters GPIE for initial conditions x̂
¯
0 and input {v, ∅}. Then we have: a) r ∈ Lnr

2e [R+];
b) x̂

¯
(t, ·) ∈ RLm,n

2 [a, b] for all t ≥ 0; c) x̂
¯
is Frechét differentiable with respect to the

T -norm almost everywhere on R+; d) Equation (4.1) is satisfied for almost all t ∈ R+;
and e) x̂

¯
(0, ·) = x̂

¯
0. Let

x̂(t) = T̂ x̂
¯
(t) + Tvv(t), x̂0 = T̂ x̂

¯
0 + Tvv(0).

Then, our goal is to show that, {T̂ x̂
¯
+Tvv, r} satisfies the PDE Equation (3.7) defined

by n ∈ NN+1 and {Gb,Gp} with initial conditions x̂0 = T̂ x̂
¯
0 + Tvv(0) and input v.

For this, we must show: 1) r ∈ Lnr
2e [R+]; 2) x̂(t) ∈ Xv(t) for all t ≥ 0; 3) x̂0 ∈ Xv(0)

and x̂(0, ·) = x̂0; 4) x̂ is Frechét differentiable with respect to the L2-norm almost
everywhere on R+; and 5) Equation (3.7) is satisfied for almost all t ≥ 0.

For 1), r ∈ Lnr
2e [R+] holds immediately by the definition of solution of the PIE.

For 2), Theorem 5.1b states that for any v(t) ∈ R and x̂
¯
(t) ∈ Lnx̂

2 , we have

x̂(t) = T̂ x̂
¯
(t) + Tvv(t) ∈ Xv(t).

For 3), Theorem 5.1b states that for any v(0) ∈ R and x̂
¯
0 ∈ Lnx̂

2 , we have x̂0 =

T̂ x̂
¯
0 + Tvv(0) ∈ Xv(0). In addition, x̂(0) = T̂ x̂

¯
(0) + Tvv(0) = T̂ x̂

¯
0 + Tvv(0) ∈ Xv(0).

For 4), we know x̂
¯
is Frechét differentiable with respect to T -norm. This implies

that limh→0+
T x̂
¯
(t+h)−T x̂

¯
(t)

h
exists when the convergence is with respect to L2-norm.

Since Tvv ∈ W nv
1e , we conclude that

lim
h→0+

x̂(t+ h)− x̂(t)

h
= lim

h→0+

T x̂
¯
(t+ h)− T x̂

¯
(t)

h
+ lim

h→0+

Tvv(t+ h)− Tvv(t)

h

exists for all t ≥ 0. Thus, x̂ is Frechét differentiable with respect to L2-norm.
For 5), since x̂ is Frechét differentiable and x̂

¯
satisfies the PIE, we have

˙̂x(t) = T̂ ˙̂x
¯
(t) + Tvv̇(t) = Âx̂

¯
(t) + Bvv(t)

and furthermore, r(t) = Crx̂
¯
(t) +Drvv(t). Combining these expressions, we obtain[

r(t)
˙̂x(t)

]
=

[Drv Cr
Bv Â

] [
v(t)
x̂
¯
(t)

]
= Π

[
Drv Crx

Bxv {Âi}
] [

v(t)
x̂
¯
(t)

]
.
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Now, we use the relation from Block 5.2

Π
[

Drv Crx

Bxv {Âi}

]

= Π

P4
×

[ [0 Drb

]
Cr[

Bxv Bxb

]
Ai

]
,


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

  0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)


U2T (s− a)B−1

T Bv U1, RD,1, RD,2





= Π
[

[0 Drb] Cr

[Bxv Bxb] {Ai}

]
Π


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

 [
0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)

]
U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

 ,

to obtain[
r(t)
˙̂x(t)

]
= Π

[
Drv Crx

Bxv {Âi}
] [

v(t)
x̂
¯
(t)

]
=

Π
[

[0 Drb] Cr

[Bxv Bxb] {Ai}
]
Π


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

 [
0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)

]
U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

[v(t)x̂
¯
(t)

]
.

We need to eliminate x̂
¯
(t) from the right hand side to get an expression solely in terms

of x̂. For this purpose, we use Theorem 5.1b, which gives us the relation x̂
¯
(t) = Dx̂(t).

Defining now

(F x̂)(t) =


x̂(t)

∂sSx̂(t)
...

∂N
s SN x̂(t)

 , (Cx̂)(t) =


Sx̂(t)

∂sS
2x̂(t)
...

∂N−1
s SN x̂(t)

 (Bx̂) =
[
(Cx̂)(t, a)
(Cx̂)(t, b)

]
.

Using Corollaries A.3 and A.4d, these definitions now imply[ v(t)
(Bx̂)(t)

]
(F x̂)(t, ·)

 = Π


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

 [
0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)

]
U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

[v(t)x̂
¯
(t)

]
.

Then, we can re-write the expressions for r and ˙̂x as[
r(t)
˙̂x(t)

]
= Π

[
[0 Drb] Cr

[Bxv Bxb] {Ai}
][ v(t)

(Bx̂)(t)
]

(F x̂)(t, ·)


=

N∑
i=0

 ∫ b

a
Cr(·)

A0(s) +
s∫
a

A1(s, ·) +
b∫
s

A2(s, ·)

 (F x̂)(t, ·) +
[

0 Drb

Bxv(s) Bxb(s)

] [
v(t)

(Bx̂)(t)
]
.

Thus we conclude that {x̂, r} satisfies the PDE Equation (3.7) with initial condi-
tion x̂0 and input v.
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A.3 Bijective Map between PIE and GPDE States

We now construct the map between the domain of the GPDE and associated PIE
representation and show this is a bijection.

Corollary 5.3. Given an n ∈ NN+1, and Gb with {n,Gb} admissible, let {T , Tw,
Tu} be as defined in Block 5.2, Xw,u as defined in Equation (3.9) and D =diag(∂0

sIn0 ,
· · · , ∂N

s InN
). Then for any w ∈ Rnw and u ∈ Rnu we have:

(a) If x = {x, x̂} ∈ Xw,u, then x
¯
= {x,Dx̂} ∈ RLnx,nx̂

2 and x = T x
¯
+ Tww + Tuu.

(b) If x
¯
∈ RLnx,nx̂

2 , then x = T x
¯
+ Tww + Tuu ∈ Xw,u and x

¯
=

[
Inx 0
0 D

]
x.

Proof. Proof of Part 1. Let

[
x
x̂

]
∈ Xw,u for some w ∈ Rp, u ∈ Rq. Clearly, by

definition of Xw,u, x̂ ∈ Xv with v = Cvx + Dvww + Dvuu for arbitrary matrices Cv,
Dvw, andDvu. Therefore, from theorem 5.1a, Dx̂ ∈ Lnx̂

2 and hence {x,Dx̂} ∈ RLnx,nx̂
2 .

Furthermore, for T̂ and Tv as defined in Block 5.1, we have

x̂ = T̂ Dx̂+ Tvv =
[
TvCv T̂

] [ x
Dx̂

]
+ Tv [Dvw Dvu]

[
w
u

]
.

Then, by concatenating x and x̂ and by using the definitions of T , Tw, Tu, we have[
x
x̂

]
=

 x[
TvCv T̂

] [ x
Dx̂

]
+ Tv [Dvw Dvu]

[
w
u

]
=

 x[
TvCv T̂

] [ x
Dx̂

]+

[
0

TvDvw

]
w +

[
0

TvDvu

]
u

=

[
I 0

TvCv T̂

] [
x
Dx̂

]
+

[
0

TvDvw

]
w +

[
0

TvDvu

]
u = T

[
x
Dx̂

]
+ Tww + Tuu.

Proof. Proof of Part 2. Let w ∈ Rp, u ∈ Rq and x
¯
∈ RLnx,nx̂

2 be arbitrary.

Let

[
x
x̂
¯

]
= x

¯
where x ∈ Rnx and x̂

¯
∈ Lnx̂

2 .

By substituting the definitions of T , Tw and Tu,

T
[
x
x̂
¯

]
+ Tww + Tuu =

[
I 0

TvCv T̂

] [
x
x̂
¯

]
+

[
0

TvDvw

]
w +

[
0

TvDvu

]
u

=

 x

T̂ x̂
¯
+ Tv

(
[Cv Dvw Dvu]

[
x
w
u

])
︸ ︷︷ ︸[

x
x̂

]
=

.
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Clearly, from theorem 5.1b, defining x̂ as x̂ = T̂ x̂
¯
+Tv

(
[Cv Dvw Dvu]

[
x
w
u

])
implies

that x̂ ∈ Xv with v = [Cv Dvw Dvu]

[
x
w
u

]
. Therefore, by definition of Xw,u,

[
x
x̂

]
∈

Xw,u.

Our next step is to show that

[
I 0
0 D

]
(T x

¯
+ Tww + Tuu) = x

¯
∈ RLnx,nx̂

2 . Earlier,

we defined

[
x
x̂
¯

]
= x

¯
and showed that if we define (T x

¯
+ Tww + Tuu) =

[
x
x̂

]
for some

x̂ ∈ Xv with v = Cvx+Dvww +Dvuu. Thus, from theorem 5.1b, we have

Dx̂ = D
(
T̂ x̂
¯
+ Tvv

)
= x̂

¯
.

Therefore, [
I 0
0 D

]
(T x

¯
+ Tww + Tuu) =

[
I 0
0 D

] [
x
x̂

]
=

[
x
Dx̂

]
=

[
x
x̂
¯

]
= x

¯
.

A.4 Equivalence of PIE and GPDE

The equivalence of solutions between a GPDE model and associated PIE is a
straightforward extension of Theorem 5.4). This proof is split into two parts.

Corollary 5.5 (Corollary of Theorem 5.4). Given an n ∈ NN+1 and parameters {Go,
Gb, Gp} as defined in Equations (3.2), (3.6) and (3.8) with {n,Gb} admissible, let
w ∈ Lnw

2e [R+] with BvDvww ∈ W 2nS
1e [R+], u ∈ Lnu

2e [R+] with BvDvuu ∈ W 2nS
1e [R+].

Define

GPIE = {T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22} = M({n,Gb,Go,Gp}.

Then we have the following:

1. For any {x0, x̂0} ∈ Xw(0),u(0) (where Xw,u is as defined in Equation (3.9)), if
{x, x̂, z, y, v, r} satisfies the GPDE defined by {n, Go, Gb, Gp} with ini-

tial condition {x0, x̂0} and input {w, u}, then
{[

x
Dx̂

]
, z, y

}
satisfies the PIE

defined by GPIE with initial condition

[
x0

Dx̂0

]
and input {w, u} where Dx̂ =

col(∂0
s x̂0,· · · ,∂N

s x̂N).

2. For any x
¯

0 ∈ RLnx,nx̂
2 , if {x

¯
, z, y} satisfies the PIE defined by GPIE with

initial condition x
¯

0 and input {w, u}, then {x, x̂, z, y, v, r} satisfies the GPDE
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defined by {n,Go,Gb,Gp} with initial condition

[
x0

x̂0

]
= T x

¯
0+Tww(0)+Tuu(0)

and input {w, u} where[
x(t)
x̂(t)

]
= T x

¯
(t) + Tww(t) + Tuu(t),

v(t) = Cvx(t) +Dvww(t) +Dvuu(t),

r(t) = [0nx̂×nx Cr]x
¯
(t) +Drvv(t),

and where Cr and Drv are as defined in Block 5.2.

Proof of Part 1. Suppose {x, x̂, z, y, v, r} satisfies the GPDE defined by {Go, Gb,
Gp} with initial condition {x0, x̂0} and input {w, u}. Then, we have: a) x ∈ W nx

1e [R+],
z ∈ Lnz

2e [R+], y ∈ L
ny

2e [R+], v ∈ Lnv
2e [R+], r ∈ Lnr

2e [R+]; b) x̂(t) ∈ Xv(t) for all t ≥ 0; c)
x is differentiable almost everywhere on R+, x̂ is Frechét differentiable with respect
to the L2-norm almost everywhere on R+; d) Equations (3.1) and (3.7) are satisfied
for almost all t ≥ 0; and e) x(0) = x0, x̂(0) = x̂0 and x̂0 ∈ Xv(0).

Now, from above points, since x̂0 ∈ Xv(0) and x̂(0) = x̂0, r ∈ Lnr
2e [R+], x̂(t) ∈ Xv(t)

for all t ≥ 0, x̂ is Frechét differentiable with respect to the L2-norm almost everywhere
on R+, and Equation (3.7) is satisfied for almost all t ≥ 0, we have that {x̂, r} satisfies
the PDE defined by n ∈ NN+1 and {Gb,Gp} with initial conditions x̂0 and input v.
Furthermore, since

v(t) = Cvx(t) +Dvww(t) +Dvuu(t),

we have that v ∈ Lnv
2e [R+] with Bvv ∈ W 2nS

1e [R+]. Thus, by Theorem 5.4, {Dx̂, r} is
a solution to the PIE defined

GPIEs =
{
T̂ , Tv, ∅, Â,Bv, ∅, Cr, ∅,Drv, ∅, ∅, ∅

}
with initial condition Dx̂0 ∈ Lnx̂

2 . Therefore, if we define x̂
¯
(t) = Dx̂(t) and x̂

¯
0 =

Dx̂0, we have that: f) v ∈ Lnv
2e [R+] and (Tvv)(·, s) ∈ W nx̂

1e [R+] for all s ∈ [a, b]; g)
x̂
¯
: R+ → RL0,nx̂

2 [a, b] and r ∈ Lnr
2e [R+]; h) x̂

¯
0 ∈ RL0,nx̂

2 [a, b] and x̂
¯
(0) = x̂

¯
0; i) x̂

¯
is

Frechét differentiable with respect to the T̂ -norm almost everywhere on R+; and j)
Equation (4.1) (defined by GPIEs) is satisfied for almost all t ∈ R+, i.e.[

r(t)

T̂ ˙̂x
¯
(t) + Tvv̇(t)

]
=

[Drv Cr
Bv Â

] [
v(t)
x̂
¯
(t)

]
.

Now, let x
¯
0 =

[
x0

Dx̂0

]
=

[
x0

x̂
¯
0

]
and x

¯
(t) =

[
x(t)
Dx̂(t)

]
=

[
x(t)
x̂
¯
(t)

]
for all t ≥ 0. Our goal

is to show that {x
¯
, z, y} satisfies the PIE defined byGPIE with initial condition x

¯
0 and

input {w, u}, which means we need to show that: 1) (Tww)(·, s), (Tuu)(·, s) ∈ W nx+nx̂
1e

for all s ∈ [a, b]; 2) x
¯
(t) ∈ RLnx,nx̂

2 [a, b] for all t ≥ 0; 3) x
¯
(0) = x

¯
0 and x

¯
0 ∈ RLnx,nx̂

2 ;
4) x

¯
is Frechét differentiable with respect to the T -norm almost everywhere on R+;

and 5) Equation (4.1) (defined by GPIE) is satisfied for almost all t ∈ R+.
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For 1), BvDvww ∈ W 2nS
1e [R+] and hence by the definition of Tw, we have

(Tww(·))(s) =
[

0
T1(s− a)

]
B−1

T BvDvww(·) ∈ W nx+nx̂
1e [R+].

Likewise, BvDvuu ∈ W 2nS
1e [R+] implies

(Tuu(·))(s) =
[

0
T1(s− a)

]
B−1

T BvDvuu(·) ∈ W nx+nx̂
1e [R+].

For 2), since x̂
¯
(t) ∈ L0,nx̂

2 [a, b] and x(t) ∈ Rnx , we have x
¯
(t) =

[
x(t)
x̂
¯
(t)

]
∈ RLnx,nx̂

2

for all t ≥ 0.

For 3), since x̂
¯
0 ∈ L0,nx̂

2 [a, b] and x0 ∈ Rnx , we have x
¯
0 =

[
x0

x̂
¯
0

]
∈ RLnx,nx̂

2 .

Furthermore, x
¯
(0) =

[
x(0)
x̂
¯
(0)

]
=

[
x0

x̂
¯
0

]
= x

¯
0.

For 4), by definition of T -norm and definitions of T and x
¯
, there exists a k > 0

such that

∥x
¯
(t)∥T = ∥T x

¯
(t)∥L2

=

∥∥∥∥[ I 0

GvCv T̂

] [
x(t)
x̂
¯
(t)

]∥∥∥∥
L2

=

∥∥∥∥[ x(t)

GvCvx(t) + T̂ x̂
¯
(t)

]∥∥∥∥
L2

= ∥x(t)∥L2
+
∥∥∥GvCvx(t) + T̂ x̂

¯
(t)
∥∥∥
L2

≤ k ∥x(t)∥R + ∥x̂
¯
(t)∥T̂ .

Since x̂
¯
(t) is Frechét differentiable with respect to the T̂ norm and x ∈ W nx

1e is
differentiable, we have that x

¯
(t) is Frechét differentiable with respect to the T norm.

Finally, for 5), we need to show that[T ẋ
¯
(t)

z(t)
y(t)

]
=

[A B1 B2

C1 D11 D12

C2 D21 D22

][
x
¯
(t)

w(t)
u(t)

]
−
[Twẇ(t) + Tuu̇(t)

0
0

]

is satisfied for all t ≥ 0.
Since x, z, y, v satisfy the GPDE, we haveẋ(t)z(t)

y(t)
v(t)

 =

A Bxw Bxu Bxr

Cz Dzw Dzu Dzr

Cy Dyw Dyu Dyr

Cv Dvw Dvu 0


x(t)w(t)
u(t)
r(t)

 . (A.7)

Furthermore, as stated above,[
T̂ ˙̂x
¯
(t) + Tvv̇(t)
r(t)

]
=

[
Â Bv

Cr Drv

] [
x̂
¯
(t)

v(t)

]
. (A.8)
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These two identities are all that are required to conclude the proof. Specifically,
extracting expression for v, r and Tvv̇, we obtain

v(t) = [Cv Dvw Dvu]

[
x(t)
w(t)
u(t)

]
,

r(t) = Crx̂
¯
(t) +Drvv(t) = [DrvCv Cr DrvDvw DrvDvu]

x(t)x̂
¯
(t)

w(t)
u(t)

 ,

(Tvv̇(t))(s) = Gv(s) [Cv Dvw Dvu]

[
ẋ(t)
ẇ(t)
u̇(t)

]
= Gv(s)Cvẋ(t) +Gv(s)Dvwẇ(t) +Gv(s)Dvuu̇(t).

Substituting these expressions back into Eq. (A.8) yields

T̂ ˙̂x
¯
(t) +Gv(s)Cvẋ(t) +Gv(s)Dvwẇ(t) +Gv(s)Dvuu̇(t)

= Âx̂
¯
(t) + Bv [Cv Dvw Dvu]

[
x(t)
w(t)
u(t)

]
or [

Gv(s)Cv T̂
] [ẋ(t)

˙̂x
¯
(t)

]
+Gv(s)Dvwẇ(t) +Gv(s)Dvuu̇(t)

=
[
BvCv Â BvDvw BvDvu

] x(t)x̂
¯
(t)

w(t)
u(t)

 .

Appending the above equation to the system of equations in Eq. (A.7) and omitting
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the equation for v yields
[

I 0

Gv(s)Cv T̂

] [
ẋ(t)
˙̂x
¯

]
+ Twẇ(t) + Tuu̇(t)

z(t)
y(t)



=

 A 0 Bxw Bxu

BvCv Â BvDvw BvDvu

Cz 0 Dzw Dzu

Cy 0 Dyw Dyu


x(t)x̂
¯
(t)

w(t)
u(t)

+


[
Bxr

0

]
Dzr

Dyr

 r(t)

=

 A 0 Bxw Bxu

BvCv Â BvDvw BvDvu

Cz 0 Dzw Dzu

Cy 0 Dyw Dyu


x(t)x̂
¯
(t)

w(t)
u(t)



+


[
Bxr

0

]
Dzr

Dyr

 [DrvCv Cr DrvDvw DrvDvu]

x(t)x̂
¯
(t)

w(t)
u(t)


=

[A B1 B2

C1 D11 D12

C2 D21 D22

][
x
¯
(t)

w(t)
u(t)

]
.

We conclude that[T ẋ
¯
(t)

z(t)
y(t)

]
=

[A B1 B2

C1 D11 D12

C2 D21 D22

][
x
¯
(t)

w(t)
u(t)

]
−
[Twẇ(t) + Tuu̇(t)

0
0

]

which implies that {
[
x
Dx̂

]
, z, y} satisfies the PIE defined by GPIE with initial con-

dition

[
x0

Dx̂

]
∈ RLnx,nx̂

2 and input {w, u}.

We now proceed with Part 2 of the proof – starting with a restatement of the
Corollary.

Corollary 5.5 (Corollary of Theorem 5.4). Given an n ∈ NN+1 and parameters {Go,
Gb, Gp} as defined in Equations (3.2), (3.6) and (3.8) with {n,Gb} admissible, let
w ∈ Lnw

2e [R+] with BvDvww ∈ W 2nS
1e [R+], u ∈ Lnu

2e [R+] with BvDvuu ∈ W 2nS
1e [R+].

Define

GPIE = {T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22} = M({n,Gb,Go,Gp}.

Then we have the following:
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1. For any {x0, x̂0} ∈ Xw(0),u(0) (where Xw,u is as defined in Equation (3.9)), if
{x, x̂, z, y, v, r} satisfies the GPDE defined by {n, Go, Gb, Gp} with ini-

tial condition {x0, x̂0} and input {w, u}, then
{[

x
Dx̂

]
, z, y

}
satisfies the PIE

defined by GPIE with initial condition

[
x0

Dx̂0

]
and input {w, u} where Dx̂ =

col(∂0
s x̂0,· · · ,∂N

s x̂N).

2. For any x
¯

0 ∈ RLnx,nx̂
2 , if {x

¯
, z, y} satisfies the PIE defined by GPIE with

initial condition x
¯

0 and input {w, u}, then {x, x̂, z, y, v, r} satisfies the GPDE

defined by {n,Go,Gb,Gp} with initial condition

[
x0

x̂0

]
= T x

¯
0+Tww(0)+Tuu(0)

and input {w, u} where[
x(t)
x̂(t)

]
= T x

¯
(t) + Tww(t) + Tuu(t),

v(t) = Cvx(t) +Dvww(t) +Dvuu(t),

r(t) = [0nx̂×nx Cr]x
¯
(t) +Drvv(t),

and where Cr and Drv are as defined in Block 5.2.

Proof of Part 2. In this proof, we will use definitions in Block 5.2 using the parame-
ters contained in {Go, Gb, Gp}.

Now, suppose {x
¯
, z, y} satisfies the PIE defined by GPIE with initial condition

x
¯
0 and input {w, u}. Then, by definition of solution of a PIE: a) z ∈ Lnz

2e [R+],
y ∈ L

ny

2e [R+]; b) x
¯
(t) ∈ RLnx,nx̂

2 [a, b] for all t ≥ 0; c) x
¯
is Frechét differentiable with

respect to the T -norm almost everywhere on R+; d) x
¯
(0) = x

¯
0; and e) The equation[T ẋ

¯
(t) + Twẇ(t) + Tuu̇(t)

z(t)
y(t)

]
=

[A B1 B2

C1 D11 D12

C2 D21 D22

][
x
¯
(t)

w(t)
u(t)

]
(A.9)

is satisfied for almost all t ∈ R+.

For x
¯
(t) ∈ RLnx,nx̂

2 we define x̂(t) ∈ Rnx and x̂
¯
(t) ∈ Lnx̂

2 by

[
x̂(t)
x̂
¯
(t)

]
= x

¯
(t).

Similarly, we define the elements

[
x̂0

x̂
¯
0

]
= x

¯
0. Now, by the definitions of T , Tw and

Tu, we have[
x(t)
x̂(t)

]
=

[
I 0

GvCv T̂

] [
x̂(t)
x̂
¯
(t)

]
+

[
0

GvDvw

]
w(t) +

[
0

GvDvu

]
u(t)

and hence x(t) = x̂(t). Similarly, x0 = x̂0. Hence we have x
¯
(t) =

[
x(t)
x̂
¯
(t)

]
and

x
¯
0 =

[
x0

x̂
¯
0

]
.
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Now, using the definitions of r and v and examining the right hand side of
Eq. (A.9), we haveA B1 B2

C1 D11 D12

C2 D21 D22

x¯(t)w(t)
u(t)

 =


A 0 Bxw Bxu

B̂xvCv Â B̂xvDvw B̂xvDvu

Cz 0 Dzw Dzu

Cy 0 Dyw Dyu


x(t)x̂
¯
(t)

w(t)
u(t)



+


[
Bxr

0

]
Dzr

Dyr

 [DrvCv Cr DrvDvw DrvDvu

] x(t)x̂
¯
(t)

w(t)
u(t)



=


A 0 Bxw Bxu

BvCv Â BvDvw BvDvu

Cz 0 Dzw Dzu

Cy 0 Dyw Dyu


x(t)x̂
¯
(t)

w(t)
u(t)

+


[
Bxr

0

]
Dzr

Dyr

 r(t)

=


A 0 Bxw Bxu Bxr

BvCv Â BvDvw BvDvu 0
Cz 0 Dzw Dzu Dzr

Cy 0 Dyw Dyu Dyr



x(t)
x̂
¯
(t)

w(t)
u(t)
r(t)

 .

Likewise, if we substitute the definitions of the PI operators T , Tw, and Tu in the
left hand side of Eq. (A.9), we get[T ẋ

¯
(t) + Twẇ(t) + Tuu̇(t)

z(t)
y(t)

]

=


[

I 0

Gv(s)Cv T̂

] [
ẋ(t)
˙̂x
¯
(t)

]
+

[
0

Gv(s)Dvw

]
ẇ(t) +

[
0

Gv(s)Dvu

]
u̇(t)

z(t)
y(t)



=


[
ẋ(t)

T̂ ˙̂x
¯
(t)

]
+

[
0

Tvv̇(t)

]
z(t)
y(t)

 .

Adding the definition of v, we conclude that
[
ẋ(t)

T̂ ˙̂x
¯
(t)

]
+

[
0

Tvv̇(t)

]
z(t)
y(t)
v(t)

 =


A 0 Bxw Bxu Bxr

BvCv Â BvDvw BvDvu 0
Cz 0 Dzw Dzu Dzr

Cy 0 Dyw Dyu Dyr

Cv 0 Dvw Dvu 0



x(t)
x̂
¯
(t)

w(t)
u(t)
r(t)

 .

Therefore, ẋ(t)z(t)
y(t)
v(t)

 =

A Bxw Bxu Bxr

Cz Dzw Dzu Dzr

Cy Dyw Dyu Dyr

Cv Dvw Dvu 0


x(t)w(t)
u(t)
r(t)


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and [
T̂ ˙̂x
¯
(t) + Tvv̇(t)
r(t)

]
=

[
Â Bv

Cr Drv

] [
x̂
¯
(t)

v(t)

]
.

Thus, we conclude: f) Since x
¯
(t) is Frechét differentiable, x(t) and x̂

¯
(t) are Frechét

differentiable; g) Since x(t) is Frechét differentiable, x ∈ W nx
1e and w ∈ Lnw

2e , u ∈ Lnu
2e

from the theorem statement, thus v ∈ Lnv
2e ; h) Since x̂¯

(t) is Frechét differentiable and
v ∈ Lnv

2e , we have r ∈ Lnr
2e ; i) Since x

¯
0 ∈ RLnx,nx̂

2 , we have x0 ∈ Rnx , x̂
¯
0 ∈ Lnx̂

2 ; and j)
For all t ≥ 0 [

r(t)

T̂ ˙̂x
¯
(t) + Tvv̇(t)

]
=

[Drv Cv
Bv Â

] [
v(t)
x̂
¯
(t)

]
.

Thus, {x̂
¯
, r} (as defined above), satisfies the PIE defined by

GPIEs = {T̂ , Tv, ∅, Â,Bv, ∅, Cv, ∅,Drv, ∅, ∅, ∅}
for initial condition x̂

¯
0 and input {v, ∅}. Thus, from theorem 5.4, {T̂ x̂

¯
+ Tvv, r}

satisfies the PDE defined by n and {Gb,Gp} with initial condition T̂ x̂
¯
0+Tvv(0) and

input v. Since[
x(t)
x̂(t)

]
= T x

¯
(t) + Tww(t) + Tuu(t) =

[
x(t)

T̂ x̂
¯
(t)

]
+

[
0

Tvv(t)

]
and since similarly x̂0 = T̂ x̂

¯
0 + Tvv(0), by the definition of solution of a PDE in 3.2,

we have: k) x̂(t) ∈ Xv(t) for all t ≥ 0; l) x̂ is Frechét differentiable with respect to
the L2-norm almost everywhere on R+; m) Equation (3.7) is satisfied for almost all
t ≥ 0; and n) x̂(0) = x̂0.

Reviewing all the above steps, we conclude that: 1) z ∈ Lnz
2e [R+] and y ∈ L

ny

2e [R+]
by definition of solution of the PIE defined by GPIE; 2) v ∈ Lnv

2e [R+] and r ∈ Lnr
2e [R+]

since r, v satisfy the PDE; 3) x̂(t) ∈ Xv(t) for all t ≥ 0 since x̂ satisfies the PDE; 4)
x ∈ W nx

1e since x̂ is Frechét differentiable; 5) x̂ is Frechét differentiable with respect

to the L2-norm since x̂ satisfies the PDE;

[
x(0)
ˆx(0)

]
= T x

¯
(0) + Tww(0) + Tuu(0) =

T x
¯
0+Tww(0)+Tuu(0) by definition of x and x̂; and 6) Equations (3.1) and (3.7) are

satisfied for almost all t ≥ 0 as shown above.
We conclude that {x, x̂, z, y, v, r} satisfies the GPDE defined by n and {Go, Gb,

Gp} with initial condition

[
x0

x̂0

]
and input {w, u}.

A.5 Equivalence of Internal Stability

Having proven the equivalence between solutions of GPDE model and associated
PIE, we now prove that these models have the same internal stability properties.
Specifically, when u = w = 0, the solution to associated PIE is stable if and only if the
solution to GPDE model is internally stable. We do this in three parts. First, we show
that the map x

¯
→ T x

¯
+Tww+Tuu is an isometric map between inner product spaces

L2 and Xn. Next, we show that the W n and Xn (defined in Equation (5.6)) norms
are equivalent. Finally, we show equivalence of internal stability in the respective
norms.
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A.5.1 Proof of Theorem 5.7

Theorem 5.7. Suppose {n,Gb} is admissible, {T̂ , Tv} are as defined in Block 5.1,
and {T , Tw, Tu} are as defined in Block 5.2 for some matrices Cv, Dvw and Dvu. If
⟨·, ·⟩Xn is as defined in Equation (5.6), then we have the following:

a) for any v1, v2 ∈ Rnv and x̂
¯
, ŷ
¯
∈ Lnx̂

2〈(
T̂ x̂
¯
+ Tvv1

)
,
(
T̂ ŷ
¯
+ Tvv2

)〉
Xn

=
〈
x̂
¯
, ŷ
¯

〉
L
nx̂
2

. (5.7)

b) for any w1, w2 ∈ Rnw , u1, u2 ∈ Rnu, x
¯
,y
¯
∈ RLnx,nx̂

2 ,〈
(T x

¯
+ Tww1 + Tuu1),

(
T y
¯
+ Tww2 + Tuu2

)〉
Rnx×Xn

=
〈
x
¯
,y
¯

〉
RLnx,nx̂

2

. (5.8)

Proof. Let x̂
¯
, ŷ
¯
∈ Lnx̂

2 and v1, v2 ∈ Rp. Then, from Theorem 5.1, we have

T̂ x̂
¯
+ Tvv1 ∈ Xv1 , T̂ ŷ

¯
+ Tvv2 ∈ Xv2 .

Therefore, by definition Equation (5.6) and the result in Theorem 5.1b,〈(
T̂ x̂
¯
+ Tvv1

)
,
(
T̂ ŷ
¯
+ Tvv2

)〉
Xn

=
〈
D
(
T̂ x̂
¯
+ Tvv1

)
,D
(
T̂ ŷ
¯
+ Tvv2

)〉
L
nx̂
2

=
〈
x̂
¯
, ŷ
¯

〉
L
nx̂
2

.

For b), let x
¯
,y
¯
∈ RLnx,nx̂

2 and w1, w2 ∈ Rp, u1, u2 ∈ Rq. Then, from Corollary 5.3,
we have

T x
¯
+ Tww1 + Tuu1 ∈ Xw1,u1 , T y

¯
+ Tww2 + Tuu2 ∈ Xw2,u2 .

Since Rnx×Xn inner product is just sum of R andXn inner products, using definitions
of T , Tw, and Tu and the result in Corollary 5.3b, we have〈

(T x
¯
+ Tww1 + Tuu1),

(
T y
¯
+ Tww2 + Tuu2

)〉
Rnx×Xn

=

〈[
I 0
0 D

]
(T x

¯
+ Tww1 + Tuu1),

[
I 0
0 D

] (
T y
¯
+ Tww2 + Tuu2

)〉
RLnx,nx̂

2

=
〈
x
¯
,y
¯

〉
RLnx,nx̂

2

.

Using this result, we conclude that when v = 0, the PI map (T̂ ) is unitary. Since

T̂ is a unitary map from L2 to Xv, the space Xv is complete under the X-norm
because L2 is complete.
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A.5.2 Proof of Lemma 5.6

Next, we prove that the RX norm is equivalent to the W n-norm on the subspace
R×X.

Lemma 5.6. Suppose pair {n,Gb} is admissible. Then ∥u∥Rnx×Xn ≤ ∥u∥Rnx×Wn and
there exists c0 > 0 such that for any u ∈ X0,0, we have ∥u∥Rnx×Wn ≤ c0 ∥u∥Rnx×Xn.

Proof. Suppose X0,0 is as defined in Equation (3.9). Then, for any

[
x
x̂

]
∈ X0,0, we

have, x ∈ Rnx and x̂ ∈ XCvx for some matrix Cv and hence, from Theorem 5.1, we

have x̂ = T̂ Dx̂+ TvCvx where T̂ and Tv are as defined in Block 5.1.
Let the space X0,0 be equipped with two different inner products Rnx × Xn and

Rnx ×W n. Then∥∥∥∥[xx̂
]∥∥∥∥2

Rnx×Wn

= ∥x∥2R +
N∑
i=0

i∑
j=0

∥∥∂j
s x̂i

∥∥2
L2

= ∥x∥2R +
N∑
i=0

∥∥∂i
sx̂i

∥∥2
L2

+
N∑
i=0

i−1∑
j=0

∥∥∂j
s x̂i

∥∥2
L2

≥ ∥x∥2R +
N∑
i=0

∥∥∂i
sx̂i

∥∥2
L2

= ∥x∥2R + ∥x̂∥2Xn ≥
∥∥∥∥[xx̂

]∥∥∥∥2
Rnx×Xn

.

For the reverse inequality we try to find an upper bound on ∥·∥Rnx×Wn as follows.∥∥∥∥[xx̂
]∥∥∥∥2

Rnx×Wn

= ∥x∥2R +
N∑
i=0

i∑
j=0

∥∥∂j
s x̂i

∥∥2
L2

= ∥x∥2R + ∥(F x̂)∥2L2
,

where (F x̂) = col(∂0
sS

0x̂, · · · , ∂N
s SN x̂). Recall from Corollary A.4,

(F x̂) = TD

[
v
Dx̂

]
, for any x̂ ∈ Xv and {n,Gb} admissible

where TD = Π
[ ∅ ∅

U2T (s− a)B−1
T Bv {U1, RD,1, RD,2}

]
is a bounded PI operator. Substi-

tuting v = Cvx specifically, we have

∥(F x̂)∥2L2
=

∥∥∥∥TD

[
Cvx
Dx̂

]∥∥∥∥2
L2

≤ ∥TD∥2L(RL2)

(
(b− a)2 ∥Cvx∥2R + ∥Dx̂∥2L2

)
= K0 ∥Dx̂∥2L2

+K1 ∥x∥2R

where K0 = ∥TD∥2L(RL2)
and K1 = K0(b − a)2σ̄(Cv)

2. Recall from Theorem 5.7, for
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any x̂ ∈ L2 and v ∈ R,
∥∥∥T̂ x̂+ Tvv

∥∥∥2
Xn

= ∥x̂∥2L2
. Then

∥∥∥∥[xx̂
]∥∥∥∥2

Rnx×Wn

= ∥x∥2R +K0 ∥Dx̂∥2L2
+K1 ∥x∥2R = (1 +K1) ∥x∥2R ++K0

∥∥∥T̂ Dx̂+ TvCvx
∥∥∥2
Xn

≤ (1 +K1) ∥x∥2R +K0 ∥x̂∥2Xn ≤ (1 +K0 +K1)

∥∥∥∥[xx̂
]∥∥∥∥2

Rnx×Xn

.

A.5.3 Proof of Theorem 5.9

Now that we have established equivalence of the Xn and W n norms, we may prove
that a GPDE model is internally (exponential, Lyapunov, or asymptotically) stable
if and only if the associated PIE is internally stable.

Theorem 5.9. Given {n,Go,Gb,Gp} with {n,Gb} admissible, the GPDE model
defined by {n,Go,Gb,Gp} is exponentially stable if and only if the PIE defined by
GPIE = M({n,Gb,Go,Gp}) is exponentially stable.

Proof. Suppose GPDE defined by {n,Go,Gb,Gp} is exponentially stable. Then,
there exist constants M , α > 0 such that for any {x0, x̂0} ∈ X0,0, if {x, x̂, z, y, v, r}
satisfies the GPDE defined {n,Go,Gb,Gp} with initial condition {x0, x̂0} and input
{0, 0}, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt for all t ≥ 0.

For any x
¯
0 ∈ RLnx,nx̂

2 , let {x
¯
, z, y} satisfy the PIE defined byGPIE with initial con-

dition x
¯
0 ∈ RLnx,nx̂

2 and input {0, 0}. Then, from Corollary 5.5, {x, x̂, z, y, v, r} sat-

isfies the GPDE defined by {n,Go,Gb,Gp} with initial condition

[
x0

x̂0

]
= T x

¯
0 ∈ X0,0

and input {0, 0} for some v and r where

[
x(t)
x̂(t)

]
= T x

¯
(t). Then, by the exponential

stability of the GPDE, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt for all t ≥ 0.

Since

[
x(t)
x̂(t)

]
∈ X0,0 and

[
x0

x̂0

]
∈ X0,0, from lemma 5.6, we have

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

and

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

.
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By theorem 5.7, for any x ∈ RL2 we have ∥x∥RL2
= ∥T x∥Rnx×Xn . Thus, we have the

following:

∥x
¯
(t)∥RL2

= ∥T x
¯
(t)∥Rnx×Xn =

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt

≤ c0M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

e−αt = c0M
∥∥T x

¯
0
∥∥
Rnx×Xn e

−αt = c0M
∥∥x
¯
0
∥∥
RL2

e−αt.

Therefore, the PIE defined by GPIE is exponentially stable.
Suppose the PIE defined by GPIE is exponentially stable. Then, there exist con-

stants M , α > 0 such that for any x
¯
0 ∈ RLm,n

2 , if x
¯
satisfies the PIE defined by

{GPIE} with initial condition x
¯
0 and input {0, 0}, we have

∥x
¯
(t)∥RL2

≤ M
∥∥x
¯
0
∥∥
RL2

e−αt for all t ≥ 0.

For any {x0, x̂0} ∈ X0,0, let {x, x̂, z, y, v, r} satisfy the GPDE defined by n and
{Go,Gb,Gp} with initial condition {x0, x̂0} and input {0, 0}. Then, from Corol-
lary 5.5, {x

¯
, z, y} satisfies the PIE defined by GPIE with initial condition x

¯
0 ∈ RLnx,nx̂

2

and input {0, 0} where

x
¯
(t) =

[
x(t)
Dx̂(t)

]
, x

¯
0 =

[
x0

Dx̂0

]
.

Since x̂(t) ∈ XCvx(t), from theorem 5.1, we have x̂(t) = T̂ Dx̂(t)+TvCvx(t). Therefore,[
x(t)
x̂(t)

]
=

[
x(t)

T̂ Dx̂(t) + TvCvx(t)

]
=

[
I 0

TvCv T̂

] [
x(t)
Dx̂(t)

]
= T x

¯
(t).

Similarly, we have

[
x0

x̂0

]
= T x

¯
0.

By the exponential stability of the PIE, we have

∥x
¯
(t)∥RL2

≤ M
∥∥x
¯
0
∥∥
RL2

e−αt for all t ≥ 0.

Again, from lemma 5.6, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

,

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

and, from theorem 5.7, ∥T x∥Rnx×Xn = ∥x∥RL2
for any x ∈ RL2 which implies∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

= c0 ∥T x
¯
(t)∥Rnx×Xn = c0 ∥x

¯
(t)∥RL2

≤ c0M
∥∥x
¯
0
∥∥
RL2

e−αt = c0M
∥∥T x

¯
0
∥∥
Rnx×Xn e

−αt

= c0M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

e−αt ≤ c0M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt.

Therefore, the GPDE defined by n and {Go,Gb,Gp} is exponentially stable.
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Corollary 5.10. Given {n,Go,Gb,Gp} with {n,Gb} admissible, let GPIE = M ({n,
Gb, Go, Gp}). Then

1. The GPDE model defined by {n,Go,Gb,Gp} is Lyapunov stable if and only if
the PIE system defined by GPIE is Lyapunov stable.

2. The GPDE model defined by {n,Go,Gb,Gp} is asymptotically stable if and only
if the PIE system defined by GPIE is asymptotically stable.

Proof. Proof of part 1. Suppose GPDE defined by {n,Go,Gb,Gp} is Lyapunov
stable. For any x

¯
0 ∈ RLnx,nx̂

2 , let {x
¯
, z, y} satisfy the PIE defined by GPIE with initial

condition x
¯
0 ∈ RLnx,nx̂

2 and input {0, 0}. Then, from Corollary 5.5, {x, x̂, z, y, v, r}
satisfies the GPDE defined by n and {Go,Gb,Gp} with initial condition

[
x0

x̂0

]
=

T x
¯
0 ∈ X0,0 and input {0, 0} for some v and r where

[
x(t)
x̂(t)

]
= T x

¯
(t). Suppose ϵ > 0,

then by the Lyapunov stability of the GPDE, there exists δ such that∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

< δ =⇒
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

< ϵ for all t ≥ 0.

Since

[
x(t)
x̂(t)

]
∈ X0,0 and

[
x0

x̂0

]
∈ X0,0, from lemma 5.6, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

and

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

.

Let ∥x
¯
0∥RL2

< δ
c0
. By theorem 5.7, for any x

¯
∈ RLnx,nx̂

2 we have ∥x
¯
∥RL2

= ∥T x
¯
∥Rnx×Xn .

Thus, we have the following:∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

= c0
∥∥T x

¯
0
∥∥
Rnx×Xn = c0

∥∥x
¯
0
∥∥
RL2

< δ, and

∥x
¯
(t)∥RL2

= ∥T x
¯
(t)∥Rnx×Xn =

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

< ϵ.

Therefore, the PIE defined by GPIE is Lyapunov stable.
Suppose the PIE defined by GPIE is Lyapunov stable. For any {x0, x̂0} ∈ X0,0, let

{x, x̂, z, y, v, r} satisfy the GPDE defined by n and {Go,Gb,Gp} with initial condition
{x0, x̂0} and input {0, 0}. Then, from Corollary 5.5, {x

¯
, z, y} satisfies the PIE defined

by GPIE with initial condition x
¯
0 ∈ RLnx,nx̂

2 and input {0, 0} where

x
¯
(t) =

[
x(t)
Dx̂(t)

]
, x

¯
0 =

[
x0

Dx̂0

]
.

Since x̂(t) ∈ XCvx(t), from theorem 5.1, we have x̂(t) = T̂ Dx̂(t)+TvCvx(t). Therefore,[
x(t)
x̂(t)

]
=

[
x(t)

T̂ Dx̂(t) + TvCvx(t)

]
=

[
I 0

TvCv T̂

] [
x(t)
Dx̂(t)

]
= T x

¯
(t).
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Similarly, we have

[
x0

x̂0

]
= T x

¯
0. Again, from lemma 5.6, we have

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

,

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

and, from theorem 5.7, ∥T x∥Rnx×Xn = ∥x∥RL2
for any x ∈ RLnx,nx̂

2 . Let ϵ > 0. Then,
by the Lyapunov stability of the PIE, there exists δ such that∥∥x

¯
0
∥∥
RL2

< δ =⇒ ∥x
¯
(t)∥RL2

<
ϵ

c0
for all t ≥ 0.

For any initial condition for the GPDE such that

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

< δ, we have

∥∥x
¯
0
∥∥
RL2

=
∥∥T x

¯
0
∥∥
Rnx×Xn =

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

< δ, and∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

= c0 ∥T x
¯
(t)∥Rnx×Xn = c0 ∥x

¯
(t)∥RL2

< ϵ.

Therefore, the GPDE defined by {n,Go,Gb,Gp} is Lyapunov stable.
Proof of part 2. Suppose GPDE defined by {n,Go,Gb,Gp} is asymptotically

stable. For any x
¯
0 ∈ RLnx,nx̂

2 , let {x
¯
, z, y} satisfy the PIE defined by GPIE with initial

condition x
¯
0 ∈ RLnx,nx̂

2 and input {0, 0}. Then, from Corollary 5.5, {x, x̂, z, y, v, r}
satisfies the GPDE defined by n and {Go,Gb,Gp} with initial condition

[
x0

x̂0

]
=

T x
¯
0 ∈ X0,0 and input {0, 0} for some v and r where

[
x(t)
x̂(t)

]
= T x

¯
(t). Suppose ϵ > 0,

then by the asymptotic stability of the GPDE, there exists T0 such that∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

< ϵ for all t ≥ T0.

Since

[
x(t)
x̂(t)

]
∈ X0,0, from lemma 5.6, we have

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

.

By theorem 5.7, for any x
¯
∈ RLnx,nx̂

2 we have ∥x
¯
∥RL2

= ∥T x
¯
∥Rnx×Xn . Thus, for any

t > T0, we have,

∥x
¯
(t)∥RL2

= ∥T x
¯
(t)∥Rnx×Xn =

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

< ϵ.

Therefore, the PIE defined by GPIE is asymptotically stable.
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Suppose the PIE defined byGPIE is asymptotically stable. For any {x0, x̂0} ∈ X0,0,
let {x, x̂, z, y, v, r} satisfy the GPDE defined by {n,Go,Gb,Gp} with initial condition
{x0, x̂0} and input {0, 0}. Then, from Corollary 5.5, {x

¯
, z, y} satisfies the PIE defined

by GPIE with initial condition x
¯
0 ∈ RLnx,nx̂

2 and input {0, 0} where

x
¯
(t) =

[
x(t)
Dx̂(t)

]
, x

¯
0 =

[
x0

Dx̂0

]
.

Again, we know x̂(t) ∈ XCvx(t), and hence from theorem 5.1, we have x̂(t) = T̂ Dx̂(t)+
TvCvx(t). Therefore,[

x(t)
x̂(t)

]
=

[
x(t)

T̂ Dx̂(t) + TvCvx(t)

]
=

[
I 0

TvCv T̂

] [
x(t)
Dx̂(t)

]
= T x

¯
(t).

Again, from lemma 5.6, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

,

and, from theorem 5.7, ∥T x∥Rnx×Xn = ∥x∥RL2
for any x ∈ RLnx,nx̂

2 . Let ϵ > 0. Then,
by the asymptotic stability of the PIE, there exists T0 such that

∥x
¯
(t)∥RL2

<
ϵ

c0
for all t ≥ T0.

Then, for any t ≥ T0, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

= c0 ∥T x
¯
(t)∥Rnx×Xn = c0 ∥x

¯
(t)∥RL2

< ϵ.

Therefore, the GPDE defined by {n,Go,Gb,Gp} is asymptotically stable.
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APPENDIX B

PI ALGEBRAS, POSITIVE PI OPERATORS, AND INVERSION OF PI
OPERATORS
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B.1 Set Of PI Operators Forms A ∗-Algebra

In this section, we prove that a set of PI operators, when parameterized by L∞-
bounded functions, forms a ∗-algebra, i.e., closed algebraically. Furthermore, the
formulae provided here will act as a guideline to perform the binary operations (ad-
dition, composition, and concatenation) of PI operators since various formulae in
the paper were presented using such binary operation notation. First, we provide
a formal definition of the list of properties a set must satisfy to be a ∗-algebra. A
∗-algebra must be an associative algebra with an involution operation. Since the
definition of ∗-algebra depends on definitions of an associative algebra, we introduce
those definitions first.

Definition B.1 (Algebra). A vector space, A, equipped with a multiplication opera-
tion, is said to be an algebra if, for every X, Y ∈ A, we have XY ∈ A.

Definition B.2 (Associative Algebra). An algebra, A, is said to be associative if for
every X, Y, Z ∈ A

X(Y Z) = (XY )Z

where XY denotes a multiplication operation between X and Y .

Definition B.3 (∗-algebra). An algebra, A, over the R with an involution operation
∗ is called a ∗-algebra if

1. (X∗)∗ = X, ∀X ∈ A

2. (X + Y )∗ = X∗ + Y ∗, ∀X, Y ∈ A

3. (XY )∗ = Y ∗X∗, ∀X, Y ∈ A

4. (λX)∗ = λX∗, ∀λ ∈ R, X ∈ A

To prove that the set of PI operators Πp,p
q,q satisfy all the above properties, we prove

that Πp,p
q,q satisfies the requirements of each of the above definitions where

Πp,p
q,q :=


Π
[

P Q1

Q2 {R0, R1, R2}
]

| P ∈ Rp×p, Q1(s), Q2(s)
T ∈ Rp×q,

R0(s), R1(s, θ), R2(s, θ) ∈ Rq×q, and Qi, Ri ∈ L∞,
R1, R2 are separable

 .

To prove that the set is an algebra, we need to define two binary operations, addition
and multiplication, which in case of Πp,p

q,q will be given the addition of PI operators (as
defined in Lemma 2.1) and composition of PI operators (as defined in Lemma 2.2).
For the set to be a ∗-algebra, we also need an involution operation, which is given by
the adjoint with respect to R× L2 inner-product (as defined in Lemma 2.3).

Lemma 2.1 (Addition). For any matrices A,L ∈ Rm×p and L∞-bounded functions
B1,M1 : [a, b] → Rm×q, B2,M2 : [a, b] → Rn×p, C0, N0 : [a, b] → Rn×q, and separable
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functions C1, C2, N1, N2 : [a, b]
2 → Rn×q, define a linear map P4

+ : [Γ4]
m,p
n,q × [Γ4]

m,p
n,q →

[Γ4]
m,p
n,q such that [

P Q1

Q2 {Ri}
]
= P4

+

([
A B1

B2 {Ci}
]
,
[

L M1

M2 {Ni}
])

where

P = A+ L, Qi = Bi +Mi, Ri = Ci +Ni.

If P,Qi, Ri are as defined above, then, for any x ∈ Rp and z ∈ Lq
2([a, b])

Π
[
P4

+

([
A B1

B2 {Ci}
]
,
[

L M1

M2 {Ni}
])] [

x
z

]
=
(
Π
[

A B1

B2 {Ci}
]
+ Π

[
L M1

M2 {Ni}
]) [

x
z

]
.

Proof. Let x ∈ Rp and y ∈ Lq
2[a, b] be arbitrary. Then

Π
[

P Q1

Q2 {Ri}
] [

x
y

]
(s) =

[
Px+

∫ b

a
Q1(s)y(s)ds

Q2(s)x+ Π {Ri}y(s)

]
=

[
(A+ L)x+

∫ b

a
(B1 +M1)(s)y(s)ds

(B2 +M2)(s)x+ (Π {Ci+Ni})y(s)

]
=

[
Ax+

∫ b

a
B1(s)y(s)ds

B2(s)x+ Π {Ci}y(s)

]
+

[
Lx+

∫ b

a
M1(s)y(s)ds

M2(s)x+ Π {Ni}y(s)

]
= Π

[
A B1

B2 {Ci}
] [

x
y

]
(s) + Π

[
L M1

M2 {Ni}
] [

x
y

]
(s)

=
(
Π
[

A B1

B2 {Ci}
]
+ Π

[
L M1

M2 {Ni}
]) [

x
y

]
(s).

Lemma 2.2 (Composition). For any matrices A ∈ Rm×k, P ∈ Rk×p and L∞-bounded
functions B1 : [a, b] → Rm×l, Q1 : [a, b] → Rk×q, B2 : [a, b] → Rn×k, Q2 : [a, b] → Rl×p,
C0 : [a, b] → Rn×l, R0 : [a, b] → Rl×q, and separable functions C1, C2 : [a, b]2 →
Rn×l, R1, R2 : [a, b]

2 → Rl×q, define a linear map P4
× : [Γ4]

m,k
n,l × [Γ4]

k,p
l,q → [Γ4]

m,p
n,q such

that [
P̂ Q̂1

Q̂2 {R̂i}

]
= P4

×

([
A B1

B2 {Ci}
]
,
[

P Q1

Q2 {Ri}
])
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where

P̂ = AP +

∫ b

a

B1(s)Q2(s)ds, R̂0(s) = C0(s)R0(s),

Q̂1(s) = AQ1(s) +B1(s)R0(s) +

∫ b

s

B1(η)R1(η, s)dη +

∫ s

a

B1(η)R2(η, s)dη,

Q̂2(s) = B2(s)P + C0(s)Q2(s) +

∫ s

a

C1(s, η)Q2(η)dη +

∫ b

s

C2(s, η)Q2(η)dη,

R̂1(s, η) = B2(s)Q1(η) + C0(s)R1(s, η) + C1(s, η)R0(η)

+

∫ η

a

C1(s, θ)R2(θ, η)dθ +

∫ s

η

C1(s, θ)R1(θ, η)dθ +

∫ b

s

C2(s, θ)R1(θ, η)dθ,

R̂2(s, η) = B2(s)Q1(η) + C0(s)R2(s, η) + C2(s, η)R0(η)

+

∫ s

a

C1(s, θ)R2(θ, η)dθ +

∫ η

s

C2(s, θ)R2(θ, η)dθ +

∫ b

η

C2(s, θ)R1(θ, η)dθ.

If P̂ , Q̂i, R̂i are as defined above, then, for any x ∈ Rm and z ∈ Ln
2 ([a, b]),

Π
[
P4

×

([
A B1

B2 {Ci}
]
,
[

P Q1

Q2 {Ri}
])] [

x
z

]
= Π

[
A B1

B2 {Ci}
](

Π
[

P Q1

Q2 {Ri}
] [

x
z

])
.

Proof. Let {A, Bi, Ci}, {P, Qi, Ri} and {P̂ , Q̂i, R̂i} be such that

Π
[

A B1

B2 {Ci}
](

Π
[

P Q1

Q2 {Ri}
] [

x1

x2

])
(s) =

(
Π
[

P̂ Q̂1

Q̂2 {R̂}

] [
x1

x2

])
(s),

for any x1 ∈ Rp and x2 ∈ Lq
2[a, b]. Since PI operators are bounded operators on

R× L2, we define [
y1

y2(s)

]
=

(
Π
[

P Q1

Q2 {R}
] [

x1

x2

])
(s).

Then, by definition of a PI operator,

y1 = Px1 +

∫ b

a

Q1(s)x2(s)ds

y2(s) = Q2(s)x1 +R0(s)x2(s) +

∫ s

a

R1(s, η)x2(η)dη +

∫ b

s

R2(s, η)x2(η)dη.

Likewise, let us also define[
z1

z2(s)

]
=

(
Π
[

A B1

B2 {Ci}
] [

y1
y2

])
(s) = Π

[
A B1

B2 {Ci}
]
Π
[

P Q1

Q2 {Ri}
] [

x1

x2

]
(s),
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which gives us the equations

z1 = Ay1 +

∫ b

a

B1(s)y2(s)ds

z2(s) = B2(s)y1 + C0(s)y2(s) +

∫ s

a

C1(s, η)y2(η)dη +

∫ b

s

C2(s, η)y2(η)dη.

We will try to find a direct map between xi and zi by substituting yi in the above
equation. However, we will perform the substitution by taking one term at a time.
First,∫ b

a

B1(s)y2(s)ds

=

∫ b

a

B1(s)
(
Q2(s)x1 +R0(s)x2(s) +

∫ s

a

R1(s, η)x2(η)dη +

∫ b

s

R2(s, η)x2(η)dη
)
ds.

Then

z1 = Ay1 +

∫ b

a

B1(s)y2(s)ds

= APx1 +

∫ b

a

AQ1(s)x2(s)ds+

∫ b

a

B1(s)
(
Q2(s)x1 +R0(s)x2(s)

+

∫ s

a

R1(s, η)x2(η)dη +

∫ b

s

R2(s, η)x2(η)dη
)
ds

= P̂ x1 +

∫ b

a

Q̂1(s)x2(s)ds.

Next, we substitute yi in the map from yi to z2(s) to get

z2(s)

= B2(s)Px1 +

∫ b

a

B2(s)Q1(η)x2(s)dη + C0(s)Q2(s)x1 + C0(s)R0(s)x2(s)

+

∫ s

a

C0(s)R1(s, η)x2(η)dη +

∫ b

s

C0(s)R2(s, η)x2(η)dη +

∫ s

a

C1(s, η)Q2(η)x1dη

+

∫ s

a

C1(s, η)R0(s)x2(s)dη +

∫ s

a

∫ η

a

C1(s, η)R1(η, β)x2(β)dβdη

+

∫ s

a

∫ b

η

C1(s, η)R2(η, β)x2(β)dβdη +

∫ b

s

C2(s, η)Q2(η)x1dη

+

∫ b

s

C2(s, η)R0(η)x2(η)dη +

∫ b

s

∫ η

a

C2(s, η)R1(η, β)x2(β)dβdη

+

∫ b

s

∫ b

η

C2(s, η)R2(η, β)x2(β)dβdη.
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Next, we separate the terms by factoring x1. Then, we change the order of integration
in the double integrals (and swap the variable β ↔ η) to get

z2(s)

=
(
B2(s)P + C0(s)Q2(s) +

∫ s

a
C1(s, η)Q2(η)dη

∫ b

s
+C2(s, η)Q2(η)dη

)
x1

+ C0(s)R0(s)x2(s) +

∫ b

a
B2(η)Q1(s)x2(η)dη +

∫ s

a
C0(s)R1(s, η)x2(η)dη

+

∫ b

s
C0(s)R2(s, η)x2(η)dη +

∫ b

s
C2(s, η)R0(η)x2(η)dη +

∫ s

a
C1(s, η)R0(s)x2(s)dη

+

∫ s

a

(∫ η

a
C1(s, θ)R2(θ, η)dθ +

∫ s

η
C1(s, θ)R1(θ, η)dθ +

∫ b

s
C2(s, θ)R1(θ, η)dθ

)
x2(η)dη

+

∫ b

s

(∫ s

a
C1(s, θ)R2(θ, η)dθ +

∫ η

s
C2(s, θ)R2(θ, η)dθ +

∫ b

η
C2(s, θ)R1(θ, η)dθ

)
x2(η)dη

= Q̂2(s)x1 + Ŝ(s)x2(s) +

∫ s

a
R̂1(s, η)x2(η)dη +

∫ b

s
R̂2(s, η)x2(η)dη.

This completes the proof.

Lemma 2.3 (Adjoint). For any matrices P ∈ Rm×p and L∞-bounded functions Q1 :
[a, b] → Rm×q, Q2 : [a, b] → Rn×p, R0 : [a, b] → Rn×q, and separable functions
R1, R2 : [a, b]

2 → Rn×n, define a linear map P4
∗ : [Γ4]

m,p
n,q → [Γ4]

p,m
q,n such that[

P̂ Q̂1

Q̂2 {R̂i}

]
= P4

∗

([
P Q1

Q2 {Ri}
])

where

P̂ = P T , Q̂1(s) = QT
2 (s), Q̂2(s) = QT

1 (s),

R̂0(s) = RT
0 (s), R̂1(s, η) = RT

2 (η, s), R̂2(s, η) = RT
1 (η, s). (2.4)

Then, for any x ∈ RLm,n
2 ,y ∈ RLp,q

2 , then we have〈
x, Π

[
P Q1

Q2 {Ri}
]
y
〉
RLm,n

2

=
〈
Π
[
P4

∗

([
P Q1

Q2 {Ri}
])]

x,y
〉
RLp,q

2

, (2.5)

Proof. To prove this, we use the fact that for any scalar a we have a = a⊤. Let
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x(s) =

[
x1

x2(s)

]
and y =

[
y1

y2(s)

]
. Then

〈
x, Π

[
P Q1

Q2 {Ri}
]
y
〉
RLm,n

2

= x⊤
1 Py1 +

∫ b

a

x⊤
1 Q1(s)y2(s)ds+

∫ b

a

x⊤
2 (s)Q2(s)y1ds

+

∫ b

a

x2(s)
⊤R0(s)y2(s)ds+

∫ b

a

∫ s

a

x⊤
2 (s)R1(s, η)y2(η)dηds

+

∫ b

a

∫ b

s

x⊤
2 (s)R2(s, η)y2(η)dηds

= y⊤1 P
⊤x1 +

∫ b

a

y⊤1 Q
⊤
2 (s)x2(s)ds+

∫ b

a

y2(s)Q
⊤
1 (s)x1ds

+

∫ b

a

y⊤
2 (s)R

⊤
0 (s)x2(s)ds+

∫ b

a

∫ s

a

y⊤
2 (s)R

⊤
2 (η, s)x2(η)dηds

+

∫ b

a

∫ b

s

y⊤
2 (s)R

⊤
1 (η, s)x2(η)dηds

= y⊤1 P̂ x1 +

∫ b

a

y⊤1 Q̂1(s)x2(s)ds+

∫ b

a

y⊤
2 (s)Q̂2(s)x1ds

+

∫ b

a

y⊤
2 (s)R̂0(s)x2(s)ds+

∫ b

a

∫ s

a

y⊤
2 (s)R̂1(s, η)x2(η)dηds

+

∫ b

a

∫ b

s

y⊤
2 (s)R̂2(s, η)x2(η)dηds

=

〈
y, Π

[
P̂ Q̂1

Q̂2 {R̂i}

]
x

〉
RLp,q

2

=

〈
Π
[

P̂ Q̂1

Q̂2 {R̂i}

]
x,y

〉
RLp,q

2

where,

P̂ = P⊤, Q̂1(s) = Q⊤
2 (s), Q̂2(s) = Q⊤

1 (s),

R̂0(s) = R⊤
0 (s), R̂1(s, η) = R⊤

2 (η, s), R̂2(s, η) = R⊤
1 (η, s).

This completes the proof.

Now that we have formally defined the binary and involution operations on the
set of PI operators, we show that Πp,p

q,q when equipped with these operations forms a
∗-algebra.

Lemma 2.4. The set [Πi] equipped with composition operation forms an associative
algebra.

Proof. Suppose Π
[

P Q1

Q2 {Ri}
]
, Π
[

A B1

B2 {Ci}
]
∈ Πp,p

q,q . From Lemma 2.2, we have
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that Π
[

P̂ Q̂1

Q̂2 {R̂i}

]
= Π

[
A B1

B2 {Ci}
]
Π
[

P Q1

Q2 {Ri}
]
with

P̂ = AP +

∫ b

a

B1(s)Q2(s)ds, R̂0(s) = C0(s)R0(s),

Q̂1(s) = AQ1(s) +B1(s)R0(s) +

∫ b

s

B1(η)R1(η, s)dη +

∫ s

a

B1(η)R2(η, s)dη,

Q̂2(s) = B2(s)P + C0(s)Q2(s) +

∫ s

a

C1(s, η)Q2(η)dη +

∫ b

s

C2(s, η)Q2(η)dη,

R̂1(s, η) = B2(s)Q1(η) + C0(s)R1(s, η) + C1(s, η)R0(η)

+

∫ η

a

C1(s, θ)R2(θ, η)dθ +

∫ s

η

C1(s, θ)R1(θ, η)dθ +

∫ b

s

C2(s, θ)R1(θ, η)dθ,

R̂2(s, η) = B2(s)Q1(η) + C0(s)R2(s, η) + C2(s, η)R0(η)

+

∫ s

a

C1(s, θ)R2(θ, η)dθ +

∫ η

s

C2(s, θ)R2(θ, η)dθ +

∫ b

η

C2(s, θ)R1(θ, η)dθ.

Since Bi, Ci, Qi, Ri are all L∞ we have Q̂i, R̂i ∈ L∞. Thus, the composition of any
two PI operators in Πp,p

q,q is a PI operator in the same set.
Similarly, by using composition formulae from Lemma 2.2, we can show that

for any 3 PI operators P ,Q,R ∈ Πp,p
q,q we have (PQ)R = P(QR). The steps are

omitted here since the proof is a straightforward arithmetic exercise. Thus Πp,p
q,q is an

associative algebra.

So far, we have shown that the set Πp,p
q,q is closed algebraically, i.e., the binary and

involution operations on PI operators also result in PI operators. In the following
Lemma, we conclude that Πp,p

q,q is a ∗-algebra.

Lemma 2.5. The set [Πi] equipped with the binary operations of addition and com-
position and the involution operation given by the adjoint w.r.t. RL2 inner product is
a ∗-algebra.

Proof. To prove this, we first show that Πp,p
q,q when equipped with the adjoint operator

satisfies the requirements of a ∗-algebra. Since PI operators are operators on a Hilbert
space R× L2, from Propositions 2.6 and 2.7 in (Conway, 2019, p .32), we know that
for any two such operators P and Q

� (P∗)∗ = P
� (λP)∗ = λP∗

� (P +Q)∗ = P∗ +Q∗

� (PQ)∗ = Q∗P∗.

Therefore, since Πp,p
q,q is a Banach algebra with an involution ∗ that satisfies all the

properties in the definition of a ∗-algebra, Πp,p
q,q is a ∗-algebra.
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B.1.1 Concatenation of PI Operators

The results presented in this subsection are specific to the notational convenience
granted by the concatenation of PI operators. In this subsection, we assume that
two vectors x,y ∈ RL2 are identical if a permutation matrix P exists such that
x = Py. This assumption is made to accommodate for the notational convenience
that concatenation of PI operators provide because any Πm,p

n,q PI operator requires
inputs to be completely segregated with finite-dimensional part of the vector to be on
the top while infinite-dimensional part at the bottom. However, since concatenation
of such vectors is likely to lose such a segregation, we think of the vector x,y ∈ RL2

as ordered pairs (x,x1), (y,y1) with x, y ∈ R and x1,y1 ∈ L2 with concatenation of
two such vectors being performed individually on each element of the ordered pair.
This allows us to retain the convenient segregation of the vector’s finite and infinite
dimensional parts and use the concatenation notation of PI operators.

Lemma B.1 (Horizontal concatenation). Suppose Aj ∈ Rm×pj and B1,j : [a, b] →
Rm×qj , B2,j : [a, b] → Rn×pj , C0,j : [a, b] → Rn×qj , Ci,j : [a, b] × [a, b] → Rn×qj , for
i ∈ {0, 1, 2}, j ∈ {1, 2}, are bounded functions. If we define P , Q1, Q2 and Rk, for
k ∈ {0, 1, 2} as

P = [A1 A2] , Qi = [Bi,1 Bi,2] , Ri = [Ci,1 Ci,2] ,

then
Π
[

P Q1

Q2 {Ri}
]
=
[
Π
[

A1 B1,1

B2,1 {Ci,1}
]

Π
[

A2 B1,2

B2,2 {Ci,2}
]]

.

Proof. We will prove this identity by a series of equalities. Let x1 ∈ Rp1 , y1 ∈ Rp2 ,

x2 ∈ Lq1
2 [a, b], and y2 ∈ Lq2

2 [a, b] be arbitrary. Next, we define z1 =

[
x1

x2

]
∈ Rp1+p2 and

z2 ∈ Lq1+q2
2 . Then the following series of equalities hold. We can substitute {z1, z2}
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in terms of {x1, y1, x2, y2} and perform matrix multiplication to get

Π
[

P Q1

Q2 {Ri}
] [

z1
z2

]
(s)

=

[
Pz1 +

∫ b

a
Q1(s)z2(s)ds

Q2(s)z1 +R0(s)z2(s) +
∫ s

a
R1(s, θ)z2(θ)dθ +

∫ b

s
R2(s, θ)z2(θ)dθ

]

=

 P

[
x1

y1

]
+
∫ b

a
Q1(s)

[
x2(s)
y2(s)

]
ds

Q2(s)

[
x1

y1

]
+R0(s)

[
x2(s)
y2(s)

]
+
∫ s

a
R1(s, θ)

[
x2(θ)
y2(θ)

]
dθ +

∫ b

s
R2(s, θ)

[
x2(θ)
y2(θ)

]
dθ


=

[
A1x1 +

∫ b

a
B0,1(s)x2(s)ds

B2,1(s)x1 + C0,1(s)x2(s) +
∫ s

a
C1,1(s, θ)x2(θ)dθ +

∫ b

s
C2,1(s, θ)x2(θ)dθ

]

+

[
A2y1 +

∫ b

a
B0,2(s)y2(s)ds

B2,2(s)y1 + C0,2(s)y2(s) +
∫ s

a
C1,2(s, θ)y2(θ)dθ +

∫ b

s
C2,2(s, θ)y2(θ)dθ

]

= Π
[

A1 B1,1

B2,1 {Ci,1}
] [

x1

x2

]
(s) + Π

[
A2 B1,2

B2,2 {Ci,2}
] [

y1
y2

]
(s)

=
[
Π
[

A1 B1,1

B2,1 {Ci,1}
]

Π
[

A2 B1,2

B2,2 {Ci,2}
]]x1

x2

y1
y2

 (s).

By rearranging the vector col(x1,x2, y1,y2) we can obtain {z1, z2(s)}. Thus, the
horizontal concatenation of two PI maps gives rise to another uniquely defined PI
map.

Note that in the last equality, permutation of vector rows is needed to obtain
{z1, z2} back. However, that does not affect the conversion formulae for PIE since
states can be arranged in any order based on convenience.

Lemma B.2 (Vertical concatenation). Suppose Aj ∈ Rmj×p and B1,j : [a, b] →
Rmj×q, B2,j : [a, b] → Rnj×p, C0,j : [a, b] → Rnj×q, Ci,j : [a, b] × [a, b] → Rnj×q, for
i ∈ {0, 1, 2}, j ∈ {1, 2}, are bounded functions. If we define P , Q1, Q2 and Rk, for
k ∈ {0, 1, 2} as

P =

[
A1

A2

]
, Qi =

[
Bi,1

Bi,2

]
, Ri =

[
Ci,1

Ci,2

]
,

then

Π
[

P Q1

Q2 {Ri}
]
=

Π
[

A1 B1,1

B2,1 {Ci,1}
]

Π
[

A2 B1,2

B2,2 {Ci,2}
] .

Proof. Similar to horizontal concatenation, we will prove this identity through equali-
ties. Let x1 ∈ Rp and x2 ∈ Lq

2[a, b] be arbitrary. Then the following series of equalities
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hold. We can substitute {P, Qi, Ri} in terms of {Aj, Bi,j, Ci,j} and perform matrix
multiplication to get

Π
[

P Q1

Q2 {Ri}
] [

x1

x2

]
(s)

=

[
Px1 +

∫ b

a
Q1(s)x2(s)ds

Q2(s)z1 +R0(s)x2(s) +
∫ s

a
R1(s, θ)x2(θ)dθ +

∫ b

s
R2(s, θ)x2(θ)dθ

]

=


[
A1

A2

]
x1 +

∫ b

a

[
B1,1(s)
B1,2(s)

]
x2(s)ds[

B2,1(s)
B2,2(s)

]
x1 +

[
C0,1(s)
C0,2(s)

]
x2(s) +

∫ s

a

[
C1,1(s, θ)
C1,2(s, θ)

]
x2(θ)dθ +

∫ b

s

[
C2,1(s, θ)
C2,2(s, θ)

]
x2(θ)dθ



=


[
A1

A2

]
x1 +

∫ b

a

[
B1,1(s)
B1,2(s)

]
x2(s)ds[

B2,1(s)
B2,2(s)

]
x1 +

[
C0,1(s)
C0,2(s)

]
x2(s) +

∫ s

a

[
C1,1(s, θ)
C1,2(s, θ)

]
x2(θ)dθ +

∫ b

s

[
C2,1(s, θ)
C2,2(s, θ)

]
x2(θ)dθ

 .

By rearranging the rows of the above vector, we get
[

A1x1 +
∫ b

a
B0,1(s)x2(s)ds

B2,1(s)x1 + C0,1(s)x2(s) +
∫ s

a
C1,1(s, θ)x2(θ)dθ +

∫ b

s
C2,1(s, θ)x2(θ)dθ

]
[

A2x1 +
∫ b

a
B0,2(s)x2(s)ds

B2,2(s)x1 + C0,2(s)x2(s) +
∫ s

a
C1,2(s, θ)x2(θ)dθ +

∫ b

s
C2,2(s, θ)x2(θ)dθ

]


=

Π
[

A1 B1,1

B2,1 {Ci,1}
] [

x1

x2

]
(s)

Π
[

A2 B1,2

B2,2 {Ci,2}
] [

x1

x2

]
(s)


=

Π
[

A1 B1,1

B2,1 {Ci,1}
]

Π
[

A2 B1,2

B2,2 {Ci,2}
][x1

x2

]
(s).

Thus, the vertical concatenation of two PI maps gives rise to another uniquely defined
PI map.

B.2 Parametrization of Positive PI Operators

In the section, we provide sufficient conditions for the positivity of a PI-operator.
We assume that the square root of a PI-operator is also a PI-operator. Additionally,
we consider the case where its components, Qi and Ri, are matrix-valued polynomial
functions. This leads to the following result, where a test for the positivity of a
PI-operator can be equivalently formulated as a test for the positivity of a matrix.
This allows converting operator-valued constraints to LMI constraints, which can be
solved using an SDP solver.
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Theorem 2.6 (Positive PI). For any functions Z1 : [a, b] → Rd1×n, Z2 : [a, b] ×
[a, b] → Rd2×n, if g(s) ≥ 0 for all s ∈ [a, b] and

P = T11

∫ b

a
g(s)ds, R0(s) = g(s)Z1(s)

TT22Z1(s),

Q(η) = g(η)T12Z1(η) +

∫ b

η
g(s)T13Z2(s, η)ds+

∫ η

a
g(s)T14Z2(s, η)ds,

R1(s, η) = g(s)Z1(s)
TT23Z2(s, η) + g(η)Z2(η, s)

TT42Z1(η) +

∫ b

s
g(θ)Z2(θ, s)

TT33Z2(θ, η)dθ

+

∫ s

η
g(θ)Z2(θ, s)

TT43Z2(θ, η)dθ +

∫ η

a
g(θ)Z2(θ, s)

TT44Z2(θ, η)dθ,

R2(s, η) = g(s)Z1(s)
TT32Z2(s, η) + g(η)Z2(η, s)

TT24Z1(η) +

∫ b

η
g(θ)Z2(θ, s)

TT33Z2(θ, η)dθ

+

∫ η

s
g(θ)Z2(θ, s)

TT34Z2(θ, η)dθ +

∫ s

a
g(θ)Z2(θ, s)

TT44Z2(θ, η)dθ. (2.6)

where

T =

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

 ⪰ 0,

then the operator Π
[

P Q1

Q2 {Ri}
]

as defined in Equation (2.3) is positive semidefinite,

i.e.
〈
x, Π

[
P Q1

Q2 {Ri}
]
x
〉
≥ 0 for all x ∈ Rm × Ln

2 [a, b].

Proof. Let T =

[
T1 T2

T T
2 T3

]
≥ 0 where T1 = T11, T2 = [T12 T13 T14], and T3 =[

T22 T23 T24

T32 T33 T34

T42 T43 T44

]
. Then, there exists a U such that T = UTU where U =

[
U1 U2

UT
2 U3

]
.

We have

Π
[

P Q1

Q2 {Ri}
]

= Π
[

I 0
0 {Zi}

]∗
Π
[

T1 T2

TT
2 {T3, 0, 0}

]
Π
[

I 0
0 {Z̄i}

]
= Π

[
I 0
0 {Z̄i}

]∗
Π
[

U1 U2

UT
2 {U3, 0, 0}

]∗
Π
[

U1 U2

UT
2 {U3, 0, 0}

]
Π
[

I 0
0 {Z̄i}

]
= (T )∗ (T )

where T = Π
[

U1 U2

UT
2 {U3, 0, 0}

]
Π
[

I 0
0 {Z̄i}

]
, Z̄0(s) =

√g(s)Z1(s)
0
0

, Z̄1(s, θ) = 0√
g(s)Z2(s, θ)

0

 and Z̄2(s, θ) =

 0
0√

g(s)Z2(s, θ)

.
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B.3 Formulae for PI Operator Inversion

We provided formulae to calculate the inverse of a PI operator Π
[

P Q1

Q2 {Ri}
]

(refer Lemmas 2.10 and 2.11), wherein the inverse was presented as a composition of
multiple PI operators.

Unlike Lemmas 2.10 and 2.11, in this section, we avoid the composition notation
and directly specify the parameters of the inverse PI operator to simplify the inverse
computation. Consequently, we have two sets of formulae to compute the inverse

of Π
[

P Q1

Q2 {Ri}
]
dependent on the invertibility of either P or Π

[ ∅ ∅
∅ {Ri}

]
. The

choice of formulae depends on the PI being inverted and the application. For ex-
ample, in a PDE with a dynamic controller, if the stability of the controller state is
not necessary, then P is not necessarily invertible, and the formulae in Lemma B.4
should be used. However, if the stability of the controller state is necessary and the
asymptotic/exponential stability of the PDE state is not required, then the inverse
in Lemma B.3 should be used. We have omitted the proof here since the proof was
presented in Section 2.4.3.

Lemma B.3. Suppose P = Π
[

P Q1

Q2 {Ri}
]
∈ ΠΠΠ4 with P invertible, then P is in-

vertible if and only if Π
[ ∅ ∅

∅ {Hi}
]
is invertible where H0 = R0 and Hi(s, θ) =

Ri(s, θ)−Q2(s)P
−1Q1(θ). Furthermore, if Hi satisfy the conditions of Cor. 2.8 and

R̂i are as defined therein, we have that(
Π
[

P Q1

Q2 {Ri}
])−1

= Π
[

P̃ Q̃1

Q̃2 {R̃i}

]
,

where P̃ , Q̃i, R̃i are defined as R̃i = R̂i,

P̃ = P−1 + P−1

(∫ b

a

Q
¯
(s)ds

)
P−1,

Q
¯
(s) = Q1(s)R̂0(s)Q2(s) +

∫ b

s

Q1(θ)R̂1(θ, s)Q2(s)dθ +

∫ s

a

Q1(θ)R̂2(θ, s)Q2(s)dθ,

Q̃1(s) = −P−1

(
Q1(s)R̂0(s)−

∫ b

s

Q1(θ)R̂1(θ, s)dθ −
∫ s

a

Q1(θ)R̂2(θ, s)dθ

)
,

Q̃2(s) =

(
−R̂0(s)Q2(s)−

∫ s

a

R̂1(s, θ)Q2(θ)dθ −
∫ b

s

R̂2(s, θ)Q2(θ)dθ

)
P−1.

Lemma B.4. Suppose P = Π
[

P Q1

Q2 {Ri}
]
∈ ΠΠΠ4 with Π

[ ∅ ∅
∅ {Ri}

]
invertible. Then

P is invertible if and only if the matrix

P̂ = P −
∫ b

a

Q1(s)R̂0(s)Q2(s)ds−
∫ b

a

∫ s

a

Q1(s)R̂1(s, θ)Q2(θ)dθds

−
∫ b

a

∫ b

s

Q1(s)R̂2(s, θ)Q2(θ)dθds
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is invertible. Furthermore, if Hi = Ri satisfy the conditions of Cor. 2.8 and R̂i are
as defined therein, we have that

Π
[

P̃ Q̃1

Q̃2 {R̃i}

]
= Π

[
P Q1

Q2 {Ri}
]−1

where P̃ = P̂−1, R̃0 = R̂0,

Q̃1(s) = −P̃

(
Q1(s)R̂0(s)−

∫ b

s

Q1(θ)R̂1(θ, s)dθ −
∫ s

a

Q1(θ)R̂2(θ, s)dθ

)
,

Q̃2(s) =

(
−R̂0(s)Q2(s)−

∫ b

s

R̂1(θ, s)Q2(θ)dθ −
∫ s

a

R̂2(θ, s)Q2(θ)dθ

)
P̃ ,

R̃1(s, θ) = R̂1(s, θ) +

∫ s

a

R̂1(s, η)Q2(η)Q̃1(θ)dη +

∫ b

s

R̂2(s, η)Q2(η)Q̃1(θ)dη,

R̃2(s, θ) = R̂2(s, θ) +

∫ θ

a

R̂1(s, η)Q2(η)Q̃1(θ)dη +

∫ b

θ

R̂2(s, η)Q2(η)Q̃1(θ)dη.
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