
Data-driven Methods for Modeling

Complex Dynamical Systems

by

Wenlong Shi

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved June 2022 by the
Graduate Supervisory Committee:

Yi Ren, Chair
Yang Jiao

Yezhou Yang
Qijun Hong

ARIZONA STATE UNIVERSITY

August 2022



©2022 Wenlong Shi

All Rights Reserved



ABSTRACT

The increasing availability of data and advances in computation have spurred

the development of data-driven approaches for modeling complex dynamical systems.

These approaches are based on the idea that the underlying structure of a complex

system can be discovered from data using mathematical and computational techniques.

They also show promise for addressing the challenges of modeling high-dimensional,

nonlinear systems with limited data. In this research expository, the state of the art

in data-driven approaches for modeling complex dynamical systems is surveyed in a

systemic way. First the general formulation of data-driven modeling of dynamical

systems is discussed. Then several representative methods in feature engineering

and system identification/prediction are reviewed, including recent advances and key

challenges.

i



DEDICATION

I would like to dedicate this achievement to my family for their unwavering support

and love throughout my graduate education.

ii



ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor Dr. Yi Ren for the opportunity to

work on my research project and for his guidance and support throughout my graduate

program journey. I would also like to sincerely thank my committee members for

helping me develop my research and for providing valuable guidance and encouragement

throughout my studies.

iii



TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 DYNAMICAL SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Smooth Dynamical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 FEATURE ENGINEERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Dynamic Mode Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Multiresolution Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Time-delay Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 SYSTEM IDENTIFICATION AND PREDICTION . . . . . . . . . . . . . . . . . . . 23

4.1 Sparse (Parsimonious) Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Koopman Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Neural ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



LIST OF FIGURES

Figure Page

1. Different Types of Attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Bifurcation Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Comparison between Fourier Transform and Wavelet Transform . . . . . . . . . . . . 17

4. Example of a High-Dimensional Dynamical System from Fluid Dynamics:

The Vortex Shedding past a Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5. Difference between ResNet with a Fixed Number of Layers and ODENet

with a Variable Number of Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6. Adjoint Sensitivity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



Chapter 1

INTRODUCTION

The potential for machine learning to impact scientific discovery is tremendous. In

particular, data-driven methods can help us uncover novel patterns and relationships

in complex systems that would be difficult to find through other methods. Addi-

tionally, data-driven methods can help us improve our understanding of complex

systems by allowing us to analyze data on a larger scale than ever. Data-driven

discovery has already had a significant impact in a number of fields, including physics,

biology, neuroscience and engineering. The development of empirical models and

first-principles derivations has been enormously successful in many areas of science

and engineering. However, there have been many important problems that are not

amenable to these approaches. The majority of dynamical systems are typically

nonlinear, high-dimensional, multi-scale in space and time, posting great challenges for

estimation and prediction of the systems. From weather prediction to understanding

the spread of diseases, researchers are increasingly turning to data-driven approaches

for a diverse range of complex systems. Data-driven approaches are not a silver bullet,

but they offer a powerful tool for understanding and predicting complex systems.

With unprecedented abundance of data and computational resources, these prob-

lems and challenges can be tackled by applying modern mathematical methods. Some

of the emerging techniques include discovering parsimonious and interpretable nonlin-

ear dynamical systems solely from data, representing nonlinear dynamical systems

as infinite-dimensional linear systems, projecting high-dimensional systems to low-

dimensional spaces, reduced order models to accelerate the modeling of complex

1



multiscale dynamical systems, time delay embedding of states to explore chaotic

systems, state space recovery from partial and noisy measurements.

Modeling dynamical systems through data-driven approaches typically comprise

two major steps: feature engineering as well as system identification and prediction.

Feature engineering is the process of manipulating data to create features that

make machine learning algorithms work. This involves transforming raw data into

a form that is more suitable for modeling, selecting the most relevant features, and

creating new features that are more predictive of the system.

System identification is the process of inferring a system’s underlying dynamics

from observed input-output data. This process can be viewed as a form of inverse

problem solving, where the challenge is to find a model that accurately captures the

system’s dynamics from limited data. Prediction is the process of using the identified

model to generate forecasts of future behavior. This is typically done by simulating the

model with different inputs and then using the model outputs to generate predictions.

The remainder of this thesis is organized as follows:

• In Chapter 2, a brief background of dynamical systems is provided and some

important concepts related to the data-driven methods are explained.

• In Chapter 3 and 4, a number of representative techniques that are at the

forefront of developments for modeling complex systems through data-driven

methods are reviewed. The methods highlighted are illustrative of techniques

and philosophies, and is not an exhaustive list.

• Finally in Chapter 5, we conclude, summarizing the relevance of the presented

work and show possible directions for future research.

2



Chapter 2

DYNAMICAL SYSTEMS

In general, a dynamical system describes the time-dependent evolution of states.

A state is usually given by a vector which can be viewed as a point in a phase space

(a geometrical manifold). The evolution rule of the dynamical system governs how

future states propagate from the current state. According to different properties of

the phase space, the field of dynamical systems comprises several major disciplines:

smooth dynamics, complex dynamics, topological dynamics and ergodic theory [28].

Their definitions are summarized below:

This work focuses on smooth dynamical systems. In this chapter, representation

of smooth dynamical systems is discussed. Some important concepts that are useful

in the context of data-driven modeling are explained.

2.1 Smooth Dynamical System

The phase space of smooth dynamical systems is typically a subset of Rn or a

manifold. In continuous time, the systems may be modeled by ordinary differential

equations (ODEs), partial differential equations (PDEs), or other types of equations

branch of dynamics space X transformation f : X → X

Topological dynamics metric space continuous map
Ergodic theory measure space measure-preserving map

Complex dynamics subset of Cn holomorphic map
Smooth dynamics subset of Rn smooth map

3



(e.g., delay differential or integro-differential equations). A simple model of a smooth

dynamical system can be represented as a system of coupled ODEs [28].

d

dt
x(t) = f(x(t), t,u;β) + d (2.1)

x is a vector that represents the state of the system. f is a set of functions that

describe the dynamics of the states x. f can often be considered as a vector field

that associates with the states x and their time derivative. The system changes in

time t. u is the actuation (control) variables.β includes all the other parameters that

may have explicit dependence on the dynamics. Small changes in β may lead to huge

changes in the dynamics. d are the disturbances to the system.

For spatial dependencies, a more general representation in Eq. (2.2) as a system of

PDEs may be considered [28]:

∂tx = N(∇,x;β) (2.2)

where ∂tx is the partial derivative with respect to time, N a nonlinear operator and

∇ the spatial gradient.

The full state x may not always be accessible (e.g. due to the high dimensions of

the state space and noises). Thus the measurements y are used, where n is noise [6].

y = g(x, t) + n (2.3)

2.2 Attractors

An attractor is a set of points in the phase space of a dynamical system towards

which trajectories converge. Any trajectory that starts in the attractor must stay in it

and any trajectory that starts near the attractor tends to approach it as time t goes

4



to infinity. The dissipative nature of dynamical systems is essential to the existence

of the attractor. Dissipation may come from internal friction, thermodynamic losses,

or loss of material to balance external driving force, leading to the decay of initial

transients of the dynamical system and the convergence to a subset of the phase space.

The formal definition of an attractor is as follows [28]:

A limit set A in the phase space of a dynamical system is called an attractor, if:

• The set A is forward invariant, i.e., for each point x in A, the trajectory of the

dynamical system starting from x is contained in A.

• A is asymptotically stable, i.e., for each point x in a neighborhood of A, the

trajectory of the dynamical system passing through x tends to be in A as time

goes to infinity. This neighborhood of A is also called the basin of attraction.

• A is minimal, i.e., there is no proper (non-empty) subset of A that satisfies the

first two properties.

In other words, an attractor is a specific set where all nearby trajectories are drawn

into. There are three types of simple geometric attractors, namely fixed point, limit

cycle and limit torus. A particular attractor that is often observed in chaotic systems

is called a strange attractor and it has a fractal structure with non-integer dimension.

Figure 1 shows some example attractors.

5



Figure 1. Different types of attractors

2.3 Bifurcation

The name bifurcation was first introduced by Henri Poincaré in 1885 in the paper

[35] showing such a behavior. Bifurcation addresses the dependence of changes in the

qualitative or topological structure of a dynamical system on the parameters of the

system. A system is structurally stable if the qualitative behavior of the system does

not change drastically as the system parameters are varied. Consider a dynamical

system with the form of Eq. (2.1). A bifurcation occurs in the system when a small

smooth change made to the bifurcation parameter β causes a sudden change in the

qualitative behavior [4]. The value of the parameter at this point of change is known as

the bifurcation value or a critical value of the bifurcation parameter β. Figure 2 shows

a bifurcation diagram with highlighted critical values of the bifurcation parameter.

6



Figure 2. Bifurcation diagram

2.4 Chaos

Chaos is the aperiodic long-term behavior of a deterministic dynamical system that

appears random. Chaotic systems exhibit sensitive dependence on initial conditions,

meaning that small changes in the initial conditions can lead to large changes in the

outcome of the model. A famous example is the butterfly effect where two trajectories

starting in the infinitesimal neighbourhood can reach completely different states after

some time [25]. Dynamical systems are fundamentally chaotic in a lot of situations.

7



In chaotic systems, the outcome of the systems has very sensitive dependence on small

changes of initial conditions, parameters and the dynamics at the moment. Thus

the measurement errors of the systems would make long term prediction extremely

hard. Chaotic behavior of a system can be revealed by computation of the Lyapunov

exponents. If at least one of the exponents from the Lyapunov spectrum is positive

then the system is chaotic in nature.

The Lyapunov exponent is named after the Russian mathematician Aleksandr

Lyapunov. It is a quantity that characterizes the rate of separation of initially close

trajectories in a dynamical system. Intuitively, it quantifies the rate at which nearby

trajectories diverge from each other. The Lyapunov exponent is a useful tool in

predicting the long-term behavior of a dynamical system. If the Lyapunov exponent

is positive, then the system is said to be chaotic, meaning that nearby trajectories

will eventually diverge from each other exponentially. On the other hand, if the

Lyapunov exponent is negative, then the system is said to be stable, meaning that

nearby trajectories will eventually converge to each other. If the Lyapunov exponent

is zero, then the system is said to be neutral, meaning that nearby trajectories will

neither diverge nor converge. Thus the Lyapunov exponent can also be used to

quantitatively characterize the degree of chaos in a dynamical system. A system is

said to be chaotic if it has at least one positive Lyapunov exponent. The more positive

Lyapunov exponents a system has, the more chaotic it is.

The Lyapunov exponent is usually computed as the average of the logarithmic rates

of separation of nearby trajectories, over some long period of time. More precisely, let

x(t) be a trajectory at time t in a dynamical system, and let x(t) + δ(t) be a nearby

trajectory at the same time, where δ(t) is the separation of the two trajectories at

8



time t. The Lyapunov exponent is then defined as [34]:

λ = lim
τ→∞

lim
δ(t)→0

1

t
ln
|δ(t+ τ)|
|δ(t)|

The Lyapunov exponent can be calculated for each dimension of the state space by

using individual elements of x(t) instead of the whole state vector. If the state space

is n-dimensional, then all n Lyapunov exponents constitute the Lyapunov spectrum.

9



Chapter 3

FEATURE ENGINEERING

Feature engineering is a key step in any machine learning task [3]. It is the

process of transforming the input data matrix so that it can be better used by a

machine learning algorithm. This can be done by adding or removing features, or by

changing the way the features are represented. Feature engineering usually precedes

the system identification step and is achieved through the optimization of feature

hyperparameters. In this chapter, some critical techniques that serve as the foundation

of feature engineering for modeling dynamical systems are reviewed.

3.1 Dynamic Mode Decomposition

Dynamic mode decomposition (DMD) is a dimensionality reduction algorithm

developed by Schmid et al. [41]. The basic idea behind the method is to combine spatial

dimensionality-reduction techniques (such as the proper orthogonal decomposition

(POD)) with Fourier transforms in time to compute a set of correlated spatial modes

from a time series of data, where each mode is associated with a fixed oscillation

frequency and decay/growth rate. This results in a more efficient and accurate way

to represent data from dynamical systems. DMD is different from dimensionality

reduction methods like principal component analysis (PCA) because it produces spatial

modes that have specific temporal behaviors, rather than just being orthogonal.

Consider a dynamical systems with a simplified form of Eq. (2.1)

d

dt
x(t) = f(x(t), t;β)

10



where x(t) ∈ Rn is a vector representing the state of the dynamical system at time

t, β includes all the other parameters. The state x is typically high-dimensional,

with n ≫ 1. The state can also be expressed in the form of discretization of a

partial differential equation at a series of discrete spatial locations. A continuous-time

dynamics can be represented as a discrete-time dynamics if the system is sampled

every ∆t in time. The discrete time is denoted as a subscript so that xk = x(k∆t).

The corresponding discrete-time flow map is xk+1 = F(xk). Measurements of the

system are collected at times tk from k = 1, 2, ...,m for a total of m measurement

times and are represented as yk = g(xk). In many applications, yk = xk because the

measurements are directly taken as the states.

The DMD approximates the original dynamical system as a locally linear dynamical

system:
dx

dt
= Ax (3.1)

With initial condition x(0), the solution of the linear dynamical system has the

analytical form [22]:

x(t) =
n∑
i=1

ϕiexp(ωit)bi = Φexp(Ωt)b (3.2)

where ϕi and ωi are the eigenvectors and eigenvalues of the matrix A, and the

coefficients bi are the coordinates of x(0) in the eigenvector basis.

The corresponding analogous discrete-time system sampled every ∆t in time is:

xk+1 = Axk (3.3)

where A = exp(A∆t)

Similarly, the solution to this system can be expressed in terms of the eigenvalues

λj and eigenvectors ϕj of the discrete-time map A:

xk =
r∑
j=1

ϕjλ
k
j bj = ΦΛkb (3.4)

11



The DMD algorithm finds a low-rank eigendecomposition (3.4) of the matrix A

through a least-square fitting so that ∥xk+1 −Axk∥2 is minimized across all points

for k = 1, 2, ...,m− 1. In order to minimize the least square error, the m snapshots

are arranged into two large matrices:

X =

[
|
x1
|

|
x2
|

· · ·
|

xm−1
|

]

X′ =

[
|
x2
|

|
x3
|

· · ·
|

xm
|

]
The locally linear approximation can be written in terms of these matrices as

X′ ≈ AX. The best-fit A matrix is given by A = X′X†, where † is the Moore–Penrose

pseudoinverse. In many applications, the state dimension n is large. It is inefficient to

represent or decompose the matrix A directly. Instead of eigendecomposition of A, a

rank-reduced matrix Ã is calculated. The DMD algorithm proceeds as follows [48]:

1. First, take the singular value decomposition (SVD) of X [46]:

X ≈ UΣV∗ (3.5)

where ∗ denotes the conjugate transpose, U ∈ Cn×r, Σ ∈ Cr×r and V ∈ Cm×r.

r is the rank of the reduced SVD approximation to X. The left singular vectors

U are POD modes. U∗U = V∗V = I

2. The matrix A from Eq. (3.3) can be obtained by using the pseudoinverse of X:

A = X′VΣ−1U∗ (3.6)

The rank-reduced matrix Ã is computed as the r×r projection of the full matrix

A onto POD modes:

Ã = U∗AU = U∗X′VΣ−1 (3.7)

12



3. Compute the eigendecomposition of Ã:

ÃW = WΛ (3.8)

where columns of W are eigenvectors and Λ is a diagonal matrix that contains

the corresponding eigenvalues λk.

4. Lastly the eigendecomposition of A can be reconstructed from W and Λ. The

eigenvalues of A are the diagonal entries of Λ and the eigenvectors of A (DMD

modes) are the columns of Φ:

Φ = X′VΣ−1W (3.9)

The modes defined above are actually called exact DMD modes, and are not

precisely identical to the DMD modes given by the original algorithm [41]. The

original algorithm produces projected DMD modes Φ = UW, which are the projection

of these onto the range of X. To find a dynamic mode of A associated with a zero

eigenvalue, the exact DMD formulation may be used. Otherwise, the projected DMD

formulation should be used.

The projected future solution can be constructed using the low-rank approximations

of the eigenvalues and the eigenvectors [30]:

x(t) =
r∑

k=1

ϕkexp(ωkt)bk = Φexp(Ωt)b (3.10)

where ωk = ln(λk)/∆t, Ω = diag(ω) is a diagonal matrix whose entries are ωk,

b = Φ†x1 is a vector containing the initial amplitude of each mode.

A fundamental weakness of DMD is that it relies on the assumption that the data

can be approximated by a linear dynamic system. This assumption simplifies the

mathematical analysis but limits the applicability of DMD to nonlinear systems. In

[49], DMD measurements were extended to include nonlinear measurements of the

13



system, resulting the extended DMD (eDMD) algorithm that seeks to obtain a linear

operator Aext acting on nonlinear measurements y = g(x):

yk+1 ≈ Aextyk

For high-dimensional systems, the inclusion of nonlinear measurements makes the

state space of y intractably large, motivating the kernel methods for approximating

the operator Aext [50].

3.2 Multiresolution Analyses

When learning a dynamical system, a range of scales need to be considered (e.g.

chemical reaction can be approached at molecular levels and also as a reaction-

diffusion system). Most dynamical systems are multiscale in both space and time

(e.g. brains have various regions that are composed of individual neuron which is

spatially multiscale. The activity of those neurons is also temporally multiscale when

the brain recalls past experience to deal with things at present). One of the most

significant challenges is to find ways to effectively and efficiently connect microscale and

macroscale effects, which can often be separated by orders of magnitude in space and

time. Wavelet-based methods and windowed Fourier transforms are both well-suited

for performing multiresolution analyses (MRAs). They both systematically extract

temporal and spatial features by recursively refining the sampling of data [19, 20, 31].

Two key principles for MRAs are translation and scaling of a short-time window to

capture finer time resolution. Wavelet theory is based on the idea that a signal can

be divided into different time scales, and that each scale can be analyzed separately

at each instant of time. The term wavelet means small wave, and it comes from the

process of extracting smaller and smaller pieces of waves from a larger signal.

14



The core component of wavelet analysis is a function known as the mother wavelet

[19]:

ψa,b(t) =
1√
a
ψ(
t− b

a
) (3.11)

where a ̸= 0 and b are real constants and denotes scaling and translation respectively.

The wavelet is essentially another expansion basis for representing a given signal or

function.

The wavelet basis can be obtained through an integral transform of the form [20]:

(Tf)(ω) =

∫
t

K(t, ω)f(t)dt (3.12)

where K(t, ω) is the kernel of the transform. For Fourier transform, the kernel contains

the oscillations given by K(t, ω) = exp(−iωt). To incorporate the mother wavelet as

a kernel, the continuous wavelet transform (CWT) is defined as:

Wψ[f ](a, b) = (f, ψa,b) =

∫ ∞

−∞
f(t)ψ̄a,b(t)dt (3.13)

where ψ̄a,b(t) denotes the complex conjugate of ψa,b(t).

A wavelet exists if the following admissibility condition [37] holds:

Cψ =

∫ ∞

−∞

|ψ̂(ω)2|
|ω|

dω <∞ (3.14)

where the Fourier transform of the wavelet is defined as

ψ̂a,b =
1√
|a|

∫ ∞

−∞
e−iωtψ

(
t− b

a

)
dt =

1√
|a|
e−ibωψ̂(aω) (3.15)

The term signal is analogues to the term state in the dynamical systems context

when wavelet transform is used in the feature engineering of dynamical systems. The

wavelet transform can be broken down into two steps:

1. The signal is decomposed into a collection of smaller signals by translating the

wavelet with the parameter b over the entire time domain.

15



2. The original signal is processed at different frequency bands/resolutions of the

smaller wavelets collected in the previous step, by scaling the wavelet with the

parameter a.

Dynamical systems are often studied using time series data, which can be repre-

sented as a signal in the time domain. Wavelet analysis is a powerful tool for analyzing

such signals, as it allows for the representation of a signal at different resolutions. The

application of wavelet multiresolution analysis to spatio-temporal data sets has led to

new insights into many complex dynamical systems. For example, this approach has

been used to study molecular dynamics [26, 38], turbulence in fluids and plasma [23,

24], as well as brain activities [39].

An example to understand wavelet transform is demonstrated in figure 3. Consider

two signals each consist of three sinusoidal functions. The frequency of the individual

sinusoidal function is the same between the two signals. However in one signal,

a sinusoidal function is shifted along the time axis. The Fourier transform of the

two signals are identical because the underlying frequencies are the same. Wavelet

transform can distinguish these two signals by extracting the temporal features in the

frequency domain, which allows the underlying signal frequencies to be revealed at

different times.

16



Figure 3. Comparison between Fourier transform and wavelet transform

Source: Prior et al. [38]

3.3 Compressed Sensing

Compressed sensing is a technique to reconstruct a signal from very few measure-

ments, by taking advantage of the sparsity of the signal in some basis [21, 12, 13, 15].

The acquisition of compressible signals using compressed sensing techniques begins

with acquiring a small number of measurements that are randomly selected and are

typically non-uniformly distributed. The measurements are then used to reconstruct

the signal using an optimization algorithm. The reconstruction algorithm typically

17



employs a sparsity-promoting regularization term that encourages the reconstructed

signal to be sparse in some domain.

When compressed sensing is used in the feature engineering of dynamical systems,

the term signal is equivalent to the term state in the dynamical systems context. A

signal x ∈ Rn is K-sparse in a basis Ψ ∈ Rn×n if

x = Ψs (3.16)

and s has exactly K nonzero elements. Sparse means that K ≪ n [21].

Most natural signals can be represented using far fewer coefficients than their

dimensions by taking advantage of the fact that the signal is sparse in some basis.

For example, images and audio signals can be effectively compressed in Fourier or

wavelet bases, so that after conducting the Fourier or wavelet transform, most of

the resulting coefficients will be small enough that they can be approximated to

zero without adversely affecting the quality of the data too much. Many complex,

high-dimensional dynamical systems also exhibit low-rank structure, as the dynamics

evolve on a low-dimensional attractor [7]. Figure 4 shows an example of a such system.

If x is K-sparse in Ψ, then a subsample of measurements can be collected to solve

for the nonzero coefficients in s [9]. Consider a limited set of measurements y ∈ Rp

where K < p≪ n:

y = Cx (3.17)

The matrix C ∈ Rp×n represents a set of p linear measurements of the state x.

The rows of C may be Gaussian-distributed random variables if these measurements

are random projections of the state. If the sparse vector s can be obtained, then the

full state x can be reconstructed using Eq. (3.16). The goal is to solve the following

system of equations for s, given knowledge of the sparse basis Ψ, measurement matrix

18



Figure 4. Example of a high-dimensional dynamical system from fluid dynamics: The
vortex shedding past a cylinder

Source: Brunton, Proctor, and Kutz [7]

C and measurements y:

y = CΨs (3.18)

The dimension of y is far fewer than that of s, so this system of equations is

underdetermined, and there are infinitely many solutions. To find the sparest solution

ŝ, the following optimization problem needs to be solved [9]

ŝ = argmin
s

∥s∥0 , such thaty = CΨs (3.19)

19



where ∥s∥0 is the number of nonzero entries in s. However, the optimization prob-

lem (3.19) is nonconvex and the computational complexity of the search is combinato-

rial in n and K, making it a nonpolynomial (NP) problem. Thus the formulation (3.19)

does not scale in high-dimensional systems.

The recent development of compressed sensing allows the convex ℓ1-optimization

to be used under certain conditions [13, 21]

ŝ = argmin
s

∥s∥1 , such thaty = CΨs (3.20)

The ℓ1-norm is defined by ∥s∥1 =
∑n

i=1 |si|. The minimization in formulation (3.20)

can lead to the sparse solution of problem (3.19) with high probability if the following

conditions hold:

1. The measurement matrix C must be incoherent relative to the basis Ψ, so that

the rows of C are uncorrelated with the columns of Ψ.

2. Number of measurements must satisfy O(Klog(n/K)) [16, 12, 2].

These conditions guarantee that the matrix product CΨ satisfies a restricted

isometry property (RIP) [14] for K-sparse vectors s:

(1− δK) ∥s∥22 ≤ ∥CΨs∥22 ≤ (1 + δK) ∥s∥22 (3.21)

where δK is the restricted isometry constant.

One of the advantages of compressed sensing is that some generic matrices such

as Bernoulli and Gaussian random measurement matrices can be used as sampling

matrices C because they are sufficiently incoherent with respect to nearly all transform

bases [15]. Another advantage is that a customized transform basis in which the

data is sufficiently sparse for compressed sensing can be obtained by the SVD [1,

5]. Alternative optimization that are variants of form (3.20) is created to process

20



measurements y that contain additive noise [47]. Compressed sensing has also been

combined with DMD to analyse heavily subsampled or compressed data. It was

proven that the DMD eigenvalues of the compressed system are the same to the DMD

eigenvalues from the full-state data [9].

3.4 Time-delay Coordinates

Time-delay coordinates is a technique often used in dynamical systems to recon-

struct the state space of the system from incomplete or limited measurements. It is

has been widely used to analyze and characterize chaotic systems [43, 51, 42]. Delay

coordinates is based on Takens embedding theorem [44], which shows it is possible to

reconstruct an attractor that is diffeomorphic to the original chaotic attractor from a

time series of a single measurement.

Delay coordinates are created by stacking the state x at the current time along

with copies of x at past or future s times:

xdelay =



x1

x2

...

xs


This vector is usually incorporated in the snapshot matrices of the DMD method

21



and Hankel alternative view of Koopman (HAVOK) analysis [8]:

Xdelay =



x1 x2 · · · xm−s

x2 x3 · · · xm−s+1

...
... . . . ...

xs xs+1 · · · xm−1



X′
delay =



x2 x3 · · · xm−s+1

x3 x4 · · · xm−s+2

...
... . . . ...

xs+1 xs+2 · · · xm



22



Chapter 4

SYSTEM IDENTIFICATION AND PREDICTION

System identification and prediction is the core step in modeling complex dynamical

systems through data-driven methods. A number of methods have been proposed

that aim to improve prediction performance while maintaining the interpretability of

the dynamical systems.

4.1 Sparse (Parsimonious) Methods

One of the biggest challenges in modeling complex dynamical systems is that

the dynamics are usually unknown. For many dynamical systems, the underlying

governing physics and master equations have yet to be discovered (e.g. brain activity

and disease network evolution). Even in systems with known governing equations, it

might be too complicated to use (e.g. Navier–Stokes equations for fluid dynamics), in

which case it is more efficient to learn a reduced order model of the system. Symbolic

regression is a powerful method to discover the unknown governing equations from

complex dynamical systems. In the most general sense, symbolic regression can be

understood as a form of regression analysis that makes use of mathematical symbols

instead of numerical values in order to establish relationships between variables. It

is a way of modeling data that is more flexible than traditional regression analysis.

Most importantly, domain experts can continue to rely on their intuition, e. g. when

associating terms in an expression with patterns in phase-space.

The lack of knowledge about the dynamics leads to combinatorially large search

23



space for candidate models. Researchers designed (SINDy) method [7] to extract

the underlying differential equations describing the system purely from measurement

data. The only assumption about the system is that the dynamics is governed by

only a few important terms, so that the governing equations are sparse in the space of

candidate functions. This assumption holds for many systems if they are represented

by appropriate measurement coordinates and function basis, which is a challenging

task.

Consider a dynamical system of a simplified form of Eq. (2.1)

d

dt
x(t) = f(x(t)) (4.1)

The general procedures of this method include three steps: measure, represent and

regression.

A time history of the state is collected through m time-steps. The data are then

arranged into the following matrix:

state

X =



xT (t1)

xT (t2)

...

xT (tm)


=

−−−−−−−−−−−−−−−−−−−−−−−→

x1(t1) x2(t1) · · · xn(t1)

x1(t2) x2(t2) · · · xn(t2)

...
... . . . ...

x1(tm) x2(tm) · · · xn(tm)


↓ time

24



The time derivative of the states is arranged into the following matrix:

state

Ẋ =



ẋT (t1)

ẋT (t2)

...

ẋT (tm)


=

−−−−−−−−−−−−−−−−−−−−−−−→

ẋ1(t1) ẋ2(t1) · · · ẋn(t1)

ẋ1(t2) ẋ2(t2) · · · ẋn(t2)

...
... . . . ...

ẋ1(tm) ẋ2(tm) · · · ẋn(tm)


↓ time

If the time derivatives ẋ(t) are not readily available, they can be numerically

approximated from the state x(t).

A library Θ(X) consisting of candidate functions of the states is constructed.

Θ(X) =

[
|

θ1(X)
|

|
θ2(X)

|

|
θ3(X)

|
· · ·

]
(4.2)

θk can be constant, polynomial, or trigonometric functions. The system is assumed

to have parsimonious models, which means only a few of the candidate functions

are active in each row of f . To represent the sparsity, a matrix Ξ = [ξ1 ξ2 · · · ξn]

consisting of the sparse vectors of coefficients is created to determine which candidate

functions are active. A sparse vector ξk means that the majority of the components

of ξk are zero. The relationship between the matrix of the time derivatives and the

matrix of the states can be expressed as:

Ẋ = Θ(X)Ξ (4.3)

Based on this expression, the unknown dynamics model of each row of the governing

equations (4.1) is:

ẋk = fk(x) = Θ(xT )ξk (4.4)

Thus the goal is to determine Ξ.

25



In reality, the system is contaminated with noise. To consider noise, Eq. (4.3) is

changed to:

Ẋ = Θ(X)Ξ+ ηZ (4.5)

where Z is tuned as a matrix of independent identically distributed Gaussian entries

with zero mean, and η is the magnitude of noise.

To find Ξ, a separate optimization is required for each Eq. (4.4), and there are n

such equations, where n is the dimension of the state space. It is possible to add an

L1 regularization term to the regression, resulting in the LASSO [45]:

ξ = argmin
ξ′

∥Θξ′ − f∥2 + λ ∥ξ′∥1 (4.6)

The parameter λ is the weight of the sparsity constraint. This formulation is very

similar to the compressed sensing framework, which reconstructs sparse vectors from

relatively few limited random measurements.

The LASSO method works well on data with low-dimensional state, but it becomes

computationally expensive for data with high-dimensional state. Alternatively sequen-

tial thresholded least-squares algorithm is implemented to achieve rapid convergence

to a sparse solution.

The SINDy method is able to identify ordinary differential equations (ODEs) from

data but is not able to handle spatiotemporal data or high-dimensional measurements.

A similar sparse regression method named PDE functional identification of nonlinear

dynamics (PDE-FIND) was proposed to discover the governing partial differential

equation(s) of a given system by time series measurements in the spatial domain

[40]. The main difference between SINDY and PDE-FIND is the form of governing

equations utilized in the models. The former uses Eq. (4.1) whereas the latter uses

Eq. (2.2).

26



In DMD, a least-square regression is used to extract a locally linear model (3.1),

which is similar to the first term in the LASSO (4.6) of the SINDy method. Therefore

DMD can be viewed as a simplified version of SINDy with linear candidate functions

in Θ(X), and without the L1 regularization term [27].

4.2 Koopman Spectral Analysis

For most dynamical systems, the dynamics f are nonlinear. There are special

classes of nonlinear systems, but there is no generic theory about closed form solution

for nonlinear dynamical systems.

In 1931, B.O. Koopman introduced an infinite-dimensional linear operator that

temporally propagates all possible observable functions of the state space of a finite-

dimensional nonlinear differential equation [29]. There has been a lot of interest

around using Koopman operator to study nonlinear dynamical systems. The biggest

advantage of the Koopman operator is its linearity. Many well-established techniques

for linear systems can be used. However the trade-off is that the operator is infinite

dimensional. Consider a continuous-time dynamical systems with a simplified form of

Eq. (2.1)
d

dt
x = f(x) (4.7)

where x ∈ X ⊆ Rn

The flow at a given time t Ft : X → X , evolves the state x(t0) forward time t into

x(t0 + t) as:

Ft = x(t0 + t) = x(t0) +

∫ t0+t

t0

f(x(τ))dτ (4.8)

Similarly for a discrete-time dynamical system, Ft is the map:

xk+1 = Ft(xk) (4.9)

27



where xk = x(kt).

For a dynamical system measured using Eqs. (2.2), omitting noise for simplicity,

all possible measurements y = g(x) of the state form an infinite-dimensional Hilbert

space G(X ).

The Koopman operator K is an infinite-dimensional linear operator that acts on

observable functions g as [11]:

Kg = g ◦ Ft ⇒ Kg(xk) = g(Ft(xk)) = g(xk+1) (4.10)

Thus the original non-linear dynamical system can be represented as an infinite-

dimensional linear dynamical system that advances the observation of the state g(xk)

to the next time step.

However, in practice it is impossible to use the Koopman operator K due to its

infinite-dimensionality. Finite-dimensional approximation of the Koopman operator

can help address this issue [10].

Consider an observable function g(x) in the infinite-dimensional Hilbert space

G(X ):

g =
∞∑
k=1

αkyk

where yk are basis observable functions.

A Koopman-invariant subspace is given by span{ys1 , ys2 , · · · , ysm} if all functions

g in this subspace,

g = α1ys1 + α2ys2 + · · ·+ αmysp

remain in this subspace after being acted on by the Koopman operator K:

Kg = β1ys1 + β2ys2 + · · ·+ βmysp

It is possible to restrict the infinite-dimensional Koopman operator to this invariant

subspace of g, producing a finite-dimensional p× p matrix K.

28



For systems with more than one attractor, periodic orbit, and/or fixed point, it is

impossible to obtain such an invariant subspace that contains linear measurements of

the full state x, because a finite-dimensional linear system does not have multiple fixed

points or attractors. However, the perspective of a data-driven linear approximation

to a dynamical system is still valuable. Linear models can be obtained in entire basins

of attraction of fixed points or periodic orbits using Koopman theory with the proper

choice of measurement functions [32, 49].

The connection between DMD and Koopman analysis is that DMD can be used

to approximate the Koopman operator by taking snapshots of the system state at

different times and then performing rank-reduced least squares regression on these

snapshots. While this approximation will not be exact, it can still provide valuable

insights into the behavior of complex systems. In particular, DMD can be used to

compute the Koopman eigenfunctions and eigenvalues, which provide information

about the underlying dynamics of a dynamical system. Additionally, although DMD

is a linear method, it can be applied to nonlinear systems by first lifting them into an

appropriate high-dimensional space where they become linear. This makes DMD a

powerful tool for analyzing complex dynamical systems.

4.3 Autoencoder

An autoencoder is a type of neural network. It is used to learn significant data

features in an unsupervised manner. The aim of an autoencoder is to transform the

input data into a representation that is more efficient for modeling. An autoencoder

has two main parts: an encoder and a decoder. The encoder is used to compress the

input data into a lower dimensional representation. The decoder is used to reconstruct

29



the original input data from the lower dimensional representation. The autoencoder

is trained so that the reconstructed data is as close as possible to the original data.

This forces the autoencoder to learn a representation that is efficient and captures the

important features of the data.

The encoder and the decoder can be defined as transitions ϕ and ψ

ϕ : X → F

ψ : F → X

ϕ, ψ = argmin
ϕ,ψ

∥X − (ψ ◦ ϕ)X∥2

Consider a simple autoencoder with only one hidden layer. The encoding maps

the input x ∈ X ⊆ Rn to h ∈ F ⊆ Rm through the following relation:

h = σ(Wx+ b)

h is usually known as latent variables or latent representation. σ is an element-wise

activation function such as a logistic function or a rectified linear unit. W is a weight

matrix and b is a bias vector and they are often initialized randomly. W and b are

updated during iterative training through backpropagation to minimise the following

reconstruction errors or loss.

L(x,x′) = ∥x− x′∥2 = ∥x− σ′(W′(σ(Wx+ b)) + b′)∥2

σ′,W′ and b′ are the corresponding parameters for the decoder. x′ is the recon-

structed state through the autoencoder from the original state x.

In [33], a deep autoencoder is combined with Koopman operator theory to identify

nonlinear coordinates on which the dynamics are globally linear. Specifically the

encoder of the network is set as the eigenfunctions φ of the finite-dimensional Koopman

matrix K, and the decoder is set as the inverse of the eigenfunctions φ−1. The Koopman

embeddings are integrated in the mean-squared error loss functions:

30



• ∥x− φ−1(φ(x))∥ for reconstruction accuracy of the eigenfunctions and inverse

eigenfunctions of K

• ∥φ(xk+m)−Kmφ(xk)∥ for accuracy of the matrix K over m future time steps

• ∥xk+m − φ−1(Kmφ(xk))∥ for accuracy of the future state prediction with m

time steps

This work is designed to make the network more interpretable by making it adhere

to Koopman theory. However, the issue of generalizability still requires a sufficient

amount and variety of training data.

In another work [17], a method is proposed for the simultaneous discovery of

sparse dynamical models and coordinates by combining a SINDy model and a deep

autoencoder with and aim to leverage the parsimony and interpretability of SINDy

with the universal approximation capabilities of deep neural networks. The method

performs a joint optimization that discovers intrinsic coordinates that associate with

a parsimonious dynamical model. z is the coordinates learned by the encoder. The

time derivatives of z are calculated using the derivatives of original states x and the

gradient of the encoder φ. The mean-squared error loss functions are designed for

original states reconstruction, time derivatives of the learned intrinsic coordinates,

time derivatives of the original states:

• ∥x− ψ(φ(x))∥

•
∥∥∇xφ(x)ẋ−Θ(φ(x)T )Ξ

∥∥
•
∥∥ẋ−∇zψ(φ(x)))

(
Θ(φ(x)T )Ξ

)∥∥
where ∇x and ∇z are the gradients operated on the encoder and decoder in the

original and learned coordinates.

31



4.4 Neural ODE

Typical neural networks consist of fixed number of hidden layers that transform

data discretely. Neural Ordinary Differential Equations (Neural ODE) is a new family

of deep neural network models where the dynamics of the hidden units is continuously

transformed by black-box ODE solvers instead of discrete sequence of transformations

[18]. Therefore the depth of the Neural ODE can be regulated, resulting more or less

accurate models. Figure 5 shows the difference between the structure of a typical

residual network and the Neural ODE.

Figure 5. Difference between ResNet with a fixed number of layers and ODENet with
a variable number of layer

Source: Chen et al. [18]

32



Because the ODE solver in the network is treated as a black box, the gradients

are computed using the adjoint sensitivity method [36], which solves a separated

augmented ODE backwards in time. The augmented ODE contains the original state

and the sensitivity of the loss corresponding to the state (adjoint state). The adjoint

state is updated in the direction of the partial derivatives of the loss over the state.

See figure 6 for the demonstration of this method for calculating gradients.

Figure 6. Adjoint sensitivity method

Source: Chen et al. [18]

The framework reviewed above enables a generative approach to modeling dynam-

ical systems. In particular, by representing each time series by a latent trajectory,

33



irregularly-sampled or missing data is also addressed. Extrapolating the latent trajec-

tory allows future trajectories to be predicted.

34



Chapter 5

CONCLUSION

In this thesis, a number of example state-of-the-art methods that are at the

forefront of developments for modeling complex systems through data-driven methods

are highlighted and reviewed. Each method has its own weakness and strength for

different tasks. With the abundance of data and diversities of computational and

mathematical methods, it is crucial to process the large amount of raw noisy data with

efficient feature engineering methods. It is also imperative to address the challenges

of generalization, extrapolation, and interpretation. One of the underlying weaknesses

of neural network based approaches is that they have difficulty extrapolating from

data, which makes generalizing from data even harder. This is particularly important

for dynamical systems identification and prediction. For many black-box models,

i. e. machines or functions providing an input-output-mapping of data but not

allowing model insight, it is almost impossible to understand how the output is

generated from the models due to their lack of interpretability. However, Data-driven

methods still have great potential to learn general, interpretable dynamical models if

properly constrained or regularized by leveraging rigorous mathematical frameworks

and efficient computational structures. Further research may be conducted to compare

different data-driven methods for modeling complex dynamical systems, and to assess

their relative strengths and weaknesses.

35



REFERENCES

[1] Zhe Bai et al. “Low-dimensional approach for reconstruction of airfoil data via
compressive sensing”. In: AIAA journal 53.4 (2015), pp. 920–933.

[2] Richard G Baraniuk. “Compressive sensing [lecture notes]”. In: IEEE signal
processing magazine 24.4 (2007), pp. 118–121.

[3] C.M. Bishop. Pattern Recognition and Machine Learning: All "just the Facts 101"
Material. Information science and statistics. Springer (India) Private Limited,
2013. url: https://books.google.com/books?id=HL4HrgEACAAJ.

[4] P. Blanchard, R.L. Devaney, and G.R. Hall. Differential Equations. Thomson
Brooks/Cole, 2006. url: https://books.google.gl/books?id=mwxX2pv9UvYC.

[5] Ido Bright, Guang Lin, and J Nathan Kutz. “Compressive sensing based machine
learning strategy for characterizing the flow around a cylinder with limited
pressure measurements”. In: Physics of Fluids 25.12 (2013), p. 127102.

[6] Steven L Brunton and J Nathan Kutz. Data-driven science and engineering:
Machine learning, dynamical systems, and control. Cambridge University Press,
2022.

[7] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. “Discovering governing
equations from data by sparse identification of nonlinear dynamical systems”. In:
Proceedings of the national academy of sciences 113.15 (2016), pp. 3932–3937.

[8] Steven L Brunton et al. “Chaos as an intermittently forced linear system”. In:
Nature communications 8.1 (2017), pp. 1–9.

[9] Steven L Brunton et al. “Compressed sensing and dynamic mode decomposition”.
In: Journal of computational dynamics 2.2 (2015), p. 165.

[10] Steven L Brunton et al. “Koopman invariant subspaces and finite linear repre-
sentations of nonlinear dynamical systems for control”. In: PloS one 11.2 (2016),
e0150171.

[11] Steven L Brunton et al. “Modern Koopman theory for dynamical systems”. In:
arXiv preprint arXiv:2102.12086 (2021).

[12] E.J. Candes, J. Romberg, and T. Tao. “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information”. In: IEEE

36

https://books.google.com/books?id=HL4HrgEACAAJ
https://books.google.gl/books?id=mwxX2pv9UvYC


Transactions on Information Theory 52.2 (2006), pp. 489–509. doi: 10.1109/
TIT.2005.862083.

[13] Emmanuel Candes, Justin Romberg, and Terence Tao. Stable Signal Recovery
from Incomplete and Inaccurate Measurements. 2005. doi: 10.48550/ARXIV.
MATH/0503066. url: https://arxiv.org/abs/math/0503066.

[14] Emmanuel J Candes. “The restricted isometry property and its implications
for compressed sensing”. In: Comptes rendus mathematique 346.9-10 (2008),
pp. 589–592.

[15] Emmanuel J Candes and Terence Tao. “Near-optimal signal recovery from
random projections: Universal encoding strategies?” In: IEEE transactions on
information theory 52.12 (2006), pp. 5406–5425.

[16] Emmanuel J Candès et al. “Compressive sampling”. In: Proceedings of the
international congress of mathematicians. Vol. 3. Citeseer. 2006, pp. 1433–1452.

[17] Kathleen Champion et al. “Data-driven discovery of coordinates and governing
equations”. In: Proceedings of the National Academy of Sciences 116.45 (2019),
pp. 22445–22451.

[18] Ricky TQ Chen et al. “Neural ordinary differential equations”. In: Advances in
neural information processing systems 31 (2018).

[19] I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series
in Applied Mathematics. Society for Industrial and Applied Mathematics, 1992.
url: https://books.google.com/books?id=B3C5aG4OboIC.

[20] Lokenath Debnath and Firdous Ahmad Shah. Wavelet transforms and their
applications. Springer, 2002.

[21] D.L. Donoho. “Compressed sensing”. In: IEEE Transactions on Information
Theory 52.4 (2006), pp. 1289–1306. doi: 10.1109/TIT.2006.871582.

[22] Elementary Differential Equations. Wiley, 2008. url: https://books.google.com.
cy/books?id=rdSLNwAACAAJ.

[23] Marie Farge et al. “Wavelet transforms and their applications to turbulence”. In:
Annual review of fluid mechanics 24.1 (1992), pp. 395–458.

[24] Marie Farge and Kai Schneider. “Wavelet transforms and their applications to
MHD and plasma turbulence: a review”. In: Journal of Plasma Physics 81.6
(2015).

37

https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.48550/ARXIV.MATH/0503066
https://doi.org/10.48550/ARXIV.MATH/0503066
https://arxiv.org/abs/math/0503066
https://books.google.com/books?id=B3C5aG4OboIC
https://doi.org/10.1109/TIT.2006.871582
https://books.google.com.cy/books?id=rdSLNwAACAAJ
https://books.google.com.cy/books?id=rdSLNwAACAAJ


[25] James Gleick. Chaos: Making a new science. Penguin, 2008.

[26] Zahra Heidari et al. “Using wavelet analysis to assist in identification of significant
events in molecular dynamics simulations”. In: Journal of chemical information
and modeling 56.7 (2016), pp. 1282–1291.

[27] Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. “Sparse identification
of nonlinear dynamics for model predictive control in the low-data limit”. In:
Proceedings of the Royal Society A 474.2219 (2018), p. 20180335.

[28] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical
Systems. Encyclopedia of Mathematics and its Applications. Cambridge Univer-
sity Press, 1997. url: https://books.google.com/books?id=9nL7ZX8Djp4C.

[29] B. O. Koopman. “Hamiltonian Systems and Transformation in Hilbert Space”. In:
Proceedings of the National Academy of Sciences 17.5 (1931), pp. 315–318. doi:
10.1073/pnas.17.5.315. eprint: https://www.pnas.org/content/17/5/315.full.pdf.
url: https://www.pnas.org/content/17/5/315.

[30] J Nathan Kutz et al. Dynamic mode decomposition: data-driven modeling of
complex systems. SIAM, 2016.

[31] J.N. Kutz. Data-Driven Modeling & Scientific Computation: Methods for Com-
plex Systems & Big Data. Data-driven Modeling & Scientific Computation:
Methods for Complex Systems & Big Data. OUP Oxford, 2013. url: https:
//books.google.com/books?id=WZMeAAAAQBAJ.

[32] Yueheng Lan and Igor Mezić. “Linearization in the large of nonlinear systems
and Koopman operator spectrum”. In: Physica D: Nonlinear Phenomena 242.1
(2013), pp. 42–53. doi: https://doi.org/10.1016/j.physd.2012.08.017. url:
https://www.sciencedirect.com/science/article/pii/S0167278912002102.

[33] Bethany Lusch, J Nathan Kutz, and Steven L Brunton. “Deep learning for
universal linear embeddings of nonlinear dynamics”. In: Nature communications
9.1 (2018), pp. 1–10.

[34] Aleksandr Mikhailovich Lyapunov. “The general problem of the stability of
motion”. In: International journal of control 55.3 (1992), pp. 531–534.

[35] H. Poincaré. Sur l’equilibre d’une masse fluide animée d’un mouvement de
rotation. Extrait de : Acta mathematica, t. VII. sn, 1855. url: https://books.
google.com/books?id=1w17zgEACAAJ.

38

https://books.google.com/books?id=9nL7ZX8Djp4C
https://doi.org/10.1073/pnas.17.5.315
https://www.pnas.org/content/17/5/315.full.pdf
https://www.pnas.org/content/17/5/315
https://books.google.com/books?id=WZMeAAAAQBAJ
https://books.google.com/books?id=WZMeAAAAQBAJ
https://doi.org/https://doi.org/10.1016/j.physd.2012.08.017
https://www.sciencedirect.com/science/article/pii/S0167278912002102
https://books.google.com/books?id=1w17zgEACAAJ
https://books.google.com/books?id=1w17zgEACAAJ


[36] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC
press, 1987.

[37] A.D. Poularikas, A.F. Poularikas, and P.A. D. The Transforms and Applications
Handbook. Electrical Engineering Handbook. CRC-Press, 1996, pp. 747–827.
url: https://books.google.com/books?id=4ZEeAQAAIAAJ.

[38] Javier Prior et al. “Wavelet analysis of molecular dynamics: efficient extraction
of time-frequency information in ultrafast optical processes”. In: The Journal of
Chemical Physics 139.22 (2013), p. 224103.

[39] Pablo Rojas et al. “Beyond spikes: Multiscale computational analysis of in vivo
long-term recordings in the cockroach circadian clock”. In: Network Neuroscience
3.4 (2019), pp. 944–968.

[40] Samuel H Rudy et al. “Data-driven discovery of partial differential equations”.
In: Science advances 3.4 (2017), e1602614.

[41] Peter J Schmid. “Dynamic mode decomposition of numerical and experimental
data”. In: Journal of fluid mechanics 656 (2010), pp. 5–28.

[42] George Sugihara and Robert M. May. “Nonlinear forecasting as a way of dis-
tinguishing chaos from measurement error in time series”. In: Nature 344.6268
(1990), pp. 734–741. doi: 10.1038/344734a0.

[43] George Sugihara et al. “Detecting Causality in Complex Ecosystems”. In: Science
338.6106 (2012), pp. 496–500. doi: 10.1126/science.1227079. eprint: https:
//www.science.org/doi/pdf /10.1126/science.1227079. url: https://www.
science.org/doi/abs/10.1126/science.1227079.

[44] Floris Takens. “Detecting strange attractors in turbulence”. In: Dynamical
systems and turbulence, Warwick 1980. Springer, 1981, pp. 366–381.

[45] Robert Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In:
Journal of the Royal Statistical Society. Series B (Methodological) 58.1 (1996),
pp. 267–288. url: http://www.jstor.org/stable/2346178 (visited on 06/27/2022).

[46] L.N. Trefethen and D. Bau. Numerical Linear Algebra. Other Titles in Applied
Mathematics. Society for Industrial and Applied Mathematics, 1997. url: https:
//books.google.com/books?id=bj-Lu6zjWbEC.

39

https://books.google.com/books?id=4ZEeAQAAIAAJ
https://doi.org/10.1038/344734a0
https://doi.org/10.1126/science.1227079
https://www.science.org/doi/pdf/10.1126/science.1227079
https://www.science.org/doi/pdf/10.1126/science.1227079
https://www.science.org/doi/abs/10.1126/science.1227079
https://www.science.org/doi/abs/10.1126/science.1227079
http://www.jstor.org/stable/2346178
https://books.google.com/books?id=bj-Lu6zjWbEC
https://books.google.com/books?id=bj-Lu6zjWbEC


[47] Joel A Tropp. “Just relax: Convex programming methods for identifying sparse
signals in noise”. In: IEEE transactions on information theory 52.3 (2006),
pp. 1030–1051.

[48] Jonathan H Tu. “Dynamic mode decomposition: Theory and applications”. PhD
thesis. Princeton University, 2013.

[49] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. “A data–
driven approximation of the koopman operator: Extending dynamic mode
decomposition”. In: Journal of Nonlinear Science 25.6 (2015), pp. 1307–1346.

[50] Matthew O Williams, Clarence W Rowley, and Ioannis G Kevrekidis. “A kernel-
based approach to data-driven Koopman spectral analysis”. In: arXiv preprint
arXiv:1411.2260 (2014).

[51] Hao Ye et al. “Equation-free mechanistic ecosystem forecasting using empirical
dynamic modeling”. In: Proceedings of the National Academy of Sciences 112.13
(2015), E1569–E1576. doi: 10.1073/pnas.1417063112. eprint: https://www.pnas.
org/doi/pdf/10.1073/pnas.1417063112. url: https://www.pnas.org/doi/abs/10.
1073/pnas.1417063112.

40

https://doi.org/10.1073/pnas.1417063112
https://www.pnas.org/doi/pdf/10.1073/pnas.1417063112
https://www.pnas.org/doi/pdf/10.1073/pnas.1417063112
https://www.pnas.org/doi/abs/10.1073/pnas.1417063112
https://www.pnas.org/doi/abs/10.1073/pnas.1417063112

	Table of Contents
	List of Figures
	Chapter
	1 Introduction
	2 Dynamical systems
	3 Feature engineering
	4 System identification and prediction
	5 Conclusion

	References

