
Optimal Designs under Logistic Mixed Models

by

Yao Shi

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2022 by the
Graduate Supervisory Committee:

John Stufken, Co-Chair
Ming-hung Kao, Co-Chair

Shiwei Lan
Rong Pan

Mark Reiser

ARIZONA STATE UNIVERSITY

December 2022



©2022 Yao Shi

All Rights Reserved



ABSTRACT

Longitudinal data involving multiple subjects is quite popular in medical and

social science areas. I consider generalized linear mixed models (GLMMs) applied to

such longitudinal data, and the optimal design searching problem under such models.

In this case, based on optimal design theory, the optimality criteria depend on the

estimated parameters, which leads to local optimality. Moreover, the information

matrix under a GLMM doesn’t have a closed-form expression. My dissertation includes

three topics related to this design problem.

The first part is searching for locally optimal designs under GLMMs with longi-

tudinal data. I apply penalized quasi-likelihood (PQL) method to approximate the

information matrix and compare several approximations to show the superiority of PQL

over other approximations. Under different local parameters and design restrictions,

locally D- and A- optimal designs are constructed based on the approximation. An

interesting finding is that locally optimal designs sometimes apply different designs to

different subjects. Finally, the robustness of these locally optimal designs is discussed.

In the second part, an unknown observational covariate is added to the previous

model. With an unknown observational variable in the experiment, expected optimality

criteria are considered. Under different assumptions of the unknown variable and

parameter settings, locally optimal designs are constructed and discussed.

In the last part, Bayesian optimal designs are considered under logistic mixed

models. Considering different priors of the local parameters, Bayesian optimal designs

are generated. Bayesian design under such a model is usually expensive in time. The

running time in this dissertation is optimized to an acceptable amount with accurate

results. I also discuss the robustness of these Bayesian optimal designs, which is the

motivation of applying such an approach.
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Chapter 1

LITERATURE REVIEW

1.1 Optimal Design Approach

In an experiment, denote the response variable as Y and the design matrix as X.

For a parametric model with parameter vector θ, an estimator of θ = (θ1, . . . , θd)
′, say

θ̂, is usually derived by the maximum likelihood (ML) method. We want the estimator

to be as precise as possible by wisely choosing X, which is achieved by a judicious

selection of the design.

First, we introduce the definition of an experimental design. Let the total number

of observations in this experiment be N , and each observation corresponds to a

function of combination of factor levels, say f(x0i ) = (f1(x
0
i ), . . . , fd(x

0
i ))

′. Note that

f(x0i ), which is actually the ith row of X, is a vector of dimension d, with d being

the number of parameters in the experiment. Usually x0i takes values in Rt, where

t is the number of covariates. With {x1, . . . , xk} as the set of unique elements in

the set {x01, . . . , x0N}, and ni, 1 ≤ i ≤ k, as the number of times that xi appears

in {x01, . . . , x0N}. In this case, ξ =

{
x1, . . . , xk

n1, . . . , nk

}
is an exact design, and each xi,

1 ≤ i ≤ k, is a design point. We also have
∑k

i=1 ni = N . Discrete values could cause

difficulties in optimization, so we also use the concept of approximate design, which

is in the form of ξ′ =
{
x1, . . . , xk

w1, . . . , wk

}
with

∑k
i=1wi = N , allowing wi’s to be any

positive real numbers less than or equal to N . To be more general, any probability

measure defined on the design region U could be considered as a design, where wi is

1



actually scaled in that case. In this report, approximate designs are not scaled unless

specified. Approximate designs can be helpful but sometimes we still prefer exact

designs, especially when we don’t have much design resources. Meanwhile, under some

models, like generalized linear mixed models, the form of approximate designs do not

help us evaluate the information matrix, which will be discussed later.

There are many optimality criteria to evaluate the estimator obtained from the

experiment, which is also evaluating the design itself. In these optimality criteria, an

aim function is maximized on all possible designs, and such a function often depends

on the information matrix of the model likelihood in the experiment. Considering the

variance-covariance matrix of a ML estimator, denoted by Cov(θ̂|ξ), by asymptotic

normality, Cov(θ̂|ξ)/N −→ (I(θ|ξ))−1 asN −→ ∞, where I(θ|ξ) is the Fisher information

of the model likelihood for one observation. Thus, we can maximize a function of I(θ|ξ),

which can be theoretically derived under many statistical models, for optimization of

the designs.

There are some commonly used function ϕ to maximized in different optimality

criteria. In D-optimality criterion, ϕ(I(θ|ξ)) =
∏

a λξ,a = |I(θ|ξ)| is maximized, where

λξ,a is the ath eigenvalue of I(θ|ξ). For the advantage of optimization, a concave version

log|I(θ|ξ)| is usually used instead. We can also maximize ϕ(I(θ|ξ)) = (
∑

a λ
−1
ξ,i )

−1 =

(trace(I−1(θ|ξ)))−1 to get A-optimality criterion. As a generalization, we can consider

the function Φp(I(θ|ξ)) = (1
d

∑d
a=1 λ

p
ξ,a)

1/p, p ∈ (−∞, 1], where d is the dimension of

θ, which is maximized in Φp-optimality. We can see that when p = 0, it corresponds

to D-optimality, and when p = −1, it corresponds to A-optimality. More generally,

we can also consider a function Φ that is nonnegative, nonconstant, concave, and

smooth on the set of all positive definite matrices of dimension d. The optimality
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criterion maximizing Φ covers many other optimality criteria, including Φp-optimality

for p ∈ (−∞, 1], cf. Pukelsheim 2006, and Hu, Yang, and Stufken 2015.

Under some models, like linear models, the information matrix does not depend

on the true value of θ, i.e., I(θ|ξ) is not a function of θ, so, we can derive a best

design that maximizes some optimality criterion not depending on the true value of

model parameter θ. However, under some models, like generalized linear models, the

information matrix I(θ|ξ) is a function of θ, which means a design can never be best

for all θ in the parameter space. In this case, we will consider an optimal design given

a value of θ, which is called a locally optimal design. For a locally optimal design,

the guess of the parameter is very important in deciding a really optimal design for

the practice. To make sure that a bad guess will not ruin a locally optimal design,

we must study the robustness of a locally optimal design ξ∗ derived under assumed

true parameter θtrue. Different guesses of the parameter can be used to get different

locally optimal designs, and their values of the optimality criteria could be compared

to that of ξ∗, to see how bad a locally optimal design could be if we made a wrong

guess. For a design ξ, which may be an optimal design derived under mis-specified

parameter θmis, the efficiency compared to the A-optimal design ξ∗A and D-optimal

design ξ∗D which are derived under θtrue separately is defined as

eff(ξ) =


tr{I−1(θtrue|ξ∗A)}
tr{I−1(θtrue|ξ)} , A− optimality[

det{I−1(θtrue|ξ∗D)}
det{I−1(θtrue|ξ)}

] 1
d
, D− optimality

Different from locally optimal designs, Bayesian optimal designs are not restricted to

one guessed value, but use a prior distribution for θ. Usually, normal distributions are

considered. Then, different Bayesian optimality criteria are considered by maximizing

different utility functions. Since we can choose different utility functions, the designs
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can be optimized with respect to some loss functions we are interested in to fit in

different real cases.

In practice, the set of all feasible designs usually contains too many elements, which

causes difficulty in finding a design that maximizes I(θ|ξ). Complete class approach

is shown to be very powerful. A complete class Ξ is defined as a set of designs such

that for any design ξ, there exists a design ξ∗ ∈ Ξ satisfying I(θ|ξ∗) ≥ I(θ|ξ) under

Loewner ordering. There are some short but very useful conclusions about complete

class. Yang (2010), Yang and Stufken (2012) showed that for many commonly used

models with d-dimensional parameter vector and one continuous covariate x ∈ [U1, U2],

including three-parameter Emax model, loglinear model, four-parameter LINEXP

model, biexponential model and polynomial regression model,

Condition A. A complete class Ξ can be formed by one of the following:

1. Designs with at most d points, including point U1; or

2. Designs with at most d points, including point U2; or

3. Designs with at most d points; or

4. Designs with at most d points, including point U1 and U2.

Like U1 in case above, if a design point exists in all designs in a complete class, we

call it a fixed design point.

In some design problems, we are focusing on estimating a transformation of θ,

for example, a smooth function of θ, say g(θ) : Rd → Rv, v ≤ d. In this case, by

the asymptotic normality and the property of normal distribution, we know the

information for g(θ) is I(g(θ)|ξ) = (K ′I−(θ|ξ)K)−1, where K = (∂g(θ)/∂θ)′ being full

rank. Thus same discussions as above can be applied to this design problem.
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1.2 Generalized Linear Mixed Models (GLMMs)

1.2.1 Brief Introduction to GLMMs

In this section, GLMMs and the corresponding design problem are discussed. A

GLMM is a mixed-effects model as an extension to a GLM. So, first, it is necessary to

discuss mixed-effects models. In contrast to fixed-effects models, where parameters

are considered constant, mixed-effects models may have random coefficients. This

can be a good description of different individuals involved in clinical trials, which

shows both similarity and uniqueness of the individuals. For example, in discrete

choice experiment, we have choices made by multiple individuals, and it is necessary

to consider the individuals as different, while they may share some same features as

belonging to our aim group. In longitudinal studies, several measurements are taken

sequentially on a subject, so correlation between observations can be described by

shared parameters among them, while the parameters themselves are random and

change between different subjects. Also, in block designs with random block effects,

an additive random effect is considered for each block. These models are also known

as hierarchical models, namely the parameter is again modeled by some distribution

within the whole model. One difficulty in analyzing mixed-effects models could be the

lack of a closed-form likelihood function, involving an integration with respect to the

random parameters. Especially in searching for optimal designs, it is hard to evaluate

a design without a closed-form information matrix.

There are quite a few results for efficient experimental designs under mixed-effects

models. For a linear mixed model on serial data

ymj = xmjβ + zmjbm + εmj, (1.1)
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responses are grouped by the indicator m, bm ∼ N(0,Σ), and j indicates the

observations in the same group. Note that the ML estimator of β and thus the

covariance of the estimator both depend on the true value of Σ. For such a linear local

optimality problem, the closed-form expression of cov(β̂) can be obtained. For more

complicated mixed models, the PhD dissertation of Pinheiro 1994 provided results for

approximations to cov(β̂). As an application of the approximation under nonlinear

mixed model, Hu and Stufken 2017 constructed a complete class for longitudinal

experimental designs. Briefly, the model is approximated by a first-order Taylor

expansion of the nonlinear part, so that it can be analysed in a linear way. The

information matrix is derived on this linearized model. By the result of Schmelter 2007,

this form can be linked with the information matrix under nonlinear fixed models,

which means complete class results for nonlinear fixed models can be applied here, too.

The optimal designs found in this type of complete classes are also shown to be robust

with respect to mis-specification of variance-covariance matrix of the random effects.

Now, we formulate a GLMM for further discussion. The general form for a

generalized linear model (GLM) with link function η(·) is

µ = E(y) = η−1(f(x)Tβ). (1.2)

With an exact design ξ = {(xl), l = 1, . . . , k}, the information matrix for β is

M(ξ) = FTVF, where F = (f(x1), . . . , f(xk))T , and V = diag(var(y1), . . . , var(yk)).

For a longitudinal study with N subjects, denote yi = (yi1, . . . , yini
)T as the response

vector for subject i, i = 1, . . . , N , using design ξi = {(xil), l = 1, . . . , ni}, where ni is

the number of measurements on subject i. The total number of observations over all

subjects is then K =
∑N

i=1 ni. For this longitudinal data, extending the GLM (1.2) to

a GLMM, the conditional mean for yij, j = 1, . . . , ni, is

µbi
ij = E(yij|bi) = η−1(f(xij)Tbi), (1.3)
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where bi = (bi0, bi1, . . . , bi,q−1)
T = β + αi consists of the subject-independent fixed-

effects vector β and the random vector αi ∼ Nq(0,Σ), i.e., bi ∼ Nq(β,Σ). The

covariance matrix Σ can be singular, allowing some effects to be fixed effects. The

conditional variance of yij given bi is vbi
ij = ϕav(µbi

ij ), where v(·) is a known function

depending on η(·), a is a known constant, and ϕ is a dispersion parameter.

For GLMMs under different model assumptions added to (1.3), many optimal

design conclusions were derived. For panel mixed logit models, which is a special

case of GLMMs, Zhang 2018 discussed the corresponding optimal designs in her PhD

dissertation. Tekle, Tan, and Berger 2008 compared extended generalized estimation

equation and penalized quasi-likelihood (PQL) in searching for maximin D-optimal

designs under logistic mixed-effects models, Abebe et al. 2014 studied Bayesian D-

optimality under a same model by PQL, Waite and Woods 2015 proposed locally

D-optimal and Bayesian D-optimal designs for GLMMs with random intercept in a

block design, through marginal quasi-likelihood (MQL) and an outcome-enumeration

method. Ueckert and Mentré 2017 applied Monte Carlo and adaptive Gaussian

quadrature method to approximate the Fisher information matrix under discrete

mixed effect models, which is shown to be superior than MQL in accuracy. Sequential

D-optimal designs for GLMMs were investigated by Sinha and Xu 2011. Niaparast

2009 studied optimal designs for poisson mixed-effects models.

1.2.2 Approximate Parameters Estimation for Hierarchical and Marginal Models

Now, we introduce the method of estimating parameters in a GLMM, by which the

approximated information matrix is generated for further optimal design searching.

For a mixed study using a GLMM, denote y = (y1, . . . , yn)
T as the response vector,
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as the conditional mean for yi satisfies

µα
i = E(yi|α) = η−1(x′iβ + z′iα), (1.4)

where β is the vector of fixed-effects and α is the vector of random effects following

multivariate N(0,D), covariance matrix D = D(θ) depending on some unknown

variance components. (1.3) also has a matrix form E(y|α) = g−1(Xβ + Zα), with X

and Z formed by rows x′i and z′i, respectively. The conditional variance of yi given α

is vαi = ϕaiv(µ
α
i ), where v(·) is a known function depending on η(·), ai is a known

constant, and ϕ is a dispersion parameter.

For estimating (β, θ), the integrated quasi-likelihood function is defined by

eql(β,θ) ∝ |D|−1/2

∫
exp[− 1

2ϕ

∑
i

di(yi;µ
α
i )−

1

2
α′D−1α]dα (1.5)

where

di(y, µ) = −2

∫ µ

y

y − u

aiv(u)
du.

Writing (1.5) as c|D|−1/2
∫
exp(−q(α))dα, Breslow and Clayton 1993 applied Laplace’s

method to the above integral approximation, and ignored constant c, yielding

ql(β, θ) ≈ −1

2
log|D|−1

2
log|q′′(α̃)|−q(α̃), (1.6)

where α̃ minimizes q(α) by q′(α̃) = 0. q′′(α) ≈ Z′WZ + D−1, and W is the GLM

iterated weights, which is diag{{ϕa1v(µα
1 )[η

′(µα
1 )]

2}−1, . . . , {ϕanv(µα
n )[η

′(µα
n )]

2}−1}.

This term can be assumed varying very slowly, so the final aim function can be

simplified as

− 1

2ϕ

∑
i

di(yi;µ
α
i )−

1

2
α′D−1α, (1.7)

as penalized quasi-likelihood. By taking derivatives w.r.t. β and α, the score

equations for maximizing PQL is derived. These equations have iterative solutions
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based on the iterated weighted least squares (IWLS) by Green 1987. One can first

solve (X′V−1X)β = X′V−1Y, where V = W−1 + ZDZ′ and Y has components

Yi = x′iβ + z′iα+ (yi − µα
i )η

′(µα
i ), then find α̂ = DZ′V−1(Y − Xβ̂).

Coming back to our design situation, under locally optimality, we have some

knowledge of the parameters, say some prior estimation or a fair guess of (β,D). Then

the conditional estimator of β given α is subject to (X′V−1X)β = X′V−1Y, which

yields an approximated covariance matrix of β̂, as suggested by Breslow and Clayton

1993,

cov(β̂) = (X′V−1X)−1. (1.8)

It is worth noting that, the previous analysis can be applied directly to a longitudinal

study with multiple subjects in model (1.3). Since the responses from different subjects

are assumed to be independent, we just need to replace X and Z with stacked ones,

and V with diagonally stacked Vi. Vi is corresponding to subject i, dependent on the

design assigned to it. By matrix calculation, it is easy to show that for model (1.3),

cov(β̂) = (
N∑
i=1

X′
iV

−1
i Xi)

−1. (1.9)

Other than the hierarchical model (1.3), one can also build marginal models on the

desire of estimating covariate effects on population averages, which is also discussed

by Breslow and Clayton 1993. The marginal mean is defined as

E(yi) = µi = g−1(x′iβ). (1.10)

For longitudinal designs, Zeger, Liang, and Albert 1998 showed that the mean in

(1.10) needs to be altered in the regression variables or coefficients. After that, by

McCullagh and Nelder 1989 (sec. 9.3), quasi-likelihood equations ∂µ′

∂β
var−1(y)(y − µ)

can be used. IWLS regression on these score equations gives solutions in a similar

form as for hierarchical models. Note that the expression of W changes along with µi
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in (1.10), i.e., diag{{ϕa1v(µ1)[η
′(µ1)]

2}−1, . . . , {ϕanv(µn)[η′(µn)]2}−1}. Applying the

same discussion, cov(β̂) is derived as (X′V−1X)−1, which is in the same form as (1.8),

except the change in W. Similarly, for multiple subjects, we have the same form of

cov(β̂) as (1.9).

1.3 Support Points: a Good Representative Points Set

To evaluate the value of the optimality criteria based on approximated information

matrices, for example, using expression (1.9), with a given distribution of bi, an

average can be calculated from a sample of bi. Which is to say, the estimation of

E(g(X)) for a function g of the random variable X can be

1

n

∑
i

g(xi), (1.11)

with a size n random sample {xi}ni=1 from the distribution of X. In design problems,

the prior of bi is usually assumed to be a multivariate normal distribution, thus such

a method is considered a good solution here, and the accuracy of this estimation is

highly dependent on sample size n.

To decrease n in terms of shorter running time, other than a random sample, we

can turn to a better representative points set. As one of better representative sets,

Mak and Joseph 2018 introduced support points, which performs especially well in

estimating expectations. We now mention a little bit about how support points are

constructed for a better understanding. For a random variable K ∼ F , a size n set of

support points {xi}ni=1 minimizes the energy distance

E(F, Fn) =
2

n

n∑
i=1

E∥xi −K∥2−
1

n2

n∑
i=1

n∑
j=1

∥xi − xj∥2,
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where Fn is the empirical distribution function of {xi}ni=1, and ∥·∥2 is the L2 norm.

This points set has many good properties, including distributional convergence and

consistency. To be specific, for a continuous and bounded function g(K) and Kn ∼ Fn,

lim
n→∞

E[g(Kn)] = lim
n→∞

1

n

n∑
i=1

g(xi) = E[g(K)].

Compared to using a random sample, support points provides faster convergence in

estimation of the expectation as the size n → ∞. Without specific methods to be

used in further analysis, support points are also good sub-samples of a big data set.

To define support points in a data set, the only change to be made is replacing F by

the empirical distribution of the data set.

1.4 Design Searching Algorithm: Particle Swarm Optimization (PSO)

In optimal design problems, after deciding a criterion and settling a good way

to evaluate it on computer, we also need an efficient way to search for the best

design in the design space. The design space is defined as the space containing all

possible designs, or all designs that we are interested in. Here we are interested in a

popular meta-heuristic algorithm, particle swarm optimization (PSO). The advantages

of meta-heuristic algorithms includes gradient-free (compared to gradient descent

algorithm), have good efficiency, and are easy to apply. On the other hand, such

algorithms usually don’t have any promises on convergence of the solution found. For

our design problems, we can use the equivalence theorem as a stopping criterion, but

even if we don’t have one, PSO can also give us quite efficient designs in a decent

amount of time. A small difference between the efficient designs found by PSO and

the optimal one may be not important at all, in other words, we may consider an

efficient design found by a proper run of PSO as optimal.
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Kennedy and Eberhart 1995 first raised this algorithm in a bare-bone version and

since then it attracted a lot of attention by researchers. Bare-bone PSO (BPSO)

optimizes the aim function through the behavior of a group of particles, called the

swarm. Through iterations, each particle moves based on knowledge of both its own

and the whole swarm, and finally gets to an optimum. Denote the ith particle as xi,

and a corresponding velocity as vi, its movement can be described as follows.

vi+1 = wvi + c1rand1(pi − xi) + c2rand2(gi − xi), (1.12)

xi+1 = xi + vi, (1.13)

where w is the inertia weight, ci’s are two step parameters, pi is the best position the

ith particle ever achieved (pbest), and gi is the best position the whole swarm ever

achieved (gbest). Pseudo code of BPSO is shown in Algorithm 1. In this algorithm,

the number of particles, the maximum iteration number nmax, the inertia weight w,

and two step parameters, c1 and c2, are user defined parameters. Parameter choices

are usually dependent on the optimization problem. For a default setting, we use

several dozens of particles with several thousands of iterations, with w being .9, and

c1 and c2 being 2. The algorithm stops when the maximum number of iterations is

reached or the some stopping criterion is satisfied. In my simulation, I always use a

fixed maximum number of iterations, since the design problems in my dissertation

don’t have equivalence theorems to verify the optimality of the designs. Some detailed

discussion is in Chapter 2.

There are also variety of variations of BPSO. In my dissertation, unless specified,

BPSO will be used in optimal design searching.
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Algorithm 1 BPSO Algorithm
Initialization of swarm;
Maximum iteration number nmax;
i = 1;
while Stopping criteria not satisfied or i ≤ nmax do

Update pbest and gbest;
Update velocity using 1.12;
Update particle positions using 1.13;

end while

1.5 Bayesian Design Approach

The quality of a locally optimal design highly depends on the true value of the

parameter, which is unknown and could be far from our guess. To obtain more robust

optimal designs, one possibility is to assume that the parameters are following some

prior distributions, which leads to a Bayesian approach. Here we briefly introduce

Bayesian A- and D-optimality criteria based on results of Chaloner and Verdinelli. 1995.

As in other Bayesian approaches, we assume that parameters are random vari-

ables that follow a prior distribution. First we consider a linear regression model

y|θ, σ2 ∼ N(Xθ, σ2I), and the prior information is θ|σ2 ∼ N(θ0, σ
2R−1) with hyper

parameters θ0 and matrix R. σ2 is assumed to be fixed and known. A Bayesian optimal

design for this model would maximize an expected utility function based on some deci-

sion rule over a class of designs that we are interested in. One of the options could be

maximizing the expected gain in Shannon information as an expected utility, which is

the expected Kullback-Leibler distance between the posterior and the prior distribution

∫
log

p(θ|y, ξ)
p(θ)

p(y,θ|ξ)dθdy.
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This reduces to maximizing

U1(ξ) = −d
2
log(2π)− d

2
+

1

2
log det{σ−2(nI(θ|ξ) + R)},

recall that d is the dimension of θ. This lead to the Bayes D-optimality criterion

of maximizing ϕ1(ξ) = det{nI(θ|ξ) + R}, where nI(θ|ξ) = X ′X, which is just the

information matrix.

When the purpose of the experiment is to find an estimation of the parameter θ

or a function g(θ), a proper loss function might be applied, for example, quadratic

loss. In this case, the expected utility turns out to be

U2(ξ) = −
∫

(θ − θ̂)′C(θ − θ̂)p(y,θ|ξ)dθdy,

where C is a symmetric nonnegative definite matrix related to the quadratic

loss function. Then, after Bayes procedure calculation, we obtain that U2(ξ) =

−σ2tr{C(nI(θ|ξ) + R)−1}. Thus, we have the Bayesian A-optimality criterion that

maximizes ϕ2(ξ) = −tr{C(nI(θ|ξ) + R)−1} over design ξ.

Note that there are also other useful utility functions and even more than one

method to equivalently derive the same Bayesian optimality.

Next, we discuss the Bayesian design approach under mixed models. In a mixed

model, the random effect is assumed to be following some distribution with some

parameters denoted by vector θ. A locally optimal design for such a model is dependent

on θ. In Bayesian approach, θ is assumed to be following a given prior distribution

p(θ). For the first step, a normal approximation to the posterior distribution of θ

under any mixed models could be

θ|y, ξ ∼ N(θ̂, [nÎ(θ|ξ)]−1),

where θ̂ denotes the maximum likelihood estimator of θ, Î(θ|ξ) is the expected Fisher

information matrix of parameter θ for that mixed model under design ξ. For mixed
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models, a closed-form expression of the expected Fisher information matrix is usually

infeasible, thus an approximation could be used in the evaluation here. When the

expected gain in Shannon information is considered, an approximation to the expected

utility is

U1(ξ) = −d
2
log(2π)− d

2
+

1

2

∫
log det{(nÎ(θ|ξ))}p(θ)dθ,

so, Bayesian D-optimality criterion maximizes

ϕ1(ξ) =

∫
log det{nÎ(θ|ξ)}p(θ)dθ.

Then we look at the case where we consider loss functions. When it comes to the

estimation of a function g(θ) and a squared error loss is appropriate, following U2(ξ),

the approximate expected utility turns out be

ϕ2(ξ) = −
∫
c(θ)′{nÎ(θ|ξ)}−1c(θ)p(θ)dθ,

where c(θ) = (c1(θ), . . . , cd(θ))
′, with ci(θ) = ∂g(θ)/∂θi.

If C(θ) is a weighted sum of different matrices c(θ)c(θ)′ corresponding to different

g(θ), ϕ2(ξ) changes to

ϕ2(ξ) = −
∫
tr{C(θ)[nÎ(θ|ξ)]−1}p(θ)dθ,

which is referred to as Bayesian A-optimality.

Sometimes we are only interested in estimation of a subset of θ, say θs, then the

current expected information matrix becomes a sub matrix of Î(θ|ξ). For example,

ϕ1(ξ) would become
∫
log det{nÎ(θs|ξ)}p(θ)dθ.
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1.6 Designs with Experimental and Observational Variables

In this section, we discuss another important aspect in experimental designs, which

is observational covariates, also called uncontrolled covariates. We will first go over

existing results on this topic and briefly discuss this situation under GLMMs.

In clinical trials, responses usually do not only depend on the treatment and

control, but also on many covariates, like age, gender and so on. These covariates

could be able to be balanced at the subject selection stage, or only accessible after

the subject selection but known before the treatments, or even unknown before the

experiment is carried out. Some designs could even fail because of unknown or ignored

but important covariates (Leyland-Jones 2003). To deal with each case properly,

different methods and optimality criteria have been introduced and will be discussed

here.

1.6.1 Designs with Known Observational Covariates

Based on the very fundamental idea of randomization theory in clinical trials, some

covariate-adaptive and covariate-adaptive response-adaptive (CARA) procedures were

introduced and are becoming more popular, Rosenberger and Sverdlov 2008 already

contains a thorough introduction to such methods. Here we introduce the main

framework of existing studies briefly. A covariate-adaptive randomization procedure,

which belongs to the class of marginal procedures, can be described as follows for a

two-treatment sequential clinical trial. Note that this sequential procedure will lead

to an exact experimental design. Let Niml(n) be the number of patients on treatment

l in level m of categorical covariate Zi, i = 1, . . . , K,m = 1, . . . , ki, l = 1, 2, after n
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patients have been sequentially randomized. Denote the response of patient j by Yj

with treatment Tj, and Yj = (Y1, . . . , Yj)
′, Tj = (T1, . . . , Tj)

′. For the next patient,

patient n+ 1, the covariates are observed as (z1, . . . , zK). Define D(n) =
∑
wiDi(n),

where Di(n) = Nizi1(n)−Nizi2(n), and wi be user-defined weights, then the treatment

assignment of patient n+ 1 follows the general rule formulated by Pocock and Simon

1975 using the biased coin design of Efron 1971:

ϕn+1 =


1/2, if D(n) = 0;

p, if D(n) < 0;

1− p, if D(n) > 0,

where ϕn+1 is the probability of assigning treatment 1 to patient n+ 1. The choice

p = 3/4 is discussed by Pocock and Simon 1975, and for p = 1 this procedure

is deterministic (Taves 1974). Other variations of this procedure are suggested by

Wei 1978 and Efron 1980, based on similar ideas. There is some concern about such

procedures among statisticians, including that the procedure is not theoretically proved

optimal and that it is ethically unattractive due to assigning an inferior treatment too

often. Some statisticians even argue that we should not use such methods (Grouin,

Day, and Lewis 2004).

Considering some optimality criteria like the discussion in the Section 1.1 about

general optimal design approach, Harville 1974 suggested another method to balance

the covariates through the covariance matrix of the estimated parameters, but only

those associated with controlled variables. Considering exact designs, say a saturated

design consists of t design points, then for 0 ≤ s < t, we generate the (s+ 1)th design

point by balancing the number of design points in each covariate level group, like

in the last paragraph. After t points have been determined, the incoming patients

are assigned with treatments maximizing criteria based on the resulting information
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matrix, like the determinant of the information matrix for D-optimality. Based on

this idea, Atkinson 1982 suggested a randomized procedure and illustrated it for DA

optimality under linear models with L treatments as follows. Say the mean of the

responses is modeled as E(Yi) = x′
iβ, i = 1, . . . , n, where xi includes both treatments

and q covariates, and the variance of a given contrast A′β̂ is of interest, an optimality

criterion would maximize |A′(X ′X/n)−1A|−1. X is the design matrix formed by xi’s,

determined by the design ξ. Then, the randomization procedure is based on the

Fréchet derivative, dA(x, ξ), of the determinant above. Given n patients assigned

in design ξn, the (n + 1)th patient will be assigned to treatment l with probability
ψ(dA(l,ξn))∑L
l=1 ψ(dA(l,ξn))

, where ψ is some monotone increasing function. This randomization

procedure can be modified to be deterministic by always assigning treatment l when

dA(l, ξn) is the largest for l ∈ {1, . . . , L}. As stated by Rosenberger and Sverdlov

2008, the following CARA procedures can be superior to those covariate-adaptive

procedures in some ways. Generally, a CARA procedure can be formulated by

ϕj = P (Tj+1 = 1|Tj,Yj,Z1, . . . ,Zj,Zj+1),

where Zj is the vector of Zi values for patient j. Here the assignment of treatments

also depends on the observed outcomes of previous patients. Rosenberger and Sverdlov

2008 indicated that with heterogeneous variances, CARA procedures can be more

efficient and more ethically attractive (more assignments on the superior treatment)

than covariate-adaptive procedures.

Besides these sequentially adaptive methods, there are also studies on non-

sequential methods. In such studies, the number of patients or tested subjects

is fixed and all covariate values are known. In such cases, we have all the uncontrolled

covariate values known and can decide our treatments based on those, as a result,

there are some good theoretical results proved. One of the earliest results is by Cook
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and Thibodeau 1980, who consider optimality criteria based on information matrix

under the restriction of those uncontrolled covariates and an equivalence theorem

for D-optimal designs in such cases is presented. Harville 1974’s sequential method

mentioned above can be modified to fit such cases, by maximizing the criterion subject

to both treatment assignments and order of patients coming into the experiment.

Such a modified optimization starts from a saturated design, which could be gen-

erated by design-based adaptive randomization or just randomization. Following

patients are added one-by-one or batch-by-batch into the optimization problem to

maximize the criteria based on the information. Note that the “sequential” property

only shows in optimization, and since we can alter the order of such a sequence,

the resulting design is not a sequential design. In mathematics, partition the design

matrix X into (X1, X2), the information of interested parameters can be expressed as

X ′
1(I −X2(X

′
2X2)

−1X ′
2)X1, so we maximize the determinant of this matrix subject

to the choice of the next patient and his/her treatment. For observations with corre-

lated errors, López-Fidalgo, Martín-Martín, and Stehlík 2008 discussed the solution

for D-optimality, and constructed optimal designs for several models in real cases.

The information matrix is derived based on different error structures, and then the

determinant is maximized subject to the controlled variables, with the uncontrolled

variables fixed and known.

The discussion above is based on the assumption that the values of the covariates

are all known at the design stage, one-by-one or in the very beginning, and such an

optimality is usually called marginally restricted (MR) optimality.
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1.6.2 Designs with Unknown Observational Covariates

In practice, some important covariates are unknown until the experiment is carried

out, like some real-time measurements of the patients in clinical trials. To model

these covariates properly, the analysis is usually considered under conditioned values

on these covariates and then try to properly average them. Such an optimization

problem is usually called conditionally restricted (CR) optimality.

Tsukanov 1981 and Gupta and Richards 1985 first considered such optimization

problems with the linear regression model

E(Yn|Tn,Z1, . . . ,Zn) = Xkp(l1×1) +Xuq(l2×1), Cov(Yn|Tn,Z1, . . . ,Zn) = σ2I.

Xk stands for the design matrix of the controlled variables, with ith row being

(f1(Ti), . . . , fl1(Ti)). On the other hand, the ith row of Xu stands for the outcome

of the ith uncontrolled variable, which is just the transpose of Zi. p and q are the

corresponding parameter vectors.

First, each Zi is assumed to be following the same normal distribution with mean

µu and covariance Σu, which is independent of Xk. In both papers, the expectation of

the aim functions in the optimality criteria with respect to the unknown covariates

is optimized, which is called the optimality in the mean. For example, D-optimality

in the mean (mD-optimality) minimizes E(detH) where H is the covariance matrix

of the estimators conditioned on Xu. In this independent case, mA-optimality and

mD-optimality coincides with A- and D-optimality, respectively, for estimation of p

and (p′, q′)′.

Then, a linear dependence Xu = XkL + E is considered for a known linear-

transformation matrix L and random normal error E. In this case, for estimating p,
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by mA-optimality, the aim function satisfies

E trHp =
n− l1 − 1

n− l1 − l2 − 1
tr(X ′

kXk)
−1 +

1

n− l1 − l2 − 1
trLΣ−1

u L′,

where Hp is the covariance matrix of the estimator of p, conditioned on Xu. For mD-

optimality and estimation of (p′, q′)′, mD-optimality still coincides with D-optimality,

while for estimating p with l2 = 1, by Tsukanov 1981, the aim function would satisfiy

E detHp = det(X ′
kXk)

−1(
L′X ′

kXkLΣ
−1

n− l1 − 2
+

n− 2

n− l1 − 2
). (1.14)

Furthermore, Gupta and Richards 1985 extended equation 1.14 to all positive l2 cases

such that n > l1 + l2 + 1.

In the previous discussion, the estimation of q is not mentioned. For both the

independent and dependent case with either mA- or mD-optimality criterion, the

estimation of q is only dependent on the number of trials n and Σu.

Other than taking expectations on optimality criteria, López-Fidalgo and Garcet-

Rodríguez 2004 considers the average design given known priors of the covariates for

fixed effects models including nonlinear models, and derives a general equivalence

theorem for ϕ-optimality. The model considered here is

E(Yj|Tj,Zj) = f ′(Tj,Zj)θ, Cov(Yj|Tj,Zj) = σ2,

where f is a vector-valued function with mutually independent continuous components.

For a simple example, a two-variable model, let x1 be the known experimental variable,

corresponding to T , and x2 be a dependent unknown covariate, corresponding to Z,

but Z is actually a scalar now. The relationship of the two is defined by a known

prior p(x2|x1). Since we can only control x1, an approximate design to be carried out

is

ξ1 =

{
x11, . . . , x1k

w(x11), . . . , w(x1k)

}
,
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and the actual design in expectation would be

ξ12 = {(x1i, x2)with probabilityw(x1i)p(x2|x1i), i = 1, . . . , k}.

Based on ξ12, the information matrix of θ is

k∑
i=1

w(x1i)

∫
p(x2|x1i)I(θ|x1i, x2)dx2,

where I(θ|x1i, x2) is the information matrix of θ given data (x1i, x2).

López-Fidalgo and Garcet-Rodríguez 2004 also discussed and derived a general

equivalence theorem for the combination of MR and CR optimality, called MCR

optimality. Another covariate X3 is now added to the model and is known in the

design stage. The discussion is following the last paragraph.
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Chapter 2

TOPIC I: LOCALLY OPTIMAL DESIGNS FOR LOGISTIC MIXED MODELS

WITH ONE COVARIATE

2.1 Locally Optimal Design Problem Illustration

In this topic, we consider model (1.3) in Section 1.2.2 for one covariate and a linear

regressor. In a longitudinal study, for response from subject i under jth measurement,

yij, j = 1, . . . , ni, satisfies

µbi
ij = E(yij|bi) = η−1(f(xij)Tbi) = η−1(bi0 + bi1xij), (2.1)

where bi = (bi0, bi1)
T = β +αi consists of the subject-independent fixed-effects vector

β and the random vector αi ∼ N2(0,Σ), i.e., bi ∼ N2(β,Σ). The covariance matrix

Σ can be singular, allowing some effects to be fixed effects. The conditional variance

of yij given bi is vbi
ij = ϕav(µbi

ij ), where v(·) is a known function depending on η(·), a

is a known constant, and ϕ is a dispersion parameter.

For different choices of the link function, η,

η[E(yij|bi)] =


log(

P (yij=1|bi)

1−P (yij=1|bi)
), for logistic model;

Φ−1(P (yij = 1|bi)), for probit model;

log[E(yij|bi)], for Poisson model,

(2.2)

with corresponding conditional variances

vbi
ij = var(yij|bi) =



exp(f(xij)
Tbi)

{1+exp(f(xij)Tbi)}2 , for logistic model;

{Φ′(f(xij)Tbi)}2
Φ(f(xij)Tbi){1−Φ(f(xij)Tbi)} , for probit model;

exp(f(xij)
Tbi), for Poisson model,

(2.3)
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where Φ(·) is the cumulative density function of the standard normal distribution.

For my dissertation, the logistic link is mainly focused, but the methodology can also

be applied to other link functions.

Model (2.1) can also be used for experiments that fit a GLM (with fixed effects)

but that are run in a block design with random block effects (Waite and Woods 2015).

Thus, the number of random components in bi is equal to the number of blocks, and

the matrix Σ would typically be a diagonal matrix. What is different in this setting is

that the values of xi1, . . . , xini
need not all be distinct. In contrast, in a longitudinal

study, where these values refer to time, they cannot be the same. For now, we refrain

from requiring that all values must be different, but we will return to this later. For

simplicity, we will continue to refer to subjects rather than blocks.

With the goal of estimation of β, we seek a population design ξ = (ξ1, . . . , ξN)

that is locally optimal for this goal. The likelihood function for β and Σ is given

by LTotal(β,Σ|y) =
∏N

i=1 Li(β,Σ|yi) =
∏N

i=1

∫ ∏ni

j=1 h(yij|bi = β + αi)g(αi|Σ)dαi,

where h(yij|bi) is the conditional density function of yij and g(αi|Σ) is the density

function of random effects αi Molenberghs and Verbeke 2005. For simplicity, we will

just write LTotal(β,Σ) and Li(β,Σ). An approximation to the information matrix

for β can be obtained by approximating cov(β̂) based on the estimation methods

we are using. In general, for GLMMs there are no analytical expressions for cov(β̂).

One exception is when yij follows a Poisson distribution with a log link function

and only a random intercept (Niaparast 2009). Methods for approximating cov(β̂)

include generalized estimating equations (GEE, cf. Liang and Zeger 1986 or Dean

et al. 2015, Chapter 13), penalized quasi-likelihood (PQL) (Breslow and Clayton

1993), and marginal quasi-likelihood (MQL, cf. Breslow and Clayton 1993 or Dean
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et al. 2015, Chapter 13) Ueckert and Mentré 2017 also applied adaptive Gaussian

quadrature to approximate the information matrix directly.

Breslow and Clayton 1993 defined the integrated quasi-likelihood function for

estimating β and Σ, and applied the Laplace method for integral approximation to

obtain PQL. Using their method, for model (2.1), an approximation of the variance-

covariance matrix cov(β̂) is given by (Breslow and Clayton 1993, Tekle, Tan, and

Berger 2008)

cov(β̂) = cov(β̂|b) ≈

(
N∑
i=1

FT
i U

−1
i Fi

)−1

, (2.4)

where b = (bT1 , . . . ,b
T
N )

T , Ui, a weight matrix for the ith subject, equals V−1
i +FiΣFT

i ,

Fi is the design matrix of design ξi, i.e., Fi = Fi(ξi) = (f(xi1), . . . , f(xini
))T , and

Vi = Vi(ξi) = diag(vbi
i1 , . . . , v

bi
ini
). For the design choice, “optimal choices” for the

number of distinct covariate values xij for each subject, the values of these covariates,

and the number of measurements at each of these values need to be determined. Since

cov(β̂) in (2.4) depends on the unknown β and Σ through the bi’s, we will substitute

values based on prior knowledge. This will eventually result in locally optimal designs.

The inverse of (2.4) is denoted by MTotal(ξ|b), and taking its expectation,

Eb(MTotal(ξ|b) =
N∑
i=1

Eb(FT
i (V

−1
i + FiΣFT

i )
−1Fi), (2.5)

gives the expected information matrix. Before going on, note that this expected

information degenerates to the information of the corresponding GLM when the

variance covariance matrix Σ goes to 0.

For convenience, we make a change in the notation for the population design

ξ = (ξ1, . . . , ξN). Since some subjects may receive the same design, we will write

ξ = {(ξp,mp), p = 1, . . . , Ns}, where ξp = (xpl, l = 1, . . . , np), Ns ≤ N is the number

of distinct ξp’s, mp is the number of subjects receiving ξp, and
∑

pmp = N . By the
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independence between subjects, we can consider the approximate design approach.

An approximate population design can be represented as

ξ = {(ξp, wp), p = 1, . . . , Ns}, wp > 0,
∑
p

wp = 1. (2.6)

The sub-designs ξp’s are also known as individual designs. One could use the same

individual design for each subject, i.e., Ns = 1. But as noted by Schmelter 2007,

for exact individual designs, optimal designs may use more than a single individual

design. The number of measurements on a subject, np, is in practice often the same

for all subjects, and we will assume from now on that np = n. Based on (2.5), in the

approximate design setting we define

MPQL(ξ) = MPQL(ξ|β,Σ) =
Ns∑
p=1

wpEb(FT
p (V

−1
p + FpΣFT

p )
−1Fp) (2.7)

as an approximation to the information matrix for β under population design ξ. We

will approximate the sum in (2.7) by approximating each expectation in that sum.

Since all bp’s are assumed to be N(β,Σ), we approximate such an expectation by

sampling S (e.g., S = 1000) bp’s from N(β,Σ) and taking the average.

The expression for MPQL(ξ), with its inverses, must be simplified for computational

purposes. Miller 1981 proved the following theorem about the inverse of the sum of

matrices.

Lemma 1 (Miller 1981) Let A and A+B be invertible matrices, with the rank of B

equal to r > 0. Let B = B1 + · · ·+Br, where each Bi has rank 1 and, for k = 1, . . . , r,

each Ck+1 = A+
∑k

i=1Bi is invertible. Setting C1 = A, then

C−1
k+1 = C−1

k − gkC
−1
k BkC

−1
k ,

where gk = 1
1+tr(C−1

k Bk)
. In particular,

(A+B)−1 = C−1
r − grC

−1
r BrC

−1
r .
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Based on Lemma 2.1, we can partition Σ into a sum of Σi’s, where Σi is the matrix

obtained from Σ by replacing all its elements by 0 except for those in the ith row.

Then, the inverse of V−1
p + FpΣFT

p in (2.7) can be computed by multiplication and

summation of matrices, which is much faster when searching for optimal designs.

Focusing more on the population averages of the covariate effects, marginal model

can also be applied to estimate the fixed effects. We assume np ≡ n in the follow-

ing discussion. Breslow and Clayton 1993 introduced MQL approximation to the

information matrix for subject i as

MMQL(ξ) =
Ns∑
p=1

wpFT
p (V

−1
p + FpΣFT

p )
−1Fp,

where Vp = diag(vβp1, . . . , vβpn), and vβpj = var(ypj|β). Zeger, Liang, and Albert

1998 showed that a better approximation to the marginal mean for logistic link

has attenuated coefficients, which means that an attenuated value βapj = β · cpj =

β · |1+c2fT (xpj)Σf(xpj)|−1/2 should be used in the expression, where c = 16
√
3/(15π).

Based on this result, adjusted MQL approximation is given by

MaMQL(ξ) =
Ns∑
p=1

wpFT
p (Ṽ

−1

p + FpΣFT
p )

−1Fp,

where Ṽp = diag(v
βa
p1

p1 , . . . , v
βa
pn

pn ). Note that for random-intercept model, which is

more common for block designs, ci could be irrelevant of the values of the covariates,

leading to a same transform for all design points, i.e., we can set βap ≡ βapj.

Other than approximations, the information matrix can also be obtained numer-

ically from the definition. The expectation in Fisher information can be obtained

by enumerating all possible outcomes based on a given design, with the probabilities

being integrated out numerically. The contribution to the likelihood function by a

single subject can also be obtained by enumerating all possible outcomes. For the
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logistic link in model (2.1), the likelihood function for a subject, say i, who is assigned

to individual design ξp is

Li(β,Σ) =

∫∫ n∏
l=1

exp[f(xpl)
Tbi]

yil

1 + exp[f(xpl)Tbi]
Φ(bi;β,Σ)dbi.

This corresponds to a contribution to the information matrix given by

Ii(ξp|β,Σ) = Eyi

(∂ logLi(β,Σ)

∂β

∂ logLi(β,Σ)

∂β′

)
=
∑
yi

1

Li(β,Σ)

∂Li(β,Σ)

∂β

∂Li(β,Σ)

∂β′ .
(2.8)

Using numerical integration, this expression can serve as a benchmark for other

approximations of the information matrix.

2.2 Comparison of Approximations to Information Matrices under GLMM

Before searching for optimal designs, we compare different approximations nu-

merically to ensure that we use a good proxy for the exact information matrix.

We do this for a fixed set of designs and multiple parameter settings for a logistic

model. The model has η(xij) = bi0 + bi1xij with parameter of interest β = (β0, β1)
T .

We focus on the D- and A-optimality criteria, say ϕD and ϕA, respectively, where

ϕD = log det(I(ξ)), and ϕA = 1/tr(I−1(ξ)). If we use an approximation for I, then the

approximation, such as MPQL, replaces I in these expressions. To use a sufficiently

broad spectrum of “guesses” for β and Σ, we consult the complete class result for

fixed effects models in Yang and Stufken 2009.

Theorem 2 (Yang and Stufken 2009) For a fixed effects GLM formulated by µ =

E(y) = η−1(f(x)Tβ), set cj = η(µj). Suppose that the design region in the c-space

takes one of the following forms:
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1. [−D,D] for some D > 0; or

2. [D1, D2] with (a) D1 ≥ 0 or (b) D2 ≤ 0; or

3. [D1, D2] with D1 < 0 < D2 and −D1 < D2; or

4. [D1, D2] with D1 < 0 < D2 and −D1 > D2.

For these four cases, a complete class can be formed by designs that are

1. supported on two symmetric points;

2. supported on two points, including D1 if D1 ≥ 0 and including D2 otherwise;

3. supported on two symmetric points, or on D1 and a point in (−D1, D2]; and

4. supported on two symmetric points, or on D2 and a point in [D1,−D2),

respectively.

For our comparisons we use a design region of [1, 6] in x-space. We select values for β,

as shown in Table 1, that represent each case in Theorem 2. For Σ, we use a fixed

correlation ρ = .5 and 3 choices for the diagonals (I, II, and III in Table 1). The

population designs that we use all consist of a single individual design, that is, Ns = 1.

But, based on the additive expressions for the approximations, a good approximation

for Ns = 1 implies a good approximation for moderately larger values of Ns. For the

single individual design, we use every design that is supported on exactly two points

from {1, 2, 3, 4, 5, 6} with a total number of measurements equal to n = 10. There are

9×
(
6
2

)
= 135 such designs. The sample size S for approximating the expectation in

(2.7) by a random sample is set to 1000, corresponding to the red line in Figure 1 and

2. The sample size for support points is set to 100, corresponding to the dark blue

line in the two figures.

For n = 10, there are 210 = 1024 possible outcomes of y. Using Mathematica, it

takes about 800 seconds of CPU time to evaluate I(ξi|β,Σ) defined in (2.8) once on
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Choices for (β0, β1) (1,−1) (3,−1) (7/2,−1) (4,−1) (6,−1)
Case in Theorem 2 2 (b) 4 1 3 2 (a)

Diagonals of Σ I: (1.7145, 1.05) II: (6, .3) III: (.3, 6)

Table 1. Parameter Choices for Comparisons of the Approximations

a 3.9 GHz Intel CPU and 24 GB RAM. We can also get rid of the slow numerical

integration by using a sample from the density to approximately evaluate the result,

which is much faster, but still takes 9 seconds with a size 500 sample. This is too

slow for finding optimal designs, where this computation would have to be performed

many times. In comparison, the PQL and MQL or adjusted MQL approximations

take .1075 and 6.3× 10−5 CPU-seconds, respectively.

Figure 1. Comparing PQL, MQL and Adjusted MQL Approximations to the Exact
Information Matrix for β = (1,−1)′

Figures 1 and 2 show results of the comparisons for two of the five cases for β in

Table 1. For both figures, the labels on the horizontal axis represent the 135 designs,
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Figure 2. Comparing PQL, MQL and Adjusted MQL Approximations to the Exact
Information Matrix for β = (6,−1)′

ordered by the criterion value (A-optimality or D-optimality) for the exact information

matrix (blue line). Among the three approximations, PQL (red line) clearly has the

smallest absolute error and orders the designs approximately correctly based on both

the D- and A-optimality criterion. For MQL (light grey line) and adjusted MQL

(dark grey line), while they show the correct trends, the approximations are relatively

poor and, more importantly, the ordering of the designs that they provide is also

rather poor with the possible exception of adjusted MQL for D-optimality. Thus,

by far the best approximation is provided by MPQL(ξ). Only for cases when this is

computationally too expensive might one want to consider MaMQL(ξ).
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2.3 Simulation: Locally Optimal Designs under GLMMs

Based on Section 2.2, for given β and Σ, we use the PQL approximation in-

stead of the information matrix and Particle Swarm Optimization (PSO) to find

locally A- or D-optimal designs for the mixed-effects logistic model. PSO is widely

used in optimal design research (Zhou, Wang, and Yue 2021). To illustrate the

results, we use the same settings for β as in Table 1. We take Σ = r · Σ0

as a diagonal matrix, where r ∈ {5, 7, 10, 15, 25} and Σ0 = diag(σ2
1, σ

2
2) with

(σ2
1, σ

2
2) = (.1143, .07), (.4, .02), or, (.02, .4). We refer to these three choices for (σ2

1, σ
2
2)

as type I, II and III, respectively. Note that, for fixed r, the generalized variance,

det(r ·Σ0), is approximately the same for all three types. The three cases in Section 2.2

correspond to the choice r = 15. Finally, we use the same design region of [1, 6] as in

Section 2.2.

Due to correlated observations, neither the information matrix nor its approx-

imations are additive for observations on the same subject. Additivity does hold

when combining information from different subjects. Therefore, using an approximate

design approach, we use a population design ξ = {(ξp, wp), p = 1, . . . , Ns}, where

wp > 0,
∑

pwp = 1, and each individual design ξp is an n-point design for a fixed value

of n. We do not insist that the n points in the design region [1, 6] are distinct. In a

situation where it is not possible to have repeated values (for example when the design

variable denotes the time at which an observation is to be made in a longitudinal

study), we can distribute the design points around the repeated value. Alternatively,

if there is a specified minimum distance d0 between any two design points, we can

build this constraint into the PSO algorithm. We considered optimal designs for n = 2
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Figure 3. D-optimal Designs with n = 2 Observations per Subject. The Covariance
Type Is Shown in the Top Bar and the Choice for β in the Right-hand Bar. The
Value of r for the Covariance Matrix Σ Is along the Vertical Axis, and the Design
Region [1, 6] Is Shown along the Horizontal Axis.

through 6, but will only show those for n = 2 and 5 here. Other designs can be found

in Appendix A.1.

Since we use exact individual designs, the optimization problem is a discrete

problem, and we can no longer use a general equivalence theorem to verify optimality

of a design. Even though, we are not able to guarantee that our designs are indeed

optimal; by running the PSO algorithm multiple times with different starting designs

and a large number of iterations, we are confident that the population designs are

very efficient.

In Figures 3 through 6 we show D- and A-optimal population designs for n = 2

and 5. In all cases, the design either has Ns = 1 or 2. When Ns = 1, which occurs

most often, we simply present the n points of the corresponding individual design ξ1.

For n = 5, repeated points are presented slightly apart so that the number of points
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Figure 4. D-optimal Designs with n = 5 Observations per Subject. The Covariance
Type Is Shown in the Top Bar and the Choice for β in the Right-hand Bar. The
Value of r for the Covariance Matrix Σ Is along the Vertical Axis, and the Design
Region [1, 6] Is Shown along the Horizontal Axis.

Figure 5. A-optimal Designs with n = 2 Observations per Subject. The Covariance
Type Is Shown in the Top Bar and the Choice for β in the Right-hand Bar. The
Value of r for the Covariance Matrix Σ Is along the Vertical Axis, and the Design
Region [1, 6] Is Shown along the Horizontal Axis.
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Figure 6. A-optimal Designs with n = 5 Observations per Subject. The Covariance
Type Is Shown in the Top Bar and the Choice for β in the Right-hand Bar. The
Value of r for the Covariance Matrix Σ Is along the Vertical Axis, and the Design
Region [1, 6] Is Shown along the Horizontal Axis.

(1, -1) (3.5, -1) (6, -1)

D (1,3.399;.5,.5) (1.957,5.043;.5,.5) (3.601,6;.5,.5)

A (1,4.009;.553,.447) (1.211,5.789;.789,.211) (2.920,6;.828,.172)

Table 2. Optimal Designs for (Fixed Effects) GLM under Corresponding Parameters

at a location is discernible. For n = 2 and A-optimality, some cases yield Ns = 2.

Different plotting symbols are then used for the two individual designs ξ1 and ξ2, and

weights are shown for ξ2 next to one of the design points.

There are several noteworthy features in the figures. First, for n = 5, the number

of distinct design points increases with the value of r. For small r the optimal designs

are 2-point designs. This is not surprising because this is known for the limiting case

r → 0, which corresponds to a (fixed-effects) GLM (Yang and Stufken 2009). Optimal

designs for GLMs are shown in Table 2 for reference.

For both A- and D-optimality, the number of distinct design points tends to
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increase with r, albeit it that the increase can be limited depending on the design

region. This increase can, for example, be seen in results for β = (6,−1)′ in Figures 4

and 6. For other β’s in these figures, a larger design region would exhibit a similar

pattern. Second, for β = (1,−1)′ or (6,−1)′, corresponding to cases 2(b) and 2(a) in

Theorem 2, for a GLM one of the endpoints of the design region must be included

in an optimal design; this need not be the case for the mixed-effects model (see, for

example, Figure 3 with β = (6,−1)′ for type III and r=10). Third, while the results

in Schmelter 2007 do not apply here, optimal population designs still consist often

(but not always) of the same individual design for all subjects. For A-optimality,

Figure 7 shows efficiencies of the best one-sequence designs for n = 2 as measured

by ϕA(MPQL(ξ))
ϕA(MPQL(ξ∗))

, where ϕA denotes the A-optimality criterion and ξ∗ is an A-optimal

design. For large enough r, one-sequence designs are optimal. They are however also

quite efficient for smaller values of r, although the efficiencies vary with β and Σ.

Figure 7. Efficiencies of the Best One-sequence Designs for n = 2 for the Conditions
in Figure 5. The Axes Show the Values of r (Horizontal) and the Efficiency (Vertical).
The Top Bar in Each Panel Shows β, and Different Line Types Correspond to the
Three Covariance Types.

Finally, for our PSO algorithm, the number of measurements n per subject must be

specified. For the optimal designs reported here, we use 20 particles and 500 iterations
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to get a near optimal design ξa, and then use a new random start, keeping ξa as the

initial global optimum, with another 1500 iterations. The final design may contain

replicated points. While not done here, if these replicated points are undesirable, we

can re-optimize using PSO again, keeping one replicate of the distinct design points

and forcing a minimum distance d0 between any two points. For our examples, using

d0 = .25 or .5, this results in replacing the replicated points by the nearest points

with distance d0 as in Hu and Stufken 2017. We return to this in the next section.

2.4 An Application and Robustness Analysis for Locally Optimal Designs under

GLMM

For illustration of the methodology, we focus on the French EPIDOS study (Epidé-

tiology de l’ostéoporose), a prospective multi-centre study of the risk factors for

hip fractures in women who were 75 years or older in 1992-1993. The participating

women completed health-related questionnaires annually for six years. Carrière and

Bouyer 2002 analyzed the data from Montpellier, one of the 5 participating centers,

using a generalized linear mixed model with a logistic link function as in model (2.1).

After testing the significance of random effects, the authors finally determined the

covariance structure with random intercept and random slope. Let yij be the jth

indicator of disability, “needing help to go outdoors or home-confined”, for woman i

(i = 1, . . . , 1548; j = 1, . . . , 6). The proposed logistic mixed-effects model is

logit[E(yij|bi)] = log(
P (yij = 1|bi)

1− P (yij = 1|bi)
) = bi0 + bi1xij, (2.9)
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where, in this study, the design points are xij = j, j = 1, . . . , 6; bi = (bi0, bi1)
T ∼

N2(β,Σ), β = (β0, β1)
T , and Σ =

σ11 0

0 σ22

. The estimated parameters are

displayed in Table 3.

Parameter β0 β1 σ11 σ22
Estimate -3.61 0.17 7.25 0.18

Table 3. Parameter Estimates for French EPIDOS Study

But is an equally spaced design optimal? Using a PSO algorithm and the estimated

parameters in Table 3 with design space [1, 6] (consistent with the original study),

locally optimal designs for this model are presented in Table 4. Both A- and D-optimal

designs are one-sequence designs.

Optimality x1 x2 x3 x4 x5 x6
A 1 1 1 1 1 6
D 1 1 1 6 6 6

Table 4. A- and D-optimal Designs ξ∗ for Self-reported Disability Study

From Table 4, the A-optimal design requires each woman to complete 5 question-

naires at the first time point, which is clearly infeasible. We could simply replace

replicated points by nearest neighbors, with all design points at least separated by a

specified distance d0 (Hu and Stufken 2017). Alternatively, as already suggested, we

can use PSO again keeping one copy of the replicated point and forcing a distance

of d0 between any two design points. In this example, these two methods provide

answers. Using half a year, a quarter of a year, and one month for d0, the obtained
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designs are ξ1, ξ2 and ξ3, respectively, where

ξ1 =

 {1.0, 1.5, 2.0, 2.5, 3.0, 6.0}, A-optimality

{1.0, 1.5, 2.0, 5.0, 5.5, 6.0}, D-optimality,

ξ2 =

 {1.00, 1.25, 1.50, 1.75, 2.00, 6.00}, A-optimality

{1.00, 1.25, 1.50, 5.50, 5.75, 6.00}, D-optimality,

and

ξ3 =

 {1.00, 1.08, 1.17, 1.25, 1.33, 6.00}, A-optimality

{1.00, 1.08, 1.17, 5.83, 5.92, 6.00}, D-optimality.

The relative efficiencies of these designs and design ξ0 = {1, 2, 3, 4, 5, 6} in the original
study relative to the optimal design ξ∗ are shown in Table 5.

Optimality ξ0 ξ1 ξ2 ξ3
A 82.57 92.60 97.03 99.25
D 94.22 98.12 98.98 99.62

Table 5. Efficiencies in Percentage

Table 5 indicates that designs will remain highly efficient if d0 is not large. There

is more loss of efficiency under A-optimality because the proposed replacement for the

A-optimal design in Table 4 moves us further from that design since it places more

emphasis on one of the endpoints.

Locally optimal designs depend on “guessed” parameters, and poor guesses may

lead to poor designs. An important part to consider is robustness to misspecification

of the variance-covariance matrix Σ. With the notation from Section 2.3, let ξr denote

a locally optimal design under A- or D-optimality for Σr = r ·Σ0 and a given vector β.

The relative efficiencies elm of design ξrl to design ξrm when β = (1,−1)′ or (6,−1)′

and Σrm , with rl, rm ∈ {0, .01, .05, .1, .5, 1, 3, 5, 7, 9, 11, 13, 15, 17,

19, 21}, were calculated. For clarity of the figures, results are shown for only six
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Figure 8. Robustness Study: Efficiencies of A-optimal Designs, n = 5. The
Covariance Type Is Shown in the Top Bar and the Choice for β in the Righthand
Bar. Value of rm Is along the Horizontal Axis, Which Corresponds to the True
Covariance Matrix, and Values of rl Are Represented by the Six Different Lines, Each
Corresponds to the Optimal Design under Such rl. The Efficiencies of These Designs
Are Shown along the Vertical Axis.

designs (rl = 0, .1, 3, 9, 15, 21) in Figures 8 and 9 using n = 5. Notice that ell = 1 for

all l. From the figures we can get some useful findings. When the true r, which is

rm, is very small, like 0.01, an overestimated rl will always cause significant loss in

efficiency. In this case we are actually misspecifying a GLM with a GLMM, the huge

error is expected. Interestingly, in some of the cases with β = (1,−1)′, if we use GLM

as the model for design, from the line for rl =0.01, we can see it is actually performing

well, with the efficiency even going up when rm increases. If the true model is very

different from a GLM, overestimating or underestimating will not cause much loss in

efficiency. See the case where rl is 9, if we ignore the beginning part of x-axis, this

line almost never go under 80 percent. Then, we can look at some specific cases. For

β = (6,−1)′, we should be very careful about too small or too large guesses to avoid
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potential loss when the underlying truth is just opposite. On the other hand, for

β = (1,−1)′, we can trust a small guess without worrying about potential loss. In

both figures, some of the lines go slightly higher than 1, like the Type II, β = (1,−1)′

case in Figure 8, this is because the designs given by PSO are actually near optimal

designs, and there is no guarantee of the optimality without generalized equivalence

theorem.

Figure 9. Robustness Study: Efficiencies of D-optimal Designs, n = 5. The
Covariance Type Is Shown in the Top Bar and the Choice for β in the Right-hand
Bar. Value of rm Is along the Horizontal Axis, Which Corresponds to the True
Covariance Matrix, and Values of rl Are Represented by the Six Different Lines, Each
Corresponds to the Optimal Design under Such rl. The Efficiencies of These Designs
Are Shown along the Vertical Axis.

Another type of mis-specification we study here is based on a Wishart distribution.

Assume that a matrix G is generated from from a Wishart distribution G2(Σ, df)

with Σ being the true covariance, set to be diag(1.7145, 1.05), and selected degrees
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of freedom df , df =2, 4, 7 and 15. Then, use G/r as the guess of the covariance in

searching for an optimal design. For each df , 100 G are generated. Note that the

coefficient variation of the diagonals of G/r is
√
2/r, so the sample has a smaller

variation when r is larger. The fixed effects guesses are set to be β = (1,−1)′, then

the efficiencies of these designs comparing to the true optimal design are shown in

Figure 10. Based on this box plot, we can see that the designs are quite robust. When

the coefficient variation is largest, corresponding to r = 2, the minimal efficiency is

still around .875, with median above .975, for both optimality criteria.

Figure 10. Efficiencies of D- and A-optimal Designs with Mis-specified Σ from
Wishart Distributions. The Optimality Criterion Is Shown on the Top Bar. The
Degrees of Freedom in the Wishart Distribution Are Shown along the Horizontal
Axis, and Efficiency Is along the Vertical Axis.

2.5 Summary and Discussion

We found optimal designs under logistic mixed model by approximating the

information matrices using the PQL method. After evaluating the approximation
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by comparing it to the information matrix by basic definition and MQL, based on

logistic link, optimal designs are found so that we can see some characteristics and

also the relationship with optimal designs under corresponding GLMs. More-than-

one-sequence designs are suggested for some parameter settings under GLMMs, which

is different from the GLM case, but two sequences are quite enough to get optimal for

exact designs.
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Chapter 3

TOPIC II: LOCALLY OPTIMAL DESIGNS FOR LOGISTIC MIXED MODELS

WITH ONE EXPERIMENTAL VARIABLE AND ONE DEPENDENT

OBSERVATIONAL COVARIATE

3.1 Model Introduction

In many design circumstances, variables are not all subject to control, known as

observational variables, and it is important to consider them. Section 1.6 introduced

such cases where uncontrolled variables need to be carefully dealt with. Following

the model description in Section 2.1, the model discussed here can be described as

following.

In a longitudinal study, assume that the responses depend on two explanatory

variables, x1 and x2. x1 is subject to control, while x2 is not and unknown until

the experiment is carried out. Assume that x2 is dependent on x1, through density

p(x2|x1). The response from subject i under jth measurement, yij, j = 1, . . . , n,

satisfies

µbi
ij = E(yij|bi) = η−1(bi0 + bi1x1,ij + bi2x2,ij). (3.1)

Write bi = (bi0, bi1, bi,2)
T = β + αi consists of the subject-independent fixed-effects

vector β and the random vector αi ∼ N3(0,Σ), i.e., bi ∼ N3(β,Σ). The covariance

matrix Σ can be singular, allowing some effects to be fixed effects. In this model, we

are interested in estimating all coefficients in the regressor, i.e., β0, β1, and β2.

Discussion in Section 1.6 is only based on fixed-effects models. Under the current

mixed model 3.1, like the case in Chapter 2, we should stick to the exact design
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for each subject, and the approximate design approach only works between subjects.

By adjusting the average design approach suggested by López-Fidalgo and Garcet-

Rodríguez 2004, we consider the information matrix given the uncontrolled variable

x2.

For N subjects, given the value of xi2 = {x2,i1, . . . , x2,in}, i = 1, . . . , N , and the

value of the mixed effects b = (b1, . . . ,bN), analogous to (2.4), the conditional

covariance matrix of β̂ is

Cov(β̂|X2,b) ≈

(
N∑
i=1

FT
i U

−1
i Fi

)−1

. (3.2)

Ui equals V−1
i + FiΣFT

i , and Fi is the design matrix of design ξi, i.e., Fi = Fi(ξi) =

(f(x1,i1, x2,i1), . . . , f(x1,in, x2,ini
))T = ((1, x1,i1, x2,i1)

T , . . . , (1, x1,ini
, x2,in)

T )T , and Vi =

Vi(ξi) = diag(vbi
i1 , . . . , v

bi
in ). Note that vbi

ij now depends on both x1,ij and x2,ij.

Using the same notation in (2.6), considering designs should only depend on the

controlled variable x1, the approximate population design is now formulated as

ξ = {(ξp(x1), wp), p = 1, . . . , Ns}, wp > 0,
∑
p

wp = 1. (3.3)

Based on this notation, we first take the expectation of the inverse of (3.2) with

respect to the random effects b to get the information matrix given uncontrolled

variable X2, and then take the expectation with respect to the density p(X2|X1), to

obtain the PQL approximation to the information matrix under model (3.1)

MPQL(ξ) = MPQL(ξ|β,Σ) =
Ns∑
p=1

wpEb,X2(F
T
p (V

−1
p + FpΣFT

p )
−1Fp). (3.4)

This expression is similar to (2.7), but the matrices involved now depend on both x1

and x2, and the expectation should be taken with respect to both b and X2. Since b

and X2 are assumed to be independent, the order of the expectations doesn’t matter

in computation. For density p(X2|X1), this is just the multiplication of p(x2,ij|x1,ij)

by independence.
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3.2 Simulation: Locally Optimal Designs Searching for GLMMs with One Experi-

mental Variable and One Dependent Observational Covariate

In this section, locally optimal designs for model (3.1) are obtained using (3.4) as

an approximation to the information matrix. Since this is a locally design problem,

and expression (3.4) is dependent on the distribution of the observational covariate, we

set a comprehensive set of parameter choices in Table 6 in the following optimal design

searching. For Σ, we still take Σ = r ·Σ0 as in 2.3, but with redefined Σ as in Table 6.

Moreover, the dependency relationship of x2 on x1 is defined as x2 ∼ N(qu(x1), σu).

We choose qu(·) to be a quadratic function, (x−mid)2, where mid is the mid-point

of the design region.

Choices for (β0, β1) (1,−1) (6,−1)
Choices for β2 1 -1
Choices for σu .6 3

Diagonals of Σ0 I: (.1143, .07, .09) II: (.4, .02,.09) III: (.02, .4,.09)

Table 6. Parameter Choices for Locally Optimal Design Searching with Unknown
Observational Covariate
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Figure 11. A-optimal Designs with n = 5 Observations per Subject, with β2 = 1,
σu = .6. The Covariance Type of Σ Is Shown in the Top Bar and the Choice for
(β0, β1) in the Right-hand Bar. The Value of r for the Covariance Matrix Σ Is along
the Vertical Axis, and the Design Region [1, 6] Is Shown along the Horizontal Axis.

Figure 12. D-optimal Designs with n = 5 Observations per Subject, with β2 = 1,
σu = .6. The Covariance Type of Σ Is Shown in the Top Bar and the Choice for
(β0, β1) in the Right-hand Bar. The Value of r for the Covariance Matrix Σ Is along
the Vertical Axis, and the Design Region [1, 6] Is Shown along the Horizontal Axis.

We show some of the optimal designs found in Figure 11 and 12, designs for other

parameter settings are shown in A.2. This is enough for us to discuss some findings
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about optimal designs. Compared to designs in Section 2.3, we observe more distinct

design points. When the variance of the observational variable is larger (taking value

3), we tend to have less distinct design points in a locally optimal design, and this

trend is more obvious for A-optimality. The designs don’t change much only for

different σu or β2 value. Overall, the designs are quite robust with respect to different

assumption of the observational variable. This suggests that in practice, the error in

the prior of the observational variable doesn’t hurt the experimental design too much.
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Chapter 4

TOPIC III: BAYESIAN OPTIMAL DESIGNS FOR LOGISTIC MIXED MODELS

WITH ONE COVARIATE

4.1 Bayesian Design Problem Illustration

In the locally optimal design approach, the optimal designs must be generated

with given values of the parameter to be estimated in the experiments. When we don’t

have a very convincing guess of the design parameters, Bayesian designs are often

attractive, especially when some prior is considered reasonable for the design problem.

Following the model description in Section 2.1, we briefly describe the model settings.

In a longitudinal study, the response from subject i under jth measurement, yij,

j = 1, . . . , ni, satisfies

µbi
ij = E(yij|bi) = η−1(bi0 + bi1x1,ij). (4.1)

Write bi = (bi0, bi1)
T = β +αi consists of the subject-independent fixed-effects vector

β and the random vector αi ∼ N2(0,Σ), i.e., bi ∼ N2(β,Σ). In the Bayesian design

approach, the unknown parameters (β,Σ) are assumed to be following some prior

distributions, and the design optimality criteria will be an expectation with respect to

these distributions. In this model, we are interested in estimating all coefficients in

the regressor, i.e., β0, β1.

This model doesn’t differ from model (1.3) in estimation, we can obtain the PQL

approximation to the conditional information matrix under model (3.1) as

MPQL(ξ) = MPQL(ξ|β,Σ) =
Ns∑
p=1

wpEb(FT
p (V

−1
p + FpΣFT

p )
−1Fp), (4.2)
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which is in the same form as (2.7).

By Chaloner and Verdinelli. 1995, Bayesian optimality criteria can be expressed as

ϕB(ξ) =


Eβ,Σ(log det(I(ξ|β,Σ))), for Bayesian D-optimality;

Eβ,Σ(−tr(I−1(ξ|β,Σ))), for Bayesian A-optimality;
(4.3)

where I(ξ|β,Σ) is the expected information matrix for design ξ and parameter β,Σ.

Since there are two expectations in the criterion, which makes the simulation more

complex, we describe the process of calculating Bayesian criteria step by step in

Algorithm 2.

Algorithm 2 Calculating Bayesian Criterion using expectation of the Conditional
Information

Get n paired samples from the prior of β and Σ, {(βi,Σi)}ni=1;
For (βi,Σi), i = 1, . . . , n
Get m samples from N(βi,Σi), {(bj)}mj=1 to calculate MPQL(βi,Σi);
1
n
ϕ1
B−D ≈

∑n
i=1 log det(M

PQL(βi,Σi));
1
n
ϕ1
B−A ≈ −

∑n
i=1 tr(M

−1PQL(βi,Σi));

Using this approach, n needs to be sufficiently large to get a stable estimation to

such an expectation. By some simulation, n = 10000 is still not large enough, making

this approach too slow in finding an optimal design.

To have a shorter running time, we try to derive the expected information matrix

from the inverse of the expectation of the covariance matrix as following.

For m0 subjects, given the value of xi2 = {x2,i1, . . . , x2,ini
}, i = 1, . . . ,m0, and

the value of the mixed effects b = (b1, . . . ,bm0), analogous to (2.4), the conditional

covariance matrix of β̂ is

Cov(β̂|b) ≈

(
m0∑
i=1

FT
i U

−1
i Fi

)−1

. (4.4)
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Ui equals V−1
i + FiΣFT

i , and Fi is the design matrix of design ξi, i.e., Fi =

Fi(ξi) = (f(x1,i1), . . . , f(x1,ini
))T = ((1, x1,i1)

T , . . . , (1, x1,ini
)T )T , and Vi = Vi(ξi) =

diag(vbi
i1 , . . . , v

bi
ini
).

It is intuitive to compute the expectation of (4.4) with respect to b as CPQL
m0

(β,Σ).

Given the estimator β̂ being unbiased, this expectation is an unbiased estimator of

the covariance matrix of the estimator. Then, taking the inverse, we have the value

for the expected information matrix. This expression is dependent on m0, the total

number of subjects in the experiment, which suggests different designs for different

numbers of subjects. The simulation details for this approach is showed in Algorithm

3.

Algorithm 3 Calculating Bayesian Criterion using Expectation of the Conditional
Covariance Matrix

Get n paired samples from the prior of β and Σ, {(βi,Σi)}ni=1;
For (βi,Σi), i = 1, . . . , n
Get m ·m0 samples from N(βi,Σi), {(bj)}m·m0

j=1 to calculate CPQL
m0

(βi,Σi);
ϕ2
B−D ≈ 1

n

∑n
i=1 log det

−1(CPQL
m0

(βi,Σi));
ϕ2
B−A ≈ − 1

n

∑n
i=1 tr(C

PQL
m0

(βi,Σi));

These two approaches have a direct connection. It is not hard to show that

FT
i U

−1
i Fi has finite expectation with respect to bi. When m0 goes to infinity,

1
m0

∑m0

i=1F
T
i U

−1
i Fi has a finite limit, which is just Ebi

(FT
i U

−1
i Fi). When we have

enough subjects, these two approaches should match. For longitudinal studies, espe-

cially in clinical trials, available subjects are usually limited, so a relatively smaller m0

is focused on. By simulation, the second approach indeed provides much smaller error

for m0 = 10, and the later optimal design searching is based on this m0 = 10 setting.
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4.2 Simulation: Bayesian Optimal Designs Searching

In this section, Bayesian optimal designs for model (4.1) are obtained using the

second approach to calculate the optimality criteria. For Bayesian optimal designs,

evaluations are made on priors of the model parameters. In the following simulation,

we consider sufficiently comprehensive cases of the priors of β and Σ to illustrate the

behavior of these optimal designs. β is assumed to be following a normal distribution

N(β0,Σβ), where Σβ = r ·Σβ,0, with three different choices of Σβ,0. Σ is assumed to

a diagonal matrix diag{σ2
0, σ

2
1}, and the two diagonals are assumed to be following

inverse-Gamma distributions. The detailed priors and other settings are shown in

Table 7.

Choices for β0 (1,−1)′ (6,−1)′

Choices for Σβ,0 I: (.1143, .07) II: (.4, .02) III: (.02, .4)
Inverse Gamma for σ2

0 a: (1,4/3) b: (3,1)
Inverse Gamma for σ2

1 a: (1,4/3) b: (3,1)

Table 7. Parameter Choices for Bayesian Optimal Design Searching

We show some of the optimal designs found in Figure 13 and 14, designs for other

parameter settings are shown in Appendix A.3. The choices of the parameters of

the inverse-Gamma distribution of σ2
β,0 and σ2

β,1 are represented as (a, a), (a, b), etc.

For the inverse-Gamma priors of σ2
0 and σ2

1, case a corresponds to an inverse-Gamma

distribution with a quite concentrate distribution. For case b, the distribution is

spreading out with a larger variance.

We can conclude some characteristic of the designs from the plots. In many

cases for number of observations n = 2, optimal designs contain 2 sub-designs. For

β = (6,−1)′ and Type III for Σβ, we can see some beautiful symmetry of the two

sub-designs. Each of the sub-designs is focusing on one of the end points of the design
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region. For n = 5 case, the number of distinct design points is 3 or 4, which is more

than the typical value 3 for locally optimal design. This is a reasonable result, that

with more variation of the model assumption, more distinct values of the design points

are needed.

The choices of prior of Σ is then discussed. For cases involving b, comparing to

case (a, a), we tend to need more distinct designs points to form a Bayesian optimal

design. But overall, the designs are quite robust with respect to such a choice. This

suggests that, in practice, the prior of β has more influence on the optimal design

than that of Σ.

Figure 13. Bayesian D-optimal Designs with n = 2 Observations per Subject. The
Prior Settings of Σ Are Case (a, a). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.
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Figure 14. Bayesian D-optimal Designs with n = 5 Observations per Subject. The
Prior Settings of Σ Are Case (a, a). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.

4.3 Robustness Study on Bayesian Optimal Designs

Compared to locally optimal designs, one of the main advantages of Bayesian

optimal designs is better performance in robustness. In Bayesian optimality criteria,

the aim function is evaluated over a prior, instead of the point guess in locally

optimality criteria. In this subsection, we discuss the robustness of the Bayesian

optimal designs under model (4.1).

The robustness can be evaluated by relative efficiencies comparing Bayesian designs

and others. Under a given prior, a joint sample of size nb = 50 can be generated, and

we can search for locally optimal designs corresponding to each value in the sample.

In the beginning, under these local parameters, efficiencies of Bayesian designs can be

computed by comparing to the corresponding locally optimal designs. For a Bayesian

optimal design, we are interested in the lowest efficiency EbL, which stands for the
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worst performance of a Bayesian design. On the other hand, we can also study the

robustness of these locally optimal designs as a comparison. The relative efficiencies

of these locally optimal designs comparing to each other can be computed. Then, we

can compute the lowest efficiency achieved by each of the 50 locally optimal designs

under these 50 parameter values. For these 50 minimums, we look at their maximum

ElM and minimum ElL.

The results of efficiencies are summarized in Table 8 and 9. For each prior case,

we show the lowest efficiency EbL of the Bayesian optimal design. Also, we show both

the maximum ElM and the minimum ElL of the 50 lowest efficiencies achieved by

the 50 locally optimal designs. In these tables, by comparing EbL and ElM , we can

see that Bayesian designs offer much higher or not much smaller lowest efficiencies

compared to all randomly generated locally optimal designs, which means some rare

but disastrous cases can be avoided. To be specific, in some cases, some extremely

low efficiencies are avoided by applying Bayesian optimal design, see the red numbers

in the tables. That means in those cases, each of the locally optimal designs may

have achieved such a low value for at least one time, for all 50 parameter values,

but a Bayesian design can offer a much better lowest efficiency. By comparing EbL

and ElL, we can also see some of the locally optimal designs are performing badly

under mis-specified parameter values. Overall, Bayesian optimal designs are robust

with respect to different parameter values, especially compared with locally optimal

designs.
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Σ Case (a,a) (a,b) (b,a) (b,b)

r 5 10 25 5 10 25 5 10 25 5 10 25

I
EbL .83 .84 .89 .74 .80 .78 .79 .56 .77 .50 .70 .63
ElM .85 .80 .87 .78 .84 .78 .78 .70 .77 .53 .70 .51
ElL .44 .47 .46 .39 .24 .14 .36 .10 .06 0 0 0

II
EbL .62 .80 .75 .61 .73 .68 .65 .66 .69 .63 .37 .58
ElM .70 .79 .75 .71 .74 .69 .72 .62 .72 .65 .54 .54
ElL .31 .44 .30 .30 .27 .28 .23 .22 .16 .04 .05 .01

III
EbL .53 .54 .74 .74 .39 .56 .64 .63 .43 .45 .58 .42
ElM .72 .74 .75 .66 .71 .42 .70 .41 .54 .18 .53 .19
ElL 0 .02 .16 .02 0 0 0 0 0 0 0 0

Table 8. Some Lowest Efficiencies Achieved by Bayesian D-Optimal Designs and
Locally D-Optimal Designs, for β0 = (6,−1)′. See more Details in the Related
Discussion. 0 Means the Value Is Less Than .01.

Σ Case (a,a) (a,b) (b,a) (b,b)

r 5 10 25 5 10 25 5 10 25 5 10 25

I
EbL .77 .60 .79 .68 .72 .63 .63 .57 .63 .34 .37 .45
ElM .79 .63 .79 .61 .76 .70 .67 .57 .67 .25 .59 .19
ElL .25 .21 .33 .16 .07 .03 .17 0 0 0 0 0

II
EbL .57 .58 .69 .37 .70 .58 .63 .28 .40 .35 .51 .29
ElM .55 .66 .66 .50 .64 .50 .58 .42 .56 .40 .32 .29
ElL .14 .21 .15 .10 .11 .10 .07 .05 .05 .01 .02 0

III
EbL .63 .52 .71 .72 .49 .62 .61 .59 .53 .48 .56 .43
ElM .72 .74 .75 .66 .71 .42 .70 .41 .54 .20 .53 .12
ElL 0 .04 .12 .03 0 .14 .07 0 0 0 0 0

Table 9. Some Lowest Efficiencies Achieved by Bayesian A-Optimal Designs and
Locally A-Optimal Designs, for β0 = (6,−1)′. See more Details in the Related
Discussion. 0 Means the Value Is Less Than .01.
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Chapter 5

CONCLUSION AND DISCUSSION

In this dissertation, we investigate optimal designs for logit mixed models.

In Chapter 2, we search for locally optimal designs under one-covariate logit

mixed models. To approximate the information matrix, we apply penalized quasi-

likelihood (PQL) method and show the superiority of it. Under different local

parameters and design restrictions, locally D- and A-optimal designs are constructed

based on the approximation. We have several conclusions. By the expression of the

PQL approximation, the locally optimal designs are dependent on the number of

measurements for each subject. For these locally optimal designs, we can still see some

similarity to the locally optimal designs for GLMs, in both number and positions of

distinct design points. Moreover, for many cases, we should apply different designs to

different subjects. We also study the robustness of these locally optimal designs with

respect to mis-specified variance-covariance matrix of the random effects. Based on

the line plot of the robustness, we should carefully make the guess of the parameters

to decrease potential loss in efficiency.

In Chapter 3, an unknown observational covariate is added to the previous model.

With such an unknown observational variable in the experiment, expected optimality

criteria based on the PQL approximation are considered. Under different assumptions

of the unknown variable and parameter settings, locally optimal designs are constructed

and discussed. In this case, the number of distinct design points increases. Moreover,

the distribution of these points is more even in the design region. Comparing these
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locally optimal designs under different parameter settings, the designs are quite robust

to many of the settings, especially to the settings related of the observational variable.

In Chapter 4, we study Bayesian optimal designs based on the model in Chapter

2. Bayesian design under such a model is usually expensive in time. The running

time of simulations in this dissertation is optimized to an acceptable amount with

accurate result. Typically, we need more distinct design points in this case. For

Bayesian design, the choice of the prior is also important. Based on the results, the

Bayesian designs are quite robust with respect to the prior of Σ, while the prior of

β has much more influence. We must be careful about the prior of β, other than

that of Σ. We also discuss the robustness of Bayesian optimal designs with respect

to different parameters from the priors and got much better results compared with

locally optimal designs.

There are still lots of interesting topics related to optimal designs under logit mixed

models. Using other approximations to the information matrix, or considering simpler

models, it is possible to pursue complete class results for locally optimal designs. It is

also possible to consider more assumptions on the unknown observational variable to

fit more realistic design problems.
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APPENDIX A

OPTIMAL DESIGNS FOR ALL PARAMETER SETTINGS
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Here are all design results not shown in the previous chapters.

A.1 Locally A- and D-optimal designs for all parameter settings

Figure 15. A-optimal Designs with n = 3 Observations per Subject. The Covariance
Type Is Shown in the Top Bar and the Choice for β in the Right-hand Bar. The
Value of r for the Covariance Matrix Σ Is along the Vertical Axis, and the Design
Region [1, 6] Is Shown along the Horizontal Axis.
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Figure 16. D-optimal Designs with n = 3 Observations per Subject. The Covariance
Type Is Shown in the Top Bar and the Choice for β in the Right-hand Bar. The
Value of r for the Covariance Matrix Σ Is along the Vertical Axis, and the Design
Region [1, 6] Is Shown along the Horizontal Axis.

Figure 17. A-optimal Designs with n = 4 Observations per Subject. The Covariance
Type Is Shown in the Top Bar and the Choice for β in the Right-hand Bar. The
Value of r for the Covariance Matrix Σ Is along the Vertical Axis, and the Design
Region [1, 6] Is Shown along the Horizontal Axis.
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Figure 18. D-optimal Designs with n = 4 Observations per Subject. The Covariance
Type Is Shown in the Top Bar and the Choice for β in the Right-hand Bar. The
Value of r for the Covariance Matrix Σ Is along the Vertical Axis, and the Design
Region [1, 6] Is Shown along the Horizontal Axis..

Figure 19. A-optimal Designs with n = 6 Observations per Subject. The Covariance
Type Is Shown in the Top Bar and the Choice for β in the Right-hand Bar. The
Value of r for the Covariance Matrix Σ Is along the Vertical Axis, and the Design
Region [1, 6] Is Shown along the Horizontal Axis.
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Figure 20. D-optimal Designs with n = 6 Observations per Subject. The Covariance
Type Is Shown in the Top Bar and the Choice for β in the Right-hand Bar. The
Value of r for the Covariance Matrix Σ Is along the Vertical Axis, and the Design
Region [1, 6] Is Shown along the Horizontal Axis.

A.2 Locally A- and D-optimal designs with an unknown observational covariate for
all parameter settings

Figure 21. A-optimal Designs with n = 5 Observations per Subject, with β2 = 1,
σu = 3. The Covariance Type of Σ Is Shown in the Top Bar and the Choice for
(β0, β1) in the Right-hand Bar. The Value of r for the Covariance Matrix Σ Is along
the Vertical Axis, and the Design Region [1, 6] Is Shown along the Horizontal Axis.
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Figure 22. A-optimal Designs with n = 5 Observations per Subject, with β2 = −1,
σu = .6. The Covariance Type of Σ Is Shown in the Top Bar and the Choice for
(β0, β1) in the Right-hand Bar. The Value of r for the Covariance Matrix Σ Is along
the Vertical Axis, and the Design Region [1, 6] Is Shown along the Horizontal Axis.

Figure 23. A-optimal Designs with n = 5 Observations per Subject, with β2 = −1,
σu = 3. The Covariance Type of Σ Is Shown in the Top Bar and the Choice for
(β0, β1) in the Right-hand Bar. The Value of r for the Covariance Matrix Σ Is along
the Vertical Axis, and the Design Region [1, 6] Is Shown along the Horizontal Axis.
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Figure 24. D-optimal Designs with n = 5 Observations per Subject, with β2 = 1,
σu = 3. The Covariance Type of Σ Is Shown in the Top Bar and the Choice for
(β0, β1) in the Right-hand Bar. The Value of r for the Covariance Matrix Σ Is along
the Vertical Axis, and the Design Region [1, 6] Is Shown along the Horizontal Axis.

Figure 25. D-optimal Designs with n = 5 Observations per Subject, with β2 = −1,
σu = .6. The Covariance Type of Σ Is Shown in the Top Bar and the Choice for
(β0, β1) in the Right-hand Bar. The Value of r for the Covariance Matrix Σ Is along
the Vertical Axis, and the Design Region [1, 6] Is Shown along the Horizontal Axis.
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Figure 26. D-optimal Designs with n = 5 Observations per Subject, with β2 = −1,
σu = 3. The Covariance Type of of Σ Is Shown in the Top Bar and the Choice for
(β0, β1) in the Right-hand Bar. The Value of r for the Covariance Matrix Σ Is along
the Vertical Axis, and the Design Region [1, 6] Is Shown along the Horizontal Axis.

A.3 Bayesian A- and D-optimal designs for all parameter settings and priors

Figure 27. Bayesian D-optimal Designs with n = 2 Observations per Subject. The
Prior Settings of Σ Are Case (a, b). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.
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Figure 28. Bayesian D-optimal Designs with n = 2 Observations per Subject. The
Prior Settings of Σ Are Case (b, a). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.

Figure 29. Bayesian D-optimal Designs with n = 2 Observations per Subject. The
Prior Settings of Σ Are Case (b, b). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.
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Figure 30. Bayesian D-optimal Designs with n = 5 Observations per Subject. The
Prior Settings of Σ Are Case (a, b). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.

Figure 31. Bayesian D-optimal Designs with n = 5 Observations per Subject. The
Prior Settings of Σ Are Case (b, a). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.
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Figure 32. Bayesian D-optimal Designs with n = 5 Observations per Subject. The
Prior Settings of Σ Are Case (b, b). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.

Figure 33. Bayesian A-optimal Designs with n = 2 Observations per Subject. The
Prior Settings of Σ Are Case (a, b). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.
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Figure 34. Bayesian A-optimal Designs with n = 2 Observations per Subject. The
Prior Settings of Σ Are Case (b, a). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.

Figure 35. Bayesian A-optimal Designs with n = 2 Observations per Subject. The
Prior Settings of Σ Are Case (b, b). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.
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Figure 36. Bayesian A-optimal Designs with n = 5 Observations per Subject. The
Prior Settings of Σ Are Case (a, b). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.

Figure 37. Bayesian A-optimal Designs with n = 5 Observations per Subject. The
Prior Settings of Σ Are Case (b, a). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.
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Figure 38. Bayesian A-optimal Designs with n = 5 Observations per Subject. The
Prior Settings of Σ Are Case (b, b). The Covariance Type of Σβ Is Shown in the Top
Bar and the Choice for β0 in the Right-hand Bar. The Value of r for the Covariance
Matrix Σβ Is along the Vertical Axis, and the Design Region [1, 6] Is Shown along the
Horizontal Axis.
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