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ABSTRACT

A time-dependent semiclassical formalism is developed for the theory of incoherent

diffractive imaging (IDI), an atomically-precise imaging technique based on the principles of

intensity interferometry. The technique is applied to image inner-shell X-ray fluorescence

from heavy atoms excited by the femtosecond pulses of an X-ray free-electron laser (XFEL).

Interference between emission from different atoms is expected when the XFEL pulse dura-

tion is shorter than the fluorescence lifetime. Simulations for atoms at the vertices of a simple

icosahedral virus capsid are used to generate mock IDI diffraction patterns. These are then

used to reconstruct the geometry by phase retrieval of the intensity correlation function be-

tween photons emitted independently from many different atoms at two different detector

pixels. The dependence of the intensity correlation function on fluorescence lifetime relative

to XFEL pulse duration is computed, and a simple expression for the visibility (or contrast)

of IDI speckle as well as an upper bound on the IDI signal-to-noise ratio are obtained as a

function of XFEL flux and lifetime. This indicates that compact XFELs, with reduced flux

but attosecond pulses, should be ideally suited to 3D, atomic-resolution mapping of heavy

atoms inmaterials science, chemistry, and biology. As IDI is a new technique, not much has

yet been written about it in the literature. The current theoretical and experimental results

are reviewed, including a discussion of signal-to-noise issues that have been raised regarding

the idea that IDI is suitable for structural biology.
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Chapter 1

INTRODUCTION

Presently, there are multiple complementary and competing techniques to image bio-

logical molecules at atomic resolution for the purpose of determining their structure and dy-

namics. The oldest of these, X-ray crystallography, has been successfully used to determine

1̃50,000 structures in the Protein Data Bank (Berman et al., 2000), but has always had the

major drawback that X-rays are ionizing and inevitably degrade any structure they are used

to image. It was both proposed (Solem, 1986) and later simulated (Neutze et al., 2000) that

a sufficiently intense and brief pulse of X-rays could mitigate the problem of radiation dam-

age. With the advent of next-generation X-ray sources in the form of femtosecond X-ray

free-electron lasers (XFELs), the “diffraction before destruction” paradigm was born. Us-

ing XFELs, the technique of coherent diffractive imaging (CDI) developed as the primary

method of structure determination. Elastically (or Bragg) scattered X-rays “outrun” the ra-

diation damage to form diffraction patterns that are used to resolve structures at the atomic

scale and even create molecular movies.

Nonetheless, the principles of quantum theory dictate that the majority of scattered X-

rays are from incoherent processes. This begs the question whether such radiation, seen as a

hindrance inCDI, can also be useful inmapping atomic structures. A new technique named

incoherent diffractive imaging (IDI) was proposed by Classen et al. (2017) that uses these in-

coherent photons—specifically in the form ofK-shell X-ray fluorescence of transitionmetal

atoms—to resolve atomic structures. In an IDI experiment, an XFEL pulse is tuned to a fre-

quency just above the ionization energy of the inner electron shell of a target element in

a sample. The atom then fluoresces when hit by the X-ray beam, emitting a lower-energy
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X-ray isotropically. Normally these X-ray fluorescent photons are background noise in a

CDI experiment, but if pairs of fluorescent photons are detected on a timescale comparable

to the fluorescence coherence time, they will interfere with each other and form a speckle

pattern. The correlations in the detected fluorescence contain structural information about

the relative position of the emitting atoms and may aid the 3D, atomically-precise imaging

of biological samples. This technique of studying intensity correlations on a detector array

between incoherent photons is characteristic of intensity interferometry experiments pio-

neered by Robert Hanbury Brown and Richard Q. Twiss in the 1950s. Indeed, IDI is an

XFEL-adapted application of the principles of intensity interferometry to achieve atomic-

resolution imaging.

The rest of this introductory chapter establishes the basic functionality of XFELs and

compact XFELs, the method of CDI, and the principles of intensity interferometry that un-

derlie IDI. Intensity interferometry works both at the classical and quantum levels, with the

observation of enhanced correlation between seemingly independent photons now known

as the Hanbury Brown and Twiss (HBT) effect, a fundamental result in quantum optics.

The basic mathematics of intensity interferometry is outlined and the work of HBT and its

relation to IDI are discussed.

In the second chapter, an overview of the current literature on the subject of IDI is pre-

sented. As the technique is so new, having been first formally proposed all of five years ago,

there has not yet been a robust experimental demonstration that IDI will work in practice.

Furthermore, there are important theoretical questions surrounding the signal-to-noise ra-

tio (SNR) in an IDI experiment that are a focus of the literature. We review both the SNR

discussions and the current experimental progress in realizing IDI so that the reader may be

informed on the status of this technique and some of the opportunities and difficulties it

presents.
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The third chapter details the author’s original contribution to the field (Shevchuk et al.,

2021), showing with a time-dependent semiclassical model that the SNR scales favorably in

the case of IDI if the pulse duration is comparable to or less than the coherence time of the

fluorescence. It remains to focus theX-ray beam to boost the ionization rate to an average of

one event per potential emitter per pulse, which can be done with Laue lenses. This result is

especially important for the viability of IDI using compact XFELs, an upcoming generation

of machines that can produce attosecond pulses at the cost of reducing the pulse intensity

orders of magnitude beneath that possible at a larger XFEL. The pulse intensity constraint

makes the standard paradigm of CDI rather difficult to realize at a compact XFEL, so new

techniques are needed to take advantage of these machines’ capabilities. These results show

IDI is best suited for the capabilities of a compact XFEL.However, the SNR considerations

reviewed in Chapter 2 may still pose limitations on what might be accomplished even at

compact XFELs, especially for biomolecular samples where the density of emitters tends to

be quite low. The dissertation concludes by noting that the full story around IDI is still

developing and that the ultimate arbiter for the technique as envisioned—a quintessential

experimentdemonstrating that IDI can feasibly image abiological sample in 3Dat the atomic

scale—is still in the future.

1.1 X-ray Free-electron Lasers

X-ray free-electron lasers provide coherent femtosecond-scale X-ray pulses with a bril-

liance at least an order of magnitude beyond the brightest synchrotron sources. They

achieve this by accelerating bunches of electrons to nearly the speed of light and passing

them through an undulator, a region of rapidly alternatingmagnetic fields. The acceleration

causes the electrons to emit X-rays, which continue to modulate the electron beam, sorting
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it into coherent bunches separated by the wavelength of the radiation. This enforces the

production of further X-rays at the same wavelength and phase, creating “microbunches”

and a positive feedback loop. This high-gain mode, known as self-amplified spontaneous

emission (SASE), achieves a spatially coherent X-ray pulse of femtosecond duration at an

intensity approaching 1012 photons at large XFEL facilities. A variety of XFELs operating

via SASE have been built. The first soft XFELwas FLASH, built at DESY inHamburg, Ger-

many in 2005 and the first hard XFEL was the Linac Coherent Light Source (LCLS), built

at the SLACNational Accelerator Laboratory inMenlo Park, California in 2009. Since then

nearly a dozen hard XFELs have been built across the world.

Figure 1. CXFEL design

The layout of the compact XFEL built at the Arizona State University is shown, with the
X-ray beam traveling from right to left.

A new generation of smaller machines that do not rely on SASE to function, known as

compact XFELs, is now under construction. The first of these is the ten-meter long CXFEL

(see Figure 1), located at Arizona State University (Graves et al., 2017). CXFEL replaces the
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undulators used at large XFELs with a short-pulse laser field. This leads to “nanobunching”

of the electrons and is expected to produce temporally-coherent pulses <10 fs containing

108 photons with a pulse cadence of 1 kHz. Using beam optics, the machine can reach at-

tosecond pulse durations while maintaining control over the phase, bandwidth, amplitude,

and frequency of the pulse. This precision control enables new techniques not currently

possible at SASE-based XFELs, but compact XFELs may also be used to seed SASE-based

XFELs, transferring their desirable beam properties to the larger machines. The most im-

portant feature of compact XFELs for IDI is that these machines produce sub-femtosecond

pulses. Since the fluorescence lifetime of Kα X-rays for transition metals is approximately

half a femtosecond, a stronger correlation among fluorescence generated at a compact XFEL

is expected relative to those at larger XFELs.

1.2 Coherent Diffractive Imaging

The method of coherent diffractive imaging (CDI) is shown in Figure 2. Many iden-

tical samples, which can be single molecules or crystals, are prepared and injected into the

XFEL beam in rapid succession. Each XFEL pulse scatters off a sample and is recorded as

a single diffraction pattern on a charge-coupled device. The X-rays photoionize the sam-

ple, generating a substantial net positive charge that blows it apart in a Coulomb explosion

(hence the moniker “diffraction before destruction”). The pulse rate is synchronized to the

detector readout rate so that each exposure contains at most the scattering of a single pulse.

The diffraction patterns, corresponding to samples hit at a random orientation, can be di-

vided into groups of like orientation and averaged together to suppress noise. Each of these

pattern groups corresponds to a slice of the Ewald sphere, the sphere in reciprocal space on

which all scattering vectors q = kout − kin are located for incident wavevector kin and scat-
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tered wavevector kout. Combined over all orientations of the sample, each of which defines

a different Ewald sphere, the patterns fill a volume in reciprocal space that can be Fourier

transformed to real space using phase retrieval techniques. This provides the charge density

of the electrons surrounding the atoms, and therefore their positions.

Figure 2. Coherent diffractive imaging

This figure depicts the standard implementation of the “diffraction before destruction”
paradigm at XFELs. Although the schematic shows a single-particle sample, Bragg
diffraction from crystals is commonly used to scatter more photons and improve the
signal-to-noise ratio. Image taken from Gaffney and Chapman (2007).

For a typical crystal sample, 98% of the X-ray photons pass through without interacting.

Of the remaining 2%, about 84%of these are photoabsorbed and 8% are Compton scattered.

Only 8% of those that interact are Bragg scattered (Spence, 2017). This is purely a conse-

quence of the relative sizes of the photoionization and Thomson scattering cross sections;
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roughly a hundred times asmany photons deposit their energy into the sample as Bragg scat-

ter off of it. Since it cannot be avoided, it is critical to the success of the CDImethod that the

XFEL pulse be brief enough to outrun this radiation damage. That is, the X-rays must scat-

ter before the atoms havemoved an appreciable distance due to the ionization cascade of the

Auger effect. This timescale is of femtosecond order in light elements (Campbell and Papp,

2001). Because of the difficulty of compressing more electrons into a smaller bunch, decreas-

ing the pulse duration to a few femtoseconds or less has the trade off that the pulse intensity

will be orders of magnitude lower. This makes it difficult for a compact XFEL to compete

with the results achievable by large XFELs using CDI. Making use of these photoionization

events was a significant motivator for developing IDI.

1.3 Intensity Interferometry

Incoherent diffractive imaging is an application of intensity interferometry. Broadly, in-

terferometers fall in two different classes: amplitude interferometers and intensity interfer-

ometers. In amplitude interferometry, interference between two waveforms superimposed

on a detector can be expressed in terms of the correlation function of their amplitudes—

known as the degree of first-order coherence. The double slit experiment (see Figure 3) is

the quintessential example of this; the intensity on the screen is expressible in terms of the

field amplitudes of the waves diffracting through the slits. Intensity interferometry charac-

terizes interference not at a single point on a detector, but between events at a pair of detec-

tors. This can be expressed as a correlation function of the intensities measured in the two

detectors—the degree of second-order coherence, which is fourth-order in the amplitudes.

Both cases are related to each other and are examined below.

Consider a static plane wave E(r) of light incident on two diffraction slits a and
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n=2

n=0

n=1

optical
screen

optical screen
(front view)

screen with
two slits

monochromatic
planar wave

a

b

Figure 3. The classic double-slit experiment

b. These slits produce time-independent spherical waves Eae
ik|r−ra|+iϕa/|r − ra| and

Ebe
ik|r−rb|+iϕb/|r− rb| emanating from slits a and b respectively. HereEa andEb are purely

imaginary, as the diffraction slit rotates the wave π/2 radians out of phase with the incident

light (Loudon, 1973). Take the far-field limit where the slits are a distance L >> (rb − ra)

from the screen. The intensity at a point on the screen is expressed as

I(r) =
1

L2
(|Ea|2 + |Eb|2 + E∗

aEbe
i(k(rb−ra)+ϕb−ϕa) + EaE

∗
b e

−i(k(rb−ra)+ϕb−ϕa)) (1.1)

= Ia + Ib +
2

L2
Re[E∗

aEbe
i(k(rb−ra)+ϕb−ϕa)] = Ia + Ib + 2

√
IaIbRe[g

(1)].

The last term, characterizing the interference of the amplitudes, contains the (normalized)

complex degree of first-order coherence of the radiation. For the static case being considered,

it takes the form g(1) = ⟨E∗(ra)E(rb)⟩/
√
IaIb = |g(1)|ei(k(rb−ra)+ϕb−ϕa).

It is important to distinguish temporal coherence and spatial coherence in g(1). The

degree of temporal coherence describes any time-evolution in the relative phases of the light

through the slits. If the path length difference to the screen is large enough between the two
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slits, the light will become incoherent because its relative phase has appreciatively evolved by

the time it is detected. The degree of spatial coherence describes features of the light field not

due to the evolution of the relative phases in time. This can refer to changing the angular size

of the source, changing the wavelength of the light, or changing the separation of the slits

without introducing a path length difference. Since the treatment here is time-independent,

the waves are automatically temporally coherent, with the pattern of maxima and minima

across the screen characterizing the spatial coherence.

Temporal coherence is quantified by the visibility function (or contrast), defined as

Vamp =
Imax − Imin

Imax + Imin

=
2
√
IaIb|g(1)(τ)|
Ia + Ib

(1.2)

where τ refers to the difference in time it takes radiation to reach a point on the screen from

each slit. In the static case it is a constant and the fringes do not decay as one moves horizon-

tally along the screen. In a real experiment the contrast diminishes at higher order maxima,

reflecting the loss of temporal coherence.

There is clear structural information in the value of g(1), including information about

the separation of the slits rb − ra as well as the relative phase information. If the phases are

averaged over all possible initial values, then the correlation term vanishes and only ⟨I⟩ =

Ia+Ib remains, that is, the average intensity is just a constant sum of the individual intensity

contributions of each slit. The structural information is then lost. Moreover, the visibility

function modulates the amplitude of this signal, so it is desirable to maximize it however

possible.

In practice, it may not be easy to measure g(1) directly. For example, the Michelson in-

terferometer uses a system of paired mirrors to direct starlight into a focal plane where it

forms fringes on a screen. The fringes translate on the screen when a path length difference

of order the wavelength of the light is introduced between the arms of the interferometer. If

this occurs rapidly at random, it blurs the fringes and decreases their visibility. This require-
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ment of rigidity on a scale smaller than the wavelength of light is characteristic of amplitude

interferometers, so they are difficult to operate at X-ray wavelengths.

Instead of a single detector (screen), consider intensities IA and IB measured in a pair of

detectorsA andB, which can themselves be part of an array of detectors like each individual

pixel on a charge-coupled device. If the light now emanates from two independent emitters

a and b and is incident on both of these detectors, the product of these intensities can be

computed:

IAIB = IAaIBa + IAbIBa + IAaIBb + IAbIBb

+ 2(IAa + IAb)
√

IBaIBb cos (k(rBb − rBa) + ϕb − ϕa)

+ 2(IBa + IBb)
√
IAaIAb cos (k(rAb − rAa) + ϕb − ϕa)

+ 4
√

IAaIAbIBaIBb cos (k(rBb − rBa) + ϕb − ϕa) cos (k(rAb − rAa) + ϕb − ϕa). (1.3)

Here rAa represents the distance from emitter a to detector A, and IAa is the corre-

sponding contribution of the light from emitter a to detectorA’s measured intensity. Since

the emitters are independent, the photons are produced with random phases (although the

phases themselves do not evolve as the light propagates). This random nature of the phases

of the photons produced by the emitters defines chaotic light. Averaging over the possible

phases results in

⟨IAIB⟩ = ⟨IA⟩⟨IB⟩+ 2
√
IAaIAbIBaIBb cos (k(rBb − rBa − rAb + rAa)). (1.4)

The last term is due to ReA× ReB = 1
2
Re(AB∗), the “cycle-average” identity for complex

quantities A and B. In the far-field approximation, k(rBb − rBa − rAb + rAa) factors into

k(r̂B − r̂A) · (rb − ra) = (kB − kA) · (rb − ra) for ki = kr̂i the wavevector into detector i.

Identifying detector separation q = kB −kA and normalizing by ⟨IA⟩⟨IB⟩, then the degree

of second-order coherence is

10



g(2)(q) =
⟨IAIB⟩
⟨IA⟩⟨IB⟩

= 1 +
2
√
IAaIAbIBaIBb

⟨IA⟩⟨IB⟩
cos (q · (rb − ra)). (1.5)

By substituting I = ⟨I⟩ +∆I , the latter term corresponds to the magnitude of the correla-

tion between intensity fluctuations:

⟨∆IA∆IB⟩
⟨IA⟩⟨IB⟩

=
2
√
IAaIAbIBaIBb

⟨IA⟩⟨IB⟩
cos (q · (rb − ra)). (1.6)

Comparing this with the amplitude interferometry results, the coefficients have the struc-

ture of a product of first-order visibility functions and will be referred to as the visibility

V of the intensity correlation in subsequent sections. Per the far-field geometry of the ex-

periment and ignoring the dot product so that only the projected separation is considered

(which is automatically the case for a double-slit experiment as the slits are parallel to the

screen), |rb − ra| = θ/L for a source separation of angular size θ. Identifying a detector

separation d ≈ L|r̂B − r̂A|, the last term is proportional to cos (2πθd/λ). By adjusting the

detector separation d until themagnitude of the correlation vanishes, the angular separation

of the sources (in projection) can be determined. This characterizes the spatial coherence of

the light field and is precisely what Hanbury Brown and Twiss did in the 1950s (Brown and

Twiss, 1954). They built a correlator that multiplied the output currents of a pair of detec-

tors and observed a correlation in the intensity fluctuations of those currents. By adjusting

the detector separation until this correlation vanished and integrating over all possible ori-

entations of the source (i.e., letting the Earth rotate with respect to the sky), they were able

to measure the angular diameter of the star Sirius A (Brown and Twiss, 1956).

Their result was initially controversial on account of the quantumnature of light (Good-

man et al., 1997). While there was no dispute that there exists an intensity correlation in the

wave interpretation of light (as demonstrated above), quantum electrodynamics was a rela-

tively new theory at the time and interpreting the interference of seemingly independently-
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generated and detected photons was not well understood, especially since photons—being

uncharged—are not expected to interact with each other in a quantum field theory. The

quantum interpretation can be understood as purely a statistical effect associated to the un-

certainty principle. As shown by Figure 4, the photons can be jointly detected in two ways.

Either a photon from a is detected atA and a photon from b is detected atB, or one from a

is detected at B and one from b is detected at A. If these two possibilities are indistinguish-

able to the observer, that is, if the detection occurs with a geometry and timeframe where

either outcome is possible, then the photons will be coherent and interfere with each other

via their intensity correlation. If the two possibilities are distinguishable to the observer, the

correlation will not appear.

Distinguishability may be possible, for example, because the energy difference between

the photons is resolvable. Such a difference creates a beat mode between the two photons of

frequency ωb − ωa. Although it is not readily apparent in the static formalism used here, a

major advantage of intensity interferometry is that the correlation is only sensitive to changes

in the relative path lengths through the instrument of order the wavelength of the beat, not

to the wavelength of the light itself. This is one advantage over amplitude interferometers

that made HBT’s measurements possible. They used an optical filter of 450± 5 nm and an

electronic filter to remove all frequencies above 108 Hz, so only beat frequencies smaller than

that would reach the correlator. At 108 Hz, their instrument could tolerate a path length

difference of about 30 cm without appreciatively disrupting the relative phase of the light

and destroying the coherence. Unlike the Michelson interferometer, the beat wavelength is

not nearly as limiting an engineering requirement, at least at optical wavelengths.

One disadvantage readily apparent in the treatment provided above is that all informa-

tion about the relative phase of the light is lost to the observer in an intensity interferometer.

It is averaged out, whereas this is not true in amplitude interferometry. Therefore, to obtain
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Figure 4. Photon pairs in intensity interferometry experiments

How can the measurements of two photons be correlated if they are both emitted and
detected independently of each other? The uncertainty principle forces the observer to
trade resolution in time for resolution in energy. If photons emitted at a and bwith
frequency difference∆ω (in this case the fluorescence linewidth) have optical path
differences to each of detectorsA andB within a time∆τc of each other, the observer
cannot distinguish the photons when∆ω∆τc < 1/2. Consequently, the two photons
could have taken either set of colored paths in the image to arrive at the detectors, and so
are coherent and briefly produce interference fringes. Each path arriving at a detector
considered in isolation only contributes to the homogeneous background (since this
definitively selects whether the red or the blue paths were followed). Only when the paths
are considered as pairs, meaning the joint probability of detecting the photons is
considered, does the interference emerge, and with it the ability to extract structural
information from the correlation function. Note that this picture only makes sense in the
far-field limit, where the spatial modes are indistinguishable.

a 3D reconstruction of the emitter geometry, intensity interferometry has to solve a “phase

problem” analogous to that familiar in coherent X-ray diffraction experiments. Another

disadvantage of HBT’s method is that they relied on an electronic correlator to integrate the

signal. Not only is the path length difference through both the optics and electronics signif-

icant to maintaining coherence between the signals, but the detector and electronics have a

characteristic response time that adversely impacts the temporal coherence of the light. The

visibility of the correlations is reduced by needing to average over this response time, which

for HBT’s experiment reduced the visibility to the order of 10−5.

An IDI experiment is complementary, in some sense, to the experiments done by HBT.
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The role of the star can be substituted with that of the sample and the idea of averaging

over time can be replaced by a statistical average over many diffraction patterns, but a key

difference is that the correlator—which compares signals at the end of the opto-electronic

path in an HBT experiment—is functionally replaced by the XFEL pulse at the beginning

of the path in an IDI experiment. In both cases, there is a characteristic timescale that gates

the signal. For HBT it is the response time of the detection system while for IDI it is the

duration of the XFEL pulse. In each case this timescale must be averaged over to yield the

final visibility seen by an observer.

Having the gating mechanism before the incoherent photons are generated rather than

after they are detected makes intensity interferometry possible at X-ray energies. Since, in

an HBT setup, the relative path length difference matters through the entire optical and

electronic system up to the correlator, and that difference must be shorter than the wave-

length associated to the beat frequency of the photon pair, the precision required to do the

experiment becomes extremely difficult to engineer at high beat frequencies. Transferring

the function of the correlator to the XFEL beam permits the experimenter to simply use

standard integrating detectors (in fact, each pixel in the detector array qualifies as a “detec-

tor” in the sense ofHBT).While the experimental geometry still dictateswhere the detectors

must be placed (the constraint ofminimizing the relative path length difference still applies),

nothing about this design requires that the experiment must be done at X-ray energies, sug-

gesting that IDI can be performed at longer wavelengths as well.
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Chapter 2

A REVIEW OF IDI THEORY AND EXPERIMENTS

The original idea for IDI was proposed and simulated by Classen et al. (2017). In their

fully-quantum formalism they generalized the time-independent treatment of intensity in-

terferometry in the previous chapter to use an array of emitters and detectors. They consid-

ered a series of NE identical point-like emitters with distribution S(r) =
∑NE

i δ(r − ri).

The Fourier transform of this quantity,

S̃(q) =

NE∑
i

eiq·ri , (2.1)

is the structure factor in crystallography. Computing the degree of second-order coherence,

they established that

g(2)(q)TLS = |S̃(0)|2 + |S̃(q)|2 = 1 + |g(1)(q)|2 (2.2)

where g(1)(q) = S̃(q)/S̃(0)—the spatial part of the complex degree of first-order

coherence—is just the normalized structure factor and “TLS” stands for “thermal light

source” emitters. Equation (2.2) is known as the Siegert relation and holds generally in the

limit of a large number of emitters. In the casewhen the emission is only partially temporally

coherent, the expression should be adjusted (per Trost et al. (2020)) to

g(2)(q)TLS = 1 + V|g(1)(q)|2 (2.3)

with the visibility V containing the time-dependent part of g(1). The thermal limit is useful

for a number of simplifications, but in the context ofX-ray fluorescence only oneKα photon

per emitter is expected. A more accurate expression derived by Classen et al. (2017) (again

with the partially coherent modification by Trost et al. (2020)) for single-photon emitters

15



(SPEs) is

g(2)(q)SPE = 1 + V(−2/NE + |g(1)(q)|2). (2.4)

The extra term vanishes in the thermal limit NE → ∞ and the factor of two accounts for

the inability of the atom to emit a second photon (that could create intensity correlations

with the first) within the coherence time of the fluorescence.

Classen et al. (2017) identify several features of IDI that they see as advantages over CDI.

They note, as previously mentioned, that the cross sections of photoionization are signifi-

cantly larger than those of elastic scattering and that the fluorescence is emitted isotropically,

whereas the intensity inCDI decreases asq−4 for small values ofq. Also, high dynamic range

requirements for the detectors are not necessary as the concentration of many photons into

Bragg peaks only occurs when analyzing the photon correlations, not when detecting the

photons themselves. The method is also chemically specific as the targeting ofKα emission

with the XFEL beam energy selects for fluorescence from a particular element.

Interestingly, IDI permits genuine 3D imaging because the q-vectors are not measured

relative to the incident beam as they are in CDI, but between any two pixels on the detector.

This breaks the restriction imposed by the elastic scattering condition thatq is located on the

Ewald sphere. Instead, q-vectors fill a volume in the reciprocal space even if the detector is

flat in real space. A hypothetical spherical detector in real space would provide information

about an entire spherical volume ofmagnitude |qmax| in reciprocal space. Asqmax spans the

diameter of such a detector, its magnitude is twice that possible in the case of CDI, and this

suggests that a large amount of structural informationmay be obtainable from relatively few

diffraction patterns with the statistics of a large number of possible pixel pairings.

While a pulse duration comparable to τc (the coherence time of the fluorescence) is op-

timal, the method also works in principle with longer times, albeit with reduced visibility.

Indeed, HBT famously obtained their results on the angular diameter of Sirius with a visi-

16



bility as low as 10−5. In their case, integrating longer simply improved the SNR, andClassen

et al. (2017) analogously suggested improving the SNRof an IDI experiment by simply sum-

ming a larger number of diffraction patterns.

2.1 The IDI Signal-to-noise Ratio

For IDI to be a viable technique, it must be possible to realize a strong signal-to-noise

ratio under reasonable experimental conditions. While Classen et al. (2017) discussed in-

creasing the SNR by averaging over additional patterns, they did not examine in detail the

various factors affecting the SNR. Trost et al. (2020) rigorously examined the question of

SNR in an IDI experiment for the first time. They rederived the results of Classen et al.

(2017) for g(2)(q) in the both the SPE and TLS cases, and then assumed enough emitters

exist to consider the TLS case.

Two sources of noise they distinguished were the Poisson noise (or “shot noise”) that is

characteristic of the quantum nature of light when integrated on a pixelated detector and

the “phase noise” that occurs due to the nature of the random phases of the waves generat-

ing a finite number of speckle patterns. The latter of these was not addressed in the noise

calculations byHanbury Brown and Twiss (Brown and Twiss, 1957, 1958) in their treatment

of the SNR of an intensity interferometer. Futhermore, they added the visibility factor V as

a coefficient modulating the amplitude of |g(1)(q)|2 and identified it with the inverse of the

number ofmodes, V = 1/M , where photons are in the samemodeM if they are temporally

coherent and so exhibit interference. For unpolarized light and in the limit of long exposure

times T relative to the coherence time τc, the number of modes is

M ≈ 2T/τc. (2.5)

This is the limit relevant when the pulse duration is longer than the coherence time, as is
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currently the case atXFELs. Other effects they identified that adversely effect the visibility are

sampling limitations of the speckle pattern due to the finite solid angle of detector pixels and

the energy resolution of the detector, which may not be capable of distinguishing between

Kα,1 andKα,2 lines. The latter degeneracy reduces the visibility to 5/9 of the full value.

After an involved discussion on the statistics of the autocorrelation function, they de-

rived that

SNR =
µ2
√
NP

√
C(q)

M
√

1+4M
M2 µ4 + 21+2M

M
µ3 + µ2

∣∣∣∣∣ S̃(q)S̃(0)

∣∣∣∣∣
2

, (2.6)

where µ is the mean photon count per pixel, NP is the number of exposures, and C(q)

is the multiplicity of different pixel pairs with the same vector q (which is high for small q

and low for large q). This expression is just the expected value of the autocorrelation of all

photon pairs divided by the square root of its variance.

Of particular note are the two limiting behaviors of Equation (2.6) for low and high µ.

The low-µ case where the Poisson noise dominates reduces to

SNR =
µ
√
NP

√
C(q)

M

∣∣∣∣∣ S̃(q)S̃(0)

∣∣∣∣∣
2

(2.7)

while the high-µ case dominated by the phase noise yields

SNR =

√
NP

√
C(q)√

1 + 4M

∣∣∣∣∣ S̃(q)S̃(0)

∣∣∣∣∣
2

. (2.8)

The latter limit is notably independent of µ, meaning that at high photon counts the SNR

plateaus to a constant value. In the lower limit the SNR scales linearly with µ.

In the casewhere the sample is a sufficiently large crystal, the quantity
∣∣∣ S̃(q)
S̃(0)

∣∣∣2 approaches
a limiting behavior of 1/NE , where NE is the number of emitters. This simplifies the low-

µ limit to SNR = µ
√
NP

√
C(q)/(NEM). Trost et al. (2020) argued that this behav-

ior makes the SNR better for smaller samples than larger ones, contrary to the behavior
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expected in CDI where SNR ∝
√
NE . They explained that larger crystals imply smaller

speckles which then lower µ, as the pixel size or detector position must be adjusted to com-

pensate, and also that larger crystals suffer from increased numbers of modes due to exceed-

ing the characteristic length of cτc. The conclusion they arrive at is that IDI, unlike CDI,

fundamentally favors smaller samples despite the low number of counts per pixel because

SNR ∝ 1/NE .

Although Trost et al. (2020) derived the SNR expression for IDI and concluded that

the technique should be feasible, they considered a wide range of possible values of µ from

10−2 to 103 without quantifying what in this range is realistic. Lohse et al. (2021) presented

a thorough analysis of many factors that affect the SNR in IDI and estimated a value for µ.

They argued that µ ≤ 0.1 is actually the only realistic range, with the upper limit applying

to a very dense sample of emitters such as a crystal of pure iron imaged under ideal condi-

tions. Actual biomolecules, being considerably less dense than this, suffer from extremely

low signal counts and are squarely in the Poisson-dominated limit of Equation (2.6), with

the phase noise that dominates the high-µ limit having no relevance.

A natural solution to overcome this would be to increase the crystal volume, and there-

fore the number of emitters, but they also derived a constraint on the transverse crystal ge-

ometry (as measured relative to the beam direction) in the case of small |q| that

V ≤ 2cτc
|q|Ltrans

. (2.9)

That is, the maximum visibility is bounded by the coherence time and the transverse

sample sizeLtrans. Futhermore, a comparable constraint also applies to the other twodimen-

sions of the crystal when considering large values of |q|. This was the precise form of the size

constraints that Trost et al. (2020) had alluded to as a justification for why smaller crystals

yield superior SNR. Thus, the product V × µ that appears in Equation (2.6) has an upper

bound, with larger crystals increasing µ until some optimal size beyond which V begins to
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decrease. Coupled with the very low values of µ that they already expected for biomolecules,

they were pessimistic that IDI is possible at X-ray energies without requiring extraordinary

numbers of patterns, possibly well above 107, to meet an acceptable SNR—though they

were careful to point out that these issues are greatly alleviated at longer coherence times,

and therefore IDI at longer wavelengths should be possible. This result does appear to be in

tension with the conclusions of Trost et al. (2020) that IDI with sufficiently small crystals

should be feasible owing to the favorable dependence on the number of emitters.

2.2 IDI Experiments at XFELs

One regime where the analysis of Lohse et al. (2021) did conclude that this type of imag-

ing was possible at XFELs was the case of much larger geometry, particularly when only the

overall geometry of the sample and beam were of interest, such as a thin sheet made of a

transition metal used to characterize the spot size of the XFEL beam and its pulse duration.

More general applications of intensity interferometry at XFELs have a longer history than

IDI,with at least two earlier experiments being conducted at FLASH (Singer et al., 2013) and

at LCLS (Song et al., 2014). The Vartanyants group at the DESY laboratory, in their inten-

sity interferometry work at FLASH examining the statistical properties of the XFEL beam,

foresaw two possible future applications of intensity correlations. The first was the study of

seeded FELs to assess their temporal coherence and compare it with SASE-generated FELs.

The second was the possibility of studying the dynamics of ultrafast processes at FELs, with

the specific example of studying the Coulomb explosion of a single molecule to learn about

how its size changes as a function of time. They did notmention imaging of the sample with

atomic precision.

Themost recent experiment of this type was completed at the SPring-8 AngstromCom-
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pact free-electron LAser (SACLA) by Inoue et al. (2019). In light of upcoming attosecond

pulse durations at compact XFELs, they cited a need for new techniques capable of measur-

ing the duration ofXFELpulses shorter than 10 fs and used intensity interferometry to do so.

The experimenters collected data from 1047 pulses of 12 keV photons incident on a 20 µm-

thick copper foil tilted at 30◦. Notably, the detector was placed just off the optical axis rather

than at 90◦ as proposed by Classen et al. (2017). They observed clear intensity correlations

with this setup as shown inFigure 5. The intensity correlationswere fitwell by a 2DGaussian

beam profile of transverse widths σx = 0.4 µm and σy = 0.5 µm. The duration of the XFEL

pulse was computed from the visibility of the correlations assuming a Gaussian of standard

deviation σt, and thus a full-width at half-maximum of 2
√
2 ln 2σt = 10.3 fs. Trost et al.

(2020) pointed out that the analysis of Inoue et al. (2019) failed to account for the unpolar-

ized nature of the XFEL beam, which halved the correlation of the intensity fluctuations.

The erratum Inoue et al. (2021) corrected for the lack of polarization with the new conclu-

sion that the visibility was 0.0262± 0.008 and the pulse duration was 5.1± 0.2 fs—half of

the result originally reported.

Figure 5. SACLA experiment design and results

Figure. The experiment reported by Inoue et al. (2019) showing a design with a fixed-target
sample and a detector placed in the forward detection (left) as well as the actual intensity
correlations (right).

The first experiment designed specifically with the IDI paradigm of Classen et al. (2017)
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in mind was carried out at the MFX instrument of LCLS in April 2018 by the Chapman

group of the Center for Free-electron Laser Science at DESY (Trost et al., 2022). The chosen

samples were irregularly-shaped iron “nanostars” approximately 100 nm in diameter, with a

goal ofmeasuring the first Bragg peak through correlations in the ironKα fluorescence using

15 fs and 3 fs pulses. Figure 6 shows the basic experimental design with detectors simultane-

ously placed in the forward direction to do CDI and at 90◦ for the fluorescence detection.

The purpose of simultaneously doing CDI with IDI was to use the CDI patterns to deter-

mine which IDI patterns correspond to sample hits and to identify the sample’s orientation

via standard pattern indexing procedures. The choice of 90◦ for detecting fluorescence was

motivated by the discussion in Classen et al. (2017) that this direction should minimize the

elastic scattering background. A large conical manganese filter was placed over the detector

to absorb stray elastic scattering and Fe Kβ fluorescence, but had the unintended effect of

creating Mn fluorescence as additional background noise.

Figure 6. Schematic of the first IDI experiment

Figure. This image from Trost et al. (2022) demonstrates the geometry of the first IDI
experiment, with the sample injected from above and the fluorescence detected
perpendicular to the beam axis to minimize the contribution from elastic scattering.
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Trost et al. (2022) report that the energy resolution of the detector was not sufficient to

reliably distinguishKα,1 andKα,2 photons, lowering the overall visibility by a factor of 5/9,

and that the patterns overall were very sparse, with average count rates of 9× 10−4 photons

per pixel. They predicted a maximum possible speckle contrast given by V = 5(1+P 2)
18

τc
T

(where P 2 is a polarization factor that vanishes when the detector is insensitive to the X-ray

polarization) of V = 0.038 for the 3 fs pulses and V = 0.0076 for the 15 fs pulses. However,

they note that these ideal values are further reduced by insufficient sampling of the speckles,

background photons attributed to the manganese filter, and limitations due to the sample

size and the experimental geometry. Iron Kα fluorescence has a coherence time of 0.4 fs,

which yields a light-travel distance of cτc ≈ 120 nm. As the nanostars are roughly 100 nm in

size, they may not be completely coherent across the whole sample.

A naive calculation of the visibility from 61,000 3 fs patterns and 98,000 15 fs patterns

found unphysical results due to large variations in the mean pattern intensity ⟨I⟩. This ne-

cessitated a new method of determining V in which the estimate of V for each pattern was

weighted by the inverse of its variance. Trost et al. (2022) showed that thismethodworked in

simulations, but when applied to the data produced slightly negative visibilities, indicating

sub-Poissonian statistics thatwere not anticipated. Their reasoningwas that their photoniza-

tion algorithm systematically underestimated two-photon hits relative to one-photon hits,

so an absolute estimation of the visibility, and therefore detection of intensity correlations,

was not possible. Instead they quoted a relative difference in the visibility of the 3 fs and 15 fs

pulses of∆V = 0.025±0.005, whereas the expected difference in contrast due to the change

in the X-ray pulse duration should be at most ∆V = 0.0304. This physically meaningful

result is consistent with the hypothesis that the speckle contrast was caused by intensity cor-

relations due to X-ray fluorescence. However, without an absolute value for the visibility it

was not possible to extract the structure factor and perform a reconstruction of the sample.
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Still, this first result detecting correlations provides some evidence against the pessimism of

Lohse et al. (2021) toward IDI for the atomic scale.

A follow-up IDI experiment that has been completed by the Chapman group and is

currently undergoing analysis was performed at the MID instrument at European XFEL in

November 2021. The proposal for this experiment called for imaging of a metal sheet (with

sheets made of different elements between Cr and Ge) attached to a 30 µm-thick sheet of

tungsten with pulse durations between 3 and 30 fs. For each sheet the tungsten would have

micron-sized holes milled by a focused ion beam at select locations, creating different masks.

The tungsten would filter out elastic scattering and inner-shell fluorescence of the transition

metal at all points except where the holes are located, permitting only fluorescence in the

shape of the mask to reach the detector. In addition to using large targets of known geome-

try with high emitter densities as a proof-of-concept for future atomic-scale attempts at IDI,

the proposal cited that twoother goals of the experimentwere to explore the coherence prop-

erties of the fluorescence in the forward direction (see Chapter 3 for motivation discussing

this choice) and to lower the beam intensity to less than 107 photons/µm2 to limit damage

to the sample.
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Chapter 3

A TIME-DEPENDENT MODEL OF IDI AND ITS IMPLICATIONS

In this chapter, a time-dependent semiclassical theory of IDI and accompanying simula-

tions are presented. Adding time-dependence has significant consequences for IDI experi-

ments that were not identified in the static treatments of Classen et al. (2017) or Trost et al.

(2020). In particular, time-dependence affects the direction in which the strongest intensity

correlations are observed and reveals precisely how the duration of the XFEL pulse effects

the visibility of those correlations. The consequences of these results for IDI experiments at

compactXFELs are studied, with the aim of calculating the resolution and contrast of recon-

structed three-dimensional images of biomolecules, such as viruses and proteins containing

fluorescent heavy atoms, as a function of the ratio of the XFEL pulse duration to the life-

time of the inner-shell fluorescence. We use the Hybrid Input Output algorithm (Fienup,

1982) to address the phase problem in our simulations (see Hawkes and Spence (2007) for a

review). Where applicable, the calculations are done inHeaviside-Lorentz units. The results

in this chapter were published in Shevchuk et al. (2021).

3.1 A Semiclassical Model for IDI

Fluorescence observed in the far field is dominated by the dipole term inMaxwell’s equa-

tions. The emitters in the sample can therefore be approximated by an array ofN point-like,

damped, dipole radiators indexed by n and each defined by a time-dependent vector

pn(t) = pn0e
−Γ(t−tn)/2 sin (ω0t+ ϕn)Θ(t− tn). (3.1)
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Here pn0 is a constant dipole-moment vector that spatially orients the emitter and the fluo-

rescence occurs at time tn with mean angular frequency ω0 and initial phase ϕn, where the

latter is defined such that it absorbs a termof the formω0tn. The damping coefficientΓ is the

Einstein coefficient for spontaneous emission and the inverse of the decay time of the excited

state. It defines the half-width at half-maximumof a Lorentzian line profile governed purely

by radiative broadening, which is assumed to be the dominant effect on the linewidth.

The complicated intra-atomicphysics betweenphotoionization and fluorescence are also

assumed to occur on a timescale much shorter than the fluorescence lifetime and may be

safely be ignored. Therefore, tn in the model is also when the atom is photoionized and the

step function Θ(t − tn) ensures that emitters only contribute post-excitation. The initial

parameters pn0 , tn, and ϕn are treated as random variables for each value of n as discussed in

Sections 3.1.1–3.1.3.

From Equation (3.1) the resulting polarization density can be defined as Pn(t) =

pn(t)δ
3(r− rn) for the emitter with position rn. It contributes an electromagnetic current

density

Jn(r, t) =
dPn(r, t)

dt
= ω0pn0e

−Γ(t−tn)/2 cos (ω0t+ ϕn)δ
3(r− rn)Θ(t− tn). (3.2)

For inner shell X-ray fluorescence, ω0 ≫ Γ and all terms of order Γ/ω0 are henceforth dis-

carded as they arise in the calculations.

Maxwell’s equations expressed in potential form, assuming the Lorenz gauge, are

∂2Φ(r, t)

c2∂t2
−∇2Φ(r, t) = ρ(r, t), (3.3)

∂2A(r, t)

c2∂t2
−∇2A(r, t) =

1

c
J(r, t). (3.4)

Using Equation (3.2), the general solution for the retarded vector potential generated by the
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nth emitter is

An(r, t) =
1

4πc

∫
Jn(r

′, t− |r− r′|/c)
|r− r′|

d3r′

=
ω0pn0

4πc|r− rn|
e−Γ(t−tn−|r−rn|/c)/2 cos (ω0(t− tn − |r− rn|/c) + ϕn)

×Θ(t− tn − |r− rn|/c). (3.5)

The sample’s diameter is assumed to be much smaller than the distance to the detector and

the sample is taken to be near the origin of the coordinate system. The far-field approxima-

tion then simplifies the term in the denominator to |r− rn| ≈ |r| = r and the terms in the

numerator to |r−rn| ≈ r− r̂ ·rn. Defining for notational clarity Tn = tn+c−1r−c−1r̂ ·rn,

Equation (3.5) becomes

An(r, t) =
ω0pn0

4πcr
e−Γ(t−Tn)/2 cos (ω0(t− Tn + tn) + ϕn)Θ(t− Tn). (3.6)

From this, the vacuum form of Equation (3.4) simplifies to ∂En(r,t)
c∂t

= ∇× (∇×An(r, t)).

Substituting Equation (3.6), the electric field of the fluorescence is

En(r, t) =
ω2
0

4πc2r
(pn0 − (pn0 · r̂)r̂)e−Γ(t−Tn)/2 sin (ω0(t− Tn + tn) + ϕn)Θ(t− Tn).(3.7)

As a consistency check, the vacuum relation Bn(r, t) = r̂ × En(r, t) yields the same result

asBn(r, t) = ∇×An(r, t)).

The total energy radiated by a single emitter located at rn and fluorescing at time tn is the

integral of the Poynting vector Sn = En ×Bn over a closed surface S with normal vector n̂
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for all t > tn:

Wn =

∫ ∞

Tn

∫
S

c(En(r, t)×Bn(r, t)) · dn̂dt

=

∫ ∞

Tn

∫
S

c(En(r, t)× (r̂× En(r, t))) · dn̂dt

=

∫ ∞

Tn

∫
S

|En(r, t)|2r2cdΩdt

=

∫ ∞

Tn

∫
S

ω4
0|pn0 |2

32π2c3
(
p̂2
n0

− (p̂n0 · r̂)2
)
e−Γ(t−Tn)Θ(t− Tn)dΩdt

=
ω4
0|pn0|2

12πc3Γ
. (3.8)

The righthand expression on the fourth line of Equation (3.8) is the cycle-averaged intensity

and the integral over the solid angle makes use of the vector identity
∫
(a · p̂)(b · p̂)dΩp̂ =

4π(a · b)/3. The magnitude of the dipole moment vector is normalized to

|pn0| =

√
12πℏc3Γ

ω3
0

(3.9)

by requiring that a single photon has energyWγ = ℏω0.

From Equation (3.8) it is clear that Tn can be interpreted as the time fluorescence from

the nth emitter reaches a point on an integrating detector. The cycle-averaged intensity of

an ensemble ofN emitters observed at the surface of a detector in the direction k = (ω
c
)r̂ is

Ī(k, t) =
N∑
m,n

Em · En =
N∑
m,n

3ℏω0Γ

8πcr2

(
p̂m0 · p̂n0 − (p̂m0 · k̂)(p̂n0 · k̂)

)
e−Γ(2t−Tm−Tn)/2

× ei(k·(rm−rn)+ϕm−ϕn)Θ(t−max(Tm, Tn)), (3.10)

where the normalization of Equation (3.9) has been included and a conversion to reciprocal

space coordinates has been made for use at the detector. The total fluence (energy per pulse

per unit area) in the k-direction is then

I(k) =

∫ ∞

∞
Ī(k, t)cdt =

N∑
m,n

3ℏω0

8πr2

(
p̂m0 · p̂n0 − (p̂m0 · k̂)(p̂n0 · k̂)

)
e−Γ|Tm−Tn|/2

×ei(k·(rm−rn)+ϕm−ϕn). (3.11)
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This expressionmeasures the integrated intensity at a point on the detector and captures the

interference of the electric fields, which only overlap significantly if the waves arrive at the

same pixel within the coherence time τc = 2/Γ. As Equation (3.10) has an exponential falloff

in twith a coherence timemuch shorter than the exposure length, integrating over all future

time closely approximates a snapshot in essentially all cases. The appearance of the |Tm−Tn|

term occurs because the wavefronts can arrive at a point on the detector in either order, but

the cross terms inm and nwill not contribute to Equation (3.11) until both wavefronts have

arrived at that point. The integration variable can be redefined as tℓ = t − max(Tm, Tn),

which is the time of the later arrival, and integrated from zero to infinity.

As established previously, in an intensity interferometry experiment the observable

quantity is the degree of second-order coherence in the field amplitudes

g(2)(q) =
∑
i,j

g(2)(ki,kj) =
∑
i,j

⟨I(ki)I(kj)⟩
⟨I(ki)⟩⟨I(kj)⟩

, (3.12)

where the angle brackets represent the average over an ensemble of exposures and q is

the set of all qij = ki − kj for each pair of detector pixels (i, j). In this dipole model the

polarization direction, phase, and ionization/emission time are considered as the variables

of the ensemble that are randomized from exposure to exposure. Importantly, the random

ionization times tn, phases ϕn, and dipole moments pn0 for allN emitters are assumed to be

uncorrelated with each other and the average product of intensities takes the form

⟨I(ki)I(kj)⟩ =
N∑

m,n,m′,n′

9ℏ2ω2
0

64π2r4

×
〈[

p̂m0 · p̂n0 − (p̂m0 · k̂i)(p̂n0 · k̂i)
] [

p̂m′
0
· p̂n′

0
− (p̂m′

0
· k̂j)(p̂n′

0
· k̂j)

]〉
Ω

×
〈
e−Γ(|Tmi−Tni|+|Tm′j−Tn′j |)/2

〉
t

〈
ei(ki·(rm−rn)+ϕm−ϕn)e−i(kj ·(rm′−rn′ )+ϕm′−ϕn′ )

〉
ϕ
. (3.13)

The bracket subscripts Ω, t, and ϕ indicate that these terms are respectively averaged over

solid angle, ionization time, and phase. The quantity Tmi is the same shorthand expression
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defined before Equation (3.6) but is nowadapted to the direction of the ith pixel. Additional

uncorrelated parameters can be added to the model as factors to average over in this expres-

sion, includingdegrees of freedomfor the overall position andorientationof the ensemble of

emitters, and forwhether or not the emitter relaxes through the desired fluorescence channel.

The fact that the orientation of the sample is assumed to be constant in each shot makes our

present treatment best suited to the study of fixed targets, but it also applies to any subset of

shots collected from randomly-oriented samples that have been indexed tohave substantially

the same orientation. The dipole moment and phase averages will be computed presently

and the computation of the emission time average will be deferred to Sections 3.1.2 and 3.1.3.

3.1.1 Ensemble Averaging

The behavior of the phase factors in the average is the key to achieving nonzero intensity

correlations. In computing the average intensity ⟨I(ki)⟩, the phase term
N∑
m,n

⟨ei(k·(rm−rn)+ϕm−ϕn)⟩ϕ =
N∑
m,n

1

4π2

∫ 2π

0

∫ 2π

0

ei(k·(rm−rn)+ϕm−ϕn)dϕmdϕn (3.14)

vanishes for allm ̸= n and the average intensity simplifies to

⟨I(ki)⟩ =
3Nℏω0

8πr2
⟨p̂2

0 − (p̂0 · k̂i)
2⟩Ω =

Nℏω0

4πr2
(3.15)

where the integral over solid angle is the normalized version of the one evaluated in Equa-

tion (3.8). However, the phase term in Equation (3.13) is

N∑
m,n,m′,n′

⟨ei(ki·(rm−rn)+ϕm−ϕn)e−i(kj ·(rm′−rn′ )+ϕm′−ϕn′ )⟩ϕ

=
N∑

m,n,m′,n′

1

16π4

∫ 2π

0

∫ 2π

0

∫ 2π

0

∫ 2π

0

ei(ki·(rm−rn)−kj ·(rm′−rn′ ))

× ei(ϕm−ϕn−ϕm′+ϕn′ )dϕmdϕndϕm′dϕn′ (3.16)
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Clearly, Equation (3.16) vanishes unless the phase terms cancel and this only happens in three

cases: m = n = m′ = n′, m = n and m′ = n′ but m ̸= m′, and m = m′ and n = n′ but

m ̸= n. Simplifying terms results in

⟨I(ki)I(kj)⟩
⟨I(ki)⟩⟨I(kj)⟩

=
N∑
m

9

4N2

〈[
1− (p̂m0 · k̂i)

2
]2〉

Ω

+
N∑

m̸=m′

9

4N2

〈[
1− (p̂m0 · k̂i)

2
] [

1− (p̂m′
0
· k̂j)

2
]〉

Ω

+
N∑

m̸=n

9

4N2

〈[
p̂m0 · p̂n0 − (p̂m0 · k̂i)(p̂n0 · k̂i)

] [
p̂m0 · p̂n0 − (p̂m0 · k̂j)(p̂n0 · k̂j)

]〉
Ω

×
〈
e−Γ(|Tmi−Tni|+|Tmj−Tnj |)/2

〉
t
eiqij ·(rm−rn). (3.17)

Averaging the over the possible phases expresses the ergodic principle. The photon

phases are taken to be constant once they are generated during a given exposure. However,

they are randomized for each subsequent exposure and canbe considered fixed on a timescale

longer than the exposure time, but shorter than the time between exposures. The limit of

an average over infinitely many exposures then yields the same result as averaging the phases

over an infinitely long time.

The same argument can be made for the polarization of the emitters. After further av-

eraging the dipole moments over angle, making use of the angular integral identity before

Equation (3.9) as well as the identity∫
(a · p̂)(b · p̂)(c · p̂)(d · p̂)dΩp̂ =

4π

15
[(a · b)(c · d) + (a · c)(b · d) + (a · d)(b · c)]

yields

⟨I(ki)I(kj)⟩
⟨I(ki)⟩⟨I(kj)⟩

=
9

10N

(
1 +

1

3
(k̂i · k̂j)

2

)
+ 1− 1

N

+
N∑

m̸=n

1 + (k̂i · k̂j)
2

4N2

〈
e−Γ(|Tmi−Tni|+|Tmj−Tnj |)/2

〉
t
eiqij ·(rm−rn). (3.18)
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Finally, the last term can be written as a double sum with the m = n contribution sub-

tracted off. Simplifying, this becomes

⟨I(ki)I(kj)⟩
⟨I(ki)⟩⟨I(kj)⟩

= 1− 7

20N

(
1− 1

7
(k̂i · k̂j)

2

)
+

N∑
m,n

1 + (k̂i · k̂j)
2

4N2

〈
e−Γ(|Tmi−Tni|+|Tmj−Tnj |)/2

〉
t
eiqij ·(rm−rn). (3.19)

The last two terms of Equation (3.19) comprise the normalized correlation of the inten-

sity fluctuations at two pixels on the detector, ⟨∆I(ki)∆I(kj)⟩/⟨I(ki)⟩⟨I(kj)⟩, which in

a traditional HBT experiment contains information about the geometry of the source. To

the extent that the term averaging over the ionization times is effectively independent of

the emitter positions (which will be analyzed in Section 3.1.2), one observes that the double

sum factors to |
∑N

m eiq·rm |2 = |S̃(q)|2. From |S̃(q)|2, the real-space charge density can

be reconstructed after solving the phase problem. This may be done using iterative meth-

ods to obtain the complex structure factors (Fienup, 1982). However, as described previ-

ously, the vectors qij have a different interpretation from conventional diffraction exper-

iments such as CDI or small-angle X-ray scattering—they are defined here for every pair

of pixels and not relative to the incident direction of the radiation as they are in the case

of Bragg scattering. Each shot spans a set q of vectors qij that fill in a volume rather than

just an Ewald sphere, and the largest |qij| extends to higher resolution than a typical co-

herent diffraction pattern. In the special case of only two emitters, |S̃(q)|2 simplifies to

2 + 2 cos(q · (r2 − r1)) = 4 cos2(q · (r2 − r1)/2) and the brief interference has the form of

the Young’s fringes generated by two coherent point sources.

The results are similar to the simplified quantum formulation of Classen et al. (2017) for

single photon emitters in that they recover a unit term, a term O(1/N) to be subtracted,

and a term dependent on q. However, Equation (3.19) includes the contribution of the

m = n = m′ = n′ term that is absent in their expression. Physically, this term de-
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scribes the contribution of two photons from the same atom to the pair correlation and

should be excluded when considering data generated by single photon emitters. Subtract-

ing off the contribution of this term in the model would modify the second term in Equa-

tion (3.19) to be − 5
4N

(1 + 1
5
(k̂i · k̂j)

2). The intensities in this semiclassical formalism are

generated by spherical wave packets and therefore each emitter effectively contributes signal

to every pixel, as though it were simultaneously emitting many identical photons. As such,

them = n = m′ = n′ term contributes in our model and in the simulations of Section 3.2

based on it, but not to the photon correlations measured in an IDI experiment based on

inner-shell fluorescence generated by an XFEL pulse.

3.1.2 Experimental Geometries for IDI

Now the focus shifts to computing the average over the initial ionization/emission times

in the last term of Equation (3.19),

V =
〈
e−Γ(|Tmi−Tni|+|Tmj−Tnj |)/2

〉
tm,tn

. (3.20)

The terms in the exponent of Equation (3.20) are the time differences for the wavefronts

emitted at times tm and tn from emitters located at rm and rn to respectively reach pixels i

and j. Effectively V contains all the information about the temporal coherence of the fluo-

rescence, whereas the eiqij ·(rm−rn) term it multiplies contains information about the spatial

coherence of the fluorescence across the detector.

V is a figure of merit for an IDI experiment, so the remainder of Section 3.1 is devoted

to studying how to maximize it. This will provide insight on how to optimize the design of

future experiments.

The “ideal” case of a planewave pulse that instantaneously ionizes an atom as it sweeps

across the samplewill be examined first. The time difference between two emissions for such
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a pulse is just the projection of the atomic separation along the beam direction (taken to be

the z-axis): tm − tn = ẑ · (rm − rn)/c. Then the “ideal” visibility simplifies to

V = e−Γ(|qi·(rm−rn)|+|qj ·(rm−rn)|)/(2ω0) (3.21)

whereqi = ω0(k̂i−ẑ)/chas beendefined. The reader shouldnote the vectorsqi are precisely

those familiar from elastic scattering that are fixed to be on the Ewald sphere. The relation

between the IDI vectors qij and the elastic scattering vectors qi is qij = qi − qj .

Two important and experimentally useful limiting cases that maximize Equation (3.21)

can now be identified:

1. Choose a small sample so that rm − rn → 0.

2. Place detectors toward the forward direction so that qi,qj → 0.

While the first criterion is somewhat obvious and includes many interesting samples (since

cτc for the fluorescence is optimally of order 100 nm), only by placing the detector in the

forward direction can V generally be maximized and the correlation between the fluores-

cence emitted at separationsmuch greater than cτc be observed. This result is nontrivial and

indicates that while the fluorescence itself is isotropic, the intensity correlation in the fluores-

cence is not. Instead, it is strongest in the same direction as the elastic scattering. This result

was not appreciated by either Classen et al. (2017) or Trost et al. (2020), wheremeasurement

of the fluorescence at 90◦ was advocated.

Figure 7 demonstrates visually and how the magnitude of the path length difference

varies under these ideal pulse conditions for a few simple geometries. Due to the exponen-

tial dependence in Equation (3.21), small changes in the relative path length cτ due to adjust-

ments in the geometry produce a large change in the visibility when the path differences are

comparable to the coherence length of the fluorescence. Detecting fluorescence in the direc-

tion along the beam has a clear advantage. In effect, forward-directed fluorescence is chas-
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Figure 7. Sample orientations and detector positions for IDI experiments

Four different experimental geometries for IDI are shown for a pair of fluorescence
emitters, as are the respective path length differences cτ (shown by the length of the purple
bar) that a photon pair is delayed when arriving at one of the pixels on a detector in the far
field. This length is the magnitude of the difference in the lengths of the blue and red
quantities. In each case the X-ray pulse is taken to originate from the left and be
instantaneously ionizing. Notice the distinction in cτ between the detectors placed way
off-axis (top) and those placed slightly off-axis (bottom). Because of the exponential
dependence of the visibility on cτ , even a small change in this quantity due to a variation of
the geometry can produce a dramatic change in the visibility when it is comparable to the
coherence length of the fluorescence. Detecting fluorescence in the direction along the
beam has a clear advantage over detecting it transverse to the beam.

ing the X-ray pulse as it sweeps through the sample, and so will easily interfere with other

forward-directed fluorescence produced at earlier and later times. This makes the coherent

volume of the sample very large. Consequently, an IDI experiment at an XFEL looking to

image samples larger than the coherence length of the fluorescence should cover as large a
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solid angle as possible in the forward direction and must be able to distinguish or otherwise

filter the elastic scattering. Since the elastic scattering itself is useful for determining which

shots are hits and for indexing patterns to find the sample orientation, a geometry in which

the fluorescence is detected separately at a low angle off the beam axis is most practical with

current detectors.

Furthermore, it is crucially seen that V is not independent of the emitter positions, so it

cannot be simply factored out of the double sum over emitters to isolate the square of the

structure factor and reconstruct the sample geometry. However, it was already established

that Γ/ω0 is quite small for the lines of interest, and if experiments implement one of the

above criteria to maximize the visibility, V ≈ 1 to zeroth order.

3.1.3 IDI at a Compact XFEL

The above analysis showed how to optimize the IDI experimental geometry assuming

an ideal planewave X-ray pulse where ionization occurs instantaneously. In practice, X-ray

pulses have a finite duration with some probability to ionize atoms over the length of the

pulse. This also affects the visibility. In this section it will be shown that V as derived in

Equation (3.21) is supplemented by an additional factor accounting for the pulse envelope.

Assume for simplicity amonochromatic, plane-waveX-ray pulse with a time-dependent

intensity I0(t) (inphotonsperunit area perunit time) is incident on a sample. Thephotoion-

ization rate of an atom in the sample,

Γ0(t) = I0(t)σ, (3.22)

is determined by the pulse intensity and the atomic photoionization cross-section σ at the

energy of the X-ray photons. The atoms are considered to be ionized at most once over the

duration of the X-ray pulse. The probability Pn(t +∆t) that the pulse has ionized the nth
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atom by a time t+∆t for some small interval∆t is

Pn(t+∆t) = Pn(t) + (1− Pn(t))Γ0(t)∆t. (3.23)

The first term is the the probability that the nth atom has been ionized by time t and the sec-

ond term is the probability that it has not been ionized by time t, but is ionized in the small

subsequent interval ∆t with ionization probability density given by the rate Γ0(t). Rear-

ranging to form a difference quotient and taking the limit as ∆t → 0 yields a differential

equation for the ionization probability:

dPn(t)

dt
= Γ0(t)(1− Pn(t)). (3.24)

Pn(t) is interpretable as the cumulative distribution function of possible ionization times

for the nth atom. Its general solution is

Pn(t) = 1− e
∫ t
0 Γ0(t′)dt′ . (3.25)

In the simple case of a rectangular X-ray pulse of lengthT and constant intensity I0(t) =

I0, thismeansPn(t) = 1−e−Γ0t. The ionization timeof thenth emitter is givenby tn = t0+t

where t0 is the time the pulse reaches the nth atom and tn < T . While an atomwill fluoresce

some time after tn, the timescale that the ion lives in an excited state is negligible and tn is

also the time at which the nth atom emits a photon. This simplification directly links the

temporal coherence of the fluorescence to the properties of the XFEL beam.

Considering a plane-wave pulse of constant intensity I0 and duration T , it is possible to

show that the average over tm and tn yields

V =

(
U(1− e−(U+V ))

(U + V )(1− e−U)

)2

e−Γ(|qi·(rm−rn)|+|qj ·(rm−rn)|)/(2ω0). (3.26)

Here U = Γ0T and V = ΓT are two dimensionless parameters relating the characteristic

timescales in the system. The interpretation ofU is that it is the average number of photons
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absorbed per emitter per pulse (under the assumption that the emitter could continually ab-

sorb X-rays without exhausting its inner-shell electrons). From this model the overall ampli-

tude of the expected visibility in an IDI experiment canbe directly estimated. As described in

the previous section, if the sample is substantially smaller than cτc or the detector is placed in

the forward direction, the geometric factor (the exponential part) in Equation (3.26) is close

to unity. Then the magnitude of the visibility is controlled purely by the values of U and V .

For clarity, Figure 8 plots the U and V -dependence in Equation (3.26). The key rela-

tionship is that even a reduction of many orders of magnitude in pulse intensity over that

available at current XFELs (the limit of small U ) has very little adverse impact on the visibil-

ity so long as the pulse duration is of order the coherence time or briefer (i.e., V is of order

unity or less). To put it another way, a signal of many weakly-correlated photons can be

traded for one with far fewer strongly-correlated photons to achieve the same visibility.

Figure 8. Visibility as a function of the parameters U and V

The prefactor of the visibility for a rectangular plane-wave pulse is plotted as a function of
the ratio of the XFEL pulse duration to the lifetime of the atomic inner-shell emission
(labeled V ) and the ratio of XFEL pulse duration to the inverse ionization rate (labeled U ).
For small U , the visibility remains high so long as V ≤ 1. In other words, short pulses
produce strong correlations even if they are at low intensity. All axes are dimensionless.

Since sub-femtosecond pulses are planned for compact XFELs (Nanni et al., 2018), these
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machines should be ideal for IDI of heavy atoms provided that pulse fluences averaging

roughly one photon per photoabsorption cross section can be achieved (that is, U = 1).

With fluences lower than this, a significant number of atoms will not fluoresce, which will

reduce the visibility by a factor proportional to the square of the probability of fluorescent

emission. The flux from the CXFEL can be estimated by assuming a peak current of 500A

for 500 attoseconds at an electron beam energy of 50 MeV to yield a total stored energy of

12.5 µJ. The FEL process is approximately 0.1% efficient, yielding a coherent X-ray output

of 12.5 nJ or 107 7 keV photons per shot. As an example, Mn has a K-edge (6.54 keV) pho-

toabsorption cross section of σ = 4.1 × 10−12µm2, which would require a focus area of

approximately 4.1× 10−5µm2 (a diameter of roughly 8 nm). A beam focus this narrow can

be achieved by using a set of multilayer Laue lenses, as described recently by Bajt et al. (2018).

Fluences that achieveU > 1 increase the likelihood that at least oneK-shell ionizationoccurs,

but realistically only one useful photon per emitter for IDI is expected. Therefore, there is

a “sweet spot” for an IDI experiment at a compact XFEL that achieves U ≥ 1 and V ≤ 1.

At a larger machine like LCLS or EuXFEL, V ≤ 1 is unlikely to be achievable and such

experiments will need to compensate with U >> 1.

A natural extension of this model is to consider a series of short rectangular pulses with

a fixed spacing. In principle, a series of Np pulses of duration T each separated by a time

Ts would add both intrapulse and interpulse correlations. The latter could be possible if

the pulses are sufficiently close together so that Ts is not much larger than τc. Pulse trains

are currently in use at the European XFEL, although the spacing of the pulses there, 222 ns,

is too large to be useful for IDI. At CXFEL, where sub-femtosecond pulse durations are

planned, such a pulse structure should be feasible (Graves et al., 2019). Themachine is based

on the inverse Compton effect, and uses a form of electron beam patterning to define the

time structure of the X-ray pulses. Electron diffraction at a membrane imposes a spatial
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pattern across the beamwhich becomes its time structure after passing through an emittance

exchange device. In this way, the time structuremay be customized, and temporal coherence

retained between groups of pulses.

In the context of the SNR analysis of Trost et al. (2020), the lower intensity at a compact

XFEL is less likely to hit the “phase noise” limit of high photon counts than a larger XFEL

would, but the constraints of Lohse et al. (2021) suggest that this limit is only reachable

for unrealistic emitter densities. Assuming IDI experiments are then Poisson-dominated,

Equation (2.7) indicates that the product V × µ should be maximized to place an upper

bound on the SNR. While the same visibility V can be achieved at both compact and large

XFELs, the photon count rateµdepends exclusively on the parameterU . In fact, it is directly

proportional to the ionization probability, which for a pulse of length T is Pn(t) = 1 −

e−Γ0T = 1 − e−U . Multiplying the prefactor in Equation (3.26) by this term provides an

expression maximizing the upper bound discussed by Lohse et al. (2021):

SNR ≤
(

U2(1− e−(U+V ))2

(U + V )2(1− e−U)

)
. (3.27)

This function is plotted in Figure 9 and looks similar to Figure 8 except for the strong differ-

ence in behavior at small U and V . Naturally the SNR should be zero if U = 0 regardless

of V as no photons are ionized and no signal is produced. However, a value of U = 1 corre-

sponds to a 63% probability of ionizing an emitter, so even at values ofU >> 1, the photon

count cannot even be doubled above that produced at U = 1 for any pulse duration. The

conclusion is that there is little possible advantage to making U >> 1 unless V > 1, and at

V < 1merely having U > 1 suffices to provide the best possible SNR. Therefore, the beam

properties of a compact XFEL are ideal for achieving the best possible signal-to-noise ratio

for IDI.

Throughout this section the fact that the fluorescence yield is not unity for typical emit-

ters has been ignored in favor of the simplifying assumption that ionization events translate
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directly to detectable photons. However, the yield is independent of both the ionization

rate and the fluorescence lifetime, so it should not modify the relative behavior of the signal-

to-noise ratio as a function of U and V , and so should not affect this conclusion.

Figure 9. Signal-to-noise ratio upper bound as a function of parameters U and V

The signal-to-noise ratio upper bound for IDI with a rectangular plane-wave pulse is
plotted as a function of the ratio of the XFEL pulse duration to the lifetime of the atomic
inner-shell emission (labeled V ) and the ratio of XFEL pulse duration to the inverse
ionization rate (labeled U ). For U approaching zero, the SNR vanishes regardless of V .
However, only U > 1 is necessary to reach optimal signal-to-noise when V < 1. That is,
among XFEL beams, compact XFELs provide the best possible SNR. All axes are
dimensionless.

3.2 Simulations

For simulations based on the abovemodel, an ensemble of fluorescing zinc atoms at fixed

positions was defined, assuming at most one excitation per atom. Diffraction patterns were

generated by sampling random phases, dipole moments, ionization times, and assuming an

ionization rate fixed by the elemental photoabsorption cross-section and beam intensity us-
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ing the model of Section 3.1.3. The random phases were sampled from a uniform distri-

bution while the dipole moment components were sampled from three Gaussian normal

distributions and the ionization times were sampled from the cumulative distribution in

Equation (3.25). The latter were discarded if they extended beyond the time the X-ray pulse

interacted with the sample. The incident energy (used for the ionization cross section) was

9.65 keV, the energy of the zinc K-edge, and the fluorescence had energy 8.5 keV, the zinc

Kα line. For the compact XFEL simulation a 500 attosecond pulse duration was targeted

and the pulse intensity was adjusted to be 2.1×1012photons/fs/µm2, which yielded a value

of U = 3 for the zinc K-shell. For LCLS a pulse duration of 3 fs and a pulse intensity of

8.5×1011photons/fs/µm2 were assumed. This is optimistic for the currentmachine param-

eters at LCLS absent additional optics, but could be achieved with focusing frommultilayer

Laue lenses. These two sets of parameters were chosen so that they yield roughly the same

visibility on both machines.

A spherical detector of 48-by-48 pixels was definedwhere polar and azimuthal directions

on the spherewere partitioned into an equal number of pixels. The solid angle subtended by

the pixels determined the separation resolvable from interference fringes across the detector.

Since g(2)(q) does not explicitly depend on the detector distance in the far-field approxima-

tion, the simulations left it arbitrary and fixed the pixel solid angle instead of the pixel size.

With a spherical detector each snapshot captured the largest possible amount ofq-space data

to be used for a reconstruction.

Using Equation (3.11) and a specification of the emitter positions, the intensity at values

located in the center of each pixel on the spherical detector was computed and Poisson noise

was added to these values. Then g(2)(q) was computed by generating and summing 10,000

such interference patterns. In the limit of many patterns, this process is the equivalent of

averaging over all possible dipole moments, ionization times, and relative phases. After com-

42



puting the degree of coherence, all q-vectors for every pixel pair were binned into voxels in

q-space. Finally, theHybrid Input Output phase retrieval algorithmwas implemented with

a feedback parameter of 0.7 to solve the phase problem and generate a reconstruction.

In Figures 10 and 11, a 12-atom icosahedral “virus capsid” of zinc emitters has been recon-

structed from the simulated low-resolution IDI interference patterns with the mentioned

parameters. The oversampling ratio is roughly a factor of two. As noted above, the aim is

to show that similar fidelity can be achieved for the different experimental capabilities of a

traditional large XFEL and a compact XFEL. While these simulations were done on a lap-

top computer as a proof of concept and are rather artificial, full-scale IDI simulations of this

model could be done in a dedicated high-performance cluster.

Sample Capsid Reconstruction
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Figure 10. 3D reconstruction and 2D projection of a virus capsid

A sample reconstruction of a “virus capsid” of zinc atoms in 3D is shown (left) and
projected into the x− z plane (right). The simulation generated and averaged 10,000
patterns to compute the degree of coherence assuming emitters from the zinc K shell and
instant ionization. Snapshots are simulated as interference patterns on a spherical detector
of size 48x48 pixels and averaged to compute g(2)(q). The q vectors fill a spherical region in
q-space (not shown). A flat detector also provides some 3D q-space data, despite spanning
a plane in real space, because the k-vectors to each pixel have constant magnitude while
their differences are not restricted to a surface. A cubic support constraint was used for the
phasing.
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Figure 11. Capsid reconstructions for different XFEL beam parameters

Three reconstructions and a reference image of a 12-atom icosahedral zinc virus capsid are
shown for different experimental IDI parameters. Clockwise from the top left are the
reference structure, a reconstruction assuming the ionization occurs instantaneously, an
example reconstruction with CXFEL parameters, and an example reconstruction with
LCLS parameters. The pulse durations used for LCLS and CXFEL were 3 fs and 500
attoseconds respectively. For instant ionization the pulse is a Dirac δ-function, and as
expected produces the best reconstruction. The two bottom panels show that similar
visibility can be achieved for a reconstruction at either large XFELs or compact XFELs,
subject to making the pulse duration as short as possible and focusing the beam with
multilayer Laue lenses to achieve higher incident intensities on the sample.

3.3 Discussion

As is seen from Equation (3.21) and Figure 7, the potential to measure correlations over

a large distance increases substantially when the detector is placed in the forward direction

and this was not appreciated until the SACLA experiment described by Inoue et al. (2019).
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This is particularly important if the coherence length of the radiation is shorter than ideal

due to additional line broadening. Lohse et al. (2021) also recovered this result because their

analysis includes time-dependence, although itwas completed independently of the author’s

work presented here.

Although the derivation of Equation (3.26) was done using a semiclassical model, there

is no reason to expect that a full treatment using quantum electrodynamics would qualita-

tively change the limiting behavior of the visibility for low-intensity, short-duration pulses

that is critical to the success of IDI at a compact XFEL. Comparing these results to the sim-

ple quantum description given by Classen et al. (2017) of single photon emitters shows the

same general behavior as their results, but in their model they do not calculate the effects of

intensity, pulse duration, and experimental geometry on the visibility of the correlations.

The use of photoelectrons for IDI should also be possible, with the advantages of a di-

rect interaction without “afterglow” and a strong signal, but requiring muchmore complex,

angle-resolved, time-of-flight photoemission spectroscopy (ARPES) instrumentation. For

photoelectrons the coherence time is inversely proportional to the bandwidth of the excit-

ingXFEL beam, since the radiative decay time is negligible for very narrow inner-shell bands

from which these photoelectrons originate. The relatively short inelastic mean free path of

photoelectrons would restrict the method to smaller molecules, and multiple scattering of

the photoelectronsmay also limit the sample size. Alternatively,multiple photoelectron scat-

tering events could provide additional structural information not present in the photon case.

One clear advantage photoelectron IDIwould have over X-ray fluorescence is that detection

of lighter elements is possible because the signal is not limited by their low fluorescence yield.

To weigh the various pros and cons, an extensive analysis of the feasibility of IDI using pho-

toelectrons instead of X-ray fluorescence should be carried out.
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3.4 Conclusion

This dissertation has presented and analyzed incoherent diffractive imaging, a new tech-

nique for atomic-scale imaging at X-ray free-electron lasers using the principles of intensity

interferometry. The author has reviewed the few papers to date that have addressed this

method and created a time-dependent, semiclassical framework to study the viability of IDI

for structural biology at compact X-ray free-electron lasers—the upcoming generation of

XFELs that are currently under construction. The primary result finds that, although the

lower intensity of a compact XFEL presents limitations for traditional coherent diffractive

imaging, this need not be an obstacle to the visibility or the signal-to-noise ratio in IDI as

long as the pulse duration is comparable to or less than the fluorescence coherence time, the

pulse can be focused with Laue lenses to a photon density that will ionize the emitters with

a high probability, and the fluorescence is captured primarily in the forward direction where

the radiation’s temporal coherence is strongest. All of these conditions should be possible to

meet at a compact XFEL, which, in fact, provides the best possible beam properties for this

technique.

Despite these results, there are still concerns about the signal-to-noise ratio that can be

realistically achieved in an IDI experiment. Classen et al. (2017) operated under the assump-

tion that on average a detection rate of roughly five photons per pixel per exposure was rea-

sonable, and the follow-up study by Trost et al. (2020) examining the SNR for a wide range

of rates from 10−2 to 103 photons per pixel concluded that—unlike for CDI—the SNR for

IDI experiments should favor smaller samples. The analysis of Lohse et al. (2021) cast sig-

nificant doubt on these results, finding that they strongly overestimate the average number

of photons per pixel and that the low density of transition-metal emitters in biomolecules

limits the photon statistics to less than 0.1 counts per pixel even in the most idealized cases.
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Moreover, this limitation cannot be overcome by simply increasing the sample size as the

sample dimensions are generally constrained to be of order cτc lest the visibility be reduced.

The upshot of their analysis is that achieving even a modest SNR for IDI may require an

unreasonably large number of patterns for diffuse samples.

On the other hand, the experimental results by Inoue et al. (2019) demonstrate that in-

tensity interferometry atXFELs can unambiguously resolve larger features like the focal spot

size. Also, the first experiment designed specifically with IDI in mind by Trost et al. (2022)

did show evidence that intensity correlations fromX-ray fluorescence were observed despite

very low photon count rates averaging less that 10−3 counts per pixel, but additional experi-

ments are necessary to refine themethod to apointwhere a reconstructionmight be achieved.

Whether the sample-intrinsic limitations presented by Lohse et al. (2021) will dampen fur-

ther efforts remains to be seen, but the results presented in this dissertation strongly support

the claim that compact XFELs present the best opportunity to realize IDI.
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