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ABSTRACT

Deep metric learning has recently shown extremely promising results in the classical

data domain, creating well-separated feature spaces. This idea was also adapted to

quantum computers via Quantum Metric Learning (QMeL). QMeL consists of a 2

step process with a classical model to compress the data to fit into the limited num-

ber of qubits, then train a Parameterized Quantum Circuit (PQC) to create better

separation in Hilbert Space. However, on Noisy Intermediate Scale Quantum (NISQ)

devices, QMeL solutions result in high circuit width and depth, both of which limit

scalability. The proposed Quantum Polar Metric Learning (QPMeL ), uses a clas-

sical model to learn the parameters of the polar form of a qubit. A shallow PQC

with Ry and Rz gates is then utilized to create the state and a trainable layer of

ZZ(θ)-gates to learn entanglement. The circuit also computes fidelity via a SWAP

Test for the proposed Fidelity Triplet Loss function, used to train both classical and

quantum components. When compared to QMeL approaches, QPMeL achieves 3X

better multi-class separation, while using only 1/2 the number of gates and depth.

QPMeL is shown to outperform classical networks with similar configurations, pre-

senting a promising avenue for future research on fully classical models with quantum

loss functions.
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Chapter 1

INTRODUCTION

In 2017, Biamonte et al. (2017) showed that the ability of Quantum Computers

to produce atypical patterns which are hard to produce classically, gives them a dis-

tinct advantage in the domain of machine learning. However, most devices today

are considered Noisy Intermediate Scale Quantum (NISQ) devices, which are limited

in the circuit breadth (number of qubits) and suffer from high noise at larger cir-

cuit depths. Due to this, recent works have focused on creating Quantum Machine

Learning (QML) models that can be run on NISQ devices.

A major challenge in QML is to define an efficient mapping x ∈ Rn → |ϕ(x)⟩

that encodes the classical data into the Hilbert Space(HS). Traditional methods that

utilize handcrafted schemes such as angle encoding or amplitude encoding are space-

inefficient (require too many qubits) or require complex circuits. Most critically, all

of these schemes demonstrate poor utilization of the Hilbert Space as shown by Lloyd

et al. (2020).

Quantum Metric Learning (QMeL) (Lloyd et al., 2020) was proposed to address

both issues by first compressing the data via a classical method (such as an autoen-

coder) and then using a Parameterized Quantum Circuit(PQC) to learn a mapping

that maps data across the entirety of the associated Hilbert Space. However, this

2-step process is inefficient in the number of operations (gates) performed on the

qubits, which for NISQ devices can lead to high noise and errors.

In order to address these challenges, we propose Quantum Polar Metric Learning

(QPMeL ) – a novel method that uses a classical model to learn the parameters of the

polar form of a qubit, thereby removing the need for the separation circuit. QPMeL

1



(a) QMeL framework (Lloyd et al., 2020) (b) Quantum Polar Metric Learning frame-
work (Ours)

Figure 1.1: QPMeL compared to QMeL: Figure (a) shows the overview of QMeL
and Figure (b) shows the framework of QPMeL

creates a more efficient mapping that uses shallower circuits while improving multi-

class separability in Hilbert Space. However, learning the polar form of a qubit

classically has 2 main challenges:

1. Classical distance metrics (such as Euclidean Distance) are not well suited to
the curved and complex Hilbert Space. These metrics were formulated for flat
real-valued feature spaces.

2. Encoding classical values via a single rotational gate does not sufficiently capture
the 3-D nature of a qubit (Bloch Representation) as rotation about a single axis
is limited to covering a 2D slice.

Contributions

The purpose of developing QPMeL was to address these challenges while best

utilizing the strengths of both the classical and quantum computational paradigms.

QPMeL ’s main contributions can be summarized as follows:

1. A novel classical network that encodes classical data into 2 real-valued vectors
that are used as Polar coordinates of a qubit. This allows us to utilize the entire
3D space of a qubit, as we are not limited to a single plane.

2. A hybrid Hilbert space distance metric we dub ”Fidelity Triplet Loss” that
measures distance in Hilbert Space while creating the optimization target clas-
sically. The distances are measured in-circuit while their difference is computed
classically.
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3. Quantum Residual Corrections to speed up model learning and generate more
stable gradients by acting as a noise barrier. The parameters absorb noisier
gradients to allow the classical model to learn more efficiently.

The experimental results show that QPMeL outperforms the previous QMeL

method both in capability and computational complexity. It achieves a high de-

gree of separation between all 10 classes using only 3 qubits and 4 gates per qubit.

This is a 3x reduction compared to the 2-layer QAOA implementation of (Lloyd et al.,

2020). I also demonstrate that QPMeL outperforms classical networks with similar

structures to our classical head, presenting a promising avenue for future research on

fully classical models with quantum loss functions.

Background

As highlighted in Chapter. 1, one of the limiting challenges in QML is an efficient

mapping of classical data to the Hilbert Space. Traditionally, this mapping used

handcrafted circuits such as Basis State Encoding, Amplitude Encoding and Angle

Encoding. However, basis and angle encoding do not scale with larger data sizes on

NISQ devices. While amplitude encoding has exponential scaling (i.e. n qubit can

encode 2n values), it requires normalization constraints as well as complex ansatz

searches.

Quantum Feature Space

Unlike classical machine learning where the Feature space is normally character-

ized by a feature vector x ∈ X , where x ∈ R, the feature space for Quantum States is

the Hilbert Space (H). This complex vector space is parameterized by the amplitudes

of our qubits. The advantage of a Hilbert Space H is the exponential size, which

allows Quantum Computers to efficiently process information and achieve dramatic

speedups over classical computers. Additionally, asH is complex, it is naturally higher

3



dimensional than any x ∈ R that it encodes, allowing for natural kernel methods to

be applied to it. Both of these ideas are explored in Havĺıček et al. (2019). However,

as demonstrated in Sierra-Sosa et al. (2020), the effectiveness of these methods is

highly sensitive to the initial state preparation or encoding.

The 3 most common methods for encoding classical data into quantum states are

QRAC, Amplitude Encoding, and Angle Encoding. While these are the most common,

more specialized encoding schemes have been proposed, and some of those most rel-

evant in Quantum Machine Learning(QML) are outlined in Schuld and Petruccione

(2018).

Learned Encoding Schemes

A proposed solution to the encoding problem was in the form of Learned Encod-

ing Schemes for QML tasks. In this paradigm, a classical computer learns a lower

dimensional representation of the data via methods such as Principle Component

Analysis(PCA) or Deep Neural Networks(DNNs) and these are then used as the in-

put to a QML circuit. However, as shown by Lloyd et al. (2020), the main challenge

with this approach is the poor utilization of the Hilbert Space as the classical model

creates real-valued nonperiodic bottlenecks that do not translate well to the complex,

exponential and periodic natural of Hilbert Space.

Quantum Metric Learning (QMeL)

In order to create embeddings that better utilize the Hilbert space, Lloyd et al. (2020)

proposed a 2-step procedure of first learning a compressed classical representation

and the training a ”Hybrid Bottleneck” consisting of a PQC (They used the QAOA

scheme) and a single classical dense layer to learn better separation. The approach

utilized Hilbert Space distance metrics such as State Fidelity, Helstrøm or Hilbert-

4



Schmidt to implement a procedure similar to Deep Metric Learning.

Fidelity

is the measure of closeness between two quantum states and can be computed both

analytically or via a ”SWAP Test” circuit. I can define the fidelity between 2 states

ρ, ψ as :

F (ρ, ψ) = | ⟨ρ|ψ⟩ |2 (1.1)

This is analogous to the cosine similarity metric used in classical metric learning as

the inner product between states measures a similar notion of similarity.

5



Chapter 2

RELATED WORK

Metric Learning

Classical metric learning was originally proposed by Chopra et al. (2005) via a

novel Contrastive loss function. Their method was originally designed for classifi-

cation tasks with a large number of labels that were not available during training.

Schroff et al. (2015) further extended this idea by incorporating a Triplet loss function

proposed by Weinberger et al. (2005).

Quantum Metric Learning

The idea of Quantum Metric Learning (QMeL) was first proposed Lloyd et al.

(2020). They suggested first training a classical classifier to serve as a feature ex-

tractor. The classifier is then frozen and the classification head is replaced with a

linear layer. This layer creates the bottleneck that is then embedded into a Quantum

Computer via the QAOA embedding scheme. The linear layer and QAOA layers are

then jointly trained to optimize the State Overlap that was measured via the Hilbert

Schmidt Distance. However, the authors noted that the method suffered from over-

fitting issues due to the depth of the circuit.

Thumwanit et al. (2021) proposed a discrete feature embedding scheme that uti-

lized Quantum Random Access Codes (QRAC). While they also used Quantum Met-

ric Learning, their method was limited to binary features. This is especially clear in

their MNIST experiments which downsampled the images to 4×4 and then binarized

the pixels. My method does not suffer from similar limitations.
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Recently, Liu et al. (2022), introduced the idea of Quantum Few Shot Learning

alongside the Circuit Bypass Problem (CBP). Of key interest to this work is the CBP

as it allows for a possible method to classically learn efficient quantum mappings. In

their paper, the authors define CBP as the tendency of the classical parameters of

Hybrid Neural Networks (HyNNs) to learn optimized representations of the dataset

without large differences from the Quantum kernel. The proposed cause is that the

classical network treats the circuit as a strange non-linearity and optimizes only to

get the correct results from the circuit while ignoring its utilization. QPMeL aims to

exploit this property to produce more stable and efficient embeddings using Triplet

Loss in Hilbert Space. However, despite the similarities, I believe that this work

cannot be used for direct comparison due to the large differences in the goals of

the two papers. Liu et al. (2022) focused on solving the few shot task without the

same constraints on the circuit depth and breadth as QPMeL . This makes setting

up a comparison point difficult. Additionally, I believe that the general structure of

QPMeL can be integrated into Liu et al. (2022)’s work.

Nguyen and Chen (2022) proposed an alternate paradigm for embedding search by

performing an architecture search on the entanglement operators to find the optimal

entanglement pattern. I believe that this work can be used to improve the perfor-

mance of QPMeL by finding the optimal entanglement pattern for the ZZ(α)-Gates.

Quantum Triplet Loss

Wendenius et al. (2022) also proposed using a parameterized circuit with a classical

triplet loss. However, QPMeL differs from theirs in several key ways.

1. They use the measurements from a PQC as their embeddings on which they

apply Mean Squared Error(MSE)-based triplet loss, I argue that this leads to

a loss of information due to the uncertainty principle which guarantees that
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measurements cannot be used to fully reconstruct the state. QPMeL avoids

this issue by computing distances in quantum HS using native distance metrics

such as Fidelity.

2. They utilize a classical autoencoder to compress the data, therefore their en-

coder has no information about the quantum feature space. QPMeL trains the

system end-to-end, allowing the classical head to learn the quantum feature

space.

3. The embeddings are single-dimensional and encoded onto the quantum system

using a single layer of Rx gates, this limits access to the entire Bloch sphere

surface. QPMeL uses a 2D encoding which is used for independent Ry and

Rz gates, this allows for access to the entire Bloch sphere surface. Due to

these differences, we can also see QPMeL greatly outperforms Wendenius et al.

(2022)’s work by showing strong all-class separation as compared to their work

which can only differentiate between 2 classes.

Hou et al. (2023) recently proposed a Quantum Triplet Loss function. However,

there are 2 key differences between their work and QPMeL . Firstly, their triplet loss

function is fully quantum, and hence the loss is calculated in the circuit. This has

implications for the circuit depth and noise resilience. Secondly, their work has a

focus on the adversarial properties of the loss function. QPMeL does not argue or

explore these adversarial properties.

These methods provide a poor point of comparison for QPMeL due to either being

focused on binary classification or proposing an entirely orthogonal contribution that

could be integrated into QPMeL .
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Quantum Kernel Thoery

Schuld (2021) reformulated the variational learning problem into the problem of

finding optimal kernels based on classical kernel methods. Schuld in her work proves

that all VQC are linear models on the ”feature vectors” in quantum Hilbert space

using the concept of a Reproducing Kernel Hilbert Space(RKHS). She then employs

the representer theorem to show that the optimal kernel can be represented as a linear

combination of the training data.

As pointed out by Jerbi et al. (2023), her work inspired a line of research where

all quantum advantage comparisons against classical methods were only made with

respect to the kernel methods. However, they also observed that the Data Reuploading

Classifier (Pérez-Salinas et al., 2020) breaks the correspondence between the VQC

and kernel methods while demonstrating universality on even single qubit systems. As

such they proposed a unifying framework for all 3 approaches (VQC, kernel methods,

and data reuploading).

Critically, Jerbi et al. (2023) highlighted in their results the poor generalization

of kernel methods as compared to VQC and data reuploading methods. This was the

cornerstone in their argument claiming that the true advantages of quantum machine

learning lie in VQC and data reuploading methods. I later show that my work can

be interpreted as a method to learn the encoding in kernel space.

9



Chapter 3

PROPOSED METHOD

The core of QPMeL is splitting the learning process between a classical and quan-

tum component as is standard with HyNNs but moving the majority of the learnable

parameters to the classical side. This is accomplished by learning the parameters

of the polar qubit representation as independent network outputs. QPMeL is an

extension of the work by Liu et al. (2022) and Lloyd et al. (2020) and has 4 main

components:

1. Classical Head: formed by our CNN Backbone and ”Angle Prediction Layer”,

2. Quantum Circuits: Which encodes the classical data and performs the fidelity
measurement.

3. QRC: An extension to our training circuit that leads to faster training via an
additive freely trainable parameter.

4. Loss Function: Finally, our loss function is a novel adaptation of the Triplet
Loss function to the Hilbert Space. I call this the ”Fidelity Triplet Loss”.

U

U

U

Quantum Circuits (Training)

Fidelity Triplet Loss

AP

AN

Backpropagation

,  , model 

Classical Heads

Figure 3.1: QPMeL triplet training loop: The fidelity triplet loss is computed
based on the SWAP test fidelity measurement and the gradients are backpropagated
throughout. The classical model weights, ZZ parameters, and QRC parameters are
updated together, having the classical head directly learn the polar coordinates that
create separation in Hilbert Space.
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Classical Head

The classical head has 2 main components:

1. CNN Backbone: A standard CNN architecture that learns the features of the
input data.

2. Angle Prediction Layer (APL): A layer that learns the θ and γ parameters
for the quantum circuit.

CNN Backbone

The classical head uses convolution blocks consisting of CONV + ReLU + Max-

Pool layers, a dense block with 3 Dense + GeLU layers with reducing dimensionality.

GeLU has better convergence properties in Dense layers and hence is chosen over

ReLU. The architecture can be seen in 3.2.

Angle Prediction Layer (APL)

The polar form of a qubit can be described in terms of 2 angles - θ and γ which

can be encoded via the Ry and Rz gates respectively. Due to the rotational nature of

these gates, any encoding method using them is periodic. As pointed out by Lloyd

et al. (2020), when trained together, the classical ReLU learned this periodic property.

U

Image Conv2D+ ReLU + MaxPool Block

Dense + GeLU Block

Concat

26x26x16
11x11x32

4x4x8

128
27

9

3

Sigmoid

, 

CNN Backbone Angle Prediction Layer

3

6

6

QRC (inference only)

Quantum 
Encoder

Figure 3.2: QPMeL Classical Head Architecture: Our angle prediction layer
learns independent θ and γ from the features of the CNN Backbone. The sigmoid
activation and 2π multiplication are used to match the period of rotation in a qubit.
Quantum Residual Correction is then applied for inference.
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However, we argue that encoding values directly within the range of the period via a

sigmoid and multiply procedure is more efficient.

QPMeL aims to learn ”Rotational Representations” for classical data by creating 2

embeddings for the θ and γ parameters respectively per qubit from the classical head.

Therefore for a 3 qubit embedding our classical model would output 6 real values. I

ensure that these values are within the period by utilizing the sigmoid activation and

multiplying the results by 2π before passing them to the circuit. This explicit period

definition ensures more stable losses as we do not need to worry about overlapping

values with similar gradients. The idea of rotational embeddings has also been noted

in classical networks by Zhou et al. (2020), where they demonstrated that rotational

representations have continuous representations in 5D and 6D, which lend themselves

well to be learned by neural networks. I can hence define the angle prediction layer

as follows:

x = CNN Backbone(Image)

θm = sigmoid(Wθx+ bθ)

γm = sigmoid(Wγx+ bγ)

APL = 2π × concat(θm, γm)

Where, Wθ, bθ are the weights and bias for the θ prediction layer and Wγ, bγ are the

weights and bias for the γ prediction layer.

Quantum Circuits

There are 2 main settings for our quantum circuits, a training variant and an

inference variant. This is mainly to accommodate the swap test required for the

fidelity triplet loss 3. I can see both circuits defined in Fig. 3.3.
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Figure 3.3: QPMeL Quantum for training and inference: The QRC parameters
are learned as separate weights during training, acting as noise barriers to the classical
head. During inference, the parameters are integrated into the classical head.

Encoding Circuit

The encoding circuit is used to create the state |ψ⟩ from the classical embeddings.

The structure (as shown in Fig3.3a) consists of Ry and Rz gates separated by a layer

of cyclic ZZ(θ) gates for entanglement. Our experiments show that this structure

performs similarly to or slightly better than an Ry → Rz → ZZ structure which more

naturally shows polar learning. The choice of ZZ(θ) is motivated by the variable

entanglement property as also observed by Lloyd et al. (2020).

Embedding State and Learnable Parameters

The final state produced by our Encoding circuit as seen in Fig.3.3a would be:

|ψ⟩ =
n⊗

i=0

exp(i
ϕi

2
) cos

θi
2
|0⟩ + exp(i

−ϕi

2
) sin

θi
2
|1⟩ (3.1)
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where,

ϕi = αk − αi − γi

k = (n+ i) mod (n+ 1)

θi = θmi
+ θ∆i

γi = γmi
+ γ∆i

θmi
, γmi

= f(image, w)

Where we have 6 parameters per qubit, 2 from the classical model (θm, γm), 2 learned

parameters for the ZZ-Gate (αi, αk), and 2 residuals (θ∆, γ∆).

Training Circuit

QPMeL uses separate circuits for training and inference, with 2 main differences -

(1). The SWAP test extension requires 2 copies of the encoding circuit (2). Residual

Corrections that are only used in the training process. I can see the green regions

in Fig.3.3b use our encoding circuit but add the QRC parameters (θ∆,γ∆) to the

rotations.

In order to compute the fidelity we use the SWAP test. I measure M = P (|0⟩)

and convert it to fidelity classically using the formula:

F = 2M − 1

This structure is seen in the yellow regions alongside the readout qubit on the bottom.

Quantum Residual Corrections (QRC)

I introduce the idea of QRC to speed up the training process and mitigate the

smaller gradients that we get due to Sigmoid Saturation(Ding et al., 2018) impacting

the early layers of our classical model alongside the smaller gradients from our quan-
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tum circuit. While using GeLU and ReLU throughout our classical model mitigates

the issue of Sigmoid Saturation, it is the combination of the 2 that creates the issue.

Quantum gradients are approximated using the parameter-shift rule (Mitarai et al.,

2018), which utilizes periodic properties of the gates to calculate the gradients, but

this also leads to smaller gradients.

To overcome this issue we propose a novel new method we name ”QRC”. I add

learnable parameters θ∆ and γ∆ to the angles of the Ry and Rz gates respectively as

seen in Fig.3.3. Due to their shallowness and input independence, they are affected

by smaller gradients faster and act as ”noise barrier” allowing our classical to learn

faster. During inference, we add these weights to our classical model as seen in Fig.3.2

Fidelity Triplet Loss

QPMeL uses a quantum extension to triplet loss, which uses State Fidelity as

the distance metric. I simplify our loss function by separating the comparison and

distance formulation, favoring 2 calls to a much thinner and shallower circuit as

compared to Hou et al. (2023). This is more practical on NISQ devices with lower

coherence time. QPMeL measures distances in Hilbert space using state fidelity and

then computes the difference classically. The final loss function in QPMeL can be

defined as follows:

AP = | ⟨ψA|ψP ⟩ |2

AN = | ⟨ψA|ψN⟩ |2

Loss = max(AN − AP +m, 0)

Where ψA, ψP , ψN are the quantum states of the Anchor, Positive and Negative sam-

ples respectively. m is the margin hyperparameter.

A key difference from the classical counterpart is using AN − AP rather than
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AP−AN . This is a natural result of the difference between Fidelity and MSE distance

metrics. The classical formulation tries to minimize AP Distance, asMSE(A,P ) → 0

for similar features. However, in the quantum case, we try to maximize the fidelity,

as F (ψA, ψP ) → 1 for similar states.
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Chapter 4

ANALYSIS

QPMeL as Dense Angle Encoding

Dense angle encoding is a variation of angle encoding that exploits relative phase

as a degree of freedom to encode 2 real features per qubit. Another way for us to

frame this would be to consider it a method to encode 2-D data points onto a single

qubit as shown by LaRose and Coyle (2020). The structure of Dense Angle Encoding

is shown below in Eq. 4.1.

|p⟩ = cos(πx) |0⟩+ e2πiy sin(πx) |1⟩ ; p = (x, y) (4.1)

A key point to note is that dense angle encoding essentially encodes data onto

to the polar coordinates of a single qubit. This is apparent when comparing the

structure of the polar representation of a single qubit state to the dense angle encoding

representation. I can trivially prove that QPMeL for single qubits is equivalent to

Dense Angle Encoding and hence to Polar Encoding.

Taking our single qubit state as,

|ψ(θ, γ)⟩ = exp(i
−γ
2

) cos
θ

2
|0⟩ + exp(i

γ

2
) sin

θ

2
|1⟩

= exp(i
−γ
2

)

(
cos

θi
2
|0⟩+ exp(iγ) sin

θi
2
|1⟩

)
Without loss of generality, we can consider the global phase of the system as

exp(i−γ
2
), which would reduce our initial mapping to :

|ψ(θ, γ)⟩ = cos
θ

2
|0⟩ + eiγ sin

θ

2
|1⟩ (4.2)
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Eq. 4.2 is identical to the polar representation of a single qubit state.

Recall that θ and γ are scaled by 2π before encoding into the qubit. Therefore,

replacing them in Eq. 4.2 we get:

|I⟩ = cosπ2.σ(wθI) |0⟩ + eiπ2.σ(wγI) sinπ2.σ(wθI) |1⟩

Where, wθ, wγ are the weights from our classical network that yield θ and γ

respectively. σ is the sigmoid function and I is the image. Taking x = 2.σ(wθI) and

y = σ(wγx), we get:

|I⟩ = cosπx |0⟩ + e2πiy sinπx |1⟩ (4.3)

Which is identical to the form for dense angle encoding as seen in Eq. 4.1. When

considering the multiqubit case, we must also incorporate the entanglement operator

ZZ(α) into our state. However, the dense angle encoding structure remains the same

with changes in the phase value. A multiqubit formulation of QPMeL as a dense

encoding would be:

|I⟩ =
n⊗

i=0

cos πxi |0⟩ + e−i2πϕi sin πxi |1⟩ (4.4)

where,

ϕi =
αk − αi − yi

2π
| k = (n+ i) mod (n+ 1)

xi = 2.σ(wi
θI) | yi = 2.σ(wi

γI)

This is useful as it allows for QPMeL to leverage some of the theoretical properties

of dense angle encoding. As shown by LaRose and Coyle (2020), dense angle encoding

1. is more error-resilient than angle encoding,

2. is more resource-efficient than angle encoding,

3. yields higher accuracy as compared to angle encoding, wavefunction/amplitude
encoding and superdense angle encoding.
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Original Image Space Intermediary  2-D space Bloch-Sphere Surface Map

Classical Head

 Training Loss 

Encoding Circuit

Figure 4.1: Intermediary Feature Space: Figure shows the step-by-step mapping
between classical and quantum feature spaces. Note that the classical feature space is
not a flat Euclidean feature space but a curved space represented flat for simplicity.

The key contribution of QPMeL over standard angle encoding is coupling our

classical encoder to work directly off this paradigm via the split angle embeddings.

This creates an Intermediary Feature Space, which is curved rather than flat. This is

enforced by the sigmoid function and the inherent normality constraints placed on θ

and γ when they are encoded onto the Hilbert Space. This is shown in Fig. 4.1.

Bloch Sphere as a Spherical Embedding in QPMeL

The idea of spherical feature spaces in the context of metric learning has been

explored by both Wang et al. (2017) and Zhang et al. (2020). However, while Wang

et al. (2017) had to implement a novel angular constraint for their triplet loss to create

the angular constraints, the use of fidelity distance naturally enforces this constraint

on the triplets.

A more interesting line of further study would be to look into applying the work

done by Zhang et al. (2020) to the QPMeL framework. Their team studied the

effect of normalization on the gradients and found that proper normalization in the

classical space can lead to better convergence. This is particularly interesting as the
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normalization of the qubit states is a natural part of the QPMeL framework. Their

proposed modification to the triplet loss function normalized the embeddings before

computing the distances:

LTriplet = (||f̂a − f̂p||2 − ||f̂a − f̂n||2 +m)+

where, f̂ =
f

||f ||2

The analog for QPMeL is:

LFidelity Triplet = (| ⟨ψa|ψp⟩ |2 − | ⟨ψa|ψn⟩ |2 +m)+

In the QPMeL framework, our distance metric (fidelity) operates on quantum states

which are normalized by nature. This would imply that it would inherit the desirable

properties of the spherical embeddings. However, to prove that these properties hold

for the gradients generated by parameterized quantum circuits would require further

study and be beyond the scope of this work.

QPMeL as a Kernel Learner

As Schuld (2021) proved, the space of quantum models is mathematically identical

to the reproducing kernel Hilbert space (RKHS) of Quantum Kernels. In this context,

we can consider our classical head a kernel learner similar to the one proposed by Le

and Xie (2018).

The proof and associated kernel structures can be seen below:

QPMeL Kernel Function

Using the definition of Quantum Kernel defined by Schuld (2021),

k(x, x′) = | ⟨ϕ(x)|ϕ(x′)⟩ |2 (4.5)
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where,

ϕ = mapping function from classical → quantum,

k = kernel function

This is by design identical to the state fidelity due to the function of a kernel as a

similarity metric. As “x“ in the embedding from classical space, for QPMeL , we can

define the embedding function as,

|ϕ(x)⟩ = |ψ(θ, γ)⟩ (4.6)

Therefore, the kernel function in the QPMeL framework is parameterized by θ, γ

defined as,

k(x, x′) = | ⟨ψ(θ, γ) | ψ(θ′, γ′)⟩ |2 (4.7)

The QPMeL data encoding feature map ψ(θ, γ) was defined in Eqn. 3.1. This em-

bedding function is significantly more complex than the embedding defined by a single

rotational embedding considered by Schuld (2021). For the state of simplicity, let us

only consider the rotational embedding components while ignoring the entanglement

ZZ(α) operator (as would be the case when α = 0).

ψ(θ, γ) =
n⊗

i=0

e−i
γi
2 cos

θi
2
|0⟩ + ei

γi
2 sin

θi
2
|1⟩

In order to better understand the kernel function, let us consider the case of a

single qubit. As Schuld (2021) formulated the kernel function in terms of density

matrices, I will be using the density matrice version of QPMeL.

|ψ(θ, γ)⟩ = e−i γ
2 cos

θ

2
|0⟩ + ei

γ
2 sin

θ

2
|1⟩ (4.8)
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The density matrix for our single qubit encoded state would be:

ρ(x) = |ψ(θ, γ)⟩ ⟨ψ(θ, γ)| =

cos2
θ

2
|0⟩ ⟨0| + eiγ cos

θ

2
sin

θ

2
|0⟩ ⟨1|+ e−iγ sin

θ

2
cos

θ

2
|1⟩ ⟨0|+ sin2 θ

2
|1⟩ ⟨1|

Therefore the inner product of two such states would yield our kernel function,

k((θ, γ), (θ′, γ′)) = t2 + ω2 + 2tω cos(γ − γ′) (4.9)

where,

t = cos
θ

2
cos

θ′

2
(4.10)

ω = sin
θ

2
sin

θ′

2
(4.11)

This is quite similar to the kernel function of the linear model that Schuld (2021) uses.

However, their paper used 1-D feature vectors alongside multiple parameters for the

rotational gates forming the VQC. In contrast, QPMeL has 2-D feature vectors and

only a single set of parameters for variational ZZ gates.

QPMeL as a Deep Embedding Kernel

As mentioned at the beginning of Section. 4, we can consider the QPMeL as an

extension of the Deep Embedding Kernel network introduced by Le and Xie (2018).

This can be justified by looking at the structural similarities between the two frame-

works as seen in Fig. 4.2. We can further formalize the similarities between the two

frameworks as follows:

1. The output of the Kernel network from Le and Xie (2018) is the probability

that the inputs belong to the same class. In QPMeL the output of our training

circuit is the fidelity between 2 encoded states which is also the probability that

the inputs belong to the same class.
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(a) Deep Kernel Embedding (Le and Xie
(2018), Fig. 1)

Classical Head Classical Head

Quantum Encoding Quantum Encoding

SWAP Test Kernel Network

Embedding Network

Kernel Input Layer

(b) QPMeL in similar structure

Figure 4.2: QPMeL as DEK: From Fig.(a) and (b) we can clearly note the similar
structure of the two frameworks with analogous components.

2. The embedding network in DEK(Le and Xie, 2018) creates optimal lower di-

mensional representations of the data based on the loss from the kernel network.

In QPMeL , the classical head performs the same function.

Based on these parallels, we can define QPMeL as a Deep Embedding Quantum

Kernel(DEQK) with the simplified kernel defined in Eq. 4.9. This would allow us to

leverage the theoretical foundations of kernel methods while having the data efficiency

and expressiveness of a deep network.
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Chapter 5

EXPERIMENTS

In order to quantify the degree of separation across multiple feature spaces without

relying of classification as the only use case, we require a new metric.

MinMax Metric:

I propose the ”MinMax” metric, a feature space agnostic metric to quantify our

embedding performance.

The metric computes the distance of the APmax and ANmin, which corresponds

to the worst case for both and represents it as a % ANmin. These are computed on

the averages seen in the heatmap to avoid outliers. However, as the metric trends

are reversed for MSE and Fidelity, we present the results separately. Additionally,

we use 1 − distances for Fidelity so that the sign implications remain consistent for

MSE and Fidelity.

APmax Worst case for Anchor-Positive distance.

(MSE) The maximum distance between the same class.

(Fidelity) The minimum distance between the same class.

ANmin Worst case for Anchor-Negative distance.

(MSE) The minimum distance between different classes.

(Fidelity) The maximum distance between different classes.

Positive values indicate that we can draw a decision boundary between the classes

while negative values indicate that the classes are not separable with this feature

space. Additionally, the magnitude of the value indicates the degree of separation.
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Classical Baselines:

I trained 3 models with the same structure as our classical model in Fig.3.2 but

different activations on the final layer - (1). Sigmoid Model with sigmoid activa-

tion,(2). Scaled Sigmoid model adds 2π scaling to (1) and (3). ReLU model

with ReLU activation. All were trained with MSE Triplet Loss. I compare them

against the Classical Head before applying QRC (till 2π multiplication in Fig.3.2).

Quantum Baselines:

I establish 3 Quantum Baselines - (1). No Residual Model which is identical to

QPMeL but without QRC, (2). QMeL(Lloyd et al., 2020) a lightly modified version

of the original using our Fidelity triplet loss and (3). QMeL+, a heavily modified

version of the original using MSE Triplet Loss for pre-training alongside our Fidelity

Triplet Loss.

Comparable Methods:

As mentioned in Chapter. 2, most of the comparable methods are limited to

binary classification. Our proposed method

Setup

All experiments were carried out using the ’lightning.qubit’ and ’default.tf ’ back-

ends on pennylane for our quantum simulations. The MNIST dataset was used as

a benchmark. I use the ”All Pair Distances” for visualization which are plotted as

heatmaps. I randomly take 1000 samples for each ordered pair, the results of which

are averaged to create the heatmaps. I use a margin(m) of 0.9 for all experiments.
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Chapter 6

RESULTS

I divide our results into 2 sections: Performance Analysis and Efficiency Analysis.

The former focuses on the performance of our model in terms of its ability to learn

a decision boundary and the latter focuses on the computational complexity of our

model.

Performance Analysis

Table 6.1: MinMax Metric, Euclidean Space: Sigmoid models cannot create
decision boundaries. The remaining models create a decision boundary. QPMeL
models perform the best

Model APmax ANmin Diff % of ANmin

QPMeL Model 0.141 1.143 1.002 87.685
QPMeL Classical Head 0.003 0.029 0.026 88.303

ReLU Model 1.161 4.605 3.445 74.800
Sigmoid Model 0.193 0.012 -0.181 -1474.017

Scaled Sigmoid Model 3.644 1.935 -1.709 -88.331

(Higher is Better)

Quantum-Classical Coupling

Despite never being trained on any Euclidean loss function such as MSE-Triplet

Loss, the QPMeL classical head produces a strong separation between classes as seen

by the 88% of ANmin in Table 6.1. I can also see in Fig.6.2a that this separation is

well distributed across all pairs.

This is because, as is clear from Eqn 3.1, the state produced by the encoding

circuit is directly dependent on the classical model outputs of θ, γ. Therefore to learn
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Figure 6.1: All Pair heatmaps in Hilbert Space: (a) shows our model fully
trained with residuals, with perfect separation and large differences. (b).shows a
modified version of the QMeL model with perfect separation but smaller differences
between positive and negative classes. (c). shows the same model trained without
residuals with multiple outliers. (d). only creates binary separation for the digit 9

separability in Hilbert Space, our loss function enforces separation in Euclidean Space

due to the no overlap guarantee of the 2π output scaling.

Classical Models with Quantum Loss

Look at Table 6.1, both sigmoid models produce negative differences which indi-

cate the absence of a decision boundary. The QPMeL classical head has an identical

structure to the Scaled Sigmoid model with only a difference in the loss function.
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Figure 6.2: All Pair heatmaps in Euclidean space: (a) and (c) have the same
model architecture but show large differences in separatability. (b) shows perfect
separatability but via an unbounded upper limit as seen by the magnitude of values.

However, it produces a positive difference of 88% of ANmin, implying that a strong

decision boundary exists.

As both models are capable of learning the same family of functions due to iden-

tical model architectures, the difference is indicative that our quantum loss function

allows the classical head to learn a better metric function. Additionally, the QPMeL

classical head also shows an 18% improvement over the ReLU model (Table 6.1),

proving that the improvement is substantial. As noted by Liu et al. (2022) in their

CBP, the classical network treats our circuit as an unknown non-linearity which we
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Table 6.2: MinMax Metric for Hilbert Space:both the original and the no resid-
ual models cannot create a decision boundary, our model creates a strong separation
when compared to the other approaches.

Model APmax ANmin Diff % of ANmin

QPMeL Model 0.075 0.906 0.831 91.681
No Residual Model 0.092 0.051 -0.041 -81.363

QMeL Model 0.489 0.018 -0.470 -2579.563
QMeL+ Model 0.363 0.483 0.120 24.882

(Higher is Better)

argue is benefiting the learning capability of the classical head. I believe that this is

a promising avenue for future research, which can be explored further by using the

QPMeL framework for other classical tasks.

Quantum Residual Correction Impact

From the results in Table. 6.2, we can see that the No Residual model fails to

learn a clear decision boundary. However, looking Fig.6.1c, while the model fails to

create a decision boundary, the issues are localized to specific pairs (ex. (8,2)), while

all other regions remain well separated. I believe this is due to smaller gradients which

require more training time and data to learn these corner cases. However, PQCs are

known to have barren plateaus which can make training unstable.

In contrast, our model can learn a decision boundary for all classes. Fig.6.1d,

shows that even before applying our corrections the encoder struggles with a single

pair. This implies that QRC is helping the classical model learn the corner cases

faster. This is further supported by the fact that the QRC is only used during

training and not during inference. This hints that the residual framework eases the

task on the classical head allowing it to learn faster and more robustly.
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Figure 6.3: Outliers by Max Samples: Heatmaps show fewer outliers as ’k’ values
increase. (a) k=1 (0.001%), (b) k=5 (0.005%), (c) k=15 (0.015%), (d) k=25 (0.025%)

Outlier Analysis

Fig. 6.3, shows the number of outliers as we increase the worst-case sample size. I

define the worst-case samples as the top-k values for pairwise fidelity. As highlighted

in Section 5, we sample 1000 random data points per digit-digit pair. This yields a

(10× 10× 1000) tensor. We then calculated top-k values for each pair and averaged

them to get the final value.

We can clearly see that even for the average of the top 15 samples which constitutes

the top 0.015% of sampled data points, the number of outliers is negligible. This is a

strong indicator that our model is robust to outliers.
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Efficiency Analysis

When compared to the original QMeL Paper, we use 1/2 the number of gates and

1 layer circuit depth to achieve 3x better separation. The original QMeL framework

(Lloyd et al., 2020) as explained in Section. 2 used an overlap loss that did not scale

well to multi-class tasks. The modified version with our Fidelity Triplet Loss also

failed to create a decision boundary as seen in Table.6.2 where it produces a negative

difference. When we apply a more robust separation method for the pre-quantum step

(QMeL+) the difference in Table.6.2 is positive implying that a decision boundary

can be made but the magnitude is only 24% of ANmin implying that the clusters are

close together.

In contrast, QPMeL produces a positive difference that is 91% of ANmin, showing

3x improvement over QMeL+. I see this trend reflected in Fig.6.1a and Fig.6.1b with

the difference in magnitude between the diagonal and everywhere else. Additionally,

looking at the parameters in Table 6.3 QPMeL utilizing 1/2 (9 vs 21) the number of

gates, 1/2 (5 vs 11) the circuit depth and (11k vs 16k)20% fewer classical parameters.

Table 6.3: Computation complexity comparison: Our model uses (1/2) the
number of gates and (1/2) the circuit depth and 50% fewer classical parameters
compared QMeL with better performance.

Model # of Gates Circuit Depth Classical Parameters

QMeL/QMeL+ 21 11 16,645
QPMeL Model 9 5 11,099
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Chapter 7

CONCLUSION

PQCs and QML as an extension present a promising new avenue for research.

However, the limitation of current hardware makes near-term applications difficult

to realize. In this paper, we propose the QPMeL framework that learns the polar

representation of qubits via Hilbert Space Metric Learning. I also introduce the idea of

QRC which helps alleviate the issues of sigmoid saturation and barren plateaus. Our

results present a promising new direction for research utilizing PQCs as loss functions

or non-linear activations to enhance classical models and show strong representation

learning.
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Pérez-Salinas, A., A. Cervera-Lierta, E. Gil-Fuster and J. I. Latorre, “Data re-
uploading for a universal quantum classifier”, Quantum 4, 226, URL http:
//dx.doi.org/10.22331/q-2020-02-06-226 (2020).

Schroff, F., D. Kalenichenko and J. Philbin, “Facenet: A unified embedding for face
recognition and clustering”, in “2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)”, (IEEE, 2015), URL http://dx.doi.org/10.1109/
CVPR.2015.7298682.

Schuld, M., “Supervised quantum machine learning models are kernel methods”,
(2021).

Schuld, M. and F. Petruccione, Supervised learning with quantum computers, vol. 17
(Springer, 2018).

Sierra-Sosa, D., M. Telahun and A. Elmaghraby, “Tensorflow quantum: Impacts
of quantum state preparation on quantum machine learning performance”, IEEE
Access 8, 215246–215255 (2020).

Thumwanit, N., C. Lortaraprasert, H. Yano and R. Raymond, “Trainable discrete
feature embeddings for variational quantum classifier”, (2021).

Wang, J., F. Zhou, S. Wen, X. Liu and Y. Lin, “Deep metric learning with angular
loss”, (2017).

Weinberger, K. Q., J. Blitzer and L. Saul, “Distance metric learning for
large margin nearest neighbor classification”, in “Advances in Neural Infor-
mation Processing Systems”, edited by Y. Weiss, B. Schölkopf and J. Platt,
vol. 18 (MIT Press, 2005), URL https://proceedings.neurips.cc/paper_
files/paper/2005/file/a7f592cef8b130a6967a90617db5681b-Paper.pdf.

Wendenius, C., E. Kuehn and A. Streit, “Training parameterized quantum circuits
with triplet loss”, in “Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases”, pp. 515–530 (Springer, 2022).

Zhang, D., Y. Li and Z. Zhang, “Deep metric learning with spherical embedding”,
(2020).

Zhou, Y., C. Barnes, J. Lu, J. Yang and H. Li, “On the continuity of rotation repre-
sentations in neural networks”, (2020).

34

http://dx.doi.org/10.22331/q-2020-02-06-226
http://dx.doi.org/10.22331/q-2020-02-06-226
http://dx.doi.org/10.1109/CVPR.2015.7298682
http://dx.doi.org/10.1109/CVPR.2015.7298682
https://proceedings.neurips.cc/paper_files/paper/2005/file/a7f592cef8b130a6967a90617db5681b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2005/file/a7f592cef8b130a6967a90617db5681b-Paper.pdf

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Contributions
	Background
	Quantum Feature Space


	Related Work
	Metric Learning
	Quantum Metric Learning
	Quantum Triplet Loss
	Quantum Kernel Thoery

	Proposed Method
	Classical Head
	CNN Backbone
	Angle Prediction Layer (APL)

	Quantum Circuits
	Encoding Circuit
	Embedding State and Learnable Parameters
	Training Circuit

	Q-Residual Corrections
	Fidelity Triplet Loss

	Analysis
	QPMeL as Dense Angle Encoding
	Bloch Sphere as a Spherical Embedding in QPMeL 

	QPMeL as a Kernel Learner
	QPMeL Kernel Function
	QPMeL as a Deep Embedding Kernel


	Experiments
	MinMax Metric:
	Classical Baselines:
	Quantum Baselines:
	Comparable Methods:
	Setup

	Results
	Performance Analysis
	Quantum-Classical Coupling
	Classical Models with Quantum Loss
	Quantum Residual Correction Impact

	Outlier Analysis
	Efficiency Analysis

	Conclusion

	REFERENCES


