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ABSTRACT  

   

The impact of Artificial Intelligence (AI) has increased significantly in daily life. 

AI is taking big strides towards moving into areas of life that are critical such as 

healthcare but, also into areas such as entertainment and leisure. Deep neural 

networks have been pivotal in making all these advancements possible. But, a well-

known problem with deep neural networks is the lack of explanations for the choices 

it makes. To combat this, several methods have been tried in the field of research. 

One example of this is assigning rankings to the individual features and how influential 

they are in the decision-making process. In contrast a newer class of methods focuses 

on Concept Activation Vectors (CAV) which focus on extracting higher-level concepts 

from the trained model to capture more information as a mixture of several features 

and not just one. The goal of this thesis is to employ concepts in a novel domain: to 

explain how a deep learning model uses computer vision to classify music into different 

genres. Due to the advances in the field of computer vision with deep learning for 

classification tasks, it is rather a standard practice now to convert an audio clip into 

corresponding spectrograms and use those spectrograms as image inputs to the deep 

learning model. Thus, a pre-trained model can classify the spectrogram images 

(representing songs) into musical genres. The proposed explanation system called 

“Why Pop?” tries to answer certain questions about the classification process such as 

what parts of the spectrogram influence the model the most, what concepts were 

extracted and how are they different for different classes. These explanations aid the 

user gain insights into the model’s learnings, biases, and the decision-making process. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 The Problem Statement 

The research question I am focusing on in this thesis is, why are certain decisions 

made when a deep learning model classifies songs into music genres? To elaborate:  

• What influences the model’s decisions more or less?  

• Are there certain parts of the songs that adversely affect the model’s decision?  

• If music is converted into images while being fed to the model, how can humans 

make sense of this incomprehensible way of sensing music? 

• Is there a human-friendly way to see what the model has learned? 

The problem arises primarily due to the black-box nature of the deep learning 

models. Further, the model learns by interpreting vectors in very high dimensions 

which are hard to understand for humans. To exacerbate the problem even further, 

the state-of-the-art methodologies convert audio into black-and-white 

graphs/histograms which are then fed to the model to find patterns and classify songs 

into different categories. What is even baffling is the fact that most of the 

recommender systems these days make recommendations not based on the 

similarities between actual songs themselves but rather parse user data and try to 

match the user’s similarities while making recommendations which is far away from 

what users perceive to be the basis of the recommendations. These problems lead to 

a lack of understanding of how the model works as well as potential misinterpretations 

from the user’s point of view. Through this thesis, the hope is to alleviate some of 
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these problems and inspire more work in the field of XAI and especially music 

considering how big of an industry music streaming is.  

1.2 Contributions 

 This thesis aims to build a system to explain how a deep learning model 

classifies music into pre-defined genres. The final goal for the system is to help the 

user identify any patterns that the model might have found to classify similar songs 

together as well as help the user find anomalies so that they can be handled by possibly 

fine-tuning the model. The system, which is composed of both backend and frontend, 

seeks to perform the following tasks for the user: 

• Analyze model results from a global level to individual samples. 

• Extract human-understandable concepts from the trained model and present 

them in a visually understandable way. These concepts can be further 

investigated in terms of genre and concept similarities. 

• Be able to present more information on drilling down into a selected group of 

concepts. Help find patterns among model inputs as well as leverage the use 

of handcrafted features that are human-understandable. 

• Finally, look at an individually selected sample and be able to see the concepts 

as part of the selected sample while correlating their presence throughout the 

song being played.  

 The above tasks when successfully performed will help the user gain insights 

into the global learning of the model as well as the local explanations of the model for 

a selected sample. 

 The implementation of the system was done using python for the backend and 

react for the frontend. The system can run in a browser and the data for the system 

is supplied using a flask server. To train the model, the songs were preprocessed to 

be converted to a dataset of grayscale spectrograms supplied during training using a 
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data generator. The spectrograms were also augmented to further increase the 

number of samples available to the model. The deep learning model used for training 

was resnet34 [14] with imagenet [15] weights. The trained model graph was further used 

for extracting concepts from the model using concept extraction algorithms. The 

concepts were further post-processed for aggregation into cluster using k-means 

clustering technique with the cluster center dimensions reduced to two using 

dimensionality reduction for plotting on a 2D plot.  

 The frontend of the system allows the user to perform explorations at a global 

level, an intermediate level, and a local level. The global level helps the user compare 

the model’s concepts across genres. The intermediate level enables the user to 

compare concept examples within a selected concept. Using human understandable 

features, the system also helps the user to verify their conclusions around concept 

examples. The local level allows the user to explore the concepts found within a 

selected song sample and follow along by playing the song.  

 As a result of using the system, the user was able to find good and noisy 

concepts in the model across genres. The user was also able to explore the concepts 

further and draw conclusions about why the model finds the concepts important. These 

conclusions were verified using the human understandable features incorporated in 

the system. Finally, the user was also able to explore the concepts within a selected 

song and correlate the important concepts extracted with the selected sample and 

verify the model’s reliability or anomalies.  

1.3 Thesis Outline 

 The thesis is structured in the following manner: 

 Chapter 2 focuses on the research that has already been done in the field of 

music information retrieval as well as AI model interpretability. It also highlights the 

pros and cons of different research methodologies considered for music classification 



  4 

and feature interpretability, and why some methods were preferred over others for the 

problem at hand. It also talks about some of the background knowledge required to 

understand why it makes sense to convert songs into images/spectrograms, what 

spectrograms are, and then how to use them with state-of-the-art computer vision 

models to leverage the advances already made in the field.  

 

 Chapter 3 describes the dataset for the task. The dataset used for model 

training is Free Music Archive (FMA) [13]. The dataset consists of 8,000 song clips of 30 

seconds each with 1000 songs for each genre. It presents details about the size and 

limitations of the dataset as well as how the metadata of the dataset is also used to 

help improve the explainability. It further elaborates on the techniques and pre-

processing used to convert audio data into images (spectrograms). This includes using 

data augmentation techniques such as adding silence randomly in the songs or 

masking some of the frequency bands before model training. 

 

 Chapter 4 talks in detail about the methodology for building the system. It 

outlines the backend setup for the system, preparing the dataset for the front end of 

the system. How it pre-processes and consumes the audio dataset, as well as the post-

processing, is done after obtaining a trained model that generates data for individual 

components of the front-end system. The next section lists the components of the 

front-end system, the use of individual components, key decisions taken while 

designing the components as well as how the components are interlinked to provide 

the explanation the system promises. 

 

 Chapter 5 discusses two usage scenarios to demonstrate how the system 

supports explaining the model’s behavior and decision making, both from a global 
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perspective to a drilled-down view of concepts present as well as their influence within 

a particular sample.  

 

 Chapter 6 focuses on the limitations and assumptions of the system as well as 

simplifications to manage the complexity of the problem. 

 

 Chapter 7 concludes the thesis by summarizing the results and reasonings and 

further concludes with possible future work in the field of XAI as well as research 

focusing particularly on MIR.   
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CHAPTER 2 

 

BACKGROUND AND RELATED WORK 

 

2.1 Artificial Intelligence and Deep Learning 

 One of the simplest definitions of Artificial Intelligence (AI) is the ability of 

computer systems to perform tasks that otherwise require intelligence to perform [19]. 

These can be tasks such as perception, reasoning, discovering meanings, learning from 

examples and experiences, and understanding reasons behind various decision-

making processes. While there are various behaviors associated with intelligence, a 

large amount of research in AI focuses on learning, reasoning, problem-solving, 

perception, and general use of language to communicate as key goals and components 

among many others. One subset of AI I will be focusing on in this thesis is Deep 

Learning (DL) which in turn is a subset of Machine Learning (ML).  

 Briefly, machine learning or ML can be defined as a field in AI that focuses on 

the learning aspect of intelligence [20]. It consists of devising algorithms and statistical 

models that help recognize patterns in mostly large datasets. As a subset of ML, DL 

uses a particular technique of using artificial neural networks to learn insights from the 

data. The basic principle behind a neural network is to mimic how a human brain is an 

interconnection of small individual neurons that work together to make complex 

decisions or identify complex patterns or solve problems. In the case of deep learning, 

these artificial neurons are mathematical functions that are connected to many other 

artificial neurons by the way of taking in inputs and sending out outputs. These inputs 

and outputs are further manipulated with weights assigned to each neuron. As such, 

in deep neural networks neurons are organized in layers. Typically, these neural 

networks are organized in layers, and they learn progressively where initial layers 
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focus on learning low-level features and the deeper layers focus on learning higher-

level “concepts”. This progressive method of extracting features is something that 

differentiates deep neural networks from typical machine learning models where 

features are already extracted and provided to learn from as part of the dataset the 

learning is taking place from.  

 

Figure 2.1 A typical multi-layered neural network organization. Source: IBM [21] 

 

2.2 Music Information Retrieval (MIR) 

MIR is the science of extracting information from music for different 

applications. A common task in the field of MIR is music classification into a pre-defined 

list of genres such as rock, pop, classical, jazz, etc. Other MIR tasks that leverage 

machine learning are mood classification, artist classification, instrument identification, 

music tagging, and music generation. Some of these tasks also involve experts who 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.ibm.com%2Fcloud%2Flearn%2Fneural-networks&psig=AOvVaw08b5pdyjpUBXZwKVkHkeoF&ust=1666219568903000&source=images&cd=vfe&ved=0CAwQjRxqFwoTCJCk7urt6voCFQAAAAAdAAAAABAD
https://en.wikipedia.org/wiki/Music_information_retrieval
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help extract some pre-requisite information/features before further problems can be 

solved with the help of machine learning models. Automatic music transcription and 

content generation are also popular tasks of MIR [22]. An example application of content 

generation is generating music based on a set of choices or similarities to pre-existing 

music [23]. 

2.3 The Need for Explainable Artificial Intelligence (XAI) 

 XAI, also often known as Interpretable Artificial Intelligence, is the field of AI 

focusing on making the process of decision-making and the factors influencing those 

decisions transparent and human-understandable [24]. One of the goals of XAI is 

increasing transparency in black box ML models. This becomes especially important 

for high stakes use cases such as in the field of healthcare [25]. Explaining the decisions 

made by an ML model or the recommendations made by an ML model designed to help 

humans make complex decisions also establishes trust in the AI and human synergy 

[27].  

 Another goal of XAI is to help build ethical AI [28]. With the immense potential 

and power AI offers, it becomes utterly important to make sure that it is being used 

ethically. Ethical AI doesn’t just focus on following the law but also focuses on making 

sure that it doesn't make decisions harmful to society [29]. For example, I want to use 

AI to automate an industrial process to reduce costs. That doesn’t mean that AI can 

make decisions that are harmful to the environment. I can’t decide based on the final 

cost of the process only, I need to make sure that those decisions are ethical too. 

Similarly, unethical use of AI is seen in spreading misinformation for personal benefits, 

scamming people [30], or any other kind of fraud. Having decisions explained in cases 

like these where there may be unintended consequences becomes very crucial. 

 XAI has also been shown to remove biases in processes [32]. As humans, it is 

natural to have biases, consciously or unconsciously [33]. At the same time, it is 
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important to make sure that those biases don’t creep into AI-aided systems. Hence, it 

again becomes important to get explanations for those decisions. For example, an 

Applicant Tracking System (ATS) is widely used by recruiters and companies to 

manage candidate applications. If an ATS were to discriminate against a certain 

subgroup of applicants, it could result in companies missing out on talented 

candidates, a loss of growth opportunities, a lack of diversity in the company, and 

damage to the company’s public image as well among other things. Biases like these 

can only be identified if someone can investigate and understand the decision-making 

process of the automation at use. 

Content generation using AI is when AI generates content for the user with 

very small inputs from the user about the content. This content is primarily for 

entertainment or to be shared on the internet. With better ML models available these 

days for content generation, quality is an aspect that is being closely looked at. To 

make sure AI can be reliably used for automation/content generation, explanations 

are necessary to make sure that AI understands what makes a unique, yet sensible 

art. Jukebox [23] is one such application for music generation. Given an artist, genre, 

and lyrics as input, Jukebox [23] can generate new music. Another content generation 

application released in the field of Natural Language Processing (NLP) is released by 

Open AI called GPT-3 [35] which focuses on making the best use of NLP to learn content 

generation from the internet. One can get this model to write essays, research papers, 

chat in real-time, and write code based on a short natural language prompt. Another 

example is DALL·E 2 which can generate realistic and artistic images from descriptions 

in natural language. 

https://openai.com/dall-e-2/
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2.4 Current Methodologies 

2.4.1 Music Classification 

Music classification has long been explored as one of the key classification tasks 

in MIR [36]. Before diving into music classification specifically, for any classification task 

including MIR, an important task is feature extraction [1] [37]. 

2.4.1.1 Feature Extraction 

A. Handcrafted Features 

One of the earliest efforts for automatic music genre classification was carried 

out by George Tzanetakis and P. Cook in 2002 [1]. They proposed three sets of features 

extracted from the audio signal: timbral texture, rhythmic content, and pitch content. 

Timbral texture focuses on discriminating music from speech using a Short Time 

Fourier Transform (STFT) calculated for a lot of short time frames of music (usually 

256). Another technique relying on Mel Frequency Cepstral Coefficients (MFCC) was 

used for speech recognition in music. These are very famous techniques widely used 

in speech recognition problems. More details can be found in [1]. Rhythmic content 

aims to extract information about the beats of the audio. It builds beat histograms 

representing information about the strongest beat, sub-beats, and the correlation 

between different beats while giving more weight to beats like the stronger beats and 

less weight to weaker beats. Pitch content focuses on providing information about the 

strongest pitch, sub-pitch, and their correlations. 

Another way to extract feature vectors is by combining the feature spaces 

extracted by binary classifiers [3]. The technique is called space decomposition where 

a binary classifier is trained to predict a single genre for an audio file and multiple 

classifiers are trained for the same data sample against different genre samples. The 

result is a weighted decision of all the classifiers giving out a final label. Two well-
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known techniques for training these multiple classifiers are One Against All (OAA) and 

Round Robin (RR) [3]. The OAA classifier built for a class treats the same class samples 

as positive samples and other class samples as negative samples. The RR classifier 

built for a class treats the same class samples as positive, another selected class 

samples as negative, and the rest of the class samples are discarded. Finally, the 

feature spaces from all these classifiers are combined in a weighted manner to form a 

new decomposed feature space. Similarly, features extracted from time segments such 

as the three mentioned before can be decomposed together as well to form a feature 

space.  

Apart from the handcrafted features mentioned above, there are more features 

now available courtesy of big streaming services that produce good classification 

results. They provide features such as tempo, acousticness, speechiness, liveness, 

danceability, etc. These features are human-understandable and easy to process but, 

a major drawback of them is that they are time-consuming, hard to automate, and in 

some cases proprietary.  

B. Spectrograms for Model Inputs 

Unlike handcrafted features, deep neural networks can automatically extract 

features but require larger datasets to achieve good accuracy [4, 5, 6, 7]. At the same 

time, the features extracted via neural networks can be at times high dimensional and 

difficult for humans to understand.  

There is another way to process audio using deep learning models that has 

produced state-of-the-art results in terms of classification accuracy. This can be 

achieved by changing the input to the model where each audio file is first pre-

processed and converted into a spectrogram to be consumed by the model [8]. The 

extracted features we have seen can be categorized into two kinds of feature sets. The 

first feature set focuses on the frequencies, beats, and amplitudes of strong and weak 
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beats/pitch of the song. The second feature set is extracting useful information from 

the song due to the variation of the signal with time. Both feature sets can be combined 

using a spectrogram. A spectrogram is a representation of the frequency spectrum, 

varying in amplitude across time. It combines the two feature sets by mapping the 

amplitudes of frequencies and their variations through time in a heat-map-like 

organization. It essentially does this by creating a lot of small bins in the audio sample 

corresponding to time and for each of those bins the y scale specifies the frequency 

and the intensity of a particular point at a particular time corresponding to a particular 

frequency specifies the amplitude of that frequency at a particular time.  

 

Figure 2.2 A mel spectrogram with mel scale frequency on the y scale and time on the x scale 
constructed for a 15s audio clip. The scale on the right scales the amplitude for the frequency. 

A drawback of spectrograms is that it doesn’t account for the fact that humans 

do not perceive sound linearly. Rather, humans perceive sound logarithmically [38]. For 

example, it is easier for humans to distinguish between sounds of frequencies 1000Hz 

and 2000Hz as compared to sounds of frequencies 10000Hz and 11000Hz even though 

the difference between both sets is of 1000Hz. To tackle this, a mel spectrogram is 

calculated presented in Figure 2.2, which remaps the frequency scale to the mel 
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(derived from melody) scale. This ensures that as the pitch of the signal increases, so 

does the difference between frequencies marking equal distance ticks on the scale. 

This also ensures that the comparison is done between pitches and not simply linearly 

increasing frequencies. Similarly, mel spectrograms also use a decibel scale instead of 

the amplitude to account for how humans perceive loudness as well. 

 

Figure 2.3 Decibel level comparison of different sounds. Source [39] 

C. Feature Extraction for Deep Learning 

To summarize, there are many benefits for converting audio data to spectrograms. 

These include: 

• It combines both frequency and time domain feature sets into a single 

feature space. 

• It converts an audio signal into an image which can be processed rather 

easily by the deep learning model. 

• It ensures that the input replicates how humans perceive music. 

https://commons.wikimedia.org/wiki/File:Decibel_scale.jpg
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Once these mel spectrograms are fed into the deep learning model, the model 

can process music just like it is processing images. Hence, it will look for patterns 

among the images for the purposes of classification and its decisions would 

consequently be affected by groups of super-pixels swaying the model’s decisions 

towards one genre or the other. Ultimately this converts the problem into one of image 

classification where the features of the image are represented by the pixels of the 

image with each pixel row possibly representing one feature vector. Moreover, because 

it is the intensity of the point in a spectrogram that we care about, spectrogram images 

can be converted to grayscale images for ease of processing by the model. Hence, 

each point in the image corresponds to a pixel value ranging from 0 to 255. This 

methodology is in line with the work done previously [40]  that has shown state-of-the-

art results on ESC-50 dataset [41] and UrbanSound8k dataset [42] with 92.89% and 

87.42% validation accuracies respectively.  

2.4.2 Interpretability 

As discussed in previous sections, explanations for AI are becoming increasingly 

important. There have been various ways that researchers have experimented with to 

help explain a deep learning model. These ways range from presenting basic 

explanations in a way which are understandable by a layman to using AI in conjunction 

with an expert allowing them to play around with various parameters. 

One of the early efforts into interpretability in images is Saliency Maps [10]. 

Typically, a map produced using this technique shows how important each pixel of the 

image was for its classification. This certainly helps reveal relevant regions and 

provides a quantified measure but, it still focuses on local explanations i.e., a single 

image.  
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Figure 2.4 A Saliency Map. The closer to red the color, the more important the pixel for the 
classification of the image. Source [43]. 

Prototype/Examples based explanations have also been tried aiming to provide 

explanations to the user by providing examples of classes while highlighting features 

important for the characterization of the example [11] not just from a single sample 

point of view but at the class level. This preserves the quantifiable nature of saliency 

maps and provides a global explanation as well. A drawback of this and similar 

techniques is that the logic for this needs to be incorporated into the model itself. 

Hence, it leads to a lack of the ability to be plugged in with any machine learning 

model.  

To tackle this problem, interpretability nowadays is taken care of by post-

processing the saved model graphs. Although the extracted features by the deep 

learning model are high dimensional, they can be traced back to a group of super-

pixels/patches called concepts within the spectrogram image. These concepts are more 

human-friendly, can be visualized easily and a group of concepts extracted using 

techniques like Testing with Concept Activation Vectors (TCAV) [9] and presented side 

by side can give a human user a fair idea of the parts of the spectrogram a model 

https://www.geeksforgeeks.org/what-is-saliency-map/


  16 

prioritizes for recognizing a particular class. TCAV scores can also work with multiple 

types of features and prediction classes. 

TCAV [9] has been shown to be a successful technique for explainable AI, but it 

doesn’t automatically extract those concepts for the image and evaluate them. Instead 

the user supplies a set of candidate images that contain the concept. In this research, 

to tackle this problem Automatic Concept Extraction (ACE) [12] is employed. ACE works 

by dividing the image into patches of images and evaluating them with the model. 

Patches more relevant to a category will in general yield better results and can be 

classified as concepts. Similar patches are then grouped as examples of the same 

concepts. Finally, concept importance is measured with TCAV scores, and the topmost 

important concepts are returned.  

Traditionally, concepts have been applied to image datasets, where extracted 

patches are easy to interpret as they represent human-understandable concepts (see 

Figure 2.5). In this thesis, we apply concepts to spectrograms, which do not have 

features that can be easily understood by humans. This represents a major research 

challenge for this thesis, which we discuss in chapters four and five. 

 

 

Figure 2.5 ACE process flow. First, a set of patches is extracted. Then they are evaluated 
against a pre-selected model layer and grouped. Importance scores for groups are calculated 

and meaningful concepts are returned. 
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CHAPTER 3 

 

MUSIC DATASET 

 

 
The dataset chosen for this research is the Free Music Archive dataset (FMA) 

[13]. The chosen dataset is one of the largest datasets that offer high-quality full-length 

audio files. Overall, the dataset offers 106,574 full songs featuring 16,341 artists and 

was published in 2017. This dataset is much larger than comparable open music 

datasets used in research such as GTZAN [1], which by being limited to 1000 songs 

makes the application of deep learning techniques difficult. Hence, the chosen dataset 

provides more variety in terms of songs and hence offers a larger scope for the model 

to learn.  

For this thesis, a subset of FMA offered as FMA small is chosen to demonstrate 

the tasks. The subset consists of 8,000 high-quality song samples each of 30 seconds 

in length. The songs are also partitioned into sets of 1000 songs per genre (eight 

genres in total) which ensures the balance of the dataset and doesn’t skew the model 

training to either side. While each song has a top genre assigned to it, each song also 

has a list of genres attached to it since there is no standardized method to classify 

each song into a particular genre in the music industry. The eight top genres are:  

• Electronic 

• Experimental 

• Folk 

• Hip-Hop 

• Instrumental 

• International 

• Pop 

• Rock 
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From a data management point of view, a CSV about tracks is made available 

where each row corresponds to a single track with a unique track id. Other columns of 

the row have data such as the name of the song, the artist, the top genre, all the 

genres, play counts, comments, duration, album of the song, location of the song, and 

many more. All tracks are mp3 format tracks and most of them have a sampling rate 

of 44,100 Hz, a bit rate of 320 kbit/s (highest quality mp3 bitrate), and in stereo. 

There are also 518 features in total available that are extracted using the librosa 

python library. These 518 features include 74 distinct features and for each feature 7 

different statistics were computed.  

The dataset also offers a set of features calculated by Echonest (later 

acquired by Spotify). The offered features namely are:  

• Acousticness 

• Danceability 

• Energy 

• Instrumentalness 

• Liveness 

• Speechiness 

• Tempo 

• Valence 

These features further help increase user understanding and readability and the 

explainability system helps connect the features from the spectrograms with their 

human understandable counterparts.  

https://github.com/librosa/librosa
https://developer.spotify.com/discover/
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CHAPTER 4 

 

WHY-POP: THE INTERFACE 

 

 
Here, we describe the Why-Pop system that we have built. It consists of two 

components. One is the machine learning model that forms the backend of the system. 

The second is the user interface that the user can interact with or use for visualizations 

for better interpretability of the model i.e., the frontend. Hence the two components 

of the system are described in the following sections. 

4.1 Backend 

4.1.1 Data Conversion and Pre-Processing 

 As discussed in the previous sections, there are several benefits of converting 

audio data to spectrograms. On similar lines, the FMA dataset was first converted to 

spectrograms. First, each audio file was rendered into an image of dimensions 224 x 

224, as these dimensions are commonly used. These dimensions are very popular for 

use with deep learning models. Further, the converted spectrogram image was 

generated in a greyscale format since the real data is defined by the intensity of the 

pixel for a particular frequency and time and varying color hue values could potentially 

perturb model performance in undesired ways. 

 Although, most of the sound clips were in stereo (2 audio channels instead of 

one) but, since all the clips were not in stereo, one channel was dropped for the sake 

of consistency. All the files were resampled as well to a standard 44,100 Hz. For files 

smaller than 30 seconds, they were padded with silence. And for files longer than 30 

seconds, they were trimmed to use the first 30s of the clips. The hyperparameters for 

creating a mel-spectrogram were as follows: 



  20 

• Sample rate: The sample rate used was 44,100 Hz as standardized earlier. 

Meaning it extracts 44,100 samples for each second of audio. 

• n_fft: This parameter used the value 1024. That means, while creating Fourier 

Transformations, the signal was divided into 1024 sub-samples. A Fourier 

Transformation essentially helps break down the signal at a particular time into 

its constituent frequencies.  

• n_mels: The value used for n_mels was 128. This is a widely used value and 

the default as well that specifies the number of bins in the spectrogram on the 

x scale where each bin corresponds to a single point in time. 

• Hop_length: The hop_length value was set to 512. It specifies the difference 

between consecutively sampled segments for the Fourier Transformation. A 

good value for the hop_length parameter ensures the overlap of adjacent 

segments and prevents information loss. 

• Pad: In a case where the number of Fourier Transformations and hop_length 

exceed the sample data; the rest is padded with 0. 

To enhance the dataset and add more generality to the model, each 

spectrogram was converted into four more spectrograms with augmentation. For 8,000 

songs, that resulted in a dataset of 32,000 spectrogram samples increasing the 

amount of data available to train the model. Out of the four spectrograms, one was 

the originally retained spectrogram, and rest three were augmented with random 

horizontal/vertical bands of black pixels (silence). For the augmented spectrograms, 

one had a randomly placed horizontal band across the width of the spectrogram (or 

image). Another spectrogram had a vertically placed black band across the length. 

Finally, one had a band placed both horizontally and vertically. Essentially, the 

horizontal bands acted as frequency masks and the vertical ones acted as time masks. 

The masking was limited to a maximum of 10% of the image length/width.  
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4.1.2 Model Training 

 To feed the data, a data generator was used. It would randomly pick four tracks 

and generate four original spectrograms from them. Then augment them to make 

sixteen spectrograms out of those. The training images from the generator were then 

shuffled along with the labels and passed on to the model. In case of errors, while 

creating spectrograms from the audio file, the data sample was replaced with another. 

That essentially makes the batch size to be sixteen as well.  

4.1.2.1 Resnet34 

 For the deep learning model, ResNet34 [14] was used. ResNet is a deep neural 

network consisting of 34 layers stacked on top of each other. It is a widely popular 

and well-known neural network for the purpose of image classification and achieved 

top state-of-the-art results with its release in 2015. Mostly, to train deep learning 

models for complex tasks, an easy method is to stack more hidden layers into the 

network to get better results. But it only works until a limit after which, more layers 

end up leading to deterioration in performance and accuracy. This problem was 

alleviated by ResNets by using skip connections. More specifically, every two or three 

layers, a skip connection was added that would skip the layers in the middle and 

multiply the output of the source layer to the weights of the target layer directly 

followed by the addition of the bias. Further, in cases where skip connections connect 

layers with different dimensions, the input is padded with zeros. This architecture is 

shown in the architecture diagram below. 
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Figure 4.1 Example network architectures for ImageNet [15]. Left: VGG-19 [44] model (19.6 
billion Floating-point Operations per second (FLOPs)) as reference. Middle: Plain network with 

34 layers (3.6 billion FLOPs). Right: a residual network [14] with 34 parameter layers (3.6 
billion FLOPs).  

This architecture from ResNet helps get rid of a few common deep-learning 

problems which are as follows: 
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• The biggest problem it solves is the vanishing gradient problem [45]. The 

vanishing gradient problem is faced when training the neural network, 

where the updates to the weights of the layers of neural networks are 

propagated by the previous layer as a partial derivative of the error 

function with respect to the current weights. For deeper neural 

networks, this becomes a problem as the derivatives turn into very small 

quantities and hence don’t make any major updates to the subsequent 

layers which ultimately hinders the learning of the model. With skip 

connections, this is taken care of by ResNets as the gradient doesn’t 

vanish for deeper architectures. 

• Another problem ResNets help with is, with an increase in the number 

of layers, ResNets perform at least as well as their shallower 

counterparts. That means the layers are good at learning identity 

functions. In the best-case scenario, this means that the subsequent 

layers perform better than the previous layers, and worst-case scenario 

they perform at least as well as the previous layers without any loss of 

accuracy. 

 

The reasons above lead to better overall performance as well as compared to 

the plain 34-layer neural network in this case. Finally, ResNet34 comes as part of the 

PyTorch python library pretrained with final weights after training on the popular 

ImageNet [15] dataset. 

4.1.2.2 Training Loop 

 

https://pytorch.org/vision/main/models/generated/torchvision.models.resnet34.html
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 To utilize the ImageNet weights and the benefits of transfer learning, the model 

was only fine-tuned to classify spectrograms (music) into genres. For the training loop, 

the hyperparameters were as follows: 

• Batch Size: The batch_size was 16 that contained four different songs along 

with their augmented spectrograms. 

• Epochs: The number of epochs for training the model was set to 50 since the 

aim was just to fine-tune the model.  

• Trainable layers: To utilize the model weights from ImageNet, only the fully 

connected layer and the two immediate convolution layers were set to update 

weights. Following the idea that layers closer to the end learn more high-level 

details in images as seen in [9].  

• Learning rate: The learning rate was also set to be low at 10-4 to preserve the 

weights of the model from the ImageNet training and utilize transfer learning. 

Finally, for each training loop, the weights were updated with the 

backpropagation technique. The error is calculated for the model outputs compared to 

the desired output. The error calculated is then propagated backwards to all the 

previous layers as a partial derivative explained earlier. The loss function used was the 

cross-entropy loss which has the following formula: 

−∑𝑦𝑜,𝑐log(𝑝𝑜,𝑐)

𝑀

𝑐=1

 

Where: 

• M – number of classes 

• y – 0/1 if the class was predicted incorrectly or correctly 

• p – probability if observation o belongs to class c 
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A key feature of cross-entropy loss is that it penalizes errors heavily when the 

prediction is wrong, but the model makes the wrong prediction confidently which can 

be seen in the following graph as well. 

 

Figure 4.2 Cross-Entropy Loss graph 

4.1.3 Concept Extraction 

 While training the model, the model state and the graph are stored in a state 

dictionary. This state dictionary is further used by ACE to automatically extract 

concepts from and evaluate extracted concepts. As discussed earlier, to extract 

concepts ACE creates image patches from the input image. Since ACE extracts 

concepts for one class at a time, the input spectrogram images were sorted by classes 

and then into further subdirectories as required to run ACE. There are in total four 

hyperparameters that can influence the output from ACE: 

• Bottleneck layer: layer4.2.conv2. The second convolution layer in the second 

block and layer 4 of ResNet34 was selected as the bottleneck layer. This 

specifies the vector space for concept extraction. Note that this was also the 
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layer that was trained apart from the fully connected layer during model 

training. 

• num_random_exp: 20. Number of random experiments to perform to evaluate 

the concepts against.  

• num_clusters: 25. This specifies the number of clusters to be extracted with K-

Means [17] which directly specifies the number of concepts output. 

• n_segments: 10, 15, 25. Number of segments to make with image 

segmentation techniques to identify important patches from a given 

spectrogram. The segmentation technique used was SLIC [16]. 

 

Since ACE does not support custom models, a few methods within the ACE 

system had to be implemented as well. The key ones include a method to fetch the 

activation of the image patches in the bottleneck layer and a method to get the 

gradient of the fetched activations for the class concepts are being extracted for. As 

an output for concepts, the concept patches along with the marking for part of the 

spectrogram they were extracted from, and the TCAV scores of the concepts were 

returned. As a pre-processing step for the front-end, the concepts were further 

clustered into 10 clusters using k-means clustering based on the Concept Activation 

Vector (CAV) obtained by getting the mean of the CAV for a concept versus the random 

experiment datasets which were 20 in this case.  

4.2 Frontend 

 The frontend of the system is built fully in ReactJS. This helped build a website-

like interface for the user to interact with and explore the results and extracted 

concepts from the model, their relations among each other, and get a global to a local 

level explanation for the model’s predictions. The interface is divided into 5 panels and 

https://reactjs.org/
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the interactions lead the user from a global explanation to a more local explanation of 

the classification of the song. A full view of the interface is as follows: 

 

 

Figure 4.3 Why pop? -The interface, full view. Panel 1-5 after making selections. 

4.2.1 Panel 1 – Concepts Importance by Genre 

The first panel presents all the extracted concepts across all the genres mapped 

according to their TCAV [9] (importance) score. This global view helps the user 

understand how important each concept was in identifying a particular genre. The 

information is presented in a beeswarm graph with the dots representing concepts and 

groups of concepts gravitating towards a point on the x scale corresponding to the 

correct genre. The y scale represents the TCAV score or the concept importance score. 

The user can use this to identify concepts most important for the genre by hovering 

over the dots and then clicking to select one of the concepts to present more 

information about the concept in panel 3. Hovering over a concept not only gives 

concept information but also highlights the concepts across the genres that have a 

1) 2) 

3) 

4) 

5) 
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similar concept activation vector as well the cluster the current concept is part of in 

panel 2. In terms of global explanations, this gives the user insights into what 

important concepts from each of the different genres might be similar. For example, 

Electronic_Concept17 with the highest TCAV score of 0.5 among all the electronic 

genre concepts is very similar to a lot of Hip-Hop and Rock genre concepts. An example 

of these interactions at work is in the Figure 4.4 below.  

 

 

Figure 4.4 A) The first look when the interface loads up. Only Panel 1 and Panel 2 are loaded 

by default presenting a global view of concepts. B) On hovering over a concept, all the similar 
concepts are highlighted across the genre and the corresponding cluster is highlighted as well. 

B) 

A) 
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4.2.2 Panel 2 – Concept Clusters 

Panel 2 of the interface highlights the concepts as part of a cluster in terms of 

the similarity of the concept activation vectors against all the random experiments 

which were averaged to form a single concept activation vector per concept. After 

clustering the concepts into 10 clusters as explained in the backend section, the 

concept centers were extracted. These high-dimensional concept centers went through 

a dimensionality reduction technique to be plotted in a 2D space as in panel 2.   

The dimensionality reduction technique used was t-Distributed Stochastic 

Neighbor Embedding (t-SNE) [18]. T-SNE is specifically useful for such use-cases where 

the aim is to visualize high-dimensional vectors of a neural network being used on a 

2D plane to better understand the learnings of that particular layer. Due to the high 

dimensionality of the dataset/extracted features they are not always linearly separable 

which is taken care of by t-SNE and hence that is another reason to go for t-SNE rather 

than Principal Component Analysis (PCA) for example. Since the dataset or extracted 

vectors were already clustered using k-means, this clustering needed to be visible 

while plotting the vectors in the 2D plane. Also, since the distance between the clusters 

doesn’t mean much in the t-SNE plot, only the concept cluster centers were used to 

plot the data in the t-SNE plot while clustering the same cluster concepts together. 

Further, the color for each of the dots representing concepts was preserved from panel 

1 and hence represented the mix of genres present in a single cluster. Just like panel 

1, hovering and clicking interacted the same way for panel 2 as well where clicking a 

concept selected that concept for the rest of the exploration. A view of panel 2 can be 

seen in Figure 4.3 as clusters of concepts. This panel also helps the user get a more 

global explanation of the model’s learnings. 
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4.2.3 Panel 3 – Concept Images Panel 

Panel 3, the concept images panel is populated once a concept has been selected 

from panels 1 or 2. This panel shows the actual concept patches extracted using ACE 

and the corresponding spectrograms they were extracted from along with the 

markings around the parts of the spectrograms they were extracted from. ACE extracts 

concepts from a set of 50 different examples from the target class.  For each concept, 

it extracts concepts and the corresponding marking in the spectrogram for 10 different 

songs. In panel 3, those ten songs are presented to the user to help them understand 

the general areas the concepts are being extracted from and if there are any patterns 

within the concept extracted. Hence, it gives more intermediate-level explanations 

between global and local within the concept or the genre. An example could be a 

concept extracting patches from the higher end of the spectrum in terms of frequencies 

could be a sign that this concept focuses on guitars. Further, if it has a good TCAV 

score, it could mean that guitars are an important concept for that particular genre. 
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Similar insights can be further verified by referring to panel 4 as explained in the 

following section. An example of panel 3 is shown in Figure 4.4. 

 

Figure 4.5 Concept Images Panel – shows the extracted concept patches and the 

corresponding spectrograms. 

4.2.4 Panel 4 – Human Understandable Features 

Panel 4 just like panel 3 also focuses on intermediate-level explanations. To 

make sense of the spectrograms in panel 3, this panel uses human understandable 

features discussed in section 2.4. One thing to note here is though, that these features 

are not available for all the songs present in panel 3. Hence, only some of the songs 

are common in both panels but, it still helps give an idea about the patterns in the 

genre overall. For songs that are common in both panels 3 and 4, if most concepts 

come out from a higher frequency spectrum in panel 3 and at the same time, 

acousticness is high for those songs in panel 4, that further points more towards guitar 

being an important concept. There are eight feature measures in total that a song can 

be measured upon which were defined earlier in the dataset chapter (Acousticness, 
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Danceability, Energy, Instrumentalness, Liveness, Speechiness, Tempo, and Valence). 

The presence of all these feature measures in the song are presented in a radar chart. 

Therefore, another thing to look for is the similarity between radar chart value blobs 

across the songs. Further confirming the commonality in songs of the same genre. 

For interaction, hovering over a radar blob highlights that song while defocusing 

the rest of the songs. Finally, clicking on a song selects a song to load up in panel 5 to 

look at individually.  

 

 

Figure 4.6 Panel 4 - Human Understandable Features, helps the user understand the 

composition of the song in terms of more human-friendly measures. 

4.2.5 Panel 5 – Concepts Within a Song 

Finally, panel 5 focuses on local explanations within the song selected from 

panel 4. This helps the user understand how the concepts are present within the song. 

Once a song is selected from panel 4, a request is sent to the backend to create a 
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shape of a spectrogram but with concepts stitched in it while everything else remains 

grayed out. Since a genre has already been selected, it presents the users the option 

to choose any song they want out of the 50 different songs ACE extracts concepts for. 

That also includes the options from either panel 3 or 4 or any other song in the genre 

the user wants to explore.  

To stitch the concepts together, the concept patches were first mapped to their 

locations in the spectrogram, then overlaid on top of each other, and all the colors 

apart from the background gray were allowed to override to the front. The locations 

of the concept patches were used to mark the name of the concept within the 

spectrogram to get a better idea of the exact concepts present in the song at different 

points in time. Moreover, this new spectrogram was lined up with an audio player that 

will allow the user to play the song and identify the beats and pitches of the song 

corresponding to the concept patch in the new spectrogram.  

As mentioned earlier, it gives a more local explanation of how the model 

processes and learns from the song as well as what were the important parts of the 

song that the model used to classify the song as belonging to a particular genre. The 

user can select other songs as well from the dropdown to confirm/reject their 

hypothesis about a particular genre. An example of this is shown in Figure 4.6. 
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Figure 4.7 Panel 5, Concepts within a song. Helps the user identify the presence of important 

concepts at different times within the song. 
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CHAPTER 5 

 

CASE STUDIES AND RESULTS 

 

  

The intent with this chapter is to demonstrate how Why-Pop can effectively 

support tasks related to explaining how our trained neural network predicts the genre 

of the songs using spectrograms.  

5.1 Case Study 1 – Good concepts 

 

Figure 5.1 This figure illustrates when the example concept, hip-hop concept 18 in case study 
1 is explored all the way from global to local view. The panels 1 through 5 are discussed in 

further detail with zoomed in versions in the following sections. 

5.1.1 Global Explanations 

 First, let’s look at “Hip-Hop Concept 18”. Looking at the concepts panel, it 

shows the concept has a TCAV score of 0.48. Considering a range of 0.35 to 0.52 of 

the TCAV scores for the extracted concepts, that indicates that this is a highly relevant 
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concept for this class. In fact, it is the highest-rated concept for this class. This score 

helps explain two things. One is that it helps the user identify that this is a relevant 

concept for the class and hence should be further explored. The second one is that it 

also helps quantify the relevance of the concept with the TCAV score which helps with 

the comparison of different concepts within the class.  

 Further, the concept clusters panel, panel 2 helps the user find concepts similar 

to the concept in focus. Looking at both panel 1 and panel 2, we can see that 

surprisingly it isn’t like other hip-hop concepts. Rather, it is similar to a lot of Folk 

concepts. Similarly, this concept is also similar to a lot of instrumental genre concepts. 

This can be confirmed in Figure 5.2. These observations help the user gain insights 

into how the concepts relate within the class and across themselves, serving the task 

of global explanations through the interface.   

 

 

Figure 5.2 Circled in red is the concept in focus, Hip-Hop Concept 18. Circled in yellow are the 

genres containing a lot of concepts like the hip-hop concept but from a different genre. Circled 
in green is the cluster of concepts irrespective of genre. 
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5.1.2 Intermediate-Level Explanations 

5.1.2.1 Concepts from Spectrograms 

Selecting this concept in panel 1, populates panel 3, the concept images panel. 

This panel will help the user get insights into the concept patches extracted from 

spectrogram images of the songs as part of this concept. The panel presents 10 

examples of concept patches in a table-like manner. In each cell, a single image 

consists of two parts. The left side of the image shows the extracted patch for the 

concept, and the right side of the image shows the part of the spectrogram the patch 

was extracted from. This is marked with a yellow boundary within the image This panel 

is shown in Figure 5.3. A closer look at the figure shows that most of the concept 

patches came from the middle or the lower end of the frequency spectrum. This goes 

on to show that the model considers high bass drum beats an important concept for 

hip-hop songs. Not just the drums, in fact, the way most hip-hop songs are sung, they 

usually contain deep voices quite suitable for rap (rhythm and poetry) kind of songs.  

 It should be noted that ACE randomly chooses examples to extract concepts 

from and further a subset of 10 is chosen for which this concept patch to concept 

mapping is provided. Hence, not all the songs can be covered with panel 3.  

5.1.2.2 Human Understandable Features 

 Let’s move on to panel 4 which is also populated as soon as a concept is selected 

in panel 1 or 2. This visualization can be used in conjunction with panel 3, the concept 

images panel to further understand what the model has learned and given importance 

to. The radar charts in this panel break down the songs into 8 human-friendly feature 

measures as mentioned earlier. Further, it also presents these charts for as many 

common songs from the concept images panel for which the feature data is available. 

Nevertheless, this does help the user get insights into the general trends of the songs 
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across the genre. An example of the songs for which feature data is available is shown 

in Figure 5.3. 

 

 

Figure 5.3 Panel 3, Concept Images Panel. Presents concept patches extracted from song 

spectrogram for hip-hop concept 18. Showing patches extracted from the lower end of the 
frequency spectrum. 
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 Going back to our observations from panel 3, it was noted that a lot of the 

concept patches came from the lower end and middle of the frequency spectrum 

indicating low-pitch sounds. This can be confirmed by the radar charts in Figure 5.4 as 

in all of the songs acousticness levels are very low. This is in contrast to the songs 

from another genre such as experimental. Now, tempo indicates rhythm and valence 

is an indicator cheerfulness of the song. Consequently, tempo and valence levels are 

generally high across all the songs.  The same goes for energy as well as we know hip-

hop songs are full of energy. Since most hip-hop songs are composed of rap music as 

well as a consistent rhythm, that is also in agreement with high tempo and valence 

values.  

On a similar note, hip-hop songs make good dance numbers and hence it is 

shown with high danceability values. Liveness is an indicator of if the music was 

recorded live mostly accounting for audience noise. These values are also low noting 

that these are probably studio-recorded songs. A high value of instrumentalness 

represents a higher chance of the song being just an instrumental and accordingly, 

the instrumentalness values are low for these songs. Finally, a value of speechiness 

above 0.66 indicates the track is just made of spoken words, values between 0.33 and 

0.66 indicates the presence of words and music and a value less than 0.33 indicates 

the song doesn’t have any speech. Speechiness values between the 1st and 2nd circle 

indicate the values are between 0.33 and 0.66 meaning the presence of both music 

and spoken words. Another thing to note is that the shape of the radar chart blobs of 

all the songs is pretty similar visually as well indicating similarities across the songs. 
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Figure 5.4 Panel 4, Human Understandable Features. Hip-hop songs are compared using 
human-friendly features. 

 

5.1.3 Local Explanations 

 Panel 5 focuses on concepts within a selected song. Here, a total of 50 songs 

are available to be inspected which are the same 50 songs randomly selected by ACE 

for concept extraction. While any of the 50 songs can be selected for inspection, the 

user can click on one of the radar charts in panel 4 to select a song and inspect it. For 

this case study, the song in the top right, “Speak Your Mind feat. Hard Target” is 

chosen. Once selected, panel 5 presents a spectrogram with only the concept patches 

present within the song i.e., the group of pixels the model deemed important. This is 

presented with an option for the user to play the song as well with the seek bar of the 

player aligned in such a manner that the user can map the current time in the song 

with the spectrogram and essentially look at the concepts present, their position in 

accordance to the frequency spectrum and notice the different instruments or vocals 

probably contributing to one of the concepts.  
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As an example, in Figure 5.5, the selected song can be played. In line with the 

name of the song “Speak your mind”, the song is very energetic as was seen in panel 

4 as well. Good drumbeats and consistent rhythm also lead to high danceability, 

tempo, and valence values. Something unique in this song is a choir-like high-pitch 

singing in the background throughout the clip. This is probably accounted for by 

concepts 6 and 16 present (marked in red in the figure) at the top. But, going back to 

panel 1, the concepts panel, to check the importance of these two concepts shows 

these concepts are low in importance for the hip-hop genre which is expected. On the 

contrary, concepts 15 and 1 present (marked in green in the figure) on the lower end 

of the spectrogram when looked up in the concepts panel have high importance scores. 

In fact, concepts 15 and 1 are the 2nd and 4th most important concepts for the hip-hop 

genre which is in line with the observations and patterns we have come across for the 

hip-hop genre throughout this case study and expect the model to focus on these 

concepts while classifying songs for hip-hop genre. This view helps serve the task of 

local explanations that the user can look at in terms of a single song within the genre 

and check their hypothesis and gain a better understanding of the model’s learnings. 
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Figure 5.5 Panel 5, concepts present within the song. Looking at the seek bar, the user can 

map the position back to the spectrogram 

  

5.2 Case Study 2 – Bad Concepts 

5.2.1 Global Explanations 

 For this example, let’s look at a concept that the model thinks is very important 

but, is very spurious and hard to make sense of. Let’s look at Folk concept 18 as an 

example of a bad concept while comparing it with Folk concept 21 as an example of a 

good concept for reference. 

 To start off, we can see that while one concept is good and one is bad, both 

have a TCAV score of 0.52 which is the highest across the range in terms of concept 

importance for the class. Further, looking at the concept clusters panel as well it can 
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be seen that the bad concept is part of a very small cluster and when those other 

concepts are inspected, they have low TCAV scores for their respective genre. For the 

good concept though, it’s part of a big healthy cluster. This can be seen in Figure 5.6 

as well. This helps the user uncover the presence of noisy concepts being learned by 

the model and indicates that they may need to make some adjustments for better 

results.  

 

 

Figure 5.6 Panel 1, Concepts Panel. Good concept marked with green and bad concept marked 
with red. Panel 2, concepts cluster panel. The good concept cluster is presented on the left 

and the bad concept cluster is shown on right. 

Concept 21 Concept 18 
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5.2.2 Intermediate-Level Explanations 

5.2.2.1 Concepts from Spectrograms 

 Now, let’s inspect this noisy concept further to understand what the model 

might be picking up on from the spectrogram.  

 

 

Figure 5.7 Panel 3, Concept Images panel. Below the 10 spectrograms is a zoomed-in view of 
bad concepts extracted from some of the spectrograms. 
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 A quick look at figure 5.7, the concept images panel tells us that out of the 10 

examples, for 5 songs, the extracted concept patches are the black bands that were 

added as data augmentation. This clearly shouldn’t be a concept that the model should 

be learning, hence helping us uncover these kinds of biases in some cases.  Looking 

at good folk concepts in Figure 5.8 the model seems to be extracting comparatively 

more meaningful concepts for the class.  

 

Figure 5.8 Panel 3, Concept images panel. Zoomed-in version shows concept patches 
extracted from the good folk concept. 
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 The concept patches extracted in the good concept seem to be coming from 

the higher end of the spectrogram. This is in line with more use of acoustic instruments 

in the songs. This whole comparison helps the user understand that while the model 

is able to find good concepts for the class, it is also not reliable against adversaries in 

the data or song samples, especially in the case of this class.  

5.2.2.2 Human Understandable Features 

 To confirm some of the observations earlier, let’s now look at some radar charts 

with more human-friendly features and try to see if some patterns can be found there. 

Ideally, for the bad concept, it should be more random compared to a good concept 

which should reveal some patterns that the model is learning. Comparing the songs 

from the bad concept and the good concept as shown in Figure 5.9, in terms of 

similarity, it can still be seen that almost all the songs present high acousticness values 

which are very trademarks of a folk song. But at the same time if we look for any 

visual patterns, for the bad concept, only two songs look like having similar values and 

shapes. While in the case of the good concept, almost 4 out of 5 songs show very 

similar characteristics. Further strengthening our understanding of the model and the 

mistakes it might be making while learning from data.  
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Figure 5.9 Panel 4, Human understandable features. The top 5 songs are songs from the bad 
concept and the bottom 5 songs are from the good concept 
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5.2.3 Local Explanations 

 Finally, selecting one song each from the bad and the good concept batch gives 

us more insights into comparing the concept examples locally, sample by sample.  

 

 

Figure 5.10 Panel 5, Concepts within a song. All concept patches extracted from a single song 
are stitched together. The song on the top belonged to a bad concept example, the bottom 

one belonged to a good concept. 
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 Looking at the examples in Figure 5.10 ties all our observations down. For the 

song representing the bad concept, the model was only able to extract three concepts 

from it, and that too very large and generic in quality. The model is not able to identify 

the defining characteristics of the class in this concept at least. Although, if we look at 

the song from the good concept example, there are lots of concept patches present 

that probably helped the model classify these songs. It should also be noted that most 

of the concept patches come from the middle and higher end of the frequency 

spectrum, agreeing with the high acousticness value we saw earlier. This one-on-one 

comparison of examples makes it even more certain that despite the high importance 

score of the bad concept, it should be discarded. The local explanations in this case 

helped conclude the doubts over the model’s learnings in this case. 
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CHAPTER 6 

LIMITATIONS 

 

 As with any system, there are certain limitations to this system as well. Starting 

with the backend, the network itself is dependent on a lot of hyperparameters. Since 

there is transfer learning involved, for different datasets and networks, the layers we 

train might reveal different results. Previous research [9] has shown that the layers 

close to the logit layer have more influence on the prediction but, the number of layers 

that need to be fine-tuned can always yield different results.  

 Apart from the model training, the backend is dependent on the concept 

extraction process. ACE, the algorithm used for concept extraction randomly chooses 

examples from the target class to extract concepts from which could directly influence 

the quality of the concepts extracted. The TCAV score that quantifies the concept also 

uses randomly selected examples to test the concepts against which could again 

influence concept quality. The clustering of extracted concepts using k-means was also 

based on the hyperparameter k.  

 The system is also dependent on the human understandable features dataset 

to tie the insights down but, the available dataset was in fact far smaller than the 

actual dataset which limits the available options the user can drill down into in terms 

of dataset samples. The availability of this dataset is dependent on either experts 

handcrafting these datasets or proprietary data made available by streaming 

companies. 

 In terms of the frontend, hyperparameters are involved in the creation of 

spectrograms which can affect the model training, the concept extraction process, and 

when displayed to the user, their ability to find patterns visually among them. To take 

care of this though, standard procedures from the industry have been used for their 
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extraction process. For panel 2, the concepts cluster panel, t-SNE was used which 

again involves setting parameters such as perplexity which can drastically change how 

the clusters are presented to the user. The distance and tightness in the clusters are 

highly dependent on this parameter. To avoid this, K-Means was first used to form the 

clusters. For highly correlated and non-linear datasets, t-SNE might reveal different 

results for different perplexity values. Also, since it is an iterative process, the 

initialization is random and hence can have different results for the same 

hyperparameter values. 

 Finally, the biggest limitation is the availability of royalty-free datasets such as 

the one used here. This becomes especially difficult because deep learning neural 

networks need a lot of data to learn from. To account for this, data augmentation 

techniques were used but they still cannot replace the availability of quality data.   
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusion 

 The thesis aimed to explain the model’s decision-making process in three levels 

of granularity: global explanations, intermediate-level explanations, and local 

explanations. Another goal was to dive deeper into the task of music classification 

which is thought of as a rather unintuitive process and is often overlooked in 

comparison to other fields. At the same time, the lack of available data doesn’t help 

to make the process any easier. Despite this, the backend of the interface proposed is 

nicely able to utilize the research already done in computer vision. Moreover, the 

explanation part of the interface helps to develop some intuition in the mind of the 

user. 

As seen in chapter 5, the system can help uncover the model’s learnings and 

reveal surprising insights into the concepts model gives importance to. The thesis 

focused on all three levels of granularity in detail while giving the user the option to 

explore different data samples as they please. The interface helped reveal patterns 

within the genre and define aspects of the song the model deemed important for the 

classification task. In terms of concepts, the interface helped develop an understanding 

of what the concepts meant and at the same time verify the observations using the 

human understandable features. Finally, concepts presented within the song along 

with the audio played definitely helped make important conclusions for the 

genre/concept the user was looking into.  

Finally, the good concept and the bad concept example in chapter 5 was able 

to ensure that users don’t fall into the trap of confirmation bias. Finding anomalies and 

biases is an important part of the process of creating better and more general models. 
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One of the goals of XAI is to uncover the unintended consequences of the process. 

This is exactly what was seen in the case of the bad concept where the model was 

focusing on black bands in the spectrogram i.e., the silence added as part of data 

augmentation to make the model more generic. But the examples seen in bad concept 

were not an intended or an expected consequence of that. Another XAI goal was to 

establish trust in the user. By using this interface, the user can learn about areas the 

model is able to excel at and at the same time learn about areas where the model’s 

learnings are poor. This helps the user correct the model’s mistakes and over time 

trust the model to perform reliably.  

7.2 Future Works 

 Hopefully, this work will be able to drive more research into music classification 

and XAI. At the same time, there is a scope for a lot of improvements on the proposed 

interface itself. Some of them are as follows: 

• Human Understandable Features: The current system relies on the availability 

of these music features. Enabling the system to automate this would directly 

extend the comparisons the user can make to understand the model. 

• Increased Interactions: Currently, the user can focus on one concept at a time. 

Scaling that to let the user explore multiple concepts at the same time and 

side-by-side comparisons would certainly help reduce the number of times the 

user has to follow the top-down approach.  

• Performance: In any software system there is always scope to improve things 

in terms of performance. To manage the load on the system, a lot of the 

hyperparameters were chosen for the user with some of the data prepared 

beforehand. Providing more options to the user while maintaining a high-

performance bar will help the user explore the model even better. Along similar 
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lines, giving the user the option to choose the model used for classification can 

help them pick the best one for the task.   

• User Feedback: While the usability of the interface was demonstrated by using 

case study examples in chapter 5, another way to test the system’s abilities 

would be through user studies and further note interesting insights the users 

are able to uncover while incorporating their feedback about the interface to 

increase usability. 
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