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ABSTRACT  
   

To reduce the environmental burden of transport, previous studies have resorted 

on solutions that accentuate towards techno-economical pathways. However, there is 

growing evidence that transport behaviors, lifestyle choices, and the role of individuals' 

attitudes/perceptions are considered influential factors in shaping households’ 

engagement with sustainable technologies in the face of environmental crises. The 

objective of this dissertation is to develop multidimensional econometric model systems 

to explore complex relationships that can help us understand travel behaviors' 

implications for transport and household energy use. To this end, the second chapter of 

this dissertation utilizes the latent segmentation approach to quantify and unravel the 

relationship between attitudes and behaviors while recognizing the presence of 

unobserved heterogeneity in the population. It was found that two-thirds of the 

population fall in the causal structure where behavioral experiences are shaping attitudes, 

while for one-third attitudes are shaping behaviors. The findings have implications on the 

energy-behavior modeling paradigm and forecasting household energy use. Building on 

chapter two, the third chapter develops an integrated modeling framework to explore the 

factors that influence the adoption of on-demand mobility services and electric vehicle 

ownership while placing special emphasis on attitudes/perceptions. Results indicated that 

attitudes and values significantly affect the use of on-demand transportation services and 

electric vehicle ownership, suggesting that information campaigns and free 

trials/demonstrations would help advance towards the sustainable transportation future 

and decarbonizing the transport sector. The integrated modeling framework is enhanced, 

in chapter four, to explore the interrelationship between transport and residential energy 
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consumption. The findings indicated the existence of small but significant net 

complimentary relationships between transport and residential energy consumption. 

Additionally, the modeling framework enabled the comparison of energy consumption 

patterns across market segments. The resulting integrated transport and residential energy 

consumption model system is utilized, in chapter fifth, to shed light on the overall 

household energy footprint implications of shifting vehicle/fuel type choices.  Results 

indicated that electric vehicles are driven as much as gasoline vehicles are. Interestingly, 

while an increase in residential energy consumption was observed with the wide-scale 

adoption of electric vehicles, the total household energy use decreased, indicating 

benefits associated with transportation electrification.  
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1. INTRODUCTION 

The modal composition, per-capita activity level, and pace of activity growth has resulted 

in steep rise of household energy use. Transportation accounts for about one-third of the 

total energy use in the United States which has major implications on energy security and 

sustainability (U.S. EIA, 2020). With the advent of rapid advancement in technology of 

alternative fuels (e.g., electric vehicles), automation, and information technologies, recent 

studies have projected a radical change in transport energy use (Muratori, 2021; Shaheen 

et al, 2018; McCollum et al, 2014). 

To reduce the environmental burden of transport, previous studies have focused on 

solutions that accentuate towards techno-economical pathways. In other words, these 

studies considered vehicle technological efficiency gains and fuel switching as the central 

mitigation strategies to decarbonize transport sector (Kobashi and Yarime, 2019; Anable 

et al, 2012). However, there is growing evidence that transport behaviors, lifestyle choices, 

and role of individuals attitudes and perceptions are considered influential factors in 

shaping society’s engagement with sustainable technological opportunities in the face of 

environmental crisis (Brand et al, 2019; Sekar et al, 2018; Stern et al, 2016; Anable et al, 

2012; Allcott and Mullainathan, 2010). For instance, Brand et al (2019) found that lifestyle 

changes alone (without an EV transition) have a similar effect on transport carbon emission 

and air quality index than a transition to EVs with no lifestyle change. Sekar et al (2018) 

studied the impact of changes in activity time use on energy consumption. The authors find 

that lifestyle changes caused by technology contribute to shifts in energy use across sectors.  
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Clearly, environmental sustainability of communities, neighborhoods, and cities 

are critically tied to the energy consumption associated with transport behaviors/attitudes. 

In the energy-behavior modeling paradigm, it is often assumed that the direction of 

influence in a causal structure is in a logical single direction (e.g., Gokasar et al, 2017; Yan 

et al, 2015). In other words, transport behaviors/attitude (e.g., mode choice, pro-

environmental attitude) affect energy use or well-being or health outcomes, for example.  

But it could be argued that the reverse causal direction may be equally plausible in some 

instances, or the causality may be bidirectional in nature where the two phenomena of 

interest affect each other. For example, consider the relationship between residential 

location choice and transport energy use. It can indeed be argued that households and 

individuals locate themselves in neighborhoods, and then based on neighborhoods 

attributes (e.g., proximity to bus/transit stop) determine their energy consumption 

behaviors (Biying et al, 2012; Lindsey et al, 2011).  However, the reverse may be true for 

some people. An individual who is pro-environment, may self-select to settle down in areas 

where there is good transit service or availability of sustainable modes (e.g., e-scooters, 

bike sharing) to pursue their energy saving lifestyle – suggesting that a different causal 

structure is at play for this individual.  

The existence of bidirectional causal relationship is not limited to travel behavior 

domain, similar phenomena may also exist in the context of building energy use. For 

instance, consider the relationship between housing unit type and residential energy use. It 

is often noted that housing unit type (e.g., apartments, detached housing) influence building 

energy use (US Energy Information Administration, 2013). For some individual, however, 
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the relationship might be reverse. In other words, occupants looking to pursue energy 

saving lifestyle may self-select to reside in housing unit type which provides the 

opportunity to conserve energy.   

Perhaps there is a cyclical bidirectional relationship between behaviors and energy 

use.  In other words, the multiple behavioral dimensions of interest may be inter-related 

with each other (Kitamura et al, 1996; Pendyala and Bhat, 2004) in complex ways. To put 

this in the context, let us say, households that are not auto-oriented may choose to live 

closer to transit or in a pedestrian-friendly neighborhood. The presence of good transit 

service may, in turn, structurally influence the mode choice behavior of households.  

To account for the multitude of relationships among behavioral choices, the 

profession has heavily gravitated towards the development, estimation, specification, and 

implementation of simultaneous equation model systems. For instance, Paleti et al (2011) 

considered six activity-travel choice dimensions (long-term choices [e.g., residential 

location choice, work location choice], medium-term choices [e.g., automobile ownership], 

and short-term choices [e.g., number of stops on commute]) in a simultaneous modeling 

framework and found a direct relationship among the choice dimensions and across 

unobserved factors (through error correlations). Several other studies in the simultaneous 

equation modeling paradigm included those of Konduri et al (2011), Eluri et al (2011), 

Pinjari et al (2011), Lavieri et al (2017), Astroza et al (2018), and Dias et al (2020). 

However, in the above studies, it was assumed that the entire population follows the same 

causal structure (in a simultaneous equation model system) which might not be true in 

reality. Virtually, all the activity-based travel demand forecasting model systems in 
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practice assumes the same causal structure relating various activity-travel variables (even 

if coefficients within models vary across market segments). But heterogeneity in a 

population may not simply be limited to differences in coefficients (which represents 

different levels of sensitivity or elasticities).  Heterogeneity may manifest itself in the form 

of different underlying causal structures at play within the same population across various 

population segments. In a heterogenous population, the presence of different causal 

structures is entirely possible and neglecting or ignoring the presence of different causal 

structures might lead to erroneous energy use forecasts and poor policy decisions. In order 

to uncover the presence of multiple causal structures in the population, the second chapter 

of this dissertation utilizes a latent segment-based approach to help reveal the presence of 

multiple (unobserved) market segments in the population following different causal 

structures. Specifically, this chapter deals with three endogenous variables such as 

residential location choice, frequency of transit usage, and attitude towards transit as an 

outcome of interest. The findings of this research have major implications on sustainable 

transport development and policy implications, especially in the scenarios of emerging 

transport technologies. For instance, if attitudes are shaped by behaviors, information 

campaigns (on adoption and utilization of sustainable transport technologies) may not be 

all that effective and it would be important to provide individuals with opportunities to 

experience sustainable transport modes to bring a change in energy use. While the reverse 

causality is also possible indicating that attitudes might influence behavior. However, it 

should be noted that the second chapter does not attempt to quantify the household energy 

use but rather highlight the existence of structural heterogeneity in consumer decision-
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making processes which might help in accurately forecasting energy use and design policy 

interventions. In other words, the findings of this research will help energy-behavior 

analysts who are increasingly trying to assess the relationship between human attitudes and 

perceptions on the one hand and behavioral choices on the other. From a travel demand 

forecasting perspective, there is interest in exploring the possibility of using attitudinal 

variables and constructs to better explain and more accurately predict travel demand (and 

in turn household energy use) under a variety of scenarios, particularly in the context of 

the emerging transport technologies. Lastly, from a sustainable transportation policy 

development perspective, there is interest in influencing attitudes of people (say, through 

information campaigns) to bring about more sustainable activity-travel behaviors. Overall, 

the study makes an important contribution in unraveling and quantifying the relationship 

between traveler attitudes and behaviors. Results from this study indicates that there is 

considerable heterogeneity in the population with the contemporaneous causal structures 

in which behaviors shape attitudes more prevalent than those in which attitudes affect 

choice behaviors. Thus, clearly indicating that special emphasis should be placed on 

attitudes/perceptions while explaining a behavioral phenomenon of interest.   

Building on the causal segmentation research, which provides deeper insights on 

the relationship between attitude and behaviors, the third chapter explores the factors that 

influence the adoption of on-demand mobility services and electric vehicle ownership 

while placing special emphasis on attitudes, perceptions, and preferences. The rapid 

advancement in sustainable transport technologies has provided technical pathways to 

decarbonize transport sector but the adoption and utilizations of these technologies remains 
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a challenge. To advance the adoption and utilization mechanism of these technologies, it 

is important to understand the role played by attitudes, perceptions, and preferences in 

consumer decision-making processes. Overall, the role of socio-technical factors in 

concomitant with understanding consumer decision-making processes may yield effective 

interventions strategies to decarbonize the transport sector.  Because the prediction of on-

demand transportation usage and adoption of electric vehicles is the phenomenon of 

interest in chapter three, a single structure is used (no heterogeneity in causal structures) 

in view of the desire to identify the factors that influence the utilization and adoption of 

these transportation innovations. To this end, the next chapter of this dissertation explores 

the following question: 

Do Attitudes, Perceptions, and Preferences Play a Role in Adoption and 

Utilization of Sustainable Transport Technology in India?  

India has experienced a surge in middle class population due to rapid and consistent 

economic development over the past few decades that has fueled the growth in vehicle 

ownership and use. Transportation accounts for 11 percent of all India’s greenhouse gas 

(GHG) emissions, one-third of particulate matter (PM) pollution, and an even higher 

proportion of nitrogen oxides - all of which are harmful to human health (Kumar, 2021; 

Guttikunda, 2015). This has motivated the search for sustainable transport solutions to 

ensure environment and social sustainability. One solution constitutes the ride hailing 

services, which are expected to reduce car ownership and provide affordable means of 

transportation. Another key solution is the rise of electric vehicles (EVs), which are 
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expected to reduce greenhouse gas emission and address the growing demand for 

sustainable urban mobility.  

Several research studies have explored the factors that influence car ownership and 

use in India (Zhou et al, 2020; Srinivasan et al, 2017; Verma, 2015; Dash et al, 2013). 

Srinivasan et al (2017) found that if the car holding among peers, friends or collegues is 

significant, the tendency to own a car increases. Also, car ownership increases with 

household size and economic standard of households as noted by Dash et al (2013). 

Further, Verma et al (2015) indicated that lower interest rate on car loan is fueling the 

adoption of gasoline cars among young adults in India.  

According to recent articles by the International Council on Clean Transportation 

(ICCT), it is imperative that the nation embraced emerging vehicular technologies to 

reverse the growth in India’s road transport emissions. One such mobility option is 

transportation electrification which can reduce the negative externalities caused due to 

growth in road transportation. Sen et al (2021) studied the “Ambitious EV (without tighten 

power plant emission and decarbonize strategies)” scenarios between 2020 and 2040 and 

found that vehicle electrification could alone lead to a significant improvement in air 

quality and health benefits in India. Besides identifying individuals who are more likely to 

adopt EVs (Dua et al, 2021; Shalender and Sharma, 2020; Nazari et al, 2019; Hardman et 

al, 2016; Langbroek, 2016), studies have also found that vehicle price, vehicle type, vehicle 

performance, federal and state tax incentives, HOV lane access, proximity to charging unit, 

and operational cost associated with EVs impacts EV adoption and utilization patterns 
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(Chakraborty et al, 2019; Jenn et al, 2020; Hardman et al, 2019; Gass et al, 2014; Tal and 

Nicholas, 2013).  

Another mobility option that is expected to soften the impact of private automobile 

use is ridehailing or ridesharing services (Singh, 2019). In India, two of the most popular 

ridehailing services are Ola and Uber. Ridehailing services are expected to reduce the 

growing car ownership in India, as they offer door-to-door mobility services via a 

smartphone app that can be used to summon the ride in real-time. However, Devaraj et al 

(2017) found that ridehailing adoption decreases with increase in vehicle ownership per 

worker. The rich body of literature has indicated that ridehailing services are generally used 

by individuals who are younger, more highly educated, employed and residing in urban 

areas (Malik, 2021; Wadud, 2020; Lavieri and Bhat, 2019; Alemi, 2018).  

Despite extensive research on ridehailing usage and electric vehicle adoption, there 

is very little research that explicitly explores the interaction between these transportation 

innovations - particularly in developing countries such as India. Thus, this chapter fills an 

important gap in the literature and sheds new light on the adoption of promising new 

transportation technologies in the Indian context, while explicitly accounting for attitudinal 

variables within a holistic integrated modeling framework. The findings indicated that 

attitudes and values significantly affect the use of on-demand transportation services and 

EV ownership, suggesting that information campaigns and free trials/demonstrations 

would help advance the adoption of sustainable transportation modes. Further, the 

integrated modeling framework provided a good fit to the dataset indicating the need to 

advance towards holistic integrated approaches as big data continues to emerge.  In other 
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words, a holistic integrated modeling framework provides the capability to fully assess and 

understand the interrelationships among multiple behavioral phenomena of interest which 

is otherwise not accounted. The integrated modeling paradigm will assist in holistically 

assessing the implications of alternative policy interventions, built environment conditions, 

and technology advances on energy consumption footprints. 

The technological, social, and environmental shift warrants the adoption of a 

holistic integrated modeling frameworks to solve the energy challenges and explore 

pathways to a low carbon future. Due to phenomenal growth in energy demand and 

corresponding human and environmental impacts, it is critical for communities and cities 

to explore pathways to simultaneously manage household’s transportation and residential 

energy consumption patterns to advance economic vitality, wellbeing, and environmental 

sustainability of the region. Holistic integrated modeling frameworks present an 

opportunity to develop, analyze, and model these connections which may be desired for 

analyzing alternative energy future and policy scenarios. 

Human activities/behaviors and energy use are intrinsically connected (Schipper et 

al, 1989; Li and Zhao, 2012). Despite a clear connection among energy constituents, prior 

research efforts aimed at characterizing and estimating energy footprints have been largely 

aggregated in their approach. In other words, they do not sufficiently account for attributes, 

attitudes, and behaviors of individuals, households, and organizations at the agent level, 

which is critical to forecast the energy consumption patterns in different scenarios (Stern 

et al, 2016). Further, most of the energy use computations are unidimensional in nature, 

focusing on a single energy component (Muratori et al, 2020), thus limiting the ability of 
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modeling frameworks to quantify the total household energy footprint in response to 

changes in population characteristics, built environment conditions, technology, and public 

policies. Because, the multiple behavioral dimensions of interest are interconnected to each 

other, integrated modeling framework will provide the capability to assess following 

scenarios (but not only limited to this): 

An individual working from home (even for few days of the week) is likely to 

travel less, and spend more time at home, thus simultaneously affecting energy use in 

transport and residential sectors. How do we account for such inter-dependencies in a 

holistic energy analysis framework? 

To develop these connections among different components of interest, a data fusion 

across multiple datasets is required as different dataset contains different pieces of 

information. For instance, the National Household Travel Survey (NHTS) contains detailed 

information about household and person level socio-demographic characteristics, activity-

travel characteristics, vehicles owned or leased by the household, and other trip 

characteristics. The Residential Energy Consumption Survey (RECS) data set contains 

detailed information about socio-demographic characteristics and residential energy 

consumption details. The American Time Use Survey (ATUS), ATUS Well-being module, 

and ATUS Eating, and Health module contains detailed information about people’s use of 

time, well-being measures, eating habits, health outcomes, and socio-demographic 

characteristics. Thus, utilizing the information present in each of these datasets and fusing 

it across the datasets will help us to develop more comprehensive computational model 

systems that reflect relationships between the components of interest. The developed 
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comprehensive model system will then make it possible to view the patterns in a holistic 

manner and assess the impact of transport behaviors and transport policies/decisions on 

other societal outcomes. 

Therefore, the fourth chapter develops an integrated transport and residential 

energy consumption model system that explores the interrelationship between the transport 

and residential energy consumption under the hypothesis that, if people travel more (and 

spend more time outside home), they may consume more transport energy, but less in-home 

residential energy. To explore this relationship, the information from the NHTS is fused 

with the RECS to develop a comprehensive computational modeling framework within an 

agent-based microsimulation environment that can be used to characterize and quantify the 

spatiotemporal dynamics of the components of household energy footprint. The 

characterization and quantification of spatio-temporal dynamics will enable us to track how 

transport and residential energy changes over time as different users carry out their daily 

activities in space and time. The findings from the previous chapter indicated the 

importance of attitudes and values in explaining a behavioral phenomenon of interest. 

However, due to non-availability of attributes related to attitudes and value, chapter four 

does not account for attitudes, perceptions, and values. Future, research endeavors should 

explore pathways to impute attitudes and value for households in NHTS and RECS dataset 

which will help in developing a robust model system. The findings from this study indicate 

the existence of small but significant net complementary relationships between transport 

and residential energy consumption. Additionally, the modeling framework enabled the 

identification and comparison of energy consumption patterns across market segments. 
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Further, the resulting integrated transport and residential energy consumption model 

system can be utilized to assess the overall household energy footprint implications of 

shifting vehicle/fuel type choices (e.g., electric vehicles).    

One of the mobility fuel type choices that is expected to dominate the household 

vehicle fleet composition is the adoption and utilization of electric vehicles. Many 

countries have formulated policies to encourage electric vehicle (EV) adoption so that EVs 

will account for an increased share of future vehicle fleets. Various incentives, rebates, 

improvements in battery technology and cost, advancements in charging infrastructure 

units, and new compelling electric car models in the market have collectively stimulated 

the adoption of EVs, but the market share of EVs remains very small in most contexts. The 

current estimates indicate that about 2 million battery electric vehicles have been sold in 

the U.S. since 2010 (Argonne, 2021) and the forecasts suggests that EVs will account for 

about 60 percent of new car sales in US by 2040 (Electric Vehicle Outlook, 2021). 

Transport energy consumption is dependent on the mix of vehicles that a household owns 

and uses, and the extent to which different vehicles in the households are driven. Although 

there have been a number of surveys aimed at understanding factors that influence adoption 

of EVs, there is little work focusing on ownership and utilization of EVs among households 

that actually own one or more EVs.  Most household travel surveys have few, if any, 

records of households that own EVs, thus rendering it difficult to analyze the usage of EVs 

relative to gasoline vehicles.  Thus, the fifth chapter of this dissertation attempts to fill this 

critical gap by presenting a comprehensive comparison of the utilization patterns of electric 

vehicles relative to gasoline vehicles and its implications on household energy footprint. 
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If electric vehicles were to be utilized more than gasoline vehicles, this may negate 

some of the benefits associated with transition to an EV future. It is expected that EVs will 

yield lower energy consumption per mile which will, in turn, decrease carbon emissions 

from the transport sector. However, wide scale adoption and utilization of electric vehicles 

could significantly increase total electricity demand (Moon et al, 2018) as about 80 percent 

of the electric vehicles are currently charged at home (National Resources Defense 

Council, 2021). To account for these inter-relationships and tradeoffs (as part of chapter 

five), an integrated transport and residential energy consumption model system, developed 

in chapter four, is used to shed light on the overall household energy footprint implications 

of shifting vehicle/fuel type choices.    

Overall, the objective of this dissertation is to significantly contribute to the existing 

literature by developing multidimensional statistical and econometric model systems to 

explore complex relationships that can help us understand travel behaviors implication for 

transport household energy use. These efforts involve the use of novel data sets, and in one 

endeavor, involve the fusion of information across disparate data sets. More specifically, 

the second chapter utilizes the dataset from 2014 Who’s on Board Mobility Attitudes 

Survey (Transit Center, 2014), an online survey administered to a sample residing in 46 

diverse metropolitan areas in the United States. The third chapter utilizes a comprehensive 

survey effort undertaken in India by the Ola Mobility Institute as part of its Ease of Moving 

Index framework in 2018. The survey was conducted across 20 cities in India (with a 

collective population of 90 million). To explore the interrelationship between transport and 

residential energy consumption as part of fourth chapter, the 2017 National Household 
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Travel Survey and 2015 Residential Energy Consumption Survey Dataset were utilized. 

The National Household Travel Survey (NHTS) data set is derived from a large-scale travel 

survey conducted about every 8-10 years by the US Department of Transportation. The 

Residential Energy Consumption Survey (RECS) data set is derived from a large-scale 

energy consumption survey that is conducted about every six years. The 2017 NHTS and 

2015 RECS are further used in the fifth and final chapter, to explore the household energy 

footprint implications of shifting vehicle/fuel type choices. Thus, the dissertation effort 

contains four distinct chapters with the following objectives:  

Chapter Two: Do Attitudes Affect Behavioral Choices or Vice-Versa: 

Quantifying and Uncovering Latent Segments Within a Population 

The aim of this study is to quantify and unravel the relationship between attitudes 

and behaviors while recognizing the presence of unobserved heterogeneity in the 

population. This study presents a simultaneous equations model of attitudes and behaviors 

that explicitly recognizes the joint nature of the relationship between them. 

Chapter Three:  Accounting for the Influence of Attitudes and Perceptions in 

Modeling the Adoption of Emerging Transportation Services and Technologies in 

India 

This paper attempts to shed light on the factors that affect adoption of on-demand 

transportation services and electric vehicles (EVs) in India. Specifically, not only does this 

paper consider the socio-economic and demographic variables that affect these behavioral 

choices, but the holistic integrated modeling framework developed in this study places a 
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special emphasis on representing the important role played by attitudes, values, and 

perceptions in determining adoption of on-demand transportation services and EVs. 

Chapter 4: Development of an Integrated Transport and Residential Energy 

Consumption Model System 

This study aims to develop a comprehensive integrated model system and energy 

analysis tool that can be used to quantify the total household energy footprint, including 

separate transport and residential energy consumption components. The tool involves 

computing only operational energy consumption and does not consider embodied energy 

footprint.  

Chapter 5: Modeling Impacts of Electric Vehicles (EV) Adoption and 

Utilization on Household Energy Consumption 

The goal of this research effort is to explore the differences in utilization pattern of 

electric vehicles relative to gasoline vehicles and its implication on household energy 

footprint. This research has implications on travel patterns, charging infrastructure 

location, energy consumption, and social sustainability- as EVs become prevalent in the 

population.  

The remainder of the dissertation is organized as follows. The next sections provide 

the detailed description of the chapters. Within each chapter, introduction, background, 

dataset description, modeling framework, results and conclusions is provided. The last 

section provides the overall conclusion of the dissertation.  
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2. DO ATTITUDES AFFECT BEHAVIORAL CHOICE OR VICE-VERSA: 

QUANTIFYING AND UNCOVERING LATENT SEGMENTS WITHIN A 

HETEROGENOUS POPULATION 

2.1. Introduction 

This chapter aims to understand the relationship between attitudes, perceptions, and values 

on the one hand and behavioral choices on the other. There is a vast body of literature in a 

number of disciplines that has clearly demonstrated a strong inter-dependent relationship 

between attitudes and behaviors (De Vos, 2019; Ahn and Back, 2018; Fishbein and Ajzen, 

2010; Dobson et al, 1978; Norman, 1975; Wicker, 1969). In the transportation context, 

attitudes about various transportation options as well as personality traits that describe the 

innate proclivities and preferences of the individual are likely to be strongly associated 

with residential and work place location choices (Kim et al, 2020; Ettema and 

Nieuwenhuis, 2017; Bhat, 2015a; Cao et al, 2010), mode choice (De Vos and Alemi, 2020; 

He and Thøgersen, 2017), parking choice (Ibrahim et al, 2020; Soto et al, 2018), vehicle 

ownership and type choice (Acker et al, 2014; Choo and Mokhtarian, 2004), activity 

engagement and time use patterns (Frei et al, 2015; Archer et al, 2013), and willingness to 

participate in the sharing economy and adopt new technologies (Manca et al, 2020; Alemi 

et al, 2018; Lavieri et al, 2018; Astroza et al, 2017; Egbue and Long, 2012)  

In general, attitudinal constructs and factors have been used as explanatory 

variables in models of choices and behaviors (Ting et al, 2020; Chou et al, 2020; Jones et 

al, 2015). In the transportation literature, attitudes are often combined with the usual socio-

economic and demographic characteristics, built environment factors, and variables that 
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describe the options in the choice set to predict travel behaviors and energy use (Hwang 

and Lyu, 2020; Garcia et al, 2019; Ross et al, 2019; Soto et al, 2018; Kim et al, 2017; 

Ribeiro et al, 2017; Chen et al, 2017; Bhat et al, 2016; Heinen et al, 2013; Ory and 

Mokhtarian, 2005). In most, if not all instances, these studies have reported that attitudinal 

variables contribute significantly to explaining the choice behaviors of interest.   

More recently, however, a growing body of literature reports that the directionality 

of the relationship between attitudes and behaviors is actually one in which behaviors shape 

attitudes (Ajzen, 2015). Sozer et al (2018) and Zajonc (2002) indicate, for example, that 

customer experiences derived from a service (behaviors) shape attitudinal dimensions 

associated with the service. In the marketing domain, management of customer experiences 

has long been considered an important tool in shaping customers perceptions of and 

attitudes towards the brand (Grewal et al, 2009). In the transportation context, Thøgersen 

(2006) utilized panel data to study the effect of behaviors on attitudes and found several 

significant effects. As the recognition of the importance of the relationships between 

attitudes and behaviors has grown, so has the desire to collect attitudinal data in travel 

surveys and model the underlying relationships. With the renewed interest in the topic, 

several studies have explored the causal relationship between attitudes and behaviors by 

relaxing the assumption of unidirectionality embedded in most socio-psychological 

theories (Moody and Zhao, 2020; Kroesen and Chorus, 2020; Kroesen and Chorus, 2018; 

Kroesen et al, 2017). According to these studies, attitudes and behaviors mutually influence 

each other over time; however, when there is dissonance (inconsistency) between attitudes 

and behaviors, people are more prone to adjust their attitudes to align with behaviors as 
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opposed to adjusting their behaviors to align with attitudes.  In other words, it is the 

attitudes that are changing in response to behaviors rather than behaviors changing in 

response to attitudes.   

            Although it is clear that attitudes and behaviors mutually influence each other over 

time, and attitudes themselves may change as more information becomes available (Sheela 

and Mannering, 2019), the question as to whether attitudes affect behaviors or behaviors 

affect attitudes at any cross-sectional point in time remains an intriguing one with very 

important implications for transportation demand forecasting, household energy use, and 

the design and implementation of policy interventions aimed at shaping behaviors. If it is 

true that behaviors affect attitudes (rather than the reverse), then information campaigns 

and strategies aimed at reshaping attitudes may not have the desired and intended 

behavioral effects. Policy interventions would need to directly target behaviors by 

providing individuals varied opportunities to obtain and accumulate alternative 

experiences first-hand by actually trying new and different mobility options; alternative 

behavioral experiences would then bring about changes in attitudes that would and could 

further reinforce desirable behaviors as individuals adjust their attitudes to reduce 

dissonance (Kroesen et al, 2017).  

This chapter aims to develop a joint simultaneous equations model of attitudes and 

behaviors that explicitly recognizes the package nature of the relationship among them. 

Both attitudinal variables and behavioral choice variables are considered endogenous in 

nature, thus recognizing endogeneity associated with estimating relationships between 

these dimensions of interest. Treating both attitudes and behaviors as endogenous variables 
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requires the specification and estimation of joint simultaneous equations model systems 

that accommodate error correlations, rendering it possible to account for the presence of 

correlated unobserved attributes that simultaneously affect both attitudes and behaviors.  

However, unlike previous studies, this research effort explicitly recognizes that 

there may be population heterogeneity with respect to the nature of the relationship 

between attitudes and behaviors. While undoubtedly mutually reinforcing, attitudes may 

influence behaviors for some people and behavioral choices may affect attitudes for 

others at a specific cross-section in time. A multitude of directional relationships between 

attitudes and behaviors may exist in the population and it would be of interest to determine 

the extent or degree to which each of the directional relationships is prevalent in the 

population at a specific cross-section in time. By determining the degree to which each 

relationship exists in the population, and the characteristics of each market segment (in 

terms of socio-economic and demographic characteristics, for example), it would be 

possible to design policy interventions, behavioral experiences, and information campaigns 

that are appropriately targeted and implemented to achieve desired outcomes.   

Because the segments in the population are not known a priori, they are considered 

latent and determined endogenously within a joint modeling framework. Thus, the model 

estimated in this paper takes the form of a joint equations model system with latent 

segmentation, similar to that presented in Astroza et al (2019). The model system includes 

a model component that endogenously assigns individuals to different causal segments, 

and this component is coupled with a simultaneous equations model component that relates 

attitudes and behaviors to one another in a manner consistent with the latent segment to 
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which the behavioral unit has been probabilistically assigned. This methodology enables 

the identification of characteristics of the subgroups that predominantly depict alternative 

causal structures.   

The model system in this study is estimated on a data set derived from the 2014 

Who’s On Board Mobility Attitudes Survey conducted in the United States. In addition to 

an extensive battery of attitudinal variables, the survey includes information about people’s 

behavioral choices including use of various modes of transportation, residential location 

type choice, and car ownership. This particular chapter examines the nature of the 

relationships between attitudes toward transit and two behavioral choice variables, 

namely, residential location choice and frequency of use of transit. By considering 

multiple behavioral dimensions, this chapter sheds light on the extent to which attitudes 

affect behavior (or vice versa) in the context of different behavioral choices and identifies 

the relative presence of different latent segments (following different decision structures) 

in the population. 

            The remainder of this chapter is organized as follows. The next section offers a 

description of the data. The methodology is presented in the third section, model estimation 

results are presented in the fourth section, and the description of the latent segments is 

presented in the fifth section. Concluding thoughts are offered in the sixth and final section.  

2.2. Dataset Description 

The data set used in this chapter is derived from the 2014 Who’s On Board Mobility 

Attitudes Survey (Transit Center, 2014), an online survey administered to a sample residing 

in 46 diverse metropolitan areas in the United States. The data set includes information for 
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11,842 respondents who responded to the survey. After filtering records for missing data, 

9,600 observations were retained for analysis and model estimation. Table 1 presents a 

socio-economic and demographic profile of the sample.  

 Overall, the sample provides the richness of variation and diversity of information 

necessary to undertake a study of this nature. Among person-level characteristics, the 

sample has a slightly higher proportion of women. About one-fifth of the respondents in 

this sample are 65 years and above and more than one-half of the sample has an educational 

attainment of college graduate or higher. About 40 percent of the sample is employed full-

time, while another 12.5 percent are employed part-time. The sample spends a fair amount 

of time online, with 34 percent indicating that they spend 4-8 hours online per day while 

five percent of the sample indicated an hour or few hours per week.  

 Among household attributes (the right column of Table 1), just about 20 percent of 

the sample has household income less than $35,000, while 23.7 percent of the sample has 

household income greater than or equal to $100,000. Just about 38 percent of the sample 

reports household sizes of three or more, and nearly 70 percent of the sample resides in 

detached housing units – which is consistent with the statistic that 61 percent of the sample 

resides in housing units owned by the household. With respect to transit richness, 61 

percent of the sample reports residing in cities that may be characterized as transit 

progressive (Transit Center, 2014), i.e., cities where there is a substantial presence of transit 

modes. Only four percent of the sample resides in households with zero vehicles, and 25 

percent of the sample reported residing in households with no workers (consistent with the 

age distribution noted earlier). About 40 percent of the sample indicated that the distance 
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to the nearest transit station is less than 0.5 mile, while 38.6 percent reported that the nearest 

transit station is more than one mile from the residence. The sample is well distributed 

across the country, with the largest proportion (23.9 percent) drawn from the West Coast.  

 Among endogenous variables (left column bottom of Table 1), urban dwellers 

account for 27.8 percent of the sample. Another 32.4 percent of the sample resides in 

suburban and small-town locations that have mixed land use; the remaining 39.8 percent 

reside in suburban and small town/rural locations that would not be characterized as having 

mixed land use. Just about one-half of the sample reports that they never use transit at all 

even though it is available. Seventeen percent report using transit at least once per week.  

The third endogenous variable of interest in this study is the attitudes towards 

transit (transit proclivity).  This endogenous variable constitutes a factor derived by 

conducting a factor analysis on 10 attitudinal statements in the survey data set.  These 

attitudinal statements pertain to feelings about transit and are therefore used to derive a 

transit proclivity or propensity factor.  Table 2 presents the attitudinal statements, the 

percent of the sample agreeing, being neutral, or disagreeing with each statement, and the 

factor loadings. After a number of trials, it was found that three of the statements had 

insignificant factor loadings, and hence the final factor was based on seven of the ten 

attitudinal statements. The loadings are intuitive and suggest that the factor represents a 

propensity or proclivity towards using transit as a mode of transportation.  
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Table 1. Socio-economic and Demographic Characteristics of the Sample (N=9600) 

Individual Characteristics  Household Characteristics  

Exogenous Variables Value 
(%) Exogenous Variables Value 

(%) 
Gender  Household income  
    Female 53.5     < $25,000 11.1 
    Male 46.5     $25,000 to $34,999   9.8 
Age category      $35,000 to $49,999 14.2 
    16-17 years   0.2     $50,000 to $74,999 22.9 
    18-24 years 17.2     $75,000 to $99,999 18.3 
    25-34 years 22.8      ≥ $100,000 23.7 
    35-54 years 19.2 Household size  
    55-64 years 19.2     One 17.9 
    65 years and above 21.4     Two 44.2 
Education attainment      Three and more 37.9 
    High school or less 17.0 Housing unit type  
    Technical/training beyond high school   5.1     Detached Housing 69.4 
    Some college 26.2     Apartment housing 28.2 
    College graduate or higher 51.7     Others   2.4 
Employment status  Home ownership  
    Employed full-time 40.4     Rent 28.1 
    Employed Part-Time 12.5     Own 61.0 
    Not Employed   6.1     Living family rent-free or other 10.9 
    Other (student, retired, homemaker) 41.0 Presence of kids  
Time spent online      Presence of kids 0-4 years   8.0 
    More than 8 hours per day 18.0     Presence of kids 5-15 years 10.0 
    4 to 8 hours per day 34.0     Presence of kids 16-18 years   4.0 
    1 to 4 hours per day 42.0 Transit Richness  
    A few hours per week or an hour per 
week   5.0     Deficient 38.6 

Endogenous Variables      Progressive 61.4 
Residential location choice (RLC) Vehicle ownership  
    Urban 27.8     Zero   4.0 
    Suburban and small town-mixed land 
use 32.4     One 30.7 

    Other suburban and small town + rural 39.8     Two 42.6 
Frequency of transit use (FTU)     Three or more 22.8 
    Frequent: once per week or more 17.0 Number of employed persons   
    Infrequent: less than once per week 32.6     Zero 25.0 
    Never (but has available) 50.4     One 35.3 
Attitudes Toward Transit (ATT) – Factor Score     Two or more 39.7 

Scale-less underlying continuous variable Distance from home to nearest transit station 
      Less than 0.5 mile 40.0 
      0.5-1 mile 21.4 
      More than 1 mile 38.6 
  Geographic Region  
      Northeast 16.3 
      South 18.5 
      West/Southwest 19.0 
      West Coast 23.9 
      Midwest 22.3 
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Table 2. Transit Attitudes and Factor Loadings (Ordinal Measurement Model) 

Attitudinal Statements Agree 
(%) 

Neutral 
(%) 

Disagree 
(%) 

Factor Loading  
(Std Error) 

I like the idea of doing something good for the 
environment when I ride transit 50.9 39.8 9.3 1.00 (base) 

I am not sure I know how to do all the things to make 
the bus or train trip work 39.3 26.2 34.5 –– 

I worry about crime or other disturbing behavior on 
public forms of transportation 51.8 28.0 20.2 –– 

I feel safe when riding public transportation 39.4 41.2 19.4 0.972 (0.037) 
Public transit does not go where I need to go 52.2 27.1 20.7 -0.298 (0.023) 
Riding transit is less stressful than driving on congested 
highways 50.8 29.2 20.0 1.275 (0.049) 

It would be easier for me to use transit more if I were 
not so concerned about traveling with people, I do not 
know 

24.3 25.4 50.3 0.378 (0.025) 

My family and friends typically use public 
transportation 17.2 20.3 62.5 1.483 (0.062) 

I like to make productive use of my time when I travel 62.8 29.5 7.7 –– 
I sometimes take public transit to avoid traffic 
congestion 31.0 20.0 49.0 2.553 (0.135) 

 
The results from the ordinal measurement model were used to compute factor 

scores for each individual in the sample. This continuous factor score was used in the model 

estimation effort to retain the variation in transit proclivity represented by the factor. This 

continuous factor score does not have a specific underlying scale, but simply represents the 

range of lower and higher positive attitudes towards transit. Thus, we do not show any 

specific descriptive statistics for this variable in Table 1. 

The three endogenous variables considered in this study are as follows:  

• Residential Location Choice (RLC): Three categories 

o Urban 

o Suburban + Small Town with Mixed Land Use 

o Suburban + Small Town/Rural without Mixed Land Use 

• Frequency of Transit Use (FTU): Three categories 
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o Frequent (once or more per week) 

o Infrequent (less than once per week) 

o Never 
 

• Attitude Towards Transit (ATT): Continuous factor score 

 This chapter explores the causal relationship between attitudes and behavioral 

choices by relaxing the unidirectional assumption that is typically embedded in many travel 

behavior models. The three endogenous variables may be related in six possible different 

causal structures. It is entirely possible that all six causal structures are prevalent in the 

population, i.e., there is at least some fraction of the population following each of the causal 

structures at a specific cross-section in time. However, the estimation of a joint 

simultaneous equations model system that involves three mixed (RLC [nominal in nature], 

FTU [ordinal in nature], and ATT [continuous in nature]) endogenous variables and six 

different latent segments is computationally challenging, and the interpretation of results 

obtained from such a large-scale model estimation effort may prove difficult. Further, the 

appropriate number of segments is determined by assessing the improvement in model fit 

(measured by Bayesian Information Criterion) with the addition of a segment (Bhat, 1997). 

In this study, preliminary trials showed that the model system with four latent segments 

offered the best fit.  Therefore, four plausible causal structures (and hence, four possible 

latent segments) are considered and included within the scope of this paper. The four causal 

structures may be depicted as follows:  
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Structure 1 RLC (R) Structure 3 ATT (A) 

 RLC → FTU  ATT → RLC 

 FTU + RLC →ATT   RLC + ATT → FTU 

    

Structure 2 FTU (F) Structure 4 ATT (A) 

 FTU → RLC  ATT → FTU 

 RLC + FTU →ATT    FTU + ATT → RLC   

    

Note:  RLC = Residential Location Choice 

FTU = Frequency of Transit Use 

ATT  = Attitude towards transit (Transit propensity)  

Individuals are making a bundle of choices jointly (involving attitudes, residential 

location choice, and frequency of transit use), and the causal relationships depict the nature 

and direction of influence among the endogenous variables and capture the reasoning or 

logical flow of thought that an individual may exercise. For example, an individual may 

reason at any cross-section in time that he or she likes the idea of riding transit (positive 

attitude) and therefore resides in a residential location that facilitates a high level of transit 

use. The logical flow of relationships among the dimensions represents a contemporaneous 

causation, the notion that “behavior is caused at the moment of its occurrence by all the 

influences that are present in the individual at that moment” (Lewin, 1936). Within the 

context of a contemporaneous causation, the first two structures are those where behaviors 

affect attitudes towards transit (ATT), while the latter two structures are those where 

attitudes towards transit (ATT) influence behaviors. The relationship between residential 
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location choice (RLC) and frequency of transit use (FTU) may go either way. On the one 

hand, residential location may engender transit use; on the other hand, the frequency of 

transit use may motivate an individual to seek a residential location that supports the level 

of transit use undertaken and desired by an individual.  

2.3. Modeling Methodology 

In the case where both attitudinal and behavioral choice variables are represented as 

continuous variables, it is econometrically feasible to identify and estimate bidirectional 

causal models – thus enabling an explicit portrayal of the mutually reinforcing relationship 

that exists between attitudes and behaviors. However, when the behavioral choice variables 

of interest are not continuous (and are often discrete in the context of travel behavior), then 

a bidirectional causal model is not econometrically identified, and identification 

restrictions must be imposed for logical consistency purposes (Pendyala and Bhat, 2004). 

This necessitates the estimation of recursive joint equations model systems when 

considering multiple endogenous variables of different nature.  In other words, when 

dealing with discrete choice variables (or, more generally, limited dependent variables), 

the joint equations model system can reflect the influence of attitudes on behaviors or the 

influence of behaviors on attitudes, but not both (after accommodating for unobserved 

covariance effects). It should be noted, however, that the recursive joint equations model 

system that depicts uni-directional relationships does not necessarily imply a sequential 

ordering in the decision mechanism. By estimating both attitudes and behaviors in a joint 

equations framework, while recognizing the presence of unobserved correlated attributes 

that affect multiple dimensions, the system of equations portrays jointness in the 
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determination of attitudes and behaviors while recognizing that one dimension influences 

the other. A more detailed discussion about the important distinction between sequentiality 

and simultaneity in the choice processes at play may be found in Astroza et al (2019). 

 Another important note here is that inference about causality is inextricably tied to 

observations of individuals and their choices over time. In other words, longitudinal data 

is very desirable for any effort aimed at unraveling and identifying causal relationships and 

structures. Generally, cause-and-effect patterns play out over time, involve leads and lags, 

and are inherently dynamic in nature. Although the profession has seen the collection of 

longitudinal panel survey data on occasion, the prevailing norm continues to be the 

collection of (repeated) cross-sectional data from a sample of the population. In the absence 

of true longitudinal panel data, it is extremely challenging to unravel cause-and-effect 

relationships that transpire over time. Even when panel survey data is available and 

changes in behaviors are observed over time in conjunction with changes in exogenous 

attributes, there is no guarantee that the change in behavior was caused by the change in 

the exogenous attributes. Given these considerations, the analysis in this paper should be 

construed as depicting contemporaneous causation, i.e., the causal relationships that exist 

at a single snapshot in time.  

2.3.1. The Joint Model of Behavioral Choices and Attitudinal 

Factors 

The remainder of this section describes in detail the model formulation adopted in this 

paper. Consider an individual q (q=1, 2, 3,…, Q) facing a multi-dimensional choice system 

comprised by one continuous variable (attitudes towards transit), one ordinal variable 
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(frequency of transit use), and one nominal variable (residential location). The discussion 

starts with the formulation for each type of variable, and then presents the structure and 

estimation procedure for the multi-dimensional system. For this section, assume that the 

individual belongs to a specific segment h. 

Let qhy  be the continuous variable (corresponding to the attitudes towards transit 

score) for individual q given that he/she belongs to segment h. Let qhqhhqhy η+′= sγ  in the 

usual linear regression fashion, where qhs  is a column vector of exogenous attributes as 

well as possibly the observed values of other endogenous variables, hγ  is a column vector 

of corresponding coefficients, and qhη  is a normal standard scalar error term (the variance 

of qhη  is normalized to one for all segments h, because, though qhy  is a continuous variable, 

it represents a scale-less latent factor score in our empirical analysis that is constructed 

from other observed indicators). Note that some elements of hγ  can be zero for some of 

the exogenous variables, indicating that the corresponding exogenous variables do not 

impact choice-making in segment h. Further, because latent segmentation is used as a way 

to introduce, across the segments, heterogeneity in the recursive effects among the 

endogenous variables, hγ  will necessarily be zero on some of the endogenous variables 

within each segment (see Astroza et al, 2019 for a detailed explanation).  

Let there be one ordinal variable for the individuals. In the empirical context of the 

current paper, the ordinal variable corresponds to the frequency of transit use and has three 

different levels: never, infrequent (less than once per week), and frequent (once per week 

or more).  Let the ordinal index for the individual given that he/she belongs to segment h 
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be qhj ( 1, 2,3)lj =  and let qn be the actual observed value. Then, assume an ordered-

response probit (ORP) formulation as: * *
, 1 ,,  if 

q qqh h qh qh qh q h n qh h ny j n yξ ψ ψ−′= + = < <ϕ z , 

{1,2,3}qhj ∈ , where qhz  is a column vector of exogenous attributes as well as possibly the 

observed values of other endogenous variables, hϕ  is a column vector of corresponding 

coefficients, and qhξ  is a standard normal scalar error term. Similar to the case of the 

continuous variable, hϕ  can be zero on some of the endogenous variables within each 

segment (structural heterogeneity). For identification conditions, set 

,0 ,3 ,1,  , and 0h h hψ ψ ψ= −∞ = +∞ = . Only one threshold, ,2hψ , is then estimated.  

Let there be one nominal (unordered-response) variable for the individuals. In the 

empirical context of the current paper, the nominal variable is residential location, which 

has I=3 alternatives (shown in Table 1). Using the typical utility maximizing framework, 

it is possible to write the utility for alternative i for individual q given that he/she belongs 

to segment h as: ,qih h qih qihU ε′= +β x  where qihx  is a column vector of exogenous attributes 

as well as possibly the observed values of other endogenous variables, hβ  is a column 

vector of corresponding coefficients, and qihε  is a normal scalar error term. Let the 

variance-covariance matrix of the vertically stacked vector of errors 

1 2 3[( ,  ,  . ) ]q h q h q hε ε ε ′=qhε  be hΛ . Again, hβ  can be zero on some of the endogenous 

variables within each segment. Define 1 2 3( , , ) '.qh qh qhU U U=qhU  Several important 

identification issues need to be addressed for the nominal variable. First, one of the 

alternatives has to be used as the base when introducing alternative-specific constants and 
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variables that do not vary across the alternatives. This is because only utility differences 

matter in terms of the nominal variable choice. For future reference, let qhu  be the vector 

of utility differences with respect to the chosen alternative for the nominal variable and let 

qhΛ


 be the corresponding covariance matrix. Also, because only utility differences matter, 

only the covariance matrix of the error differences is estimable. Taking the difference with 

respect to the first alternative, only the elements of the covariance matrix hΛ


 of 

2 1 3 1( , )qh qh qh qh qhU U U U= − −u  is estimable.  

The jointness across the different types of dependent variables may be specified by 

writing the covariance matrix of the [4 1]× vector ( )*, ,qh qh qh qhy y=y u   as:  

                                      Var
*

* *

*
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qh qh uy h y yh
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σ
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′ = =
 

′  
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Ω Σ

Σ
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Λ

,    (1) 

where *uy h
Σ

 
is a 2 1×  vector capturing covariance effects between the qhu  vector and the 

scalar *
qhy , uyhΣ is a 2 1×  vector capturing covariance effects between the qhu  vector and 

the scalar yqh , and 
y yh*Σ

 
is the covariance between *

qhy  and yqh. The covariance matrix in 

Equation (1) needs to be mapped appropriately in terms of a corresponding covariance 

matrix (say )hΩ for the vector ( )*, ,qh qh qhy yU , with appropriate identification conditions 

imposed on hΩ  to recognize that only utility differences matter for the nominal variable. 

The approach to do so is discussed in detail in Bhat (2015b). This needs some additional 

notations and discussion, which are omitted in the interest of brevity.  
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Next, let hθ  be the collection of parameters to be estimated: 

,2[ , , , ;  Vech( )] ,h h h h hψ′ ′ ′= Ωhφθ γ β where Vech( hΩ ) represents the vector of estimable 

parameters of hΩ . Then the likelihood function for the individual q given that he/she 

belongs to segment h may be written as: 

                                1 , ,( ) ( ) Pr  ,q qh h qh low qh qh up qhL yφ ′  = − × ≤ ≤   hθ s ψ u ψγ  (2) 

1 3 ( ) ( | ) ,
uqh

qh h qh qh qh
D

y dφ φ′= − × ∫ Ω




 qhs u uγ  

where *= ( , )qh qh qhy ′u u , the integration domain for the probability 

, ,{ : }
uqh qh low qh qh up qhD = ≤ ≤


   u ψ u ψ  is simply the multivariate region of the elements of the 

qhu  vector determined by the range )0,(−∞  for the nominal variable and by the observed 

outcome of the ordinal variable. That is,  , , 1( , , )
qlow qh h nψ −= −∞ −∞ψ and , ,(0,0, )

qup qh h nψ=ψ

, and (.)Rφ  is the multi-variate normal density function of dimension R.  

2.3.2. Segmentation Model 

The derivation thus far is based on the notion that individual q belongs to a single 

segment h. However, the actual assignment of individual q to a specific segment is not 

observed; but it is possible to attribute a probability  ),,2,1( Hhqh =π  to individual q 

belonging to segment h. The conditions that 10 ≤≤ qhπ  and 1
1

=∑
=

H

h
qhπ  must be met. To 

enforce these restrictions, following Bhat (1997), the following logit link function is 

used: 
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∑
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′
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qh
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1
)exp(

)exp(

wμ

wμ
π ,    (3) 

where qw  is a vector of individual exogenous variables, and 0=1μ  serves as a vector 

identification condition. Defining , ],...,;,...,[ 11 ′′′′′= hh μμθθθ  then the likelihood function 

for individual q is: 

                                     [ ], )segment|)()(
1

hqLL hqqh

H

h
q ∈= ∑

=

θθ π                                (4) 

and the overall likelihood function is then given as: 

                                           . )()( ∏=
q

qLL θθ            (5) 

Typical simulation-based methods to approximate the multivariate normal 

cumulative distribution function in Equation 1 can prove inaccurate and time-consuming. 

As an alternative, the Maximum Approximate Composite Marginal Likelihood (MACML) 

approach (Bhat, 2011), which is a fast-analytic approximation method, is used. The 

MACML estimator is based solely on univariate and bivariate cumulative normal 

distribution evaluations, regardless of the dimensionality of integration, which 

considerably reduces computation time compared to other simulation techniques used to 

evaluate multidimensional integrals. For a detailed description of the MACML approach 

in the specific case of a joint system of continuous, ordinal, and nominal variables, the 

reader is referred to Bhat (2015b). 
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2.4. Model Estimation Results 

Model specifications that incorporate latent segments can prove to be computationally 

challenging to estimate (Astroza et al, 2019). To help facilitate the identification of good 

starting values for model parameters, the study employed a strategy of first estimating four 

different causal structures separately and independently, assuming that the entire sample 

constituted a single segment. The parameter estimates from these independent models were 

used as starting values for the full-fledged model with latent segmentation. Also, to help 

inform the specification of the joint model, the best specifications were obtained for the 

individual models corresponding to Residential Location Choice (RLC), Frequency of 

Transit Use (FTU), and Attitude Towards Transit (ATT). These specifications were used 

as a starting point to inform the specification of the joint model system with multiple 

segments.  

 Models with different numbers of latent segments were estimated and compared. It 

was found that the model with four latent segments (i.e., all four causal structures 

considered in this study) offered the best fit compared to models with one, two, or three 

latent segments. For the four-segment model, the log-likelihood value at convergence is –

164,377.29 and, with 242 parameters, the Bayesian Information Criterion (BIC) is 

165,486.8; the corresponding BIC values for the one, two, and three segment models are 

larger at 166,257.3, 165,932.5, and 165,599.2 respectively. Just to explore further, a five-

segment model was also estimated and evaluated (by adding one of the causal structures in 

which attitudes act as a mediator between residential location choice and frequency of 

transit use), and the fit was found to be inferior to the four-segment model (BIC for the 
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five-segment model was 165,525.1). As such, the remainder of this section is dedicated to 

discussing results for the four-segment model.   

 In the interest of brevity, the joint equations model estimation results for each of 

the four causal structures are not presented here (but attached in the Appendix A, Table 13-

15). Rather, complete estimation results are presented for one causal structure for 

illustrative purposes (Table 3). In general, the effects of exogenous variables on 

endogenous variables do not vary by causal structure, and there is no reason that they 

should. The exogenous variable influences are largely based on patterns of relationships 

within the data set and there is no reason for these relationships to vary across the causal 

structures considered. Indeed, an examination of the detailed model estimation results for 

the four causal structures shows that the exogenous variables depict similar coefficient 

values and signs. A brief description of the influence of various exogenous variables on 

the endogenous variables of interest is provided here. These relationships can be seen in 

Table 3.     

 An examination of exogenous variable influences shows that women respondents 

show a lower inclination to reside in urban areas relative to non-urban areas. Admittedly, 

this result needs to be interpreted with care, because residential locations are likely to be 

based on all individuals in a household. However, since the survey used here was an 

individual-based survey (only one individual responded per household), and this result 

came out to be statistically significant, the variable is retained to potentially reflect the 

notion that, at least within the group of single adult households, women tend to reside in 

non-urban settings. Women respondents are also more likely than men to use transit and 
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have a more positive attitude towards transit. Younger individuals (particularly below 35 

years of age) are more likely to be urban dwellers when compared with older individuals. 

Older individuals (35 years or above) use transit less frequently than their younger 

counterparts; consistent with this finding, younger individuals below the age of 35 years 

are found to have a more positive attitude towards transit. College graduates are found to 

favor urban residential location type, as do those employed full time. Time spent online is 

significantly related to the endogenous variables; those who spend more than eight hours 

per day online are more likely to reside in urban and suburban mix areas, show a propensity 

towards higher frequency of transit use, and demonstrate a more positive attitude towards 

transit.  It is likely that those who are technology oriented prefer transit-oriented urban 

lifestyles (Hong and Thakuriah, 2018).    

Among household attributes, home ownership is negatively associated with urban 

and suburban mix residential choice and negatively associated with transit use, but 

positively associated with attitudes towards transit. It appears that homeowners are 

positively disposed towards transit, and their infrequent (or non-existent) use of the service 

does not provide a sufficient basis to change that perspective. Lower incomes are 

associated with urban living (consistent with existing evidence, e.g., Booi and Boterman, 

2019) and higher propensity to use transit. Individuals in larger households are less likely 

to favor urban residential locations and are less inclined to use transit, presumably because 

of the lifecycle stage and need to fulfill household obligations. This is further reinforced 

by the finding that the presence of children negatively impacts urban residential location 

choice and propensity to use transit.  
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As expected, households with high levels of vehicle ownership (three or more 

vehicles) are less likely to reside in urban and suburban mix areas, depict a lower propensity 

to use transit, and have more negative attitudes towards transit.  The causal relationships 

involving vehicle ownership are unknown and merit further investigation. Vehicle 

ownership is an endogenous mobility choice variable too, but has been treated in this study 

as an exogenous variable for simplicity and computational tractability. It is entirely 

possible that vehicle ownership is affected by residential location choice, propensity to use 

transit, and transit attitudes; exploring the causal influences that shape vehicle ownership 

remains a task for future research efforts. Those who reside in transit progressive cities are 

more prone to using transit and have a more positive attitude towards transit, while those 

in the South region of the United States (which is generally more sprawled and auto 

oriented) have a lower propensity to use transit and have a more negative attitude towards 

transit.  

In general, all of the exogenous variable impacts are consistent with expectations 

and demonstrate that socio-economic and demographic variables play a significant and 

important role in shaping attitudes and mobility/location choices. For each of the segments, 

it was not possible to reject the hypothesis that the diagonal terms in the 2×2 covariance 

sub-matrix of the differenced error terms corresponding to the residential location choice 

alternative utilities were 1.0 and that all the off-diagonal elements in the sub-matrix were 

0.5. This implies that the error terms of the residential location choice alternatives are 

independently and identically distributed. Assuming that the error term in the base 

alternative in each dimension is independent of the error terms in other dimensions, and 
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scaling the variance of the utilities of each alternative error term in the residential location 

choice model to one, the implied covariance (correlation) matrix among (1) the urban 

residential location utility (UL), (2) the suburban/small town mix residential location utility 

(SUBT), (3) the propensity underlying frequency of transit use (FTU), and (4) the ATT 

factor score, is presented toward the bottom of Table 3 for causal structure 1 (only the 

lower diagonal elements are presented because of the symmetric nature of this matrix). 

There are statistically significant error correlations, and this was found to be the case for 

every causal structure considered in this paper. In general, the error correlations in the other 

causal structures had the same signs as those for the first causal structure in Table 3, clearly 

indicating that, in each segment, there is a residual association between the dependent 

variables that is not captured by the explanatory variables included in the model 

specification. This result justifies the use of a joint package (simultaneous equations) 

approach to model relationships among the endogenous variables considered in this study. 

Not surprisingly, the positive correlation in the second column and last row of the 

covariance (correlation) matrix suggests that unobserved factors that increase the utility of 

residing in an urban area also increase positive views of transit, even if these factors do not 

necessarily increase the actual use of transit. A possible explanation is that a variety seeking 

individual (who likes to try different experiences) may like to reside in an urban location 

(where there is a variety of amenities in close proximity) and may also have a positive 

attitude towards alternative (a variety of) modes of transportation. The correlations in the 

third column suggest that unobserved factors that lead to residing in suburban and small 

towns also reduce transit use propensity as well as positive attitudes toward transit. These 
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results are clear evidence of unobserved residential self-selection effects (see Bhat and 

Guo, 2007 for a detailed discussion). Those who intrinsically (due to unobserved individual 

factors) do not have positive views about transit and are not very likely to use transit self-

select to live in suburbia. 

 Table 4 presents a summary of the endogenous variable effects, which are of 

interest in the context of understanding relationships among dependent variables under 

different causal structures (estimates for all four causal structures are shown in Table 4). 

Note that these may be considered to be representative of “true” causal effects after 

“cleansing” any relationships among the endogenous variables caused by “spurious” 

unobserved correlation effects. In general, it can be seen that the relationships are 

significant and consistent with expectations, indicating that these three endogenous 

variables affect one another in behaviorally intuitive ways after accommodating 

unobserved covariances. In causal structure 1 (RLC  FTU; RLC + FTU  ATT), it is 

found that those in suburban and small-town locations show a lower propensity to use 

transit. Compared to those in suburban and small town/rural areas with no mixed land use, 

the residents of urban and suburban mix areas have a more positive attitude towards transit 

(again, this is after accommodating unobserved factors that may influence these 

endogenous variables). Likewise, frequent and infrequent transit users have a more positive 

attitude towards transit than those who never use transit; between these two groups, 

frequent users have a more positive attitude than infrequent users. In causal structure 2 

(FTU  RLC; FTU + RLC  ATT), it is found that frequent users of transit are more 

likely to reside in urban areas and suburban and small-town areas with mixed land use areas 
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rather than suburban and small-town areas without mixed land use. Transit users also have 

a more positive attitude towards transit. Similarly, urban dwellers are likely to have a more 

positive attitude towards transit. In causal structure 3 (ATT  RLC; ATT + RLC  FTU), 

those with a positive attitude towards transit are more likely to favor urban and suburban 

mix residential locations and exhibit a greater propensity to use transit. Those residing in 

suburban mix locations depict a lower propensity to use transit than their counterparts in 

other urban and suburban/rural areas. In causal structure 4 (ATT  FTU; ATT + FTU  

RLC), positive attitudes towards transit lead to a more urban and suburban mix residential 

location choice (relative to those residing in suburban/rural locations) and a higher 

propensity to use transit. Similar to indications in other causal structures, those who use 

transit more frequently are more likely to choose urban and suburban mix locations for 

residence (relative to suburban/rural locations), with this tendency being particularly high 

for urban locations. 
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Table 3. Illustrative Model Estimation Results: Causal Structure 1 (RLC  FTU; RLC + FTU  ATT) 

Explanatory Variables 

Residential Location Choice RLC 
(base: other suburban & small town + rural) 

Frequency of Transit Use 
FTU (never, infrequent, 

and frequent) 

Attitude Towards 
Transit ATT 

(continuous factor 
scores) 

Urban dwellers Suburban and small-
town mix 

Coef t-stat Coef t-stat Coef t-stat Coef t-stat 
Constant -0.779 -6.12 -0.561 -7.21 0.206 18.86 -0.653 -17.42 
Individual Characteristics  
Gender         
    Female -0.193 -3.71 –– –– 0.112 3.23 0.099 4.12 
Age category         
    18-24 years 0.510 4.19 –– –– –– –– 0.157 5.88 
    25-34 years 0.294 3.94 –– –– –– –– 0.111 3.21 
    18-34 years –– –– 0.163 2.11 –– –– –– –– 
    35-54 years –– –– –– –– -0.300 -5.95 –– –– 
    55-64 years –– –– –– –– -0.412 -6.32 –– –– 
    65 years and above –– –– –– –– -0.587 -7.35 –– –– 
Education attainment         
    College graduate or higher 0.189 2.63 –– –– –– –– –– –– 
Employment Status         
    Employed full-time 0.265 4.71 -0.105 -4.19 –– –– –– –– 
Time spent online         
    More than 8 hours per day 0.322 3.28 0.224 2.96 0.702 3.29 0.061 2.11 
Household Characteristics  
Home ownership         
    Own -0.642 -5.39 -0.206 -3.12 -0.131 -4.12 0.075 2.42 
Household income         
    Less than $35,000 0.203 3.14 -0.241 -4.51 0.073 2.12 –– –– 
    More than $75,000 –– –– –– –– –– –– –– –– 
Household size         
    Two or more -0.245 -3.21 –– –– -0.131 -3.78 –– –– 
Presence of children         
    Presence of children 0-4 years -0.110 -2.11 -0.125 -2.02 -0.102 -4.12 –– –– 
    Presence of children 0-15 years –– –– –– –– –– –– 0.124 5.63 
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Table 3. Illustrative Model Estimation Results: Causal Structure 1 (RLC  FTU; RLC + FTU  ATT) (Continued) 

Explanatory Variables 

Residential Location Choice RLC 
(base: other suburban & small town + 

rural) 

Frequency of Transit 
Use FTU (never, 
infrequent, and 

frequent) 

Attitude Towards 
Transit ATT 

(continuous factor 
scores) Urban dwellers Suburban and 

small-town mix 
   Coef     t-stat    Coef       t-stat     Coef       t-stat    Coef      t-stat 

Household Characteristics 
Vehicle ownership         
    Three or more -0.710 -8.22 -0.321 -6.10 -0.239 -3.29 -0.104 -4.62 
Location Characteristics 
Lives in Transit Rich City         
    Progressive –– –– –– –– 0.412 9.55 0.086 3.06 
Region         
    South –– –– –– –– -0.183 -4.90 -0.098 -3.10 
Threshold Parameter –– –– –– –– 1.217 19.96 –– –– 
Correlation Between Error Terms 



















−
−

000.1221.0098.0121.0
000.1167.0000.0

000.1000.0
000.1

 ATT
 FTU
 SUB
   URB

ATTFTU   SUB         URB

    

 
 
 
URB: Urban residence utility 
SUB: Suburban and small-town mix utility 

Goodness of Fit Statistics (Four-Segment Model System) 
Log likelihood at convergence, L(β) = -164,377.29 (242 parameters); Log likelihood with constants, L(c) = -217,269.31  
Log likelihood with no constants, L(0) = -278,366.45; Adjusted 𝜌𝜌2(c) = 0.2424; Adjusted 𝜌𝜌2(0) = 0.4086 
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Table 4. Relationships Among Endogenous Variables for the Four Causal Structures/Segments 

Variables 

Residential location choice  
(base: suburban and small town+rural) Frequency of Transit 

Use (never, infrequent, 
and frequent) 

Attitude Towards 
Transit 

(continuous factor 
score) Urban Dwellers Suburban & Small-

Town Mix 
Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Segment 1 (RLC FTU; RLC+FTUATT) 
Residential Location Choice          
    Urban dwellers –– –– –– –– –– –– 0.146 4.98 
    Suburban and small-town mix –– –– –– –– -0.089 -3.34 0.078 2.87 
Frequency of Transit Use          
    Frequent (≥ once per week) –– –– –– –– –– –– 1.298 21.43 
    Infrequent (< once per week) –– –– –– –– –– –– 0.653 25.31 

Segment 2 (FTURLC; FTU+RLCATT) 
Frequency of Transit Use         
    Frequent (≥ once per week) 1.122 4.10 0.308 3.55 –– –– 1.311 18.32 
    Infrequent (< once per week) 0.462 3.92 0.237 4.21 –– –– 0.703 22.01 
Residential Location Choice          
    Urban dwellers –– –– –– –– –– –– 0.127 3.22 
    Suburban and small-town mix –– –– –– –– –– –– 0.083 2.04 

Segment 3 (ATT RLC; ATT+RLCFTU) 
Attitude Towards Transit 0.312 4.62 0.119 5.32 0.624 19.05 –– –– 
Residential Location Choice         
    Urban dwellers –– –– –– –– –– –– –– –– 
    Suburban and small-town mix –– –– –– –– -0.110 -3.46 –– –– 

Segment 4 (ATTFTU; ATT+FTURLC) 
Attitude Towards Transit 0.156 4.63 0.0799 2.63 0.631 24.12 –– –– 
Frequency of Transit Use –– –– –– –– –– –– –– –– 
    Frequent (≥ once per week) 0.901 8.31 0.198 2.10 –– –– –– –– 
    Infrequent (< once per week) 0.347 4.32 0.180 2.98 –– –– –– –– 
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2.5.  Size and Characteristics of Latent Segments 

This section presents information about the latent segments in the population. As posited 

earlier in this paper, it is hypothesized that different segments in the population follow 

different causal structures in their contemporaneous decision-making processes. This 

section offers information about the size and characteristics of the latent segments to 

determine the extent to which behaviors affect attitudes or attitudes affect behaviors in the 

survey sample of this study. Table 5 presents the results of the latent segmentation 

membership model.  

Table 5. Latent Segmentation Model 

Segmentation Variables Segment 
1 (base) 

Segment 2 
Coef (t-stat) 

Segment 3 
Coef (t-stat) 

Segment 4 
Coef (t-stat) 

Constant –– -0.289 (-6.23) -0.302 (-8.11) -0.561 (-9.32) 
Age 18-34 years –– -0.134 (-2.88) -0.309 (-3.01) -0.481 (-3.76) 
Age 35-64 years –– -0.163 (-2.11) -0.235 (-2.34) -0.432 (-3.08) 
Gender: Female –– -0.193 (-3.53) 0.187 (5.03) 0.059 (3.32) 
Lives in transit rich city –– –– -0.205 (-3.31) -0.223 (-4.10) 
College graduate or 
higher –– –– -0.211 (-2.22) -0.231 (-2.57) 

Distance to nearest transit 
station < 0.5 mile –– 0.103 (4.12) -0.254 (-3.21) -0.102 (-2.18) 

Hhld Income > $75,000 –– -0.131 (-3.25) 0.138 (5.19) 0.064 (2.74) 

Segment Size 41% 25% 21% 13% 
3,936 2,400 2,016 1,248 

   Segment 1 Causal Structure: RLC (R)  FTU (F); RLC (R) + FTU (F) ATT (A) 

   Segment 2 Causal Structure: FTU (F)  RLC (R); FTU (F) + RLC (R) ATT (A) 

   Segment 3 Casual Structure: ATT (A)  RLC (R); ATT (A) + RLC (R)  FTU (F) 

   Segment 4 Causal Structure: ATT (A)  FTU (F); ATT (A) + FTU (F)  RLC (R) 

 The model offers a first glimpse into the profile of the segments. In general, it 

appears that individuals are more likely to belong to the first segment in which residential 

location choice affects frequency of transit use, and these two behavioral choices together 
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impact attitudes (see the last row of Table 5 for the segment size information). It is found 

that 41 percent of the sample is assigned to this first segment, with all other segments 

substantially smaller in size (the size of each segment may be determined based on the 

procedure discussed in Bhat (1997). The second largest segment is the second segment in 

which frequency of transit use affects residential location choice, and these two choice 

behaviors together shape attitudes. In other words, the two causal structures (the first and 

second) in which behaviors shape attitudes account for two-thirds of the sample. The other 

one-third of the sample is collectively assigned to the other causal segments (the third and 

fourth segments) in which attitudes affect behaviors. It appears that, in the context of this 

sample (which is a rather large sample drawn from diverse areas in the United States), 

behaviors influence attitudes for a majority of the respondents, consistent with recent 

evidence in the literature (Moody and Zhao, 2020; Kroesen et al, 2017) which suggests that 

people adjust their attitudes in accordance with their behavioral choices and experiences, 

presumably in an effort to reduce cognitive dissonance. 

 The results of the effects of exogenous variables in Table 5 indicate that individuals 

younger than 65 years of age are increasingly less likely to belong to the second, third, or 

fourth segments (see the progression of coefficients from left to right for the two age 

groups). Women, however, are more likely to belong to the third and fourth causal 

segments than the first two causal segments. Compared to men, women appear to be more 

set with respect to their attitudes and likely to exhibit behavioral choices according to their 

attitudes. On the other hand, those who live in transit-rich cities and those who are college 

graduates are more likely to belong to the first two segments in which behaviors shape 

attitudes (notice the negative signs on these variables associated with the third and fourth 
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segments). Those who live close to a transit station are also more likely to belong to the 

first two segments; perhaps their attitudes are shaped by the proximity to transit that 

engenders greater level of transit use. On the other hand, higher income individuals are 

more likely to belong to the third and fourth segments where attitudes shape behaviors. It 

is possible that individuals who have reached this level of income have opinions and 

attitudes that have matured, and also have the wealth to actually live a lifestyle consistent 

with their attitudes/opinions/preferences. That is, there is perhaps less presence of cognitive 

dissonance for such individuals than their lower income counterparts (lower income 

individuals may be less able to get out of a less-than-desirable situation, and may change 

their attitudes as a coping mechanism).  

It is interesting to note that, within the two distinct sets of causal structures (one 

where behavior shapes attitudes, and the other set where attitudes influence behavior), the 

causal structure that is more dominant is the one where residential location choice affects 

frequency of transit use.  In other words, the longer-term choice (residential location) 

influences the shorter-term mode use decision (frequency of transit use). This type of 

relationship is quite consistent with that often invoked in integrated models of transport 

and land use where land use choices are often considered higher in the hierarchy and 

assumed to influence shorter term activity-travel choices. However, it is also found that the 

sizes of the segments in the causal structures where frequency of transit use influences 

residential location choice are not trivial. These segments (Segments 2 and 4) are quite 

sizable in their own right. Individuals in these latent segments appear to be choosing a 

residential location choice that is conducive to and consistent with their level of transit use. 

Overall, it can be concluded that there is considerable structural heterogeneity in the 
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sample, and any travel forecast that assumes the same causal structure for the entire sample 

is likely to yield erroneous estimates of impacts of alternative transport policies and 

investments.  

Table 6 presents a detailed overview of the profile of the various latent segments in 

the sample. The left half of the table shows the percent of individuals in each latent segment 

that belong to a socio-economic group; the right half of the table shows the percent of 

individuals in each socio-economic group that is assigned to each of the latent segments. 

The percent of individuals in each socio-economic group that belongs to a specific segment 

does not vary greatly. This is a reflection of the strong effect of the constants in Table 5 in 

determining segment membership, relative to other observed exogenous variables. This 

suggests that there is still room for improvement in determining the factors that influence 

segment membership, which may be explored in future studies with a more exhaustive set 

of demographic variables as well as built environment contextual variables. However, 

while the latent segments may appear rather similar in profile, distinct patterns can be 

gleaned as one transitions across segments. For example, consider the age profile of the 

segments. In the first segment, 58.4 percent of individuals belong to the 35+ age group 

(RFA); this percentage gradually increases from left to right, ending with 63 percent 

of those in the last segment (AFR) belonging to the 35+ year age group. In other 

words, the segments in which attitudes affect behaviors have a slightly older age profile 

than the first two segments where behaviors affect attitudes. It is entirely plausible that 

there are more people in the older age groups whose attitudes have matured and hardened, 

and their choice behaviors are influenced by their attitudes. 
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Table 6. Profile of the Four Latent Segments  

Person Characteristics Percent (%) within segment Percent (%) within attribute Overall 
Sample Attribute Categories RFA FRA ARF AFR RFA FRA ARF AFR 

Age Categories 
(years) 

16-24 17.8 17.8 16.6 16.4 42.3 25.3 20.0 12.4 17.4 
25-34 23.8 23.6 21.1 20.6 43.2 25.6 19.4 11.8 22.8 

35 or more 58.4 58.6 62.3 63.0 40.3 24.1 21.8 13.8 59.9 
Gender Female 53.9 49.0 57.6 54.1 41.6 22.6 22.6 13.2 53.5 

Male 46.1 51.0 42.4 45.9 40.9 27.1 19.1 12.9 46.5 
Marital status Single 30.8 31.3 27.9 27.9 42.5 25.8 19.5 12.2 29.9 

Married 57.9 57.1 60.0 59.6 40.9 24.1 21.6 13.4 58.4 
Divorced 11.3 11.5 12.1 12.5 40.0 24.3 21.7 14.0 11.7 

Frequency of 
transit use 

≥ Once per week 17.8 17.8 16.6 16.4 42.3 25.3 20.0 12.4 17.0 
< Once per week 23.8 23.6 21.1 20.6 43.2 25.6 19.4 11.8 32.6 

Never 58.4 58.6 62.3 63.0 40.3 24.1 21.8 13.8 50.4 
Distance from 

Home to Transit 
Station 

< 0.5 mile 41.3 44.1 34.3 37.8 42.6 27.1 17.9 12.4 40.1 
≥ 0.5, <1 mile 20.9 20.2 23.2 22.2 40.4 23.2 22.8 13.6 21.4 

≥ 1 mile 37.7 35.7 42.4 40.0 40.4 22.9 23.1 13.6 38.5 
Vehicle ownership Zero 4.0 4.2 3.5 3.7 42.2 26.6 18.8 12.4 3.9 

1 vehicle 30.8 31.7 29.6 30.4 41.4 25.5 20.2 13.0 30.8 
2+ vehicle 65.2 64.1 66.9 65.9 41.2 24.2 21.4 13.2 65.4 

Household size 1 person 18.0 18.8 17.1 17.8 39.6 25.1 21.2 14.1 18.0 
2 person 43.3 43.8 44.9 45.7 39.5 23.9 22.3 14.3 44.1 

3+ person 38.7 37.4 37.9 36.5 42.1 24.3 21.0 12.6 37.9 
Annual household 

income 
< $35K 21.0 21.9 19.9 20.6 41.4 25.8 19.9 12.9 21.0 

≥ $35K, < $50K 14.2 14.8 13.8 14.2 41.1 25.6 20.3 13.1 14.2 
≥ $50K, < $75K 22.8 24.2 21.7 22.4 41.2 26.1 19.9 12.8 22.9 

≥ $75K 42.0 39.1 44.6 42.8 41.3 23.0 22.3 13.4 41.9 
Residential 

location choice 
Urban dweller 28.4 29.3 25.7 26.5 42.2 25.9 19.4 12.5 27.8 

Suburban 32.3 32.4 32.3 32.5 41.2 24.7 20.9 13.2 32.4 
Suburban & rural 39.3 38.3 41.9 40.9 40.7 23.7 22.1 13.5 39.8 

Segment Size 41% 25% 21% 13% 100% 
3,936 2,400 2,016 1,248 9,600 
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Similar differential patterns across segments can be seen throughout the table. 

When compared with males, females are more likely to belong to causal structures in which 

attitudes shape behaviors. Single individuals who have never been married are more likely 

to belong to segments in which behaviors shape attitudes when compared with individuals 

who have been married or divorced. It generally appears that those in younger stages of 

life (from an age and lifecycle perspective) are less likely to have attitudes that have 

matured and hardened in comparison to those in later stages of life. Attitudes for these 

demographic groups may still be evolving to a slightly greater extent than others in the 

population.  

Those who use transit more frequently are more likely to fall into the first two 

segments than those who never use transit.  Individuals in households with no vehicles are 

similarly likely to fall into segments where behaviors shape attitudes, in comparison to 

those in households with more vehicles. Urban dwellers are more likely to be in the 

categories where behaviors shape attitudes in comparison to those in suburban and small 

town or rural settings. Again, all of these comparisons should be viewed carefully in 

relative terms because the differences are quite small. Although this analysis is not based 

on longitudinal data, the patterns in the table may be indicative of a transition process that 

may be at play. Broadly speaking, a majority of individuals fall into the segments where 

behaviors affect attitudes, but it appears that (some) individuals transition into other 

segments (where attitudes influence behaviors) as they age through lifecycle stages. 

2.6. Discussion and Conclusions 

Energy-behavioral analysts are increasingly concerned with the relationships between 

human attitudes and perceptions on the one hand and behavioral choices on the other. There 
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is interest in exploring the possibility of using attitudinal variables and constructs to better 

explain and more accurately predict household energy use under a variety of scenarios, 

particularly in the context of emerging transport and building technologies. Across a 

number of disciplines, the relationships between attitudes and behaviors have been well 

documented. Various studies, however, assume different causal relationships between 

attitudes and behaviors. Most studies appear to treat attitudes as affecting behavioral 

choices, but there are a number of studies (as noted in the introductory section) where 

behavioral choices are assumed to affect attitudes. A few studies have attempted to treat 

the attitude – behavior relationship as a bi-directional one, but econometric identification 

issues render the estimation of such models challenging when the endogenous variables 

are not continuous in nature. There is considerable uncertainty as to the direction of 

causality between attitudes and behaviors at any point in time, and this study constitutes an 

attempt at shedding deep insights into the nature of the relationship. More specifically, this 

chapter recognizes that different causal structures may be prevalent in a population, leading 

to the presence of multiple population segments. In other words, population heterogeneity 

may arise not only in terms of sensitivity to different attributes of alternatives, but also in 

terms of differing causal structures driving consumer decision-making processes.  

In an effort to unravel the extent to which different causal structures relating 

attitudes and behaviors are prevalent in the population, this chapter adopts a latent 

segmentation approach to reflect the notion that the analyst does not observe and is not 

aware of the causal structure adopted by each individual in the population. The latent 

segmentation approach endogenously assigns individuals to different causal structures, 

thus enabling the identification of segments in the population and the degree of 
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heterogeneity that may be prevalent. In this study, a joint equations model that relates 

residential location choice, frequency of transit use, and attitudes towards transit is 

estimated. The former two variables constitute behaviors, while the third variable is an 

attitudinal factor score. The model system is estimated on a large sample data set that 

includes both attitudinal and behavioral choice variables. Four different latent segments 

are considered; two latent segments in which attitudes affect choice behaviors and two 

segments in which choice behaviors affect latent segments. The two causal structures in 

which attitudes appear as a mediating factor between the two behavioral choice variables 

are ignored in this study.  

The overall finding is that the majority of the sample in the data set used in this 

study are assigned to the latent segments in which behavioral choices affect attitudes. 

Nearly two-thirds of the sample falls into these two segments, while only about one-third 

falls into the two segments where attitudes affect behaviors. In other words, the findings 

of this chapter appear to corroborate some recent evidence that people appear to modify 

their attitudes in response to their behaviors and based on their experiences to reduce the 

cognitive dissonance that may exist. It appears that attitudes at any cross-section in time 

are shaped by the behavioral choices and experiences of the individual at that point in time. 

As time progresses, it is entirely possible that attitudes and behaviors will evolve; but 

within the context of a snapshot, the study results here clearly indicate that attitudes are 

shaped by behaviors more so than the other way around. Thus, the travel demand 

forecasting models that assume the same causal structure across the entire population are 

likely to return erroneous predictions of travel demand in response to policy and investment 

scenarios. It would be beneficial to probabilistically assign individuals in a population to 
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different causal segments, and then forecast travel demand for different segments 

according to the causal structure that drives their decision-making process.  

 From a transportation policy perspective, it would appear that information 

campaigns and advertisements may not be all that effective in a world where the majority 

of the population has their attitudes shaped by behaviors. In other words, attempts to 

influence and change attitudes (towards certain products or mobility options) using 

information campaigns may not necessarily yield expected results because attitudes are 

shaped by behaviors for two-thirds of the population (at least in the sample of this study). 

This implies that it is necessary to run pilots and campaigns where individuals actually get 

to experience modal options and different products first-hand; people need to be able to 

exercise alternative behavioral choices, learn through experience, and re-shape their 

attitudes in response to the behaviors and choices that they get to experience. Programs in 

which individuals are able to actually try out new and different alternatives (modes and 

services, for example) may yield greater benefit than messaging aimed at trying to 

influence attitudes. It should, however, be recognized that a sizable portion of the sample 

was also allocated to segments where attitudes affect behaviors; hence programs that aim 

to change attitudes should not be discontinued, particularly for more mature segments of 

the population who may be rather set in their ways and formed rather rigid opinions and 

attitudes. To make different campaigns work most effectively, they need to be targeted to 

the appropriate segments depending on the causal structures that they follow.  
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3. ACCOUNTING FOR THE INFLUENCE OF ATTITUDES IN MODELING THE 

ADOPTION AND USAGE OF ON-DEMAND TRANSPORTATION AND 

ELECTRIC VEHICLES 

3.1. Introduction  

Developing countries around the world have experienced phenomenal growth in vehicle 

ownership and use over the past few decades. India is a rapidly developing economy with 

a population of about 1.4 billion people and is scheduled to take over as the most populous 

country in the world within the next few years (United Nations, 2019). Rapid and 

consistent economic development over the past few decades has fueled the rise of the 

middle class that is increasingly urban, educated, and globalized and numbers anywhere 

between 100 and 600 million people depending on the criteria and thresholds used to define 

this segment of the population (Roy, 2018; Kharas, 2017). Although the middle class was 

adversely impacted during the pandemic, it is likely that any setback is only temporary, 

and the purchasing power of the Indian middle class will continue to rise as the country 

emerges from the pandemic (Kochhar, 2021). 

The growth of the middle class in India has been accompanied by a surge in vehicle 

ownership and use. According to data published by the Ministry of Road Transport and 

Highways (MoRTH) of the Government of India, the number of cars, jeeps, and taxis 

increased from 695,400 in 1971 to 33,649,000 in 2017 (Road Transport Year Book, 

2019). The number of two-wheelers experienced a surge from just about 587,100 in 1971 

to approximately 187 million in 2017. Both cars/jeeps/taxis and two-wheelers essentially 

experienced a compounded annual growth rate of more than 10 percent between 2007 and 

2017 (Road Transport Year Book, 2019). Transportation contributes substantially to air 
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pollution in India, accounting for 11 percent of all greenhouse gas (GHG) emissions, one-

third of particulate matter (PM) pollution, and an even higher proportion of nitrogen oxides 

- all of which are harmful to human health (Kumar, 2021; Guttikunda, 2015). 

The air pollution, energy intensity, and infrastructure congestion challenges 

presented by transportation in India has motivated the search for sustainable transportation 

solutions that will reverse the growth in automobile use, carbon emissions, and fossil fuel 

consumption (Kumar, 2021). According to recent articles by the International Council on 

Clean Transportation (ICCT), it is imperative that the nation embrace emerging vehicular 

technologies to reverse the growth in India’s road transport emissions. The ICCT notes that 

battery electric vehicles, for example, have the lowest lifecycle GHG emissions, both today 

and into the foreseeable future (Muncrief, 2021). Thus, transportation electrification is 

seen as a mechanism by which the negative externalities due to growth in road 

transportation can be mitigated to a substantial degree. Indeed, there is growing adoption 

of electric vehicles (EV) in the Indian market, achieving a growth rate of 44 percent with 

about one million units sold in FY20 (Chaudhary, 2020).  

Besides electrification, another potential mobility solution that may help soften the 

negative impacts of road transportation is the rise of ridesharing or ridehailing services. In 

India, two of the most popular ridehailing services are Uber and Ola. Both of these 

companies offer on-demand door-to-door mobility service via a smartphone app that can 

be used to summon a ride in real-time, track vehicle location and trajectory, and make 

payment for a completed ride. Ridehailing services have experienced impressive growth in 

India. Unconfirmed numbers suggest that Uber served 14 million rides per week in 2019, 

while Ola recorded more than 28 million bookings per week during 2018-2019 (including 

mailto:rachel@theicct.org
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all types of mobility on demand services) (The Economic Times, 2020). While these 

services often provide private rides to individuals, they offer the potential to advanced 

shared mobility services where multiple individuals share a ride (similar to a 

carpool). Ridesharing is being identified as one among the strategies that a country such as 

India should embrace to help mitigate the adverse effects of private automobile use (Singh, 

2019). If the fleets transition to electric vehicles in the future, the cause of sustainable 

transportation may be advanced further.  

This chapter aims to identify the factors contributing to the adoption of these two 

promising transportation innovations in the Indian context. Using survey data collected 

from more than 43,000 respondents from across the nation, the study simultaneously 

models the use of ridehailing services and the ownership of an electric vehicle. Although 

these two endogenous variables do not directly affect one another, the modeling framework 

accommodates an error correlation across these two endogenous variables to account for 

the possible presence of correlated unobserved attributes that simultaneously influence 

adoption of ridehailing services and ownership of an electric vehicle. What is particularly 

unique about this study is that it incorporates the influence of latent attitudinal constructs 

in a holistic model structure, thus enabling the identification of the role of attitudes, 

perceptions, and preferences in determining the adoption of on-demand mobility services 

and electric vehicle ownership. The latent attitudinal constructs are themselves treated as 

endogenous variables with socio-economic and demographic variables serving as 

exogenous variables. The entire model system is estimated in one step using an enhanced 

integrated choice and latent variable (ICLV) modeling approach that provides the ability 

to unravel complex relationships among multiple behavioral phenomena of interest. 
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 There are a number of past studies that have focused on modeling the adoption and 

use of ridehailing services (e.g., Malik, 2021; Wadud, 2020; Lavieri and Bhat, 2019; 

Alemi, 2018) and the adoption and ownership of electric vehicles (e.g., Dua et al, 2021; 

Shalender and Sharma, 2020; Langbroek, 2016). Ridehailing services are generally used 

to a greater degree by individuals who are younger, more highly educated, employed, and 

residing in urban contexts (Malik, 2021; Alemi, 2018). Electric vehicles are generally 

found to be adopted and owned by individuals who are older, have higher income, and 

reside in urban areas where charging infrastructure may be better and distances between 

trip origins and destinations are likely to be smaller than in more suburban and rural settings 

(Shalender and Sharma, 2020; Tal and Nicholas, 2013). While electric vehicles constitute 

a transportation innovation with clear positive benefits from a GHG emission reduction 

perspective, the potential for on-demand mobility services to bring about GHG emission 

reductions remains uncertain. On the one hand, on-demand mobility services may elevate 

automobile use at the expense of alternative mode use, thus resulting in a detrimental 

impact on air quality. On the other hand, if used in a shared modality, on-demand mobility 

services may contribute to a substantial reduction in private car use, thus leading to positive 

impacts on congestion and pollution (Guo et al, 2019). Despite the rich body of literature 

dedicated to ridehailing usage and electric vehicle adoption, there is very little research that 

explicitly explores the interaction between these transportation innovations - particularly 

in developing countries such as India. This study therefore fills an important gap in the 

literature and sheds new light on the adoption of promising new transportation technologies 

in the Indian context, while explicitly accounting for attitudinal variables within a holistic 

integrated modeling framework.   
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The remainder of this chapter is organized as follows. The next section provides a 

detailed description of the survey and data set used in this study, together with descriptive 

statistics about the endogenous variables of interest. The third section presents the model 

structure and the modeling methodology. Model estimation results are presented in the 

fourth section.  A discussion of the implications of the findings and conclusions is 

furnished in the fifth and final section.  

3.2. Description Of Survey and Data Set 

The data for this chapter is derived from a comprehensive survey effort undertaken in India 

by the Ola Mobility Institute as part of its Ease of Moving Index framework. In 2018, a 

detailed survey capturing socio-economic, demographic, mobility, and attitudes/perception 

variables was conducted across 20 cities in India (with a collective population of 90 

million). The cities were of various sizes and were categorized as promising cities, 

booming cities, and metro cities. The cities spanned the entire country, and a total of more 

than 43,000 survey responses were obtained. Each survey respondent answered nearly 50 

questions, thus providing a wealth of data for understanding people’s preferences, mobility 

choices, and perceptions of mobility services, public transport, and state of roadways. The 

survey included questions that addressed issues of sustainability and public transport 

usage. Barriers related to advancing more sustainable modes of transport or public 

transport usage were identified through the survey. Complete details about the survey may 

be found elsewhere (Ola Mobility Institute, 2018). The survey was administered in person 

by survey personnel who visited households randomly to administer the survey.  

 This section presents the characteristics of the survey sample extracted for use in 

this chapter. Sample characteristics are presented in the first subsection and a more in-
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depth examination of endogenous variables and attitudinal indicators of interest are 

presented in the second subsection.  

3.2.1. Sample Characteristics 

In general, the estimation of a joint econometric model that incorporates multiple latent 

constructs on a sample size of 43,000 is rather computationally prohibitive. For purposes 

of computational tractability, a random sample of 7,500 respondents was extracted from 

the large sample. The characteristics of the 7,500 individuals were compared in detail 

against the original 43,000+ sample to ensure that the extracted subsample was not 

systematically different in any way. Once the representativeness of the extracted subsample 

was established, further filtering was done. First, only those individuals who reside in 

households with at least one vehicle were included in the analysis subsample.  Second, any 

records with missing data on critical socio-economic, attitudinal, or endogenous behavioral 

variables of interest were excluded. The final analysis subsample consists of 2,972 persons, 

all of whom reside in a household with at least one vehicle. The analysis had to be limited 

to such households because one of the key endogenous variables of interest is electric 

vehicle (EV) ownership. As households with zero vehicles would have no opportunity to 

own any vehicle (let alone an EV), it was considered prudent to limit the analysis to 

households that own at least one vehicle.   

 Table 7 presents the socio-economic and demographic characteristics for this 

subsample of 2,972 respondents. The sample is predominantly female, comprising 65.3 

percent of the sample. About 59 percent of the sample is 20-40 years and 22 percent is 40-

60 years of age. About 63 percent report being employed, about 12.6 percent report being 

a homemaker, and 15.1 percent indicate that they are students. The monthly income is 
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reported for employed individuals. It is found that 27.8 percent of all individuals (not just 

employed individuals) report a monthly income between ₹30,000-₹50,000 (Indian Rupees) 

and another 12.1 percent report income between ₹50,000-₹100,000. The educational 

attainment variable shows that nearly 40 percent have a college degree, and another 31 

percent have attained a postgraduate degree. About 11 percent have a doctoral degree, 

suggesting that this subsample is more highly educated relative to the general population 

in India.  

In terms of vehicle ownership, a distinction is made between two-wheelers and 

four-wheelers (cars). About 22 percent of individuals report owning zero two-wheelers, 54 

percent report owning one two-wheeler, and 20.7 percent report owning two two-

wheelers. With respect to cars, there are no zero-car individuals due to the nature of the 

subsample. About 73 percent own one car and 25 percent own two cars.  The travel time 

to work distribution shows that 27.5 percent have a one-way commute time of 15-30 

minutes. If one were to consider the number of kilometers traversed for daily commuting, 

it is seen that 38.3 percent commute 20-40 km and 27.7 percent commute 40-60 

km. Monthly expenditures for transport show that 24.2 percent spend more than ₹5,000 for 

transport; only 5.1 percent spend less than ₹1,000. Public transport is a preferred mode of 

transportation for only 17.8 percent of the subsample of respondents; this percentage is 

lower than for the sample overall, largely due to the car-owning nature of the subsample. 

It is seen that 29.3 percent prefer taxis/cabs, 27.7 percent prefer personal vehicles, and 20.6 

percent prefer three-wheeled auto rickshaws. Overall, the sample offers the richness of 

variation in various characteristics that would render it suitable for use in econometric 

choice modeling efforts.   
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Table 7. Socio-Demographic and Travel Characteristics (N=2,972 persons)  

Socio-Demographic and Travel Characteristics 
Exogenous Variable:  
Socio-demographic Characteristics 

Value 
(%) 

Exogenous Variable:  
Travel Characteristics 

Value 
(%) 

Gender  Travel time from home to work  
    Female 65.3 <15 min 10.4 
    Male 34.7 15-30 min 27.5 
Age category  30-60 min 19.8 
    <20 years 11.4 ≥60 min 5.6 
    20-40 years 59.3 Unemployed 36.7 
    40-60 years 

22.1 
Kilometers commuted in city daily on 
average 

 

    ≥60 years 7.2 <10 Km 5.4 
Employment Status  10-20 km 21.6 

Employed 63.3 20-40 Km 38.3 
Homemaker/Housewife 12.6 40-60 Km 27.7 
Student/Studying 15.1 ≥60 Km 7.0 
Unemployed 9.0   

Monthly Income for Employed 
Individuals (per month in Indian 
Rupees) 

 
Percentage of Monthly Salary spent 
on transport (in Indian Rupees) 

 

<₹15,000 2.0 <₹1,000 5.1 
₹15,000-₹30,000 18.8 ₹1,000-₹3,000 31.3 
₹30,000-₹50,000 27.8 ₹3,000-₹5,000 39.4 
₹50,000-₹100,000 12.1 ≥₹5,000 24.2 
≥₹100,000 2.6 Preferred Mode of Transport  
Unemployed 36.7         Auto 20.6 

Educational Attainment          Non-Motorized  4.6 
    High school 18.2         Personal Vehicles 27.7 
    Graduate Degree 39.7         Public Transport 17.8 
    Post-Graduate Degree 30.9         Taxi/Cabs 29.3 
    Doctoral and above 11.2 Endogenous Variables 
Number of Two-Wheelers Owned  On-Demand Transportation (Ola/Uber) 
    Zero Vehicle 21.9         Never 90.9 
    One Vehicle 53.9         Used Rarely (Monthly/Yearly) 1.0 
    Two Vehicle 20.7         Used Frequently (Daily/Weekly) 8.1 
    Three or more vehicle 3.5 Personal Vehicle, Fuel Type Use 
Number of Cars Owned  Compressed Natural Gas (CNG) 11.4 
     One Car 73.0         Diesel 35.3 
     Two Cars 24.8         Electric  7.0 

 Three or more cars 2.2         Petrol 46.3 
 

3.2.2. Endogenous Variables and Attitudinal Indicators 

This study is concerned with the adoption of new and emerging transportation technologies 

in India.  As such, two endogenous variables are of interest. The first is the adoption and 

use of on-demand transportation or ridehailing services (e.g., Uber, Ola).  The second 
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endogenous variable corresponds to electric vehicle ownership (vehicle fuel type choice). 

The distributions for these two endogenous variables are shown at the end of Table 7.  With 

respect to on-demand transportation services, 91 percent of the respondents indicate that 

they never use such services. About eight percent use the services frequently 

(daily/weekly) and a modest one percent use the services rarely. In terms of fuel type, each 

individual was asked to report on the vehicle that he or she drives and uses. Seven percent 

of respondents indicated that they own and use an electric vehicle (EV). Around 35 percent 

have a diesel vehicle and 46 percent have a petrol vehicle. Given the income and education 

profile of the respondent subsample, it is not too surprising to see the higher rate of EV 

penetration in the subsample relative to the general population. In the modeling exercise of 

this paper, no explicit relationship is assumed between EV ownership and on-demand 

transportation mode use. However, an error correlation is incorporated to reflect the 

possible presence of correlated unobserved attributes affecting both outcomes.  

In addition to the two behavioral outcomes of interest, the model system 

incorporates two latent attitudinal constructs. The first construct represents car owning 

proclivity. Figure 1 shows the distribution of respondents with respect to the attitudinal 

indicators that define this latent attitudinal construct. About 91 percent of this subsample 

consider owning a car important or very important. Car ownership is the second indicator 

defining this latent construct. The second latent construct captures the environment-

friendly lifestyle. Two indicators capture this latent construct as shown in Figure 1. It is 

interesting to note that, even though 91 percent of respondents consider it important or very 

important to own a car, it is also seen that 95 percent consider it important or very important 

for their means of transportation to be environmentally friendly. About 52 percent of 
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respondents indicate that they believe that EVs will replace conventional vehicles by 2030 

and only 29 percent indicated that they did not agree with the statement. These two 

indicators define the environment-friendly lifestyle. The model framework adopted in this 

paper is described in the next section.   

 

Figure 1. Indicator Variables Defining Two Latent Attitudinal Constructs 

3.3. Modeling Framework  

This section presents the model structure and the model estimation methodology employed 

in this chapter. The methodology accommodates multiple endogenous variables (that do 

not affect one another directly), multiple latent attitudinal factors that affect the endogenous 

variables and are themselves affected by socio-economic variables, and flexible error 

correlation structures accounting for the presence of correlated unobserved attributes that 

simultaneously affect multiple endogenous variables.  
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3.3.1. Model Structure 

The model structure adopted in this study is shown in Figure 2. A host of socio-economic, 

demographic, and travel related attributes serve as exogenous variables. There are two 

latent stochastic constructs, namely, environment-friendly lifestyle and car-owning 

proclivity, with a possible error correlation between them. The environment-friendly 

lifestyle construct is defined by the importance of using environmentally friendly means of 

transportation and the belief that EVs will replace conventional vehicles by the year 

2030. Car owning proclivity is characterized by two indicators, namely, the number of cars 

owned and the importance of owning a car. Both of these latent attitudinal constructs are 

influenced by exogenous variables, and in turn, influence the endogenous variables. The 

two endogenous variables include electric vehicle ownership (binary dependent variable: 

yes or no) and on-demand transportation user (binary dependent variable: never used or 

used rarely/frequently). Some consolidation of categories had to be done to define the 

endogenous variables in the model structure because of very small sample sizes in certain 

end categories. Thus, this model structure is a bivariate model with two binary dependent 

variables that do not affect one another directly. However, an error correlation between the 

endogenous variables accounts for the presence of correlated unobserved attributes that 

simultaneously impact the two endogenous variables of interest. The latent attitudinal 

constructs affect the endogenous variables. Through the modeling framework presented in 

Figure 2, it is possible to capture the influence of both socio-economic and attitudinal 

variables on the adoption of emerging transportation services and technologies. The entire 

model structure is estimated in a single step using a novel methodology capable of 
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reflecting endogeneity and multiple error correlations.  The methodology is presented in 

the next subsection.   

 

Figure 2. Structure of Integrated Choice and Latent Variable Model System 

3.3.2. Model Estimation Methodology 

In this section, the integrated choice and latent variable (ICLV) model, which has been 

proposed and applied for an unordered choice variable in the literature (e.g., Bhat and 

Dubey, 2014), is modified to accommodate multiple correlated binary choices as needed 

for this study.  

The model formulation begins by assuming that there are “𝐼𝐼” correlated ordered 

choice variables “𝑐𝑐𝑖𝑖” (i = 1, 2, …, I) and their latent utility functions 𝑢𝑢𝑖𝑖∗ are formulated as:  

𝑢𝑢𝑖𝑖∗ = 𝑥𝑥𝑖𝑖β𝑖𝑖 + 𝑧𝑧∗𝛾𝛾𝑖𝑖 + ε𝑖𝑖.  (6) 

In the above equation, 𝑥𝑥𝑖𝑖 is a row vector of observed explanatory variables and 𝑧𝑧∗ 

is a row vector of latent psychological factors while β𝑖𝑖 and 𝛾𝛾𝑖𝑖 are two column vectors of 

coefficients in the respective utility function. ε𝑖𝑖 is a random component in each utility 
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function and assumed to follow a standard multivariate normal distribution associated with 

a symmetric correlation matrix as:  

𝑐𝑐𝑐𝑐 = �

1 𝑐𝑐𝑐𝑐12 … 𝑐𝑐𝑐𝑐1𝐼𝐼
𝑐𝑐𝑐𝑐12 1 … …

… … 1 𝑐𝑐𝑐𝑐𝐼𝐼−1,𝐼𝐼
𝑐𝑐𝑐𝑐1𝐼𝐼 … 𝑐𝑐𝑐𝑐𝐼𝐼−1,𝐼𝐼 1

�.     (7) 

The utility function value of 𝑢𝑢𝑖𝑖∗ will determine an ordered choice variable, denoted 

as 𝑐𝑐𝑖𝑖, based on comparisons against a number of ordinal thresholds, denoted as 

ψ𝑖𝑖,0,ψ𝑖𝑖,1, …ψ𝑖𝑖,𝑀𝑀𝑖𝑖 (ψ𝑖𝑖,0 < ψ𝑖𝑖,1 … < ψ𝑖𝑖,𝑀𝑀𝑖𝑖). Among those (𝑀𝑀𝑖𝑖 + 1) thresholds, ψ𝑖𝑖,0 = −∞ 

and ψ𝑖𝑖,𝑀𝑀𝑖𝑖 = +∞. When ψ𝑖𝑖,𝑚𝑚−1 < 𝑢𝑢𝑖𝑖∗ < ψ𝑖𝑖,𝑚𝑚, the ordered choice variable  𝑐𝑐𝑖𝑖 takes the 

value “m” from the choice set {1,2,…, 𝑀𝑀𝑖𝑖}. Note that a binary choice can be considered as 

a special case of ordered choices, where 𝑀𝑀𝑖𝑖 takes the value of “2” and the choice set is {1, 

2}.  

In Equation (6), the row vector of latent psychological factors 𝑧𝑧∗ contains “𝐽𝐽” 

elements, each of which can be denoted as 𝑧𝑧𝑗𝑗∗ (j = 1, 2, …, 𝐽𝐽) and formulated as: 

𝑧𝑧𝑗𝑗∗ = 𝑤𝑤𝑗𝑗𝛼𝛼𝑗𝑗 + 𝜂𝜂𝑗𝑗 .  (8) 

In the above formula, 𝑤𝑤𝑗𝑗 is a row vector of observed variables to explain 𝑧𝑧𝑗𝑗∗ and 𝛼𝛼𝑗𝑗 

is a column vector of coefficients. 𝜂𝜂𝑗𝑗 is a random component in the model and assumed to 

follow a standard multivariate normal distribution associated with a symmetric correlation 

matrix as:  

𝑧𝑧𝑐𝑐 =

⎣
⎢
⎢
⎡

1 𝑧𝑧𝑐𝑐12 … 𝑧𝑧𝑐𝑐1𝐽𝐽
𝑧𝑧𝑐𝑐12 1 … …

… … 1 𝑧𝑧𝑐𝑐𝐽𝐽−1,𝐽𝐽
𝑧𝑧𝑐𝑐1𝐽𝐽 … 𝑧𝑧𝑐𝑐𝐽𝐽−1,𝐽𝐽 1 ⎦

⎥
⎥
⎤
.   (9) 
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Each latent psychological factor 𝑧𝑧𝑗𝑗∗ can influence one or more latent propensity 

function values, which in turn determine the same number of observed ordinal indicators 

(e.g., the extent to which one agrees on a certain statement). In total, there are “𝐾𝐾” such 

latent propensity function values, which are denoted as 𝑦𝑦1∗, 𝑦𝑦2∗,…, 𝑦𝑦𝐾𝐾∗ and laterally 

combined to form a row vector 𝑦𝑦∗. The relation between 𝑧𝑧∗ and 𝑦𝑦∗ can be expressed as: 

𝑦𝑦∗ = 𝑧𝑧∗ ∙ z2y ∙ 𝑑𝑑 + 𝜉𝜉.         (10) 

In the above formula, "𝑧𝑧2𝑦𝑦" is a dummy matrix of 𝐽𝐽 rows and 𝐾𝐾 columns, indicating 

whether a factor in 𝑧𝑧∗ influences a latent propensity value in 𝑦𝑦∗. When an element in jth 

row and kth column of the matrix takes the value of “1”, the jth factor in 𝑧𝑧∗ does influence 

the kth propensity value in 𝑦𝑦∗. When it takes the value of “0”, there is no influence. For 

example, 𝑧𝑧2𝑦𝑦 = �1 1 0
0 0 1�, indicating that there are two psychological factors and three 

ordinal indicators, where the first factor influences the first and second propensity values 

and the second factor influences the third value. Then, 𝑑𝑑 is a column vector of 𝐾𝐾 loading 

factors while 𝜉𝜉 is a row vector of random components following independent standard 

normal distribution. 

The propensity function values of 𝑦𝑦𝑘𝑘∗ will determine an observed ordinal indicator, 

denoted as 𝑦𝑦𝑘𝑘, based on comparisons against a number of ordinal thresholds, denoted as 

θ𝑘𝑘,0,θ𝑘𝑘,1, … θ𝑘𝑘,𝑁𝑁𝑘𝑘 (θ𝑘𝑘,0 < θ𝑘𝑘,1 … < θ𝑘𝑘,𝑁𝑁𝑘𝑘). Among those (𝑁𝑁𝑘𝑘 + 1) thresholds, θ𝑘𝑘,0 = −∞ 

and θ𝑘𝑘,𝑁𝑁𝑘𝑘 = +∞. When θ𝑘𝑘,𝑛𝑛−1 < y𝑖𝑖∗ < θ𝑘𝑘,𝑛𝑛, the ordinal indicator takes the value “n” from 

the set {1,2,…, 𝑁𝑁𝑘𝑘}. 

To estimate the model, the latent variables in Equation (8) can be substituted into 

Equations (6) and (10) to obtain new equations as below: 



 

67 

𝑢𝑢𝑖𝑖∗ = 𝑥𝑥𝑖𝑖β𝑖𝑖 + ��𝑤𝑤𝑗𝑗𝞪𝞪𝒋𝒋 + 𝜂𝜂𝑗𝑗�𝛾𝛾𝑖𝑖𝑗𝑗

𝐽𝐽

𝑗𝑗=1

+ ε𝑖𝑖 = 𝑥𝑥𝑖𝑖β𝑖𝑖 + ��𝑤𝑤𝑗𝑗𝞪𝞪𝒋𝒋𝛾𝛾𝑖𝑖𝑗𝑗�
𝐽𝐽

𝑗𝑗=1

+ ��𝜂𝜂𝑗𝑗𝛾𝛾𝑖𝑖𝑗𝑗�
𝐽𝐽

𝑗𝑗=1

+ ε𝑖𝑖 

= 𝑉𝑉𝑖𝑖 + ∑ �𝜂𝜂𝑗𝑗𝛾𝛾𝑖𝑖𝑗𝑗�
𝐽𝐽
𝑗𝑗=1 + ε𝑖𝑖 ,  (11) 

𝑦𝑦𝑘𝑘∗ = ��𝑤𝑤𝑗𝑗𝞪𝞪𝒋𝒋 + 𝜂𝜂𝑗𝑗� ∙ z2y𝑗𝑗𝑘𝑘 ∙ 𝑑𝑑𝑘𝑘

𝐽𝐽

𝑗𝑗=1

+ 𝜉𝜉𝑘𝑘 

= ��𝑤𝑤𝑗𝑗 ∙ 𝞪𝞪𝒋𝒋 ∙ z2y𝑗𝑗𝑘𝑘 ∙ 𝑑𝑑𝑘𝑘�
𝐽𝐽

𝑗𝑗=1

+ ��𝜂𝜂𝑗𝑗 ∙ z2y𝑗𝑗𝑘𝑘 ∙ 𝑑𝑑𝑘𝑘� +
𝐽𝐽

𝑗𝑗=1

𝜉𝜉𝑘𝑘 

= 𝑇𝑇𝑘𝑘 + ∑ �𝜂𝜂𝑗𝑗 ∙ z2y𝑗𝑗𝑘𝑘 ∙ 𝑑𝑑𝑘𝑘� +𝐽𝐽
𝑗𝑗=1 𝜉𝜉𝑘𝑘 .  (12) 

Thus, the variance-covariance matrix 𝐶𝐶𝐶𝐶𝑉𝑉(𝑢𝑢𝑖𝑖∗) = 𝛬𝛬′ ∙ 𝑧𝑧𝑐𝑐 ∙ 𝛬𝛬 + 𝑐𝑐𝑐𝑐 = 𝐶𝐶𝐶𝐶𝑉𝑉1, where 

𝛬𝛬 = [𝛾𝛾1,𝛾𝛾2, … , 𝛾𝛾𝐼𝐼], a matrix formed by laterally combining the column vectors 𝛾𝛾𝑖𝑖. The 

variance-covariance matrix 𝐶𝐶𝐶𝐶𝑉𝑉(𝑢𝑢𝑖𝑖∗,𝑦𝑦𝑘𝑘∗) = 𝛬𝛬′ ∙ 𝑧𝑧𝑐𝑐 ∙ 𝑧𝑧2𝑦𝑦 ∗ 𝑑𝑑′ = 𝐶𝐶𝐶𝐶𝑉𝑉2, where ". " 

represents matrix multiplication and " ∗ " represents element-wise multiplication. The 

variance-covariance matrix 𝐶𝐶𝐶𝐶𝑉𝑉(𝑦𝑦𝑘𝑘∗) = (d ∗ z2y′) ∙ 𝑧𝑧𝑐𝑐 ∙ (z2y ∗ d′) = 𝐶𝐶𝐶𝐶𝑉𝑉3. By 

comparing latent variables (i.e., 𝑢𝑢𝑖𝑖∗ or 𝑦𝑦𝑘𝑘∗) against corresponding thresholds, ordered 

choices or ordinal indicator values can be determined while random components in latent 

variables follow a multivariate normal distribution associated with covariance matrices 

𝐶𝐶𝐶𝐶𝑉𝑉1, 𝐶𝐶𝐶𝐶𝑉𝑉2 and 𝐶𝐶𝐶𝐶𝑉𝑉3. Thus, a multivariate ordered probit model can be formulated, and 

a composite maximum likelihood estimation method (CML) can be employed for model 

estimation. The composite likelihood function consists of three parts that incorporate all of 

the coefficients to be estimated.  

The first part is formulated to incorporate coefficients in 𝐶𝐶𝐶𝐶𝑉𝑉1 as: 

LL1(∙) = ∑ ∑ ∑ ∑ �𝐼𝐼(𝑐𝑐𝑖𝑖 = 𝑚𝑚) ∙ 𝐼𝐼�𝑐𝑐𝑗𝑗 = 𝑛𝑛� ∙ ln �𝑃𝑃�𝑐𝑐𝑖𝑖 = 𝑚𝑚, 𝑐𝑐𝑗𝑗 = 𝑛𝑛���𝑀𝑀𝑗𝑗
𝑛𝑛=1

𝑀𝑀𝑖𝑖
𝑚𝑚=1

𝐼𝐼
𝑗𝑗=𝑖𝑖+1

𝐼𝐼−1
𝑖𝑖=1 . 
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 (13) 

In the above formula, 𝑃𝑃�𝑐𝑐𝑖𝑖 = 𝑚𝑚, 𝑐𝑐𝑗𝑗 = 𝑛𝑛� represents the joint choice probability 

from a bivariate ordered probit model and can be expressed as: 

Φ2�δ𝑖𝑖�ψ𝑖𝑖,𝑚𝑚 − 𝑉𝑉𝑖𝑖�, δ𝑗𝑗�ψ𝑗𝑗,𝑛𝑛 − 𝑉𝑉𝑗𝑗�, δ𝑖𝑖δ𝑗𝑗𝜌𝜌𝑖𝑖𝑗𝑗� −Φ2�δ𝑖𝑖�ψ𝑖𝑖,𝑚𝑚−1 − 𝑉𝑉𝑖𝑖�, δ𝑗𝑗�ψ𝑗𝑗,𝑛𝑛 − 𝑉𝑉𝑗𝑗�, δ𝑖𝑖δ𝑗𝑗𝜌𝜌𝑖𝑖𝑗𝑗� 

−Φ2�δ𝑖𝑖�ψ𝑖𝑖,𝑚𝑚 − 𝑉𝑉𝑖𝑖�, δ𝑗𝑗�ψ𝑗𝑗,𝑛𝑛−1 − 𝑉𝑉𝑗𝑗�, δ𝑖𝑖δ𝑗𝑗𝜌𝜌𝑖𝑖𝑗𝑗� +Φ2�δ𝑖𝑖�ψ𝑖𝑖,𝑚𝑚−1 − 𝑉𝑉𝑖𝑖�, δ𝑗𝑗�ψ𝑗𝑗,𝑛𝑛−1 − 𝑉𝑉𝑗𝑗�, δ𝑖𝑖δ𝑗𝑗𝜌𝜌𝑖𝑖𝑗𝑗�, 

              (14) 

where δ𝑖𝑖 = 1
�𝐶𝐶𝐶𝐶𝐶𝐶1𝑖𝑖𝑖𝑖

, δ𝑗𝑗 = 1

�𝐶𝐶𝐶𝐶𝐶𝐶1𝑗𝑗𝑗𝑗
, 𝜌𝜌𝑖𝑖𝑗𝑗 = 𝐶𝐶𝐶𝐶𝑉𝑉1𝑖𝑖𝑗𝑗 and Φ2[𝑥𝑥, 𝑦𝑦,𝜌𝜌] is the cumulative 

distribution function of the standard bivariate normal distribution. 

The second part is formulated to incorporate coefficients in 𝐶𝐶𝐶𝐶𝑉𝑉2 as: 

LL2(∙) = ∑ ∑ ∑ ∑ {𝐼𝐼(𝑐𝑐𝑖𝑖 = 𝑚𝑚) ∙ 𝐼𝐼(𝑦𝑦𝑘𝑘 = 𝑛𝑛) ∙ ln [𝑃𝑃(𝑐𝑐𝑖𝑖 = 𝑚𝑚,𝑦𝑦𝑘𝑘 = 𝑛𝑛)]}𝑁𝑁𝑘𝑘
𝑛𝑛=1

𝑀𝑀𝑖𝑖
𝑚𝑚=1

𝐾𝐾
𝑘𝑘=1

𝐼𝐼
𝑖𝑖=1 . 

           (15) 

In the above formula, 𝑃𝑃(𝑐𝑐𝑖𝑖 = 𝑚𝑚,𝑦𝑦𝑘𝑘 = 𝑛𝑛) can be expressed as: 

Φ2�δ𝑖𝑖�ψ𝑖𝑖,𝑚𝑚 − 𝑉𝑉𝑖𝑖�, δ𝑘𝑘�θ𝑘𝑘,𝑛𝑛 − 𝑇𝑇𝑘𝑘�, δ𝑖𝑖δ𝑘𝑘𝜌𝜌𝑖𝑖𝑘𝑘� −Φ2�δ𝑖𝑖�ψ𝑖𝑖,𝑚𝑚−1 − 𝑉𝑉𝑖𝑖�, δ𝑘𝑘�θ𝑘𝑘,𝑛𝑛 − 𝑇𝑇𝑘𝑘�, δ𝑖𝑖δ𝑘𝑘𝜌𝜌𝑖𝑖𝑘𝑘� 

−Φ2�δ𝑖𝑖�ψ𝑖𝑖,𝑚𝑚 − 𝑉𝑉𝑖𝑖�, δ𝑘𝑘�θ𝑘𝑘,𝑛𝑛−1 − 𝑇𝑇𝑘𝑘�, δ𝑖𝑖δ𝑘𝑘𝜌𝜌𝑖𝑖𝑘𝑘� +Φ2�δ𝑖𝑖�ψ𝑖𝑖,𝑚𝑚−1 − 𝑉𝑉𝑖𝑖�, δ𝑘𝑘�θ𝑘𝑘,𝑛𝑛−1 − 𝑇𝑇𝑘𝑘�, δ𝑖𝑖δ𝑘𝑘𝜌𝜌𝑖𝑖𝑘𝑘�, 

   (16) 

where δ𝑖𝑖 = 1
�𝐶𝐶𝐶𝐶𝐶𝐶2𝑖𝑖𝑖𝑖

, δ𝑘𝑘 = 1
�𝐶𝐶𝐶𝐶𝐶𝐶2𝑘𝑘𝑘𝑘

, 𝜌𝜌𝑖𝑖𝑘𝑘 = 𝐶𝐶𝐶𝐶𝑉𝑉2𝑖𝑖𝑘𝑘. 

The third part is formulated to incorporate coefficients in 𝐶𝐶𝐶𝐶𝑉𝑉3 as: 

LL3(∙) = ∑ ∑ ∑ ∑ �𝐼𝐼(𝑦𝑦𝑘𝑘 = 𝑚𝑚) ∙ 𝐼𝐼�𝑦𝑦𝑗𝑗 = 𝑛𝑛� ∙ ln �𝑃𝑃�𝑦𝑦𝑘𝑘 = 𝑚𝑚,𝑦𝑦𝑗𝑗 = 𝑛𝑛���𝑁𝑁𝑗𝑗
𝑛𝑛=1

𝑁𝑁𝑘𝑘
𝑚𝑚=1

𝐾𝐾
𝑗𝑗=𝑘𝑘+1

𝐾𝐾−1
𝑘𝑘=1 . 

 (17) 

In the above formula, 𝑃𝑃�𝑦𝑦𝑘𝑘 = 𝑚𝑚,𝑦𝑦𝑗𝑗 = 𝑛𝑛� can be expressed as: 

Φ2�δ𝑘𝑘�θ𝑘𝑘,𝑚𝑚 − 𝑇𝑇𝑘𝑘�, δ𝑗𝑗�θ𝑗𝑗,𝑛𝑛 − 𝑇𝑇𝑗𝑗�, δ𝑘𝑘δ𝑗𝑗𝜌𝜌𝑘𝑘𝑗𝑗� −Φ2�δ𝑘𝑘�θ𝑖𝑖,𝑚𝑚−1 − 𝑇𝑇𝑘𝑘�, δ𝑗𝑗�θ𝑗𝑗,𝑛𝑛 − 𝑇𝑇𝑗𝑗�, δ𝑘𝑘δ𝑗𝑗𝜌𝜌𝑘𝑘𝑗𝑗� 
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−Φ2�δ𝑘𝑘�θ𝑖𝑖,𝑚𝑚 − 𝑇𝑇𝑘𝑘�, δ𝑗𝑗�θ𝑗𝑗,𝑛𝑛−1 − 𝑇𝑇𝑗𝑗�, δ𝑘𝑘δ𝑗𝑗𝜌𝜌𝑘𝑘𝑗𝑗� +Φ2�δ𝑘𝑘�θ𝑖𝑖,𝑚𝑚−1 − 𝑇𝑇𝑘𝑘�, δ𝑗𝑗�θ𝑗𝑗,𝑛𝑛−1 − 𝑇𝑇𝑗𝑗�, δ𝑘𝑘δ𝑗𝑗𝜌𝜌𝑘𝑘𝑗𝑗�,

 (18) 

where δ𝑘𝑘 = 1
�𝐶𝐶𝐶𝐶𝐶𝐶3𝑘𝑘𝑘𝑘

, δ𝑗𝑗 = 1

�𝐶𝐶𝐶𝐶𝐶𝐶3𝑗𝑗𝑗𝑗
, 𝜌𝜌𝑘𝑘𝑗𝑗 = 𝐶𝐶𝐶𝐶𝑉𝑉3𝑘𝑘𝑗𝑗. When there are a large number of 

ordinal indicators and “𝐾𝐾” takes a large integer value, it is unnecessary to incorporate all 

“𝐾𝐾” ordinal indicators into Equation (12). Instead, a subset of representative indicators can 

be selected for each latent factor in 𝑧𝑧∗ to form a new subset of ordinal indicators to compute 

LL3(∙) and thereby achieve better computational efficiency. Finally, all three parts can be 

added to form a composite log-likelihood function with respect to all of the model 

coefficients as: 

LL(α,β, γ, d,ψ, θ, zr, cr) = LL1(∙) + LL2(∙) +  LL3(∙).   (19) 

The composite log-likelihood function above and its analytical gradient are coded 

in Gauss matrix programming platform (Aptech Systems, 2015), where the composite log-

likelihood function can be maximized to consistently estimate all coefficients and a 

sandwich robust covariance matrix can be computed for statistical inferences on parameter 

estimates.  

3.4. Model Estimation Results 

Detailed model estimation results are presented in this section. The entire model system is 

estimated as a joint model through a methodological framework that enables parameter 

estimation in a single step while fully accounting for the endogeneity of latent attitudinal 

constructs. Estimation results are discussed separately for the latent construct model 

components and the dependent variable model components for ease of exposition.  
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3.4.1. Latent Construct Model Components 

The latent construct model component estimation results are presented in Table 8. There 

are two latent attitudinal constructs, car owning proclivity and environment-friendly 

lifestyle, considered in this study. Factor loadings presented in Table 8 show that the 

indicators are appropriate and statistically significant in representing the latent attitudinal 

constructs. The number of cars owned, and the level of importance attached to owning a 

car are both exhibiting positive factor loadings for the latent factor representing car owning 

proclivity.  Similarly, the importance of an environmentally friendly lifestyle and the belief 

that electric vehicles will replace conventional vehicles by 2030 load positively onto the 

latent factor representing an environment-friendly lifestyle. As expected, the latent factors 

are negatively correlated with one another as they represent and capture opposite 

dimensions. 

A range of socio-economic and demographic characteristics affect these latent 

factors. Younger individuals are found to be less environmentally oriented, a finding that 

is somewhat counter to expectations as some literature has shown that younger individuals 

tend to be more environmentally conscious (Davis et al, 2012). But some recent studies 

(see Lavieri and Bhat, 2019; Gifford and Nilsson, 2014) also identify a decrease in the 

younger generation’s environmental consciousness, suggesting that this may be the result 

of an increase in the importance of material pleasures among the young, as well as an 

increased level of optimism that technology will solve environmental problems. Also, there 

is recent evidence that suggests environmental consciousness is less about age, and more 

about level of awareness, information, and knowledge (Otto and Kaiser, 2014). Older 

individuals are more auto oriented and show a greater level of car owning proclivity; this 
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is consistent with expectations and previous findings in the literature (Bansal and 

Kockelman, 2017). Those who are unemployed exhibit lower levels of car owning 

proclivity as well as environmentally friendly lifestyles; once again, this finding is 

consistent with prior research and reflects that unemployed individual do not have the 

income and information to lean positively towards either of these latent factors. Indeed, it 

is found that those with a lower income exhibit a lower level of environmental 

friendliness.   

Table 8. Determinants of Latent Variables and Loadings on Indicators 

 Car Owning  
Proclivity 

Environment-Friendly 
Lifestyle 

 Estimate t-stat Estimate t-stat 
Exogenous Variables 
Age     

<20 years — — -0.846 -3.624 
≥60 years 0.189 1.441 — — 

Employment Status     
Unemployed -0.355 -2.650 -0.544 -2.823 

Monthly Income (Indian Rupees)     
<₹15,000 — — -0.611 -2.205 

Travel time from home to work     
<15 min -0.831 -6.395 0.438 2.725 
≥60 min 0.490 3.320 -0.249 -2.072 

Indicator Variables: Factor Loadings 
Number of cars owned 0.685 4.841 NA NA 
Importance of owning a car 0.214 1.861 NA NA 
Importance of environment friendly 

means of transportation  
NA NA 0.483 2.643 

Electric vehicles would be able to 
replace the conventional fuel-driven 
vehicles by the year 2030 

NA NA 0.643 2.817 

Thresholds for Indicator Variables (in order as listed above) 
Threshold 1-1 0.701 13.08 NA NA 
Threshold 2-1 -1.406 -32.35 NA NA 
Threshold 2-2 0.139 5.314 NA NA 
Threshold 3-1 NA NA -1.986 -12.92 
Threshold 3-2 NA NA -0.384 -8.732 
Threshold 4-1 NA NA -0.749 -8.755 
Threshold 4-2 NA NA -0.137 -3.956 

Error Correlation 
Car Owning Proclivity  NA NA -0.391 -2.530 
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 Commute time has a significant influence on the latent factors.  Those with short 

commutes to work may not feel a compelling need for an automobile and hence exhibit a 

lower level of car owning proclivity.  They also exhibit a higher level of environmental 

friendliness.  On the other hand, those with long commutes exhibit a greater proclivity for 

car ownership and lower levels of environmental friendliness.  These findings are 

consistent with results reported in the literature (Ashalatha et al, 2013), where a close 

association between commute length and latent attitudinal factors towards car ownership 

and the environment have been reported (although the direction of causality remains open 

to debate).   

3.4.2. Bivariate Model of Behavioral Outcomes 

The bivariate model of on-demand transportation mode use and electric vehicle ownership 

is presented in Table 9.  It should be noted that there is no direct effect between these two 

endogenous variables. In this particular model structure, there is no compelling reason or 

basis to assume that one endogenous variable directly affects the other. Therefore, rather 

than introduce a direct effect between the endogenous variables, the joint model 

specification and estimation procedure enables the computation of an error correlation 

between the endogenous variables to account for correlated unobserved attributes that may 

affect both behavioral dimensions of interest. In this instance, the error correlation is quite 

small, negative, and very weakly significant from a statistical standpoint. A variety of 

explanations are possible.  For example, those who eschew mode sharing in favor of a 

lifestyle that emphasizes ownership are less likely to embrace on-demand transportation 

services.  Note that neither of the latent constructs captures the proclivity towards sharing 

modes or vehicles; hence the effect of this proclivity is likely being captured in the error 
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correlation. This unobserved attribute has an opposite effect on the two endogenous 

variables, thus engendering a negative correlation.  

The latent constructs are found to affect both endogenous variables and are 

statistically significant. Car-owning proclivity decreases the probability of using on-

demand transportation, as expected.  On the other hand, an environment-friendly lifestyle 

increases the probability of embracing and using on-demand transportation services and 

owning an electric vehicle. Thus, bringing about greater environmental awareness and 

providing incentives for individuals to embrace an environmentally friendly lifestyle will 

help elevate the uptake of both on-demand (possibly shared) transportation services and 

electric vehicles.  

The exogenous variables influence the endogenous variables along expected lines. 

Females are slightly more likely to use on-demand transportation services (consistent with 

recent research, e.g., International Finance Corporation, 2018; Alemi et al, 2018), although 

the coefficient is not statistically significant. In many developing countries, on-demand 

transportation services have provided mobility independence for females (who generally 

exhibit a much lower driver’s license holding rate than males) (International Finance 

Corporation, 2018). Females are less likely to own EVs; this finding is consistent with the 

literature (e.g., Priessner et al, 2018) and is attributed to greater levels of range 

anxiety.  Older individuals (more than 40 years of age), who are likely to have owned and 

used conventional vehicles for some time, are less likely to own EVs. Employed 

individuals, who are likely to have the monetary resources and need for personal cars (to 

facilitate commuting), exhibit a lower propensity to use on-demand transportation services 

and a lower propensity to own EVs (due to range and cost barriers).  However, those in the 
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highest income bracket exhibit a modestly higher inclination towards owning EVs (effect 

is statistically insignificant, but intuitive). Given the higher cost of EVs, this finding is 

consistent with expectations and the evidence to date regarding EV ownership trends (e.g., 

Tal and Nicholas, 2013). Lowest income individuals embrace on-demand transportation 

services, while those with higher incomes are less likely to use on-demand transportation 

services - largely because they own personal vehicles and do not have a need to rely on 

shared mobility services. Once again, these findings are consistent with those reported in 

the literature (Brown, 2018; Gehrke et al, 2019). However, there is some previous research 

that reports results contrary to our finding. A few studies have reported that high income 

individuals are more frequent users of ridehailing services relative to low-income 

individuals (e.g., Tirachini and Rio, 2019; Dias et al, 2017). A higher education attainment 

is associated with a lower proclivity towards on-demand transportation usage. Long 

commuting distances are associated with lower levels of on-demand transportation service 

usage (due to high cost to travel long distances using such services) and lower levels of EV 

ownership (due to concerns about driving range). These findings are consistent with prior 

research (Najya, 2019; Sun et al, 2017).  
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Table 9. Joint Model of On-Demand Transportation Use and EV Ownership  

 On-Demand Transportation  
(Never used/Used) 

Electric Vehicle 
Ownership 
(No/Yes) 

 Estimate t-stat Estimate t-stat 
Latent Constructs 

Car Owning Proclivity  -0.335 -3.063 — — 
Environment Friendly Lifestyle 1.835 2.065 0.994 1.842 

Exogenous Variables 
Gender     

Female 0.100 1.536 -0.901 2.387 
Age     

≥40 years — — -1.022 -2.288 
Employment Status     

Employed -0.261 -3.106 -1.025 -2.340 
Monthly Income (Indian Rupees)     

< ₹15,000 0.352 1.544 — — 
≥ ₹50,000 -0.499 -3.089 — — 
≥ ₹100,000 — — 0.247 1.505 

Education Attainment     
Post-graduate and above -0.252 -3.151 — — 

Average Daily Commute Kilometers      
≥ 40 kms -0.268 -3.163 -0.297 -1.431 

Thresholds  
Threshold 1-1 1.153 13.29 NA NA 
Threshold 2-1 NA NA 1.556 2.917 

Error Correlations  
On-Demand Transportation Use NA NA -0.042 -1.477 

Model Statistics: 
Number of observations = 2,972 individuals  
Number of parameters = 39 
Null Log-likelihood (only thresholds) =-55,449 
Full Log-likelihood (joint model) = -46,630 
Pseudo Rho-Squared = 0.159 

 

NA: Not applicable  

“—” indicates that the variable is insignificant in the model 

The joint model is found to offer a goodness-of-fit that is consistent with 

expectations for a model of this nature. In comparing the full log-likelihood of the joint 

model versus the null log-likelihood corresponding to a model with only thresholds, it is 

found that the specification significantly enhances fit with a resulting pseudo ρ2 value of 

0.16. The joint model exhibits an even greater improvement in log-likelihood value relative 
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to a naive specification that neglects the endogeneity of the latent attitudinal constructs 

(essentially treating them as exogenous variables similar to socio-economic and 

demographic variables). 

3.5. Study Implications and Conclusions 

Many rapidly developing countries around the world are at a crossroads when it comes to 

transportation, air quality, and sustainability. On the one hand, rapid economic 

development is leading to rising incomes, and higher levels of car ownership and use. On 

the other hand, this increase in car ownership and use is leading to negative externalities in 

the form of congestion, air pollution, and rapid growth in energy consumption. Rapid 

innovation in the transportation sector offers hope to break this vicious cycle of growth in 

car ownership and use. In the past several years in particular, there have been rapid 

developments in two key areas - namely, the emergence of on-demand mobility services 

(such as Uber and Ola) and the rapid development and evolution of battery electric vehicles 

that no longer depend on fossil fuels for energy.  India is a rapidly growing economy that 

is experiencing all of the ill-effects of rapid growth in car ownership and use and could 

therefore benefit from increased adoption of transportation innovations that are 

sustainable.   

This chapter is concerned with identifying factors that contribute to the adoption of 

on-demand transportation services and electric vehicle (EV) ownership in the Indian 

context. While there is an extensive and growing body of research related to these 

transportation innovations in the developed world, evidence-based research on these topics 

remains sparse in the Indian context. Using a unique survey data set collected in 2018 from 

a sample of 43,000 respondents spread across 20 cities in India, this chapter develops a 
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holistic integrated modeling framework to shed light on the factors that affect adoption of 

on-demand transportation services and electric vehicles in India. In particular, not only 

does this paper consider the socio-economic and demographic variables that affect these 

behavioral choices, but the study places a special emphasis on understanding the important 

role played by attitudes, values, and perceptions in determining adoption of on-demand 

transportation services and EVs. 

The model constitutes a simultaneous equations model with latent attitudinal 

constructs that are themselves endogenous and dependent on socio-economic and 

demographic variables. Thus, the model includes two endogenous variables of interest 

(adoption of on-demand transportation services and EV ownership), both of which are 

binary in nature. In addition, the model system incorporates two attitudinal constructs that 

are represented by attitudinal indicators. One latent construct captures the car owning 

proclivity of the individual while the other latent construct captures the environmentally 

friendly lifestyle orientation of the individual. Each latent attitudinal construct is mapped 

to a pair of attitudinal indicator variables in the survey data set.   

 The analysis focuses on a random subsample of 2972 respondents, all of whom 

report owning at least one car. It is found that only seven percent of this subsample owns 

an EV, and only nine percent use on-demand transportation services such as Uber and 

Ola. Thus, the uptake of these emerging mobility technologies remains quite low, and 

policies and interventions are needed to rapidly increase the adoption of these 

technologies. Within this subsample of car-owning individuals, 91 percent indicate that 

owning a car is important or very important. At the same time, however, 95 percent indicate 

that it is important or very important for their means of transport to be environmentally 
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friendly.  Just over one-half of this subsample believes that EVs will replace conventional 

vehicles by 2030. In other words, there is a strong interest and optimism in environmentally 

friendly versions of private transportation. It is also found that EVs are largely owned by 

individuals in the highest income category (due to cost), and that certain groups such as 

females, employed individuals, and long-distance commuters are less likely to own an 

EV. This is very likely to stem from range anxiety and concerns related to the ability to 

recharge the EV battery when away from home in the middle of a trip.  

 Results of the joint model system suggest that subsidies and rebates for purchase of 

EVs may help enhance market adoption. Individuals outside of the highest income bracket 

report lower levels of EV ownership; hence affordability is a key determinant of EV 

adoption and subsidies can help advance EV ownership among a larger segment of the 

Indian middle class. Second, cities across the country need to invest in charging 

infrastructure to alleviate range anxiety. As many residents in India may not be able to 

charge EVs at home (due to the nature of the housing unit, e.g., apartments), the ability to 

charge at the office, businesses, stores, restaurants, and other EV charging depots may go 

a long way in enhancing EV adoption. Finally, it is found that attitudes and values 

significantly affect the use of on-demand transportation services and EV ownership. 

Influencing attitudes and values through information and awareness campaigns, free trial 

experiences, and real-world demonstrations may prove helpful in advancing more 

sustainable vehicular ownership and use. On-demand transportation services are gaining in 

usage but are not necessarily sustainable unless the vehicles are battery powered and rides 

are shared. The simultaneous equations model estimated in this study shows that those who 

are more environmentally friendly in their lifestyle preferences are more likely to embrace 
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both of these innovations than others. As such, information campaigns that bring about 

greater environmental friendliness and awareness among people would help motivate 

higher levels of adoption of on-demand transportation services (thus reducing reliance on 

privately owned vehicles) as well as ownership of EVs (if vehicle ownership is desired by 

the individual/household). Through the implementation of these mechanisms, coupled with 

investments in alternative modes of transportation that afford a high level of service (e.g., 

Metro systems, bus rapid transit, dedicated bus lanes), India can advance the cause of 

sustainable transportation.  
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4. DEVELOPMENT OF AN INTEGRATED TRANSPORT AND RESIDENTIAL 

ENERGY CONSUMPTION MODEL SYSTEM 

4.1. Introduction 

The US Environmental Protection Agency (EPA) estimates that the nation’s transportation, 

commercial, and residential sectors contributed 29, 19, and 21 percent respectively, of the 

total greenhouse gas (GHG) emissions in 2016 (EIA, 2017), indicating that human activity 

plays a significant role in shaping the carbon footprint in communities and cities. It is 

therefore of considerable importance to quantify the consumption of energy that is 

attributable to each of these sectors, as the energy consumption patterns directly translate 

into GHG emissions that contribute to global climate extremes. In an effort to address this 

need, this chapter presents an integrated model system that can be used to compute the 

household energy footprint.  

Within the scope of this paper, household energy footprint is assumed to comprise 

of two main components. The first component is the transport energy consumption, and 

the second component is the residential energy consumption that stems from electricity, 

natural gas, and other utility expenditures. The transport energy consumption is dependent 

on the mix of vehicles that a household owns and uses, and the extent to which each of the 

different vehicles in a household is driven. The residential energy footprint primarily stems 

from the consumption of electricity and natural gas, although other fuel sources may also 

contribute to a household’s utility expenditure pattern. The scope of analysis of residential 

energy footprint can be very broad depending on the extent of the supply chain that is 

considered and the extent to which embedded energy is included in the accounting system. 

For purposes of quantifying and characterizing the residential energy footprint in this 
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paper, only the actual operational energy consumption (utility expenditures) is considered. 

The total household (operational) energy footprint may then be viewed as a sum of the 

transport energy consumption and residential energy consumption, with both components 

accounting only for the operational energy consumption within the respective domains.  

There is a relationship, however, between residential and transport energy 

consumption. The residential energy consumption may be posited as being influenced by 

activity-travel characteristics of household members. If household members travel 

extensively outside the home, then the residential energy consumption may decrease if the 

households take necessary energy saving precautions when they are not at home. Such 

households may have large transportation energy footprints and smaller residential energy 

footprints. Conversely, households that spend a lot of time at home may have smaller 

transport energy footprints, but larger residential energy footprints. The estimation of the 

household energy footprint should take into account the potential relationship that may 

exist between transport and residential energy footprint.  

Despite considerable work in this area, an integrated model of household energy 

footprint that accounts for the relationship between transport and residential energy 

consumption remains elusive. This chapter aims to fill this critical gap by presenting a 

comprehensive integrated model system and energy analysis tool that can be used to 

quantify the total household energy footprint, including the separate transport and 

residential energy consumption components.  

The model system is developed through a multi-step process that involves fusing 

information contained in the 2017 National Household Travel Survey (NHTS) data set 

(which includes detailed vehicle and travel information) and the 2015 Residential Energy 
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Consumption Survey (RECS) data set (which includes detailed residential energy-related 

information). The model system involves computing the transport energy footprint based 

on household vehicle mix and miles of travel, and then computing both electricity and 

natural gas consumption while explicitly accounting for the influence that activity-travel 

behavior may have on the residential energy consumption patterns.   

The remainder of this chapter is organized as follows. The next section offers an 

overview of the work in this topic area. The third section presents a brief overview of the 

two data sets used and fused in this study. The fourth section offers a detailed description 

of the integrated modeling framework and methodology. The fifth section presents an 

illustrative application of the model system to a synthetic population for the Greater 

Phoenix area in Arizona.  The sixth and final section offers concluding remarks.   

4.2. Understanding And Quantifying the Household Energy Footprint 

There is a vast body of literature devoted to analyzing and quantifying energy consumption 

patterns of various entities. However, modeling tools developed thus far do not explicitly 

account for inter-dependencies among constituent energy consumption components that 

are vital to forecasting the energy footprint in response to changes in population 

characteristics and built environment conditions, technology, transportation network 

attributes, and public policies.  

 Many studies have focused on developing activity-based residential energy 

consumption models to improve energy efficiency or reduce demand during peak periods 

(e.g., Widen et al, 2009).  Widen et al (2009) developed a daily electricity and hot-water 

demand profiles from time-use data and visualized the energy use connected to everyday 

activities. Another study assessed the implication of time-saving appliances on household 
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activity time use and energy use and found no evidence suggesting that ownership of time-

saving appliances increases residential energy use (Brencuc and Young, 2009). 

Cheshmehzangi (2020) explored the impact of COVID-19 on household energy use in 

China and concluded that due to additional time spent at home, cooling/heating and 

entertainment use is likely to increase in longer term which, in turn, impact the household 

energy use. Reyna and Chester (2017) developed an archetype-based bottom-up 

engineering model to forecast electricity and natural gas consumption. Their findings 

indicated a substantial increase in residential energy demand between 2020 and 2060.  

Other studies in the domain have focused on understanding the factors that influence 

residential energy consumption patterns. It has been reported that spatial configuration and 

land use patterns are important determinants of residential energy consumption (e.g., Wang 

et al, 2016).  Yang et al (2019) studied the impact of urbanization on China’s residential 

energy consumption and found that increased urbanization leads to an increase in both 

urban and rural residential electricity consumption. Other studies (e.g., Goldstein et al, 

2020; Belaid, 2019) have explored the influence of dwelling unit characteristics and size, 

household characteristics, and household behaviors on residential energy consumption. 

Variation in temperatures, especially due to global climate change, significantly influences 

residential energy consumption. More recently, Zhang et al (2018) applied a 

microsimulation-based approach to estimate residential energy consumption. The study 

involved the fusion and synthesis of data across energy and census data sets to estimate a 

model of residential energy consumption of the individual household. The work in this 

chapter is intended to extend that model in very significant ways by integrating 
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transportation energy consumption and activity-travel behaviors to advance towards 

obtaining a holistic household energy footprint estimation model system.  

 Likewise, there is a vast body of work dedicated to measuring and quantifying 

transport energy consumption patterns without explicitly considering the implications for 

building related energy consumption. Auld et al (2019) integrated activity-based modeling 

with traffic simulation software POLARIS to study the impacts of connected autonomous 

vehicles (level 4-automation) deployment and found an increase in fuel use by 21 and 43 

percent over a 30 to 50 percent reduction in value of travel time. Behavior, Energy, 

Autonomy, and Mobility (BEAM) modeling framework has been used to simulate plug-in 

electric vehicle (PEV) mobility, energy consumption, and spatiotemporal charging demand 

(Sheppard et al, 2017). Hensher (2008) utilized an integrated transport, land use, and 

environmental strategy simulation software to assess the influence of different policy 

measures such as carbon tax, variable user charges, fuel efficiency gains, and improvement 

in public transit on CO2. The Automotive Deployment Options Projection Tool (ADOPT) 

has been developed to estimate the impact of vehicle technology improvement on 

petroleum use and greenhouse gas emissions (Brooker et al, 2015). Garikapati et al (2017) 

developed a framework to estimate household energy footprint at the traffic analysis zone 

(TAZ) level through an interface with a standard metropolitan travel demand model. They 

noted that any travel energy footprint calculation that does not account for variation in 

vehicle fleet mix distribution across space is likely to not only be erroneous, but also fail 

to provide the policy sensitivity that may be desired for analyzing alternative fuel vehicle 

scenarios (owing to evolution of technology, changes in the marketplace, or incentives and 

disincentives instituted through public policy interventions). Other efforts aimed at 
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quantifying transport energy consumption include those by Tirumalachetty et al (2013) and 

Das and Parikh (2004). Within the same domain, the other line of research is focused on 

understanding the factors influencing the transportation energy consumption patterns. 

Brand et al (2019) assessed the impacts of lifestyle changes and transition to electric 

vehicles (EV) on transportation energy consumption. Disruptive transportation 

technologies offer a promising mobility future, but an uncertain energy consumption 

future. Wadud et al (2016) assessed the impact of autonomous vehicles on energy 

consumption and found that automation could double energy use or cut it to one-half of 

current levels under different scenarios. Similarly, Chen et al (2017) concluded that fuel 

consumption in an autonomous vehicle future would reduce by 45 percent under optimistic 

scenarios and increase by 30 percent under pessimistic scenarios. Another study assessed 

the energy implications of ride-hailing services in Austin and found that the energy use 

may increase by 41-90 percent compared to baseline, pre-ride hailing, personal travel 

conditions (Wenzel et al, 2019). Ding et al (2017) explored the impacts of the built 

environment on vehicle miles of travel (VMT) and energy consumption and found that 

vehicle energy consumption is inversely related to employment density and street 

connectivity.  

 To be sure, a few studies have attempted a more holistic and integrated approach to 

energy analysis; for example, Sekar et al (2018) utilized decomposition analysis to study 

the impact of changes in activity time use on energy consumption patterns. The authors 

find that lifestyle changes caused by technology contribute to shifts in energy use across 

sectors.  Another study assessed the impact and benefits of vehicle-grid integration (VGI) 

on California’s planned 2025 power system. The findings indicated that residential smart 



 

86 

charging complemented by time-of-use tariffs are the policies to advance California dual 

plug-in-electric vehicle adoption and renewable energy goals (Szinai et al, 2020). Another 

study utilized regression-based analysis to simulate electricity and natural gas demand in 

response to a shift in commuting patterns brought in by policy interventions (Keirstead and 

Sivakumar, 2012). Kitou and Horvath (2003) developed a systems model to telework and 

concluded that telework has the potential to reduce emissions, but these reductions will be 

counterbalanced due to employees spending additional time at home. Despite these and 

many other advances (e.g., Sheppard et al, 2017) in the development of energy modeling 

tools, an integrated model system that considers the inter-relationship between transport 

and residential energy consumption in computing a household energy footprint remains 

elusive; this effort is intended to fill this gap.  

4.3. The Transport and Residential Energy Survey Data Sets 

An integrated transport and residential energy analysis tool require information from two 

major survey data sets as explained previously. Transportation, activity participation, and 

vehicle fleet related information need to come from a travel survey data set while 

residential energy consumption information needs to come from an energy survey data set. 

For the development of the integrated model, the two data sets used in this study are the 

2017 National Household Travel Survey (NHTS) data set and the 2015 Residential Energy 

Consumption Survey (RECS) data set. To control for geographic variations, the model 

development and application efforts utilized samples exclusively from the western region 

of the country in this study.  The model system can be estimated, calibrated, and applied in 

any context using appropriate geographically local data.  
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 The National Household Travel Survey (NHTS) data set is derived from a large-

scale travel survey conducted about every 8-10 years by the US Department of 

Transportation to understand and quantify travel undertaken by people on a daily basis. 

Respondent households are asked to furnish detailed information about household and 

person level socio-demographic characteristics, vehicles owned or leased by the household, 

and trips undertaken by each member of the household on a specific travel day.  Thus, the 

NHTS is a rich source of information about vehicle ownership and fleet composition for 

households, which is precisely the information needed to compute the transport energy 

consumption of households.   

The integrated model system includes a household vehicle fleet composition and 

utilization (VFCU) model so that energy estimates are sensitive to vehicle fleet mix.  In 

this study, four vehicle types were considered: car, van, SUV, and truck. These four vehicle 

types were further subdivided according to age based on whether the vehicle is less than or 

equal to eight years old. Thus, there are a total of eight vehicle type categories; in addition, 

the motorcycle is added as a ninth vehicle category. A multiple discrete continuous extreme 

value (MDCEV) model of VFCU is developed in this effort to determine the mix of vehicle 

types that a household may own, together with the amount of mileage that each vehicle 

will be driven by the household on an annual basis (Bhat, 2008). Information about vehicle 

type and mileage is available in the NHTS, thus making it possible to estimate such a 

model. In addition, the NHTS provides detailed activity-travel information for each 

member of the household for a specific travel survey day. The activity-travel information 

is used to derive the total time that an individual spends outside home at various activity 

locations, time spent traveling, and time spent in home (although in-home activities are not 
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explicitly recorded). By aggregating information about travel and activities across 

individuals within a household, it is possible to derive the total time spent outside home, 

inside home, and traveling for a household.  

 The Residential Energy Consumption Survey (RECS) data set is derived from a 

large-scale energy consumption survey that is conducted about every six years. The most 

recent edition of the RECS data set is of 2015 vintage and used in this study. Although the 

sample size is reasonably large (by survey design standards), the sample is rather small 

when compared with the sample size for the NHTS. The sample size utilized in this study 

comprises 1,555 households (with complete information) distributed across the western 

region of the country. Similar to the NHTS, the RECS data set includes information about 

the respondent household, together with detailed information about residential energy 

consumption – that can be used to estimate residential electricity and natural gas 

consumption models.  

 To account for potential inter-relationships between transport and residential 

energy consumption, the proposed integrated modeling framework involves imputing 

vehicle fleet composition and utilization (VFCU) information and activity-travel behavior 

information derived from the NHTS to the household records in RECS. The enhanced 

RECS data set can then be used to estimate residential energy consumption models that are 

sensitive to activity-time allocation patterns, VFCU, and transport energy consumption, as 

well as household characteristics, location attributes, climatic conditions, and housing unit 

characteristics. 

Table 10 presents a summary of the two household samples. A slightly larger 

percent of households in the RECS data rent their home compared to the sample in the 
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NHTS data. The household income categories do not line up exactly between the two 

surveys; in the NHTS, nearly 30 percent of households make less than $35,000, while in 

the RECS, nearly 40 percent of households make less than $40,000. Over 85 percent of 

households in both data sets reside in urban areas. The distribution of the sample from a 

geographic perspective suggests there is significant differences in the spatial distribution 

of the samples across the western region, but the differences do not adversely affect the 

model development efforts described in this paper. Similarly, the two samples exhibit 

noticeable differences in distributions of household size, number of adults and children, 

and dwelling unit type. While these differences are noteworthy and merit some additional 

investigation, they do not adversely affect data fusion/imputation processes here because 

models are specified to account for such differences.  In terms of other characteristics, 

nearly 50 percent of the households reside in hot-dry/mixed-dry conditions and about 36 

percent of the households have three bedrooms. The table also furnishes descriptive 

statistics for square feet of residences.  

4.4. Model Development and Estimation Results 

This section of the chapter provides a summary of the model development and estimation 

process.  The effort undertaken in this study can be broken down into two distinct phases. 

First, there is the model development phase in which information is fused between two 

data sets and models are estimated so that they can be applied to any region’s population 

to quantify the household energy footprint.  Thus, there is the data fusion and model 

estimation phase (Figure 3, Steps 1-4).  Second, there is the model application phase 

(Figure 3, Step 5). In this phase, the efficacy of the model is demonstrated by applying the 

model system developed in the first phase to a real-world case study.   
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Table 10. Description of Household Characteristics (Western Region) 

2017 National Household Travel Survey 
(NHTS) (N = 26,743 households) 

2015 Residential Energy Consumption Survey 
(RECS) (N = 1,555 households) 

Variable                                        Value (%) Variable                                               Value (%) 
Home ownership Home ownership` 
    Own 72.4    Own 66.2 
    Rent 27.6    Rent 33.8 
Annual Household income  Annual Household income  
    Low (less than $35,000) 26.4    Low (less than $40,000) 35.9 
    Medium ($35,000 to $99,999) 41.9    Medium ($40,000 to $99,999) 37.0 
    High ($100,000 or more) 31.7    High ($100,000 or more) 27.1 
Household in urban/rural area  Household in urban/rural area  
    Urban 86.6     Urban 86.9 
    Rural 13.4     Rural 13.1 
Region  Region  
    Mountain West States 15.7     Mountain West States 30.2 
    Pacific States 84.3     Pacific West States 69.8 
Household Size   Household Size   
    One 31.8     One 20.1 
    Two 42.6     Two 37.2 
    Three or more 25.6     Three or more 42.7 
No. of Adults in household (Age ≥ 18 y.o.) No. of Adults in household (Age ≥ 18 y.o.) 
    One 34.4     One 24.1 
    Two 54.6     Two 55.7 
    Three or more 11.0     Three or more 20.2 
No. of children in household (Age ≤ 17 y.o.) No. of children in household (Age ≤ 17 y.o.) 
    Zero 84.4     Zero 65.6 
    One 8.2     One 14.2 
    Two or more 7.4     Two or more 20.2 
Housing unit type*  Housing unit type  
    Detached 70.5     Detached 68.7 
    Attached 26.2     Attached 9.1 
    Apartment 3.3     Apartment 22.2 
  Climatic Condition  
     Very Cold/Cold 22.8 
     Hot-Dry/Mixed-Dry 48.2 
     Hot-Humid/Mixed-humid 29.0 
  Number of Bedrooms  
`      ≤ One 12.0 
      Two 25.9 
      Three or more  36.1 
      Four or more 26.0 
  Total Square 

Feet of Home 
(in square 
meters) 

Min Max Mean 
  228 

(21.18) 
7986 

(741.92) 
1862.6 

(173.04) 

*Housing unit type information is not available in 2017 NHTS and was imputed based on 2009 NHTS data. 
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Figure 3. Model Development and Application Framework 

An integrated model of transport and residential energy consumption should 

include components capable of estimating and quantifying:  

• Transport energy consumption due to vehicle fleet mix and vehicle miles of travel 

• Electricity consumption due to household operations 

• Natural gas consumption due to household operations 

The first step of the system development process involved estimating a vehicle fleet 

composition and utilization (VFCU) model system on the NHTS data set. The VFCU 

model system estimated and implemented here is similar to that developed previously (You 

et al, 2014). The model system includes a number of components:   

a) A household mileage budget prediction model: The MDCEV model allocates a 

continuous household mileage to different vehicle alternatives, thus creating a 

vehicle fleet composition and mileage profile for each household. To accomplish 

this, a budget prediction model is needed. The mileage reported in the NHTS data 

is used to estimate a log-linear regression model of total household mileage.  
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b) A MDCEV model of vehicle fleet composition: The MDCEV model explicitly 

recognizes that households may choose to own and consume multiple vehicles of 

different types. A total of nine vehicle-type alternatives are considered in this study 

and the MDCEV model is estimated for this choice set. The model is capable of 

accounting for diminishing marginal utility (satiation effects) and zero 

consumption (corner solutions) wherein some vehicle alternatives may not be 

chosen by a household at all. 

c) Ordered Probit models of vehicle counts by type: The MDCEV model is able to 

predict the types of vehicles that a household owns (consumes), but it does not 

explicitly provide the number of vehicles within each type that a household may 

own. For example, a household may own two cars that are less than eight years old. 

While the MDCEV model is able to predict that the household owns cars less than 

eight years old, it does not explicitly provide a count of the number of cars within 

that vehicle class. The ordered probit models of vehicle counts by type help 

establish the number of vehicles that are owned within each class of vehicles that 

the MDCEV predicts that a household owns.   

This entire VFCU model stream was estimated on the NHTS sample for this study and 

the model was subjected to extensive testing and validation on a 20 percent holdout sample. 

A few additional steps explained in You et al (2014) were implemented to ensure that the 

model predictions matched real world vehicle fleet composition and utilization 

distributions. The model validation result on a 20 percent holdout sample is shown in 

Figure 4. 
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Figure 4. Average Annual Household Mileage Distribution 

 The second step of the process involved estimating a MDCEV model of activity 

time allocation (ATA). The activity time allocation model allocates a budget of 1440 

minutes to various activity categories including out-of-home mandatory activity time (e.g., 

work, school), out-of-home non-mandatory activity time (e.g., social, shopping), in-home 

time, and travel time. Further, separate MDCEV time allocation models were estimated for 

weekdays and weekend days to account for the fact that individuals perform different 

activities by day of week with consequent implications on residential energy consumption 

patterns. The activity-travel diary information in the NHTS is used to compute these time 

durations for each household in the sample. The household time budget is assumed to equal 

1440 × number of adults in the household × number of weekdays/weekend-days in a year.  

This budget is then allocated through a multiple discrete continuous choice process to the 

four broad activity categories. Because the budget is predetermined in the activity time 

allocation (ATA) context, there is no need for a model component dedicated to estimating 

the budget. The MDCEV-predicted time allocation patterns are compared against the 
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actual patterns in a 20 percent holdout sample to calibrate and validate the model. The 

model validation results on a 20 percent holdout sample are shown in Figure 5 and Figure 

6. The model was found to perform very well in replicating observed distributions of 

activity time allocation and was hence deemed appropriate for imputing activity time 

allocation patterns to households in the RECS data.   

 

Figure 5. Average Activity Time- Weekday 

 

Figure 6. Average Activity Time – Weekend  
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 The third step involved the application of the MDCEV model of vehicle fleet 

composition and utilization (estimated in Step 1) to the RECS data set to predict, impute, 

and append vehicle ownership and mileage information to the household records in the 

RECS data set. Similarly, the MDCEV model of activity time allocation was applied to the 

household records in the RECS data set to estimate and append the amount of time that 

each household devoted to various activity categories. It should be noted that all records in 

the RECS data set are household level records; hence the time allocation pattern predicted 

and appended corresponds to activity durations at the household level (for example, the 

time spent traveling corresponds to the total time spent traveling accumulated over all adult 

household members).   

 At the end of the third step, each RECS household record has vehicle fleet 

composition information and corresponding annual mileage values. These vehicle mileage 

values were converted into transportation energy consumption estimates using the fuel 

economy data published by the US Environmental Protection Agency (2018). Using energy 

conversion factors, the total BTU of transport energy consumption was computed for each 

household and appended to the records in the RECS data set. It should be noted that vehicle 

body type and age are explicitly considered in the computation of the transportation energy 

footprint.      

 The fully enhanced RECS data set now contains information about household 

characteristics, climatic conditions, and the housing unit (original variables contained in 

RECS), together with vehicle fleet composition and utilization information, transport 

energy consumption information, and household activity time allocation information. In 

the fourth and final step, this enhanced data set was used to estimate a seemingly unrelated 
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regression (SUR) equations model of residential electricity and natural gas consumption 

(these variables are native to the RECS data set). The SUR model recognizes the presence 

of error correlation between the electricity and natural gas consumption utility expenditure 

which is embedded in the model system and incorporates activity time allocation variables 

as explanatory factors, thus capturing the potential inter-dependency between residential 

energy consumption and household time allocation to activities and travel (please refer to 

Zellner, 1962 for more details on the SUR model). Estimation results for the SUR model 

are presented in Table 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

97 

Table 11. Seemingly Unrelated Regression (SUR) Equations Model Estimation Results  

Annual Electricity Consumption (in BTU) 
Regression Equation 

Annual Natural Gas Consumption (in BTU) 
Regression Equation 

Explanatory Variable Coef  
(t-stat) Explanatory Variable  Coef 

 (t-stat) 

Constant 36829  
(20.14) Constant -459.1  

(-0.17) 

Home Ownership = Owned  2645.6 
 (2.20) Low Income Hhld (< $40,000) -2772.7  

(-1.83) 

High Income Hhld (≥ $100,000)  1843.8 
(1.70) High Income Hhld (≥ $100,000) 2923.1 

(1.73) 

Number of Adults ≥ 3 (age ≥ 18) 3049.8  
(2.53) Number of Adults ≥ 3 (age ≥ 18) 2526.9 

(1.47) 

Housing unit type = Apartment -10938.8  
(-7.78) Housing unit type = Apartment -11446.2  

(-6.36) 

Location = Urban -10933.2 
 (-7.78) Location = Urban 17141.4 

(8.67) 

Region = Mountain 5971.6  
(5.31) Region = Mountain 12571.1 

(7.92) 

Climate = Mix-Humid 4404.9  
(3.80) Climate = Mix-Humid -5056.4  

(-3.12) 

Number of Bedrooms = 1 -3500.1  
(-2.01) Number of Bedrooms ≥ 4 9028.9 

(5.06) 
Annual Out-of-Home Non-
Mandatory Activity Duration (in 
min) × HHSize = 1 

-0.055  
(-2.85) 

Annual Out-of-Home Non-
Mandatory Activity Duration (in 
min) × HHSize ≥ 3 

0.010  
(2.40) 

Annual Out-of-Home Non-
Mandatory Activity Duration (in 
min) × HHSize ≥ 3 

0.0094  
(3.06) 

Travel Time Duration (in min) × 
HHSize ≥ 3 

0.013  
(2.40) 

Travel Time Duration (in min) × 
HH Size =1 

-0.066  
(-2.96) Total square feet  5.949  

(8.24) 
Number of Observations: 1,555 households 
R-squared: 0.206 

Number of Observations: 1,555 households 
R-squared: 0.293 

 
 Model estimation results are behaviorally intuitive and consistent with 

expectations, potentially suggesting that the data imputed to RECS is consistent with 

patterns of energy consumption and household activity time allocation that are seen in the 

real world. In the electricity consumption regression equation, it is found that out-of-home 

non-mandatory activity time (e.g., time spent outside home shopping or socializing) 

negatively affects electricity consumption for one-person households, but positively for 

three or more person households. When the individual in a single-person household spends 
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time outside home, there is presumably nobody at home – thus reducing energy 

consumption. Similar, finding emerge for out-of-home travel time for single person 

household.  In a large household with three or more persons, it is possible that some 

individuals are at home (consuming energy) even when others in the household are 

pursuing activities outside home; indicating that multi-person households’ activities might 

not be coordinated and synchronized in time and space (Schwanen et al, 2007; Gliebe and 

Koppelman, 2002), contributing to a larger energy consumption footprint.  High-income 

households consume more electricity than other households (Goldstein et al, 2020), 

presumably because they can afford greater levels of consumption of goods and services 

(Sovacool, 2011; Loveday et al, 2008). Households with more adults consume more 

electricity (McLouglin et al, 2012). Homes in urban areas consume less electricity as do 

households in apartments. These tend to be smaller homes in urban locations and hence 

consume less energy (Glaeser and Kahn, 2010). Similarly, houses with one bedroom 

consume less electricity, a finding similar to that reported by Belaid et al (2019). Houses 

in mix-humid conditions and mountain regions tend to consume more electricity, 

presumably due to the need to run the air conditioning.    

 The equation for natural gas consumption reveals that Out-of-home time allocation 

for non-mandatory activities has a positive impact on natural gas consumption for larger 

households, similar to the finding for electricity consumption. The same pattern is seen for 

travel time as well.  As household income increases, so does natural gas consumption, 

presumably due to higher levels of consumption of goods and services in high-income 

households (Davis and Muehlegger, 2010).  Natural gas consumption also increases with 

number of adults in the household. Interestingly, it is found that homes in urban areas 
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consume more natural gas as do homes in mountain regions. This may be reflective of the 

energy mix in homes located in these spatial contexts. As the number of bedrooms 

increases, energy consumption increases. Households in mix-humid condition tend to 

consume less natural gas, presumably because natural gas is often used for heating; and in 

mix-humid conditions, households may need more cooling that uses electricity rather than 

natural gas.   

 At the end of the four steps in the model development and estimation phase, an 

integrated model of transport and residential energy consumption that can be applied to a 

population of agents (households) is obtained (Figure 3, Step 5). The suite of models that 

comprise the integrated transport and residential energy analysis tool constitute the 

following:  

a) MDCEV model of household vehicle fleet composition and utilization (mileage) 

b) MDCEV model of household daily activity time allocation  

c) Transport energy computation model utilizing energy intensity tables that provide 

conversion factors (EPA, 2018) to translate miles of household travel by various 

vehicle types to equivalent energy consumption 

d) Residential energy consumption model (SUR model) of electricity and natural gas 

consumption 

It should be noted that both NHTS and RECS are national data sets, and hence caution 

should be exercised when applying models estimated on large regional samples to 

individual jurisdictions (e.g., cities or counties). Unfortunately, the RECS data set is not 

quite large enough to support very localized model estimation efforts. Hence, in this study, 

the entire sample from the western region was used for model development purposes. 
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Given this geographic scope of the model estimation data set, it may be reasonable to apply 

the model to jurisdictions that fall squarely within the region.  For illustrative purposes, the 

model was applied to the Greater Phoenix area in Arizona; this case study is described next.  

4.5. Illustrative Case Study  

The case study involved applying the model system to a synthetic population generated for 

Maricopa County (Greater Phoenix area) in Arizona and computing and mapping the 

energy footprint per household across the census tracts in the region. Synthetic population 

generation and energy computations may be done at any geographic resolution; the census 

tract is used here for illustrative purposes and convenience.  

 The case study region of Maricopa County, AZ, includes 916 census tracts and 

encompasses a population of 4,155,501 persons residing in 1,489,533 households in 2017. 

A synthetic population was generated for the region using a software package called 

PopGen (Konduri et al, 2016). PopGen creates a synthetic population for a region by 

weighting and expanding a sample data set such that the weighted sample is representative 

of the true population with respect to marginal distributions on a number of control 

variables of interest such as household size, household income, number of workers, number 

of children, person age, person gender, and person employment status. The marginal 

control distributions representing true population characteristics are typically obtained 

from the census or regional agency databases. The American Community Survey (ACS) 

Public Use Microdata Sample (PUMS) data serves as the seed sample which will be 

weighted and expanded to a full synthetic population that matches the marginal control 

distributions. For each census tract, the sample is weighted to match marginal control 

distributions on variables of interest, and then households are drawn according to weight-
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based probabilities to create a synthetic population that matches true population numbers. 

PopGen embeds an iterative proportional fitting (IPF) algorithm to obtain population-level 

joint distributions of control variables of interest at the census tract level, and an iterative 

proportional updating (IPU) algorithm that computes weights for sample household such 

that the weighted sample is representative of the control totals estimated through the IPF 

steps. Once the weights are computed, households are drawn probabilistically to generate 

a synthetic population on a census tract by tract basis. More details about PopGen 

algorithms can be found in Konduri et al (2016). Synthetic populations for all census tracts 

are combined to form the county-wide synthetic population of households and persons. As 

the sample records drawn into the synthetic population are derived from PUMS, the records 

are rich with information necessary to apply a model of the nature described in this paper.   

 The entire suite of models (Figure 3, Step 1-4) described in the previous section is 

applied to the synthetic population. First, the MDCEV model of vehicle fleet composition 

and utilization is applied; this provides the vehicle fleet mix and mileage for each 

household. Second, the MDCEV model of activity time allocation is applied; this provides 

the time spent by each household (as a whole) in various activity categories including in-

home, out-of-home mandatory activities, out-of-home non-mandatory activities, and travel 

time. Note that the application of the MDCEV models requires that they be exercised in 

forecasting mode; the procedures described in Pinjari and Bhat (2021) are used to 

accomplish this. By the end of this step, each synthetic population household is appended 

with vehicle fleet composition and utilization as well as activity-time allocation 

information. Then, the energy intensity conversion factors are used to compute the 

transport energy consumption for each household. Finally, the SUR model of residential 
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energy consumption is applied to compute residential electricity and natural gas 

consumption as a function of various factors, while accounting for the relationship between 

residential energy consumption and activity time allocation.   

After the residential and transport energy footprints are computed for each 

household in the synthetic population, summaries are derived, and aggregate measures of 

energy consumption are calculated at the census tract level. The spatial distribution of 

energy consumption per household for census tracts in the Maricopa County, AZ, region 

is depicted. The first picture, Figure 7, depicts transport energy consumption, the second 

graphic, Figure 8, depicts residential energy consumption (sum of electricity and natural 

gas consumption), and the third map, Figure 9, displays total energy footprint obtained by 

adding up the residential and transport energy consumptions. The thematic maps reveal 

that total energy consumption is higher in more affluent, lower density outlying cities and 

towns.  In general, a clear pattern can be seen across all three figures. Census tracts in the 

middle (urban core areas) are greener, while census tracts in outlying suburban areas and 

towns are more red (signifying a higher level of energy consumption per household). This 

pattern may emerge because of a number of reasons; households in outlying suburban areas 

are likely to be more affluent and residing in larger homes, have larger households, have 

higher vehicle ownership, and need to drive to reach destinations.  Census tracts can be 

categorized into one of four groups, depending on where they fall – on average – compared 

to the overall region wide average energy footprint per household:  

• HH: Both residential and transportation energy consumption per household is 

above the regional averages 
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• HL: Higher residential energy consumption and Lower transport energy 

consumption 

• LH: Lower residential energy consumption and Higher transport energy 

consumption 

• LL: Lower residential energy consumption and Lower transport energy 

consumption 

 
Figure 7. Visualization Map Depicting Transportation Energy Consumption in Greater 
Phoenix Metropolitan Area 
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Figure 8. Visualization Map Depicting Residential Energy Consumption in Greater 
Phoenix Metropolitan Area 
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Figure 9. Visualization Map Depicting Total (Transportation and Residential) Household 
Energy Consumption in Greater Phoenix Metropolitan Area 
 

The average annual energy footprints were computed to be 59,405,158 BTU of 

residential energy consumption and 119,604,797 BTU of transport energy consumption 

(per household). These numbers are generally consistent with expectations and match real-

world energy consumption estimates (EIA, 2017). 

Figure 10 shows a comparison between the HH and LL household segments.  It can 

be seen that there are very clear differences between households that are high consumers 

of residential and transport energy and households that are low consumers of energy. 

Because the distributions of energy consumption are skewed, the size of each segment 

varies. While 17 percent of households fall into the HH segment, 40 percent of households 
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fall into the LL segment.  This is consistent with expectations as the average is likely to be 

impacted by outliers in the energy consumption spectrum.  The comparison between the 

HH and LL segments shows a number of patterns, suggesting that the integrated model 

developed in this effort offers intuitively reasonable estimates of household energy 

footprint.     

 Households that are energy guzzlers have substantially higher incomes levels than 

households in the LL category. In fact, of the households in the HH category, nearly one-

half belong to the high-income group. While 88 percent of households in the HH category 

own their homes, only 46 percent of households in the LL category do so. Among 

households in the HH category, 95 percent reside in detached housing units; the 

corresponding percent for households in the LL category is just 45 percent. Households in 

the LL category show substantially smaller household sizes, with about 40 percent of the 

households in this segment having only one person. Overall, it can be seen that household 

structure, composition, and income significantly impact household energy consumption 

patterns.   
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Figure 10. Comparison of Household Profiles Based on their Energy Consumption Bin 
 

 In the interest of brevity, the graph comparing HL and LH households is not shown 

in this chapter. However, some interesting differences are seen between these two groups 

of households. The HL segment (high residential and low transport energy consumption) 

comprises 26 percent of the population, while the LH segment comprises 17 percent of the 

households in the region. In general, households that have higher transport energy 

consumption tend to be larger and more affluent, which is to be expected given their higher 

activity levels. 

To further illustrate the efficacy of the modeling tool presented in this paper, two 

census tracts that have different energy consumption profiles were compared. The two 

census tracts that were compared are highlighted in the third panel of Figure 9. One census 

tract has a low per-household energy consumption (L) while the other has a large per-

household energy consumption (H). What makes households in one census tract to be 

higher energy consuming entities than households in another census tract?  Households in 

the respective census tract were compared with respect to their attributes and the results 
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are shown in Figure 11. Both census tracts have about an equal number of households. The 

census tract with high-energy consumption (H) has 1,476 households while the census tract 

with low total energy consumption (L) has 1,033 households.  In other words, the number 

of households in the census tracts is not necessarily affecting the energy consumption per 

household. Rather, it is the attributes of the households that contribute to the differences. 

 

Figure 11. Comparison of Two Zones with Different Energy Consumption Profiles 

 As expected, a larger proportion of households in the high-energy consumption 

zone are owned (than in the lower energy consumption zone). The disparity in income 

distribution is extremely telling. While 64 percent of households in the low-energy 

consumption zone are low income, only 2 percent of households in the high-energy 

consumption zone fall into this income category. Similarly, high-energy consumption zone 

has a higher percent of detached single-family dwelling units than the low-energy 

consumption zone. The low-energy consumption zone has 26 percent single-person 

households while the high-energy consumption zone has only nine percent in this 

household size category. 
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It is clear that socio-economic and demographic characteristics as well as housing 

unit attributes significantly impact energy consumption patterns of households.  In 

addition, built environment attributes, mix and density of land uses, and availability of 

multiple modes of transportation are likely to impact energy consumption footprints. The 

spatial patterns seen in Figure 9 suggest that density and access may be playing an 

important role in shaping energy consumption footprints as well.  It would be valuable to 

determine the relative contributions of socio-economic/demographic factors on the one 

hand and built environment and multimodal access factors on the other hand, to the 

household energy footprint.  By doing so, it would be possible to devise land use, housing, 

and transportation policy interventions that reduce the energy footprint and advance 

sustainable development patterns.  

4.6. Discussion And Conclusions 

The energy constituents are usually modeled separately and the factors influencing those 

consumption patterns are understood within the realm of respective domains. Human 

activities play a central piece in linking the consumption patterns across the energy sectors. 

A holistic integrated framework that accounts for the interrelationship among different 

energy consumption sectors is needed to devise effective policy measures in a rapidly 

evolving marketplace. This chapter presents an integrated transport and residential energy 

analysis tool that is capable of quantifying the transport energy consumption and residential 

energy consumption of an individual household. The motivation to build such a tool stem 

from the possible inter-relationships that may exist between these two energy consumption 

footprints. A household that travels more and spends more time outside the home is likely 

to have a high transport energy footprint but may have a lower residential energy footprint 
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and vice versa. Only operational energy consumption is considered within the scope of the 

tool presented in this paper; energy consumed during travel is transport energy 

consumption and electricity and natural gas consumed at home constitute the residential 

energy consumption footprint.  

 In order to facilitate an integrated approach to residential and transport energy 

consumption analysis, detailed activity-travel and vehicle fleet composition and utilization 

information is modeled using the National Household Travel Survey (NHTS) data set and 

then applied to the Residential Energy Consumption Survey (RECS) data set to impute 

transportation related variables in the RECS data set. The enhanced RECS data set is then 

used to estimate regression equations of electricity and natural gas consumption that 

incorporate transport and activity time allocation related variables as explanatory factors. 

In general, it is found that household activity-time allocation patterns affect residential 

energy consumption, albeit differently for households of different sizes.  While single-

person households depict a clear trade-off between residential and transport energy 

consumption, larger households depict a more complementary (mutually reinforcing) 

relationship – suggesting that integrated models of household and transport energy 

consumption need to recognize heterogeneity in the nature of the relationships between 

them across the population of households in a region.  In general, households that travel 

more are likely to have active lifestyles that also contribute to higher levels of residential 

energy consumption.   

 The integrated model system is applied to a synthetic population for the Greater 

Phoenix area in Arizona to demonstrate the efficacy of the model. The entire model stream 

is applied to the synthetic population to estimate transportation and residential energy 
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consumption footprints for all households in the region. These computations facilitated the 

identification and comparison of different energy consumption market segments, and the 

findings are very intuitive with larger households, higher income households, households 

in detached single-family units, and households owning their home exhibiting higher levels 

of energy consumption. Households in outlying suburban areas depicted higher energy 

footprints, suggesting that the built environment may be playing some role in shaping 

energy consumption patterns. The tool presented in this chapter can be used to analyze the 

energy footprint implications of alternative urban designs and modal investments.   

Admittedly, within the scope of this study, the outside home energy comprises of 

travel energy and not the energy that might be consumed while pursuing an activity at a 

location. This does limit the study to present a complete holistic picture, but the integrated 

modeling framework proposed in this paper can be extended to incorporate energy 

consumption beyond what is considered in this chapter. This will advance the field towards 

obtaining a holistic picture of household energy footprint which can then be used to analyze 

different policy scenarios. For example, is it beneficial to incentivize individuals to spend 

more time in locations where the energy supply is renewables? Or incentivizing individuals 

to spend more time in shared space? Further, independent residential and transportation 

energy consumption model might not be able to analyze such alternative policy scenarios 

highlighting the usefulness of integrated modeling frameworks.  
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5. MODELING IMPACTS OF ELECTRIC VEHICLES (EV) ADOPTION AND 

UTILIZATION ON HOUSEHOLD ENERGY CONSUMPTION 

5.1. Introduction  

Many countries around the world are at the crossroads when it comes to transportation, air 

quality, and sustainability. In the United States, transportation sector accounts for 40 

percent of total emissions, with light-duty vehicles being the major contributor (US 

Environment Protection Agency, 2019). This has pushed for regulations and programs that 

encourages the transitions from internal combustion vehicle engine to battery electric 

vehicles and plug-in hybrid electric vehicles.  The current estimates indicate that about 2 

million battery electric vehicles have been sold in the U.S. since 2010 (Argonne, 2021) and 

the forecast suggest that EVs will account for about 60 percent of new car sales in US by 

2040 (Electric Vehicle Outlook, 2017). The International Council on Clean Transportation 

(ICCT) notes that battery electric vehicles, for example, have the lowest lifecycle GHG 

emissions, both today and into the foreseeable future (Muncrief, 2021), which will advance 

the goals to decarbonize transport sector.  

The profession has heavily gravitated towards exploring the factors that impact 

households and vehicle-level vehicle miles travelled (VMT), mainly due to the contribution 

of VMT to traffic congestion, emission, and energy /fuel consumption (Roy et al, 2020). 

Transport energy consumption is dependent on the mix of vehicles that a household owns 

and uses, and the extent to which different vehicles in the households are driven. There are 

a number of studies that are aimed at understanding factors that influence adoption of 

electric vehicles (EVs) (e.g., Dua et al, 2021; Shalender and Sharma, 2020; Langbroek, 

2016), but there is limited work focusing on ownership and use of EVs among households 

mailto:rachel@theicct.org
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that actually own one or more EVs. Given the elasticity associated with fuel cost and 

motivation to own EVs, one would expect that consumers will maximize the utilization of 

electric vehicles. However, some studies have shown that EVs are utilized less than 

gasoline vehicles, while some indicated otherwise.  For instance, Burlig et al (2021) 

utilized the Pacific Gas and Electric Company residential consumer data and electric 

vehicle registration data from California Department of Motor Vehicles to quantify EV 

usage patterns. The findings indicated that electric vehicles travel 5,300 miles per year, 

under half of the US fleet average. Similarly, Davis (2019) concluded that electric vehicles 

are driven less than gasoline vehicles. On the contrary, recently, Chakraborty et al (2021) 

utilized the unique repeat survey of Plug-in electric vehicles owners in California and found 

that PEVs are driven the same amount as conventional vehicles are, not less as some studies 

have shown. Most household travel surveys have few, if any, records of households that 

own EVs, thus rendering it difficult to analyze the usage of EVs relative to gasoline 

vehicles.  Using data from the 2017 National Household Travel Survey, this study attempts 

to fill this critical gap by presenting a comprehensive comparison of the utilization patterns 

of electric vehicles relative to gasoline vehicles. 

If electric vehicles were to be utilized more than gasoline vehicles, that may negate 

some of the benefits associated with transition to an EV future. It is expected that EVs will 

yield lower energy consumption per mile which will, in turn, decrease carbon emissions 

from the transport sector. However, wide scale adoption and utilization of electric vehicles 

could significantly increase total electricity demand (Moon et al, 2018) as about 80 percent 

of the electric vehicles are currently charged at home (National Resources Defense 

Council, 2021). In other words, increased EV ownership and utilization might offset or 
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tradeoff the benefits associated with transitioning to an EV future. To account for these 

inter-relationships and tradeoffs, a data fusion across two datasets, namely, 2017 National 

Household Travel Survey and 2015 Residential Energy Consumption Survey, is performed 

to understand the implications of electric vehicle ownership and utilization on household 

energy consumption.  This study utilizes the integrated transport and residential energy 

consumption modeling framework, developed in Chapter four, to understand the 

implications of electric vehicles on household energy consumption. The resulting 

integrated transport and residential energy consumption model system will shed light on 

the overall household energy footprint implications of shifting vehicle/fuel type choices.    

The remainder of this chapter is organized as follows.  The next section provides a 

detailed description of the survey and data set used in this study. The third section presents 

descriptive results exploring the differences between electric and gasoline vehicles and its 

implication on residential energy consumption. A discussion of the findings and 

conclusions is furnished in the fourth and final section.  

5.2. Dataset Description 

The data for this study is derived from the 2017 National Household Survey which is a 

large-scale travel survey conducted about every 8-10 years by the US Department of 

Transportation to understand and quantify travel undertaken by people on a daily basis. 

Respondent households are asked to furnish detailed information about household and 

person level socio-demographic characteristics, vehicles owned or leased by the household 

by fuel type, annual household mileages, and trips undertaken by each member of the 

household on a specific travel day.  Thus, the NHTS is a rich source of information about 

vehicle ownership and fleet composition for households, which is precisely the information 
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needed to present a comprehensive comparison of the utilization patterns of electric 

vehicles relative to gasoline vehicles. More information about the 2017 NHTS dataset can 

be found in Chapter four.  To carry out the study of this nature, the following steps are used 

to create the dataset:  

Step 1: A subset of the 2017 NHTS dataset is created by extracting households 

with one or more electric vehicles. After extensive cleaning, 556 households with at-least 

one electric vehicle are identified and are found to be located across 26 states as shown in 

Figure 12.  

Step 2: In step two, households with only gasoline vehicles were randomly drawn 

from 26 states. During the random draws, it was ensured that the same percentage of 

households are drawn within each state that matches the percentage of households with at-

least one electric vehicles. This resulted in randomly drawing a total of 41,719 households 

with ONLY gasoline vehicles. Figure 12 presents the distribution between households with 

at-least one electric vehicles and households with only gasoline vehicles after controlling 

for geography at the state level.  
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Figure 12. Distribution of Households with at-least one EV and Households with ONLY 
Gasoline Vehicles by State 

Step 3: The household characteristics, vehicle characteristics, trip characteristics, 

and tour characteristics are compared to understand the differences in adoption and 

utilization patterns of electric vehicles relative to gasoline vehicles. At the household level, 

household income and household vehicle ownership are compared. Disaggregate level 

comparisons include vehicle age, vehicle type, length of vehicle ownership, and annual 

household mileages, which are all compared at the vehicle level. Trip and tour 

characteristics comprise of comparison for trip length and number of trips in a tour.  
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Figure 13. Subset of 2017 National Household Travel Survey (NHTS) 

A comprehensive comparison among different characteristics will clearly highlight 

the extent to which electric vehicle are utilized differently than gasoline vehicles are. The 

findings will have implications on travel pattern, charging infrastructure investments, 

policy decisions and household energy footprint.  

If electric vehicles are driven as much as gasoline vehicles are, that may 

counterbalance the some of the benefits associate with transit to an EV future. About 80 

percent of the electric vehicles are currently charged at home (National Resources Defense 

Council, 2021), indicating that increase utilization of electric vehicles might results in 

increase electricity consumption. To account for the potential inter-relationships and 

tradeoffs between transport and residential energy consumption, the developed integrated 

transport and residential energy modeling framework is utilized from chapter four. The 

integrated modeling framework involves imputing vehicle fleet composition and utilization 

(VFCU) information derived from the 2017 National Household Travel Survey (NHTS) to 

the household records in 2015 Residential Consumption Survey (RECS). The enhanced 
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RECS data set can then be used to understand the implications of shifting vehicle/fuel type 

choices on household energy consumption. The readers are referred to Chapter four for 

more details on model development and estimation framework which is used to impute 

vehicle fleet composition and utilization (VFCU) information in RECS. Once we have the 

vehicle fleet composition and utilization information in RECS, following steps are used to 

create the dataset: 

Step a: From Chapter four, household vehicle fleet composition and utilization 

(VFCU) model sensitive to vehicle fleet mix is utilized to impute annual household 

mileages and household vehicle ownership patterns in 2015 Residential Energy 

Consumption Survey Dataset.  

Step b: Knowing vehicle ownership patterns for households in RECS, a vehicle file 

is developed. The total imputed vehicles are 2,972 vehicles for 1,555 households in RECS. 

The household mileage information is attached corresponding to each vehicle.  

Step c:  Percentages of vehicles in the total fleet are randomly assigned to be 

electric or gasoline based on the following criteria:  

Base Scenario: 0 percent EV fleet (all gasoline vehicle households) 

Scenario 1: 20 percent of the vehicle fleet is EV 

Scenario 2: 40 percent of the vehicle fleet is EV 

Scenario 3: 60 percent of the vehicle fleet is EV 

Scenario 4: 80 percent of the vehicle fleet is EV 

Scenario 5: 100 percent of the vehicle fleet is EV (all EV households) 

Step d: In this step, households’ mileages are allocated between the vehicles. For single 

vehicle fuel-type households, the mileage allocation is straightforward as the vehicle can 
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either be electric or gasoline. However, a household can own multiple vehicles with mixed 

vehicle fuel-type and the mileage allocation needs to account for heterogeneity in 

household vehicle fuel-type ownership. The following criteria is used to distribute the 

mileages:  

(i) If all the vehicles in the households are gasoline, miles per gallon (MPG), 

corresponding to vehicle type by vehicle age, is used to convert mileages to gallon 

and the energy consumption is computed in British Thermal Unit (BTU).  

(ii) If all the vehicles in the household are electric, miles per gallon equivalent (MPGe) 

is used to convert mileages to gallon equivalent. The average MPGe is computed 

based on the following electric car models (Energy Sage, 2021): 

Electric Car Model           Efficiency (MPGe) 

     Nissan Leaf    111 MPGe 

        Chevrolet Bolt           118 MPGe 

        Tesla Model S       109 MPGe 

The gallon equivalent is used to compute the energy consumption in British 

Thermal Units.  

(iii) A household can own multiple vehicles of mixed vehicle fuel-type. In those 

scenarios, the mileages would have to be distributed between a mix of vehicle fuel 

type. To do that, we utilized the 2017 NHTS dataset which had information about 

households that own mixed vehicle fuel type. The households with mix vehicle fuel 

type were extracted and the average electric vehicle mileage ratio based on 

household income and household vehicle ownership was computed using equation 

20.    
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Electric vehicle mileage ratio =  Average Electric vehicle Mileage in a Category
Average Total household Mileage in a Category

        (20) 

Table 12 represents the electric vehicle mileage ratio for each category and the 

corresponding sample size. In general, a low-income household with two vehicles have 55 

percent of mileage on electric vehicles, while a high-income household with two vehicles 

have 63 percent of mileage on EVs. The ratios obtained from Table 12 was utilized to 

allocate the household mileages in mixed vehicle fuel-type households. After allocating 

the mileages, the energy consumption was imputed for households in British Thermal Unit. 

                 Table 12. Electric Vehicle Mileage Ratio 

HH Vehicle Ownership/ 
Household Income 

Low Income 
Households 

Medium Income 
Households 

High Income 
Households 

1 Vehicle 1 1 1 

2 Vehicles 
0.555  

(N=14 Vehicles) 
0.376 

(N=113 Vehicles) 
0.634 

(N=257 Vehicles) 

3+ Vehicles 
0.283 

(N=44 Vehicles) 
0.218 

(N=174 Vehicles) 
0.299 

(N=580 Vehicles) 
 

The above steps (c-d) are followed for each scenario to understand the change in 

household energy footprint with increasing electric vehicle penetration. In other words, for 

each scenario, households’ gasoline footprint and electric vehicle footprint (sensitive to 

efficiency (MPG or MPGe, respectively)) is computed. The percent increase and decrease 

in residential energy footprint and household energy print, respectively, is calculated to 

understand the household energy footprint implications of shifting vehicle/fuel type 

choices.  

5.3. Results 

This section presents a comprehensive comparison of the utilization patterns of 

electric vehicles relative to gasoline vehicles and how they affect residential and total 

household energy use. The first subsection provides the results on adoption, utilization and 
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replacement of household’s vehicles. The next subsection provides insights on household 

energy footprint implications of shifting vehicle/fuel type choices.  

5.3.1. Adoption, Utilization, and Replacement of Households 

Vehicles  

Results on three dimensions, namely, adoption, utilization, and replacement are presented 

by comparing the household characteristics, vehicle characteristics, trip characteristics, and 

tour characteristics. These comparisons highlight the differences in the ownership and 

utilization patterns of electric vehicles relative to gasoline vehicles.  

5.3.1.1. Household Characteristics 

The household characteristics includes comparisons for household income and household 

vehicle ownership. Figure 14 indicates that household owning EVs are higher income 

households, which is consistent with previous findings (Jia et al, 2021; Lee et al, 2019). In 

other words, about 70 percent of the EVs are owned by high-income households (annual 

income of $100k or more), indicating inequity in EV ownership patterns. This pattern may 

be reflective of the higher cost associated with EVs, which serves as a barrier to EV 

adoption across different income groups, in addition to range anxiety and charging 

infrastructure (Adepetu and Keshav, 2017). As policymakers seek to integrate equity and 

environmental policy goals, equitable electrification can serve as a key component to a just 

transition.  
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Figure 14. Household Income Distribution  
 

About 51 percent of the households with at-least one electric vehicle own 3 or more 

vehicles in a household, while only 27 percent of the gasoline vehicle households own 3 

or more vehicles. This pattern indicates that higher vehicle ownership households are 

shifting towards owning more mixed vehicle fuel type. Additionally, there might be income 

effect for higher vehicle ownership pattern within households that own one or more EVs. 

This emerging pattern indicates that household vehicle fleet composition and ownership 

model system need to be updated to account for mixed vehicle fleet fuel type choices to 

accurately quantify transport energy consumption and assess the implications of shifting 

vehicle/fuel type choices. 
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Figure 15. Household Vehicle Ownership 
 

5.3.1.2. Vehicle Characteristics 

Vehicle characteristics include comparisons on vehicle age, length of vehicle ownership, 

type of vehicles owned, and annual household mileages. This disaggregated level 

comparison highlights the differences between electric and gasoline vehicles at the vehicle 

level. Figure 16 shows the comparison of vehicle age distribution between the households 

with at-least one electric vehicles and households with only gasoline vehicles. About 77 

percent of the electric vehicles are newer vehicles with vehicle age less than 5 years age, 

while 30 percent of the vehicles are less than 5 years in households with only gasoline 

vehicles. This is expected as electric vehicle technology is newer in the market and 

therefore, vehicle tend to be newer compared to other vehicle-fuel type. While electric 

vehicles are the newer vehicle in a household but given the barrier associated with EV 

technology, it is interesting to explore the length of vehicle ownership.  
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Figure 16. Vehicle Age Distribution  

Figure 17 shows that nearly 72 percent of the respondents indicated that they own 

their electric vehicles longer than a year, while 87 percent indicated that gasoline vehicles 

are owned longer than a year. To understand length of vehicle ownership further, the 

California Vehicle Survey (CVS) Data was utilized. The 2017 CVS data was collected by 

California Energy Commission and includes revealed preferences and stated preferences 

for the residential and commercial light-duty fleet owners in California to assess consumer 

preferences for vehicle.  
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Figure 17. Owned Vehicle Longer Than Year 

The 2017 CVS data (Figure 18) indicate that nearly 70 percent of the respondents 

would replace electric vehicles within 3 years and 4 percent indicated that they are never 

going to replace them. The shorter length of vehicle ownership is possibly due to the 

barriers (e.g., battery technology, range anxiety, charging infrastructure units) associated 

with owning electric vehicle technology. However, with the advancement in the 

technology, it might be possible that we might see electric vehicles are owned for longer-

term, but initial findings suggest otherwise and raise questions whether electric vehicle 

technology is sustainable or not.   
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Figure 18. When do you expect to Replace this Vehicle? 

Figure 19 indicates that about 77 percent of the electric vehicles are cars and 2 

percent are in the Sports Utility Vehicle category. Krupa et al (2015) found that drivers 

currently driving larger size vehicles are less likely to adapt electric vehicles which are 

available in small class sizes. The findings point that with increased availability of vehicle 

type segments in the market might result in increased adoption of EVs.  

 

Figure 19. Vehicle Type Distribution  
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Contrary to two recent studies on vehicle miles traveled (Burlig et al, 2021; Davis, 

2019), which indicated electric vehicles are driven less than gasoline vehicles, the annual 

household mileage distribution, shown in Figure 20, indicates that electric vehicles are 

driven as much as gasoline vehicles are, a finding similar to Chakraborty et al (2021).  This 

would mean that as electric vehicle replaces gasoline vehicles, policies are needed to 

reduce amount of travel and the associated negative externalities like congestion. In other 

words, a shift to electric vehicles may not yield a decrease in amount of travel.  

 

Figure 20. Annual Household Mileage Distribution  
 

5.3.1.3. Trip and Tour Characteristics  

The trip length distribution, shown in Figure 21, suggests that electric vehicles are utilized 

for short distance travel: about 43 percent of the trips made by electric vehicles are shorter 

than 3 miles, which is nearly same for households with pure gasoline vehicles. In general, 

a modest shift in trip length is possible, but it will be likely dependent on the range 

considerations. It is also interesting to note, Plug-in- hybrid vehicles are utilized more often 
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for long-distance travel within households that owns mixed vehicle fuel type. This might 

be indicative of the fact that households are embracing sustainable transport technologies.  

 

 

Figure 21. Trip Length Distribution  

 Similarly, trip chaining characteristic (number of trips in a tour) shown in Figure 

22 indicates that with the increase in trip chaining patterns, households might shift to plug-

in-hybrid or gasoline vehicles, but the usage is slightly different between electric vehicles 

and gasoline vehicles. This speaks of the potential of the technology to replace 

conventional vehicles.   
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Figure 22. Number of Trips in a Tour  

5.3.2. Implications of Electric Vehicles Adoption and Utilization 

on Household Energy Consumption 

With rapid advancement in the electric vehicle technology, it is expected that EV will yield 

lower energy consumption per mile which will, in turn, decrease carbon emissions from 

the transport sector. However, wide scale adoption of electric vehicles could dramatically 

increase total electricity demand (Moon et al, 2018; Van Vliet et al, 2011), as about 80 

percent of the electric vehicles are currently charged at home (National Resources Defense 

Council, 2021). In other words, utility companies have had flat demand for years, which 

might change with wide scale adoption of electric vehicles. Mai et al (2018) presented 

plausible electrification scenarios encompassing end-use technology adoptions across all 

sectors and concluded that electricity share of total energy consumption will grow to 32 

percent in medium scenario (widespread electrification opportunities in electric vehicles, 

heat pumps, and select industrial application) and 41 percent in high scenario (a 

combination of policy support, consumer enthusiasm, and technology advancement) by 
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2050. Gryparis et al (2020) evaluated the impact of EVs on electricity grid and found that 

high penetration of EVs results in an increase in electricity demand. Historically, it is 

observed that residential electricity demand has dramatically shifted with rapid adoption 

of refrigerators, air conditioning, and home electronics which might turn out to be true with 

electric vehicle adoption. However, there is limited literature that accounts for the 

interrelationships between transport and residential energy consumption while 

understanding the household energy footprint implications of shifting vehicle/fuel type 

choices. To account for these inter-relationships and tradeoffs, a data fusion across two 

datasets, namely, 2017 National Household Travel Survey and 2015 Residential Energy 

Consumption Survey, is performed to understand the implications of electric vehicle 

ownership and utilization on household energy consumption. The resulting integrated 

transport and residential energy consumption model system developed in Chapter four was 

utilized to understand the implications of electric vehicle ownership and utilization on 

household energy consumption. Specifically, scenario analysis is performed to understand 

the implications on household energy footprint with increased electric vehicle penetration 

rate.   

This study is one of the first in-depth investigation into electric vehicle utilization 

relative to gasoline vehicles and its implication on household energy consumption. The 

results indicated that electric vehicles are utilized as much as gasoline vehicles are, clearly 

indicating the potential of the technology to replace trips made by gasoline vehicles. 

However, this may negate some of the benefits associated with transition to an electric 

vehicle future. In other words, with an increased EV penetration (from 0 percent to 100 

percent), a continuous increase in residential energy consumption is observed (in Figure 
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23). With the greatest increase in EV penetration rate (Scenario 5), the residential energy 

consumption increases 38 percent from the base scenario (which is 0 percent EVs), 

suggesting a substantial shift in residential energy consumption. The findings from this 

research study suggest that electricity systems may need additional infrastructure to support 

the growing demand for electricity as EVs becomes prevalent in the population. Further, 

this increase might offset the reduction gained in transport energy consumption, as EV 

charging electricity demand is satisfied primarily by increased electricity generation from 

conventional fossil fuel-fired power plants and imports.  However, interestingly, the total 

household energy use decreases by 55 percent when 100 percent of the vehicle feet is EV. 

This reduction in total household energy use clearly indicates the benefits associated with 

transportation electrification.   

 

Figure 23. Percent Increase/Decrease in Household Energy Consumption 
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5.4. Conclusions And Discussions 

A key element of the portfolio of strategies to advance sustainability of the 

transportation system is the adoption and use of electric vehicles, with the hope that an 

increase in adoption and use of electric vehicles will be accompanied by a reduction in 

gasoline vehicle ownership and use and overall household energy footprints. Many 

countries have formulated policies to encourage electric vehicle (EV) adoption so that EVs 

will account for an increased share of future vehicle fleets. Various incentives, rebates, and 

special privileges have stimulated the adoption of EVs, but the market share of EVs 

remains very small in most contexts. The current estimates indicate that about 2 million 

battery electric vehicles have been sold in the U.S. since 2010 (Argonne, 2021) and the 

forecasts suggest that EVs will account for about 60 percent of new car sales in US by 2040 

(Electric Vehicle Outlook, 2021). Transport energy consumption is dependent on the mix 

of vehicles that a household owns and uses, and the extent to which different vehicles in 

the households are driven. Most household travel surveys have few, if any, records of 

households that own EVs, thus rendering it difficult to analyze the usage of EVs relative 

to gasoline vehicles.  Using data from the 2017 National Household Travel Survey, this 

study fills this critical gap by presenting a comprehensive comparison of the utilization 

patterns of electric vehicles relative to gasoline vehicles and how they affect residential 

and total household energy use.  

The findings from this study indicate that households owning EVs differ 

substantially from household not owning EVs. In other words, EVs are owned by 

households that are high-income and have higher vehicles ownership patterns. Moreover, 

about 70 percent of the EVs are owned by high-income households, indicating inequity in 
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EV ownership patterns. With the rapid advancement in the technology, it is expected the 

barriers associated with battery technology, charging infrastructure, range anxiety, cost 

etc., might be overcome which might result in wide-scale adoption of EVs across segments 

of the society. Further, it is unlikely that EV penetration and usage will lead to substantial 

changes in travel patterns and amount of travel. However, modest shift in trip length is 

possible but likely dependent on range considerations.  

There is a predicted sharp increase in residential energy consumption with a wide-

scale adoption of electric vehicles.  This may negate some of the benefits associated with 

transition to an EV future. Previous studies have also shown that wide scale adoption and 

utilization of electric vehicles could significantly increase total electricity demand (Moon 

et al, 2018), as about 80 percent of the electric vehicles are currently charged at home 

(National Resources Defense Council, 2021). This requires advancement not only in 

vehicle technology but also on renewable energy sources to power electricity generation. 

The accessibility and availability of public charging infrastructure might cut some of the 

increase in residential energy consumption as consumers might be inclined to charge 

vehicles elsewhere other than at home. More interestingly, it is observed that the total 

household energy use may decrease by 55 percent, reinforcing the benefits associated with 

transportation electrification. The findings from this study will help utilities companies to 

design policy interventions that help curb the rising demand for electricity in the near 

future.  

While this analysis offers insights on differences in utilization patterns of electric 

vehicles relative to gasoline vehicles and its implication on household energy consumption, 

there are some limitations that we need to keep in mind. First, the results from this study 
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may not be generalized given the sample size. A more robust large survey sample across 

the nation will help us to accurately assess the impacts of electric vehicle (EV) adoption 

and utilization on household energy consumption. Second, with the availability of public 

charging units, it is important to account for variation in charging location choices to 

accurately quantify shift in energy consumption. Third, the travel patterns and activity time 

use has significantly shifted during COVID-19 pandemic which is not accounted in this 

research. In other words, some individuals might be spending more time in-home and less 

time traveling which might influence the household energy consumption pattern. 

Accounting for this shift in activity-time will help us to accurately reflect household energy 

use. Future research efforts will try to address these limitations.  
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6. CONCLUSIONS AND DISCUSSIONS 

Traveler behaviors and attitudes are rapidly evolving and undergoing significant 

changes. The evolving nature of people’s travel is beginning to reveal itself in long standing 

measures of transportation (mode shares, traffic volumes, congestion and delay, transit 

ridership). These changes have profound impacts in the ways we interact with our 

infrastructure, our vehicles, our environment, and with each other (Mobility Lab, 2018). 

More specifically, transport behaviors and attitudes impact a number of phenomena 

(energy consumption, air quality, well-being, health and safety, for example) and there is 

increasing interest to analyze, understand, and model the connections between transport 

and these other phenomena (Mobility Lab, 2018). Specifically, this dissertation develop 

multidimensional model systems to unravel the complex relationships among behavioral 

dimensions which can help us understand travel behavior implications for transport and 

household energy use.  

To reduce the environmental burden of transport, previous studies have focused on 

solutions that accentuate towards techno-economical pathways. However, there is growing 

evidence that transport behaviors, lifestyle choices, and role of individuals attitudes and 

perceptions are considered influential factors in shaping society’s engagement with 

technological opportunities in the face of environmental crisis. The objective of this 

dissertation is to develop multidimensional models to understand the travel behavior 

implications for transport and household energy use. To this end, the dissertation contains 

four distinct chapters that highlights the existence of structural heterogeneity in consumer 

decision-making processes, importance of attitudes, values, and perceptions in modeling 

the adoption and utilization of sustainable transport technologies, develops an integrated 
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household energy analysis tool that accounts for the interrelationship between transport 

and residential energy consumption, and lastly, understand the household energy footprint 

implications of shifting vehicle/fuel type choices. Overall, the findings from this 

dissertation can be utilized to explore pathways that leads to decarbonize the transport 

sector.   

Specifically, the second chapter of this dissertation explores the relationship 

between attitudes and behaviors by highlighting the existence of structural heterogeneity 

in the consumer decision-making processes. Energy-behavioral analysts are increasingly 

concerned with the relationships between human attitudes and perceptions on the one hand 

and behavioral choices on the other. There is interest in exploring the possibility of using 

attitudinal variables and constructs to better explain and more accurately predict household 

energy use under a variety of scenarios, particularly in the context of emerging transport 

and building technologies. The chapter adopts a latent segmentation approach to reflect the 

notion that the analyst is not aware of the causal structure adopted by each individual in 

the sample population. The finding of this research indicates that nearly two-thirds of the 

sample fall in the segment where behavioral experiences are shaping attitudes, while only 

about one-third falls in the segment where attitudes affect behaviors. This implies that it is 

necessary to run pilots and campaigns where individuals actually get to experience modal 

options and different products first-hand; people need to be able to exercise alternative 

behavioral choices, learn through experience, and re-shape their attitudes in response to the 

behaviors and choices that they get to experience. Programs in which individuals are able 

to actually try out new and different alternatives (modes and services, for example) may 

yield greater benefit than messaging aimed at trying to influence attitudes. Additionally, it 
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is also clear from this research that attitudes/perceptions should not be treated as 

explanatory variables to a behavioral phenomenon rather they serve as an endogenous 

variable in the modeling exercise. Thus, clearly indicating that special emphasis should be 

placed on attitudes/perceptions while explaining a behavioral phenomenon of interest.   

Building on the findings of the causal segmentation study, the third chapter 

explores the factors that influences the adoption of on-demand mobility services and 

electric vehicle ownership while placing special emphasis on attitudes, perceptions, and 

preferences. Many rapidly developing countries around the world are at a crossroads when 

it comes to transportation, air quality, and sustainability. Indeed, the challenges presented 

by vehicular growth in India has motivated the search for sustainable transportation 

solutions. One solution constitutes ridehailing services, which are expected to reduce car 

ownership and provide affordable means of transportation. Another key solution is the rise 

of electric vehicles (EVs), which are expected to reduce greenhouse gas emission and 

address the growing demand for sustainable urban mobility. Using a unique survey data 

set collected in 2018 from a sample of 43,000 respondents spread across 20 cities in India, 

this chapter attempts to shed light on the factors that affect adoption of on-demand 

transportation services and electric vehicles in India.  In particular, not only does this paper 

consider the socio-economic and demographic variables that affect these behavioral 

choices, but the integrated modeling framework adopted in this study places a special 

emphasis on representing the important role played by attitudes, values, and perceptions in 

determining adoption of on-demand transportation services and EVs. Results from this 

indicated that attitudes and values significantly affect the use of on-demand transportation 

services and EV ownership, suggesting that information campaigns and free 
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trials/demonstrations would help advance the adoption of sustainable transportation modes 

which, in turn, will impact transport and household energy use. The developed integrated 

modeling systems provides the capability to fully assess and understand the 

interrelationship between the behavioral phenomena of interest.  

Taking the idea of integrated modeling framework, further, the fourth chapter 

develops an integrated household and residential energy consumption model system. Due 

to phenomenal growth in energy demand and corresponding human and environmental 

impacts, it is critical for communities and cities to explore pathways to simultaneously 

manage household’s transportation and residential energy consumption patterns to advance 

economic vitality, wellbeing, and environmental sustainability of the region. Holistic 

integrated modeling frameworks present an opportunity to develop, analyze, and model 

these connections which may be desired for analyzing alternative energy future and policy 

scenarios. To explore this relationship, the information from the NHTS is fused with the 

RECS to develop a comprehensive computational modeling framework within an agent-

based microsimulation environment that can be used to characterize and quantify the 

spatiotemporal dynamics of the components of household energy footprint. The 

characterization and quantification of spatio-temporal dynamics will enable us to track how 

transport and residential energy change over time as different users carry out their daily 

activities in space and time. The findings from this study indicates the existence of small 

but significant net complementary relationships between transport and residential energy 

consumption. Additionally, the modeling framework enabled the identification and 

comparison of energy consumption patterns across market segments.  
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 Moreover, the resulting integrated transport and residential energy consumption 

model system can be utilized to assess the overall household energy footprint implications 

with the adoption and use of electric vehicles. It is hoped that an increase in adoption and 

use of electric vehicles will be accompanied by a reduction in gasoline vehicle ownership 

and use and overall household energy footprints. Transport energy consumption is 

dependent on the mix of vehicles that a household owns and uses, and the extent to which 

different vehicles in the households are driven. There is very limited understanding on how 

electric vehicles are utilized in comparison to gasoline vehicles. If electric vehicles are 

utilized more than gasoline vehicles, that may negate some of the benefits associated with 

transition to an EV future. It is expected that EVs will yield lower energy consumption per 

mile which will, in turn, decrease carbon emissions from the transport sector. However, 

wide scale adoption and utilization of electric vehicles could significantly increase total 

electricity demand (Moon et al, 2018) as about 80 percent of the electric vehicles are 

currently charged at home (National Resources Defense Council, 2021). Using data from 

the 2017 National Household Travel Survey, this chapter presents a comprehensive 

comparison of the utilization pattern of electric vehicles relative to gasoline vehicles. The 

findings from this study indicate that electric vehicles are utilized as much as gasoline 

vehicles are and with the wide-scale adoption of EVs, we might see an increase in 

residential energy consumption, however, the total household energy use decrease, 

pointing towards the long-term benefits associated with transportation electrification.   
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Table 13. Model Estimation Result- Causal Structure 2 (FTURLC; FTU+RLCATT) 

Explanatory Variables 

Residential Location Choice 
(base: Other suburban and small town + rural) 

Frequency of Transit Use 
(never, infrequent, and 

frequent users) 

Attitudes Towards 
Transit  

(continuous factor 
scores) Urban dwellers Suburban and small 

town mix 
Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Constant -0.978 -7.51 -0.650 -8.31 0.182 19.32 -0.532 -19.90 
Individual Characteristics 
Gender         
    Female -0.232 -4.07 –– –– 0.109 4.10 0.112 3.98 
Age category         
    18-24 years 0.492 3.21 –– –– –– –– 0.143 6.12 
    25-34 years 0.302 4.12     0.120 3.64 
    18-34 years –– –– 0.112 2.71 – – –– –– 
    35-54 years –– –– –– –– -0.295 -6.12 –– –– 
    55-64 years –– –– –– –– -0.403 -6.41 –– –– 
    65 years and above –– –– –– –– -0.569 -6.19 –– –– 
Education attainment         
    College graduate or higher 0.183 2.74 –– –– –– –– –– –– 
Employment Status         
    Employed full-time 0.263 4.85 -0.127 -5.32 –– –– –– –– 
Time spent online         
    More than 8 hours per day 0.320 3.46 0.203 2.12 0.674 3.11 0.072 2.01 
Household Characteristics 
Home ownership         
    Own -0.703 -4.08 -0.321 -4.14 -0.128 -3.94 0.084 3.02 
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Table 13. Continued- Causal Structure 2 (FTURLC; FTU+RLCATT) 

Explanatory Variables 

Residential Location Choice 
(base: Other suburban and small town + rural) 

Frequency of Transit Use 
(never, infrequent, and 

frequent users) 

Attitudes Towards 
Transit  

(continuous factor 
scores) Urban dwellers Suburban and small 

town mix 
Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Household Characteristics         
Household income         
    Less than $35,000 0.205 2.95 -0.272 -5.92 0.075 2.24 –– –– 
    More than $75,000 –– –– –– –– –– – –– –– 
Household size         
    Two or more -0.257 -4.32 –– –– -0.130 -4.03 –– –– 
Presence of kids         
    Presence of kids 0-4 years -0.127 -2.03 -0.134 -2.86 -0.110 -4.37 –– –– 
    Presence of kids 0-15 years –– –– –– –– –– –– 0.122 6.12 
Vehicle ownership         
    Three or more -0.694 -7.35 -0.329 -5.77 -0.240 -3.12 -0.105 -4.72 
Location Characteristics         
Lives in Transit Rich City         
    Progressive –– –– –– –– 0.403 8.31 0.078 3.10 
Region         
    South –– –– –– –– -0.185 -5.04 -0.100 -3.92 
Threshold parameter –– –– –– –– 1.205 18.75 –– –– 
    Urban dwellers –– –– –– –– –– –– 0.127 3.22 
    Suburban and small-town mix –– –– –– –– –– –– 0.083 2.04 
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Table 14. Model Estimation Result- Causal Structure 3 (ATT RLC; ATT+RLCFTU) 

Explanatory Variables 

Residential Location Choice 
(base: Other suburban and small town + rural) 

Frequency of Transit Use 
(never, infrequent, and 

frequent users) 

Attitudes Towards 
Transit  

(continuous factor 
scores) Urban dwellers Suburban and small 

town mix 
Coef t-stat Coef      t-stat Coef t-stat Coef t-stat 

Constant -0.703 -6.15   -0.538 -7.21 1.103 19.42 -0.676 -12.32 
Individual Characteristics 
Gender         
    Female -0.207 -3.27 –– –– 0.114 5.04 0.105 3.22 
Age category         
    18-24 years 0.463 4.51 –– –– –– –– 0.137 5.44 
    25-34 years 0.300 5.36 –– –– –– –– 0.102 3.94 
    18-34 years –– –– 0.172 3.12 –– –– –– –– 
    35-54 years –– –– –– –– -0.294 -7.35 –– –– 
    55-64 years –– –– –– –– -0.423 -9.12 –– –– 
    65 years and above –– ––– –– –– -0.570 -8.43 –– –– 
Education attainment         
    College graduate or higher 0.185 2.86 –– –– –– –– –– –– 
Employment Status         
    Employed full-time 0.266 3.88 -0.118 -4.75 –– –– –– –– 
Frequency of Transit Use         
    Frequent: once per week or more –– –– –– –– –– –– –– –– 
    Infrequent: less than once per 
week –– –– –– –– –– –– –– –– 

Time spent online         
    More than 8 hours per day 0.317 5.38 0.217 2.74 0.780 3.12 0.068 2.75 
Household Characteristics 
Home ownership         
    Own -0.655 -3.86 -0.275 -4.08 -0.125 -2.98 0.082 3.07 
Household income         
    Less than $35,000 0.201 3.07 -0.258 -6.26 0.071 2.10 –– –– 
    More than $75,000 –– –– –– –– –– –– 0.120 2.21 
Household size         
    Two or more -0.250 -3.00 –– –– -0.137 -4.72 –– –– 
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Table 14. Continued- Causal Structure 3 (ATT RLC; ATT+RLCFTU) 

Explanatory Variables  

Residential Location Choice 
(base: Other suburban and small town + rural) 

Frequency of Transit Use 
(never, infrequent, and 

frequent users) 

Attitudes Towards 
Transit  

(continuous factor 
scores) Urban dwellers Suburban and small 

town mix 
    Coef     t-stat    Coef       t-stat      Coef     t -stat   Coef     t -stat 

Household Characteristics         
Presence of kids         
    Presence of kids 0-4 years -0.119 -2.71 -0.128 -3.11 -0.101 -4.05 –– –– 
    Presence of kids 0-15 years –– –– –– –– –– –– 0.111 4.51 
Vehicle ownership         
    Three or more -0.726 -9.01 -0.331 -4.07 -0.240 -4.31 -0.112 -4.86 
Location Characteristics         
Lives in Transit Rich City         
    Progressive –– –– –– –– 0.392 9.00 0.099 5.32 
Region         
    South –– –– –– –– -0.206 -4.62 -0.109 -5.02 
Threshold parameter –– –– –– –– 1.190 18.63 –– –– 
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Table 15. Model Estimation Result- Causal Structure 4 (ATTFTU; ATT+FTURLC) 

Explanatory Variables 

Residential Location Choice 
(base: Other suburban and small town + rural) 

Frequency of Transit Use 
(never, infrequent, and 

frequent users) 

Attitudes Towards 
Transit 

(continuous factor 
scores) Urban dwellers Suburban and small 

town mix 
Coef t-stat Coef t-stat Coef t-stat Coef` t-stat 

Constant -0.907 -6.29 -0.614 -7.61 1.083 20.04 -0.681 -15.44 
Individual Characteristics 
Gender         
    Female -0.205 -4.98 –– –– 0.112 4.86 0.104 3.27 
Age category         
    18-24 years 0.460 3.21 –– –– –– –– 0.133 6.10 
    25-34 years 0.305 4.12 –– –– –– –– 0.096 5.11 
    18-34 years –– –– 0.168 4.11 –– –– – – 
    35-54 years –– –– –– –– -0.296 -6.23 – – 
    55-64 years –– –– –– –– -0.426 -8.32 – – 
    65 years and above –– –– –– –– -0.571 -9.03 – – 
Education attainment         
    College graduate or higher 0.188 3.11 –– –– –– –– –– –– 
Employment Status         
    Employed full-time 0.270 3.65 -0.120 -3.04 –– –– –– –– 
Time spent online         
    More than 8 hours per day 0.318 5.64 0.215 2.08 0.781 3.28 0.070 3.19 
Household Characteristics 
Home ownership         
    Own -0.671 -4.29 -0.277 -3.95 -0.125 -3.27 0.079 3.00 
Household income         
    Less than $35,000 0.200 3.06 -0.259 -5.07 0.067 2.03 0.119 2.10 
    More than $75,000 –– –– –– –– –– –– –– –– 
Household size         
    Two or more -0.250 -2.85 –– –– -0.131 -3.94 –– –– 
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 Table 15. Continued- Causal Structure 4 (ATTFTU; ATT+FTURLC) 

Explanatory Variables 

Residential Location Choice 
(base: Other suburban and small town + rural) 

Frequency of Transit Use 
(never, infrequent, and 

frequent users) 

Attitudes Towards 
Transit 

(continuous factor 
scores) Urban dwellers Suburban and small 

town mix 
Coef t-stat Coef t-stat Coef t-stat Coef t-stat 

Household Characteristics         
Presence of kids         
    Presence of kids 0-4 years -0.120 -2.96 -0.134 -4.00 -0.099 -4.07 –– –– 
    Presence of kids 0-15 years –– –– –– –– –– –– 0.107 4.42 
Vehicle ownership         
    Three or more -0.731 -8.42 -0.339 -3.93 -0.241 -5.42 -0.110 -4.73 
Location Characteristics         
 Lives in Transit Rich City         
    Progressive –– –– –– –– 0.397 10.25 0.093 4.12 
Region         
    South –– –– –– –– -0.203 -5.14 -0.106 -4.75 
Threshold parameter –– –– –– –– 1.188 25.67 –– –– 
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